
Persistent link: http://hdl.handle.net/2345/bc-ir:108471

This work is posted on eScholarship@BC,
Boston College University Libraries.

Boston College Electronic Thesis or Dissertation, 2019

Copyright is held by the author, with all rights reserved, unless otherwise noted.

Valence-specific Enhancements in
Visual Processing Regions Support
Negative Memories:

Author: Sarah Marie Kark

http://hdl.handle.net/2345/bc-ir:108471
http://escholarship.bc.edu


VALENCE-SPECIFIC ENHANCEMENTS 
IN VISUAL PROCESSING REGIONS 
SUPPORT NEGATIVE MEMORIES 

 
Sarah Marie Kark 

 
 
 
 
 
 

 
 

 
A dissertation 

 
submitted to the Faculty of  

 
the department of Psychology 

 
in partial fulfillment 

 
of the requirements for the degree of 

 
Doctor of Philosophy 

 
 
 

 
 
 

 
 
 
 

Boston College 
Morrissey College of Arts and Sciences 

Graduate School 
 
 

May 2019 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright 2019 Sarah Marie Kark 



 
VALENCE-SPECIFIC ENHANCEMENTS IN VISUAL PROCESSING REGIONS 

SUPPORT NEGATIVE MEMORIES 
 

Sarah Marie Kark 
 

Advisor: Elizabeth A., Kensinger, Ph.D. 
 
 
 

Abstract 

 Research in four parts examines the effects of valence on the neural processes that 

support emotional memory formation and retrieval. Results show a consistent valence-

specific enhancement of visuocortical engagement along the ventral visual stream and 

occipital cortex that supports negative memories to a greater extent than positive 

memories.  

 Part I investigated the effects of valence on the interactions between trial-level 

physiological responses to emotional stimuli (i.e., heart rate deceleration) during 

encoding and subsequent memory vividness. Results showed that negative memory 

vividness, but not positive or neutral memory vividness, is tied to arousal-related 

enhancements of amygdala coupling with early visual cortex during encoding. These 

results suggest that co-occurring parasympathetic arousal responses and amygdala 

connectivity with early visual cortex during encoding influence subsequent memory 

vividness for negative stimuli, perhaps reflecting enhanced memory-relevant perceptual 

enhancements during encoding of negative stimuli. 

Part II examined links between individual differences in post-encoding increases 

is amygdala functional connectivity at rest and the degree and direction of emotional 

memory biases at retrieval. Results demonstrated that post-encoding increases in 



 
 

amygdala resting state functional connectivity with visuocortical and frontal regions 

predicted the degree of negative memory bias (i.e., better memory for unpleasant 

compared to pleasant stimuli) and positive memory bias, respectively. Further, the effect 

of amygdala-visuocortical post-encoding coupling on behavioral negative memory bias 

was completely mediated by greater retrieval-related activity for negative stimuli in 

visuocortical areas. These findings suggest that those individuals with a negative memory 

bias tend to engage visual processing regions across multiple phases of memory more 

than individuals with a positive memory bias. 

While Parts I-II examined encoding-related memory processes, Part III 

examined the effects of valence on true and false subjective memory vividness at the time 

of retrieval. The findings showed valence-specific enhancements in regions of the ventral 

visual stream (e.g., inferior temporal gyrus and parahippocampal cortex) support negative 

memory vividness to a greater extent than positive memory vividness. However, 

activation of the parahippocampal cortex also drove a false sense of negative memory 

vividness. Together, these findings suggest spatial overlap in regions that support 

negative true and false memory vividness.   

Lastly, Part IV utilized inhibitory repetitive transcranial magnetic stimulation 

(rTMS) to test if a portion of occipito-temporal cortex that showed consistent valence-

specific effects of negative memory in Parts I-III was necessary for negative memory 

retrieval. Although some participants showed the hypothesized effect, there was no 

group-level evidence of a neuromodulatory effect of occipito-temporal cortex rTMS on 

negative memory retrieval.  



 
 

Together, the results of the current dissertation work highlight the importance of 

valence-based models of emotional memory and consistently implicated enhanced 

visuosensory engagement across multiple phases of memory. By identifying valence-

specific effects of trial-level physiological arousal during encoding, post-encoding 

amygdala coupling during early consolidation, and similarities and differences between 

true and false negative memories, the present set of work has important implications for 

how negative and positive memories are created and remembered differently. 
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or are already published. The tables and figures are in the submission format for those 

journals. 
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GENERAL INTRODUCTION 

The ability to re-experience our past influences everything from how we behave 

in the present moment to how we imagine our future (Wheeler et al., 1997). Over the 

course of a life time, memorial experiences of both triumph and tribulation give rise to a 

sense of personal identity and a persistent sense of self (Klein and Nichols, 2012). The 

very ability to re-experience the who, what, when and where of an experience in itself 

implies our very existence at the time of the remembered event (Reid, 1785). This sense 

of ‘mental time travel’ is a hallmark feature of episodic memory (Tulving, 2002; Tulving 

and Thomson, 1973). Yet, not all memories can be re-accessed with a rich sense of 

vividness or endure over long periods of time. How do the images of the World Trade 

Center engulfed in flames beneath a bright blue September sky seem forever seared into 

our minds? How do those memory traces differ from the intensely pleasant memories of 

walking across the stage at our graduation or down the aisle on our wedding day? And 

importantly, how do some individuals remember more of life’s unpleasant moments than 

the pleasant ones? 

There are now hundreds of psychological and neuroscience studies that 

demonstrate the enhancing effects of emotional arousal on memory. Neuroimaging and 

patient studies have demonstrated the importance of the amygdala—and its interactions 

with the hippocampus—in emotionally enhanced memory (Buchanan, 2007; Phelps, 

2004). However, one key factor that is known to influence the sense of re-experiencing 

different aspects of a prior event is emotional valence (Phelps and Sharot, 2008)—the 
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degree of negative or positive emotion associated with an event. For instance, memory 

re-experiencing tends to be stronger for negative stimuli, compared to positive stimuli, in 

that negative stimuli are endorsed as strongly recollected or with strong visual details, 

while positive memories tend to be endorsed as more familiar, semantic, or gist-based 

(Comblain et al., 2004; Johansson et al., 2004; Kensinger and Choi, 2009). Accordingly, 

there is evidence that arousal enhances memory formation in valence-specific ways, with 

more sensory engagement for negative stimuli and more frontal engagement for positive 

stimuli (Balconi and Ferrari, 2013; Markowitsch et al., 2003; Mickley and Kensinger, 

2008; Mickley Steinmetz et. al., 2010). That is, while amygdala engagement and arousal 

enhance emotional memory, there is evidence that negative and positive memories have 

diverging phenomenology and neural underpinnings. The present set of dissertation 

research examines how negative and positive memories are differentially instantiated in 

the brain across multiple phases of memory. 

Functional magnetic resonance imaging (fMRI) work over the past decade has 

additionally suggested a valence-specific enhancement of memory-related activation in 

the ventral visual stream for negative memories compared to neutral and positive 

memories, perhaps explaining the enhanced sense of visual re-experiencing. In a fMRI 

meta-analysis of twenty emotional memory encoding studies, Murty and colleagues 

(2011) not only found the expected enhancement of amygdala and hippocampal 

activation related to successful emotional memory formation, but also enhanced 

engagement of the ventral visual stream, a “pattern of findings [that seemed] to be borne 

out within the literature” (pg. 701). In a 2015 fMRI study of emotional encoding and 
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retrieval processes observed over a 20-minute study-test delay, I showed valence-specific 

enhancement of retrieval-related reactivation (or ‘recapitulation’) of encoding processes 

in the ventral visual stream—providing evidence of enhanced encoding-to-retrieval 

overlap in the ventral visual stream for negative memories (Kark and Kensinger, 2015), 

consistent with Tulving’s notion of ‘mental time travel’. That evidence—along with work 

from Bowen and Kensinger (2017a, b)—lead to the development of the Negative Valence 

Enhances Recapitulation (‘NEVER’) valence-based model of emotional memory (Bowen 

et al., 2018), which purports that negative valence enhances 1) sensory-focused encoding, 

2) selective consolidation of sensory information, 3) recapitulation of sensory 

information during retrieval, and 4) subjective memory vividness. While prior available 

theories of emotional memory have accounted for the enhancing effects of arousal on 

memory, the NEVER model provides a valence-based account of emotionally enhanced 

memory.  

 

Methods and Logic 

In a series of four studies, the present dissertation research directly tests multiple 

predictions of the valence-based NEVER model of emotional memory by examining the 

effect of valence on memory-related enhancements in the ventral visual stream across 

three phases: Encoding, post-encoding rest (early consolidation), and retrieval. Parts I 

and II focus on encoding and peri-encoding memory processes while Parts III and IV 

focus on retrieval processes. Based on prior work, a secondary hypothesis throughout 

Parts I-III is that positive valence enhances memory-related frontal activation and 
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amygdala-frontal functional connectivity. The present work highlights not only group 

effects, but the importance of examining individual differences in emotional memory 

bias. 

Part I tests the sensory-focused encoding tenant of the NEVER model by 

examining valence-specific effects of trial-level physiological arousal and amygdala 

coupling on subsequent memory vividness. While heightened physiological arousal (i.e., 

heart rate deceleration) was associated with enhanced amygdala coupling throughout the 

cortex—perhaps reflective of enhanced attentional processes—amygdala coupling with 

the ventral visual stream increased as a function of arousal to a greater extent for negative 

stimuli, compared to neutral and positive stimuli. Critically, enhanced negative 

subsequent memory vividness was predicted by amygdala coupling with early visual 

cortex in the presence of heightened physiological arousal responses. Hence, Part I 

demonstrates that amygdala functional connectivity patterns depend on not only the 

magnitude of physiological arousal, but also on valence. The findings also demonstrate 

that arousal-related amygdala modulation of early visual cortex specifically influences 

negative memory vividness. 

Part II addresses tenants 1-3 of the NEVER model by examining group and 

individual differences in memory as a function of valence across the encoding, post-

encoding, and retrieval phases of memory. First, the original negative memory 

recapitulation findings from a 20-minute study-test delay (Kark and Kensinger, 2015) 

were replicated and extended to a 24-hour delay, providing evidence that negative 

memory recapitulation of encoding processes persist in long-term memory. Part II also 
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provides novel evidence that the degree of negative memory bias (i.e., better memory for 

the bad than the good) and positive memory bias across individuals is linked with post-

encoding increases in amygdala resting state coupling with visuocortical and frontal 

areas, respectively. Further, post-encoding amygdala coupling predicted negative 

memory bias by influencing the degree of visuocortical retrieval-success activity during 

retrieval of negative memories. Thus, enhanced visual processing activity is not only 

related to group-level effects of negative memory formation and retrieval, but also 

explains a substantial amount of individual variability in negative memory biases.  

In Part III, retrieval-related reactivation in ventral visual regions showed 

valence-specific enhancements of negative memory vividness, compared to positive 

memory vividness. While emotion can enhance a sense of vividness for events that truly 

occurred, emotion can also increase the likelihood and vividness of false memories 

(Porter et al., 2003), making them behaviorally indistinguishable from true memories. For 

instance, famed psychologist Jean Piaget has described a highly emotional childhood 

false memory of someone trying to kidnap him from his nanny. Piaget later learned that 

the nanny had fabricated this story and that his emotional memory was false, and yet he 

could still strongly re-imagine watching the nanny fight off the kidnapper, the gashes on 

her face, and the cloak and white baton of the police officer who intervened. Piaget wrote 

"I therefore must have heard, as a child the account of this story...and projected it into the 

past in the form of a visual memory, which was a memory of a memory, but false." To 

that end, Part III also examined the effect of valence on false memory vividness and 

demonstrated spatial overlap in the ventral visual regions that support vividness for true 
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and false negative memories, implying that negative true and false memories activate 

similar brain regions.  

While Parts I-III provided consistent correlational evidence for negative memory 

enhancements of ventral visual regions using fMRI, Part IV utilized inhibitory repetitive 

transcranial magnetic stimulation (rTMS) to decipher if activity in one portion of 

occipito-temporal cortex (posterior inferior temporal gyrus) is causally related to the 

ability to retrieval and re-experience negative memories. While there was no specific 

effect of negative valence on subjective visual re-experiencing or group effect of 

stimulation site (posterior inferior temporal gyrus compared to a vertex control region) on 

negative memory retrieval, future work is needed to understand the wide-range of 

individual differences observed in Part IV. 

 

Implications 

Together, the findings of these studies suggest that negative valence not only 

influences visual memory processes in the ventral visual stream at the moment of 

encoding (Part I) and shortly thereafter (Part II), but that negative valence tightens the 

links across multiple memory phases, increasing the amount of retrieval-related 

recapitulation (Part II) and vividness (Part III) at the moment of retrieval. However, while 

activation in these areas support the likelihood of remembering, compared to forgetting 

(Part II), signals emanating from these areas can also drive an inaccurate sense of 

vividness for false negative memories (Part III). Moreover, while these regions are 

clearly and consistently enhanced in negative memory, they may or may not be necessary 
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for successful retrieval or enhanced subjective re-experiencing (Part IV) and might rather 

play a more circumscribed role within the broader amygdala-centered emotional memory 

network. Future work is needed to understand the content of negative visual memoranda 

and its contribution to memory success and vividness. Nevertheless, a basic science 

understanding of visual negative memory processes and biases is crucial to understanding 

aberrant visual memories that are prominent in a range psychopathologic conditions 

(Brewin et al., 2010). 
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1.0  PHYSIOLOGICAL AROUSAL AND AMYGDALA-VISUOCORTICAL 

CONNECTIVITY PREDICT SUBSEQUENT VIVIDNESS OF NEGATIVE 

MEMORIES 

Submitted Manuscript: 

Kark, S. M., Kensinger, E. A., submitted. Physiological arousal and amygdala-

visuocortical connectivity predict subsequent vividness of negative memories.  
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1.1 ABSTRACT 

Relative to neutral memories, negative and positive memories both exhibit an increase in 

memory longevity, subjective memory re-experiencing, and amygdala activation. These 

memory enhancements are often attributed to shared influences of arousal on memory. 

Yet prior work suggests the intriguing possibility that arousal affects memory networks in 

valence-specific ways. In particular, amygdala-visuocortical functional connectivity 

(AVFC) increases with arousal for negative memories while amygdala-frontal functional 

connectivity is associated with positive arousal. Psychophysics work has separately 

shown that arousal-related heart rate deceleration (HRD) responses are related to 

enhanced AVFC and visual perception of negative stimuli. However, in the memory 

realm, it is not known if the effect of AVFC influences subsequent negative memory 

outcomes as a function of the magnitude of physiological arousal (i.e., HRD) during 

encoding. Using psycho-autonomic interaction (PAI) analyses and trial-level measures of 

HRD as an objective measure of arousal during encoding of emotional and neutral 

stimuli, the current findings suggest the magnitude of HRD responses modulates the 

effect of AVFC on subsequent negative memory vividness. Specifically, AVFC effects in 

early visual cortex predicted negative memory vividness—and not neutral or positive 

vividness—but only in the presence of heightened physiological arousal. This novel PAI 

approach was grounded in a replication of prior working showing enhanced HRD effects 

in the insula for negative stimuli regardless of memory. These findings provide further 

evidence for a valence-based account of emotional memory by demonstrating the effect 

of arousal on amygdala-centered emotional memory networks depends on valence.  
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1.2 INTRODUCTION 

William James made a prescient observation when he wrote; “An impression may be so 

exciting emotionally as almost to leave a scar on the cerebral tissues” (James, 1890, pg. 

670). Negative memories can differ from positive and neutral memories both in brain and 

in behavior (Bowen et al., 2018), with functional magnetic resonance imaging (fMRI) 

studies linking negative valence with enhanced visual processing during successful 

encoding (Mickley Steinmetz and Kensinger, 2009), post-encoding rest (Kark and 

Kensinger, in press), and retrieval (Bowen et al., 2018; Kark and Kensinger, 2015, in 

press) of vivid memories (Kark et al., submitted; Mickley and Kensinger, 2008). Almost 

all levels of the ventral visual system receive feedback projections from the amygdala, 

including V1 (Amaral et al., 2003), yet the impact of amygdala-related arousal on 

memory may depend on valence: Arousal enhances amygdala-visuocortical functional 

connectivity (AVFC) during encoding of negative memories but amygdala-prefrontal 

cortex (PFC) connectivity for positive memories (Mickley Steinmetz et al., 2010).  

The present study directly examined the effects of physiological arousal on 

encoding-related amygdala connectivity by using an objective, trial-level metric of 

arousal: Heart rate deceleration (HRD). HRD is a common metric of arousal 

corresponding to a phasic parasympathetic response associated with stimulus attention 

and orienting, with an exaggerated decelerative response to negative stimuli (Lang et al., 

1993). In fearful situations, HRD is associated with noradrenergic release in the 

amygdala and a defensive mode of attentive immobility (i.e., freezing), which are thought 

to facilitate an organism’s sensory processing of its surroundings to assess threats (Lacey 
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and Lacey, 1970). Memory research has provided evidence that HRD responses can 

predict subsequent memory for negative stimuli (Cunningham et al., 2014), however, the 

neural mechanisms of this memory-enhancing effect have not been formally tested. 

Recent psychophysics work has shown concurrent HRD responses and increased AVFC 

enhance visual sensitivity (Lojowska et al., 2018), raising the intriguing possibility that 

arousal enhances perceptual encoding of negative stimuli during memory formation. 

Previous work has shown that HRD magnitudes correlate with activation in regions 

linked to emotional memory enhancement: the medial temporal-lobe, including the 

amygdala (Inman et al., in press), and in the insula and visual processing regions 

(Critchley et al., 2005; Hermans et al., 2014; Hermans et al., 2013). If negative valence is 

associated with perceptual enhancements related to HRD-related increases in arousal 

during the initial experience of a negative stimulus (Lojowska et al., 2018), this could 

lead to long-term consequences on memory vividness specifically for negative—but not 

positive—stimuli, consistent with our recent valence-based emotional memory model 

proposing a disproportionate link between perceptual recapitulation and negative memory 

(Bowen et al., 2018). Alternatively, HRD responses could relate to AVFC and  memory 

vividness for all arousing stimuli (positive and negative) or even for neutral stimuli 

(consistent with an attention-based account of HRD).  

In the current fMRI study, we asked: Does the magnitude of physiological arousal 

during encoding facilitate the “searing” of negative experiences into long-term memory? 

We examined the effect of valence on AVFC profiles associated with an interaction 

between trial-level HRD responses and subsequent memory vividness by conducting 
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psycho-autonomic interaction (PAI) analyses (Farrow et al., 2012). We utilized a dataset 

from an emotional recognition memory fMRI study with a 24-hour delay that 

demonstrated valence-specific memory enhancements for negative stimuli in 

visuocortical regions (Kark and Kensinger, in press; Kark et al., submitted). We predicted 

that heightened HRD response magnitudes and greater AVFC would specifically predict 

vividness for negative, but not positive, memories, with effects for neutral falling 

intermediately.  

1.3 METHODS 

All procedures were approved by the Boston College Institutional Review Board and 

written informed consent was obtained from all participants. Full explanations of the 

study stimuli and procedures, including fMRI acquisition parameters, pre-preprocessing, 

and thresholding have been previously reported (Kark and Kensinger, in press; Kark et 

al., submitted). We outline the key methods for the current analyses. 

 

Participants. 

 Thirty-three participants were recruited as a part of a larger study examining the 

effects of stress and sleep on emotional memory. The participants included in the present 

analysis did not undergo the stress condition prior to encoding. Data from six participants 

were excluded from present analyses: One due to a structural anomaly (female, 23), one 

due to chance-level memory performance (a d’ value below zero; male, 25), one from a 
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technical error resulting in psychophysiology data loss (male, 24), and three participants 

due to poor HR signal recordings for unknown reasons (2 females). The final analyzed 

sample included twenty-seven participants ages 18-29 years (M = 22.2, SD = 2.8, 12 

females). Behavioral performance on this task has been reported previously (Kark and 

Kensinger, in press; Kark et al., submitted). 

 

Recognition Memory Task.  

In brief, participants incidentally encoded 150 images of negative, neutral, and 

positive scenes (50 of each valence) while undergoing concurrent fMRI and 

psychophysiological recording. Each image was presented for 3s and was preceded by a 

1.5s  presentation of a line-drawing sketch of the scene. A jittered fixation was presented 

between trials (6-12s), which allowed the physiological response to return to baseline. 

The next day, participants completed a surprise recognition task in which all of the old 

line-drawings from the prior day and an equal number of new line-drawings they had not 

seen before were presented for a memory judgement. For each line-drawing, participants 

used a 0-4 scale to make a one-step Old-New memory and vividness rating (0=“New”, 1= 

“Old, Not Vivid”, 2=“Old, Somewhat Vivid, 3=“Old, Vivid”, 4=“Old, Extremely 

Vivid”). Participants were instructed that vividness ratings could be based on any 

combination of their memory for the visual details or any thoughts, feelings, or reactions 

of the full colorful photo seen on the prior day. 
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Heart rate data acquisition, pre-processing, and event analysis.  

HR data were acquired at a 1000 Hz sampling frequency during the encoding 

phase using an MRI-compatible fiber-optic oximetry sensor (Model 7500FO Fiber-Optic 

Pulse Oximeter, Nonin Medical, Inc) attached to the left index finger in conjunction with 

the BIOPAC System MP150 module and AcqKnowledge software (BIOPAC Systems 

Inc., Goleta, CA). For each MRI run, the beginning of the HRD data recording through 

AcqKnowledge was time-locked to onset of the MRI scanner and the onset of individual 

trials were marked in an events channel. Participants were also fitted with a respiration 

belt and two skin conductance electrodes were attached to their left palm.  

The raw HR data (in beats-per-minute) and event markers for each encoding run 

were analyzed using custom scripts implemented in MATLAB R2017a. Before applying 

preprocessing steps to the raw HR data, the HR data were first adjusted for a ~4s time 

delay between the stimulus presentation and the change in HR (Shermohammed et al., 

2017). To reduce high-frequency fMRI noise, the HR timeseries for each encoding run 

was smoothed (moving median window = 1.5s) and then linearly detrended, z-scored, and 

averaged in 0.5s time-bins. 

For each encoding event, a 1s pre-line-drawing baseline was calculated by 

averaging the normalized HR values in the two, 0.5s time bins immediately preceding the 

onset of the line-drawing. For each trial, the pre-stimulus baseline was subtracted from 

the trial analysis segment that covered the line-drawing, IAPS image, and 4s of fixation. 

Since the line-drawings were relatively devoid of emotion, HRD was calculated by 

identifying the minimum baseline-corrected HR value that occurred within 1-7s after the 
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onset of the IAPS image. For easier interpretation, the sign of the HRD values were 

inverted such that a more positive value corresponded to a stronger deceleration response. 

All of the event-related HRD traces were inspected for artifacts (0-2% of trials across 

participants), which were removed from the remaining analyses.  

As our neural hypotheses were specifically about HRDs, only trials with a 

deceleration response (i.e., positive HRD value) were included as effects of interest in the 

fMRI analyses. Trials associated with an acceleration response (i.e., negative HRD value; 

~20% of trials) or artifact (~1% of trials) were modeled as a regressor of no interest in the 

fMRI analyses.  

 

fMRI analysis.   

fMRI analyses were carried out in SPM8 (Wellcome Department of Cognitive 

Neurology, London, United Kingdom) implemented in MATLAB R2014a. We applied a 

similar PAI approach using parametric modulation analyses as in Farrow and colleagues 

(2012). For each participant, three fixed-effects models were created with the following 

effects of interest: (1) a 7-column Subsequent Vividness (SubViv) model containing 

subsequently remembered items (hits) separately by valence with trial-level SubViv 

ratings as parametric modulators and one column containing all of the missed trials; (2) a 

6-column HRD model containing all HRD events by stimulus valence (hits and misses 

collapsed within valence) with the trial-level HRD values as the parametric modulators 

for each column; and (3) a 13-column model containing all hits by valence with SubViv 

and HRD as the first and second parametric modulators (to control for the main effects) 
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followed by the trial-level PAI term (SubViv*HRD) and one column containing all of the 

missed trials. The third model allowed us to examine the PAI effect, that is, amygdala 

functional connectivity patterns above and beyond those patterns separately associated 

with SubViv or HRD. Each of the fixed-effects models also included a separate column 

comprised of the trials that showed a negative HRD value (possibly due to inspiration) or 

a HR artifact. All event-related encoding trials were modelled as 6s box-car functions 

convolved with the hemodynamic response functions. Finally, a matrix of regressors of 

no interest was added to the end of each fixed-effects model that controlled for item-level 

objective salience of the IAPS images (Kark and Kensinger, in press), seven head-motion 

parameters, and linear drift. 

Next, functional connectivity analyses were conducted for each participant. Left 

and right amygdala seed regions (LAMY and RAMY) were generated using a 3D 

maximum probability atlas of the human brain (Hammers et al., 2003). Statistical maps of 

parametric functional connectivity of the amygdala were generated using the Generalized 

Psychophysiological Interactions Toolbox (gPPI Toolbox; McLaren et al., 2012). For 

each amygdala seed region, the gPPI toolbox was used to 1) generate task/psychological 

regressors, 2) estimate the BOLD signal in the amygdala seed regions to create the 

physiological variable, and 3) calculate the psychophysiological interaction terms by 

convolving the timecourse vectors with the corresponding parametric modulator vectors.  

For all participants, six whole-brain functional parametric t images were saved 

from each of the three models to examine the main effects of SubViv, HRD, and PAI for 

each valence and amygdala seed. These t contrasts were entered into three separate 
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repeated-measures 2x3 ANOVAs at the random-effects with factors of hemisphere (Left, 

Right) and valence (Negative, Positive, Neutral). The results did not yield strong 

hemisphere-by-valence interactions; thus, we focus our findings on amygdala functional 

connectivity patterns collapsed across hemisphere. 

1.4 RESULTS 

Heart rate deceleration.  

Analysis of variance showed a main effect of valence (F(1.6, 42.4) = 4.0, p = 

0.03) and no main effect of memory (p = 0.64) or interaction (p = 0.32). As expected, 

negative items elicited the strongest HRD response (Mneg = 0.48, Mneu = 0.43, Mpos = 

0.37) that were significantly greater than positive HRD responses  (t(26) = 2.32, p = .03) 

and numerically greater than neutral HRD responses (t(26)=1.63, p = 0.12). Average 

neutral and positive HRD response magnitudes were not significantly different (t(26) = 

1.6, p = 0.12).  

 

fMRI results: Effects of valence on amygdala functional connectivity (AFC). 

 Main effects of vividness. Neutral item vividness was associated with AVFC 

(shown in green, Figure 1A), including occipital gyri and the left inferior temporal gyrus. 

Positive item vividness was associated with AFC throughout the PFC (shown in blue, 

Figure 1A). AFC was not modulated by the main effect of negative item vividness. Peak 
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coordinates are listed in Table 1. 

 Main effects of heart rate deceleration. Consistent with prior research (Critchley 

et al., 2005; Lojowska et al., 2018), AFC increased as a function of arousal-related HRD 

in the insula and throughout the ventral visual stream, including V1 (shown in red, Figure 

1B and see peak coordinates in Table 2). These effects were valence-specific in the left 

middle occipital gyrus and right occipito-temporal cortex (shown in magenta, Figure 1B) 

and greater than neutral stimuli in the left occipito-temporal cortex (shown in yellow, 

Figure 1B). Compared to negative valence, there was a strikingly different pattern for the 

neural correlates of HRD for neutral and positive stimuli: AFC increased with ventral 

parietal and frontal areas for neutral and positive stimuli, respectively (shown in green 

and blue, Figure 1B see peak coordinates in Tables 3 and 4).  

 Psycho-autonomic interaction. Negative hits were associated with AFVC PAI 

effects in a large portion (k=491) of the cuneus (including V1; MNIxyz=4,-72,16), 

retrosplenial cortex (RSC), lingual gyrus, and superior occipital gyrus (shown in Figure 

1C). Of these regions, V1, a cuneus/precuneus cluster, and a RSC cluster showed notable 

valence-specific effects (shown in yellow and magenta in Figure 1C and in call-out bar 

plots) that were also robust to sampling and survived controlling for scan-wise skin 

conductance metrics and respiration (see Table 5 for peak coordinates and further 

details). There were no suprathreshold PAI effects for neutral and positive stimuli.  
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Figure 1. Statistical maps of amygdala parametric functional connectivity with subsequent vividness (1A), 
heart rate deceleration (1B), and their interactions (1C). Call-out plots for heart rate deceleration are shown 
for the left middle occipital gyrus and the right inferior occipito-temporal cortex (1B). Results are collapsed 
across the right and left amygdala, except in the coronal slice of the left amygdala in the top left panel, 
which depicts interhemispheric AFC with increasing subsequent vividness for negative stimuli. Error bars 
represent 95% within-subject confidence intervals. βslope corresponds to the parameter estimate of the 
slopes. LH=Left hemisphere, RH=Right hemisphere. Statistical maps thresholded at p<0.005, voxel 
extent=10. 
 
 
 
 
 
 

Table 1. Main effects of subsequent vividness for neutral and positive memories. 

Lobe Hem Region  BA MNI TAL k 

Neutral Subsequent Memory Vividness 

Occipital L Lingual gyrus 19 -16,-82,4 -16,-78,0 12 

Occipital L Middle occipital gyrus 18 -28,-78,28 -27,-77,22 220 

Occipital L Middle occipital gyrus 18 -34,-80,10 -33,-77,5 15 

Temporal L Fusiform gyrus 37 -28,-38,-20 -27,-35,-18 34 
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Temporal R Fusiform gyrus 20 30,-36,-24 27,-33,-20 17 

Temporal R 
Hippocampus, 
parahippocampal cortex 36, 54 32,-18,-18 29,-17,-13 29 

Temporal L 
Inferior occipito-temporal 
cortex 20, 37 -52,-52,-18 -49,-48,-17 224 

Temporal L Inferior temporal gyrus 20 -26,-6,-46 -25,-3,-38 13 

Temporal R 
Superior and middle 
temporal gyrus 21, 22 48,2,-10 44,1,-4 59 

Temporal R Superior temporal gyrus 22 68,-46,16 62,-46,15 14 

Frontal L Inferior frontal gyrus 44 -58,16,30 -55,11,31 26 

Frontal L Inferior frontal gyrus 45 -54,22,14 -51,18,18 20 

Frontal R Medial frontal gyrus 10 16,68,-10 14,62,1 12 

Frontal L Middle frontal gyrus 9 -44,10,28 -42,5,29 17 

Frontal R Middle frontal gyrus 6 38,10,64 33,2,63 47 

Frontal R Middle frontal gyrus 6 50,20,46 45,13,48 14 

Frontal R Orbital frontal cortex 11 26,38,-16 23,35,-6 22 

Frontal R Orbital frontal cortex 11 16,56,-16 14,52,-5 20 

Frontal L Precentral gyrus 4 -36,-2,30 -35,-6,30 11 

Frontal L Precentral gyrus 4 -56,6,12 -53,3,14 10 

Frontal R Superior frontal gyrus 8 26,34,54 22,25,56 28 

Parietal L Inferior parietal lobule 7 -34,-62,44 -33,-63,37 30 

Parietal B Precuneus 7 0,-70,36 -2,-70,30 126 

Parietal L Precuneus 7 -10,-68,54 -11,-70,46 25 

Other R Caudate N/A 10,10,16 8,6,19 53 

Other R Caudate N/A 14,12,-10 12,10,-4 23 

Other L Cerebellum N/A -22,-74,-50 -21,-66,-47 92 

Other L Cerebellum N/A -16,-54,-20 -16,-50,-19 42 

Other R Cerebellum N/A 16,-78,-42 14,-71,-40 29 

Other R Cerebellum N/A 26,-58,-40 23,-52,-36 21 

Other R Posterior cingulate 23 16,-44,36 13,-46,33 63 

Other L Thalamus N/A -6,-28,-2 -7,-28,0 16 

Other R Thalamus N/A 8,-24,0 6,-24,2 56 
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Other R Thalamus N/A 24,-14,4 21,-15,7 10 

Positive Subsequent Memory Vividness 

Temporal R Fusiform gyrus 20 32,-4,-40 29,-2,-31 11 

Temporal L Inferior temporal gyrus 20 -42,-12,-44 -39,-9,-37 44 

Temporal R Inferior temporal gyrus 20 52,-6,-36 48,-4,-28 25 

Temporal R Parahippocampal cortex 36 28,-26,-20 25,-24,-16 12 

Temporal R 
Parahippocampal cortex, 
uncus 28, 36 24,-2,-36 22,-1,-28 16 

Temporal L Superior temporal gyrus 38 -32,2,-48 -30,4,-39 18 

Temporal R Superior temporal gyrus 22, 38 50,12,-36 46,12,-26 138 

Temporal R Temporal pole 38 40,8,-42 37,9,-32 16 

Temporal L Transverse temporal gyrus 41 -50,-14,12 -47,-16,13 31 

Temporal L Transverse temporal gyrus 42 -42,-28,8 -40,-28,8 11 

Frontal L Inferior frontal gyrus 44 -48,8,28 -46,3,29 76 

Frontal R Inferior frontal gyrus 44 60,24,16 54,19,21 33 

Frontal R Inferior frontal gyrus 47 58,36,6 53,31,14 26 

Frontal L Medial frontal gyrus 6 -2,18,50 -3,11,50 38 

Frontal L Medial frontal gyrus 6 -4,-4,64 -5,-11,61 35 

Frontal R Medial frontal gyrus 10 8,48,14 6,42,21 89 

Frontal R Medial frontal gyrus 11 14,54,-22 12,50,-11 10 

Frontal L Middle frontal gyrus 8 -36,32,50 -35,24,51 28 

Frontal L Middle frontal gyrus 9 -48,40,12 -45,35,18 16 

Frontal R Middle frontal gyrus 45 52,34,34 47,27,38 73 

Frontal R Precentral gyrus 4 52,0,6 47,-3,10 141 

Frontal L Superior frontal gyrus 6 -20,10,68 -20,2,65 30 

Frontal L Superior frontal gyrus 6 -14,4,54 -15,-3,52 14 

Frontal R Superior frontal gyrus 8 10,44,48 8,35,51 18 

Parietal R Parietal operculum N/A 56,-34,18 51,-35,18 10 

Parietal L Post-central gyrus 2 -30,-26,48 -29,-30,44 241 

Parietal L Post-central gyrus 2 -34,-32,70 -33,-38,63 12 

Parietal L Supramarginal gyrus 40 -60,-50,40 -57,-52,34 31 
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Parietal L Supramarginal gyrus 40 -54,-42,36 -52,-44,32 10 

Other R Anterior cingulate 24 6,20,22 4,15,26 94 

Other L Caudate N/A -12,10,8 -12,7,12 23 

Other R Caudate N/A 16,4,14 14,1,17 20 

Other R Cerebellum N/A 0,-90,-34 -1,-83,-34 62 

Other R Cerebellum N/A 0,-50,-32 -1,-46,-29 18 

Other R Cerebellum N/A 10,-46,-26 8,-42,-23 12 

Other L Cingulate gyrus 32 -8,36,22 -9,30,27 46 

Other L Cingulate gyrus 24 -2,14,34 -3,8,36 16 

Other R Cingulate gyrus 31 6,-2,36 4,-7,36 22 

Other R Globus pallidus   16,2,-10 14,1,-4 11 

Other L Insula 13 -32,-10,2 -31,-11,5 1053 

Other L Insula 13 -34,-26,2 -33,-26,3 64 

Other L Insula 13 -28,16,-12 -27,14,-6 22 

Other R Insula 13 36,20,-4 32,17,3 399 

Other R Insula 13 36,-16,-2 32,-17,1 129 

Other R Putamen N/A 28,6,-8 25,4,-2 12 

Other R Thalamus N/A 10,-14,0 8,-15,3 32 
Hem=Hemisphere, B=Bilateral, L=Left hemisphere, R=Right hemisphere, MNI=Montreal Neurological 
Institute, TAL=Talairach and Tournoux, k=voxel extent 
 
 
 
Table 2. Main effects of HRD for negative stimuli. Clusters showing a valence-specific (Negative HRD 
> Positive HRD) or negative emotional enhancement (Negative HRD > Neutral HRD) are displayed first 
(inclusively masked with Negative HRD at p<0.005). The Negative HRD section of the table includes those 
clusters that showed no emotion or valence-specific enhancements in the whole-brain contrasts.  

