
ShallowForest: Optimizing All-to-All
Data Transmission in WANs

by

Hao Tan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Hao Tan 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/200282796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

All-to-all data transmission is a typical data transmission pattern in both consensus
protocols and blockchain systems. Developing an optimization scheme that provides high
throughput and low latency data transmission can significantly benefit the performance
of those systems. This thesis investigates the problem of optimizing all-to-all data trans-
mission in a wide area network (WAN) using overlay multicast. I first prove that in a
congestion-free core network model, using shallow tree overlays with height up to two is
sufficient for all-to-all data transmission to achieve the optimal throughput allowed by the
available network resources. Based on this finding, I build ShallowForest, a data plane
optimization for consensus protocols and blockchain systems. The goal of ShallowForest is
to improve consensus protocols’ resilience to skewed client load distribution. Experiments
with skewed client load across replicas in the Amazon cloud demonstrate that ShallowFor-
est can improve the commit throughput of the EPaxos consensus protocol by up to 100%
with up to 60% reduction in commit latency

iii

Acknowledgements

I would like to thank my supervisors, Professor Wojciech Golab and Professor Srinivasan
Keshav, for their invaluable advice and guidance. I sincerely appreciate the opportunity
to work with them during my master’s program. Without their kindness, patience and
knowledge, I would not have completed this thesis. In addition, I would like to thank
Professor Bernard Wong for his constructive advice and comments throughout all stages
of this research. Last but not least, I want to thank Professor Samer Al-Kiswany for his
valuable comments on the thesis.

Also, I must express my very profound gratitude to my parents and to my fiancee for
providing me with unfailing support and continuous encouragement throughout my years of
study and through the process of researching and writing this thesis. This accomplishment
would not have been possible without them.

iv

Dedication

This is dedicated to the one I love.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 A Simple Example . 2

1.2 Motivation . 2

1.3 Contributions . 3

1.4 Thesis Organization . 4

2 Background 5

2.1 Consensus Problems . 5

2.2 Paxos . 6

2.3 Egalitarian Paxos . 8

3 Measuring Inter-DC WAN Throughput 10

3.1 Throughput of one-to-one data transfer . 11

3.2 Throughput of one-to-many data transfer 11

3.3 Remarks . 13

3.4 Network Model . 13

vi

4 Shallow Overlay Trees Suffice for High-Throughput Consensus 15

4.1 Terminology . 15

4.2 The Main Property of Sustainable Rates 17

4.3 Proof of Theorem 4.2.1 . 18

4.3.1 Constructing Sub-stream Overlays 18

4.3.2 Computing Sub-stream Rates . 19

4.3.3 Correctness Criteria . 20

4.3.4 Correctness of Algorithm 1 . 22

4.4 Discussion . 25

4.5 Conclusion . 26

5 ShallowForest: Optimizing All-to-All Data Transmission in WANs 27

5.1 Throughput-Optimal Data Rates . 27

5.2 Latency-Optimal Overlays . 28

5.2.1 Choosing Overlay Candidates . 29

5.2.2 LP formulation . 29

6 Amoeba Paxos: Making EPaxos Workload-Aware 31

6.1 Overview . 31

6.2 The Ordering Plane . 33

6.3 The Data Plane . 33

6.3.1 Overcoming the Per-flow Rate Limit 33

6.3.2 Overlay Configuration . 34

6.3.3 Overlay Information . 34

6.3.4 Assemble Ordering Plane Messages 36

6.3.5 Handling Failures . 37

vii

7 Evaluation 38

7.1 Experiment Setup . 38

7.2 Different Skewness Levels . 39

7.3 Different Cluster Sizes . 41

8 Related Work 44

8.1 Consensus Over WAN . 44

8.2 Decoupling Data Transmission From Ordering 45

8.3 Application-Level Multicast . 45

8.4 Optimizing Data Flows . 46

9 Conclusion 48

References 49

viii

List of Tables

3.1 Average aggregated throughput of inter-DC links. 11

4.1 Table of notations . 19

7.1 Network latency (ms) between each pair of sites used in the experiment. . . 39

7.2 Load on replicas with under different skewness levels 41

7.3 Load on replicas with different replication factors 43

ix

List of Figures

3.1 Aggregated throughput of one-to-many data transfers. 12

3.2 An illustration of the hose network model. 14

4.1 Two types of base overlays in a cluster of four nodes. 17

4.2 Visualization of Algorithm 1. 21

6.1 The software architecture of APaxos. Red lines represent the transmission
of protocol messages and blue lines represent the transmission of client op-
erations. 32

