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Overall Introduction: Studies in Health Accessibility 

Studies conducted since the establishment of the Affordable Care Act have continued to 

find significant differences in health care services, access and health status of residents in rural 

versus urban areas (Weinhold, 2014; Douthit, 2015). The largest differences concern limited 

access to high quality providers and scarcity of healthcare technology in rural areas (Ricketts, 2000; 

Hart, 2005; Douthit, 2015). Residents of rural areas have longer travel times to access basic health 

care screening services leading, for example, to higher rates of late stage cancer (Williams, 2015). 

Women without appropriate access to healthcare during particular stages of pregnancy also have 

poorer outcomes than those women with regular access to care (Evans and Lein, 2005).  

 What many urban-rural studies fail to consider is the urban-to-rural gradient in counties of 

mixed urban and rural 

populations.  Such population 

density gradients are not an 

isolated phenomenon in the 

United States. In fact, 77 

percent of US counties have 

been designated both urban and 

rural by the US Census Bureau.  

Public transportation routes, 

such as buses, often cover only 

portions of the county which can 

then be treated as either ‘urban’ or ‘rural’ county in 

many datasets, based on a 50% population cutoff.  

Specialized van services for the elderly, and the like, 

can be time prohibitive in rural areas of on a county 

whose urban population has adequate access to 

services.  

 Kalamazoo County, MI is one such urban-

rural county, with exceptionally high rates of 

gestational diabetes among expectant mothers and 
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Figure 2. Density of gestational diabetes births per 10 kilometer radius (left) and 

gestational diabetes pregnancy rate per 10 kilometer radius, state of Michigan, 

2013. 

Figure 1. Spatial Distribution of Concentrated 

Poverty, Black Race and Low Birth Weight across 

Census Tracts in Kalamazoo County MI. Birth 

records and census tract datasets from 2010. 
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high disparities in the quality of birth outcomes among various segments of its population (Figure 

2).  Kalamazoo County is the only region of Michigan with both high densities and high rates of 

gestational diabetes (Figure 1) (MacQuillan 2017). Stratified bivariate modeling of birth outcomes 

(Kothari et al., 2016) revealed that race and SES independently contribute to birth outcomes, and 

racial congruity is associated with mitigated health outcomes in Kalamazoo (Figure 2).  

 The unusually high rates of gestational diabetes and disparities in birth outcomes in 

Kalamazoo County, MI provide substantial rationale for study of potential disparities in 

accessibility to maternal and infant services.   

Project Goals  

Goal 1: An overarching goal of this project is to improve maternal and infant health outcomes 

through analysis of public and private transportation network accessibility, particularly in counties 

with a strong urban-rural gradient.  Project 1 describes results of an in-depth analysis of multimodal 

accessibility to maternal health services by mothers in Kalamazoo County, MI.   

Goal 2: A secondary goal of this project is to use non-traditional raster methods, combined with 

Pareto optimality, to develop bi-objective optimization models that balance both efficiency and 

equity when siting intervention locations.  Project 2 describes results of use of this method to 

examine siting an hypothetical intervention clinic for repeat sexually transmitted infection cases 

in Kalamazoo County, MI.  STIs are one of the risk factors associated with poor maternal and 

infant health outcomes.  

Common frameworks used in health care location-allocation studies focus on efficient allocation 

of services and usually disregard equity issues as well as transit accessibility. In contrast, this 

study proposes a heuristic approach to recommend locations that are multimodal accessible and 

allow equitable and efficient access to services.  

 As part of WMU Health Data Research, Analysis and Mapping (HDReAM) Center’s 

efforts to provide a template for how universities and health departments can work collaboratively 

to analyze and disseminate information, publically available transportation data was also 

integrated into the Kalamazoo community’s interactive mapping website.  This data will enhance 

decision maker’s understanding of accessibility as a key component in the understanding of spatial 

patterns in community assets, services, infrastructure, outcomes and interventions.   
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Relevance to Specified Themes 

This research is primarily related to TRCLC themes #3 and #4. We focus on the ability of decision 

makers to use available, timely and accurate data when making public health decisions.  

Understanding accessibility to services via public and private transportation modes is critical to 

the design and implementation of intervention strategies.  The research also examines a 

behaviorally and culturally specific type of individuals - women of child-bearing age and their 

infants - whose needs may differ from those in the general population. 
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Multimodal Accessibility and Maternal-Infant Health: An Urban-Rural 

Continuum in Southwest Michigan 

 

1. Introduction  

 

Studies conducted since the establishment of the Affordable Care Act have continued to find 

significant differences in health care services, access, and health status of residents in rural 

versus urban areas (Weinhold, 2014; Douthit, 2015). The largest differences concern limited 

access to high quality providers and scarcity of healthcare technology in rural areas (Ricketts, 

2000; Hart, 2005; Douthit, 2015). Residents of rural areas have longer travel times to access 

basic health care screening services, for example, leading to higher rates of late stage cancer 

(Williams, 2015). Women without appropriate access to healthcare during particular stages of 

pregnancy have poorer outcomes than women with regular access to care (Evans and Lein, 

2005). What many urban-rural studies fail to consider is the urban-to-rural gradient in counties of 

mixed urban and rural populations.  Such population density gradients are not an isolated 

phenomenon in the United States. Seventy-seven percent of US counties are designated both 

urban and rural by the US Census Bureau.  Public transportation routes, such as buses, often 

cover only portions of counties that are treated as either ‘urban’ or ‘rural’ in federal databases. 

Specialized van services for the elderly, rideshare systems and the like, can be time prohibitive in 

rural areas of a county whose urban population has adequate access to services.  

The overarching goal of this project is to improve maternal and infant health outcomes through 

analysis of public and private transportation network accessibility, particularly in counties with a 

strong urban-rural gradient.  Kalamazoo County, Michigan is a mixed urban and rural county 

with high rates of maternal risk factors including gestational diabetes among expectant mothers 

(MacQuillan, 2017) and sexually transmitted infection rates nearly twice the state average 

(Owusu et al., 2018). In an examination of the high disparities in the quality of birth outcomes 

among various segments of its population, Kothari et al. (2017) found that race and 

socioeconomic status independently contribute to birth outcomes and neighborhood racial 

congruity mitigates health outcomes. In essence, these problems speak to the structural factors in 
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the community that perpetuate inequities in health. The unusually high rates of maternal risk and 

disparities in birth outcomes provide a substantial rationale for focus on the county in a study of 

potential disparities in accessibility to maternal and infant services. In this context, key research 

questions include: a) what are available open source methods for quantifying transportation 

accessibility? b) can variability in accessibility be quantified in a meaningful way? c) is the 

urban-rural continuum adequately described by multimodal accessibility measures? and d) what 

insights can be gained into community structure through analysis of multimodal accessibility?  