Lobe Hem Region BA MNI TAL k 

Negative HRD > Positive HRD 

Occipital  R 
Inferior occipital gyrus, 
fusiform gyrus 19 26,-80,-14 23,-75,-15 11 

Occipital R 
Inferior occipito-
temporal gyrus 20, 37 48,-68,-8 43,-65,-8 42 

Occipital  L 
Lingual gyrus, fusiform 
gyrus 18 -22,-84,-20 -21,-78,-22 18 

Occipital L Middle occipital gyrus 18 -36,-84,6 -35,-80,1 48 
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Temporal L Superior temporal gyrus 21 -44,-8,-12 -42,-8,-8 11 

Frontal L Inferior frontal gyrus 47 -22,18,-22 -21,17,-14 12 

Frontal R Inferior frontal gyrus 47 24,8,-20 21,7,-13 18 

Frontal L Temporal pole 38 -38,14,-22 -36,13,-15 23 

Parietal L Inferior parietal lobule 40 -56,-16,18 -53,-18,18 10 

Parietal R Postcentral gyrus 2 54,-20,48 48,-25,46 10 

Parietal R Postcentral gyrus 2 66,-14,36 60,-18,36 30 

Other L Cerebellum N/A -52,-66,-44 -49,-59,-42 20 

Other R Globus pallidus N/A 14,-2,-4 12,-3,1 18 

Other R Insula 13 42,-4,-4 38,-5,1 10 

Other R Insula 13 36,6,0 32,4,5 13 

       

Negative HRD > Neutral HRD 

Occipital L Fusiform gyrus 37 -36,-70,-20 -34,-65,-20 28 

Occipital L 
Middle and inferior 
occipital gyrus 19 -44,-78,-8 -42,-74,-11 101 

Occipital R Superior occipital gyrus 30 30,-72,16 26,-70,12 13 

Temporal L Parahippocampal cortex 36 -10,-34,-8 -10,-33,-6 10 

Temporal L Superior temporal gyrus 21 -44,-6,-16 -42,-6,-11 10 

Frontal L Inferior frontal gyrus 47 -48,20,2 -45,17,7 18 

Frontal R Inferior frontal gyrus 47 40,34,-18 36,31,-8 24 

Frontal R 
Inferior frontal gyrus, 
insula 13, 47 24,10,-20 21,9,-13 118 

Frontal L 
Inferior frontal gyrus, 
temporal pole, insula 

13, 38, 
47 -40,12,-20 -38,11,-13 473 

Frontal L Superior frontal gyrus 10 -10,68,10 -10,61,19 54 

Frontal R Superior frontal gyrus 8 8,40,50 6,31,52 12 

Parietal L 
Precuneus, superior 
parietal lobule 7 -24,-70,46 -24,-71,39 25 

Other L Anterior cingulate 32 -12,46,10 -12,40,17 11 
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Other B Caudate, subgenual area 25 -2,10,-10 -3,8,-4 216 

Other L Cingulate gyrus 32 -4,32,34 -5,25,37 39 

Other R Cingulate gyrus 32 16,14,42 13,8,43 29 

Other R Globus pallidus N/A 14,-2,-2 12,-4,2 19 

Other L Insula 13 -26,28,0 -25,24,6 22 

       

Negative HRD 

Occipital  L Calcarine sulcus 17 -12,-90,12 -12,-87,7 13 

Occipital  L Calcarine sulcus 30 -8,-64,10 -9,-62,7 17 

Occipital  L Cuneus 17 -24,-84,18 -24,-81,12 19 

Occipital  L Fusiform gyrus 19 -28,-66,-8 -27,-62,-9 10 

Occipital  R Fusiform gyrus 19 38,-70,-20 34,-65,-19 16 

Occipital  R Lingual gyrus 19 14,-60,6 12,-58,4 37 

Occipital  R Middle occipital gyrus 19 50,-80,10 45,-77,7 123 

Occipital  R Superior occipital gyrus 19 30,-88,32 26,-87,25 21 

Occipital  R Superior occipital gyrus 19 28,-72,30 24,-72,25 55 

Temporal  L Hippocampus 54 -24,-34,-4 -23,-33,-3 10 

Temporal  L Inferior temporal gyrus 20 -52,-18,-28 -49,-16,-23 19 

Temporal  R Inferior temporal gyrus 20 64,-6,-32 59,-5,-24 10 

Temporal  R Inferior temporal gyrus 20 66,-18,-30 60,-16,-23 27 

Temporal  L Middle temporal gyrus 21 -54,-22,-16 -51,-21,-13 33 

Temporal  L Middle temporal gyrus 21 -60,0,-22 -56,0,-16 41 

Temporal  R Middle temporal gyrus 21 70,-32,-10 64,-31,-7 32 

Temporal  R Middle temporal gyrus 21 58,-22,-6 53,-22,-2 103 

Temporal  L Parahippocampal cortex 36 -28,-40,-16 -27,-38,-14 18 

Temporal  L Parahippocampal cortex 36 -34,-28,-28 -32,-25,-24 29 
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Temporal  R Parahippocampal cortex 36 24,-32,-12 21,-31,-9 50 

Temporal  L 
Parahippocampal cortex, 
hippocampus 36, 54 -16,-26,-10 -16,-25,-7 104 

Temporal  R 
Parahippocampal cortex, 
hippocampus 36, 54 32,-22,-22 29,-21,-17 54 

Frontal  R Inferior frontal gyrus 9 54,6,20 49,2,23 24 

Frontal  R Medial frontal gyrus 10 14,54,10 12,48,18 41 

Frontal  L Middle frontal gyrus 8 -40,30,40 -38,23,42 109 

Frontal  L Middle frontal gyrus 6 -32,8,52 -31,1,51 160 

Frontal  L Middle frontal gyrus 46 -42,44,16 -40,38,22 225 

Frontal  R Middle frontal gyrus 9 26,36,26 23,29,31 15 

Frontal  R Middle frontal gyrus 10 34,48,14 30,42,21 16 

Frontal  R Middle frontal gyrus 6 30,20,44 26,13,46 29 

Frontal  L Orbital frontal cortex 10 -6,62,-20 -6,58,-8 25 

Frontal  L Precentral Gyrus 6 -58,10,32 -55,5,33 16 

Frontal  L Precentral gyrus 6 -54,6,44 -52,0,43 65 

Frontal  R Precentral Gyrus 4 46,-6,58 41,-13,56 17 

Frontal  R Precentral gyrus 4 44,0,34 39,-5,35 52 

Frontal  R 
Precentral gyrus, middle 
frontal gyrus 4, 6 32,-8,50 28,-14,48 304 

Frontal  R Superior frontal gyrus 6 14,30,52 11,22,53 13 

Frontal  L 
Ventral medial prefrontal 
cortex 32 -4,26,-16 -4,24,-8 53 

Frontal  R 
Ventral medial prefrontal 
cortex 11 2,44,-26 1,41,-15 18 

Parietal  R Inferior parietal lobule 40 38,-30,36 34,-33,34 30 

Parietal  L Postcentral gyrus 3 -44,-14,48 -42,-19,45 38 

Parietal  R Postcentral gyrus 5 12,-38,76 9,-44,69 12 

Parietal  R Postcentral gyrus 3 60,-8,46 54,-14,45 12 

Parietal  L 
Postcentral gyrus, 
inferior parietal lobule 1, 40 -66,-16,32 -63,-19,30 333 

Parietal  L Posterior cingulate 31 -6,-64,26 -7,-64,22 11 
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Parietal  L Superior parietal lobule 7 -30,-46,44 -29,-48,39 44 

Parietal  R Superior parietal lobule 7 32,-40,42 28,-43,39 19 

Parietal  R Superior parietal lobule 7 24,-48,58 20,-52,52 25 

Parietal  R 
Superior parietal lobule, 
superior occipital gyrus 7, 19 26,-78,44 22,-78,37 364 

Other R Anterior cingulate 24 4,36,6 3,31,13 103 

Other R Caudate N/A 14,4,18 12,0,21 23 

Other L Cerebellum N/A -52,-66,-44 -49,-59,-42 25 

Other L Cerebellum N/A -16,-52,-28 -16,-48,-26 27 

Other L Cerebellum N/A -20,-74,-46 -19,-67,-44 64 

Other L Cerebellum N/A -34,-58,-38 -32,-52,-35 216 

Other R Cerebellum N/A 18,-76,-48 16,-68,-45 15 

Other R Cerebellum N/A 14,-62,-32 12,-57,-30 15 

Other R Cerebellum N/A 14,-76,-24 12,-71,-24 27 

Other R Cerebellum N/A 36,-44,-44 33,-39,-39 65 

Other L Cingulate gyrus 23 -6,-14,38 -7,-18,37 11 

Other R Posterior cingulate 31 8,-62,20 6,-61,17 19 

Other L Putamen N/A -22,-12,6 -21,-13,8 16 
Hem=Hemisphere, B=Bilateral, L=Left hemisphere, R=Right hemisphere, MNI=Montreal Neurological 
Institute, TAL=Talairach and Tournoux, k=voxel extent 
 

Table 3. Main effects of HRD for positive stimuli. Clusters showing a valence-specific (Positive HRD > 
Negative HRD) or positive emotion enhancement (Positive HRD > Neutral HRD) are displayed first 
(inclusively masked with Positive HRD at p<0.005). The Positive HRD section of the table includes those 
clusters that showed no emotion or valence-specific enhancements in the whole-brain contrasts.  

Lobe Hem Region BA MNI TAL k 

Positive HRD > Negative HRD 

Occipital R Lingual gyrus 19 24,-74,4 21,-71,1 11 

Frontal R Dorsal medial prefrontal cortex 9 12,42,32 10,35,37 36 
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Other L Cerebellum   -2,-54,-20 -3,-50,-19 17 

Positive HRD > Neutral HRD 

Occipital R Lingual gyrus 19 28,-74,0 25,-71,-2 37 

Frontal L Dorsal medial prefrontal cortex 10 -2,50,28 -3,42,33 16 

Frontal R Dorsal medial prefrontal cortex 9 10,42,30 8,35,35 38 

Frontal L Inferior frontal gyrus 47 -48,22,4 -45,19,9 34 

Frontal L Middle and inferior frontal gyrus 9, 44 -46,18,28 -44,13,30 37 

Frontal L Superior frontal gyrus 6 -6,30,58 -7,21,58 41 

Frontal L Ventral medial prefrontal cortex 11 0,56,-26 -1,53,-14 15 

Parietal R Angular gyrus 39 48,-66,26 43,-66,22 11 

Other L Cerebellum N/A -6,-68,-14 -7,-64,-15 30 

Positive HRD 

Occipital L Lingual gyrus 19 -30,-68,0 -29,-65,-2 10 

Temporal L Fusiform gyrus 37 -42,-44,-14 -40,-41,-13 42 

Temporal R Middle temporal gyrus 21 42,-56,8 38,-55,7 19 

Temporal L Superior temporal gyrus 22 -52,-26,2 -49,-26,3 15 

Frontal R Dorsal medial prefrontal cortex 8 2,32,46 0,24,48 28 

Frontal R Inferior frontal gyrus 46 50,38,16 45,32,22 12 

Frontal R Inferior frontal gyrus 46 48,46,-2 44,41,7 114 

Frontal R Inferior frontal gyrus 45 60,28,10 54,23,16 136 

Frontal R Middle frontal gyrus 8 56,24,36 50,17,39 42 

Frontal L Orbital frontal cortex 11 -18,56,-16 -17,52,-6 12 

Frontal L Orbital frontal cortex 11 -8,44,-28 -8,42,-17 13 

Frontal L Precentral gyrus 6 -44,0,48 -42,-6,46 18 

Parietal L Inferior parietal lobule 40 -66,-36,34 -63,-38,30 10 
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Parietal R Precuneus 31 8,-66,32 6,-66,27 24 

Parietal R Superior parietal lobule 7 18,-72,50 15,-73,43 52 

Other L Caudate N/A -14,12,4 -14,9,9 19 

Other L Cerebellum N/A -16,-56,-36 -16,-51,-33 11 

Other R Cerebellum N/A 14,-48,-38 12,-43,-34 12 

Other R Cerebellum N/A 40,-62,-38 36,-56,-35 14 

Other R Cerebellum N/A 14,-76,-38 12,-69,-36 30 
Hem=Hemisphere, B=Bilateral, L=Left hemisphere, R=Right hemisphere, MNI=Montreal Neurological 
Institute, TAL=Talairach and Tournoux, k=voxel extent 
 
 
Table 4. Main effects of HRD for neutral stimuli.  

Lobe Hem Region BA MNI TAL k 

Temporal R Inferior temporal gyrus 20 56,-36,-28 51,-33,-23 17 

Temporal L Superior temporal gyrus 22 -54,-12,-6 -51,-12,-3 45 

Temporal R Superior temporal gyrus 22 64,-20,8 58,-21,10 11 

Frontal L Paracentral lobule 5 -4,-32,54 -5,-36,49 10 

Frontal L Paracentral lobule 5 0,-14,66 -2,-21,62 21 

Frontal L Precentral gyrus 4 -50,-6,48 -48,-11,46 110 

Frontal L Precentral gyrus 6 -60,4,4 -57,2,7 124 

Parietal R 
Inferior parietal lobule, 
superior temporal gyrus 22, 40 68,-28,20 62,-30,21 261 

Parietal L 
Inferior parietal lobule, 
superior temporal gyrus, insula 

13, 
22, 40 -66,-42,22 -62,-42,19 786 

Other R Cingulate gyrus 31 12,-22,40 10,-26,38 30 

Other L Putamen N/A -20,14,-2 -19,12,3 13 

Other L Putamen N/A -22,0,-12 -21,-1,-7 35 

Other R Putamen N/A 22,10,-6 19,8,0 76 
Hem=Hemisphere, B=Bilateral, L=Left hemisphere, R=Right hemisphere, MNI=Montreal Neurological 
Institute, TAL=Talairach and Tournoux, k=voxel extent 
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Table 5. Valence-specific psycho-autonomic interaction (PAI) effects (Negative PAI > Positive PAI 
AND Neutral PAI, inclusively masked with Negative PAI at p<0.005) followed by clusters that only 
showed an enhancement over one valence or the other. Listed last are clusters that showed a significant 
Negative PAI effect but not a significant whole-brain enhancement over Positive or Neutral PAI. 
Superscripted symbols denote clusters that survive additional control analyses (see legend below table). 

Lobe Hem  Region  BA MNI TAL k 

Negative PAI > Positive PAI AND Negative PAI > Neutral PAI  

Occipital L 

Cuneus (including V1), 
precuneus, retrosplenial 
cortex^*~ 

7, 17, 
23, 
29, 30 -8,-68,24 -9,-67,19 361 

Occipital R Lingual gyrus 18 14,-68,-10 12,-64,-11 19 

Occipital R Middle occipital gyrus~ 19 42,-78,22 37,-77,17 58 

Occipital L Superior occipital gyrus~ 19 -36,-86,22 -35,-84,16 12 

Occipital L 
Superior occipital gyrus, 
superior parietal lobule^~ 7, 19 -20,-76,34 -20,-75,27 165 

Temporal L Middle temporal gyrus 37 -56,-62,10 -53,-60,7 10 

Temporal L Middle temporal gyrus~  21 -58,-56,12 -55,-55,9 21 

Temporal L Parahippocampal cortex^~ 36 -26,-48,-8 -25,-46,-8 29 

Temporal R Parahippocampal cortex~ 36 28,-38,-14 25,-36,-11 21 

Temporal L Superior temporal gyrus~ 22 -64,-44,12 -60,-44,10 15 

Temporal L Superior temporal gyrus~ 22 -54,2,4 -51,0,7 17 

Parietal L 
Cuneus, retrosplenial 
cortex, lingual gyrus^ 30 -12,-54,8 -12,-53,6 39 

Parietal R Supramarginal gyrus*~ 40 50,-30,24 45,-32,24 12 

Other L Insula~ 13 -44,-4,10 -42,-6,12 18 

Negative PAI > Positive PAI 

Occipital R Superior occipital gyrus 19 28,-84,44 24,-84,36 15 

Temporal R Middle temporal gyrus 22 54,-50,-8 49,-48,-7 17 

Parietal L Inferior parietal lobule 40 -60,-30,24 -57,-32,22 12 

Negative PAI > Neutral PAI 

Occipital  L Superior occipital gyrus  19 -34,-82,38 -33,-81,30 13 

Temporal R 
Transverse temporal 
gyrus^*~ 41 46,-22,14 41,-24,15 15 
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Frontal L Middle frontal gyrus~ 6 -22,-2,66 -22,-9,62 16 

Parietal R Superior parietal lobule~ 7 32,-32,58 28,-37,54 13 

Other R Cingulate gyrus^*~ 32 10,20,36 8,14,38 16 

Other R Insula~ 13 42,-2,12 38,-5,15 14 

Negative PAI (no overlap with valence contrasts) 

Occipital L Calcarine sulcus 17 -8,-86,16 -9,-83,11 20 

Occipital R Fusiform gyrus 19 36,-80,-8 32,-76,-10 16 

Temporal L Fusiform gyrus 37 -40,-60,-8 -38,-57,-9 12 

Frontal L Cingulate gyrus 24 -8,8,40 -9,2,40 11 

Frontal L Precentral gyrus 4 -62,-2,14 -59,-5,15 11 

Frontal L Precentral gyrus 4 -58,-4,36 -55,-8,35 42 

Frontal R Precentral gyrus 4 46,-4,32 41,-9,33 17 

Parietal L Precuneus 7 -6,-66,54 -7,-68,46 16 

Parietal R Superior parietal lobule 7 20,-52,52 17,-55,46 15 
^Cluster overlaps with F-Contrast of the main effect of valence 
*Survives controlling for skin conductance level (n=27) at p<0.005 
~Survives controlling for respiration (n=21) at p<0.05 
Hem=Hemisphere, B=Bilateral, L=Left hemisphere, R=Right hemisphere, MNI=Montreal Neurological 
Institute, TAL=Talairach and Tournoux, k=voxel extent 

1.5 DISCUSSION 

Using PAI analyses to examine interactions between trial-level metrics of arousal (i.e., 

HRD) and subsequent memory vividness, the current work provides strong evidence that 

arousal increases AVFC during encoding in a way that corresponds specifically to later 

vividness of negative, but not positive or neutral, memories. These results provide 

empirical support for William James’ conjecture that the arousal of a negative event is 
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what “sears” it into memory. In fact, we found that the link between AVFC and 

subsequent vividness for negative memories was contingent upon the consideration of 

HRD: There was no main effect of negative memory vividness on AVFC, the relation to 

AVFC only emerged when the interaction between with HRD was considered. While we 

did not predict this contingency a priori, it is intriguingly consistent with affective 

“tagging” theories of negative memories: Arousal tags negative memory traces during 

encoding, which are then prioritized and selectively consolidated (Bennion et al., 2015). 

By utilizing trial-level changes in HRD, we were further able to show that these 

“tagging” effects are sensitive to the actual magnitude of the physiological arousal 

response, which goes beyond prior work using subjective arousal ratings or arousal 

categories based on normative data (i.e., high vs. low arousal). 

We grounded these novel PAI findings in a replication of prior work 

demonstrating HRD main effects for negative stimuli in ventral visual regions (Lojowska 

et al., 2018) and the insula (Critchley et al., 2005). Together, these results underscore that 

not only does HRD relate to AFC in valence-specific ways, the implications for memory 

vividness are also valence-specific. 

The current study provides foundational work for future investigations. First, 

although the effect in early visual cortex survived controlling for overall skin 

conductance level, item-level controls of event-related sympathetic responses (e.g., skin 

conductance or pupillary responses) could definitively confirm if this effect is specific to 

parasympathetic HRD, or if is more broadly related to autonomic arousal. Second, we can 

only infer based on prior work that affective valence is somehow gating V1 inputs and 
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thus possibly altering, for example, perception and field of view (Schmitz et al., 2009), 

perceptual vividness (Todd et al., 2013), visual sensitivity (Lojowska et al., 2018), or 

signal-to-noise ratios during encoding, all of which could influence the resolution of the 

information that enters memory stores (Xie and Zhang, 2017) to be selectively 

consolidated into long-term memory. Future work is needed to understand the content of 

the information that is enhanced in perception and memory for negative stimuli by AVFC 

that influences the subjective vividness of long-term memories. 
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2.0  POST-ENCODING AMYGDALA-VISUOSENSORY COUPLING IS 

ASSOCIATED WITH NEGATIVE MEMORY BIAS IN HEALTHY YOUNG 

ADULTS 

Published Article: 

Kark, S.M., Kensinger, E.A., in press. Post-encoding Amygdala-Visuosensory Coupling 

Is Associated with Negative Memory Bias in Healthy Young Adults. J Neurosci.  
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2.1 ABSTRACT 

The amygdala is well-documented as the critical nexus of emotionally enhanced memory, 

yet its role in the creation of negative memory biases—better memory for negative as 

compared to positive stimuli—has not been clarified. While prior work suggests valence-

specific effects at the moment of ‘online’ encoding and retrieval—with enhanced 

visuosensory processes supporting negative memories in particular—here we tested the 

novel hypothesis that the amygdala engages with distant cortical regions after encoding in 

a manner that predicts inter-individual differences in negative memory biases in humans. 

Twenty-nine young adults (males and females) were scanned while they incidentally 

encoded negative, neutral, and positive scenes, each preceded by a line-drawing sketch of 

the scene. Twenty-four hours later, participants were scanned during an Old/New 

recognition memory task with only the line-drawings presented as retrieval cues. We 

replicated and extended our prior work, showing that enhanced ‘online’ visuosensory 

recapitulation supports negative memory. Critically, resting state scans flanked the 

encoding task, allowing us to show for the first time that individual differences in 

‘offline’ increases in amygdala resting state functional connectivity (RSFC) immediately 

following encoding relate to negative and positive memory bias at test. Specifically, post-

encoding increases in amygdala RSFC with visuosensory and frontal regions were 

associated with the degree of negative and positive memory bias, respectively. These 

findings provide new evidence that valence-specific negative memory biases can be 

linked to the way that sensory processes are integrated into amygdala-centered emotional 

memory networks. 
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2.2 INTRODUCTION 

We tend to remember the good and bad events in our lives long past the time 

when trivial events have slipped from our memories, but recent work suggests negative 

and positive memories are not always created equally in brain or behavior (Bowen et al., 

2018). Despite the clinical relevance of understanding how disproportionate memory for 

negative events over positive events—a cognitive risk factor for depression (Gerritsen et 

al., 2012)—arises from individual differences in neural memory processes, these 

relationships have yet to be tested empirically. The bulk of task-based fMRI work on 

emotional memory has focused on the encoding of negative stimuli, with a focus on the 

amygdala, hippocampus, ventral visual stream, and prefrontal cortex (Murty et al., 2011). 

However, studies comparing memory for positive and negative events have suggested 

that while the amygdala is engaged by both valences (Hamann et al., 1999), the effect of 

arousal on the targets of amygdala-cortical coupling during encoding can depend on 

valence (Mickley Steinmetz et al., 2010). Our prior research has shown valence-specific 

memory effects during retrieval, with greater retrieval-related reactivation of encoding 

processes in visuosensory regions for negative events relative to positive and neutral ones 

(Bowen and Kensinger, 2017a, b; Kark and Kensinger, 2015), evidence that contributed 

to our proposed valence-based model of emotional memory (Bowen et al., 2018).  

Decades of animal and human work in support of the modulation hypothesis of 

amygdala function has shown that the amygdala is the critical “nexus” of emotional 

memory formation and consolidation due to its ability modulate neural processes in 

medial temporal lobe (MTL) regions and distant cortical regions (Cahill and McGaugh, 
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1998; Hermans et al., 2014; McGaugh, 2000), including visual cortices (Dringenberg et 

al., 2004; Vuilleumier et al., 2004). Feedback projections from the amygdala to almost all 

levels of visual cortex are thought to enhance their response during emotional situations 

(Amaral et al., 2003; Silverstein and Ingvar, 2015) and likely continue to influence 

memory processes after the initial encoding experience itself (McGaugh, 2005; Müller 

and Pilzecker, 1900). Thus, the amygdala is well-positioned to exert long-lasting negative 

memory enhancing effects in visuosensory regions. 

The work described above has monitored ‘online’ memory processes to reveal 

neural mechanisms that support emotional memory formation and retrieval during task. 

However, ‘offline’ post-encoding resting-state functional connectivity (RSFC) analysis 

has become increasingly utilized to reveal links between early consolidation processes 

and memory performance (Hermans et al., 2017; Murty et al., 2017; Tambini et al., 

2010). Here, we use this approach in the emotional episodic memory realm to investigate 

the links between post-encoding changes in amygdala-cortical RSFC and behavioral 

measures of emotional memory bias across participants, an approach that has the 

potential to unveil ‘offline’ early consolidation processes that differentially predict long-

term negative and positive memory outcomes.  

We adjudicated between arousal-based and valence-based accounts of emotional 

modulation of early consolidation processes. An arousal-based account of emotional 

memory would predict the same link between post-encoding increases in amygdala RSFC 

and enhanced memory for negative and positive stimuli, while our valence-based account 

would predict a strong link between post-encoding increases in amygdala-visuosensory 
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RSFC and negative memory biases specifically, with a link to neutral memory falling 

between negative and positive. Based on previous work (Mickley Steinmetz et al., 2010), 

a secondary hypothesis was that amygdala-frontal RSFC enhancements would relate to 

positive memory biases.  

Here, resting-state fMRI scans flanked the encoding scan and preceded the 

recognition scan of an emotional recognition memory paradigm with a 24-hour study-test 

delay. Participants incidentally encoded line-drawings of scenes (negative, positive, and 

neutral), each followed by the full image. At test, only old and new line-drawings were 

presented for an Old/New judgement. We root our novel test of the links between post-

encoding increases in amygdala RSFC and valence-specific memory biases across 

participants in a replication-extension of our prior work (Kark and Kensinger, 2015) 

showing enhanced visuosensory recapitulation for negative memories. 

2.3 METHODS 

Participants 

Thirty-three participants were recruited to participate in the control (no induced stress) 

condition of a larger study examining the effects of stress and sleep on emotional 

memory. All participants were right-handed, native English speakers between the ages of 

18-29, with normal or corrected-to-normal vision and with no reported history of head 

injury, learning disorders, neurologic or psychiatric problems, or current medications 

affecting the central nervous system. Participants were screened for MRI environment 
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contradictions before entering the scanner. The Boston College Institutional Review 

Board approved this study and written informed consent of study procedures was 

obtained from all participants. Participants were compensated $25/hour for their 

participation. 

For inclusion in this set of analyses, participants needed to have usable data from 

encoding and retrieval fMRI scans, including above-chance recognition memory 

performance, as well as at least 5 minutes of usable RSFC data from pre- and post-

encoding (Waheed et al., 2016). (Although additional measures were gathered as part of 

the larger study, they were not examined for this analysis and therefore were not required 

for data inclusion). Four participants were excluded from all of the present analyses: one 

due to chance-level memory performance (an overall d’ value below zero; male, 25), one 

due to a brain structure anomaly (female, 23), one did not undergo a post-encoding RSFC 

scan due to time constraints and additionally did not have enough trials per condition for 

task fMRI analyses (female, 21), and one participant (male, 20) had excessive motion 

across resting state fMRI scans, resulting in less than 5 minutes of useable data for each 

resting scan. The final sample for the RSFC analyses was twenty-nine participants ages 

18-29 (M  = 22.3, SD = 2.8, 14 females). For the task-based fMRI analyses of subsequent 

memory and retrieval success, seven additional participants (3 females) were excluded 

because they did not have an ample number of trials across all of the memory conditions 

by valence (trials count requirement ≥8). The final sample for the memory task-fMRI 

analyses was twenty-two participants (M = 22.2, SD  = 2.8, 11 females). However, to 

examine how brain-behavior patterns from the twenty-two participant sample expand to 
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the larger sample (with possibly noisier activation estimations), the data for these 7 

participants will appear as open circles in the follow-up scatter plot for the memory 

retrieval fMRI analyses (see Figure 2B). 

 

Experimental Design 

Participants underwent fMRI scanning at the Harvard Center for Brain Science 

during both an incidental encoding task and a surprise recognition memory task 

approximately 24-hours later (see Figure 1A for depiction of the timeline for acquisition 

of data). 

 

Encoding task 

The encoding task is depicted in Figure 1B. Study stimuli were 300 images 

selected from the Internal Affective Picture System (IAPS; Lang et al., 2008) database 

and nearly identical to the set used in Kark and Kensinger (2015). In brief, participants 

viewed 150 line-drawings of IAPS images (50 negative, 50 neutral, 50 positive, each for 

1.5s), followed by the full color photo of that line-drawing (3s). As an incidental 

encoding task, participants made a button press to indicate whether they would 

“Approach” or “Back Away” from each of the images. The negative and positive images 

were pre-selected using the normative data provided by IAPS (Lang et al., 2008) to 

ensure that the negative images were equally arousing (Mneg = 5.54, Mpos = 5.43, t(198) = 

1.32, p = 0.19, independent samples t-test) and of similar absolute valence (Mneg = 2.05, 

Mpos = 2.07, t(198) = 0.25, p = 0.80, independent samples t-test) as the positive images. 
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The negative images were more arousing (Mneut = 3.25, t(198) = 23.95, p < 0.001, 

independent samples t-test) and higher in absolute valence (Mneut = 0.42, t(198) = 19.27, p 

< 0.001, independent samples t-test) than the neutral images. Similarly, positive images 

were more arousing (t(198) = 22.97, p < 0.001, independent samples t-test) and higher in 

absolute valence (t(198) = 25.00, p < 0.001, independent samples t-test) than neutral 

images. Line-drawing versions of the IAPS images were created using in-house 

MATLAB scripts (see Figure 1B and 1C for examples of IAPS images and their line-

drawings). Resting state scans were collected immediately before and after the encoding 

task runs. During each of the three resting state scans, the stimuli presentation computer 

monitor was turned off (i.e., no fixation cross was presented) and participants were 

instructed to relax with their eyes open and think about anything that came to mind. The 

eye-tracking camera was on throughout the resting state scans and monitored by the 

experimenters to ensure that participants kept their eyes open for the majority of each rest 

scan.  