7.1 Latency vs throughput for 5 replicas under different levels of skewness of
client load. 40

7.2 Throughput for different numbers of replicas. 42

x

Chapter 1

Introduction

Being highly available in the presence of machine failures and network partitions is crucial
to today’s network services. State machine replication (SMR) [25] is a well-established
technique to build fault-tolerant distributed systems. By having a group of replicated state
machines collectively play the role of a server, the service can continue to operate when
some of the machines fail. In SMR, each state machine executes an unbounded sequence of
commands that update the current state. To make server state consistent across replicas,
all replicated state machines must execute the same sequence of commands. To solve
this challenging problem, replicated state machines communicate according to a specific
consensus protocol to agree upon on a single sequence of commands to execute. Due to
the asynchrony of the system, where messages can be delayed arbitrarily and processes
can become arbitrarily slow, the replicas of a replicated state machine cannot always be in
exactly the same state.

Traditionally, consensus protocols have been crucial building blocks in modern dis-
tributed systems for replicating important data and providing a strict ordering of updates
to a small number of machines [9, 23]. Recently, blockchain [33, 10, 5, 40] has become an
emerging category of systems that require large scale consensus involving hundreds of nodes
across different geographical regions connected by a wide-area network (WAN). Both con-
sensus protocols and blockchain systems require multicasting data to a group of receivers.
The following communication pattern dominates the normal operation of consensus proto-
cols: upon receiving client requests, a replica broadcasts a message with commands to all
other replicas and commits the request after receiving a certain number of responses. Such
a communication pattern can be abstracted as an all-to-all data transmission, where each
node in the cluster broadcasts an infinite stream of data to all other participating nodes.

1

1.1 A Simple Example

In a network consisting of n geo-distributed sites v1, . . . , vn, using a single overlay for
data dissemination can be suboptimal in terms of both throughput and network latency.
Consider the case where each site has equal uplink and downlink capacity B Mbps and the
network latency between each pair of sites is L ms. Assume v1 needs to broadcast B Mbps
to every receiver. By having v1 send the data directly to each receiver, each receiver can
only receive the data at the rate of B

n−1 . Another alternative is to use a path joining all sites
starting at v1, which broadcasts data at the rate of B Mbps. However, the communication
latency incurred by the last receiver on the path equals to (n− 1)L ms.

Above examples are sub-optimal in terms of either transmission throughput or latency.
However, when using multiple overlays for data dissemination, we can reduce the cost of
latency for achieving high data transmission throughput. For this approach, the original
stream can be evenly partitioned into n − 1 streams which are first sent to v2, . . . , vn
respectively. Upon receiving the data, each site then broadcasts the data to the remaining
n− 2 sites. By using this approach, the network latency incurred by the data transmission
becomes 2L ms while the transmission throughput remains B Mbps.

The above examples consider a simple case which motivates the research presented by
this thesis. It raises a fundamental problem: given a set of nodes connected by a WAN and
each node having a stream of data to broadcast to all other nodes, how can we maximize
the aggregated broadcast throughput while minimizing the latency for each node’s data to
reach all other nodes?

1.2 Motivation

Leader-centric consensus protocols like Paxos [26] and Raft [34] have a stable leader to
handle all client requests. Since internet protocol (IP) multicast is not generally available
in a WAN environment, the stable leader in those protocols sends the data directly to all
other replicas using multiple unicast transmissions. Assuming each site in the network is
associated with an uplink capacity that limits the aggregated throughput of outgoing flows
to other sites, this approach would render the leader as the bottleneck. As the number of
replicas grows, each transmission will have less share of the available uplink capacity at the
leader. Some protocols [30, 29] addressed this issue by handling data transmission using
one or more ring overlays to maximize bandwidth utilization. However, a ring overlay
is not an ideal option in a WAN environment due to the high latency of WAN links.

2

Other protocols [28, 31, 7] alleviate the single leader bottleneck by distributing the load
of data dissemination across all nodes. This strategy works best when the load is spread
uniformly across all replicas. However, workloads in the real world can be highly skewed
across different geo-areas and continuously changing over time. When each replica sends
data directly to other replicas, it may yield sub-optimal throughput and lead to a load
imbalance across replicas. Therefore, I argue that data dissemination should be handled
in a more flexible way for consensus protocols to achieve high commit throughput and low
commit latency.