2. Methods 

 

2.1 Maternal-Infant Population  

Reported, confirmed cases of maternal risk factors and infant outcomes for Kalamazoo County, 

were accessed from 2009-2012 Michigan birth records. For each birth, the dataset included 

mother’s home address.  Batch geocoding was supplemented with extensive manual placement, 

resulting in an overall address match accuracy of over 90 percent of cases. Cases were assigned 

the census block centroid for the block in which the residential address was contained. The use 

of census block centroids allows for data aggregation, preserves some degree of anonymity 

regarding the personal address of each mother, and provides a method that for easy application 

across varying spatial and temporal scales. The 5,785 census blocks in the county provide an 

excellent sub-neighborhood scale breakdown of the region in a standard manner while 

introducing minimal travel time error because of their relatively small size. Outcomes selected 

for analysis included three maternal risk factors: sexually transmitted infection during pregnancy, 

gestational diabetes, and hypertension; and three birth outcomes: prematurity, low birth weight 

(LBW) and neonatal intensive care unit (NICU) admission.  The occurrence of each type of risk 

factor and outcome confirmed for 2009-2012 births were aggregated for each census block.   

2.2 Accessibility modeling 

Accessibility to any service involves both the spatial and non-spatial aspects of travel cost. In 

general, travel cost is a surrogate for the relative ease by which services can be reached from a 

client location (Wang and Lou, 2005). Researchers widely use travel time or distance to study 

spatial accessibility (Apparicio et al., 2008; Ayon et al., 2018) because it is quantifiable through 

network modeling. However, most of these travel cost (either time or distance) based analysis 
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primarily focus on private car and usually disregard public transit when quantifying accessibility 

(Martin et al., 2002, Agbenyo et al. 2017). The accessibility framework for our model is shown 

in Figure 1.   

Figure 3. Schematic diagram of the accessibility model used in this study 

As is typical of location-based service utilization models, a population is expected to access 

service providers from their primary residence through available modes of transportation. 

Residences of mothers who gave birth to live infants, available transportation modes and 

provider locations were held constant during analysis. Residence was associated with closest 

census block centroids, available transportation modes included riding the public bus or traveling 

in a private vehicle, and service providers included all obstetric and gynecological providers 

(OB/GYNs) in Kalamazoo County (Figure 2).  

Times of departure were controlled in the model to provide estimates of variability in transit 

time, such that individuals were modeled to depart from each census block centroid every 10 

minutes in the public transit model and every 15 minutes in the private vehicle model. Both 

models considered departures from 7:00 am to 4:00 pm to arrive at OB/GYNs during standard 
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hours of operation from 8:00 am to 5:00 pm using any potential routes available as valid to the 

appropriate transportation mode. The model resulted in estimated times that are required to reach  

Figure 4. Study area map showing the OB/GYN locations with respect to major road network 

to any available OB/GYN providers from each census block centroid within a maximum of 30 

and 60 minutes for transit riders and a maximum of 15, 30 and 45 minutes for those traveling in 

private cars. These time thresholds were a function of county size and typical travel times 

associated with the major subregions. A regular weekday (April 5, 2012) was used to estimate 

the required travel time. 

2.3 Travel cost metrics  

To estimate the required travel time between unique origin to destination pairs, this study utilized 

OpenTripPlanner (OTP), an open source tool for multi-modal trip cost estimation. OTP exploits 

OpenStreetMap (OSM) for street network data and General Transit Feed Specification (GTFS) 
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for transit modeling. It goes beyond conventional one-to-one trip prediction and enables users to 

estimate travel time for one-to-many and many-to-many origin-destinations. OTP does not revert 

to a payment schedule when a high number of pairs are necessary for analysis. The use of OTP 

has been successfully substituted for the traditional approach of creating arbitrary access links 

for walking and cycling (e.g., Delamater et al. 2012, Djurhuus et al. 2016). Due to a widespread 

community mapping effort, OSM is characterized by continual updates, improving its relative 

completeness and attribute accuracy in much of the U.S. These features lead to a wide 

acceptability of OSM in different domains such as Geocoding, 3D city modeling, and trip 

planning and analysis (Smith and Oh 2017). Another advantage is the user’s ability to use past 

dates for trip planning.   

The use of GTFS data particularly facilitates the transit time estimation by providing information 

pertaining to bus schedules, routes, and stop/station location. Over 800 agencies in the U.S. have 

stored transit specifications in a standard file format and published the data for integration 

particularly into dynamic mapping systems (Smith and Oh 2017). Though the GTFS data are 

static, a variety of applications  such as the multimodal trip planning and analysis tool (Hillsman 

and Barbeau 2011), travel assistance (Barbeau et al. 2010), real-time transit tracking (Dailey and 

MacLean 2000, Ferris et al. 2010), timetable publication (Wessel and  Widener 2017), mobile 

apps (Schweiger 2011), accessibility (Puchalsky et al. 2012), and interactive voice response 

(Windmiller at al. 2014) have all used these data. This study uses two of the six comma-

separated text files common to the GTFS data structure (stops.txt; trip.txt) that contain 

information regarding passengers’ pick up or drop off location and estimated travel time between 

stops, respectively (Smith and Oh 2017).  

Travel time models for each transportation mode – private vehicle and public transit – were 

developed (Table 1). Exploiting a multimodal network graph, OTP identified the most efficient 

route at each time for each origin to destination pair (each census block centroid to each 

OB/GYN) and calculated the required time to traverse the corresponding network distance. 

During routing the private vehicle model considered one-way streets and posted speed limit 

when assessing efficiency; the public transit model considered only designated bus routes and 

schedule.  Both models were constrained by standard intersection characteristics including 

turning time, traffic signals, and so on (Chien 2017). Each expectant mother was constrained to 
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walking a maximum distance of 0.5 miles to, between, and from bus stops at a walking speed of 

1.34 m/s or 3 mph. Application programming interface (API) tools were utilized through Python 

scripting to implement routing requests and batch processing. The Python scripts were also used 

to automate the accessibility analysis to accept both travel modes and walking limitations. A 

number of aggregate variables were calculated from the multiple travel times estimated by the 

model for each mode. Blocks that were more than 45 minutes by car from all OB/GYNs were 

excluded from the analysis as there is a greater chance that individuals in these areas are seeking 

health care from surrounding counties. 

Table 1. Assumptions, model specifications and relevant output variables of the accessibility 

models 

Model  Assumptions and model specifications Relevant output variables 

Private 

vehicle 

 

 

 

shortest choice among alternative routes on 

street network; driving speed governed by 

posted limits; travel time estimated at 

fifteen-minute intervals over an eight-hour 

period (7am-4pm) and four travel time 

thresholds--15, 30, 45 minutes 

 Number of OB/GYNs accessible 

 Average travel time during transit 

Transit Designated bus route with a static service 

schedule; limited walk speed with a 

distance threshold; transit time is estimated 

for departure at every ten-minute over an 

eight-hour period (7am-4pm) and two 

travel time thresholds—30 and 60-minutes. 