 

Recognition task 

Twenty-four hours after encoding, participants returned to the scanner for a 

surprise recognition memory task. After a pre-retrieval resting state scan, participants 

were presented with all 150 of the old line-drawings (3s each, jittered fixation 1.5-9s) that 

they had seen during encoding randomly mixed with an equal number of new line-

drawings. (Study lists were varied across participants such that studied line-drawings for 

some participants were the new line-drawings for other participants). For each line-
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drawing, participants were instructed to use a 0-4 scale to indicate in one decision 

whether the line-drawing was new (0) or, if old, how vividly they remembered the 

colorful photo (1=“Not Vivid” to 4=“Extremely Vivid”). Here, we collapse across 

vividness ratings to compare old (1-4) to new (0) responses. To ensure participants 

understood that half of the line-drawings were old and half were new, we instructed them 

during the practice and instruction period that they should be pressing the 0 key “about 

half of the time”.  The use of line-drawing cues—as opposed to re-presentation of the full 

colorful IAPS images—allowed us to 1) cue individual memories with less-emotionally 

laden visual cues and 2) trigger memories while minimizing visual and emotion induction 

confounds at the time of retrieval. 
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Figure 1. Scanning procedures and task structure. 1A) Participants were scanned over the course of two 
days during an incidental encoding and a 24-hour surprise recognition memory task. RSFC scans were 
acquired before and after incidental encoding, as well as directly before retrieval. 1B) Sample encoding 
trials. 1C) Participants returned to the scanner 24 hrs later for a surprise recognition memory task in which 
all of the old line-drawings and an equal number of new line-drawings were presented one at time. For each 
item, participants had 3 seconds to rate if a line-drawing was “Old” (1-4) or “New” (0), followed by a 
jittered fixation period (1.5-9s). Sample recognition stimuli are shown, with the depicted study history 
listed below in the gray boxes.  

 

Post-recognition arousal and valence ratings 

After the recognition scan, and outside of the scanner, participants completed 

post-scan ratings of arousal and valence (1-7 scales) of the 300 IAPS images. Results of 

these post-scan IAPS ratings confirmed that negative images were more arousing (Mneg = 

5.72, SDneg = 0.61, Mneut = 4.0, SDneut = 0.37, t(28) = 15.65, p < 0.001, paired samples t-
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test) and higher in absolute valence (Mneg = 2.20, SDneg = 0.38, Mneut = 0.62, SDneut = 0.36, 

t(28) = 19.43, p < 0.001, paired samples t-test) than the neutral images. Positive images 

also were more arousing (Mpos = 4.60, SDpos = 0.84, t(28) = 4.40, p < 0.001, paired 

samples t-test) and higher in absolute valence (Mpos = 1.77, SDpos = 0.37, t(28) = 19.23, p 

< 0.001, paired samples t-test) than the neutral images. However, despite being equated 

for arousal based on IAPS normative data (as reported above) negative images were rated 

as more arousing (t(28) = 6.09, p < 0.001, paired samples t-test) and higher in absolute 

valence (t(28) = 6.06, p < 0.001, paired samples t-test) than the positive images. The 

same pattern of results was observed in the subset of twenty-two participants in the 

memory task-based fMRI analyses.  

Although the post-scan ratings of absolute valence and arousal were greater for 

negative stimuli, compared to positive stimuli, it is important to keep in mind that these 

ratings were made after participants had studied and retrieved the images, which could 

impact their valence and arousal strengths (e.g., perhaps these negative stimuli maintain 

their arousal even after multiple viewings, while positive stimuli show mitigation or 

habituation of arousal over repeated presentations). Nevertheless, in the fMRI data, 

valence-based patterns will be considered to occur when region of interest (ROI) analyses 

reveal a pattern of Negative greater than Neutral greater than Positive, not just Negative 

greater than Positive greater than Neutral, to ensure that they cannot simply be driven by 

lower arousal or absolute-valence in the positive images (since the positive images were 

rated as more arousing and of greater absolute-valence than the neutral images, as 

reported above). Moreover, for the replication fMRI analysis of Kark and Kensinger 
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(2015), we show the recapitulation results from an analysis that included individual 

ratings of subjective arousal as a nuisance regressor in the fixed-effects models of 

encoding and retrieval. Further, to ensure the reported across-subjects’ effects were not 

driven by any valence differences of subjective arousal across participants (i.e., those 

with the greatest difference between negative and positive arousal ratings), we controlled 

for valence differences of arousal between-subjects (i.e., Arousalneg-pos: average negative 

arousal ratings – average positive arousal ratings), where applicable.  

 

MRI acquisition  

Structural and functional images were acquired using a Siemens MAGNETOM Prisma 

3T scanner with a 32-channel head coil. A localizer and auto-align scout were followed 

by collection of whole-brain T1-weighted anatomical images (MEMPRAGE, 176 slices, 

1.0mm3 voxels, TR = 2530 ms, Flip angle = 7 degrees, Field of view = 256 mm, base 

resolution = 256). The functional images were acquired using Simultaneous Multi-Slice 

blood-oxygen-level dependent (SMS-BOLD) scan sequences (Barth et al., 2016) 

provided by the Center for Magnetic Resonance Research at University of Minnesota 

(Feinberg et al., 2010; Moeller et al., 2010; Xu et al., 2013). All T2-weighted EPI images 

were acquired in an interleaved fashion and included the whole brain, with the slices 

aligned 25 degrees above the anterior commissure–posterior commissure line in the 

coronal direction. The pulse sequences for the encoding and retrieval task-fMRI scans 

(69 slices, TR = 1500ms, 2.0 mm3 isotropic voxels, TE = 28 ms, Flip angle = 75 degrees, 

208 mm field of view, base resolution = 104, multi-band acceleration factor = 3) differed 
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from the resting state EPI sequence (TR = 650ms, 64 slices, 2.3 mm3 voxels, TE = 

34.8ms, flip angle = 52 degrees, field of view read = 207mm, multi-band acceleration 

factor = 8, base resolution = 90). 

 

Statistical analysis 

 

Memory performance and emotional memory bias 

Effects of valence on memory performance (as calculated by d’ = z[hit rate] - z[false 

alarm rate]) was tested using repeated-measures ANOVA with a factor of valence. 

Negative memory was bias (Negative d’ – Positive d’) and Positive memory bias 

(Positive d’ – Negative d’) were calculated for each participant. Given that memory 

biases were calculated as difference scores, the fMRI data contrasts of interest were 

additionally masked where appropriate to ensure results were also correlated with 

memory performance of the single valence (e.g., Negative d’ alone), and thus not driven 

by an inverse relationship with the other valence (e.g., Positive d’). Throughout the 

remainder of the analyses, memory performance refers to the d’ score for a given valence 

category, whereas memory bias is the difference between d’ scores between negative and 

positive stimuli. 

 

fMRI pre-processing 

Memory task-based fMRI. FMRI images from the encoding and retrieval scans 

were pre-processed and analyzed using SPM8 (Wellcome Department of Cognitive 
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Neurology, London, United Kingdom) implemented in MATLAB 2014a. All functional 

images were reoriented, realigned, co-registered, and spatially normalized to the 

Montreal Neurological Institute (MNI) template (re-sampled at 3 mm during 

segmentation and written at 2 mm during normalization), and smoothed using a 6 mm 

isotropic Gaussian kernel. The first 4 scans of each run were discarded to account for 

scanner equilibrium effects. Global mean intensity, rotation, and translation motion 

outliers were identified using Artifact Detection Tools (ART; available at 

www.nitrc.org/projects/artifact_detect). Global mean intensity outliers were defined as 

scans with a global mean intensity that differed by more than 3 standard deviations from 

the mean. Acceptable motion parameters were set to 3 mm for translation and 3 degrees 

for rotation. Framewise displacement (FWD)—the average rotation and translation 

parameter differences from scan to scan, using weight scaling (Power et al., 2012)—was 

calculated for each participant. Individual scan runs were eliminated if more than 5% of 

the timepoints were identified as having 1) an FWD value greater than 0.5 mm (Power et 

al., 2012) and 2) greater than 3 mm of movement/3 degree rotation. In total, 4 scan runs 

were excluded from the encoding analyses (two encoding runs for one participant, and 

one encoding run each for two other participants) and 5 scan runs were excluded from 

retrieval analyses (one run from 5 different participants). One participant was completely 

removed from the memory task-based fMRI analysis because 3 of their 6 retrieval runs 

showed excessive head motion based on these thresholds, resulting in too few trials for 

analysis. Participants were required to still have an ample number (≥8) of each response 
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type (hits and misses by valence) after any individual scan runs were removed due to 

motion.  

Resting state fMRI. Resting state scans were pre-processed and denoised using the 

CONN Toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012; 

www.nitrc.org/projects/conn, RRID:SCR_009550) implemented in MATLAB 2015a and 

SPM12. To ensure the scanner had reached a steady state, the first 6 timepoints of each 

RSFC scan were discarded (Waheed et al., 2016). Functional scans were then realigned 

and unwarped, centered, segmented, normalized to MNI space, and smoothed with an 8 

mm Gaussian smoothing kernel. Functional data were resampled to 2 mm isotropic 

voxels. Conservative functional outlier detection settings were utilized during the ART-

based identification of outlier scans for scrubbing (global signal z-value threshold of 3, 

subject-motion threshold of 0.3 mm). Pre-processed resting scans for each participant 

were linearly detrended and a commonly used band pass filter (0.008-0.09 Hz) was 

applied after regression to isolate low-frequency fluctuations characteristic of resting 

state fMRI and attenuate signals outside of that range (Fox et al., 2005; Fox et al., 2006; 

Waheed et al., 2016). White matter and CSF noise sources were removed using the 

CONN Toolbox aCompCor method for noise removal. After artifact scrubbing, all 

participants included in the present analyses had at least 5.2 minutes (M = 7.6 minutes) of 

useable timepoints for each of the RSFC scans. One additional participant (male, 28)—

also excluded from the memory task-fMRI analyses—was excluded from the follow-up 

analysis of pre-retrieval RSFC due to excessive motion resulting in less than 5 minutes 

pre-retrieval RSFC data.  
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Memory task-fMRI analyses 

General linear models. For each participant, first-level models were created for 

encoding and retrieval separately. For both encoding and retrieval, each model contained 

twelve regressors of interest: hits and misses by the three valence categories, each with a 

parametric modulator for item reaction times to control for the time to make the 

Approach/Back Away decision (during encoding) or the memory judgement (during 

retrieval). Retrieval models additionally included correct rejections and false alarms, 

collapsed across valence. To control for low-level visual confounds, an additional 

nuisance regressor column contained item-level visual statistic information for the TRs 

that the images were on the screen (i.e., average image saliency for each IAPS image for 

the encoding models and edge density of the line-drawings for the retrieval models). 

Image saliency for each IAPS photo was calculated using the Saliency Toolbox (Itti and 

Koch, 2001) and the edge density of each line-drawing image was calculated as the 

proportion of black pixels within the image frame using MATLAB. Finally, 7 motion 

regressors (FWD, x, y, z roll, pitch yaw) were added before the linear drift regressors. 

Analyses to test for replication of encoding-to-retrieval overlap. For encoding and 

retrieval separately, full-factorial 2x3 ANOVAs at the random-effects level were created 

with factors of memory (hits, misses) and valence (negative, neutral, positive).  

Encoding-to-retrieval overlap (or ‘recapitulation’) effects were operationalized like they 

were in the original study (Kark and Kensinger, 2015) as the spatial overlap of regions 

that exhibit differences due to memory at encoding (Hits > Misses, Dm effects; Paller and 

Wagner, 2002; Wagner et al., 1999) and Retrieval Success Activity at retrieval (Hits > 
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Misses). Practically, the encoding-to-retrieval overlap (or ‘recapitulation’) maps are a 

conjunction of encoding and retrieval maps (Encoding Dm ⋂ Retrieval Success) 

executed separately for each valence (e.g., Encoding Negative Dm ⋂ Negative Retrieval 

Success). Encoding-to-retrieval overlap maps were created for negative, neutral, and 

positive recapitulation effects separately (see Figure 2A, activity in red, white, and blue, 

respectively). The same approach was taken to analyze random-effects level 

recapitulation effects while controlling for subjective ratings of arousal in the fixed-

effects models (see Figure 2A activity in magenta and cyan for negative and positive 

stimuli controlling for arousal, respectively). 

Relations between valence-specific retrieval success activity and individual 

differences in emotional memory bias. Here, we conduct the first individual differences 

examination for links between valence-specific activity at the moment of successful 

retrieval and corresponding valence-specific memory biases. To test if those participants 

who recognized more negative stimuli than positive stimuli were those with greater 

retrieval success activity for negative stimuli in visuosensory regions, a whole-brain one-

sample t-test was used to demarcate regions that showed a correlation between the first-

level parameter estimates of Negative-Biased Retrieval Success Activity (e.g., Negative 

Retrieval Success > Positive Retrieval Success) and the magnitude the negative memory 

bias (e.g., Negative d’ – Positive d’). To ensure the resulting clusters were not driven by 

the inverse relationship for positive memory effects, the resulting map was also 

inclusively masked with the results of an additional one-sample t-test to demarcate 

regions that also showed a correlation between Negative Retrieval Success Activity and 
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Negative d’ (held at a reduced threshold of p < 0.05). We conducted a similar analysis to 

assess links between Positive-Biased Retrieval Success Activity and positive memory 

bias. 

 

Resting state fMRI analyses 

Whole brain seed-to-voxel RSFC analyses were conducted using left and right amygdala 

seeds from a maximum probability atlas of the human brain (Hammers et al., 2003). 

These analyses produced Fisher r-to-Z transformed whole-brain maps of pre-encoding, 

post-encoding, and pre-retrieval amygdala RSFC for each participant. First-level r-to-Z 

RSFC maps outputted from CONN were entered into a factorial in SPM8 for group 

analysis with one factor (i.e., condition) with two levels (pre-encoding, post-encoding). 

To test for valence specific memory biases, Negative d’, Neutral d’, and Positive d’ were 

into the model as co-variates set to interact with the condition factor.  

Baseline amygdala RSFC. We began the RSFC analyses with a replication of 

baseline amygdala RSFC patterns. We first examined group-level pre-encoding (ZPre) 

amygdala RSFC maps, as a comparison to prior work characterizing RSFC networks of 

the amygdala. For comparison with previous work reporting few changes in the amygdala 

RSFC following emotion picture viewing (Geissman et. al., 2018), next we examined 

overall pre-to-post encoding increases in amygdala RSFC (ZPost > ZPre masked with ZPost 

thresholded at p < 0.005). These first two analyses were utilized to establish our group 

findings before exploring the novel inter-individual difference questions central to the 

purpose of the current study.  
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Post-encoding amygdala RSFC and emotional memory biases. The central 

purpose of the RSFC analysis was to test the hypothesis that individual differences in 

post-encoding amygdala coupling enhancements will relate to later emotional memory 

biases in a valence-specific manner. To test this hypothesis, we queried the factorial 

model in two ways to demarcate brain regions that showed correlations between pre-to-

post encoding increases in amygdala RSFC and emotional memory biases. We first 

examined the whole-brain relationship of post-encoding increases in resting state that 

correlated with negative memory performance ([ZPost - ZPre] * Negative d’), but not 

neutral or positive memory performance (by exclusively masking out the maps of [ZPost - 

ZPre] * Neutral d’ and [ZPost - ZPre] * Positive d’ each held at a reduced threshold of p < 

0.05). Given that negative memory bias and pre-to-post encoding RSFC changes were 

difference measures, we further required post-encoding amygdala RSFC levels on their 

own to be correlated with negative memory performance (inclusively masked with the 

map of ZPost * Negative d’). Critically, we further report the clusters that also show a 

valence-specific relationship between pre-to-post-encoding increases in amygdala RSFC 

and negative memory bias ([ZPost - ZPre] * [Negative d’ – Positive d’]). That is, the greater 

the post-encoding increase in RSFC, the greater the difference between Negative d’ and 

Positive d’ for a given participant. The reverse approach was taken to test for regions that 

show a relationship between post-encoding amygdala coupling increases and positive 

memory performance ([ZPost - ZPre] * Positive d’) and positive memory bias ([ZPost - ZPre] * 

Positive d’ – Negative ‘d) (inclusively masked with the map of ZPost * Positive d’). We 

hypothesized valence-specific effects, by which parameter estimates of the slopes would 
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not only be greater for negative compared to positive (as revealed at the whole-brain 

level), but also with targeted ROIs showing parameter estimates of the slope for neutral 

falling in the middle of negative and positive. 

 

Data reporting and visualization  

Unless otherwise specified, whole-brain group analyses were interrogated at p < 0.005 

(uncorrected). Monte Carlo Simulations (https://www2.bc. edu/sd-slotnick/scripts.htm)  

determined that a voxel extent of k=40 for memory task-fMRI analyses and k=54 for the 

resting-state fMRI analyses corrected results to p < 0.05. As in our original study (Kark 

and Kensinger, 2015), all conjunction analyses to assess the replication of encoding-to-

retrieval overlap were thresholded at the joint probability p < 0.005 by setting the 

individual thresholds of each voxel at encoding and retrieval to p = 0.0243 (calculated 

using the Fisher equation; Fisher, 1973). Due to the resolution (2mm3), voxels in brain 

stem regions are not reported in the tables. Follow-up ROI analyses were conducted using 

REX (http://web.mit.edu/swg/software.htm) to extract first-level parameter estimates for 

each subject for the conditions of interest to be entered into ANOVAs and t-tests and to 

extract the second-level parameter estimates of slopes to visualize the correlations 

between amygdala post-encoding RSFC by phase and memory performance by valence 

(see bar plots in Figure 4). Foci conversion (MNI to Talaraich coordinates) was 

implemented using the GingerAle (http://www.brainmap.org/ ale/). Rendering of 

statistical maps was implemented using MRIcroGL 
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(http://www.mccauslandcenter.sc.edu/mricrogl/home) and MRICRON 

(http://people.cas.sc.edu/rorden/mricron/index.html). 

 

2.4 RESULTS 

Memory performance and emotional memory bias 

Overall recognition memory performance (d’) varied across the 29 participants (M = 

0.74, SD = 0.33, SE = 0.06, range: 0.17-1.52) and was lower than in our original 20-

minute delay study (M = 1.22, SE = 0.1; Kark and Kensinger, 2015), which is not 

surprising given the longer study-test interval. As in our 2015 paper, we observed no 

significant group-level effects of valence on memory performance (F(2,56) = 1.7, p = 

0.19, ANOVA) between negative (M = 0.76, SD = 0.40, SE = 0.08), positive (M = 0.80, 

SD = 0.44, SE = 0.08), and neutral stimuli (M = 0.69, SD = 0.34, SE = 0.06). Importantly, 

there was a range of memory bias scores (Negative d’ - Positive d’) scores across 

participants (SD = 0.35, range: -0.71 to +0.71); 13 participants showed a negative 

memory bias while 16 participants showed a positive memory bias (see full spread of 

negative and positive memory bias in the scatter plots in Figure 4, bottom). Individual 

differences in memory biases were not correlated with differences in post-scan ratings of 

arousal and absolute valence between the negative and positive IAPS images across the 

29 participants (Arousalneg-pos: r(27) = .16, p = 0.41; Absolute Valenceneg-pos: r(27) = .19, 
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p = 0.34, Pearson’s correlation), suggesting that they arose from memory differences and 

not merely differences in emotional experience of the stimuli. 

 

Memory task-based fMRI results 

Replication of enhanced visuosensory recapitulation for negative memories 

Before examining new questions regarding individual differences in emotional memory 

biases, we first sought to replicate our prior findings demonstrating enhanced 

recapitulation in visuosensory regions for negative memories (Bowen and Kensinger, 

2017b; Kark and Kensinger, 2015) and confirm that enhanced group-level visuosensory 

recapitulation for negative events extends to a 24-hour study-test delay. Indeed, the 

conjunction analyses revealed encoding-to-retrieval overlap for negative memories in the 

bilateral ventral visual stream (inferior temporal and fusiform gyri), parahippocampal 

cortex, parietal areas, as well as lateral and orbital portions of the prefrontal cortex (see 

activity in red in Figure 2A and refer to Figure 3 in Kark and Kensinger, 2015).  

Additional control analyses showed that many of these negative memory 

recapitulation regions—including ventral visual regions such as the inferior temporal gyri 

and parahippocampal cortex—remain significant even when the post-scan ratings of 

arousal were entered as a participant- and item-specific regressor in the fixed effects 

models (see activity in magenta in Figure 2A). However, two of the ventral visual stream 

clusters (of the right inferior temporal gyrus clusters and of the left fusiform gyrus 

clusters) no longer reached significance with item-level arousal metrics in the models. In 

another control analysis, there were no regions that showed arousal-memory interactions 
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across encoding and retrieval (i.e., a conjunction of positive parametric relation of arousal 

for Hits > Misses across both phases), further suggesting the majority of these 

recapitulation effects were not driven by systematic differences in arousal between the 

valences. However, future work with tighter controls is needed to clarify valence-arousal 

interactions. Notwithstanding, these replication results and additional control analyses 

were critical for three reasons: They allowed us to 1) root the central individual 

differences questions of the current study in a replication of prior work (Kark and 

Kensinger, 2015), 2) to further demonstrate that negative valence indeed enhances 

recapitulation in the present paradigm with a 24-hr study-test delay, suggesting that 

visuosensory enhancement remains relevant to negative memory processes long after 

encoding, and 3) to show that subjective arousal differences are not driving the valence 

differences in the distribution of the recapitulation effects.  

 

Links between individual differences in negative memory bias and valence-specific 

retrieval success activity 

With the recapitulation results replicated, we then moved on to ask new questions 

regarding links between valence-enhanced retrieval activity and emotional memory bias. 

Since we have consistently found group effects of visuosensory recapitulation for 

negative memories, we hypothesized that individual differences in negative memory bias 

would be associated with greater memory-related visuosensory activation at the time of 

retrieval. If visuosensory processes are linked with better memory for negative but not 

positive stimuli, those participants with greater success-related retrieval activity in visual 
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processing regions will be biased toward remembering more of the negative images, 

compared to the positive images. To test this hypothesis, we examined the whole-brain 

correlations between Negative > Positive Retrieval Success Activity (directional 

interaction contrast) and behavioral negative memory bias (Negative d’ – Positive d’). 

We additionally masked this map with the relationship between Negative Retrieval 

Success Activity (Hits > Misses) correlated with Negative d’ (at p < 0.05, see activity in 

yellow in Figure 2B), to ensure effects in the resulting clusters were not driven by an 

inverse correlation with positive memory. These analyses identified several visual cortex 

clusters including a large swath of the calcarine sulcus (MNIxyz = 4, -88, -10, k = 115), 

the left lingual gyrus (MNIxyz = -22, -82, -16, k = 79), and the right occipital fusiform 

gyrus (MNIxyz = 20, -76, -10, k = 50), each with corresponding peaks that survived the 

inclusive masking technique (MNIxyz = -6, -86, -10, k=30;  MNIxyz=-20, -82, -16, k=25; 

MNIxyz =4, -92, -10 k=18, MNIxyz= 24, -78, -10, k=12). No other clusters outside of the 

visual cortex were identified by the masking procedure. The same clusters were identified 

when a follow-up model included an across-subject covariate of post-scan rating 

differences of arousal between negative and positive stimuli (i.e., average negative 

arousal ratings – average positive arousal ratings). There were no suprathreshold voxels 

for the comparison assessing a relation between positive memory bias and valence-

specific retrieval activity for positive stimuli. Together, these results suggest that those 

participants with greater memory-related activity in visuosensory regions are also those 

that remember more of the negative than positive stimuli at the time of retrieval. 

Importantly, these effects were not driven by participants who merely thought the 
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negative stimuli were more arousing than the positive stimuli, further suggesting a 

valence-specific enhancement in memory related to enhanced visuosensory memory-

related activation at retrieval. 

 
Figure 2. Memory task-based fMRI results. 2A) Replication of group-level whole-brain encoding-to-
retrieval overlap effects for negative stimuli are plotted in red, with regions that directly overlap with 
clusters from our prior study (Kark and Kensinger, 2015) demarcated using yellow star symbols. Regions 
that survived controlling for item-level subjective arousal from the post-scan ratings are shown in magenta 



  
 

62	

for negative memories and cyan for positive memories. 2B) Whole-brain correlations between individual 
differences in Negative > Positive Retrieval Success Activity and negative memory bias are shown in red, 
with yellow areas to identify clusters that also show a correlation between Negative Retrieval Success and 
Negative d’ (inclusive masking technique thresholded at a p < 0.05). Individual data points from a cluster in 
the left calcarine sulcus (circled in red in the sagittal and axial slices) are visualized in a scatter plot (lower 
right). The scatted plot contains filled circles representing the n=22 participants included in the whole-brain 
analyses, but also open circles that represent the data for the seven participants excluded from the whole-
brain retrieval analysis who might have noisier estimates of retrieval success activity due to a low number 
of misses. The red X’s represent the n=2 participants who were not included in any of the group task or 
RSFC analyses but are plotted to observe how the pattern might extend if these participants were included 
in analysis. 
 

Resting state fMRI results 

Before turning to the novel aspects of the present study, we first sought to root our 

individual differences analyses in a replication of past work of group-level amygdala 

RSFC patterns (Geissman et al., 2018). First, pre-encoding resting state networks 

resembled those previously reported (Geissmann et al., 2018; Roy et al., 2009), with 

positive RSFC of the bilateral amygdala with large swaths of ventro- and dorso-medial 

prefrontal cortex (PFC), temporal lobes, orbital and inferior PFC (shown in red in Figure 

3A). Anticorrelations were observed in the middle frontal gyrus, parietal areas, and 

precuneus (shown in blue in Figure 3A). These finding suggest our group of participants 

show typical amygdala RSFC patterns at rest before encoding. Second, at the group-level, 

we found pre-to-post encoding increases in amygdala RSFC with regions such as the 

precuneus, inferior frontal gyrus, middle temporal gyrus, and insula (see Table 1 and 

Figure 3B). We found minimal group-level pre-to-post encoding increases in amygdala 

RSFC in visuosensory areas, with the exception of right amygdala RSFC increases with a 

portion of the right fusiform gyrus and the right temporal pole. While these changes 

suggest some reconfiguration of amygdala networks detectable at the group-level 
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following emotional picture viewing, these patterns but do not inform emotional memory 

processes specifically. 

 

 
Figure 3. Group-level amygdala resting state functional connectivity results.  3A) Group-average 
amygdala RSFC during pre-encoding (baseline) replicates a typical widespread pattern of positive 
correlations (shown in red) and anti-correlations (shown in blue). 3B) Depicts the group-level pre-to-post 
encoding increases in left (shown in blue) and right (shown in green) amygdala RSFC. Overlap between the 
left and right amygdala maps in the precuneus are shown in cyan.  
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Table 1. Group pre-to-post encoding increases in amygdala RSFC 

Lobe Region Hem BA 

MNI 

(x,y,z) TAL (x,y,z) k 

       
Right amygdala 

     
Frontal Inferior frontal gyrus L 47 -32,14,-26 -30,14,-18 12 

 
Precentral gyrus R 6 32,-8,44 28,-13,43 16 

  
R 6 30,-6,60 26,-13,58 13 

 

Superior frontal gyrus, 

supplementary motor area R* 6 12,0,60 9,-7,58 42 

Parietal 

Precuneus, superior parietal 

lobule L* 7 -16,-44,54 -17,-47,48 104 

 Paracentral Lobule R 5 14,-32,52 11,-36,48 16 

 Precuneus R* 7 14,-44,54 11,-48,49 133 

 

Supramarginal gyrus, superior 

temporal gyrus R* 22, 40 56,-38,22 50,-39,21 68 

Temporal Inferior temporal gyrus R 37 50,-58,-8 45,-55,-7 37 

 Temporal pole R 21,38 44,8,-42 40,9,-32 44 

Other Insula R 13 30,18,14 27,14,19 75 

       
Left amygdala 

     

Frontal 

Inferior frontal gyrus, precentral 

gyrus, R 6,9 60,12,22 54,7,26 126 

 
Supplementary motor area R* 6 10,0,56 8,-7,54 57 

Parietal Precentral gyrus L 6 -34,-10,36 -33,-14,35 16 

 Precuneus, post-central gyrus L* 5,7 -16,-44,54 -17,-47,48 28 
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Precuneus, pre- and post-central 

gyrus R* 7,31 16,-28,48 13,-32,45 167 

 

Supramarginal gyrus, superior 

temporal gyrus R* 22, 40 46,-34,24 41,-36,23 166 

Other Parietal operculum L 13 -38,-30,22 -37,-31,21 16 

*Signifies overlap between the left and right amygdala maps 

 
 

Individual differences in post-encoding amygdala RSFC and emotional memory biases 

After establishing that our task effects replicate our prior work (Kark and 

Kensinger, 2015) and the pre-encoding amygdala RSFC is consistent with previously-

reported patterns (Geissmann et al., 2018), we then moved on to address the critical 

analyses: Examining links between individual differences in immediate post-encoding 

amygdala RSFC increases and long-term valence-specific emotional memory biases. We 

hypothesized that offline amygdala-visuosensory and amygdala-frontal RSFC 

enhancements during post-encoding rest—compared to pre-encoding rest—would be 

associated with later negative and positive memory biases, respectively. Consistent with 

this hypothesis, negative memory performance (Negative d’) was correlated with post-

encoding enhancements of right amygdala RSFC with early visual cortex (BA17; 

spanning the cuneus, calcarine sulcus, occipital pole) as well as the superior, middle, and 

inferior occipital gyri (BA18/19; results for neutral and positive memory performance 

exclusively masked out, see activity in red in Figure 4 and Table 2). The whole-brain 

analyses further demarcated two right visual regions (lingual gyrus/inferior occipital 

gyrus [BA18/19], k=103; inferior/middle occipital gyrus [BA19], k=147) that showed a 
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whole-brain correlation between negative memory bias (Negative d’ – Positive d’) and 

post-encoding increases of right amygdala RSFC (see plots and activity in yellow in 

Figure 4). The whole-brain RSFC effects of the left amygdala were not as wide spread as 

the right amygdala; however, the only cortical region to show a relation between post-

encoding enhancements of left amygdala RSFC and negative memory bias was the same 

right lingual gyrus/inferior occipital gyrus region (MNIxyz = +28, -88, -18, k=20) that 

showed the effect with the right amygdala.  

While negative memory performance and negative memory bias were associated 

with amygdala-visuosensory increases in RSFC, positive memory performance was 

associated with right amygdala-frontal post-encoding increases in RSFC, including the 

dorsal anterior cingulate cortex (dACC), ventrolateral PFC, inferior frontal gyrus, orbital 

frontal cortex, and medial prefrontal cortex (see Table 2). Whole-brain analyses 

identified voxels (k=37) within the dACC as associated with positive memory bias (see 

symbol to demarcate significant bias in Table 2). The same dACC region showed a 

whole-brain correlation between left amygdala increases in RSFC and positive memory 

performance (MNIxyz = -4, 36, 26, k = 32), but only a sub-threshold relation to positive 

memory bias (whole-brain threshold p = 0.05, k = 16). Further, post-encoding RSFC 

increases of the left amygdala with the superior frontal gyrus showed a significant 

relationship to positive memory bias (MNIxyz = -22, 18, 38, k = 16). Overall, these results 

suggest a similar pattern of RSFC effects of the right and left amygdala. Follow-up 

analyses of pre-retrieval RSFC of the right amygdala suggest no significant link between 

pre-retrieval amygdala-visuosensory levels of RSFC and negative memory bias (r(26) = -
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0.15, p = 0.44, Pearson’s correlation) or amygdala-dACC levels RSFC and positive 

memory bias (r(26) = 0.02, p = 0.93, Pearson’s correlation). These data suggest the 

principal findings are detectable shortly after encoding and there is no significant 

relationship between to pre-retrieval configuration of the amygdala RSFC networks with 

these areas and valence-specific memory performance. Together, these results provide 

new evidence of valence-specific effects of amygdala functional connectivity 

enhancements with distant brain regions after encoding on subsequent behavioral 

memory biases.  

Given prior work establishing links between memory vividness and occipital 

activity (Richter et al., 2016), we tested if the present visuosensory-amygdala RSFC links 

with negative memory bias were also related to biases in negative memory vividness (i.e., 

negative memory vividness - positive memory vividness). Results returned no significant 

relationship between right amygdala post-encoding RSFC increases with the two 

visuosensory clusters that showed a relation to a greater negative memory bias (right 

lingual gyrus/inferior occipital gyrus: r(27) = -.07, p = 0.71; right inferior/middle 

occipital gyrus: r(27) = -.07, p = 0.73, Pearson’s correlations). Similarly, follow-up 

analysis returned no significant relationship between right amygdala post-encoding 

increases with the dACC and greater positive memory vividness, compared to negative 

memory vividness (r(27) = -.27, p = .16, Pearson’s correlation). However, we instructed 

participants to make vividness ratings based not only on memory for visual details but 

also thoughts, feelings, or reactions to the original photo, making it impossible to draw 

conclusions about the content of the memoranda driving vividness for each trial. Our null 
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results could reflect that participants use one aspect of vividness to rate negative 

vividness (e.g., visual details) and another aspect (e.g., thoughts or feelings) to rate 

positive vividness.  

 

 
 
Figure 4. Post-encoding enhancement of right amygdala connectivity and valence-specific emotional 
memory biases. The right amygdala seed region is shown in green. Whole-brain correlations between post-
encoding increases in amygdala connectivity and a) Negative memory performance (Negative d’) are 
shown in red and b) Positive memory performance (Positive d’) effects are shown in blue. Whole-brain 
correlations that additionally show Negative memory bias (Negative d’ – Positive d’) are shown in the 
inferior occipital and lingual gyri in yellow while Positive memory bias (Positive d’ – Negative d’) are 
shown in the dACC in violet. The bar plots display the random-effects level parameter estimates of the 
slope for the correlations between amygdala RSFC and memory performance by valence (negative, neutral, 
positive) and phase (pre-encoding, post-encoding). The scatter plots depict the relationship between the 
magnitude of post-encoding amygdala RSFC enhancement (ZPost - ZPre) and magnitude of the given 
emotional memory bias. 
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Table 2. Across-subject correlations between post-encoding increases in right amygdala resting state 
functional connectivity and emotional memory performance (exclusively masking out the effects for the 
other two valences). Links with emotional memory biases are indicated with superscripted symbols. 
 