1.3 Contributions

In light of these challenges, I propose ShallowForest, an algorithm that optimizes data
transmission for consensus protocols using overlay broadcast. ShallowForest computes
data transmission overlays according to client load and available network capacity at each
replica to make consensus protocols achieve high throughput and low latency. The central
idea behind ShallowForest is inspired by overlay multicast protocols such as SplitStream
and Bullet[11, 24], which partition the data stream at the sender and broadcast each
stream partition with a potentially different tree overlay. However, the primary difference
between ShallowForest and prior overlay multicast protocols is that ShallowForest only
uses shallow tree overlays to reduce the network latency subject to the data transmission.
This preference over shallow tree overlays is also backed by the sufficiency of shallow
tree overlays in achieving the optimal throughput of all-to-all data transmission, which is
described in details in Chapter 4.

In this thesis, I make the following contributions:

1. I prove that the optimal throughput of all-to-all data transmission is achievable by
using tree overlays with height up to 2 in a congestion-free core network model.

2. I formulate the data transmission overlay optimization problem as a linear program-
ming (LP) problem and build ShallowForest.

3. I apply ShallowForest to Egalitarian Paxos (EPaxos) and conduct experiments in
the Amazon Elastic Compute Cloud (EC2) [1]. The experiment results demonstrate
that ShallowForest can improve the commit throughput of EPaxos by 100% while
reducing the commit latency by 60% with skewed client load across replicas.

3

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 goes through the background of consensus
problems and related consensus protocols. Chapter 3 presents the benchmark results of
data transmission throughput in the Amazon EC2 cloud. Chapter 4 presents the proof
for the sufficiency of shallow tree overlays in achieving the optimal throughput. Chapter 5
presents the details of the ShallowForest optimization. Chapter 6 describes Amoeba Paxos
(APaxos), which uses ShallowForest to optimize data transmission for EPaxos. Chapter 7
evaluates APaxos through experiments conducted in the Amazon EC2 cloud. Chapter 8
surveys the related work and Chapter 9 concludes the thesis and discusses future work.

4

Chapter 2

Background

This chapter provides an overview of the consensus problem and consensus protocols related
to this thesis.

2.1 Consensus Problems

The consensus problem is a fundamental problem in distributed computing that requires
multiple processes to agree on a common output. Real world agreement problems include
but are not limited to leader election, state machine replication and committing distributed
transactions. The consensus problem is defined as follows by [6]:

In a system with n processes p1, . . . , pn, each process pi has an input value xi
and an output yi, which is also known as the decision. Initially, xi is drawn
from a known set of values and yi is undefined. A solution to the consensus
problem must satisfy the following properties:

1. Termination: In every admissible execution, yi is eventually assigned a
value, for every non-faulty process pi.

2. Agreement: If yi and yj are assigned for non-faulty processes pi, pj, then
yi = yj.

3. Validity: In every execution, if, for some value v, xi = v for all non-faulty
processes pi, and if yi is assigned for some non-faulty processes pi, then
yi = v.

5

Consensus protocols coordinate multiple processes to solve the consensus problem.
Solving the consensus problem is challenging when processes can be faulty and communi-
cation channels are unreliable. A correct process acts according to the protocol until the
protocol terminates, while a faulty process suffers a failure prior to the termination of the
protocol. The failure can be one of the following types according to [20]:

1. Fail-stop failure: A process crashes and stops receiving or sending messages indef-
initely.

2. Omission failure: A process fails to send or receive messages when it should.

3. Byzantine failure: A process sends erroneous messages that compromise the pro-
tocol.

Based on the assumption on message delivery and processing speed, the system can be
synchronous, partially-synchronous or asynchronous. The upper bound on message trans-
mission delay is known in a synchronous system, while a message may take an arbitrarily
long time to deliver in an asynchronous system. The partially-synchronous system lies
in between synchronous and asynchronous; it assumes the upper bound exists but is not
known apriori. The consensus problem has been intensively studied by previous works
for various assumptions on failure model and system types. [20] has proven that for the
consensus problem in partially synchronous systems, there has to be at least 2f + 1 pro-
cesses to tolerate f non-Byzantine failures and 3f + 1 processes to tolerate f Byzantine
failures. According to the FLP impossibility result [21], consensus problem is not solvable
within finite steps in an asynchronous system with just fail-stop failures. [8] proves that
probabilistic protocols can guarantee either termination of agreement deterministically at
the expense of the other in an asynchronous environment.