 Number of OB/GYNs accessible 

 Average time riding public transit 

 Average time spent walking during 

transit 

 Standard deviation of time riding 

public transit 

 Standard deviation of time spent 

walking  

 

2.4 Statistical Methods 

From travel time model outputs, the average and standard deviation of destinations reached, 

travel time to destinations within standardized time thresholds and time spent walking were 

calculated for each block centroid.  Factor analysis with Varimax rotation was performed using 
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principal components as an extraction method to reduce the sixteen accessibility variables to 

orthogonal factors relating to the accessibility of OB/GYNs for each census block.  Factor scores 

were then assigned to each block centroid and joined to presence/absence data for each selected 

maternal risk and infant outcome. Only blocks with at least one birth during the four years and 

with accessibility to the particular transportation network being analyzed were included in each 

analysis.  Of the 5,785 census blocks in the county, 1,613 had births and access to both modes of 

transportation while 1,171 had births but no public transit access.  Blocks without access to 

either transportation network were those associated with rivers, lakes or heavily industrialized 

areas. T-tests were performed to compare the factor loadings for blocks with and without 1) a 

mother who self-identified as non-white, maternal risk factors including 2) an STI during 

pregnancy, 3) gestational diabetes, 4) hypertension, and three poor birth outcomes including 5) 

prematurity, 6) low birth weight and 7) NICU admission.  

3. Results 

3.1 Principal component analysis  

The principal components analysis yielded four transit specific factors, restricted to the portion 

of the county with transit access (Table 2), and two private vehicle factors for all blocks with at 

least one birth (Table 3) from 2009-2012 in the county.  Transit 1 (T1) highly correlates with the 

number of public transit accessible destinations at 30 and 60 minute thresholds, and average time 

spent riding transit and walking for destinations within 30 minutes. Transit 2 (T2) highly 

correlates with standard deviation of the 30 minute variables: number of public transit accessible 

destinations, time spent riding public transit and time spent walking.  Transit 3 (T3) highly 

correlates with time riding public transit and time spent walking for destinations within 60 

minutes, and to a lesser degree with number of transit destinations within 60 minutes.  Transit 4 

(T4) highly correlates with standard deviation of the 30 minute variables: number of public 

transit accessible destinations, time spent riding public transit and time spent walking.   These 

transit factors each had eigenvalues above one and together accounted for 79 percent of variance 

in the data.  
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Table 2. Summary of transit related components 

 

Time 

Window 
Variables 

T1: 30 minute-

accessibility  

T2: 30-minute 

variability 

T3: 60-minute 

accessibility  

T4: 60-minute 

variability 

3
0
-m

in
u
te

s 

Accessible destinations  0.875 0.091 -0.122 -0.208 

Average time riding public transit 0.852 0.266 -0.095 -0.215 

Average time spent walking  0.901 0.052 -0.075 -0.129 

St.Dev. of destinations  0.151 0.832 -0.014 -0.038 

St.Dev. of time riding public transit  0.003 0.927 -0.016 -0.174 

St.Dev. of time spent walking  0.295 0.753 -0.050 -0.088 

6
0
-m

in
u
te

s 

Accessible destinations  0.623 0.387 0.502 0.136 

Average time riding public transit -0.120 0.076 0.889 -0.234 

Average time spent walking  -0.103 -0.228 0.886 -0.068 

St.Dev. of destinations  -0.079 -0.016 -0.148 0.915 

St.Dev. of time riding public transit  -0.462 -0.281 -0.421 0.641 

St.Dev. of time spent walking  -0.387 -0.230 -0.018 0.520 
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Table 3 exhibits the results of principal component analysis for variables associated with travel 

by private car. Car 1 (C1) is highly correlates, positively, with destinations accessible within 15 

and 30 minutes, travel time to destinations within 15 minutes and, negatively, with travel time to 

destinations within 45 minutes. It represents rapid access to OB/GYNs. Car 2 (C2) highly 

correlates with destinations accessible within 45 minutes and travel time required to reach 

destinations accessible in 30 minutes.   

Table 3. Factor loadings for principal components analysis of variables related to travel cost by 

private car to OB/GYNs in Kalamazoo County. 

Time Window Variables 
C1: Rapid 

Accessibility 

C2: Accessible 

Rural 

15-minutes 
Accessible destinations  0.874 -0.093 

Average travel time  0.831 0.078 

30-minutes 
Accessible destinations  0.791 0.463 

Average travel time  -0.089 0.895 

45-minutes 
Accessible destinations  0.219 0.795 

Average travel time  -0.889 -0.096 

 

As figure 3 shows, this factor is the most difficult to interpret.  Census blocks that load highly on 

this factor constitute the accessible rural or areas of sprawl in the county. Blocks that load low on 

this factor have either extremely poor accessibility overall or quite high vehicle access at 15-30 

minutes.  Both car factors had eigenvalues over 1 and together accounted for 76 percent of 

variance in the data. 

3.2 Association with maternal risk  

All four of the transit factors and one of the private car factors were significantly associated with 

blocks in which at least one mother self-identified as non-white (Table 4).  Presence of non-

white mothers was associated with more transit destinations in 30 minutes (T1), higher transit 

travel time variability in 30 minutes (T2), fewer transit locations within 60 minutes (T3), less 

variability in transit at 60 minutes (T4), and more rapid access by private vehicle (C1).  
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Figure 5.  Standard deviation of travel time to reach to OB/GYNs from respective census blocks 

(results shown separately for six principal components) 

TRANSIT 1  TRANSIT 2  

TRANSIT 3  TRANSIT 4  

CAR 1  CAR 2  

No transit 
access 

 < -2.5 St.Dev. 

-2.5 - -1.5 St.Dev. 

-1.5 - -0.50 St.Dev. 

-0.50 - 0.50 St.Dev. 

0.50 - 1.5 St.Dev.. 

1.5 - 2.5 St.Dev.. 

 > 2.5 St.Dev. 
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Table 4. The association between mom’s race and accessibility components 

Components Self-identified White/Non-white moms 

Transit 
White Only (3,437) Non-white (1,821) 

t-value 
Mean (St.Dev.) Mean (St.Dev.) 

T1 -0.095 (0.914) 0.221 (0.917) 11.902* 

T2 0.061 (1.054) 0.197 (0.953) 4.757* 

T3 0.104 (1.144) 0.037 (0.901) -2.36* 

T4 0.158 (1.143) -0.096 (0.921) -8.716* 

Car White Only (4,670) Non-white (1,927) t-value 

C1 0.122 (0.957) 0.463 (0.6) 17.436* 

C2 0.094 (0.774) 0.116 (0.421) 1.518 

* statistically significant at 95% confidence interval 

The only consistency among the three maternal risk variables was that loading on the accessible 

rural factor (C2) was higher for census blocks with at least one mom with an STI, gestational 

diabetes and hypertension (Table 5).  Additionally, blocks with STIs were significantly 

associated with more transit destinations in 30 minutes (T1), higher transit ride time variability 

for 30 minute destinations (T2), fewer transit locations within 60 minutes (T3), and high 15-30 

minute private vehicle access (C1). Blocks with gestational diabetes were significantly 

associated with less transit destinations in 30 minutes (T1), more transit locations within 60 

minutes (T3) and variability in transit time at 60 minutes (T4).  Blocks with mothers with 

hypertension were significantly associated with less transit locations within 60 minutes (PCA3t).   

3.3 Association with infant outcomes  

Table 6 shows that the only consistency among the three infant outcomes was significantly 

associating with blocks with higher variability in 30 minutes transit travel time (PCA2t).  