Lobe Region Hem BA MNI (x,y,z) TAL (x,y,z) k 
 

Negative memory performance  
    

Occipital Calcarine sulcus, cuneus L 17, 18 0,-102,-6 -1,-96,-10 79 

 Middle occipital gyrus L 18 -30,-98,8 -29,-94,2 11 

 

Cuneus, superior and 

middle occipital gyri R * 17,18,19 20,-100,18 17,-97,12 492 

 

Lingual gyrus, inferior 

occipital gyrus, fusiform 

gyrus R * ^ 18,19 28,-88,-18 25,-82,-19 108 

Parietal Post-central gyrus L 3 -22,-32,52 -22,-36,47 60 

Frontal 

Superior frontal gyrus, 

supplementary motor area R 6 16,-4,58 13,-11,56 21 

Temporal Temporal pole R 38 18,8,-50 16,10,-40 21 

Other Cerebellum L NA -26,-90,-26 -25,-83,-27 12 

 

Positive memory performance 
     

Frontal Inferior frontal gyrus  L 45 -54,22,0 -51,19,5 38 

  L 46 -38,36,0 -36,32,7 11 

  
R 45 52,30,-4 47,26,4 57 

 

Superior frontal gyrus 

(anterior) L 10 -10,56,6 -10,50,14 33 

 
Orbital frontal gyrus R 11 10,46,-16 9,42,-6 13 
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Other Cerebellum R NA 12,-56,-38 10,-51,-35 34 

 Dorsal anterior cingulate L * # 32 -10,38,24 -10,32,29 104 

 Mid-cingulate L 31 -2,-14,46 -3,-19,44 11 

 Thalamus L NA -16,-14,2 -16,-15,4 104 

 Thalamus L NA -2,-24,8 -3,-25,9 17 

Parietal Post-central gyrus L 40 -58,-22,20 -55,-24,19 63 

  
L 2 -46,-20,34 -44,-23,32 19 

Temporal Transverse temporal gyrus R 41 40,-28,4 36,-28,6 17 

*Signifies whole-brain relation to emotional memory bias (k-values of sub-clusters reported in-text). 
^Left amygdala pre-to-post RSFC shows whole-brain correlation with negative memory bias (k=20).   
#Left amygdala pre-to-post RSFC shows whole-brain correlation with positive memory performance 
(k=32).   
 

Control analyses  

We ran several control analyses to confirm that the relationship between post-encoding 

increases in amygdala RSFC and negative memory biases were not driven by individual 

valence differences in univariate encoding levels of amygdala or visuosensory 1) activity, 

2) functional connectivity 3) “background connectivity”, 4) valence-differences in the 

post-scan subjective ratings of valence and arousal across participants, or 5) parallel 

changes in hippocampal or other subcortical connectivity with these areas. Encoding 

functional connectivity models were created using the gPPI toolbox (available at 

http://brainmap.wisc.edu/PPI; McLaren et al., 2012). Encoding “background 

connectivity” was calculated similar to previously reported methods (Al-Aidroos et al., 

2012; Duncan et al., 2014; Murty et al., 2017) by extracting signal from the right 

amygdala, right lingual gyrus/inferior occipital gyrus, and dACC, from fixed-effect 



  
 

71	

model residuals, which are thought to represent task- and noise-filtered signal. These 

signals were band-pass filtered [0.01 - 0.08 Hz] and pairwise correlation coefficients 

were r-to-z transformed and saved as the metric of background connectivity for each 

participant. These control metrics of interest were entered as covariates in four separate 

follow-up random-effects models to confirm that the whole-brain links between 

individual differences in pre-to-post encoding increases in right amygdala RSFC and 

emotional memory biases remained suprathreshold when controlling for these possible 

across-subject explanations of the effects. The principal valence-specific links of right 

amygdala RSFC links with negative and positive memory biases remained significant in 

the inferior occipital gyrus and DACC, respectively, when these additional random-

effects factorial models controlled for 1) encoding activity differences between negative 

and positive hits and 2) functional connectivity differences in the right amygdala, right 

lingual gyrus/inferior occipital gyrus, and DACC between negative and positive hits, as 

well as 3) encoding background connectivity differences of the RAMY with these target 

regions, and 4) valence differences in post-scan ratings of arousal and absolute valence 

(e.g., average negative arousal ratings – average positive arousal ratings). RSFC analysis 

of other subcortical seed regions (i.e., hippocampus and putamen) with the principal 

visuosensory clusters associated with negative memory biases returned no significant link 

with negative memory bias (all rs<.3, ps>0.1, Pearson’s correlations). A similar pattern 

was observed for positive memory bias and post-encoding RSFC increases with the 

dACC cluster. These data suggest the principal negative memory bias effects might be 

specific to the amygdala and were not driven by hippocampal (but see Exploratory 



  
 

72	

mediation analysis) or putamen influences of increased post-encoding RSFC with these 

valence-specific cortical targets. 

 Follow-up analysis of post-encoding resting state fMRI scans available from the 

original 20-minute study-test delay study (Kark and Kensinger, 2015) using a separate set 

of participants shows no significant correlation between post-encoding right amygdala-

visuosensory RSFC and negative memory bias (r(20) = -0.24,  p = 0.28, Pearson’s 

correlation) or right amygdala-dACC RSFC and positive memory bias (r(20) = -0.1, p = 

0.67, Pearson’s correlation). These data suggest that a delay longer than 20 minutes might 

be required to observe a relation between post-encoding amygdala RSFC increase with 

these ROIs and long-term memory. However, future work is needed to directly confirm 

the need for an extended delay, since these RSFC scans were collected on a different 

scanner and used different acquisition parameters (47 slices, TR=3000ms, 100 images, 

3mm3 voxels) and pre-encoding scans were not collected. Together, these follow-up 

analyses demonstrate that the principal findings are not driven by differences during 

encoding or by subjective reactivity differences to the images as valence categories, and 

likely reflect enhanced amygdala engagement following encoding that is relevant to later 

behavior in a valence-specific fashion. 

 

Exploratory mediation analysis 

We have presented evidence that negative memory biases are associated with 

visuosensory engagement both online during retrieval and offline during post-encoding 

rest periods: Specifically, we have demonstrated that negative memory bias is related to 
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both 1) greater retrieval success activation in visuosensory areas for negative compared to 

positive stimuli as well as 2) greater enhancements of visuosensory-amygdala 

connectivity during post-encoding offline rest periods. Although these visuosensory areas 

that showed a significant relation with negative memory bias were not directly spatially 

overlapping—possibly due to differences of engagement while at rest as compared to 

during task or after a period of consolidation—we utilize these metrics to capture 

individuals who show a visuosensory tendency in the brain with regard to negative 

memory bias. With these across-subjects metrics, we conducted an exploratory, post hoc 

mediation analysis to test if post-encoding amygdala-visuosensory RSFC increases 

(Figure 4) and visuosensory negative-biased retrieval activity (Figure 2B) independently 

influence behavioral negative memory bias (unmediated) or if post-encoding right 

amygdala RSFC increases set-up visuosensory brain areas for a negative memory bias 

mode at retrieval (see Model 1 below in Figure 5). That is, do changes in amygdala-

visual RSFC immediately following encoding (independent X variable) influence 

negative memory bias (dependent Y variable) via biases in visual retrieval activity 

(mediator M variable)? 

Mediation methods. For the Visuosensory-Amygdala △ RSFC variable (X), we 

chose the magnitude of right amygdala post-encoding change with the right lingual 

gyrus/inferior occipital gyrus region (MNIxyz = 28, -88, -16, shown in yellow in the pop-

out plot in Figure 4 and sagittal slice in Figure 5). We chose this particular area because it 

1) fell nearer to the right hemisphere clusters that showed visuosensory negative-biased 

retrieval activity (Figure 2b) and 2) because it fell nearer to the terminal area of the 



  
 

74	

inferior longitudinal fasciculus (Catani et al., 2003), which structurally connects the 

amygdala and occipital cortex. For the Visuosensory Negative-Biased Retrieval Activity 

variable (M), we averaged the parameter estimates (Negative Retrieval Success > 

Positive Retrieval Success directional contrasts) from the right hemisphere clusters that 

showed a correlation with behavioral negative memory bias (MNIxyz= 24, -78, -10 and 

MNIxyz= 4, -92, -10, circled on the axial slice in Figure 5), since amygdala effects tend to 

be strongest ipsilaterally (Amaral et al., 2003; Kilpatrick and Cahill, 2003; Vuilleumier et 

al., 2004). 

 We then tested the hypothesized mediation model (Model 1, shown in Figure 

5A), with the metric of Behavioral Negative Memory Bias (Negative d’ – Positive d’) as 

the dependent variable (Y). In Model 1, post-encoding amygdala-visuosensory RSFC 

increases (X, Visuosensory-Amygdala △ RSFC) predict Behavioral Negative Memory 

Bias via Visuosensory Negative-Biased Retrieval Activity (M). In Model 2, Visuosensory 

Negative-Biased Retrieval Activity predicts Behavioral Negative Memory Bias via 

Visuosensory-Amygdala △ RSFC on the prior day. 

We utilized regression analysis and a bootstrapping estimation method to 

determine significance of the mediation model using PROCESS 

(http://www.processmacro.org/index.html; Hayes, 2018), regression path analyses 

modelling tool we implemented in SPSS 24. Mediation is determined significant if the 

confidence interval does not contain 0. Unstandardized regression coefficients (b values) 

and bootstrapped 95% confidence intervals (10,000 iterations) were used to determine 

significance and standardized coefficients (β) are reported for comparisons across studies.  
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Mediation results. In Model 1 (see Figure 5A), Visuosensory Amygdala Change 

in RSFC (X) was a significant predictor of Visuosensory Negative-Biased Retrieval 

Success Activity (b = 7.51, SE = 2.79, p = 0.01, CIs = [1.69, 13.34], β = 0.52) and 

explained 27% of the variability of retrieval activity (R2=0.27). Visuosensory Amygdala 

Change in RSFC no longer predicted negative memory bias (b = 0.38, SE = 0.30, p = 

0.22, CIs = [-.24, 0.99], β=0.26) when Visuosensory Negative-Biased Retrieval Success 

bias was added to the model as a mediator (b = 0.05, SE = 0.02, p = 0.03, CIs = [0.01, 

.09], β = 0.48), suggesting a complete mediation. The indirect effect was found to be 

significant using a bootstrap estimation approach with 10,000 samples (b=0.36, 

SEboot=0.20, CIsboot = [0.08, 0.87], β=0.25). That is, a one standard deviation difference in 

post-encoding right amygdala RSFC was associated with 0.1 greater difference in 

negative memory bias (Negative d’ – Positive d’), as mediated by visuosensory retrieval 

success activity. Approximately 42% of the variance in behavioral negative memory bias 

was accounted for by these two predictors (R2 = .42). The indirect effects were also 

significant and indicated a full mediation when additional models were run with the two 

retrieval clusters averaged to create the M variable were run separately (when M values 

were extracted from MNIxyz= 4, -92, -10: b=0.35, SEboot=0.20, 95% CIsboot = [0.07 0.88], 

β=0.24; MNIxyz= 24, -78, -10: b=0.29, SEboot=0.17, 95% CIsboot = [0.04 0.71], β=0.20), 

suggesting neither cluster drove the indirect effect when collapsed across those two 

clusters. A full mediation suggests post-encoding enhancements of Visuosensory-

Amygdala △ RSFC predict later Visuosensory Negative-Biased Retrieval Activity, which 

in turn predicts the magnitude of the Behavioral Negative Memory Bias. In other words, 
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post-encoding processes set-up the brain for a negative-biased retrieval mode, which 

drives the gap between remembering more of the bad than the good.  

While Model 1 makes the most sense both theoretically and chronologically (i.e., 

post-encoding processes precede retrieval activity), we also evaluated the possibility that 

the association between retrieval activity bias and negative memory bias could be 

mediated by a prior history of post-encoding increases in amygdala RSFC, and not that 

amygdala RSFC increases cause retrieval activity biases. Using the same approach but 

with Visuosensory Negative-Biased Retrieval Activity as the independent variable (X) 

and Visuosensory-Amygdala △ RSFC as the mediator (M), the indirect effect in Model 2 

was not found to be significant (b = 0.01, SEboot = 0.01, CIsboot = [-0.01, .04], β = 0.13).  

Additional first-stage moderated mediation model. We further explored for 

hippocampal contributions to these links. Although post-encoding increases in right 

hippocampal RSFC (Visuosensory-Hippocampal △ RSFC) with the right lingual 

gyrus/inferior occipital gyrus region were not statistically significant (r(27) = .28, p = 

0.14, Pearson’s correlation), post-encoding increases of Visuosensory-Hippocampal △ 

RSFC moderated the relationship between Visuosensory-Amygdala △ RSFC and 

Visuosensory Negative-Biased Retrieval Activity (see Figure 5B for plot of the 

interaction). A moderated mediation model further revealed that the indirect effect of X 

on Y through M shown in Figure 5A was only significant at average or greater-than-

average levels of Visuosensory-Hippocampal △ RSFC (Waverage-1SD: b=0.22, SEboot = 

0.22, CIsboot=[-.25 0.64]; Waverage: b=0.44, SEboot = 0.26, CIsboot=[.02 1.05]; Waverage+1SD: 

b=0.67, SEboot = 0.43, CIsboot=[.10 1.68]). Although these findings require further 
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examination with a larger sample size, these results provide preliminary evidence that 

greater visuosensory-hippocampal increases in post-encoding RSFC augment the indirect 

effect that visuosensory-amygdala RSFC exerts on negative memory biases. 

 

 

 
 
Figure 5. Exploratory moderated mediation analysis. 5A) Exploratory Mediation analysis. Visuosensory 
Negative-Biased Retrieval Activity in right occipital cortex (average of two right hemisphere visuosensory 
regions shown in the axial slice, top) completely mediated the relationship between pre-to-post encoding 
increases in Visuosensory-Amygdala RSFC and Behavioral Negative Memory Bias, which suggests post-
encoding amygdala-visuosensory RSFC enhancements set-up the brain for a negative-biased retrieval mode 
visuosensory regions at the time of retrieval. The path values represent the unstandardized regression 
coefficients. Significance of the indirect effect was determined by the bootstrapped 95% CIs (10,000 
samples). 5B) Additional first-stage moderated mediation analysis. Follow-up analysis of pre-to-post 
encoding changes of the right hippocampus and the right visuosensory region (shown in sagittal slice) 
revealed a significant moderated mediation, whereby the effect of post-encoding amygdala-visuosensory 
RSFC on Visuosensory Negative-Biased Retrieval Activity depended on the level of pre-to-post encoding 
changes of visuosensory-hippocampal RSFC. The significant X*W interaction is plotted at various levels 
of visuosensory-hippocampal changes in RSFC. 

2.5 DISCUSSION 

The present study is the first to demonstrate not only valence-specific emotional memory 

retrieval patterns but also valence-specific links between post-encoding increases in 
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amygdala-cortical RSFC and long-term episodic emotional memory biases. These results 

emphasize that negative memories differ from positive not only in the way the content is 

initially encoded but also in how that content is consolidated over time and brought to 

mind at retrieval. Primarily, we demonstrate that behavioral negative memory bias was 

specifically associated with ‘offline’ post-encoding RSFC increases of the amygdala with 

occipital areas, and that activation of similar visual regions at the time of retrieval was 

also linked to negative memory bias.  

These findings are consistent with a growing body of work demonstrating that 

immediate post-learning functional connectivity of the MTL can have long-term 

consequences on subsequent memory (Staresina et al., 2013; Tambini and Davachi, 2013; 

Tambini et al., 2010; Tambini et al., 2017), including fear memory (de Voogd et al., 

2016; Hermans et al., 2017). Here we show that some of these effects are dissociable 

along the dimension of emotional valence. These results may provide new avenues for 

understanding or remediating negative memory biases, by revealing that negative 

memory biases can be linked to the way that sensory processes are integrated into 

amygdala-centered emotional memory networks.   

 

Post-encoding amygdala-cortical RSFC predicts emotional memory 

The key finding was a valence-based dissociation in the link between post-

encoding amygdala RSFC increases and long-term emotional memory biases: Greater 

amygdala engagement with occipital and frontal areas immediately following encoding 

was differentially associated with greater negative and positive memory biases, 
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respectively. Inferior occipital and medial frontal areas show dense reciprocal 

connections with the amygdala along the inferior longitudinal fasciculus and uncinate 

fasciculus, respectively (Catani et al., 2003; Ghashghaei et al., 2007), making these 

offline functional changes in connectivity anatomically plausible. While we can only 

speculate why the individual differences in negative memory biases play out in more 

posterior visual processing regions, one possibility is that participants with a stronger 

negative memory bias are bringing to mind more fine-grained visual features of the 

negative stimuli to support memory. Similar areas of the inferior and middle occipital 

gyri have been associated with sensitivity to spatial frequency information (Rotshtein et 

al., 2007) and retrieval of color (Ueno et al., 2007), raising the possibility that those 

participants with greater posterior visuosensory engagement bring to mind these visual 

features. In contrast, group-level recapitulation effects in relatively more anterior visual 

regions might reflect reactivation of higher-order visual representations (Wheeler and 

Buckner, 2003).    

Positive memory performance was associated with post-encoding amygdala 

RSFC increases with frontal regions, with a specific positive memory bias effect 

associated with amygdala-dACC RSFC. These findings are broadly consistent with prior 

word (Mickley Steinmetz et al., 2010) but extend amygdala-frontal influences on 

memory into post-encoding periods. Perhaps amygdala enhancement of frontal areas 

involved in gist- or heuristic-based memory processing associated with positive stimuli 

(Kensinger and Schacter, 2008) and the experience of positive emotions (Ashby et al., 
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1999; Fredrickson and Branigan, 2005) tips the scale toward overall better recognition 

memory of positive stimuli. 

 

Amygdala-visuosensory RSFC may influence negative memory bias via retrieval activity 

The exploratory mediation analysis suggests those participants with greater post-

encoding amygdala-visuosensory RSFC have greater memory-related visuosensory 

activity for negative stimuli compared to positive stimuli during retrieval, resulting in a 

more pronounced negative memory bias. Although these visuosensory areas were not 

directly overlapping, individuals with a tendency toward visuosensory engagement may 

exhibit a greater negative memory bias. The change over time in the exact visuosensory 

areas could plausibly be consistent with systems consolidation, such that initial changes 

in one set of regions may trigger changes over time in distal regions. The exploratory 

moderated mediation result was broadly consistent with a systems consolidation view as 

well, suggesting a role for the hippocampus in moderating the indirect effects of 

amygdala-visuosensory RSFC on negative memory bias through retrieval activity. While 

exploratory, these results may help to guide further research that can settle recent debates 

about the role of amygdala-hippocampal interactions in emotional memory (e.g., Inman 

et al., 2018; Yonelinas and Ritchey, 2015). 

 

Modulatory role of the amygdala 

Our study provides new evidence in humans that in the minutes following an 

emotional experience, long-term behavioral emotional memory outcomes are influenced 
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by increases in post-encoding amygdala coupling with neocortical regions, and the 

regions of interaction determine the dominant valence to-be remembered later. The 

present findings are broadly consistent with the modulation hypothesis of amygdala 

function and are also aligned with Müller and Pilzecker’s perseveration-consolidation 

hypothesis (1900), which proposed that neural activity can continue for hours after initial 

learning, suggesting a role of the amygdala after encoding (McGaugh, 2005). Pelletier 

and colleagues (2005) suggest “that the memory-modulating role of the BLA would not 

depend on the specific activation of particular groups of BLA neurons, but on the activity 

patterns taking place in BLA projection sites when the emotional arousal occurred”. Yet 

the present results also provide intriguing evidence that, while emotional arousal 

undoubtedly enhances amygdala activation and engagement with distant brain regions, 

the target sites of those interactions may depend on valence (Tye, 2018).  

  

Limitations and future work 

There are a few limitations and important next steps in this research. Although 

these data are consistent with memory consolidation theories and could reflect early 

consolidation processes, future work is needed to confirm that RSFC changes reflect 

‘offline’ memory consolidation processes. Future work is needed to formally test in a 

within-subjects design if the link between post-encoding amygdala RSFC and valence-

specific memory biases require a long period of consolidation to be observed. Although 

RSFC studies provide an important window into memory consolidation, it is challenging 

to separate off-line consolidation effects from those elicited by participants’ thoughts or 



  
 

82	

rehearsals following encoding. For instance, it is possible that the amygdala-frontal 

RSFC connectivity increase corresponds with positive memory biases not because of 

changes to intrinsic network connectivity but because those participants who employ an 

active emotion regulation strategy post-encoding end up remembering more of the good 

than the bad. Future work is needed to adjudicate between consolidation and other 

rehearsal or regulatory accounts of these data. Notwithstanding, the current results 

provide the first evidence that amygdala-visuosensory coupling following an event 

predicts negative memory bias and further highlights the need for valence-based accounts 

of emotional memory. 

More generally, it will be important for future research to examine whether the 

pattern of results revealed here requires a longer delay.  If these results reflect systems 

consolidation, then the link between emotional memory bias and post-encoding 

amygdala-neocortical interactions might depend on a lengthy study-test delay. In the fear 

conditioning literature, it is broadly accepted that long-term systems consolidation 

memory is assessed over days and weeks rather than minutes or hours (Dudai et al., 2015; 

Nader, 2003), yet shorter delays are common when assessing episodic emotional 

memory. Future episodic emotional memory work could consider that same-day testing 

might not be ideal for examining how “long-term” emotional episodic memory effects are 

instantiated in neocortical areas.  

Another direction for future research will be to clarify which aspects of memory 

are enhanced via these interactions with the amygdala. Recent work has emphasized 

differences in the effects of negative valence on subjective memory vividness, the 
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precision of visual feature encoding, and the precision of visual retrieval (Cooper et al., in 

press). Future work can test if post-encoding MTL-visuosensory interactions bear 

influence not only on memory discrimination, as revealed here, but also on memory 

measures such as visual specificity (Kensinger and Schacter, 2007; Leal et al., 2014), 

continuous color (Richter et al., 2016) or salience judgements (Cooper et al., in press), 

that might underlie differences between negative and positive memories. 

While the present work lays a preliminary foundation to explain variability in 

emotional memory biases, none of the participants in the present study reported a history 

of affective disorders, so it will be important to decipher if these basic valence-specific 

memory mechanisms map onto the exaggerated negative memory biases observed in 

psychopathology (Haas and Canli, 2008) or to the positive memory biases in aging that 

rely more heavily on prefrontal and cingulate engagement (Kensinger and Schacter, 

2008), each of which can be maintained over many months.  

 

Conclusions 

 The current study is the first to demonstrate that post-encoding amygdala RSFC 

patterns are linked with behavioral measures of valence-specific emotional memory 

biases. The dominant valence remembered by an individual depends on the regions 

showing the strongest RSFC with the amygdala post-encoding, with posterior 

visuosensory and frontal connectivity differentially supporting negative and positive 

memory biases, respectively. We circumvented and controlled for stimulus-bound 

differences, reducing the likelihood that these valence effects would be driven by low-
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level visual differences or greater subjective feelings of arousal for negative images. 

These findings suggest valence-specific effects occur outside the context of encoding and 

retrieval tasks during ‘offline’ periods following encoding—possibly contributing to 

early consolidation processes. These data support a new valence-based account of 

emotional memory enhancement (Bowen et al., 2018) and provide evidence for valence-

specific differences in amygdala connectivity that give rise to remembering more of the 

bad than the good. 
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3.1 ABSTRACT 

Emotional memories tend to be re-experienced with a stronger sense of subjective 

vividness, compared to neutral memories. Even false emotional memories, those not 

linked to a specific, genuine experience, can be associated with this same rich sense of 

vividness. Indeed, behavioral studies tend to find that emotional true and false memories 

are largely indistinguishable. Neuroimaging work has shown that successful (i.e., true) 

retrieval of negative memories is associated with retrieval-related activation in the ventral 

visual stream. However, it remains unknown if activation in these regions 1) bears a 

valence-specific influence on the vividness of these true memories and 2) is uniquely tied 

to veridical memory or also drives illusory negative memories. To address these 

questions, we used fMRI to investigate the effects of valence (negative, neutral, positive) 

on the regions that tracked with true and false memory vividness. Twenty-nine 

participants incidentally encoded line-drawings of emotional and neutral images, each 

followed by the full colorful version of the image. Twenty-four hours later, participants 

underwent a surprise recognition memory fMRI scan in which all of the old line-

drawings were presented inter-mixed with an equal number of new line-drawings. For 

each line-drawing, participants were asked to rate if it was Old or New and also rate 

memory vividness on a 1-4 scale. We used parametric modulation analysis to investigate 

the parametric effect of vividness as a function of memory accuracy and valence. We 

replicated prior work showing parametric effects of vividness in the hippocampus, 

inferior parietal lobule, prefrontal cortex, and retrosplenial cortex/precuneus, regardless 

of valence, and early visual cortex (V1) distinguished true from false vividness for 
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neutral memories. Negative memories showed a valence-specific effect of vividness in 

the occipito-temporal cortex, including the inferior temporal gyrus and parahippocampal 

cortex. Parahippocampal cortex activation was linked with both true and false vividness 

for negative memories. There were no regions that showed a greater parametric effect of 

vividness for false memories greater than true memories. The current findings 

demonstrate that activation in ventral visual regions relates to negative memory vividness 

and does so for both true and false memories; indeed, the neural processes that tracked 

with memory vividness were largely indistinguishable for true and false memories.  
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3.2 INTRODUCTION 

The word vividness stems from the Latin root viv, meaning “spirited, animated, alive”. 

When a memory springs to mind, it is the rich sense of vividness that allows us to ‘re-

experience’ past events in the present moment. Recent work has shown that the level of 

activation in regions associated with visual processing and visual imagery is positively 

correlated with this subjective sense of memory vividness (e.g., early visual cortex, 

ventral visual regions, precuneus/retrosplenial cortex; Buchsbaum et al., 2012; Richter et 

al., 2016; St-Laurent et al., 2015). However, memory is a reconstructive process that is 

prone to errors and distortions (Schacter, 1999) and a strong sense of vividness can also 

accompany false memories (Dodson et al., 2007; Kahn et al., 2004; Neisser and Harsch, 

1992), which occur when a person falsely endorses an event or stimulus that is not rooted 

in an authentic prior experience. False eye-witness testimony in criminal cases—which 

are often emotionally negative by nature—can be delivered with high confidence (Loftus, 

1979; Semmler et al., 2004; Wells and Olson, 2003) and a strong sense of emotion 

(Laney and Loftus, 2008), which can result in faulty testimony, false accusations, and 

wrongful convictions (Kaplan et al., 2016). Negative valence has been associated with an 

increased rate of false memories, compared to positive and neutral memories (Knott et 

al., 2018; Porter et al., 2003), an effect that is amplified in patients with a history of 

trauma exposure, post-traumatic stress disorder, and depression (Otgaar et al., 2017) and 

in aging (Gallo et al., 2009). If on the surface the subjective experience of an emotional 

memory can be the same but the authenticity of the memory can vary, what neural 
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processes differentiate true from false emotional memories? Are there shared neural 

processes that support emotional memory vividness regardless of memory authenticity? 

While it is well-established that emotional memories are re-experienced with a strong 

sense of memory vividness (Phelps and Sharot, 2008), to our knowledge there is no prior 

functional magnetic resonance imaging (fMRI) work available examining the neural 

effects of emotional valence on true and false subjective memory vividness. In the 

laboratory, behavioral work examining the effect of emotion on false memory is typically 

investigated by assessing or manipulating mood or emotional state (e.g., Forgas et al., 

2005; Mirandola and Toffalini, 2016; Zhang et al., 2018), implanting emotional false 

memories (Laney and Loftus, 2008), or utilizing stimuli that are inherently emotional 

(e.g., words lists, pictures) to elicit false memories (e.g., modified versions of the Deese-

Roediger-McDermott [DRM] paradigm, Deese, 1959; Roediger and McDermott, 1995). 

Paradoxically, these studies suggest that while negative and positive mood states can 

protect against false memory, negative content tends to elicit more false memories than 

neutral or positive content (Bookbinder and Brainerd, 2016), which recent work suggests 

might be driven by automatic neural processing for negative stimuli (Knott et al., 2018). 

Examining the neural correlates of true and false memory vividness as function of 

emotional valence will increase both the understanding the emotional modulation of 

accurate reconstruction of vivid veridical memories as well as the signals that give rise or 

reflect a sense of memory for something that never happened. 
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Successful negative memory retrieval 

Recent work from four separate studies has shown that successful retrieval of negative 

memories, compared to positive memories, is associated with greater retrieval-related 

reactivation in ventral visual processing regions (Bowen and Kensinger, 2017; Kark and 

Kensinger, 2015, in press; Loos et al., 2019). Recent work also suggests individuals with 

greater reactivation in visual cortex during retrieval exhibit a more pronounced negative 

memory bias (i.e., better memory for negative items compared to positive items, Kark 

and Kensinger, in press), highlighting the effect of these sensory areas on behavioral 

differences at the moment of retrieval. While negative and positive memories can both 

have an arousal-related boost in subjective vividness, we have posited that the brain 

regions that support negative memory formation and retrieval are often valence-specific 

(i.e., the 'NEVER' model, Bowen et al., 2018). More specifically, we have proposed that 

negative valence enhances engagement of sensory-specific processes during encoding 

and recapitulation of these processes during retrieval. For positive memories, previous 

work suggests valence-specific prefrontal cortex enhancements (Kark and Kensinger, in 

press; Mickley Steinmetz et al., 2010) and little or no retrieval-related recapitulation in 

visual regions (Bowen and Kensinger, 2017; Kark and Kensinger, 2015, in press). 

However, these studies, like other investigations of emotional memory, examined the 

neural processes that led to the successful formation and successful retrieval of emotional 

memories (i.e., remembered compared to forgotten), and not necessarily activity linked 

with the degree of subjective memory vividness or strength. During encoding, subsequent 

recollection of negative stimuli, compared to positive stimuli, has been specifically 
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associated with activation of the inferior temporal gyrus and parahippocampal cortex 

(Mickley and Kensinger, 2008). The results of another study examining emotional source 

recollection, compared to familiarity, reported enhanced retrieval-related recapitulation in 

ventral visual regions for negative stimuli, compared to positive stimuli, suggesting 

negative valence enhances the vividness and detail of negative memories (Bowen and 

Kensinger, 2017). If these valence-specific processes are indeed linked to memory 

vividness in valence-specific ways, then there should be a stronger link between visual 

processing region activity and memory vividness for negative memories compared to 

positive memories. The existing literature cannot adequately address this possibility, 

because most studies of emotional memory that have examined the neural correlates of 

memory strength have either not included positive stimuli or have allowed large 

differences between the negative and positive stimuli on the dimension of arousal.  

 

Overlapping behavioral and neural characteristics of true and false memories. 

One challenge of distinguishing true from false memories is that these two forms of 

memory share overlapping behavioral and neural characteristics. Behavioral research 

suggests that classifying the authenticity of a memory based on subjective recollective 

experience alone is nearly impossible (Heaps and Nash, 2001, p. 921). For instance, both 

forms of memory have been associated with high levels of reported confidence (Loftus 

and Pickrell, 1995) and retrieval of item-specific details (Geraci and McCabe, 2006). 

Prior work has shown that, on average, confidence levels, sensory detail, and emotional 

intensity to a true negative memory can be greater than an implanted negative false 
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memory (Laney and Loftus, 2008). However, these recollective characteristics were not 

unique to true negative memories, as a majority of negative false memories were rated as 

extremely vivid, emotional, and were accompanied with rich sensory imagery (Laney and 

Loftus, 2008), a finding that has since been extended to strong sense of false memory for 

committing a crime (Shaw and Porter, 2015). Psychophysiological (e.g., skin 

conductance) data also suggests that emotion responsivity profiles cannot reliably 

distinguish true from false emotional memories (McNally et al., 2004). 

Electrophysiological data have also shown that negative false memories, like true 

memories, are associated with recollection-related event-related potentials (Zheng et al., 

2018). These findings suggest that, although less frequent in their occurrence, negative 

false memories can look and feel like negative true memories, a finding that is 

particularly worrisome in the legal setting where jurors can conflate eyewitness 

confidence or sincere emotion with accuracy (Lacy and Stark, 2013).  

 

Neuroimaging of true and false memories  

Given the behavioral and psychophysiological overlap between true and false memories, 

neuroimaging has proven useful to investigate the relation between memory and reality 

by examining their neural similarities and differences (Garoff-Eaton et al., 2006; Kurkela 

and Dennis, 2016). However, in addition to the often-indistinguishable subjective reports 

of true and false memories, neuroimaging studies of true and false memory often report 

considerable neural overlap for true and false memories, and very sparse activity, if any, 

that is greater for false memories compared to that of true memories (for a review see 
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Kurkela and Dennis, 2016). Specifically, neural overlap is often observed in higher-order 

visual processing regions, the medial temporal lobes, and top-down control processes of 

the prefrontal and parietal cortices, with some mixed evidence regarding the extent to 

which activation levels in each of these regions distinguish true from false memory 

(Kurkela and Dennis, 2016). Similar levels of engagement in these regions during high-

confidence false recollection is thought to reflect content borrowing, a faulty 

reconstruction of studied items that are misattributed to a lure item during recognition 

(Dennis et al., 2012; Lampinen et al., 2005). Together, these findings suggest false 

memories do not necessarily emanate from outside of typical memory regions, but often 

activate many of the same brain regions that support true memory—although it is 

important to acknowledge that the function of that activation might differ between the 

two forms of memory (e.g., reactivation of true memory representations as compared to 

content borrowing in the case of false memory).  