2.2 Paxos

Paxos [26], proposed by Leslie Lamport, is one of the most influential and widely used
protocols. In general, Paxos solves the consensus problem in an asynchronous system with
non-Byzantine failures. It can tolerate up to f failures with 2f + 1 processes. Basic Paxos,
also known as single-decree Paxos, coordinates a collection of processes to choose a single
value such as a command proposed by a client. Although being able to choose a single
value can hardly be useful in practice, basic Paxos is the building block of Multi Paxos,
which can be used to implement SMR in a production environment.

6

In basic Paxos, there are three types of processes involved in the protocol: proposer,
acceptor and learner. The proposer sends a proposed value v to a set of acceptors. An
acceptor may accept the v if some conditions are met. The value v is said to be chosen
when a majority quorum of acceptors accept v or assign v to their decisions. Proposer and
acceptor play central roles in deciding the chosen value and learners are often omitted in
the discussion as they simply learn the chosen value.

Basic Paxos is a two-phase algorithm:

1. Prepare Phase:

(a) Upon receiving some value v from the client, the proposer broadcasts a prepare
message Prepare(n) to all acceptors, where n is the proposal number the pro-
poser selects. The proposal number selected must uniquely identify a proposal.
One possible form of proposal number is < r, id > where r is the round number
and id represents the ID of the proposer process. Each process can store the
largest round number rmax (initialized as 0) it has ever seen and use rmax + 1 as
the round number of its new proposal number.

(b) Upon receiving Prepare(n), the acceptor pi will send a response based on fol-
lowing variables it maintains:

i. li: the highest proposal number pi has received but not necessarily accepted.

ii. ai: the highest proposal number pi has accepted.

iii. vi: the value pi has accepted.

If n > li and pi has accepted some proposal, the acceptor pi will update li = n
and reply PrepareAns(ai, vi). If the pi has not accepted any proposal yet, it
will reply PrepareAns(n,∅).

The proposer can achieve two goals during the prepare phase:

(a) Block other proposals with lower proposal numbers.

(b) Learn the value accepted by acceptors.

2. Accept Phase:

(a) Having received PrepareAns messages from the majority of acceptors, the pro-
poser will broadcast Accept(n, v). If vi 6= ∅ in any received PrepareAns mes-
sages, v is replaced with the vi associated with the highest ai among all the
received PrepareAns messages.

7

(b) Upon receiving Accept(n, v), if n ≥ li, acceptor pi will set ai = n, li = n and
vi = v. In the end, the acceptor reply to the proposer with li

The value v is considered chosen when the majority of acceptors replied (n, v) during phase
2.b. The proposer goes back to phase 1.a with a higher proposal number when it fails to
receive enough responses in either phase. Built on the basis of the basic Paxos, Multi
Paxos divides the consensus into a sequence of instances. By running basic Paxos for each
instance, processes can reach consensus on a sequence of values. To avoid executing the
prepare phase for every single instance, Multi Paxos sets one process to be a stable leader.
The prepare phase is only needed at the start of the protocol or when the current stable
leader fails. In the discussion of consensus protocols, Paxos often refers to Multi Paxos.

2.3 Egalitarian Paxos

Most Paxos-based consensus protocols are leader-based. For instance, in Multi-Paxos, the
designated leader will handle all client requests and broadcasting protocol messages to all
other replicas. Such a design has two major problems in a WAN environment: 1) The
leader becomes a single point of failure that impairs the availability of the service; 2) High
commit latency: client requests originating from the site other than the leader site incur an
extra round of wide-area transfer; 3) The computing and network resources of the leader
process will limit the system throughput.

EPaxos is a variant of Paxos designed to solve the single leader bottleneck issue. Unlike
other Paxos variants, there is no designated leader in EPaxos and clients can send their
commands to any replica. The leaderless nature of EPaxos allows the system to evenly
distribute the load across all replicas. EPaxos also significantly reduces the communication
overhead of geo-distributed state machine replication by allowing clients to send requests
to their closest replicas. When the majority of replicas are correct, EPaxos commits a
command with a single round of network communication and it takes at most two rounds
of network communication to commit a command that interferes with other concurrently
proposed commands. In the context of a key-value store, two commands interfere with
each other if one of them is a write command and both commands operate on the same
key.