Additionally, blocks with prematurity were significantly associated with more transit 

destinations in 30 minutes (PCA1t) and higher loadings on both private vehicle access factors. 

Blocks with low birth weight were significantly associated with more transit destinations in 30 

minutes (PCA1t), less transit accessible locations within 60 minutes (PCA3t), and more private 
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vehicle access to OB/GYN services within 15 minutes. Blocks with an infant admitted to the 

NICU were significantly associated with higher loadings on the accessible rural factor with 

higher private vehicle access at 30 and 45-minutes intervals.    

4. Discussion  

Results show that detailed community structure information can emerge from the quantification 

of transport accessibility, in such variables as the number of destinations, time to destinations 

and variability in time to destinations. Even when considering only one type of health service, in 

this case OB/GYN offices, a thorough transportation analysis can yield a number of principal 

components relating to accessibility for just one county. This accessibility information has 

important implications for future studies of structural and/or institutional disparities, as we have 

shown there are significant relationships between community spatial structure and race, risk, and 

health outcomes. Using community transportation structure in lieu of common socio-

demographic or economic variables clarifies the role of location in determining the limits to 

access and resources within which different segments of the populations live.  

Previous research on public health in Kalamazoo County has focused on examination of 

socioeconomic variables, as is common in the literature.  Finding patterns similar to previous 

research, but without the inclusion of socioeconomic variables in the model, is a critical step in 

understanding the spatial dimensions of disparity. Previous work on sexually transmitted 

infections in the county, for example, have shown a strong linkage to urbanization (Owusu et al. 

2018) that is also evident in the significant relationships with transportation principal 

components that relate to the urbanized core of the county.  Previous work on gestational 

diabetes has shown a relationship outside the urbanized core (Macquillan et al. 2018) and that 

too is clear in the significantly higher association of gestation diabetes with 60-minutes transit 

time, 60-minutes transit variability and the accessible rural private vehicle component.   
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Table 5. Statistical relations between maternal risk factors and accessibility components 

 

Components 

Sexually Transmitted Infections 

(STI) 
Gestational Diabetes (GD) Hypertension (HYP) 

Transit No (4,430)1 Yes (828) t-value No (3,648) Yes (1,610) t-value No (5,104) Yes (154) t-value 

T1 

-0.001 

(0.93)2 

0.095 

(0.93) 
2.75* 

0.036 

(0.93) 

-0.035 

(0.92) 
2.58* 

0.014 

(0.93) 
0.026 (0.93) -0.17 

T2 
0.098 (1.03) 0.16 (0.98) 1.66* 

0.106 

(1.01) 
0.114 (1.06) -0.26 

0.109 

(1.01) 
0.095 (0.91) 0.18 

T3 
0.094 (1.08) 

0.013 

(0.99) 
-2.12* 0.05 (1.03) 0.151 (1.14) -3.05* 

0.087 

(1.07) 
-0.118 (0.96) 2.60* 

T4 
0.073 (1.09) 

0.054 

(1.03) 
-0.47 

0.046 

(1.07) 
0.122 (1.10) -2.33* 0.07 (1.08) 0.064 (0.96) 0.07 

Car No (5,639) Yes (958) t-value No (4,607) Yes (1,990) t-value No (6,414) Yes (183) t-value 

C1 
0.202 (0.90) 0.34 (0.78) 5.00* 0.21 (0.88) 0.25 (0.89) -1.64 0.22 (0.89) 

0.288 

(0.759) 
-1.19 

C2 
0.095 (0.72) 

0.133 

(0.49) 
2.06* 0.09 (0.73) 0.12 (0.6) -1.81* 

0.098 

(0.70) 

0.196 

(0.409) 
-3.13* 

* statistically significant at 95% confidence interval 

1 number (n) of included census blocks follows no/yes designation for each maternal risk factor. 2 mean(standard deviation) are 

provided for each accessibility component and each maternal risk category.  
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Table 6. Statistical relations between infant birth outcomes and accessibility components 

   
C

o
m

p
o
n

en
ts

 

Transit 

Birth Time Birth Weight Neonatal Intensive Care 

Full term Premature 

t-value 

Normal Low weight t-

value 

None Admission 

t-value n=4,251 n=1,007 n=4,486  n=772 n=4,463 n=795 

T1 0.004 (0.93)1 0.058 (0.94) -1.66* -0.003 (0.92) 0.117 (0.95) -3.26* 0.008 (0.93) 0.05 (0.89) -1.18 

T2 0.094 (1.02) 0.166 (1.03) -2.01* 0.092 (1.03) 0.2 (1.01) -2.71* 0.09 (1.02) 0.209 (1.03) -3.01* 

T3 0.091 (1.08) 0.039 (1.01) 1.45 0.096 (1.09) -0.008 (0.93) 2.78* 0.085 (1.07) 0.057 (1.00) 0.69 

T4 0.064 (1.09) 0.094 (1.04) -0.8 0.07 (1.09) 0.066 (1.03) 0.09 0.07 (1.09) 0.071 (1.03) -0.04 

Car 

Full term Premature 

t-value 

Normal Low Birth t-

value 

No Yes 
t-value 

n=5403 n=1194 -5,711 Weight (887) -5,634 -963 

C1 0.205 (0.90) 0.299 (0.80) -3.61* 0.203 (0.90) 0.344 (0.77) -4.99* 0.217 (0.89) 0.247 (0.84) -0.99 

C2 0.093 (0.71) 0.133 (0.58) -2.08* 0.097 (0.71) 0.125 (0.56) -1.34 0.092 (0.70) 0.148 (0.60) -2.57* 

 
* statistically significant at 95% confidence interval 

 

1 mean and standard deviation of factor loading for appropriate census blocks  
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In the context of our key research questions, open source methods can be used to quantify  

multimodal transportation accessibility, and the travel time variability associated with those 

modes, in a way that reveals significant relationships between community structure and public 

health. However, naïve assumptions regarding travel times to public services and population 

health to not hold up. There is no direct correlation between travel time to service and health 

outcome.  Instead, it becomes clear that different population segments (socioeconomically, 

culturally, etc.) with varying risk factors and outcomes live in different situations with respect to 

multimodal transportation accessibility. Quantifying the situations, then, clarifies structural 

disparities that can often be addressed through political and institutional will, making this type of 

analysis critical for long term social change that benefits public health.  
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Project 2: Pareto optimality for assessing multi-modal transportation 

accessibility: balancing equity and efficiency when siting interventions 

 

1. Introduction  

 

A large body of research has contributed to understanding the complexities of health access 

(Cromley & McLafferty, 2011; McLafferty, 2003; Wang, 2012; Wang & Luo, 2005). These 

studies have generated knowledge on issues such as geographic accessibility, availability of 

services to meet needs, affordability of services provided, the organization of services to meet 

clients’ needs and acceptability of the services provided (Cromley & McLafferty, 2011; 

McLafferty, 2003; Wang, 2012; Wang & Luo, 2005). Geographers have contributed enormous 

literature on geographic accessibility issues on when and where barriers in transportation, 

distance, travel time, and cost impede health services delivery (Cromley & McLafferty, 2011; 

McLafferty, 2003; Wang & Luo, 2005).  