While there is considerable overlap in the neural processes supporting true and 

false memory, behavioral work has shown that true memories on average are more 

sensory-oriented, as evidenced by a greater number of subjective sensory details (Johnson 

and Raye, 1981; Norman and Schacter, 1997). Previous neuroimaging work suggests 

inferior-superior network differences and bottom-up/top-down distinctions in the brain 

between true and false memories: True memories are more automatic recapitulations with 

associated modality-specific sensory signals (inferior and bottom-up processes) while 

false memories involve more controlled cognitive processes (superior and top-down 

processes; see Dennis et al., 2012). Correspondingly, multiple fMRI studies have found 
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that sensory reactivation of the early visual cortex distinguishes true from false visual 

memories (Slotnick and Schacter, 2004; Ye et al., 2016), but this true from false memory 

distinction diminishes in more anterior portions of the ventral visual stream associated 

with higher-order visual processing (but see Kurkela and Dennis, 2016), such as occipito-

temporal cortex (Dennis et al., 2012; Slotnick and Schacter, 2004) and the 

parahippocampal cortex (Karanian and Slotnick, 2017).  

True and false memory effects in the parahippocampal cortex have been mixed, 

with some studies showing greater activity for true compared to false memories for 

neutral stimuli (Cabeza et al., 2001; Cabeza and St Jacques, 2007; Iidaka et al., 2012; 

Slotnick and Schacter, 2004; Turney and Dennis, 2017) and other studies suggesting 

similar levels of engagement regardless of memory accuracy (Karanian and Slotnick, 

2014, 2017; Stark et al., 2010; Ye et al., 2016). Based on prior work showing enhanced 

visual processing region engagement in support of negative memory encoding and 

retrieval, including the parahippocampal cortex (Kark and Kensinger, 2015, in press), it is 

reasonable to predict that negative valence enhances the link between the level of 

activation at retrieval and subjective memory strength to a greater extent than positive 

valence. What is unclear is whether this negative valence enhancement of visual 

processing regions would be specific to true negative memories—conferring a kind of 

accuracy protection—or if signals emanating from these areas also drive or reflect a false 

sense of vividness for negative stimuli. That is, do negative true and false memories 

activate similar areas of the brain? 



  
 

103	

Assessments of emotional memory have typically examined the effects of valence while 

holding memory constant (i.e., only examining valence differences within remembered 

items) or examined success (i.e., hits compared to misses) and did not have a sufficient 

number of false alarm trials for analysis of accuracy. Here, we deciphered the processes 

that were important for successful and accurate emotional memory vividness from those 

that extended to vividness for illusory emotional memories. 

 

Current study 

In the present study, we investigated the effects of emotional valence on the neural 

processes that support true and false memory vividness. We used a challenging long-term 

emotional recognition memory paradigm, which allowed us to elicit a sufficient number 

of trials for parametric modulation analysis of trial-level vividness ratings. We 

hypothesized that while positive and negative memories can be remembered with similar 

levels of vividness, the brain regions supporting vividness would be valence-specific (i.e., 

linked to visual processing-related activation for negative memories and to frontal 

activation for positive memories). Participants incidentally encoded scenes (negative, 

neutral, and positive) that were each preceded by a line-drawing sketch of the scene. 

Twenty-hours later, participants were scanned during a surprise recognition memory task 

in which all of the old line-drawing sketches and an equal number of new line-drawing 

sketches were presented for a memory and vividness judgment. We begin with a 

replication of prior work by examining true and false memory vividness, regardless of 

valence, here extending those findings to a study-test delay of 24 hours. We then present 
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findings demonstrating a valence-specific effect of vividness in the ventral visual stream 

for negative memories, compared to positive memories. Finally, we present evidence that 

negative true and false memory vividness is positively correlated with activation levels in 

many of the same brain regions, but exploratory analyses suggested functional 

connectivity patterns may distinguish true from false memory vividness patterns. 

3.3 METHODS 

Participants.  

Thirty-three participants were recruited as a control group as part of a larger study 

examining the effects of pre-encoding stress and sleep on the neural correlates of 

emotional memory (Kark and Kensinger, in press). The control participants included in 

the present analyses did not undergo the stress manipulation prior to encoding. 

Participants were healthy, right-handed young adult native speakers of English with 

normal or corrected-to-normal vision. Participants were not taking medications that could 

affect the central nervous system and reported no history of psychiatric or neurological 

problems, learning disorders, or head injury. All participants were screened for contra-

indicators for safety in the MRI environment. This study was approved by the 

Institutional Review Board of Boston College and informed consent of study procedures 
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was obtained from all participants. Participants underwent MRI scanning at the Harvard 

Center for Brain Science (CBS) and were compensated $25/hour for their participation. 

From the thirty-three control participants recruited, three participants were 

excluded from consideration for the fMRI analyses: one participant was excluded from 

analysis due to a structural anomaly (female, 23), one participant was excluded from 

analysis due to chance-level memory performance (a d’ value below zero; male, 25), and 

one participant exhibited excessive motion requiring removal of half of their retrieval 

scans (male, 24). One additional participant (male, 24) did not have enough trials per 

response type to be included in the fMRI parametric analysis of true memory vividness 

(see Inclusion in fMRI Analyses). In total, twenty-nine participants (15 females) aged 18-

29 (M = 22.03, SD = 2.77) were included in the true memory vividness analysis. Of the 

twenty-nine participants, nineteen participants (10 females) had a sufficient number of 

false memory responses by valence and vividness level to be included in the whole-brain 

parametric analysis of the effects of valence on false memories (see Inclusion in fMRI 

Analyses). 

 

Stimuli.  

The incidental encoding stimuli were 300 images of scenes (100 negative, 100 neutral, 

and 100 positive) selected from the International Affective Picture System (IAPS; Lang 

et al., 2008). The line-drawing sketches of these IAPS images were created using an in-

house MATLAB script (The MathWorks, Natick, MA) and Adobe Photoshop (San Jose, 

CA). The negative images were pre-selected to be more arousing (Mneg = 5.54, Mneut = 
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3.25, t(198) = 23.95, p < 0.001, independent samples t-test) and of greater absolute 

valence than the neutral images (Mneg = 2.05, Mneut = 0.42, t(198) = 19.27, p < 0.001, 

independent samples t-test). The positive images were similarly pre-selected to be more 

arousing (Mpos = 5.43, t(198) = 22.97, p < 0.001, independent samples t-test) and of 

greater absolute valence (Mpos = 2.07, t(198) = 25.00, p < 0.001, independent samples t-

test) than the neutral images. Critically, in order to make direct valence comparisons the 

negative and positive IAPS images were pre-selected to be equally arousing (t(198) = 

1.32, p = 0.19, independent samples t-test) and of similar absolute valence (t(198) = 0.25, 

p = 0.80, independent samples t-test).  

 

Task procedures.  

Following screening and informed consent procedures, participants completed an 

incidental encoding task while undergoing fMRI scanning. During the encoding task, 

participants were shown line-drawings of IAPS images (1.5s), followed by the full 

colorful IAPS image (3s). To ensure participants were actively engaging with the 

encoding stimuli, they were asked to indicate whether they would ‘Approach’ or ‘Back 

Away’ from each of the scenes depicted in the IAPS images.  

Twenty-four hours later, participants returned for a scanned surprise recognition 

memory test. Participants were shown all of the old line-drawings seen the day before, 

intermixed with an equal number of new line-drawings they had not seen previously. For 

each line-drawing, participants were given 3s to make a one-step Old/New and vividness 

rating (0 = “New”, 1 = “Old, Not Vivid”, 2 = “Old, Somewhat vivid”, 3 = “Old, Vivid”, 4 
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= “Old, Extremely Vivid”).  Participants were instructed that “vividness ratings can be 

based on how vividly you remember the visual details in the photo and/or how vividly 

you remember your reaction or thoughts about the photo.” Before the recognition task 

began, participants were also told that, since half of the images were previously studied 

and half were not, they should be pressing the “0” key to indicate that items were “New” 

about half of the time. There were two study lists that varied across participants and the 

new line-drawings seen at test were always from the unstudied list of IAPS images. 

Participants completed brief practice versions of the encoding and recognition tasks on 

day 1 and day 2, respectively, before entering the scan room. They additionally were 

reminded of the instructions immediately before the scans commenced. A jittered fixation 

was presented between encoding (6-12s) and retrieval (1.5-9s) trials. After the 

recognition memory scan, participants were removed from the scanner and completed 

subjective ratings of arousal and valence of the IAPS image in a separate testing room. 

 



  
 

108	

 
Figure 1. Sample stimuli and recognition memory vividness responses. 1A) Sample line-drawings and 
their corresponding IAPS images of each valence studied during the incidental encoding task. 1B). 
Depiction of the recognition memory task with sample line-drawings. Sample responses and their 
corresponding response types and vividness levels are listed above the line-drawings, based on the study 
history listed at the bottom. 
 

 

MRI Acquisition 

All MRI images were acquired using a 32-channel head coil on a Siemens MAGNETOM 

Prisma 3T scanner. Scanning sessions began with a functional localizer and auto-align 

scout, followed by collection of whole-brain T1-weighted anatomical images 

(MEMPRAGE, 1.0mm3 isotropic voxels, 176 slices, TR = 2530 ms, FoV= 256 mm, Flip 

angle = 7 degrees, base resolution = 256). The T2-weighted EPI images functional images 

collected during the encoding and recognition tasks were acquired using Simultaneous 

Multi-Slice blood-oxygen-level dependent scan sequences (SMS-BOLD; Barth et al., 

2016). The whole-brain EPI images were collected in an interleaved fashion, with the 
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slices aligned coronally 25 degrees above the AC-PC line (69 slices, TR = 1500ms, 2.0 

mm3 isotropic voxels, TE = 28 ms, Flip angle = 75 degrees, 208 mm field of view, base 

resolution = 104, multi-band acceleration factor = 3). The SMS-BOLD scanning 

protocols were provided to Harvard CBS from provided by the Center for Magnetic 

Resonance Research at University of Minnesota (Feinberg et al., 2010; Moeller et al., 

2010; Xu et al., 2013).  

 

MRI Data Preprocessing and Motion Correction.  

Images were pre-processed and analyzed using SPM8 (Wellcome Department of 

Cognitive Neurology, London, United Kingdom) implemented in MATLAB 2014a (The 

MathWorks, Natick, MA). All functional images were reoriented, realigned, co-

registered, and spatially normalized to the Montreal Neurological Institute (MNI) 

template (re-sampled at 3 mm during segmentation and written at 2 mm during 

normalization). All functional images in both studies were smoothed using a 6 mm 

isotropic Gaussian kernel.  

Global mean intensity and motion outliers were identified using Artifact Detection Tools 

(ART) (available at www. nitrc.org/projects/artifact_detect). Global mean intensity 

outliers were defined as scans with a global mean intensity that differed by more than 3 

standard deviations from the mean. Acceptable motion parameters were set to 3 mm for 

translation and 3 degrees for rotation. Scan runs were eliminated if more than 5% of the 

timepoints showed a framewise-displacement greater than 0.5mm (Power et al., 2012) 

AND greater than 3 degree rotation/3 mm of movement. Seven motion regressors 
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(framewise displacement, x, y, z, roll, pitch, yaw) were included at the fixed effects level 

to regress out motion effects. As mentioned previously, one participant was removed 

from analysis because 3 of the 6 retrieval runs showed excessive motion based on these 

thresholds (male, 24). In total, five participants (2 females) had one scan run each that 

needed to be removed due to excessive motion 

 

Inclusion in fMRI Analyses 

To be included in the whole-brain parametric fMRI analyses participants were required to 

have: 1) A sufficient number of trials per response type (≥10 hits, false alarms for each 

type of valence), 2) Used at least 3 of the 4 vividness levels per response type (i.e., 

excluded if only used two or fewer of the four vividness levels for a given response type), 

and 3) At least 5 trials per response type were at least "somewhat vivid" (a rating of 2 or 

higher). The third criterion was implemented to reduce false positives and ensure that the 

parameter estimate of the slope for a given participant would not be disproportionately 

estimated from "not vivid" false memories, for example, sixteen trials of Not Vivid false 

alarms (“1” responses) and only one Moderately Vivid false alarm (“3” response) and 

one Highly Vivid false alarm (“4”). Of the twenty-nine participants included in the true 

memory vividness analysis, four participants did not meet Criterion 2 (3 females), five 

did not meet Criterion 3, and one met neither Criterion 2 nor 3 (1 female). Three of the 

ten participants excluded also did not meet Criterion 1. Therefore, nineteen participants 

were included in the final sample for the whole-brain parametric modulation analysis that 

examined false memory vividness by valence. To ensure the core false memory vividness 
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findings are robust to sampling differences, we focus our conclusions on the patterns that 

hold when Criterion 3 was dropped for false memory analyses (increasing the sample to 

n=24). To provide data transparency, we plotted the data from the five participants that 

did not meet Criterion 3 using open circles in the figure call-out plots.  

 

Fixed-effects fMRI models 

Fixed-effects general linear models were created for each participant that modelled hits 

and false alarms by valence with reactions times and vividness ratings entered as 

parametric modulators. Vividness ratings were entered as the second parametric 

modulator, with reaction times entered first, to be able to examine for positive relations 

between brain activity and subjective vividness while controlling for neural differences 

related to reaction time. Misses and correct rejections were collapsed across valence and 

modelled as two separate regressors. To mitigate any effects of visual complexity on the 

neural correlates of subjective memory vividness, an additional nuisance regressor that 

included an edge density metric (proportion of black pixels to total image pixels) for each 

of the line-drawing epochs was added to the vividness retrieval models. Finally, for all 

fixed-effects models, each participant’s seven motion parameters (framewise 

displacement, x, y, z, pitch, roll, yaw) were added as nuisance regressors to mitigate the 

effects of motion on the effects of interest. Additional follow-up models were run that 

included a regressor for item-level post-scan ratings of subjective arousal. We focus our 

conclusions and discussion on the regions that remained significant when controlling for 

item-level arousal.  
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For all participants, at least five fixed-effects contrasts were saved to be entered 

into one sample t-tests at the random-effects level: Negative Hits Vividness > zero 

(Parametric Negative), Neutral Hits Vividness > zero (Parametric Neutral), and Positive 

Hits Vividness > zero (Parametric Positive), Negative Hits Vividness > Positive Hits 

Vividness (Parametric Negative Valence-Specific), and Positive Hits Vividness > 

Negative Hits Vividness (Parametric Positive Valence-Specific). For the nineteen 

participants with sufficient trials to examine the effects of valence on both true and false 

memory vividness, three additional fixed-effects contrasts examining False Memory 

Vividness for each valence (i.e., positive parametric) were created. To ensure the patterns 

reported are robust to sampling differences, the discussion will focus on areas that were 

also significant when the maps described below were inclusively masked with the 

corresponding map for the n=24 group at a reduced threshold of p<.05. These parametric 

contrasts were entered along with the True Memory Vividness parametric contrasts into a 

2 x 3 repeated-measures ANOVA with factors of memory accuracy (hits, false alarms) 

and valence (negative, neutral, positive).  

 

Random-effects fMRI analyses.  

Examining valence-invariant true memory vividness. For the twenty-nine 

participants included in the examination of the effects of valence on true memory 

vividness (i.e., only examining the hits), a conjunction analysis was used to demarcate the 

activity that tracked true memory vividness (i.e., a positive parametric effect for hits) for 
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each valence category (Parametric Negative ⋂ Parametric Neutral ⋂ Parametric 

Positive). This conjunction analysis revealed valence similarity.  

Next, we interrogated the true and false memory vividness 2 x 3 repeated-

measures ANOVA model to isolate regions that that distinguished true and false memory 

vividness. To isolate a true memory vividness effect, we conjoined the F-Contrast of the 

Main Effect of Memory (i.e., requiring that the ANOVA revealed some difference 

between true and false memory vividness) with two T-Contrasts: 1) the T-Contrast of 

True Memory Vividness > False Memory Vividness ensured that the directionality of the 

main effect was such that there was a greater correspondence to true than to false 

memory vividness, and 2) the T-Contrast of True Memory Vividness > zero further 

ensured that a difference between true and false memory vividness was not driven by a 

positive relation between activation and true memory vividness, rather than a negative 

relation between activation and false memory vividness. In order to identify True 

Memory Vividness Effects that were robust to sampling, we finally conjoined the 

resulting map with the valence similarity map from the full participant sample described 

in the paragraph above. Similarly, we conjoined the positive parametric maps for false 

memory vividness for each valence to reveal valence similarity in false memory 

vividness. To examine positive parametric effects specific to false memory vividness 

compared to true memory vividness, the F-Contrast of the Main Effect of Memory map 

was inclusively overlaid with two additional contrasts (T-Contrast of False Memory 

Vividness > zero and T-Contrast False Memory Vividness > True Memory Vividness) to 
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identify any areas with a greater effect for false memory vividness compared to true 

memory vividness. 

Effects of valence on true and false memory vividness. To reveal valence-

specific differences, two one-sample t-tests at the random-effects level examined 

Negative Valence-Specific True Vividness Effects (Negative True Vividness > Positive 

True Vividness) and Positive Valence-Specific True Vividness Effect (Positive True 

Vividness > Negative True Vividness). To be considered an effect of interest, we 

required that correlations were significantly above zero (e.g., Negative True Vividness > 

zero) and significantly different than the comparison valence (e.g., Negative True 

Vividness > Positive True Vividness).  

The approach above was used to identify regions that show a valence-specific 

effect of true memory vividness when memory was held constant, and isolates further 

effects within those clusters. We next focused exclusively on the analyses afforded by the 

random-effects 2 x 3 ANOVA model that included both true and false memory vividness 

for each valence: The ability to examine the similarities and differences of true and false 

memory vividness as a function of valence. We sought to test if vividness patterns for 

emotional false memories, and negative false memories in particular, resembled the 

patterns seen for true memories, or if there are largely separate processes in the 

generation of vivid emotional memories. First, we probed the whole-brain Memory 

Accuracy x Valence Interaction F-Contrast without any further masking, to reveal any 

areas where the patterns were specific to memory accuracy and valence levels. Next, T-

Contrasts were used to identify regions that showed greater vividness for true compared 
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to false memory vividness and false memory greater than true memory vividness within 

each valence category. These maps outlined the areas that distinguish true from false 

memory vividness. Finally, to examine spatial overlap in areas supporting both true and 

false memory for a particular valence we conjoined the statistical maps of true and false 

memory vividness within each valence category and further conjoined those maps with 

the F-Contrast for the Main Effect of Valence. Overlap with the Main Effect of Valence 

would suggest a given pattern for true memory vividness also extends to false memory 

vividness for a given valence, whereas overlap with the map of the Interaction effects 

would imply the differences between negative and positive memory vividness vary as a 

function of memory accuracy. Follow-up analyses outside of SPM8 were conducted on 

regions of interest in visual processing regions and medial temporal lobe areas. 

 

Visualization and Follow-Up Analyses 

All whole-brain maps were thresholded at p<0.005 (uncorrected) and, to avoid false 

negatives in reporting, all clusters with 10 or more contiguous voxels are reported. Ten 

thousand Monte Carlo Simulations (https://www2.bc.edu/sd-slotnick/scripts.htm) were 

conducted based on the acquisition volume, individual voxel threshold, and a computed 

null contrast spatial autocorrelation value of 7mm (Slotnick, 2017). This yielded a cluster 

extent threshold of 40 voxels for the parametric modulation analyses, which was 

corrected for multiple comparisons to p<0.05. As such, we focus our discussion on the 

cortical activations with a cluster extent of at least 40 voxels. Given the relatively 

circumscribed area of the medial temporal lobe and our a priori hypotheses, we relaxed 
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the emphasis on the voxel extent threshold for medial temporal lobe regions. The 

rendering of the statistical maps for the current figures created using MRIcroGL 

(https://www.mccauslandcenter.sc.edu/mricrogl/home) and MRICRON 

(https://www.nitrc.org/projects/mricron). For follow-up region of interest statistics, 

parameter estimates of the slopes were extracted from each participant’s fixed-effects 

model using REX (http://web.mit.edu/swg/software.htm). SPM8 coordinates reported in 

Montreal Neurological Institute (MNI) space were converted to Talairach space (TAL) 

space using GingerALE Version 2.3.6 (http://www.brainmap.org/ale/). Coordinates for 

regions of the brain stem are not reported, given the limited resolution (2mm3) of the 

brain images for localizing this structure. 

3.4 RESULTS 

Behavioral Results.  

There was no significant difference in memory performance, d‘ = z(HitRate) – 

z(FalseAlarmRate), between negative and neutral stimuli (t(27) = 1.24, p = 0.23), 

negative and positive stimuli (t(27) = 0.13, p = 0.90), or positive and neutral stimuli 

(t(27) = 0.85, p = 0.40). For vividness ratings, a repeated-measures 2 x 3 ANOVA with 

memory accuracy (hits, false alarms) and valence (negative, neutral, positive) as factors 

revealed main effects of memory accuracy F(1, 27) = 200.33, p<0.001, ηp2 = 0.88, with 

greater vividness for hits (M = 2.69, SE = 0.10) than false alarms (M = 1.9, SE = 0.09), 

and of valence F(2, 54) = 15.41, p<0.001, ηp2 = 0.36, with higher vividness for positive 
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(M = 2.43, SE = 0.09) relative to negative (M = 2.26, SE=0.10) or neutral (M = 2.21, SE = 

0.09) stimuli.  

 

Neural correlates of valence-invariant true memory vividness.  

We first examined the effects of true memory vividness that were common to all three of 

the valence categories. The valence similarity map (Parametric Negative ⋂ Parametric 

Neutral ⋂ Parametric Positive Vividness) returned widespread effects throughout regions 

previously associated with strong recollective memory, including the hippocampus, 

retrosplenial cortex/precuneus, posterior cingulate, and inferior parietal areas including 

the angular and supramarginal gyri (see Table 1 and activity shown in blue in Figure 2). 

We additionally found activation in bilateral orbital frontal cortex, medial and lateral 

prefrontal cortex, and the middle and inferior temporal gyri. Several of these clusters—

namely the right inferior frontal gyrus and the left inferior parietal lobule—also showed a 

main effect of memory accuracy, with a significantly greater link between activity and 

vividness for true memories compared to false memories (see regions denoted with 

asterisks in Table 1 and activity shown in cyan in Figure 2). 

We conducted follow-up analyses within a priori regions of interest within the 

hippocampus and retrosplenial cortex/precuneus—regions susceptible to emotional 

modulation and have been associated with memory vividness (Todd et al., 2013) and 

visual imagery and scene reconstruction (Maddock, 1999), respectively—to examine the 

effects of memory accuracy and valence. Analysis of both regions revealed only a main 

effect of memory accuracy (greater links to true than false memory vividness, for 
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hippocampus: F(1,18) = 5.35, p = 0.03, ηp2 = 0.23; for retrosplenial/precuneus: F(1,18) = 

6.12, p = 0.02, ηp2 = 0.25) and no main effect of valence (hippocampus: F(2, 36) = 0.46, 

p = 0.64, ηp2 =0.03; retrosplenial/precuneus: F(2, 36) = 1.14, p = 0.33, ηp2 = 0.06) or 

memory accuracy-by-valence interaction (hippocampus: F(2, 36) = 0.29, p = 0.75, ηp2 = 

0.02; retrosplenial/precuneus: F(2, 36) = 1.23, p = 0.31, ηp2 = 0.06). 
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Figure 2. Valence-invariant effects of memory vividness. Top. Many regions (blue) showed a positive 
parametric relation with vividness for negative, neutral, and positive stimuli (n=29). A subset of these 
regions (cyan) showed a stronger relation to vividness for true memories than false memories (n=19 
sample). Bottom. The call-out bar graphs show the average and individual parameter estimates of the 
slopes between activity and vividness rating by valence and memory accuracy for the participants with an 
ample number of false alarm trials extracted a priori regions of interest (hippocampus and retrosplenial 
cortex [see black arrow on sagittal slice]). The open circles represent individual data points for the five 
participants that were excluded from the analysis of true and false memory by valence for not having an 
ample number of high vividness trials and possibly noisier estimates of the slope. *p < 0.05, **p < .025. 
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Table 1. Regions that showed a significant positive parametric relation of true memory vividness (hits 
only, n=29) across all valences. Regions that showed a main effect of memory are denoted with 
superscripted symbols (see legend). 

Lobe Region Hem BA MNI TAL k 

Frontal Dorsal medial prefrontal cortex L 8 0,28,50 -2,20,51 268 

Frontal 

Inferior frontal gyrus, middle 
frontal gyrus, orbital frontal 
cortex* L 

10, 46, 
47 -42,42,-2 -40,38,5 865 

Frontal 
Inferior frontal gyrus, middle 
frontal gyrus L 6, 8, 9 -42,14,36 -40,8,37 142 

Frontal 
Inferior frontal gyrus, orbital 
frontal cortex**, insula R 

11, 13, 
47 28,14,-18 25,13,-10 85 

Frontal Inferior frontal gyrus R 47 46,26,-8 42,23,0 26 

Frontal Inferior frontal gyrus L 45 -50,26,14 -47,21,18 11 

Frontal Inferior frontal gyrus R 47 38,24,-20 34,22,-11 10 

Frontal Superior frontal gyrus L 8 -28,20,48 -27,13,48 18 

Parietal 
Retrosplenial cortex, precuneus, 
posterior cingulate^  L 7, 29, 30 -8,-56,12 -9,-55,10 121 

Parietal 

Superior lateral occipital cortex, 
supramarginal gyrus, angular 
gyrus** L 

19, 39, 
40 -38,-70,32 -37,-70,26 1252 

Parietal 
Post-central gyrus, pre-central 
gyrus L 1, 2, 3 -40,-26,56 -39,-31,51 94 

Parietal 
Angular gyrus, superior 
occipital gyrus R 19, 39 48,-60,26 43,-60,23 16 

Temporal Hippocampus^ L 35 -26,-22,-18 -25,-21,-14 33 

Temporal 
Middle and inferior temporal 
gyri* L 

20, 21, 
37 -58,-52,-4 -55,-50,-5 528 

Other Anterior cingulate* L 24 2,2,30 0,-3,31 49 

Other Caudate body L NA -10,8,12 -10,5,15 60 

Other Posterior cingulate L 31 -2,-30,38 -3,-33,35 185 

Other Thalamus L NA 0,-18,4 -1,-19,6 10 
BA=Brodmann area, Hem=Hemisphere, k=voxel extent, MNI=Montreal Neurological Institute coordinate 
system, TAL=Talairach & Tournoux coordinate space. 
*Cluster also shows a significant whole-brain main effect of memory (*k≥10, **k≥40 threshold from 
simulations) in the analysis of a subset of participants (n=19) with a sufficient number of false alarm trials 
(shown in cyan in Figure 2). ^Significant main effect of memory in a follow-up 2 x 3 ANOVA outside of 
SPM8 for plotting region of interest call-out plots in Figure 2 (bottom). 
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Valence-specific effects of true memory vividness. We next examined valence-specific 

effects, comparing negative to positive valence. 

 Negative-valence specific effects. Consistent with our hypothesis, activation in 

ventral visual regions tracked more strongly with negative memory vividness than 

positive memory vividness: The whole-brain comparison of Negative True Vividness > 

Positive True Vividness (inclusively masked with Negative True Vividness > zero) 

defined an area of occipito-temporal cortex that included the inferior and middle temporal 

gyri, the left parahippocampal cortex, and the left superior occipital gyrus (see Table 2 

and activity shown in red in Figure 3). The left occipito-temporal cortex area—a cluster 

largely posterior to the effects observed across valences in Figure 2A—directly 

overlapped with clusters that have previously shown encoding-to-retrieval overlap for 

negative memories across two studies (Kark & Kensinger, 2015; Kark & Kensinger, in 

press). The middle frontal gyrus, precuneus, and superior and inferior parietal lobule also 

showed this valence-specific pattern (see Table 2). All of these regions continued to show 

this valence-specific effect at the group level when the fixed-effects models included a 

trial-level regressor of participant’s post-scan arousal ratings of the IAPS images. 

Critically, further evidence that these results were driven by valence rather than arousal 

came from follow-up analyses, revealing that the parametric relation tracked with 

valence, with the parameter estimate of the slope for neutral stimuli falling nominally 

between that of negative and positive stimuli (see plots in Figure 3, bottom). 

Positive-valence specific effects. The Positive True Vividness > Negative True 

Vividness contrast outlined several clusters that spanned precentral gyrus and superior 
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frontal gyrus as well as the superior parietal and paracentral lobules (see Table 2 and 

activity shown in cyan in Figure 3), even when item-level arousal was controlled for in 

the fixed-effects models.  

 
Figure 3. Effects of valence on true memory vividness. Top. Valence-specific true memory vividness 
comparisons were observed for true memory vividness (shown in red) and positive memory vividness 
(shown in cyan). Bottom. The call-out bar graphs show the average and individual parameter estimates of 
the slopes between activity and vividness rating by valence and memory accuracy for the participants with 
an ample number of false alarm trials for a priori regions of interest in the ventral visual stream. The open 
circles represent individual data points for the five participants that were excluded from the analysis of true 
and false memory by valence for not having an ample number of high vividness trials and possibly noisier 
estimates of the slope. Follow-up repeated measures ANOVA results are displayed. *p < .05, **p < .025, 
***p < .01. 
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Table 2. Valence-specific effects of true memory vividness (hits only, n=29). 

Lobe Region Hem BA MNI TAL k 

Negative True Vividness > Positive True Vividness 

Temporal 
Inferior temporal gyrus (occipito-
temporal), middle temporal gyrus^ L 21, 37 -52,-56,-18 -49,-52,-18 226 

Temporal Parahippocampal cortex^ L 36 -38,-22,-18 -36,-21,-14 51 

Occipital Superior occipital gyrus L 19 -34,-80,26 -33,-78,20 22 

Frontal Middle frontal gyrus L 9 -52,14,38 -50,8,38 39 

Frontal Middle frontal gyrus R 9 56,30,28 51,23,33 21 

Frontal Middle frontal gyrus R 6 38,10,32 34,5,34 115 

Parietal Inferior parietal lobule, precuneus L 7, 40 -28,-60,28 -27,-60,23 262 

Parietal Precuneus L 7 -22,-72,52 -22,-73,44 17 

Parietal Superior parietal lobule R 7 30,-68,46 26,-69,40 51 

Other Cerebellum L N/A -52,-64,-42 -49,-57,-40 19 

Other Cerebellum L N/A -10,-76,-28 -10,-70,-28 48 

 

Positive True Vividness > Negative True Vividness 

Frontal Paracentral lobule R 6 12,-20,54 9,-25,51 31 

Frontal Precentral gyrus L 4 -30,-14,60 -30,-20,56 13 

Frontal 
Superior frontal gyrus, precentral 
gyrus R 4, 6 24,-12,52 21,-18,50 105 

Parietal Superior parietal lobule L 7 -16,-50,76 -17,-55,67 26 
BA=Brodmann area, Hem=Hemisphere, k=voxel extent, MNI=Montreal Neurological Institute coordinate 
system, TAL=Talairach & Tournoux coordinate space. 
^Significant main effect of valence in a follow-up memory accuracy-by-valence 2 x 3 ANOVA outside of 
SPM8 for plotting region of interest call-out plots in Figure 3 (bottom). 
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Effects of valence on true and false memory vividness.  

In the previous section we reported valence-specific effects of negative memory 

vividness when only true memory was examined. We next sought to investigate if the 

effects of memory accuracy depended on valence. The conjunction analysis returned no 

false memory vividness effects that were similar across all three valence categories. The 

whole brain F-Contrast of the Memory Accuracy x Valence Interaction yielded no 

cortical activations. Given that this null result could be have been due to low power, we 

conducted follow-up analyses separately examining the effect of memory accuracy on 

neutral, negative, and positive stimuli.  

Neutral memory vividness. Replicating past research using neutral memoranda, 

neutral true memory vividness, compared to neutral false memory vividness, was tied to 

increased activation in early visual processing regions, medial and lateral parietal areas, 

and medial and lateral prefrontal cortex (see Table 3 and activity in cyan in the middle 

panel of Figure 4). Specifically, we found evidence for a greater link between memory 

vividness and activity in the calcarine sulcus (V1) for true compared to false neutral 

memories (see call-out plot in Figure 4, middle panel), which is broadly consistent with 

the idea that early visual cortex reactivation during retrieval distinguishes true from false 

memories (Slotnick and Schacter, 2004). Unexpectedly, this true-false memory vividness 

distinction in early visual cortex was strongest for neutral memories as evidenced by a 

memory-by-valence interaction (F(2, 36) = 4.76, p = 0.015, ηp2 = 0.21), such that activity 

in this area of the calcarine sulcus did not distinguish negative and positive true from 

false memory vividness (ps > 0.78) and that the effect for neutral true memory vividness 
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was stronger than for negative true memory vividness (t(18) = 2.24, p = 0.038) and 

positive true memory vividness (t(18) = 2.25, p = 0.037) (see call out plot in Figure 4, 

bottom of the middle panel).  

While we found relatively widespread patterns of a neutral true-false memory 

vividness distinction, we observed overlap for true and false neutral memory vividness in 

the bilateral inferior temporal gyrus, with a cluster of the left posterior inferior temporal 

gyrus also showing overlap with the F-Contrast of a Main Effect of Valence (shown in 

white on the left hemisphere in the middle panel of Figure 4). Interestingly, a follow-up 

ANOVA of the parameter estimates for neutral items from the calcarine sulcus and left 

posterior inferior temporal gyrus returned a significant memory accuracy-by-region 

interaction (F(1, 18) = 7.82, p = 0.012, ηp2 = 0.30), suggesting the patterns for neutral 

memory vividness differ in early visual regions (distinguish true and false) and later 

visual regions (do not distinguish true and false). No regions varied more strongly with 

false than true neutral memory vividness. 

