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Abstract

Chaos theory is the study of change over time, specifically of highly

volatile, seemingly random situations that are highly sensitive to changes

in initial conditions. Fractals are self-similar objects with non integer

dimensions. In this paper, I will explore the history of chaos theory,

fractals, and the relationship between them.

1



A dynamical system is one that models the change over time, each

value is dependent on the previous. That is xt+1 = f(xt). Sometimes these

systems are orderly, symmetric, and predictable.

These systems can also be chaotic. There are three characteristics

of a chaotic system. First, it has a dense collection of points. Second, it

is highly dependent on initial conditions. Third, two points that start out

close together will end up far apart [1].

Edward Lorenz discovered the second and third characteristics while

modeling weather in 1961. His computer would print out values representing

the various weather conditions to three decimal places while the computers

memory stored to six. He decided to examine a sequence further, but instead

of starting over from the initial conditions, he used the values from the

print out to begin again partially through his system. He was astounded

to examine the results and find that they differed from his first trial to the

point of being unrecognizable as having started less than one one thousandth

units apart (0.506127 vs. 0.506). This printout shows how quickly the two

values diverged.

Figure 1: [2]



Prior to this, it was assumed that small changes in initial values

would have minimal effects on the final value. For chaotic equations this is

untrue; small differences quickly build up on each other. Unfortunately, this

shows that weather is unpredictable more than a few days in advance no

matter how good the data is [3]. Edward Lorenz next looked at convection,

the phenomenon of hot air rising and cool air falling. Using a simplified

version of equations based off of work by B. Saltzman, he came up with a

system of three differential equations

dx/dt = −10x+ 10y (1)

dy/dt = 28x− y − xz (2)

dz/dt = 8/3z + xy[4], (3)

in which x, y, and z were key variables and t was time. Ignoring the xz and

xy terms, allowed Lorenze to look at the steady states of the system, char-

acterized by x, y, and z remaining constant. In this system, he found that

one indicated no convection and the other two indicated steady convection.

Linear stability analysis allows analysis of the stability of the system near

the steady state points. The system must be solved to look at what happens

away from the steady states. Lorenz used a computer to solve and map the

solutions. The result in the x y plane is a two lobed figure which resembles a

butterfly. This is not related to the term butterfly effect however. The term

butterfly effect is in reference to the second characteristic of chaotic equa-

tions, that they are highly sensitive to changes to initial conditions. Thus,

something as simple as a butterfly flapping its wings can affect the weather

on the other side of the planet. Lorenz published his findings on chaos in



the Journal of the Atmospheric Sciences in 1963. Unfortunately this meant

that his work went unknown in the math community for a decade [3].

Figure 2: Map in the xy plane [2]

An example of a simple chaotic system is f(x) = ax(1 − x). For

a < 1, the equation converges to zero. When 1 < a < 2, the equation has a

fixed point, a point that maps to itself, besides zero. That is, for some xi,

xi = axi(1 − xi). The following interval, 2 < a < 3, changes the behavior

around the fixed point to the cobweb, where the values spiral around the

fixed point. When a is larger than three, chaotic behavior appears [5].

An example presented by Stewart is 2x2−1 which takes initial values

between zero and one. To show how quickly this solutions to this equations

will diverge with two slightly different starting points I used Excel to com-

pute it two hundred times each for both initial values. I used Excels stored

value of pi (fifteen digits) and subtracted 3 for my first value and 0.1416

for my second initial value. The chart below, to fifty iterations, shows how

quickly a difference of less than a hundredth effects the equation to bring

completely different results. Taking the difference between the first and

second values leads to a histogram that approximates a normal distribution.



Figure 3: Line chart, 50 iterations

Figure 4: Histogram of differences, 200 iterations

An illustration of chaos is the chaos game. Beginning with any reg-

ular polygon, a random point is selected inside of it. Each new point is

placed the same fraction of the distance between the previous point and a

randomly chosen vertex. This will often approximate a fractal. For exam-

ple, a triangle with points placed halfway between the previous point and a

random vertex after hundreds of iterations will become a fractal commonly

called Sierpinskis triangle. This particular fractal can also be generated by

starting with an equilateral triangle, connecting the midpoints of the sides

to create four identical smaller triangles and then removing the middle piece.



This is done repeatedly for each smaller triangle. [6].

Figure 5: [7]

The chaos game generation of Siepinskis triangle works because it is

random. If each vertex was used in an orderly manner, ABCABCABC, the

result would be (after transition states removed) the same three points being

visited endlessly in succession. The chaos game works because no matter

where the initial point is (for example, point D in the figure) and no matter

which vertex is selected, (A, B or C), the next point will end up in one of

the shaded regions. In my diagram, selecting A, B, or C will land the next

point at, respectively, points x, y, or z. Since Sierpinski’s triangle is entirely

composed of miniatures of itself, points will continue to avoid the removed

middle triangles. It is important to note that the first hundred iterations

are removed since the initial point can be selected in an empty space.