Geographic accessibility denotes the relative ease by which services can be reached from a client 

location and can include spatial and non-spatial characteristics (Cromley & McLafferty, 2011; 

Wang & Luo, 2005). Travel cost, in terms of distance or time, is frequently used as a proxy for 

geographic accessibility (Apparicio, Abdelmajid, Riva, & Shearmur, 2008; Schuurman, Fiedler, 

Grzybowski, & Grund, 2006; Tanser, Gijsbertsen, & Herbst, 2006). Travel time can be 

particularly relevant when core spatially concentrated populations are known to have a repeating 

pattern of infections and, thus, a shorter return interval for the use of services. For this study, we 

examine the travel time access of a population identified having repeat sexually transmitted 

infections (STIs) over three years. Previous examination of this population has shown risk of STI 

to be strongly associated with individual racial group and neighborhood-level low 

socioeconomic status (Owusu, Baker, Paul, & Curtis, 2018). In general, low-income households 

are greatly dependent on public transit. However, very few health care literatures consider public 

transit when quantifying accessibility (Mavoa, Witten, McCreanor, & O’Sullivan, 2012; 

Neutens, 2015).  
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Geographic approaches that require solving the P median problem, location set covering problem 

(LSCP), and maximum covering location problem (MCLP) all account for the total travel time, 

the number of facilities and maximize the population demand for the health facilities (Rahman & 

Smith, 2000; Wang, 2012). While these conventional techniques address population demands for 

health care facilities within a specified distance/time threshold during their measurement of 

geographic accessibility, they are limited in incorporating remote users (Rahman & Smith, 2000; 

Wang, 2012). An improved spatial accessibility measurement can offer more equitable resource 

configuration by paying attention to those remote users. Such a measurement technique not only 

aims to minimize the cumulative travel time of service users but also maximize the coverage by 

diminishing the gap between closest and farthest user groups (Wang & Tang, 2010). In contrast, 

the solution for p-median problem often is used to highlight opportunities to improve facilities in 

high-density population centers by minimizing end-user travel costs and maximize profits for the 

service providers (Drezner, 1995).  

An alternative approach to ensure equality of access among the population being served in high-

density population areas and remote areas is to optimize facility locations in such a way that it 

maximizes service coverage, minimizes travel needs of users and  limit number of facilities. 

However, such an application should not be limited to only homogenous road network analysis 

in healthcare location-allocation studies where each road has the same speed-limit or a two-

dimensional Euclidean plane is used to determine accessibility in terms of travel time or distance 

(Jia et al., 2014). This is because the transportation network with uniform speed-limit may lead 

to an unvaried spatial distribution of facilities whereas various speed limits presumably may 

produce a heterogeneous and more practical facility distribution (Jia et al., 2014). 

 However, location-allocation studies such as those implemented in (Gu, Wang, & McGregor, 

2010; Jia et al., 2014; Mestre, Oliveira, & Barbosa-Póvoa, 2015; Mitropoulos, Mitropoulos, 

Giannikos, & Sissouras, 2006) that use P median or a similar technique consider some exsiting 

or hypothesized candidate locations to optimize. Sometimes the assumptions behind choosing 

candidate locations are applicable in particular situations, but that are impractical in other 

scenarios (Galindo & Batta, 2013). This has been demonstrated by studies that  compute 

aggregated or weighted travel time from demand centers (e.g., centroids of census block) to a 

point location of a service provider, and hence disregards the detailed spatial distribution of 
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individuals  (Hewko, Smoyer-Tomic, & Hodgson, 2002; Huang & Wei, 2002; Schuurman et al., 

2006). In this study, we propose a model that integrates dynamic travel time into geospatial 

models considering precise location of individual household along the street network. 

Additionally, we evaluate and predict intervention placements where the candidate locations are 

not pre-specified, but identified by the model.  

2. Related Work 

 

Common frameworks for solving public health intervention problems focus on efficient 

allocation of service centers, but the results cannot be easily adjusted to address equity issues. 

These methods focus on efficient allocation of service centers based on different objectives (e.g., 

minimal travel, minimal resources, maximal coverage), but discount health equity concerns on 

accessibility for different populations, utilization and service quality.  For example, given a set of 

population centers, a p-median solver typically is used to choose the optimal facility site by 

minimizing end-user travel costs (e.g., distance, time) (Drezner, 1995). However, this method 

often selects locations that favor users living in high-density areas, thus perpetuating inequities in 

the burden of travel to such locations by remote users. P-median solutions also fail to address 

scenarios in which users do not always travel to their closest facility (Rahman & Smith, 2000). 

From a service point of view increase in travel cost may decrease facility usage. Recognizing 

that, the location set covering problem (LSCP) method recommends a minimum number of 

service locations such that each population center is covered by at least one facility within a 

given threshold (e.g., maximal service distance or time) (Shavandi & Mahlouji, 2008). However, 

inadequate resources may limit the number of facilities that can be maintained, regardless of the 

number suggested by LSCP methods (Rahman & Smith, 2000). An alternative model called the 

maximal covering location problem (MCLP) maximizes the coverage within a desired service 

distance or time threshold by locating a fixed number of facilities (Haghani, 1996; Shariff, Moin, 

& Omar, 2012; Verter & Lapierre, 2002).  

Health equity is a multidimensional concept that focuses on addressing fairness in health services 

by taking into consideration social determinants of health such as household conditions, 

neighborhood factors (income, infrastructure) in formulation of policies and programs that 

benefit different populations (Braveman & Gruskin, 2003; Heiman & Artiga, 2015; Marmot, 
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Friel, Bell, Houweling, & Taylor, 2008). In the United States, the need for a policy that 

incorporates health equity led to the introduction of the Affordable Care Act in 2010 (Heiman & 

Artiga, 2015). This paper perceives health equity through a transport geography lens, and mainly 

focuses on modeling geographic accessibility of health facilities that equitably incorporates 

different time spent to access services using different transportation modes in areas with high-

risk of STIs. This approach was used in developing an equity model with an objective to 

minimize the accessibility gaps across all population locations by redistributing the total amount 

of supply among healthcare facilities (Wang & Tang, 2010). A  bi-objective covering location 

model for locating ambulances at preexisting stations that balances efficiency in expected 

coverage and considers health equity by minimizing the number of uncovered demand zones 

have also been implemented (Chanta, Mayorga, & McLay, 2014). A similar study to improve the 

operational shortfalls in locations of health centers in Greece suggest the need for equitable 

distribution of health facilities to minimize travel distance between patients and the facilities; 

these studies all highlight optimal site for intervention placement on existing locations. However, 

these studies ignore the multimodal transportation options available to the user in the geographic 

accessibility modeling.  

A multimodal geographic accessibility study to understand the population demand and health 

service locations using both car and public transportation in England developed a metric that 

incorporates the measurement of spatial weights (Martin, Wrigley, Barnett, & Roderick, 2002). 