Negative memory vividness. Before turning to the whole-brain comparisons of 

the effect of valence on true and false memory vividness, we conducted follow-up 

analyses on the visual regions that showed valence-specific effects in the previous section 

(see Negative-valence specific effects and activity shown in red in Figure 3). To compare 

these valence patterns of true memory vividness in visual regions to false memory 

vividness patterns, we extracted parameter estimates of the slopes from the nineteen 

participants with sufficient false alarm trials for analysis and conducted a 2 x 3 repeated-

measures ANOVA with factors of memory accuracy (hits, false alarms) and valence 
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(negative, neutral, positive). The three visual processing regions that showed Negative 

True Vividness > Positive True Vividness each showed a main effect of valence (Left 

inferior temporal gyrus: F(2, 36) = 6.05, p = 0.005, ηp2 =0.25; Left parahippocampal 

cortex: F(2, 36) = 4.44, p = 0.019, ηp2 =0.20, Left superior occipital gyrus: F(2, 36) = 

4.43, p = 0.019, ηp2 =0.20), reflecting greater effects for negative and neutral vividness, 

compared to positive vividness, regardless of memory accuracy. Results of three paired-

samples t-tests suggest the effects for negative true memory vividness were not greater 

than false negative memory vividness in these areas (all ps >.07). These findings suggest 

that negative memory vividness is associated with greater activation in these higher-level 

visual processing regions, compared to positive memories, but that these effects do not 

distinguish true from false negative memory vividness. Interestingly, these regions did 

not show a significant enhancement for negative relative to neutral memory vividness, 

but rather a main effect of valence that reflected a relative drop-out of positive memory 

vividness from showing a link between activity and vividness in these regions.  

Next, we conducted whole-brain analysis to demarcate regions that distinguished 

negative true from false memory vividness. Within negative items, increased true 

memory vividness was associated greater activity in bilateral ventral visual regions—

including a small portion of the left inferior temporal gyrus cluster that showed a valence-

specific effect for negative memory vividness in the previous section—as well the 

inferior frontal gyrus, anterior cingulate, and superior parietal lobule (see Table 3 and  

activity shown in cyan in the left panel of Figure 4). Further examination of the parameter 

estimates of the slopes extracted from the right fusiform gyrus cluster suggest this 



  
 

127	

difference between true and false vividness might be specific to negative memories as 

there were no significant differences between neutral and positive true and false memory 

vividness in this cluster (ps > 0.32). However, a memory accuracy-by-valence interaction 

(F(2, 36) = 3.20, p = 0.05, ηp2 = 0.15) was only at trend levels and the fusiform cluster 

was relatively small.  

While there was some evidence for regions that distinguished true from false 

memory vividness, conjunction analysis of true and false negative memory vividness 

confirmed substantial overlap (see Table 4 and activity shown in magenta in Figure 4, left 

panel). Most notably, we found true and false memory vividness overlap in bilateral 

parahippocampal cortex. The effect appeared strongest in the right hemisphere, with a 

significant whole-brain main effect of valence observed in the right parahippocampal 

cortex (see area outlined in white and call-out plot in Figure 4, left panel). Follow-up 

analyses showed a significant main effect of memory accuracy (F(1, 18) = 4.71, p = 0.04, 

ηp2 = 0.21) and a trend toward a memory accuracy-by-valence interaction (F(2, 36) = 

2.66, p = 0.08, ηp2 = 0.13). While there were no differences in the parametric estimates of 

the slope for true and false negative memories in the right parahippocampal cortex (t(18) 

= 0.84, p = 0.41), neutral and positive stimuli showed stronger effects for true compared 

to false memory vividness (Neutral: t(18) = 2.46, p = 0.024; Positive: t(18) = 2.1, p = 

0.049). No regions varied more strongly with false than true negative memory vividness. 

Positive memory vividness. Activity in the middle temporal gyrus and angular 

gyrus distinguished true from false memory vividness for positive items. Although not an 

a priori hypothesis, we found that bilateral hippocampal activation was associated with 
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greater positive memory vividness for true compared to false memories (see activity in 

cyan in Figure 4, right panel). While right hippocampal activation did not significantly 

distinguish true from false memory vividness for negative or neutral stimuli (ps > 0.84), 

follow-up analysis returned a main effect of memory accuracy (F(1, 18) = 5.85 , p = 0.03, 

ηp2 = 0.25) and only a trend toward a memory accuracy-by-valence interaction (F(2, 36) 

= 2.27 , p = 0.12, ηp2 = 0.11). By contrast, conjunction analyses showed that activation 

within multiple frontal regions (e.g., medial prefrontal cortex, superior frontal gyrus, and 

orbital frontal cortex) tracked with false as well as true memory vividness (see activity 

shown in magenta in Figure 4, right panel). No regions varied more strongly with false 

than true positive memory vividness. 

Emotional memory vividness. For both negative and positive items, there was 

widespread activation corresponding to both true and false memory vividness (see Table 

4 and activity shown in magenta in Figure 4, left and right panels) in large clusters of the 

temporal-occipital-parietal junction (e.g., middle temporal gyrus, superior occipital gyrus, 

and angular gyrus), ventral medial prefrontal cortex, and orbital frontal cortex. No 

regions showed stronger tracking of false than true emotional memory vividness. 

 

Amygdala and memory vividness 

Given the well-established role of the amygdala in emotional memory and the recent 

debate over the role of the amygdala in modulating memory (for discussion see 

Kensinger and Kark, 2018), we conducted follow-up analyses in the left and right 

amygdala to determine the link between activity and vividness in this paradigm. The role 
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of the amygdala in negative memory retrieval is mixed: Some studies have found 

amygdala engagement during retrieval is linked with accuracy for details (Kensinger and 

Schacter, 2007), while other studies have concluded that the amygdala is not necessarily 

linked to negative memory accuracy (Sharot et al., 2004) and purport that the majority of 

amygdala influence occurs around the time of encoding (Kark and Kensinger, 2015, in 

press). While these equivocal findings could be rooted in methodological differences 

across studies, here we test if amygdala activation at the moment of retrieval bears any 

influence on the link with subjective vividness, and if those effects vary as a function of 

accuracy and valence. To test this prediction, we conducted follow-up region of interest 

analyses of the amygdala. Analysis of the parameter estimates of the slope extracted the 

left and right amygdala seed regions (Hammers et. al., 2003) suggest no effect of valence 

on the relationship between activity levels and subjective vividness for hits (left 

amygdala: F(2, 84) = 1.26, p = 0.29; right amygdala: F(2, 84) = 0.81, p = 0.45, One-way 

ANOVA). In a 2 x 3 repeated-measures ANOVA with factors of memory accuracy and 

valence, the left amygdala showed a main effect memory accuracy (F(1 ,18) = 5.84, p = 

.027, ηp2 = .245), but no main effect of valence (F(2 ,36) = 0.39, p = .678, ηp2 =.021), or 

memory accuracy-by-valence interaction (F(2, 36) = 0.73, p = .49, ηp2  = .04), and the 

right amygdala showed no main effects or an interaction (ps > 0.09), suggesting that a 

link between the amygdala and vividness might occur when memories are veridical, at 

least in in this paradigm.  
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Figure 4. Effects of valence on true and false memory vividness. Top. Visualization of the positive 
parametric relation between activity for true memory vividness (shown in blue), false memory vividness 
(shown in red), and for true and false memory (shown in violet).  Regions shown in cyan additionally show 
a greater link between activity and vividness for true as compared to false memory vividness. Regions 
depicted in white show a whole-brain main effect of valence (i.e., a similar pattern for true and false 
memory). Bottom. Call-out plots for regions of interest (parahippocampal cortex [left panel], calcarine 
sulcus [middle panel], hippocampus [right panel]) plot average and individual data points of the parameter 
estimates as a function of valence and memory accuracy. Results of follow up tests outside of SPM are 
displayed. *p < .05, **p < .025, ***p < .01. 
  

Table 3. Regions that showed a greater positive parametric effect for true memory vividness than false 
memory vividness by valence (n=19). 

Lobe Region Hem BA MNI TAL k 

Negative True Memory Vividness > Negative False Memory Vividness 

Temporal  
Fusiform gyrus, inferior 
temporal gyrus L 20, 37 -40,-58,-10 -38,-55,-11 12 

Temporal 
Fusiform gyrus, inferior 
temporal gyrus R 20, 37 42,-48,-6 38,-46,-5 35 

Temporal  
Inferior temporal gyrus, 
middle temporal gyrus L 37 -50,-54,-4 -47,-51,-5 19 

Temporal Parahippocampal cortex L 36 -20,-26,-6 -20,-25,-4 13 
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Frontal  Inferior frontal gyrus L 44, 45 -40,24,8 -38,20,13 104 

Frontal  Inferior frontal gyrus R 45 58,34,2 53,29,10 28 

Parietal 
Superior parietal lobule, 
superior occipital gyrus  L 19, 39 -26,-72,20 -25,-70,15 214 

Other Anterior cingulate  B 24 6,28,16 4,23,21 58 

Other Caudate  L N/A -14,6,14 -14,3,17 18 

Other Caudate  L N/A -12,10,0 -12,8,5 10 

Other Cerebellum L N/A -32,-82,-50 -30,-74,-48 27 

Other Cerebellum L N/A -10,-94,-30 -10,-87,-31 24 

Other Cerebellum L N/A -18,-90,-44 -17,-82,-43 19 

Other Cerebellum L N/A -46,-76,-40 -43,-69,-39 15 

Other Cerebellum R N/A 8,-88,-32 7,-81,-32 102 

Other Cerebellum R N/A 26,-86,-48 23,-78,-46 43 

Other Cerebellum R N/A 52,-70,-40 47,-64,-37 39 

Other Cerebellum R N/A 8,-82,-46 7,-74,-44 33 

Other Thalamus L N/A -18,-12,6 -18,-13,8 51 

Other Thalamus L N/A 0,-12,4 -1,-13,7 36 

Other Thalamus L N/A -10,-30,12 -10,-31,12 47 

       

Neutral True Memory Vividness > Neutral False Memory Vividness 

Occipital Calcarine sulcus L 17 -10,-76,10 -11,-73,6 31 

Temporal Fusiform gyrus L 37 -26,-40,-20 -25,-37,-18 26 

Temporal 
Middle temporal gyrus, 
angular gyrus L 22, 39 -64,-54,24 -61,-54,20 101 

Frontal 
Anterior cingulate, ventral 
medial and orbital frontal 
prefrontal cortex  

B 
10, 24, 
32 10,36,-12 8,33,-3 292 

Frontal 
Dorsal medial prefrontal 
cortex L 8 -8,50,30 -9,42,35 20 

Frontal Inferior frontal gyrus L 45 -50,20,-2 -47,17,3 28 

Frontal Inferior frontal gyrus L 44 -48,16,10 -46,13,14 11 
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Frontal Inferior frontal gyrus R 47 44,24,-16 40,22,-7 12 

Frontal 
Inferior frontal gyrus, superior 
temporal gyrus L 47 -44,16,-18 -41,15,-11 11 

Frontal Insula, frontal operculum R 13 30,18,-16 27,16,-8 63 

Frontal Middle frontal gyrus L 8 -28,36,44 -27,28,46 87 

Frontal Superior frontal gyrus R 8 24,38,40 21,30,44 13 

Parietal Precuneus L 7 -6,-58,40 -7,-59,35 120 

Parietal 
Retrosplenial cortex, posterior 
cingulate L 31 -6,-64,22 -7,-63,18 57 

Parietal 
Retrosplenial cortex, posterior 
cingulate R 30, 31 14,-60,22 12,-60,19 61 

Parietal Supramarginal gyrus R 40 58,-44,28 52,-45,26 15 

Other Anterior cingulate B 24 0,24,20 -1,19,24 14 

Other Cingulate gyrus B 24 -2,-8,38 -3,-13,37 26 

       

Positive True Memory Vividness > Positive False Memory Vividness 

Temporal Hippocampus L N/A -26,-16,-18 -25,-15,-14 17 

Temporal Hippocampus R N/A 30,-14,-20 27,-13,-15 28 

Temporal Middle temporal gyrus L 21 -48,-8,-26 -45,-7,-21 40 

Parietal Angular gyrus L 39 -58,-66,30 -55,-66,24 12 

Parietal 
Angular gyrus, middle 
temporal gyrus L 39 -44,-66,36 -42,-66,30 91 

Frontal Subgenual area B 25 0,18,-14 -1,16,-7 15 

Parietal Supramarginal gyrus  L 40 -54,-50,36 -52,-51,31 12 
B=Bilateral, BA=Brodmann area, Hem=Hemisphere, k=voxel extent, MNI=Montreal Neurological 
Institute coordinate system, TAL=Talairach & Tournoux coordinate space. 
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Table 4.  Regions that showed a positive parametric effect of vividness for true and false memories by 
valence. 

Lobe Region Hem BA MNI TAL k 

Negative True Memory Vividness ⋂ Negative False Memory Vividness 

Occipital 
Superior occipital gyrus, middle 
temporal gyrus , angular gyrus  R 19, 39 48,-60,24 43,-60,21 118 

Occipital 
Superior occipital gyrus, middle 
temporal gyrus , angular gyrus* L 19, 39 -46,-70,28 -44,-69,22 163 

Temporal Middle temporal gyrus L 21 -58,-46,-8 -55,-44,-8 13 

Temporal Middle temporal gyrus L 21 -56,-26,-12 -53,-25,-10 26 

Temporal Middle temporal gyrus L 21 -64,-12,-12 -60,-12,-9 67 

Temporal Parahippocampal cortex L 36 -26,-32,-14 -25,-30,-12 17 

Temporal Parahippocampal cortex*  R 36 38,-14,-26 34,-13,-20 33 

Temporal 
Parahippocampal cortex*, 
fusiform gyrus R 20, 36 34,-30,-24 31,-28,-19 88 

Frontal 
Inferior frontal gyrus, temporal 
pole  R 38, 47 28,12,-22 25,11,-14 17 

Frontal Middle frontal gyrus L 9 -42,20,24 -40,15,27 18 

Frontal Middle frontal gyrus* R 9 36,12,32 32,6,34 117 

Frontal 
Orbital frontal cortex, subgenual 
area B 11, 25 -8,28,-18 -8,26,-10 51 

Frontal Ventral medial prefrontal cortex B 10, 11 4,38,-16 3,35,-7 96 

Parietal Postcentral gyrus L 3 -36,-26,58 -35,-31,53 78 

Parietal Retrosplenial cortex, precuneus B 7, 30 -12,-60,20 -13,-59,16 281 

       

Neutral True Memory Vividness ⋂ Neutral False Memory Vividness 

Temporal Inferior temporal gyrus R 37 50,-48,-18 45,-45,-15 16 

Temporal 
Inferior temporal gyrus, middle 
temporal gyrus L 20, 37 -54,-48,-16 -51,-45,-15 56 

Temporal Inferior temporal gyrus* L 37 -50,-58,-10 -47,-55,-11 38 

Temporal Superior occipital gyrus L 19 -34,-64,30 -33,-64,25 18 

Frontal Inferior frontal gyrus L 46 -50,40,6 -47,35,12 10 

Frontal Middle frontal gyrus L 6 -40,18,56 -39,10,55 19 
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Positive True Memory Vividness ⋂ Positive False Memory Vividness 

Occipital Superior occipital gyrus L 19 -36,-84,38 -35,-83,30 52 

Temporal 
Superior occipital gyrus, middle 
temporal gyrus , angular gyrus** L 19, 39 -48,-64,16 -46,-63,12 102 

Temporal 
Middle temporal gyrus, superior 
occipital gyrus, middle temporal 
gyrus angular gyrus** 

R 19, 39 54,-62,18 49,-61,16 264 

Frontal 
Dorsal medial prefrontal cortex, 
superior frontal gyrus L 9, 10 -12,48,34 -12,40,38 87 

Frontal Inferior temporal gyrus L 44 -48,18,24 -46,13,26 20 

Frontal 
Orbital frontal cortex, subgenual 
area L 11, 25 10,2,-10 8,1,-5 46 

Frontal Precentral gyrus R 4 34,-16,70 30,-23,66 10 

Frontal 
Precentral gyrus, post-central 
gyrus L 4, 6 -38,-24,58 -37,-29,53 225 

Frontal Superior frontal gyrus L 10 -10,60,8 -10,53,16 10 

Frontal Ventral medial prefrontal cortex B 10, 11 6,46,-18 5,43,-8 233 
B=Bilateral, BA=Brodmann area, Hem=Hemisphere, k=voxel extent, MNI=Montreal Neurological 
Institute coordinate system, TAL=Talairach & Tournoux coordinate space. 
*Cluster shows significant overlap with the F-Contrast of the main effect of valence (*k≥10, **k≥40) 
(shown in white in Figure 4). 
 
 
 
 
Exploratory analysis: Effect of memory accuracy on parahippocampal cortex 

parametric functional connectivity and negative memory vividness  

In this study, we reported a main effect of a valence in the right parahippocampal cortex, 

suggesting this region is important for both true and false negative memory vividness and 

that negative true and false memories share similar neural processes with regard to 

subjective memory strength. However, some theories of false memory would predict 

differential functional connectivity profiles of medial temporal lobe regions for true as 

compared to false memories, such as an inferior-superior distinction, with greater 

functional connectivity with inferior sensory areas driving vividness for true negative 
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memories and greater functional connectivity with superior control regions with 

increased vividness for false memories (Dennis et al., 2015). To test this exploratory 

hypothesis, we utilized the Generalized PPI (gPPI) Toolbox (McLaren et al., 2012; 

https://www.nitrc.org/projects/gppi) to save whole-brain parametric functional 

connectivity maps for negative hits vividness and negative false alarms vividness 

separately for each participant. We used two, group-level one-sample t-tests to demarcate 

regions that showed increased functional connectivity of the right parahippocampal 

cortex seed region for negative true memories and negative false memories. Follow-up 

analyses outside of SPM8 were conducted on six regions of interest (visual processing 

and frontal) to test for regions that showed a significant difference between true and false 

negative memory vividness. 

 The positive parametric functional connectivity map of the right parahippocampal 

cortex revealed increased functional connectivity with visual processing and frontal 

regions with increasing levels of vividness (see Table 5 and activity shown in blue in 

Figure 5). The visual processing patterns were mostly restricted to early visual regions. 

The analysis of negative false memory vividness functional connectivity returned no 

suprathreshold voxels. Given potential power issues for estimating parametric functional 

connectivity of false memory vividness, we visualize negative true vividness effects of 

parahippocampal cortex functional connectivity exclusively masking out any effects for 

negative false memory vividness at a reduced threshold (p < 0.05) (see Figure 5 patterns 

in blue). We conducted follow-up paired samples t-tests in six regions of interest (four 

visuosensory and two frontal clusters) and applied a Bonferroni correction for multiple 
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comparisons (p < .05/6). The only cluster to showed a significant enhancement for 

negative true memory vividness compared to negative false memory vividness was the 

anterior cingulate (t(18)=3.17, p=0.005). Together, these exploratory results suggest that 

while activity in the right parahippocampal cortex is associated with true and false 

negative memory vividness, the right parahippocampal cortex signal shows accuracy-

distinguishing functional connectivity with the anterior cingulate, possibly reflecting 

greater retrieval monitoring for negative true memory vividness. However, given the 

limited power, future work is needed to determine if medial temporal lobe signals 

engaged for true and false memories differ on the basis of functional connectivity 

patterns with cortex. 

 

 
Figure 5. Exploratory functional connectivity analysis of the right parahippocampal cortex for true and 
false memories. The positive parametric relationship for negative true memory vividness is shown in blue. 
There were no suprathreshold voxels for negative false memory vividness. The call out plot shows the 
significant difference between the average parameter estimates of the slope for the functional connectivity 
of the right parahippocampal cortex with the anterior cingulate between true and false memory vividness. 
The right parahippocampal cortex seed region is shown in white on the coronal slice in the top left corner.  
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Table 5. Parametric functional connectivity of the right parahippocampal cortex for negative true memory 
vividness, exclusively masking out any effects for negative false memory vividness. 

Lobe Region Hem BA MNI TAL k 

Occipital Calcarine sulcus L 17 -14,-92,8 -14,-88,3 80 

Occipital Calcarine sulcus L 17 -14,-76,12 -14,-74,8 12 

Occipital Calcarine sulcus R 17 10,-80,8 8,-77,4 13 

Occipital Cuneus, precuneus R 
17, 
31 24,-62,18 21,-61,15 22 

Occipital Lingual gyrus, calcarine sulcus R 
17, 
18 18,-90,-6 15,-85,-9 162 

Occipital Middle occipital gyrus L 19 -44,-86,18 -42,-83,12 12 

Occipital 
Superior occipital gyrus, angular 
gyrus R 

19, 
39 42,-72,36 37,-72,31 68 

Temporal Middle temporal gyrus R 39 38,-60,32 34,-61,28 10 

Temporal 
Parahippocampal cortex, 
hippocampus L 28 -20,-14,-28 -19,-12,-22 60 

Temporal Superior temporal gyrus R 22 58,2,2 53,0,7 30 

Temporal Superior temporal gyrus R 22 70,-22,4 64,-23,7 13 

Frontal Dorsal anterior cingulate** R 
24, 
32 6,12,38 4,6,39 72 

Frontal 
Inferior frontal gyrus, precentral 
gyrus R 6 62,2,24 56,-2,27 35 

Frontal Paracentral lobule R 5 6,-32,54 4,-36,50 21 

Frontal Precentral gyrus L 4 -48,-16,26 -46,-19,25 13 

Frontal Superior frontal gyrus R 6 22,-10,70 18,-17,66 14 

Other Cerebellum R N/A 28,-58,-48 25,-52,-43 10 

Other Globus pallidus  R N/A 10,2,-10 8,1,-5 19 
BA=Brodmann area, Hem=Hemisphere, k=voxel extent, MNI=Montreal Neurological Institute coordinate 
system, TAL=Talairach & Tournoux coordinate space. 
**Significant follow-up t-test comparing true and false negative memory vividness parametric functional 
connectivity. 
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3.5 DISCUSSION 

The current study investigated the neural correlates of true and false memory vividness 

with a focus on valence-specific effects. Prior work has demonstrated enhanced 

activation of ventral visual regions supports encoding and retrieval of negative memories, 

which motivated the main study questions: Does the magnitude of retrieval activity in 

these regions bear a valence-specific influence on the subjective sense of vividness for 

those memories, or if successfully retrieved, do ventral visual regions show a similar 

relation to vividness regardless of valence? Further, are those signals unique to veridical 

memory vividness or do ventral visual signals also drive or reflect negative false memory 

vividness?    

We began with an analysis of true compared to false memory vividness, to both 

root our findings in a replication of past work and extend those findings to a 24-hour 

study-test delay. Regardless of valence, true memory vividness was associated with 

widespread effects in regions with known roles in memory retrieval (e.g., hippocampus, 

inferior parietal lobule, dorsal medial and ventral lateral prefrontal cortex, anterior 

cingulate cortex, posterior cingulate cortex, late visual processing regions). In agreement 

with prior work (Dennis et al., 2012), we found that there were no regions that showed a 

false memory vividness effect that was greater than true memory vividness, which was 

also true when examined within each valence category. These findings suggest false 

memory vividness tends to emanate from many of the same regions involved in veridical 

memory vividness. However, that is not to say that the qualities that underlie true vivid 
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memories are not somehow different from those of false memories (Heaps and Nash, 

2001). Below we discuss the principal findings in detail by regions of interest. 

 

Regions that distinguished true from false memory vividness regardless of valence.  

Regardless of valence, we found a main effect of accuracy in the hippocampus 

demonstrating a stronger link between vividness and activity for true memories, 

compared to false memories, consistent with other studies of true and false memory 

(Dennis et al., 2012). We also found a valence-invariant effect of accuracy in the 

retrosplenial cortex/precuneus, consistent with prior memory vividness work (Richter et 

al., 2016) that perhaps reflects a stronger link between visual imagery and re-

experiencing of the original study images in the “mind’s-eye” during retrieval (Fletcher et 

al., 1995). We further found areas of ventral-parietal cortex correlated with true memory 

vividness, regardless of valence. This finding is consistent with previous work that has 

demonstrated a ventral-dorsal dissociation of activity in parietal cortex, with ventral and 

dorsal areas associated with bottom-up/recollection and top-down/familiarity responses, 

respectively (Cabeza et al., 2008; Wagner et al., 2005). Moreover, the link between 

ventral-parietal cortex and vividness was specific to true memories, perhaps reflecting a 

rapid, bottom-up signal from an actual memory trace as opposed to an effortful search or 

constructive process associated with familiarity signals or false memories. 
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Early visual cortex distinguishes true from false vividness for neutral memories. 

In this study, the neutral stimuli served as a point of comparison for the valence 

conditions and also as a comparison condition to other studies of neutral true and false 

memory. In agreement with prior work (Richter et al., 2016; Slotnick and Schacter, 2004; 

Stark et al., 2010), we found an effect of true neutral memory vividness in early visual 

cortex (calcarine sulcus, V1) that was greater than false neutral memory vividness. We 

also found an interaction between patterns in early visual cortex and the left inferior 

temporal gyrus (BA20/37) for neutral memories: Early visual cortex distinguished true 

from false memory vividness but the left inferior temporal gyrus did not, further 

supporting the early-late distinction of visual region contributions to true-false memory. 

Interestingly, this distinction was significant only for neutral stimuli and did not extend to 

vividness for negative or positive stimuli. Future work is needed to clarify the role of the 

primary visual cortex in emotional memory vividness. 

 

Valence-specific effect of negative memory vividness in occipito-temporal cortex  

We demonstrated a valence-specific effect of negative memory vividness in a large swath 

of occipito-temporal cortex, including the left inferior temporal gyrus, and the left 

parahippocampal cortex. The occipito-temporal cortex region showed direct spatial 

overlap with two of our prior studies of negative memory recapitulation (Kark and 

Kensinger, 2015, in press), suggesting that this area is consistently involved in negative 

memory recapitulation processes and also contributes to a sense of strong negative 

memory vividness. Critically, the parameter estimates demonstrated a valence effect 
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(Negative > Neutral > Positive) in both regions and these findings were robust to 

controlling for item-level arousal ratings. These data suggest negative valence in 

particular is associated with enhanced memory processes in the ventral visual stream. 

Parahippocampal cortex associated with true and false negative memory vividness 

Given the behavioral overlap between true and false memories—particularly in negative 

memories—we specifically sought to demarcate regions of the brain where negative true 

and false memory vividness patterns were supported by the same brain regions and how 

those effects differed compared to emotionally positive memories. One of the principal 

findings of the current study is that the parahippocampal gyri supported negative memory 

vividness, regardless of accuracy, providing further evidence that overlapping neural 

processes support the retrieval of negative true memories as well as negative false 

memories. While we have previously shown that retrieval-related recapitulation of the 

parahippocampal cortex supports negative memory, compared to forgetting (Kark and 

Kensinger, 2015, in press), the current results suggest that increased activation in this 

region is linked with increased vividness regardless of memory accuracy. These data are 

also broadly consistent with prior work from Sharot, Delgado, and Phelps (2004) that 

showed the parahippocampal cortex predicted accurate memory for neutral items but not 

negative items, suggesting that visual activation might be less important for accurate 

endorsement of negative memories than neutral memories.  

Recent work has shown that parahippocampal cortex activation can support both 

true and false memories (Karanian and Slotnick, 2014, 2017), contributing to an ongoing 

debate about the role of the parahippocampal cortex in memory. The parahippocampal 
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cortex has a well-accepted role in scene processing (often referred to as the 

parahippocampal place area, Epstein and Kanwisher, 1998) as well as episodic memory 

(Hayes et al., 2007) and envisioning the future (Schacter and Addis, 2009), with activity 

levels sometimes indistinguishable between memory and future thinking (Szpunar et al., 

2007). Parahippocampal cortex activity has been associated with visual context memory 

(Hayes et al., 2007), is particularly responsive to scenes with strong contextual 

associations, and is subject to emotional modulation of retrieval processes (Chan et al., 

2014; Smith et al., 2004). Even broader frameworks of the parahippocampal cortex in 

contextual processing have been proposed and include both spatial information and non-

spatial information (Aminoff et al., 2007) as well as contexts more broadly construed, 

such as emotion (Aminoff et al., 2013). As the parahippocampal cortex is capable of 

supporting vivid mental representations of novel future visual-spatial contexts, it is 

possible that the negative line-drawing cues evoke strong emotional or visual contexts 

(possibly borrowed content from a similar studied item [e.g., snake,  dog, plane crash] or 

content that is completely extralist) that drive a sense of negative false memory vividness.  

 

Amygdala supports true memory vividness regardless of valence.  

In the amygdala, there was an overall valence-invariant link between activity levels and 

true memory vividness. Somewhat surprisingly, there was no effect of valence on the link 

between the magnitude of amygdala engagement and subjective memory vividness, 

perhaps due to the use of relatively less-emotional line-drawing stimuli used during 

retrieval. The line-drawings were chosen strategically to elicit more false alarms for 
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fMRI analysis, but they are relatively less emotional than the full colorful IAPS images, 

which could have limited our amygdala findings for false emotional memory vividness. 

Future work with emotionally-laden stimuli—perhaps presented rapidly or alongside 

perceptually similar lures to induce sufficient false alarm trials for fMRI analysis—could 

further test for a link between amygdala activation and a false sense of memory 

vividness. 

 

Temporal-parietal-occipital junction activity associated with emotional vividness 

regardless of accuracy. 

Unexpectedly, both negative and positive valence showed a positive parametric effect of 

vividness regardless of accuracy in areas spanning the junction of the temporal, parietal, 

and occipital lobes (also referred to as the 'TPO' junction; see De Benedictis et al., 2014; 

Karnath, 2001), including the middle temporal gyrus, superior occipital gyrus, and 

angular gyrus. The TPO junction is a highly complex area involved in myriad of 

functions, including multimodal integration and visual-spatial recognition (De Benedictis 

et al., 2014). Future work is needed to understand the role of this area in subjective 

vividness for emotional stimuli that is not necessarily tethered to a veridical memory 

trace. 
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Functional connectivity profiles distinguish true from false negative memory 

vividness.  

Finally, the results of the exploratory analysis further highlight the utility and potential 

for functional connectivity analyses to reveal network profile differences that distinguish 

true from false memory vividness emanating from a common locus of activation, as 

suggested by Dennis, Bowman, and Vandekar (2012). Here we found greater 

parahippocampal cortex and anterior cingulate cortex functional connectivity with 

increasing vividness for true negative memories, compared to false negative memory 

vividness. These findings suggest that while the magnitude of activity in a region can 

similarly track with true and false memory vividness, the region may be more strongly 

incorporated with other memory processes—including monitoring and verification 

processes in the frontal regions such as the anterior cingulate—when true memories are 

highly vivid. 

 

Limitations and Future Directions.  

While we can speculate, it is not possible to determine the content of memoranda driving 

the vividness responses and neural patterns for each valence. Based on the task 

instructions, participants were able to use a combination of memory for visual detail, 

thoughts, feelings, or reactions to the original IAPS images on the prior day in order to 

rate the vividness of their memory evoked by the line-drawing, such that the source of 

vividness could vary by memory and valence. Future work could use more objective 

measures for vividness and memory for visual features (Cooper et al., in press) to 
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decipher if negative true memory vividness is rooted in more objective accuracy or 

precision of visual details, compared to false memory vividness. The findings of the 

present study could be related to perceptual recombination in false memory, when 

fragmented perceptual features from an encoding episode are erroneously recombined 

and drive false recollection (for a review see Doss et al., 2016). Or in some trials, 

perceptually similar line-drawings could have prompted true recollections of studied 

pictures or misidentification-related false recognitions (Vannucci et al., 2012). Another 

interesting way to localize emotional enhancements of false memory vividness in the 

brain would be to utilize different stimulus modalities (e.g., true memories in visual 

domain, false memories in the auditory domain, as in Stark, Okado, and Loftus, 2010) or 

leverage cortical representation areas (e.g., fusiform face area or parahippocampal place 

area). Future work is needed to further understand the nature of the distortions that give 

rise to negative false memory vividness. 

It is also possible that spurious activity in regions such as the parahippocampal 

cortex could drive a false sense of negative memory vividness, in which case negative 

false memories would not be due to monitoring processes gone awry or the 

aforementioned memory distortions. However, we examined false memory vividness in a 

subset of participants with a sufficient number of false alarm trials for parametric 

modulation analysis, such that even if spurious activations drove some trials for some 

individuals, it would not likely drive the valence differences observed here. Although we 

were able to elicit strong false recognitions in each valence category and we emphasized 

the effects that were robust to sampling in the false memory analysis to reduce the chance 
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of Type 1 error, the null effects for false memories in this study could be due to lower 

power and Type 2 error. It is entirely possible that there are effects that uniquely support 

false memory vividness that we were not able to capture in the current paradigm. Future 

work using an even longer study-test delay could elicit even more false alarms for 

analysis, as emotional false memories tend to increase over delay periods (Knott and 

Shah, 2018), particularly those that include sleep (McKeon et al, 2012). 

Another important avenue for future research is to examine the effects of emotion 

on true and false memory in aging. Healthy aging has been associated with increases in 

the incidence of false memories (Vannucci et al., 2012), particularly emotional ones 

(Gallo et. al., 2009), a reduction in the neural differentiation between true and false 

memories (Duarte et al., 2010), and impaired emotional pattern separation and negative 

false recognition due to faulty overgeneralization and aberrations in the amygdala-

hippocampal network in low-performing older adults (Leal et al., 2017). Future work is 

needed to understand how healthy and pathological aging could influence the neural 

correlates of emotional true and false memory vividness.  