Fractals are self similar on all scales, that is a portion of the fractal

looks the same as the whole [8]. Examples of fractals in nature include plants

such as ferns and broccoli, mountain ranges and coastlines but these are not

perfect fractals. A close up view of a fern will show up as individual cells

which do not resemble the whole [9]. Although not perfect representations



Figure 6

of nature, mathematical fractals are useful for approximating nature.

Another property of fractals is that their self-similarity dimension is

greater than the topological dimension. The self-similarity dimension of a

shape is defined as the number of copies of the original shape will fit inside

a scaled up version of it, or

number of small copies = (magnification factor)Dimension[9] (4)

solving for dimension gives us,

log(number of small copies)

log(magnification factor)
= Dimension[9] (5)

For example, a line, magnified by three will result in a line that fits three of

the original line, thus log3/log3 = 1. Similarly, a square magnified by three,

both length and width, results in a square that fits nine of the original,

log9/log3 = 2. Finally, a cube, once three times as large will be able to

fit twenty-seven of the original cube, thus log27/log3 = 3 a cube is three

dimensional. Looking at Sierpinskis triangle for the initial step and the first

iteration (results would be the same no matter which consecutive iterations



used), the first iteration has three of the original triangle within it, however

they need to be scaled up by a factor of 2 thus,

log3/log2 ≈ 1.58496 (6)

[9].

Figure 7: First four iterations of the Koch Snowflake [10]

The Koch curve is another fractal, generated by taking the middle

third of a line segment and raise a triangle over it, removing the base that

would be a part of the original line segment. [11]. Similarly, the Koch

snowflake uses the same generator but begins with a triangle and the process

is done on each of the three line segments. The fractal dimension of the Koch

snowflake is log4/log3 ≈ 1.261859 [4].

The topological dimension is the usual definition of the dimension of

an object; a point is zero dimensional, line is one, plane is two, and a cube is

three. The Sierpinski triangle is one dimensional since as more triangles are

removed from the interior, what remains is the lines that define the bounds of

each triangle [9]. Similarly, the Koch snowflake is also one dimensional since

it is also composed of lines. The Cantor set, begins with a line segment and



each iteration removes the middle third of each line segment, is composed of

points and thus has a topological dimension of zero and a fractal dimension

of ≈ 0.6309 [9].

Figure 8: Cantor set [12]

Fractal dimensions can also be determined by using the box counting

method. The shape is covered in boxes of side length s. The number of tiles

needed to cover the shape is N(s). A table is created using different sizes

of boxes. The table is used to solve

N(s) = k
1

s

D

(7)

for D, the dimension, and k, a constant. This method has the advantage

of not relying on exact miniatures of the whole that the self similarity di-

mension requires. The disadvantage is that some shapes can not be covered

by boxes without overhang, such as a circle. The number of boxes can also

depend on how the boxes are placed. Taking the log of the equation above

gives,

log (N(s)) = log

(

k

(

1

s

)D
)

(8)



using properties of logs to simplify,

log(N(s)) = log(k) +Dlog(
1

s
)[9] (9)

Substituting in y for log(N(s)) and x for log(1
s
),

y = k +Dx (10)

shows it is a linear relationship. The box counting dimension can then be

approximated by plotting x and y and determining the slope of the resulting

line. [9].

Fractals having dimensions between one and two means they have

properties of both one and two dimensional objects and similarly for frac-

tals with a self similar dimension between zero and one. For example, the

Koch snowflake resides in the two dimensional plane, but is composed of a

series of one dimensional lines [9]. The fractal dimension measures the rate

of addition of structural detail with increasing magnification serving as a

quantifier of complexity [13]. It is a measure of the crinkliness, or edginess

of the fractal. The Koch snowflake is composed of one dimensional lines but

due to its crinkliness, its perimeter is infinite as the number of iterations

approaches infinity [4].

One use of fractals is to create scenery for movies. Examples include

the forest of Endor in Star Wars: Return of the Jedi and mountains in

Star Trek II: The Wrath of Khan [14]. Irregularity and randomness are

introduced to make the normally symmetric fractals appear more similar to

the imperfect fractals created in nature. An irregular Sierpinski triangle is

created by removing a non equilateral triangle from each triangle instead of



an equilateral triangle. A random Koch curve can be generated by flipping

a coin to decide for each line if the segment is going to point up or down.

These fractals have statistical self-similarity not exact self-similarity. These

fractals are composed of pieces that have the same statistical properties of

the whole. [9]

Figure 9: an example of a random Koch curve [15]

A second use of fractals is in identifying the type and malignancy of

cancer cells. The box counting dimension of the cells are used to identify the

type of cells and assign a grade of tumor malignancy sole based of fractal

dimension analysis. [?] The study examined two sister cell lines, PatuT and

PatuS, and was correctly able to identify the PatuT cells 97% of the time.

The alternative method of tumor marking for pancreatic adenocarcinoma

CA199 has a sensitivity of 85%. The authors note that the fractal dimension

of the cell quantifies the tumor progression, which is associated with the

amount of chaos within the cell. [?]. Randomness and order are not mutually

exclusive. Sierpinski’s triangle, an ordered, symetrical figure is generated by

a random process.
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