However, weighted solutions are more appropriate to analyze aggregate level health data where 

for example the proportion of car ownership data can be used to create the weighted combination 

of travel time (Martin et al., 2002). Such single or combined travel time model may not be 

appropriate when/where different modes have different accessibility measures (Martin et al., 

2002). Therefore, such a weighted model may lead to multimodal accessible locations which are 

not optimal when a particular mode is considered. This study proposes a bi-objective model to 

optimize the locations of health facilities which are accessible using different transportation 

modes to address this research gap. Specifically, the purpose of this study is to find optimal 

intervention locations based on transit time and drive time allowing for both equitable and 

efficient access to services across a multimodal transportation network. Using Pareto optimality 

this study develops bi-objective optimization models that minimize (i) total travel time for a 
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target population to reach to an intervention location and (ii) the variations of travel time for 

repeat STI patients to reach to the locations of health facilities from a set of households  

3. Methods 

 

3.1 Simulated Dataset of Infected Individuals  

Kalamazoo County, Michigan has high rates of STIs and four core areas of individuals with 

repeat infections and multiple types of infections as identified by Owusu et al. (2018). To protect 

the anonymity of individuals while simulating accurate patterns for analysis, a hypothetical set of 

individuals was modeled for this study by randomly placing households (n = 64) within the 

confines of these core areas of STIs.  

3.2 Modelling Accessibility 

Theoretical drive time and transit time model were developed using ArcGIS Cost Distance tool.  

ESRI’s cost distance is a raster-based accumulated distance calculator that calculates the distance 

to the nearest source for each cell in the raster, based on the least-accumulative cost over a cost 

surface. Drive time models are typically vector based, but the raster data model allows for easier 

analysis across many layers, and its output is not limited to street nodes. For these reasons the 

raster data model was chosen for this analysis, although vector models do have the advantage of 

allowing for one-way streets and non-planar infrastructure that are essential in other types of 

analysis.  The raster data model is composed of a matrix of regularly spaced square grid cells (or 

pixels) organized into rows and columns. In this analysis, the rows of the matrix are parallel to 

the X-axis and the columns to the Y-axis of the Cartesian plane in the Hotine Oblique Mercator 

projection system (NAD 1983, Michigan Georef). Speed-based raster surfaces, as described in 

more detail below, for drive time and transit time transportation scenarios, were generated and 

used as the input source raster to define the impedance when moving planimetrically through 

each cell. The relevant dataset is published by Ayon, Owusu, Oh, and Baker (2018). The Cost 

Distance tool utilizes the node/link cell representation common in graph theory, where the center 

of each cell represents a node and two adjacent nodes are connected to each other by links. Every 

link has an impedance (e.g., travel speed) which corresponds to the cost per unit distance for 

moving through the cell. The impedance value is multiplied by the cell resolution while taking 

into account travel direction through the cell to generate the final cost of traveling across the cell. 
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In traditional raster operations, cell-to-cell movement occurs either perpendicularly through or 

diagonally across cells..  

Different researchers used different resolution to rasterize the road network. While Martin et al. 

(2002) used a cell size of 200 m, Tanser et al. (2006) used a raster grid of 30 m resolution. 

Higher resolution (i.e. smaller raster cells) helps to improve raster-based travel time estimation 

by decreasing the likelihood of multi-roads falling within one cell. Furthermore, reducing the cell 

size increase the probability of cells falling on or near the road network (Delamater, Messina, 

Shortridge, & Grady, 2012). Therefore, a finer resolution 25-meter raster cells are used to in this 

particular data model. Further reduction slows down the processing time and increase the data 

storage requirement and is beyond the scope of this study.  

The accuracy of travel time calculation depends on the precise representation of both road 

segment length and travel speed. The road network database (Michigan Geographic Framework 

Version 14a) was acquired from the Michigan Center for Geographic Information and converted 

to a raster grid with cell resolution of 25m. Fig. 1 shows the hypothetical representation of 

converting vector road data to raster surface and assigning impedance values equivalent to speed 

limits to cells.  

 

Figure 6. Conversion of vector data to raster cells. Original roads with superimposed grids (on left) 

are converted to a speed based cost raster surface (middle) which govern the movement through 

cells in the raster model (right). Conversion of vector data to raster cells. Original roads with 

superimposed grids (on left) are converted to a speed based cost raster surface (middle) which 

govern the movement through cells in the raster model (right). 
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The cell centroid is the hypothetical node of a particular cell. The distance (d) between two 

nodes is equal to the cell resolution, which is constant. Therefore, varied travel speed (e.g., SA, 

SB, SC) were assigned to different cells to determine the time required to traverse the link. If the 

movement is perpendicular through raster cells, the travel time (𝑡𝐴𝐶) to move from cell A to C 

would be calculated such that 

𝑡𝐴𝐶  = (
𝑑

2

𝑆𝐴
+

𝑑

2

𝑆𝐵
) +  (

𝑑

2

𝑆𝐵
+

𝑑

2

𝑆𝐶
)     (1) 

When moving diagonally, the travel time to move across the link would follow a direct route 

between the two nodes such that 

𝑡𝐴𝐶  = (
√2

2
∗𝑑

𝑆𝐴
+

√2

2
∗𝑑

𝑆𝐶
)       (2) 

This allows the accessibility model to create an individualized travel time-based raster surface 

for each at-risk household. For drive time and transit time scenarios, a full stack of travel time 

surfaces was analyzed to identify a set of potential intervention locations. 

3.2.1 Drive Time Model 

To model driving time for a personal vehicle, the travel speed assigned to each cell corresponded 

to the posted speed limit of the longest road segment falling inside the bounds of the cell. This 

study followed the hierarchical decision tree for assigning travel speed introduced by Delamater 

et al. (2012), using both Framework Classification Code (FCC) and National Functional 

Classification (NFC) as well as ownership data to assign travel speed to each road segment.  

Estimating travel distance is complex, as it includes available network of streets, one-way/two-

way streets, the shortest choice among alternative routes, etc. Travel time estimation becomes 

even more complicated because of several dynamic factors such as traffic congestion, speed 

limits, turning time, traffic signal and so on. The complexity is exponentially amplified when a 

modal split is considered.  

These difficulties explain why straight-line distance is prevalent in literature. Travel times 

obtained by GoogleMaps are derived from independent source data and provides reasonable 
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estimates which account for all dynamic variables (e.g., turn delay, signal time, etc.). Delamater 

et al. (2012) compared travel time estimates from Google MapsTM with travel time calculated 

using network cost distance and found that reducing the speed limit by 5mph produced results 

similar to those obtained by Google. Likewise, in this study, travel speed was assigned to each 

cell as 5 mph less than the specified by a corresponding code of a road segment. This reduced 

speed accounts for sub-optimal driving and traffic conditions due to congestion, stop signs, 

traffic lights, etc. Moreover, sample households were connected to the street network using a 

straight line which accounts for the driveway distance with a uniform travel speed of 10 mph.  

3.2.2 Transit Time Model 

The transit time model included both walking and ride time components. Theoretical walking 

time to the nearest bus stop was computed using Euclidean distance from each household to the 

nearest bus stop and background walking speeds were assigned to all cells connecting these 

paired locations. Because those with sexually transmitted infections are mostly between the ages 

of 18 and 35, a fairly brisk walking speed was assumed. If the household was within 400 m from 

a transit stop, walking speed was set at 4 km/h. In the U.S., 400 m or 0.25 miles is widely 

acceptable distance an average American will walk rather than drive (Yang, Y., & Diez-Roux, A. 