 

Conclusions 

The current findings demonstrate valence-specific processes in the ventral visual stream 

for negative true and false memory vividness. These late visual processing regions appear 

to drive subjective vividness for negative memories compared to positive memories, but 

regardless of accuracy. We can speculate that these findings could map on to the 

behavioral finding that highly vivid negative false memories, although less frequent, can 
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occur and appear indistinguishable from a highly vivid true negative memory. 

Investigating the neural profiles of memory distortions like false memories not only 

accelerates the understanding of veridical memory processes, but also carries important 

implications for real-world consequences of false memories in legal settings. 
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4.1 ABSTRACT 

While arousal-based frameworks of emotional memory account for enhancements of 

negative and positive memories, compared to neutral memories, valence-based accounts 

highlight the behavioral and neural differences between negative and positive memories. 

Negative memories tend to be associated with greater memory for the visual detail, 

compared to positive memories. Recent fMRI work suggests negative valence enhances 

memory-related activation of the occipito-temporal cortex (OTC). Yet it is unclear if this 

consistently-observed valence-specific enhancement of OTC is functionally necessary for 

retrieval or re-experiencing of negative memories. Here, Study 1 examined the effects of 

valence on subjective re-experiencing of perceptual details (i.e., visual re-experiencing), 

compared to thoughts and feelings (i.e., internal re-experiencing). In Study 1, participants 

(n=31) incidentally encoded line-drawings of emotional and neutral photos, followed by 

the complete photo. The next day, participants completed a surprise recognition memory 

test in which they were presented with old and new line-drawings. For each line-drawing, 

participants made an Old/New judgement followed by visual and internal re-experiencing 

ratings for “Old” responses. In a within-subjects design, Study 2 (n=21) utilized 

repetitive transcranial magnetic stimulation (rTMS) to test the effects of left OTC 

inhibition on negative memory re-experiencing, compared to stimulation of the vertex 

stimulation . Contrary to the hypotheses, negative and positive valence similarly 

enhanced subjective visual re-experiencing levels, compared to neutral stimuli (Study 1), 

and inhibitory rTMS applied to the left OTC did not influence retrieval or visual re-

experiencing of negative memories (Study 2). The behavioral findings are consistent with 
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the enhancing effects of arousal on memory re-experiencing, but the rTMS findings 

suggest that while OTC activity is enhanced for negative memories, it might not be 

necessary. Future work is needed to understand the nature of the role of enhanced ventral 

visual stream activation in negative memory.   

 

4.2 INTRODUCTION 

A sense of ‘mental time travel’ is a hallmark feature of episodic memory (Tulving, 2002). 

Yet not all memories are accompanied by an equal sense of re-experiencing. Although 

many factors can influence the likelihood that an event is re-experienced, emotional 

valence has been demonstrated to be one key factor that can enhance the sense of re-

experiencing (Phelps and Sharot, 2008). Further, valence might differentially influence 

how we re-experience different aspects of the prior event, such as re-experiencing of our 

external world (i.e., perceptual or visual details) compared to re-experiencing of our inner 

world (i.e., thoughts, feelings, reactions). Negative memories in particular have been 

associated with enhanced visual re-experiencing (Bowen et al., 2018) and enhanced 

negative memory-related reactivation in visual processing regions, but it is not known if 

there a causal link between visual brain activation and an accompanying sense of visual 

re-experiencing. Alternatively, retrieval-related activation in visual processing regions 

aides in—but is not necessary for—negative memory retrieval.  
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While basic science has historically focused on the contributions of the amygdala 

and other medial temporal lobe regions to emotionally enhanced memory, a series of 

functional magnetic resonance imaging (fMRI) studies have reported a consistent 

activation of the occipito-temporal cortex during successful encoding, early 

consolidation, and retrieval (Kark and Kensinger, 2015, in press; Kark et al., submitted; 

Loos et al., 2019; Murty et al., 2011). One particular area of left occipito-temporal cortex 

(LOTC)—corresponding the to the posterior inferior temporal gyrus (MNIxyz=-50,-56,-

10)—has consistently shown retrieval-related reactivation of encoding processes, a 

valence-specific link with negative memory recollection, as well as a valence-specific 

correlation with subjective memory vividness 24 hours after study (Kark and Kensinger, 

2015, in press; Kark et al., submitted; Mickley and Kensinger, 2008). However, in our 

recent study linking LOTC activation with valence-specific negative memory vividness 

(Kark et al., submitted), external and internal details were collapsed into one set of 

vividness rating instructions (i.e., use visual details and thoughts, feeling, reactions to rate 

overall vividness). Thus, it is not possible from those results to decipher if LOTC activity 

specifically supports visual aspects of memory. Prior work has also demonstrated a 

positive correlation between retrieval activity in visuocortical areas and the number of 

episodic details (visual and internal collapsed together) for highly emotional events and 

life-threatening traumas (e.g., a near plane crash, Palombo et al., 2016). Thus, enhanced 

activation in visual processing regions is relevant to re-experiencing both laboratory-

based and real-life negative memories, but it is not known whether LOTC activity is 

causally linked to the ability to re-experience of the visual aspects of the memoranda. 
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Transcranial magnetic stimulation (TMS) has proven to be a safe, non-invasive, 

and effective method for assessing causal links between brain activity and behavior. 

Using neuro-navigation techniques, TMS can be applied to focal cortical regions of 

interest (ROI) with high levels of precision, with some level of spatial spreading of the 

induced electric field depending on the individual’s brain anatomy and gyrification 

(Saturnino et al., 2018). Fifteen minutes of low-frequency (1-Hz) repetitive TMS (rTMS) 

can inhibit visual cortex for at least ten minutes (Boroojerdi et al., 2000). Previous work 

has shown that TMS applied to the lateral occipital cortex can disrupt memory for neutral 

stimuli (Slotnick and Thakral, 2011), including targeted reductions in recollection 

compared to familiarity (Waldhauser et al., 2016). These findings suggest visual 

processing regions are in some cases necessary for successful memory retrieval or 

memory strength. Here, we applied the first use of rTMS in an emotional memory study 

to examine the necessity of the LOTC in negative memory retrieval and subjective re-

experiencing. 

The current study utilized a within-subjects design to test the effects of inhibitory 

effects of low-frequency Hz repetitive (rTMS) applied to the LOTC on the ability to 

retrieve and re-experiencing negative memories. We used two re-experiencing ratings 

(visual and internal) to further parse valence and neural effects due to sensory and 

affective aspects of memory. We modified the line-drawing emotional recognition 

memory task used in our prior fMRI work and tested the behavioral effects alone in 

Study 1. In Study 2, we examined the effects of inhibitory rTMS on emotional memory 

performance re-experiencing to test for causal links between brain and behavior. 
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4.3 METHODS: STUDY 1 

The behavioral-only study (Study 1) was conducted at Boston College. The 

Institutional Review Board of Boston College approved all study procedures and written 

informed consent was obtained from all participants. Participants were compensated 

$10/hour or were awarded course credit for participation in Study 1.  

 Procedures. The task was a modified version of the line-drawing task previously 

reported (Parts I-III), but with fewer stimuli and additional recognition memory 

judgements. During encoding, participants viewed line-drawings of negative, positive and 

neutral photos (1.5 s each) followed by the full colorful photo (3 s, 25 photos of each 

valence) and indicated if they would “Approach” or “Back Away” from each of the 

scenes depicted in the images. Participants returned to the laboratory 24-hours later to 

complete a surprise recognition memory test in which they were shown all of the old line-

drawings and an equal number of new line drawings. For each line-drawing (shown for 3 

s), participants were asked to indicate if the line-drawing was “Old” by pressing 1 

(studied on the previous day) or “New” by pressing 0 (not previously studied on the 

previous day). For all “New” responses, the program advanced to the next test line-

drawing. For all “Old” responses, participants then separately rated Visual Re-

experiencing (memory for visual or perceptual details of the original photo) and Internal 

Re-experiencing (memory for original thoughts, feelings or reactions to the original 

photo) on a 1-4 scale (1: “None”, 2: “Weak”, 3: “Moderate”, 4: “Strong”). Participants 

were given up to 3 s to make each of the re-experiencing ratings. The rating order (visual, 

internal) was alternated across participants. The inter-stimulus interval randomly varied 
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between 500-6000ms during encoding and 500-2000ms during retrieval. To ensure 

participants understood the task, they were given a practice version of the encoding and 

recognition task on Days 1 and 2, respectively.   

Stimuli. In order to make meaningful valence comparisons, the subset of 75 

stimuli (25 of each valence) selected for the current study were pre-matched using the 

International Affective Picture System normative data (Lang et al., 2008) such that 

negative and positive images were similar in absolute valence (Mneg=2.03, SDneg=0.83; 

Mpos=2.05, SDpos=0.59; t(98) = 0.2, p=0.86) and arousal (Mneg=5.56, SDneg=0.66; 

Mpos=5.48, SDpos=0.59; t(98) = 0.68, p=0.5). Negative stimuli were more arousing 

(Mneut=3.19, SDneut=0.57; t(98) = 16.83 p<0.001) and of higher absolute valence 

(Mneut=0.39, SDneut=0.31; t(98) = 13.16, p<0.001) than neutral stimuli and positive stimuli 

were more arousing (t(98) = 16.88, p<0.001) and of higher absolute valence (t(98) = 

17.75, p<0.001) than neutral stimuli.  

Participants. Of the thirty-four participants who completed the encoding task, 

three (1 female) did not return on the second day to complete the recognition memory 

task. Thirty-one participants completed the recognition memory study (aged 19-25, M = 

20.19, SD = 1.35, 22 females). All participants were healthy, young adult native speakers 

of English without a history of neurological disorders, head injury, learning disorders, 

psychiatric problems, or current medications affecting the central nervous system. 

Participants reported normal or corrected-to-normal vision.   
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4.4 RESULTS: STUDY 1 

The descriptive statistics for each memory measure are listed in Table 1. 

Memory performance. Overall recognition memory performance (d’) was higher 

(M = 1.19, SD = 0.32) than in the previous 24-hr delay fMRI version of the study (M = 

0.74, SD = 0.33, in Kark and Kensinger, in press), likely due to halving the number of 

study stimuli. Negative memory performance was similar to positive (t(30)=1.6, p=0.12) 

and neutral (t(30)=0.51, p=0.61), but positive memory performance was significantly 

higher than neutral memory performance (t(30)=2.23, p=0.03). However, these findings 

are broadly consistent with the fMRI studies that have used this recognition memory task, 

which have found memory performance for positive to be numerically greater than 

negative and neutral memory performance (Kark and Kensinger, 2015, in press). 

Re-experiencing ratings by accuracy. On average, participants false alarmed to 

18.2% of the objectively New line-drawings, which left very few false alarm trials for 

analysis of false re-experiencing as a function of valence in the full sample of thirty-one 

participants (but see False memory re-experiencing by valence). Collapsed across 

valence, a 2x2 repeated-measured analysis of variance (rm-ANOVA) with factors of re-

experiencing type (visual, internal) and memory accuracy (hits, false alarms) revealed a 

main effect of re-experiencing type (visual, internal), F(1,30)=7.72, p=0.009, ηp²=0.21, 

indicating greater visual re-experiencing, compared to internal re-experiencing across 

true and false memories (Mvisual = 2.82, SEvisual = 0.08; Minternal = 2.54, SEinternal = 0.07), 

and a main effect of memory accuracy (F(1,26) = 114.3, p<0.001, ηp²=0.79), indicating 

greater re-experiencing for true memories, compared to false memories (Mtrue = 2.96, 
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SEtrue = 0.06; Mfalse = 2.39, SEfalse = 0.06). There was a trend toward an accuracy-by-re-

experiencing type interaction (F(1,30) = 4.06, p = 0.053, ηp² = 0.12) associated with a 

greater boost in visual re-experiencing over internal re-experiencing for true memories 

(Mvisual-internal = 0.41), compared to false memories (Mvisual-internal = 0.14) and levels of 

visual and internal re-experiencing were not statistically different for false memories 

(t(30) = 1.03, p = 0.31). These findings are consistent with an fMRI study using a similar 

paradigm that found greater vividness for true memories, compared to false memories 

(Kark, Slotnick, and Kensinger, submitted), and further suggests that enhanced re-

experiencing of perceptual details over internal details is unique to true memories. 

Effect of valence on re-experiencing rating for remembered items. Next, we 

tested for valence-specific effects of re-experiencing type, with the prediction that 

negative memories would be associated with the greatest sense of visual re-experiencing, 

compared to neutral and positive memories. Average re-experiencing ratings for hits for 

each participant were entered into a 2x3 rm-ANOVA with factors of re-experiencing type 

(visual, internal) and valence (negative, positive, neutral). Results revealed a main effect 

of re-experiencing type (F(1,30) = 20.68, p < 0.001, ηp² = 0.41), a main effect of valence 

(F(2,60) = 13.48, p < 0.001, ηp² = 0.31), and a re-experiencing type-by-valence 

interaction (F(2,60) = 8.25, p = 0.001, ηp² = 0.22) (average and individual values are 

shown in Figure 1). As in the previous section, the main effect of re-experiencing type 

again demonstrated that visual re-experiencing was stronger than internal re-experiencing 

(Mvisual = 3.23,  SEvisual = 0.07; Minternal = 2.91, SEinternal = 0.08; t(30) = 4.5, p < 0.001) 

across valence categories. The main effect of valence demonstrated similar levels of 
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enhanced re-experiencing of negative and positive memories, compared to neutral 

memories (Mneg = 3.13, SEneg = 0.08; Mneut = 2.75, SEneut = 0.07; Mpos = 3.01, SEpos = 0.07; 

Negative compared to Neutral: t(30) = 4.96, p < 0.001; Positive compared to Neutral: 

t(30) = 4.4, p < 0.001; Negative compared to Positive: t(30) = 1.4, p = 0.18). The 

interaction was driven by bigger differences between visual and internal re-experiencing 

ratings for neutral and positive memories, compared to negative memories (i.e., Visual-

Internal differences: Neutral>Positive>Negative). Thus, an accompanying sense of 

internal re-experiencing drops off precipitously for neutral stimuli and to a lesser extent 

for positive stimuli, compared to negative stimuli. Contrary to the predicted effect, visual 

re-experiencing was similarly enhanced for negative and positive stimuli, compared to 

neutral stimuli (Negative compared to Neutral: t(30) = 3.2, p = 0.003; Positive compared 

to Neutral: t(30) = 3.0, p = 0.006; Negative compared to Positive: t(30) = 0.3, p = 0.77). 

As similar pattern was observed for internal re-experiencing (Negative compared to 

Neutral: t(30) = 5.01, p < 0.001; Positive compared to Neutral: t(30) = 4.6, p < 0.001; 

Negative compared to Positive: t(30) = 1.8, p = 0.08). Together, these findings are 

consistent with emotionally enhanced memory and do not reveal valence-specific effects 

of subjective visual-reexperiencing.  

Analysis of the reaction times to make the re-experiencing rating judgements 

returned no main effects of re-experiencing type (F(1,30) = 1.17, p = 0.29, ηp² = 0.04) or 

valence (F(2,60) = 1.14, p = 0.33, ηp²=0.04) or an interaction (F(2,60) = 0.94, p = 0.40, 

ηp²=0.03) (see Table 1). These data suggest that participants are similarly confident in 
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their re-experiencing judgments and there are no time-on-task confounds (i.e., no 

difference in duration it takes to make an internal vs. visual re-experiencing judgment).  

 

Figure 1. Study 1 visual and internal re-experiencing ratings for hits by valence and response type 
for the full sample (n=31). Re-experiencing ratings for false alarms collapsed across valence are shown in 
black and white. Error bars represent 1 standard error of the mean.  
 

False memory re-experiencing by valence. A subset of twenty-two participants 

had at least two false alarms per valence category (Number of false alarms: Mneg = 4.7, 

Mneut = 5.6, Mpos = 6.6) for analysis of false memory re-experiencing ratings by valence 

and re-experiencing type. Re-experiencing ratings were entered into a 2x3 rm-ANOVA 

with factors of re-experiencing type (visual, internal) and valence (negative, positive, 

neutral). Results returned a was main effect of valence (F(2,42) = 3.78, p = 0.03, ηp² = 

0.15)—with greater overall false re-experiencing of negative stimuli, compared to 

positive and neutral stimuli (Mneg = 2.51, Mneut = 2.26, Mpos = 2.29)—and a trend toward a 

re-experiencing type-by-valence-interaction (F(2,42) = 3.04, p = 0.06, ηp² = 0.13), driven 
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by reduced internal re-experiencing of neutral and positive stimuli, relative to negative 

internal re-experiencing (see Figure 2). Visual re-experiencing was similarly higher than 

internal re-experiencing across valences (ps>0.09)1, but negative false memories were 

also accompanied with a significantly greater sense of internal re-experiencing than 

neutral stimuli (t(21) = 2.82, p = 0.01) and a numerically greater sense of internal re-

experiencing than positive stimuli (t(21) = 2.01, p = 0.06). These findings suggest visual 

re-experiencing similarly accompanies false memories, but that negative valence 

additionally enhances the false sense of re-experiencing thoughts or feelings. 

 

 

Figure 2. Study 1 visual and internal re-experiencing ratings for false alarms by valence and 
response type for a subset of participants (n=22). Error bars represent 1 standard error of the mean.  
 

                                                
1 However, analysis of visual re-experiencing ratings by accuracy (hits, false alarms) only showed a trend 
toward an accuracy-by-valence interaction (F(1,21) = 2.93, p = 0.10, ηp² = 0.12). 
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4.5 METHODS: STUDY 2 

Participants. Twenty-nine participants were recruited to participate in the rTMS 

study. There was no overlap in the participant pool between Study 1 and Study 2. In 

addition to meeting the criteria outlined for Study 1 participants, Study 2 rTMS 

participants were additionally screened for contraindicators for the MRI environment and 

rTMS. Participants were administered the Transcranial Magnetic Stimulation Safety 

Screening Form (adapted from Keel et al., 2001; Rossi et al., 2011). Exclusion criteria 

were: Metal in the brain or body, potential for pregnancy, left-handedness, recent jetlag, 

or history of epilepsy or seizure (either personal or first-degree relative), migraines or 

frequent headaches, tinnitus, or fainting spells or syncope. Participants were additionally 

instructed to avoid alcohol consumption within 24 hours of their rTMS appointment and 

caffeine with 2 hours of rTMS appointment. Study 2 participants were compensated 

$25/hour for their time.  

Of the twenty-nine participants enrolled, data from four participants were 

removed from all analyses: One participant (22, male) did not return for the recognition 

task on Day 2, one participant (21, male) could not tolerate TMS and withdrew from the 

study, one (25, male) participant did not complete the memory task correctly (only gave 

“Old” responses), and one participant (23, female) was not considered in any between-

subject analyses of the first retrieval block, as they did not tolerate the LOTC stimulation. 

Data from the remaining twenty-five participants were also considered for between-

subject analyses of the first retrieval block (n=11 LOTC stimulation, n=14 Vertex 

stimulation). Four additional participants (2 females) included in the between-subject 
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analysis (Vertex stimulation first) were not entered into the within-subject analyses due to 

inaccuracies of LOTC stimulation (n=3) or technical failure of the second TMS session 

(1 female).  In total, the principal within-subjects data analyses included data for twenty-

one participants (7 males, 14 females; 11 Vertex first, 10 LOTC first). 

Stimuli. The IAPS images and line-drawings were the same as those used in 

Study 1, except the removal of one image per valence category for the encoding stimuli 

(24 images/valence presented during encoding) and six line-drawings at retrieval such 

that each of the two retrieval blocks preceded by rTMS would have an even number of 

stimuli (72 stimuli per block: 12 Old and 12 New for each valence category).  

MRI Acquisition and Processing. An anatomical MRI was required for neuro-

navigated TMS and a resting-state fMRI was also acquired when time allowed. The MRI 

anatomical and resting state acquisition parameters have been described elsewhere (Kark 

and Kensinger, in press). For most participants, the MRI data were acquired on Day 1 

either before or after the encoding task. Six of the twenty-five participants (4 females) 

already had a recent anatomical and resting state scan on file and did not undergo those 

procedures again. The anatomical images were registered to Montreal Neurological 

Institute (MNI) space using SPM8 (Wellcome Department of Cognitive Neurology, 

London, United Kingdom) implemented in MATLAB 2014a (The MathWorks, Natick, 

MA). The transformation matrix outputted from the MNI-registration process was used to 

back-transform the LOTC ROI (MNIxyz=-50, -56, -10) into each participant’s native 

space (see MNI space cluster Figure 3, left, and an example participant in Figure 3, 

right). In their native space, the ROI cluster was used to identify the LOTC posterior 
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inferior temporal gyrus ROI and the stimulation targeted the gyral crown.  An additional 

subpeak (MNIxyz=-52,-56,-18) with a larger cluster extent was also used to guide setting 

the target on the gyral crown. 

 
Figure 3. Visualization of the LOTC ROI in MNI space (left column) and in native space of a sample 
participant (right column), shown in red. The 3D full curvilinear reconstruction of a participant’s brain 
in the top right corner also shows the TMS pulses (orange lines) applied to back-transformed ROI into their 
native space (shown in red). The cyan line depicts the vertex target position and other orange line points to 
the motor hotspot along the precentral gyrus. 
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Procedures. As in Study 1, participants completed the incidental encoding task 

approximately 24 hours before a surprise recognition memory session, this time held at 

Harvard CBS. On Day 1, participants completed consent and screening forms, the 

encoding practice and task, and underwent a brief 30-minute MRI scan (approximately a 

1.5-hour time commitment). On Day 2, participants completed two rTMS sessions and 

the memory tasks (approximately a 4-hour time commitment). On Day 2, participants 

began with instructions and a practice version of the recognition memory task. After co-

registration and motor thresholding (see Neuronavigated rTMS), participants completed 

the recognition memory task split between two sessions: One session preceded by rTMS 

to the Vertex (control region) and the other preceded by rTMS to the LOTC region. The 

stimulation order was alternated across participants. Immediately following each rTMS 

session, participants moved across the testing room from the rTMS chair to the testing 

computer to begin the recognition task. Before beginning the task, participants briefly 

rated the discomfort associated with the rTMS (1-no discomfort, 10-high discomfort; 

Koen et al., 2018) and their current level of sleepiness2 (Stanford Sleepiness Scale [SSS]; 

Hoddes et al., 1972). On average, the retrieval task took approximately 4 minutes for 

participants to complete (range: 2-7 minutes, mode=5 minutes). After the recognition 

blocks, participants were given a 45-minute break in the waiting room to allow the effects 

                                                
2 The SSS rating scale was administered to n=20 and the discomfort rating scale to n=17. There were no 
significant differences in sleepiness after LOTC stimulation compared to Vertex stimulation (MLOTC=2.9, 
SDLOTC=1.5; Mvertex=2.73, SDvertex=1.0; t(14)=0.49, p=0.63) or between the first and second sessions of the 
day (Mfirst=2.93; Mfirst=2.67; p=0.33). However, participants found LOTC stimulation to be significantly 
more uncomfortable than Vertex stimulation (MLOTC=5.4, SDLOTC=2.66; Mvertex=3.53 SDvertex=1.69; 
t(15)=2.84, p=0.01). This was not surprising, given the majority of participants experienced twitching with 
each pulse in the facial and/or neck muscles. However, the degree of difference in Negative d’ between the 
two stimulation sites was not linked differences in sleepiness or discomfort (ps>0.6). 
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of rTMS dissipate before the procedures were repeated for the second rTMS session. 

During the break periods, participants were instructed to not nap and were allowed to 

snack, read, work, or watch a TV series. 

 

Perceptual matching control task. To ensure inhibitory rTMS of the LOTC did 

not interfere with perception of the line-drawing retrieval cues, participants completed 

twelve brief trials of a line-drawing matching task during both retrieval block3. In this 

control task, participants were presented with a line-drawing at the top of the computer 

display with two line-drawings of the same size displayed below (see example trials in 

Figure 4). Participants were instructed to decipher as quickly and accurately as possible if 

the line-drawing on the top matched one of the test line-drawings on the bottom (press 

“1” to indicate the match was on the left, “press 2” if the match is on the right). For 25% 

of trials, there was no match, in which case participants were instructed to press “0”. All 

of the line-drawings in the matching task were completely extraneous to the memory 

tasks. To make the task more challenging, line-drawings within a match trial were 

equated for edge density so that judgements could not be made based on the amount of 

visual detail available. Edge density was also matched across retrieval blocks, to ensure 

that one matching block was not more difficult than the other. Matching task performance 

was computed as the percent correct for each block and compared between retrieval 

                                                
3For the majority of participants, these twelve trials occur consecutively at the beginning of each 
recognition block. However, the first six participants in the study completed these trials interleaved with 
memory trials throughout the retrieval blocks. The procedures were changed to limit the possibility of 
introducing a set-shifting burden that was not present in Study 1. 
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blocks (LOTC and vertex) to confirm that any memory-related effects were not due to 

differences in low-level visual processing effects of no interest.  

 

 
Figure 4. Perceptual matching control task. For each of the twelve trials that preceded the onset of the 
recognition memory tasks, participants were instructed to decide if the line-drawing shown central in the 
top row matched one of the two line-drawings displayed in the second row. 4A) For example, if the 
matching line-drawing was on the right, participant’s pressed “2”. 4B) If there was no matching line-
drawings (25% of trials), participants pressed “0”. 

 

 

Neuronavigated rTMS.  

Equipment and co-registration. Frameless stereotactic neuronavigation procedures 

were carried out at Harvard CBS using a MagPro X100 with MagOption Magnetic 

Stimulator (MagVenture Inc., Alpharetta, GA) in conjunction with the Brainsight 2 

Neuronavigation System (Rogue, Montreal, Canada) and a Polaris infrared camera 

(Northern Digital Inc). Repetitive TMS was delivered using a MagVenture Cool-B65 A/P 

dynamic cooled butterfly coil, which is optimized for high repetition rates and long pulse 

trains. Motor threshold pulses were applied using a MagVenture C-B60 butterfly coil. 
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 For co-registration, participants were fitted with a Velcro headband with three 

infrared position sensors. Using common co-registration reference points (i.e., tip of nose, 

nasion, intertragal notches), participants were co-registered to their individual anatomical 

image and 3D reconstructions of their brain and scalp using a tracked-pointer tool. 

Following the initial co-registration, additional points were added across the scalp to 

increase the accuracy of co-registration until it was within a target range of 2-3mm.  

Motor threshold and stimulator intensity. Stimulator intensity was individualized 

using the motor threshold by measuring motor-evoked potentials (MEPs)—the minimum 

intensity that can induce motor evoked potentials 50% of the time—as defined by the 

International Committee of Clinical Neurophysiology (Rossini et al., 1994; Rossini et al., 

2015). MEPs were recorded using an EMG amplifier in conjunction with PowerLab 

(ADInstruments). The mean motor threshold was 58% of maximum output (SD = 12.4%, 

range: 41-79). For safety and comfort, stimulator intensity was capped at a maximum of 

75% output, which was also the default stimulation intensity if no motor threshold was 

detected at 75% maximum output (as was the case for n=6 of the within-subject analysis 

participants). When necessary, the stimulator intensity was also adjusted if a participant 

experienced excessive discomfort related to facial twitching when a sample pulse was 

applied to LOTC before the onset of rTMS. On average, stimulation intensity for the 

within-subject sample was set to M = 64.9% (SD = 9.2%, range: 48-75%), which on 

average corresponded to 119% of their individual motor thresholds (SD = 3.4%, range: 

110-120%).  
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Stimulation targets and protocol. The LOTC stimulation target was set such that 

the coil was approximately perpendicular to the skull and the coil handle was positioned 

posteriorly and upward approximately 45° above the horizontal, with minor adjustments 

(±15°) to ensure the TMS coil was not pressing on the participant’s ear. The vertex was 

chosen as the control stimulation site—as it is assumed to not participate in memory 

processes (Koen et al., 2018; Thakral et al., 2017)—and was defined anatomically at the 

interaction of the central sulcus with the longitudinal fissure. For vertex stimulation, the 

coil was held approximately perpendicular to the scalp in the upright position (i.e., the 

coil handle toward the back of the head).  

Each of the two separate stimulation sessions (LOTC and vertex control) 

consisted of 12-17 minutes of stimulation at a low frequency (1 Hz), which is common 

stimulation frequency that has shown to decrease cortical excitability in visual cortex 

(Boroojerdi et al., 2000). Given the length of the retrieval task (~5 minutes), participants 

were required to have at least 12 minutes4 of accurate stimulation (within 3mm of the 

target). On average, 98.5% (SD = 3%) of pulses were delivered within 3 mm of the target 

locations on the scalp surface. Average distance from the target during stimulation was 

minimal (Vertex: M = 0.64mm, SD = 0.26mm; LOTC: M = 0.87mm, SD = 0.31mm) but 

was significantly lower for vertex stimulation, compared to LOTC stimulation (p = 0.01). 

                                                
4 The aim was to stimulate for 17 minutes, but some participants could not tolerate the feeling of the TMS 
pulses longer than 12 minutes. Since the recognition task blocks took ~5 mins or less to complete, any 
participant with more than 12 minutes of useable TMS points were included in the analysis. Given that 15 
minutes of 1 Hz TMS can inhibit visual cortex for up to 10 minutes (Boroojerdi et al., 2000), 12 minutes of 
rTMS should inhibit visual cortex for up to ~8 minutes. 
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Average angular and twist error were similar between the two stimulation sites (ps > 

0.14) 

 

Dependent variables. 

The analyses focus on the dependent variables that address the a priori hypotheses that 

LOTC stimulation modulates the: 1) Likelihood of bringing a negative memory to mind 

(memory performance as calculated by d’=[z(HitRate)-z(FalseAlarmRate)]), 2) Strength 

of re-experiencing the visual details (average visual and internal re-experiencing ratings), 

and 3) Confidence in memory-related judgements (reaction times to make the Old/New 

and re-experiencing rating judgements). 

4.6 RESULTS: STUDY 2  

Contrary to our predictions, there were no effects of LOTC stimulation, compared to 

vertex, across any of the memory measures. The descriptive statistics for each measure 

and stimulation site are listed in Table 1. 

 Perceptual matching task. Study 2 included an additional perceptual matching 

task, to ensure LOTC inhibitory TMS did not influence the ability to make perceptual 

matching judgements of line-drawings that were completely extraneous to the recognition 

memory task. Seventeen out of twenty-one participants scored 100% on both blocks of 

the matching task (Vertex: M = 98%, SD = 5%; LOTC: M = 99%, SD = 3%) and there 

was no significant performance difference between the two stimulation sites (p = .08). 
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These findings suggest LOTC stimulation did not impair perceptual abilities, compared to 

vertex stimulation. 

Memory performance. Results of a 2x3 rm-ANOVA with factors of stimulation 

site (LOTC, vertex) and valence (negative, neutral, positive) revealed no main effects of 

stimulation site (F(1,20) = 0.68, p = 0.42, ηp² = 0.03), valence (F(2,40) = 0.76, p = 0.48, 

ηp² = 0.04), or a stimulation site-by-valence interaction (F(2,40) = 0.39, p = 0.68, ηp² = 

0.02) on memory performance. The results of nine paired sample t-tests also returned no 

significant effects of stimulation site or valence on memory performance (all ps > 0.2). A 

follow-up between-subjects analysis was conducted using behavioral data from each 

participant’s first stimulation site of Day 2. Results of a mixed repeated-measures 

ANOVA with a between-subjects factor of first stimulation site (LOTC, vertex) and a 

within-subject factor of valence (negative, neutral, positive) also returned no effect of 

valence (F(2,46) = 0.75, p = 0.48, ηp² = 0.03) or a valence-by-stimulation site interaction 

(F(2,46) = 0.63, p = 0.39, ηp² = 0.03). Individual independent samples t-tests comparing 

participants based on first stimulation site (LOTC, vertex) also returned no differences in 

d’ across the valences (ps > 0.4). 

In Study 2, overall memory performance in the TMS environment at Harvard 

CBS (M = 1.22, SD = 0.32) was similar to the performance level observed in Study 1 in 

the laboratory at Boston College without TMS (M = 1.12, SD = 0.32). Although positive 

memory performance did not exceed that of neutral for either stimulation condition in 

Study 2 (ps > 0.4), a mixed rm-ANOVA with a between-subject factor of group (study 1, 

study 2) and a within-subjects factor of valence (negative, neutral, positive) returned no 
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evidence of a main effect of valence (F(2,100) = 2.24, p = 0.11, ηp² = 0.04) or valence-

by-group interaction (F(2,100) = 0.74, p = 0.48, ηp² = 0.02). Taken together, these 

findings suggest similar levels of memory performance across Studies 1 and 2 and that 

inhibitory LOTC stimulation did not alter memory discriminability (d’), compared to 

Vertex stimulation5. 

Despite a null effect of stimulation site, there was quite a bit of variability across 

participants (see individual data lines in Figure 5), with eleven participants showing a 

numerical reduction in Negative d’ associated with LOTC stimulation, compared to 

Vertex6. This raises the intriguing possibility that other factors influence the effect of 

LOTC inhibition on emotional memory retrieval (e.g., individual differences in intrinsic 

connectivity of the stimulation site, trait emotional memory biases, or the spatial 

distribution of the induced electric field, see Discussion). 

                                                
5 Follow-up repeated measures ANOVA also confirmed no effect of stimulation site on normalized 
criterion (c/d’) (ps > 0.2), suggesting rTMS site does not modulate the willingness to indicate a stimulus is 
Old or New, although there was a pattern of a more conservative response bias for negative and neutral 
stimuli overall and a drop toward a more conservative value following LOTC stimulation. 
6 Follow-up analyses suggest the degree of difference in Negative d’ between the two stimulation sites 
(Negdprimevertex-NegdprimeLOTC) was not linked with the intensity of the TMS stimulation (r(21)=0.30, 
p=0.18). 
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Figure 5. Average d-prime memory performance values by valence and rTMS stimulation site 
(plotted in black). Individual data points are shown behind the means. The three participants with a 
modified stimulation site (i.e., moved more superior or posterior of the ear and out of the LOTC) are 
indicated with open circles and dotted lines. Error bars represent 1 standard error of the mean. 

 

Re-experiencing ratings by accuracy. As in Study 1, there was a main effect of 

accuracy (p < 0.001) in Study 2 reflecting greater re-experiencing of true memories, 

compared to false memories. There was also no accuracy-by-stimulation site interaction 

(p = 0.51), suggesting TMS did not influence the re-experiencing levels of false 

memories. There were not a sufficient number of false alarms to analyze false re-

experiencing by re-experiencing type, stimulus site, and valence (i.e., only 8 participants 

had enough trials to conduct a repeated-measures ANOVA). 
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Effect of valence on re-experiencing rating for remembered items by 

stimulation site. Re-experiencing ratings for hits were entered in a 2x2x3 rm-ANOVA 

with factors of stimulation site (LOTC, vertex), re-experiencing rating type (visual, 

internal), and valence (negative, neutral, positive). Results returned a significant main 

effect of valence (F(2,40) = 9.86, p < 0.001, ηp² = 0.33) qualified by a valence-by-re-

experiencing rating type interaction F(2,40) = 7.21, p = 0.002, ηp² = 0.27). Aside from a 

trend toward a stimulation site-by- re-experiencing rating type interaction (F(1,20) = 4.1, 

p = 0.06, ηp² = 0.17) (due to increased visual compared to internal re-experiencing with 

LOTC stimulation, t(20) = 2.4, p=0.024, but not with vertex stimulation, t(20) = 0.4,  p = 

0.68) there were no effects of stimulation site on the re-experiencing ratings (see average 

and individual data in Figure 6). A similar pattern was returned by a mixed ANOVA with 

a between-subjects factor of study group (study 1, study 2) and within-subjects’ factors of 

valence, and re-experiencing type (visual, internal). However, a re-experiencing type by 

group interaction (F(1,50) = 5.2, p = 0.03, ηp² = 0.09) was driven by greater visual re-

experiencing in Study 1 compared to Study 2 (t(50) = 2.0, p = 0.048, independent 

samples t-test) and greater visual compared to internal re-experiencing in Study 1 

compared to Study 2 (t(30) = 4.5, p < 0.001, paired samples t-test). Unlike Study 1, visual 

and internal re-experiencing did not differ in Study 2 (F(1,20) = 1.9, p = 0.18, ηp² = 0.09, 

t(20)=1.4, p=0.2, paired samples t-test). These data suggest that either the TMS itself or 

the TMS environment was associated with reduced visual re-experiencing.  

Previous work has shown that TMS of early visual cortex can drive memory 

confidence (Karanian and Slotnick, 2018). In the current study, there was interaction 
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between stimulation site and re-experiencing accuracy (hits, false alarms), F(1,19) = 0.45, 

p = 0.51, ηp² = 0.02, suggesting no effect of TMS site on overall greater re-experiencing 

for true compared to false memories. Average false memory visual and internal re-

experiencing ratings were similar across Study 1 and Study 2 re-experiencing (ps > 0.4, 

independent samples t-tests) and between re-experiencing rating types (ps > 0.15, paired 

samples t-tests).  

 

 
Figure 6. Average re-experiencing ratings by valence,  re-experiencing type, and stimulation site 
(plotted in black). Individual data points are shown behind the means. The three participants with a 
modified stimulation site (i.e., moved more superior or posterior of the ear and out of the LOTC) are 
indicated with open circles and dotted lines. Error bars represent 1standard error of the mean. 
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Figure 7. Study 2 average and individual re-experiencing ratings by valence and rating collapsed 
across stimulation site. Error bars represent 1standard error of the mean. 
 

Reaction times. There were no effects of stimulation site on reaction times to 

make the Old/New judgements (ps > 0.21) or re-experiencing ratings (ps > 0.17). A 

significant valence by re-experiencing type interaction (F(2,40) = 8.83, p = 0.001, ηp² = 

0.31) reflected more rapid internal re-experiencing responses to negative stimuli than 

neutral (t(20) = 3.5, p = 0.002) and positive internal re-experiencing (t(20) = 3.0, p = 

0.007), which were similar (t(20) = 0.13, p = 0.90). Emotional visual re-experiencing 

reaction times were equally slower than neutral re-experiencing ratings (t(20) = 0.25, p = 

0.02).  

Taken together, these results suggest no group effects of LOTC stimulation on 

negative memory performance, re-experiencing, or reaction times.   
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Table 1. Descriptive statistics of memory measures and reaction times for Study 1 and Study 2. Mean (SD) 
by study and stimulation site.  

    Study 1 Study 2  

  n=31 n=21 

Outcome measure Valence no TMS  LOTC Vertex 

Memory Measures 
D-prime Neg 1.15 (0.41) 1.06 (0.78) 1.17 (0.66) 

 Neut 1.10 (0.41) 1.26 (0.67) 1.24 (0.69) 

 Pos 1.32 (0.53) 1.19 (0.45) 1.39 (0.66) 

     
Re-experiencing      

Visual 

Neg 3.24 (0.09)~ 3.11 (0.42) 2.90 (0.59) 

Neut 3.04 (0.08) 2.95 (0.51) 2.78 (0.45) 

Pos 3.22 (0.08)* 2.97 (0.45) 2.97 (0.46) 

False Alarms 2.45 (0.11) 2.37 (0.31) 2.30 (0.39) 
     

Internal 

Neg 3.01 (0.59) 3.11 (0.54) 3.03 (0.64) 

Neut 2.47 (0.52) 2.57 (0.61) 2.57 (0.57) 

Pos 2.80 (0.51) 2.79 (0.50) 2.93 (0.55) 

False Alarms 2.48 (0.68) 2.31 (0.30) 2.39 (0.53) 

     
Reaction Times 

Re-experiencing      

Visual 
Neg 772 (364)*** 1067 (344) 1141 (442) 

Neut 806 (394)* 1021 (365) 1026 (349) 

Pos 752 (353)*** 1077 (358) 1174 (425) 

     

Internal 
Neg 827 (352) 1000 (381) 979 (452) 

Neut 872 (389)~ 1064 (349) 1097 (471) 

Pos 866 (340)* 1089 (334) 1063 (477) 
*Independent samples comparison between Study 1 and the stimulation-site collapsed values from Study 2 
(*p<0.05, ***p<.01). 
 



  
 

187	

4.7 DISCUSSION 

The present two-part study examined 1) the effect of valence on the subjective sense of 

visual and internal re-experiencing and 2) utilized rTMS to examine the effects of 

occipito-temporal inhibition on retrieval and re-experiencing of negative memories. The 

aim of Study 1 was to test the effect of valence on visual and internal memory re-

experiencing. Contrary to our predictions, negative and positive memories showed 

similar levels of enhanced subjective visual re-experiencing, compared to neutral 

memory visual re-experiencing. Next, we examined the effect rTMS to the posterior 

inferior temporal gyrus—an area of LOTC that has shown consistent valence-specific 

effects in a series of fMRI studies—compared to stimulation of the vertex. Contrary to 

the hypothesized effect, we found no evidence for a neuromodulatory effect of 

stimulation site on objective or subjective memory overall or as a function of valence. 

The current findings suggest that while the LOTC activation has consistently been 

correlated with negative memory formation and retrieval, it might not be necessary to 

bring negative memories to mind. Future work is needed to determine the importance of 

this particular LOTC ROI in negative memory retrieval. 

Behaviorally, we also did not find evidence for valence-specific enhancement of 

negative visual re-experiencing. However, it is possible that subjective levels of re-

experiencing can be similar but the content of the negative and positive memoranda 

might vary by valence. Objective measures of visual specificity or precision might be 

needed to reveal valence-specific effects of subjective visual re-experiencing that could 

also be modulated by LOTC-rTMS (see General Discussion of this dissertation). 
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The LOTC ROI was chosen from the overlap of several statistic maps from fMRI 

studies linking activation in this area with successful memory formation, retrieval, and a 

valence-specific correlation with vividness (Kark and Kensinger, 2015, in press; Kark et 

al., submitted). Given the number of free parameters in TMS experiments (e.g., 

stimulation type [repetitive, trial-level, theta burst, rhythmic], coil orientation) and 

spatial-extent of visuocortical areas associated with negative memory enhancement, we 

cannot strongly conclude from the current null results that activation in any of these 

regions during retrieval are not critical to negative memory. First, a right hemisphere 

OTC (ROTC) cluster has also appeared in these fMRI maps (Kark and Kensinger, 2015, 

in press), but did not appear to be linked with valence-specific vividness like the left 

hemisphere at the whole-brain level (Kark et al., submitted). Previous work has shown 

that unilateral lesions of the inferior temporal cortex cause deficits in visual 

discrimination and chromatic sensitivity in the contralateral field during perception 

(Merigan and Saunders, 2004). It is possible that the memory representations inhibited by 

rTMS to the LOTC can be compensated for by the ROTC, leaving behavioral output 

unaffected. To test this hypothesis, a double-coil TMS method could be used to apply 

bilateral OTC stimulation or the stimulus presentation paradigm could leverage visual 

field differences. Second, visual processing region interference might require stronger or 

online, trial-level or theta-burst stimulation to have effects on memory strength 

(Waldhauser et al., 2016). Third, it could be that this particular area of posterior inferior 

temporal gyrus is not necessary for all participants to remember and re-experience 

negative events—the effect could depend on the level negative or positive memory bias a 
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person typically exhibits. Recent work suggests that negative-biased retrieval activity in 

visuocortical areas is linked with negative memory biases across participants (Kark and 

Kensinger, in press), suggesting rTMS to more posterior visual regions could reduce the 

bias in participants who show a negative memory bias under vertex stimulation. 

While there were no group effects of LOTC stimulation on memory performance 

or re-experiencing, future work is needed to understand the origins of the individual 

differences observed in the current study. Two sources of variability could stem from 

individual brain anatomy and function. Anatomically, while TMS is applied focally with 

great precision using neuronavigation techniques, the spatial distribution and propagation 

of the induced electric fields within the brain can vary by a person’s individual anatomy 

(Saturnino et al., 2018). Future analysis of the induced magnetic field maps using 

software such as SimNIBS (http://simnibs.de) could provide insights into the effects of 

rTMS on memory and also aide in individualizing TMS targets and stimulation 

parameters. On a functional level, rTMS is known to not only affect activity in the local 

target regions, but also the inter-regional functional connectivity that can modulate 

memory (Halko et al., 2013; Siebner and Rothwell, 2003; Wang et al., 2014). 

Specifically, rTMS can exert a greater influence on the interconnectivity amongst brain 

regions that show greater coupling at baseline (Wang et al., 2014). These findings raise 

the intriguing possibility that individual differences in the susceptibility to rTMS on 

emotional memory retrieval are related to intrinsic connectivity of the LOTC stimulation 

site. For instance, LOTC-rTMS related memory disruptions might be strongest for those 

participants with the greatest intrinsic connectivity with other structures that have 
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consistently been associated with emotional memory (e.g., amygdala, hippocampus) or 

valence-specific negative memory retrieval (e.g., parahippocampal cortex or broader 

ventral visual stream). Future analysis of the resting-state scans collected for the majority 

of the participants in the current study will test the predication that the effect of LOTC 

stimulation on negative memory retrieval could depend on intrinsic LOTC connectivity 

strength with the amygdala and/or parahippocampal cortex. Further, rTMS during 

memory retrieval can influence subsequent retrieval attempts (for a review see Sandrini, 

Cohen, & Censor, 2015), which suggests that while LOTC stimulation might not have 

had an effect on retrieval immediately after stimulation, it is possible that retrieval under 

LOTC could influence later memory. Item-level analysis of repeat recognition test7 will 

test the effect of prior stimulation site on memory performance and re-experiencing. 

Finally, it is also possible that the alternative hypothesis is true: Visual processing 

reactivation is not necessary for retrieval of negative memories. What then is the role of 

the observed valence-specific memory enhancements in visual processing regions? Prior 

work has shown that the subjective “flash” emotional vividness goes beyond perceptual 

vividness (Todd et al., 2013), suggesting low-level perceptual enhancements and 

reactivations are not necessary to feel a sense of re-experiencing. However future work is 

needed to test that possibly that activation in these areas are needed to accurately 

reconstruct the visual aspects of a visual memory.  

                                                
7 When time allowed, participants were administered a repeat memory test at the very end of Day 2, at least 
40 minutes after their second rTMS session. In the repeat memory test, all of the old line-drawings from 
Day 1 were presented intermixed with a new set of line-drawings not previously seen during any of the 
study or line-drawing matching tasks. The repeat recognition memory test had the same format (Old/New 
judgment following by visual and internal re-experiencing ratings for “Old” judgements) as the other 
memory task, except there was no line-drawing matching task. The repeat memory test was completed in 
one session lasting approximately 10 minutes. 
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It is well-documented that the amygdala is crucial for enhanced memory for 

negative events (Buchanan, 2007; Buchanan et al., 2005; Packard and Cahill, 2001). 

However, we did not find a link between amygdala activation and retrieval success or 

vividness. Instead, the group fMRI negative memory effects shown in Parts I-III were 

consistently accompanied by enhancements of ventro-lateral prefrontal (VLPFC) and 

parietal areas. In parietal cortex, the angular gyrus has been linked with objective 

memory precision (Richter et al., 2016) and TMS work has shown that the angular gyrus 

is necessary for retrieval of episodic details (Thakral et al., 2017), a region also 

associated with objective memory precision (Richter et al., 2016). On the other hand, the 

VLPFC has been linked with cognitive control of memory (Nyhus and Badre, 2015) and 

recent TMS work has suggested a causal link between VLPFC activation and emotional 

memory formation (Weintraub-Brevda and Chua, 2018). To that end, unpublished 

findings from the fMRI dataset used in Parts I-III suggest functional connectivity of the 

VLPFC with the LOTC, angular gyrus, and hippocampus, is related to successful 

retrieval of negative memories. Thus, activation in fronto-parietal regions might be 

necessary for successful search, reactivation, and monitoring of negative visual memory 

traces. These regions present potential alternative sites that could be causally linked to 

negative visual memory enhancements. 

In conclusion, inhibitory rTMS to a focal, unilateral portion of the left occipito-

temporal cortex did not influence memory performance or re-experiencing compared to 

the vertex control site overall or as a function of stimulus valence. However, the LOTC 

ROI targeted in the current study is one within a broader ventral visual network that has 
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been implicated in valence-specific negative memory retrieval. Future work is needed to 

understand the necessity of visuocortical activation in emotional memory retrieval and 

subjective, compared to objective, visual memory reconstruction and re-experiencing. 
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GENERAL DISCUSSION 

The present research investigated valence-specific neural processes that support 

the successful formation and retrieval of negative memories. This four-part series of 

research tested multiple predictions of the valence-based ‘NEVER’ model of emotional 

memory (Bowen et al., 2018). The fMRI findings of Parts I-III provide evidence of 

valence-specific enhancements in activation and functional connectivity of the ventral 

visual stream across multiple phases of memory: Beginning with perception during 

encoding, persisting into post-encoding rest periods, and evident in patterns of successful 

and vivid negative memory retrieval.  

The current set of experiments went beyond the controls of prior work to ensure 

negative and positive stimuli were matched on the basis of arousal, that low-level visual 

statistics were controlled at the item-level in fMRI models in order to minimize stimulus-

bound effects of no interest, and follow-up analyses controlling for arousal at the item- 

and participant-level were utilized to demarcate the neural effects that were truly valence-

specific. The valence-specific patterns (i.e., Negative > Neutral > Positive) observed here 

cannot be sufficiently explained by an exclusively arousal-based account of emotional 

memory, as the positive stimuli were more arousing and of greater emotional valence 

than the neutral stimuli. The following discussion aims to 1) connect broad themes across 

Parts I-IV, 2) situate the work within prominent frameworks of emotional memory, 3) 

speculate on the underlying neurobiology and related phenomenology of the observed 
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patterns, and 4) outline the limitations and future directions in valence-based 

examinations of emotional memory. 

 

Encoding-related amygdala-visuocortical coupling supports negative memories 

 

Physiological influences of the parasympathetic nervous system 

In Part I,  Kark and Kensinger (submitted) directly tested the sensory-focused 

encoding tenant of the ‘NEVER’ model and demonstrated that arousal-related amygdala-

V1 coupling during encoding enhances subsequent negative memory vividness, but not 

positive or neutral memory vividness. The observed PAI effect is consistent with 

valence-specific influences of arousal on memory (Mickley Steinmetz and Kensinger, 

2009; Mickley Steinmetz et al., 2010) and the localization of the effects to early visual 

cortex furthers implies that negative valence influences perceptual processes during 

encoding that are relevant to later memory vividness. These findings are broadly 

consistent with psychophysical work that suggests HRD—a freezing-like behavior—is 

associated with enhanced visual sensitivity (Lojowska et al., 2018), and adds that these 

processes have long-term consequences on later memory for those percepts.  

The novel aspect of the study in Part I was the use of trial-level HRD responses 

during concurrent fMRI, which enabled analysis of the neural correlates of 

parasympathetic influences as a function of valence and later memory vividness. 

Parasympathetic HRD responses result from cholinergic activation of central amygdala 

projections to the medullar nuclei and ventrolateral periaqueductal gray that, in turn, 
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activate the vagus nerve, releasing to acetylcholine onto the sinus node of the heart, 

which slows the heart rate (Roelofs, 2017). Thus, HRD serves as a proxy of vagal 

regulation and possibly cholinergic activation (Porges, 2011). In addition to brain-stem 

influences on heart rate, activation of the amygdala can initiate release of acetylcholine 

throughout the cortex via the nucleus basalis, resulting in enhanced vigilance and 

‘cortical attention’ to negative stimuli (Corbetta and Shulman, 2002; Demeter and Sarter, 

2013; Phelps and LeDoux, 2005). Consistent with these findings, increasing magnitudes 

of HRD responses were associated with increasing levels of amygdala functional 

connectivity with the ventrolateral prefrontal cortex and the ventral parietal attention 

areas, regardless of valence. In V1, acetylcholine release has been linked with enhanced 

perception, including increases in signal-to-noise ratios, contrast sensitivity, and 

orientation tuning (Breitmeyer et al., 2018; Galvin et al., 2018; Kang et al., 2014; Soma 

et al., 2013). Recent work has also shown that emotion enhances precision of visual 

memory encoding (Cooper et al., in press). Thus, it is plausible that parasympathetic 

HRD responses enhance the perception of negative visual stimuli via cholinergic 

interactions between the amygdala and early visual cortex. This enhanced visual 

processing at encoding could influence the resolution or extent of content that is available 

to support later vivid retrieval of negative memories. These arousal-related interactions 

could also plausibly “tag” those visual memory traces for prioritized consolidation 

(Bennion et al., 2015).  

Prior work has established a sympathetic nervous system framework of arousal-

enhanced memory, which purports that salient stimuli activate the norepinephrine-locus 
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coeruleus system, enhancing selective attention and top-down prioritization of goal-

relevant stimuli during encoding, which enhances subsequent memory representations 

(Clewett et al., 2018; Glutamate Amplifies Noradrenergic Effects (GANE) model: 

Mather et al., 2016; Arousal biased competition theory: Mather and Sutherland, 2011). 

Here, the PAI effect of amygdala-V1 coupling survived controlling for sympathetic 

influences, which raises the intriguing possibility of a complementary parasympathetic 

cholinergic mechanism that enhances visual sensitivity to negative stimuli, which has 

downstream effects on subjective vividness at retrieval. Previous work has shown that 

cholinergic activation of the amygdala can elicit long-term potentiation (Jiang et al., 

2016) and enhance memory consolidation, but likely acts downstream from the 

influences of the norepinephrine system (reviewed in Roozendaal and McGaugh, 2011). 

Although parasympathetic influences on memory might be secondary to the effects of the 

sympathetic nervous system, the findings of Part I nevertheless suggest that a 

qualitatively different, valence-based pattern might exist for parasympathetic influences 

on emotional memory processes.  

 

Post-encoding influences  

Whereas Part I revealed valence-specific effects of arousal on amygdala-

visuocortical connectivity during encoding, Part II demonstrated a link between 

behavioral negative memory bias and amygdala-visuocortical coupling during post-

encoding rest. One criticism of the NEVER model is that valence-differences could be 

driven by stimulus-bound differences, but the absence of external stimuli during resting-
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state fMRI circumvented this possibility. Further, the exploratory moderated mediation 

results provided support for a core prediction of the NEVER model: Sensory-focused 

encoding of negative stimuli guides recapitulation of sensory activation. The results of 

the mediation analysis suggests that sensory-focused post-encoding amygdala coupling 

might set-up the brain for a retrieval mode that is biased toward retrieval of negative 

visual memory traces and drives the degree of the behavioral negative memory bias 

across individuals. The complete moderated mediation connected the effects of valence 

across multiple memory phases and further stipulated that the post-encoding-to-retrieval 

effects in visuocortical areas were moderated by co-occurring increases in post-encoding 

hippocampal coupling, which is consistent with the known amygdala-hippocampal 

interactions in emotional memory (Phelps, 2004). Interestingly, while post-encoding 

amygdala-visuocortical coupling changes were not correlated with neutral memory 

performance, post-encoding decreases in amygdala-visuocortical connectivity were 

associated a positive memory bias, implying a shift away from affective-sensory 

processing in positive memory bias (see Part II, Figure 4).  

However, the post-encoding results in Part II only capture approximately 7 

minutes of post-encoding amygdala resting connectivity out of a 24-hour study-test delay. 

Future work is needed to confirm if sleep-related selective consolidation of negative 

visual memory traces (as observed in Bennion et al., 2016) also accounts for a significant 

source of variability in negative memory biases, which would be consistent with 

consolidation-related predictions of the NEVER model. Previous work has shown links 

between individual differences in stress and post-learning amygdala-hippocampal 
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interactions (de Voogd et al., 2016; de Voogd et al., 2017). Further work is also needed to 

test if stress enhances the moderating effect of hippocampal connectivity on the 

relationship between amygdala-visuocortical coupling and negative memory biases, 

which could explain individual differences of stress reactivity on emotional memory 

biases.  

 

Encoding-related amygdala-medial frontal coupling supports positive memories 

 

The primary hypotheses of the current work were centered around negative valence, but a 

secondary hypothesis across Parts I-III  predicted a link between prefrontal 

enhancements and positive memory outcomes. First, although it was not reported in Part 

I, there was valence-specific effect of HRD-related amygdala-dorsal medial prefrontal 

cortex (DMPFC) connectivity for positive stimuli. While amygdala-DMPFC connectivity 

was not related to subsequent memory vividness for positive stimuli (i.e., null PAI 

effect), future work is needed to examine if arousal-related attentional or self-referential 

processes in the DMPFC (Gutchess and Kensinger, 2018) for pleasant information 

confers a later valence-specific memory benefit. Interestingly, cholinergic release in 

medial PFC has been associated with detection of appetitive cues (Demeter and Sarter, 

2013), again raising the possibility of arousal-related cholinergic influences of the 

amygdala during perception of emotional stimuli. Second, in striking opposition to the 

link between post-encoding visuocortical effects and negative memory biases, Part II also 

demonstrated a link between positive memory bias and amygdala-dACC coupling. The 
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dACC has consistently been associated with cognitive control of emotion (Ochsner et al., 

2002), positivity bias, emotional stability (Brassen et al., 2011), and trait optimism 

(Sharot et al., 2007). It is possible that 7 mins of post-encoding resting state scanning 

captures the participants’ proclivity toward rethinking their feelings and engaging in 

reappraisal after viewing emotional pictures. If these individuals tend to re-appraise the 

negative stimuli, it might shift memory processes away from sensory areas. 

Implementation of an easy visual distractor task during the resting state scans (e.g., arrow 

direction task) could help reduce the possibility of active rehearsal or visual rumination 

of the negative stimuli or reappraisal of positive stimuli and adjudicate between the 

rehearsal/re-appraisal compared to consolidation accounts of the results of Part II. 

 
 

Retrieval-related enhancements of the ventral visual stream and negative memories 

 

Ventral visual activation in negative memory vividness 

 Whereas Parts I and II focused on encoding and peri-encoding influences on 

negative memories, Part III examined the effect of valence on the neural correlates of 

true and false memory vividness during retrieval. True negative memory vividness was 

specifically associated with retrieval-related activity in the left occipito-temporal and 

parahippocampal cortices—clusters that importantly also showed negative memory 

recapitulation effects in Part II (Kark and Kensinger, in press) and in a previous version 

of the study with a short study-test delay (Kark and Kensinger, 2015). These findings 

suggest that activation in these regions is important for both negative memory success 
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and subjective re-experiencing. However, analysis of false alarm vividness ratings 

suggests these areas also contribute to a false sense of vividness for stimuli that were 

never studied. This effect was particularly robust in the parahippocampal cortex, which 

exhibited a whole-brain main effect of valence. Thus, while these regions support 

successful memory, signals from these areas might also endow an individual with a false 

sense of vividness for negative stimuli or reflect false recollections. The results of Part III 

are broadly consistent with behavioral and psychophysiological work that suggest 

emotional true and false memories can be largely indistinguishable and add that neural 

patterns can also look very similar.  

 

Speculation as to the content of negative memoranda 

The current results can only allow for speculation as to the nature of the visual 

content that is brought to mind to support negative memory retrieval and vividness. 

Speculation can be based on what is known about the content (e.g., color, texture, 

granularity, contrast) carried by the brain regions consistently implicated in this work and 

what is known about the timing of their effects. The majority of valence-specific effects 

were observed in the ventral visual stream (the slower, parvocellular “what” pathway), 

with some of the encoding effects extending up the dorsal visual stream (the faster, 

magnocellular “where” pathway) (Kauffmann et al., 2014). Previous work has shown that 

arousal increases visual sensitivity to coarse features (low-spatial frequencies) at the 

expense of fine-grained details (high spatial frequencies), consistent with amygdala-

visual processing enhancements along the magnocellular pathway (Lee et al., 2014; 
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Lojowska et al., 2015). Recent work suggests HRD-related amygdala-V1coupling likely 

emanates predominantly from magnocellular projections of the basolateral amygdala to 

early visual processing regions (Amaral et al., 2003; Lojowska et al., 2018). These 

assertions would first appear to run counter to enhanced memory for visual detail in 

negative memory. However, the “coarse-to-fine” hypothesis (Kauffmann et al., 2014) 

purports that low-spatial frequency information arrives rapidly along the magnocellular 

pathway—creating a quick and coarse ‘rough draft’ of the percept—that then guides 

more detailed analysis of the color, texture, orientations, edges, and shape information 

carried by the parvocellular pathway. Perhaps enhanced rapid magnocellular processing 

(observed in Part I PAI effects) guides enhanced activation of detailed analysis by the 

ventral pathway, which ends up being more consistently related to negative memory 

processes at the group level (observed in Parts I-III). 

Recollection of color is one aspect of re-experiencing the circumstances that were 

present during the time of encoding. Interestingly, an exact area of right inferior occipital 

gyrus and a similar portion of lingual gyrus that were linked with negative memory biases 

in Part II have also been associated with retrieval-related reactivation of colorful shapes, 

compared to white shapes (MNIxyz = 34,-88,-16; see Ueno et al., 2007). The inferior 

temporal gyrus cluster associated with valence-specific negative memory vividness (Part 

III) has also been implicated in color processing (Bramao et al., 2010; Conway, 2018). 

Perhaps color is one aspect that is enhanced in negative memories. Novel new paradigms 

using objective metrics of visual memory reconstruction have linked vividness with 

objective precision and remembered salience (using continuous color and luminance 
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response sliders) (Cooper et al., in press). These types of paradigms will open new 

avenues for understanding the relationship between subjective memory vividness and 

objective visual memory reconstruction. However, prior work has shown that emotional 

enhancement of perceptual vividness—or the “metaphorical vivid light surrounding 

emotional memories”—goes beyond effects of color (Todd et al., 2013) and the 

perceptual saliency of visual memories literally “fades” (Cooper et al., in press). Hence, it 

is unclear when and how these fine-grain details aid in negative memory retrieval and 

vividness.  

In addition to enhancements in perception, emotion also modulates the scope of 

the visual field of view. Specifically, negative valence is associated with an amygdala-

related narrowing of the perceptual field-of-view—consistent with the weapons-focus 

and emotional memory trade-off effects—whereas positive valence is associated with a 

frontally-mediated broadening of the perceptual field-of-view (Schmitz et al., 2009). 

However, the medial visual cortex PAI effects in V1 would suggest enhanced processing 

of the periphery (Kauffmann et al., 2014), which is consistent with a defensive 

mechanism under threat (i.e., to detect a predator) but would not explain enhanced 

memory for central objects observed in the weapons-focus effect. Further investigation 

employing eye-tracking and psychophysical techniques are needed examine the memory 

consequences of valence-specific effects on the scope of the visual field (broaden, 

narrow) and across visual field eccentricities (central, peripheral). 
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Future Directions 

 

In addition to the future directions of visual re-experiencing of negative 

memories, additional paths for future inquiry center around time: The effect of valence on 

memory for time as well as the temporal unfolding and oscillatory dynamics of emotional 

memory processes.  

 

Effects of valence on temporal memory precision and episodic sequencing  

William James once noted that ‘a certain emotional feeling accompanies the 

intervals of time’ (1890), and research on the effects of emotion on time perception have 

echoed this notion. Previous work has empirically tested the time-emotion paradox 

associated with the old adage that “time flies when you’re having fun.” Indeed, valence-

specific effects of arousal have been found on time duration estimates: The time-emotion 

paradox asserts that positive arousal tends to speed the passage of time, while the 

duration of negative or fearful events tend to be over-estimated (Campbell and Bryant, 

2007; Droit-Volet and Gil, 2009; Fayolle et al., 2015). Valence can also influence 

temporal perceptual acuity (Roberts et al., 2017): Positive valence results in the sense of 

speeded motion, decreased temporal sampling, and a subject sense of blurriness of a 

stimulus in motion, while negative valence is associated with slowing of motion, 

increased temporal sampling, and a sense of choppiness of a stimulus in motion. There is 

also some evidence that negative valence enhances memory for temporal information 
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(D'Argembeau and Van der Linden, 2005). These studies suggest valence-specific effects 

of time perception that could have consequences on later memory. 

FMRI work has shown that the hippocampus is sensitive to time (Barnett et al., 

2014; Hsieh et al., 2014; Thavabalasingam et al., 2018). Recent work from Montchal, 

Reagh, and Yassa (2019) utilized memory for events within an episode of the TV series 

Curb Your Enthusiasm to demonstrate that the lateral entorhinal cortex (LEC), perirhinal 

cortex, and hippocampal CA3 are involved in precise temporal memory judgements. The 

amygdala has been identified as a plausible modulator of emotional time distortions 

(Lake et al., 2016), and is well-positioned within the anterior temporal memory system 

alongside with the LEC and is heavily interconnected with the perirhinal cortex 

(Ranganath and Ritchey, 2012). Given the valence-specific effects of emotional arousal 

on time perception, how would emotional valence influence temporal memory precision 

and would amygdala modulation of LEC be responsible for those distortions or 

enhancements? Future work using dynamic emotional and neutral video stimuli could be 

used to reveal the neural underpinnings of time distortions in emotional memory. The 

findings of such work could be critical to understanding temporal memory precision in 

eyewitness testimony, when witnesses recount the durations and ordinal sequencing of 

often emotional information associated with a crime.   

  

Valence influences on the timing and oscillatory mechanisms of recapitulation 

While the current fMRI studies have revealed the spatial distribution of negative 

memory enhancements in the ventral visual stream, these findings cannot speak to the 
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temporal unfolding of neural effects. Rapid onset, low-frequency oscillations of the 

amygdala entrain hippocampal gamma during processing of emotionally salient 

information (Zheng et al., 2017). The amygdala also promotes gamma oscillations 

throughout the cortex, facilitating emotion memory formation (Headley and Pare, 2013). 

While there is some work examining oscillations and emotional memory, those studies 

typically compare negative to neutral stimuli. The parahippocampal cortex was 

implicated in negative memory enhancements across Parts I-III and given the role of the 

parahippocampal cortex in scene memory, this substrate could also represent an area that 

is necessary for retrieving vivid memories of negative scenes, or even falsely 

constructing negative memories. While intracranial recording studies of reinstatement 

have reported a greater role of parahippocampal cortex gamma in encoding, compared to 

retrieval (Johnson and Knight, 2015; Kucewicz et al., 2014), there are no studies 

examining the possibility that negative valence could enhance retrieval-related 

reinstatement of gamma during retrieval of negative scenes. Future work is needed to 

understand the timing of recapitulation processes and their oscillatory dynamics.  

 

Conclusions  

Together, these studies have laid a foundation for future work on the effect of 

emotional valence on perception and memory and highlight the need for valence-based 

accounts of emotional memory. Distressing and intrusive visual memory and imagery is 

common across a range of psychological disorders, from post-traumatic stress disorder 

and social anxiety to eating disorders and obsessive-compulsive disorder (Brewin et al., 
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2010). The basic science understanding of valence differences in perception and memory 

are crucial for our understanding not only of how healthy individuals experience and re-

experience their emotional worlds, but also how those processes go awry in 

psychopathology. 
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