V. 2012). Walking speed was not changed with road infrastructure quality as in Tanser et al. 

(2006), but it was changed for individuals residing farther from bus stops.   Distances from 401 

to 800 m from bus stops are considered ‘not directly connected to the bus stop’, following the 

definition by Martin et al. (2002), and hence are assigned a background walking speed of 3 km/h 

as assigned in that paper. This decrease in speed also represents uncertainty in the length of most 

efficient and accessible walking path. To reiterate from above, our purpose is to examine the 

effectiveness of modeling transit in a raster data environment, but that necessarily reduces our 

ability to rely on traditional vector data model network concepts; thus, the generalization of 

walking habits with distance from bus stops. In this study, no sample households (randomly 

selected) were found beyond 800 m from nearest bus stop. Walking from the final bus stop to the 

intervention center was ignored.  

Unlike car travel time estimation, the posted speed limit was not considered for bus travel time 

model. Kalamazoo Metro Transit’s General Transit Feed Specification (GTFS) data are accessed 

to acquire bus schedule, routing, and bus stop information. These data are then used to compute a 
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transit travel time for each segment of the transit route, resembling the approach followed by 

Mavoa et al. (2012). However, no transfer penalty was imposed. Kalamazoo Metro Transit 

scheduled its bus services in such a way that cross-connecting buses always meet each other at 

designated transfer locations. Even if a bus arrives at a transfer location before the other bus 

arrives, the preceding bus waits while following bus arrives. This wait time is included in the 

schedule and hence such ‘arrive to wait’ time are incorporated while calculating the transit time 

without imposing any further ‘transfer penalty’ time. Incorporation of bus schedules helps to 

address the limitation of ‘perfect world’ assumption for travel time estimations and provides a 

fair estimate to travel from one stop to another stop along the route and were cross-checked by 

personally traveling. 

3.3 Siting Intervention Centers 

Drive time and transit time raster surfaces for each simulated address of STI repeaters were 

created within the city area limit. These raster surfaces provide the estimated time to reach any 

location (𝑗) along the road network from an individual household (𝑖). The calculated travel time 

sets were then analyzed to compute the average and the standard deviation of travel times for 

each transportation network pixel, representing potential intervention locations.  

For siting the intervention center, it is assumed that there are a finite number of potential facility 

locations and that demand for the facilities exists at a finite number of locations. In this study, 

the entire set of potential locations were represented by all the hypothetical nodes (J) of the raster 

cells, where ∀𝑗 ∈  𝐽. Location modelers frequently use this assumption to solve mathematical 

intractability involving large-scale planar location problems (Church, Current, & Storbeck, 

1991). Cells (or locations) with minimum average and the minimum standard deviation of travel 

time were then identified and compared against the existing intervention center location. 

Additionally, bi-objective optimization models were developed using Pareto optimality to 

optimize the potential health facility locations. 

3.3.1 Bi–objective Optimization of Single Mode 

For each pixel on the transportation network, the average and standard deviation travel time were 

used as input for bi–objective optimization models implemented in python script. Separate 

models were utilized for optimizing drive time and transit time-based intervention locations. The 
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optimization was performed to find optimal health facility locations by balancing the benefit 

between the following two objectives. 

i. Secure, efficient movement of service users by minimizing their total travel time. 

ii. Ensure equity to incorporate remote users by minimizing the inherent variations in the travel 

time data sets. 

Minimum average travel time was used as a proxy for efficiency; minimum standard deviation 

value of travel time was used as proxy equity. Standard deviation was chosen over simpler 

measures of spread, such as range, because it quantifies spread around a measure of central 

tendency, thus including the values of all elements in the set of modeled possibilities in the 

calculation.  The bi-objective optimization problem was formulated as─  

min
𝑗

𝜇𝑇𝑗
 = min

𝑗
 ∑

𝑡𝑖𝑗

𝐼𝑖   

min
𝑗

𝜎𝑇𝑗
 = min

𝑗
 √

∑ (𝒕𝒊𝒋− 𝝁𝑻𝒋
)

𝟐

𝑰

𝑰−𝟏
 

where 𝑡𝑖𝑗  refers to the time required to travel from a set of household locations, 𝑖  to a potential 

intervention location 𝑗. I denotes the total number of households which correspond to the sample 

size and J is the set of cost raster cells which correspond to the total number of potential 

intervention locations.  

Minimizing all related objective functions is challenging. Typically, such multi-criteria 

optimization does not offer a single solution, but rather suggests many alternative solutions. 

Pareto optimality offers a set of allocations or Pareto frontiers that are all Pareto efficient in such 

a manner that no objective can be improved without sacrificing at least one other objective. In 

this study, each point on the Pareto frontier corresponds to a location of health facility which is 

impossible to relocate for improving one objective without making the other criterion worse off. 

For example, a potential facility location 𝐴 is said to (Pareto) dominate another location 𝐵, if 𝜇𝑇𝐴
 

≤ 𝜇𝑇𝐵
 and 𝜎𝑇𝐴

<  𝜎𝑇𝐵
or vice versa., A Pareto optimal allocation results in, if no dominating 

solution exists. 
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3.3.2 Multimodal Optimization 

It is tempting to argue that a single multimodal optimization, seeking to optimize both drive time 

and transit time simultaneously, would be practical for siting a facility. Any single model to 

search for coincident optimized solutions would constrain drivers of private vehicles only to the 

transit routes. This would occur because the solution would limit the optimal route to an 

intersection of acceptable paths open to both modes. This constraint is grossly unrealistic and 

renders the results of any such model unusable in a real situation. Therefore, drive time and 

transit time optimization were modeled separately throughout this analysis. Finally, the study 

extends to explore the coincident location(s) by analyzing optimized solutions resulted from both 

models. The coincidence of optimized locations is somewhat due to chance, as well as 

circumstances unique to a particular transportation network.  In general, the area bounded by the 

minimum average and minimum standard deviation location for each frontier line would 

represent the constraints to intervention location. In this study, Pareto frontiers found from drive 

and transit time models were further analyzed to find the coincident geographical locations. 

Pareto optimality analysis yielded respective position (row and column number) of each frontier 

along with their associated values (i.e., average and standard deviation of travel time) so those 

frontiers could be mapped on the transportation network.  

4. Results  

   

4.1 Optimization of Individual Parameters 

Drive time and transit time were calculated from each hypothetical STI repeating address to each 

raster cell on the respective transportation network. Mean and standard deviations of drive and 

transit times were calculated from the raster stack of individual results.  Drive time and transit 

time cost rasters are shown in fig. 2, along with the locations corresponding to minimum average 

and minimum standard deviation of travel time required for all individuals to reach to that 

location from their respective household – which is considered as the measure of optimality.  
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Figure 7. (a) Drive time and (b) transit time map showing the location corresponding to (i) 

minimum average (DA, TA) and (ii) minimum standard deviation (Ds, Ts) of travel time required 

(for all individuals to reach to that location from their respective household. 
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Location DA and TA are identified as the potential site for health facility with the lowest average 

drive and transit time respectively. These would be chosen as optimal locations for siting the 

facility according to the most popular method for location-allocation problem (i.e. P-median). 

However, p-median may fail to incorporate remote users and solution location may not be 

equitable.  

4.2 Bi-optimization of Parameters 

Bi-objective optimization model was utilized to minimize both the average and standard 

deviation of travel time. Two separate models were developed to gain Pareto frontiers 

corresponding to drive time and ride time-based optimal locations. Minimizing the standard 

deviation requires reducing the variability in travel time dataset and hence facilitating remote 

users. Similarly, locating an intervention center by minimizing the average time ensures 

efficiency by decreasing the total travel time needed for patients to reach that facility. The bi-

objective model suggests only solution points that are Pareto optimal. These solution points are 

called Pareto frontiers and characterize the bounds of what can be considered bi-optimal in the 

siting of a health facility. Each frontier indicates a location from which it is impossible to 

reallocate the intervention center in a way that improves one objective without reducing the 

acceptability of the alternate criterion.  

A line of Pareto frontiers can be established by connecting all solution points. Each point along 

that line represents a unique model parameterization. As Pareto optimality identifies multiple 

optimal solutions, it allows the decision makers to investigate differences among the solutions 

and make an informed choice among varying combinations of assessment criteria. 

Fig. 3 and 4 show each model derived Pareto frontier. The drive time and transit time-based 

optimization yielded a set of 235 and 275 pixels on the transportation network, respectively. The 

minimum average (DA and TA) and minimum standard deviation (i.e., DS and TS) values bound 

the Pareto frontier lines obtained from two different models. Three other Pareto frontiers from 

each model are shown for discussion purposes. D1, D2, and D3 are three compromised solutions 

at the median and quartile values between DA and DS; T1, T2, and T3 are three other compromised 

solutions at the median and quartile values between TA and TS.  
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Figure 8. The Pareto frontiers of the drive time based bi-objective optimization. 

 

Figure 9.The Pareto frontiers of the transit time based bi-objective optimization. 
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For example, location D2 can be reached by an average travel time of 5.20 minutes with a 

standard deviation value of 1.96 minutes. Although the average travel time is increased by 

23.81% when compared to location DA, the standard deviation is decreased by 1.06. When 

compared to location DS, the standard deviation of travel time is increased by 41.01%, but the 

average travel time is reduced by 2.61 minutes. Similarly, location T2 reduces the standard 

deviation of transit time by 1.09 minutes when compared to location TA by increasing the 

average travel time by 15.59%. T2 lessens the average travel time by 2.19 minutes by conceding 

only 11.94% increase in standard deviation when compared to location TS.  

4.3 Multimodal Optimization 

Multimodal optimization of the locations that have already been optimized for a single mode of 

transportation ensures a balance of equity and efficiency among a combined client set of transit 

riders and drivers of personal vehicles. The spatial bounding box of frontier solutions of each 

transportation mode is shown in fig. 5 (i, ii). Fig. 5 (iii) exhibits the common area between 

optimal drive time and transit time bounds. Fig. 5 (iv) provides a larger scale view of the road 

sections that are equitably and efficiently optimized for both travel modes. Siting an STI 

intervention facility along any of these road sections would ensure better access to remote repeat 

users as well as users in particular high-density areas irrespective of their modal share. 
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Figure 10.  Locations or road sections optimally accessible by (i) drive, (ii) transit and (iii) both 

(iv) Blow-up of multimodal accessible road sections that are equitably and efficiently optimized. 
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5. Discussion  

Improving spatial access to health facilities is recognized as an important component of reducing 

the prevalence of disease and achieving better health outcomes. Multimodal accessibility 

estimation and optimization can play a vital role in this respect. The novel and disaggregated 

nature of this study allow to consider individual’s travel time from distinct household to facility 

locations, thus helps to address the inherent mismatch between popular statistical methods of 

significant density detection and the reality of individuals located on a street network or 

constrained by a particular transportation modality.  

Cost raster based optimization not only offers the opportunity to compare different solutions but 

also paves the way for understanding how this approach may help identify potential locations 

that could provide better accessibility than the current facility location. For example, the existing 

facility in Kalamazoo County (see fig. 5) is located an average of 7.44 minutes away from 

drivers living at hypothetical household locations, with a standard deviation of 3.23 minutes, but 

location D2 offers a more accessible location by minimizing the average drive time by 2.24 

minutes and standard deviation by 1.27 minutes. This facility houses many programs and 

services quite apart from STI testing, so the purpose of this paper is not to recommend the 

relocation of the current facility. Instead, we present a case study of how equity and efficiency of 

facility placement can be quantified and compared for any number of at-risk populations. The 

advantage of Pareto solutions is that the analysis can be tailored to a range of populations and 

objectives. Decision makers with experience in a particular area with a predetermined client base 

may have specific objectives that are dependent on the geographical distribution of targeted 

population, socio-economic characteristics, the magnitude of travel time variability and so on, 

which vary in space and time. This study does not focus on quantifying the preference based on 

the aforementioned factors, rather offers a set of geocomputational tools to the decision makers 

for assessing multiple locations.  

 Network problems are generally considered to be better represented and modeled in 

vector data models. Common vector network modeling characteristics such as constraints on 

intersections, non-planar roadways (overpasses), one-way streets, and the like, are difficult or 

impossible to consider in raster analysis and certainly pose some limitations to the results of this 
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study.  However, raster analysis of network problems enable the researcher to make use of 

techniques such as stacked approach, which are not easily duplicated in vector analysis.  Vector 

analysis also does not lend itself to paired optimality in a setting with virtually no limitations on 

candidate locations. It is the goal of this paper to present options outside of the standard regimen 

of vector solutions to network problems.  

Another limitation of this case study is that the coincidence of optimization is due to chance, as 

well as circumstances unique to this particular transportation network for this local area.  In 

general, the area bounded by the minimum average and minimum standard deviation location for 

each frontier would represent the constraints to intervention location. The extremum frontier 

values represent the bounds of the ‘spatial frontier’ or area of potential locations. The size of this 

area becomes, then, a usable metric by which to measure transit accessibility with respect to 

accessibility by private vehicle as it will vary by proximity of optimal accessibility and not with 

city size. By extension, the relative size of this area with respect to the total area of the 

jurisdiction or total population served can be used by decision makers to quantitatively assess the 

determinants of intervention site selection within this region. 

From a public health policy perspective, equal access to health care is considered one of the most 

important parameters to address health equity (Oliver & Mossialos, 2004). At a time when 

socioeconomic disparities are prevalent, multi-modal transportation models can provide insight 

into the constraints and challenges met by individuals across a spectrum of transportation options 

including dial-a-ride services, light rail, city bus, a personal vehicle and active transportation 

options such as cycling and walking. This heuristic approach increases the sophistication of 

accessibility measurement by quantifying the spatial scope of optimization for specific public 

health problems and at-risk populations. Additionally, by presenting temporally-aware and 

spatially disaggregated accessibility metrics, this paper introduces a set of tools that offer 

efficient as well as more equitable solutions. 
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