The central idea behind EPaxos is to establish consensus on ordering constraints for
each proposed command, which are used by every replica to compute the same order of
commands locally. The ordering constraints of a command γ, consist of two components:

8

dependency list dep and sequence number seq . dep is a list of all instances that contain
commands that interfere with γ, where each instance is a batch of commands. seq is the
smallest number that is greater than the sequence number of all other interfering commands
in dep.

Like Paxos, EPaxos also involves two phases: Phase 1 and Phase 2. The goal of Phase
1 is to establish the ordering constraints for a command γ. Upon receiving a command γ
from a client, a replica becomes the command leader and sends a PreAccept message to
all other replicas that constitute a fast path quorum. A PreAccept message contains γ,
deps and seq where deps and seq are computed based on the command leader’s local state.
When the PreAccept message reaches a replica, the replica updates deps and seq according
to its local state and replies to the command leader with the updated deps and seq. If the
command leader receives replies from a fast path quorum of replicas with unchanged deps
and seq, it sends a Commit message to all other replicas to commit γ and replies to the
client. Committing a command after Phase 1 is also referred to as committing a command
on the fast-path.

Since another replica’s state may contain commands interfering with γ that are not
present in the state of the command leader, the command leader might fail to receive
responses with unchanged deps and seq from a fast-path quorum of replicas. In such a
case, it computes a new deps by taking the union of all received dependency lists and
updates seq to be larger than the largest sequence number in the received response. After
that, the command leader proceeds to Phase 2. During Phase 2, the command leader
sends an Accept message including updated deps and seq to at least a majority quorum.
Upon receiving the Accept message, the replica updates its state and sends a reply to the
command leader. When the command leader receives replies from a majority of replicas,
it sends a Commit message to all replicas and replies to the client. In some scenarios such
as the command leader fails, a command γ cannot be committed by its original command
leader. In such case, other replicas received γ through PreAccept message will compete to
become the command leader of γ and commit γ through a Paxos-like protocol.

Using the protocol described above, each non-faulty replica is able to build a dependency
graph for not-yet executed commands in the log using deps associated with each command.
In the case that the dependency graph contains a cycle, the replica breaks the cycle using
seq associated with each involved command. During the execution phase, each replica
executes the command in the topological order of the dependency graph.

9

Chapter 3

Measuring Inter-DC WAN
Throughput

Many consensus protocols and blockchain systems are deployed on a public cloud across
multiple geographical areas. It is worth-while knowing the performance of inter-datacenter
(Inter-DC) networking on a public cloud before proposing any optimization schemes for
the data transmission in such an environment. Some previous works [36, 41, 22] provided
a quantitative measurement of the performance of Inter-DC networking on a public cloud.
Below is a summary of the conclusions and key observations presented in those works:

1. Public cloud providers often set per-VM rate limits to ensure performance isolation
across tenants such that the maximum aggregated throughput of a single VM is
capped [41, 22].

2. There is also a per-flow rate limit for inter-DC flows regardless of the sending and
receiving window size of TCP configurations. Increasing the number of flows will
result in higher aggregated throughput until the upper limit is reached [41].

3. There is no per-flow rate limit for intra-DC flows. However, the maximum throughput
of an intra-DC flow is still capped by the per-VM rate limit [41].

4. The maximum aggregated throughput varies spatially between different pairs of sites.
However, the temporal difference in aggregated throughput between the same pair
of sites is not significant [22].

To verify the observations made by prior works and get a better sense of how an inter-
DC WAN performs, I conduct measurement on the Amazon EC2. Besides measuring the

10

throughput of one-to-one data transfers between each pair of VMs as previous works did, I
also benchmark the throughput of one-to-many transfers and many-to-one transfers, which
are two dominant communication patterns in applications such as consensus protocols and
cryptocurrencies. Based on the benchmark results, I present the network model used in
this thesis.

3.1 Throughput of one-to-one data transfer

I start my measurement by benchmarking the throughput of one-to-one data transfer be-
tween each pair of VMs. In my measurement, I set up VMs with high network performance
(m4.xlarge instance) in four different geo-areas: Ireland, Tokyo, US-East (Virginia), and
US-West (Oregon). To measure the throughput, I use iperf3 [2] to initiate 30 flows, keep
them running for 90 seconds, and record the average throughput reported by iperf3. Table
3.1 shows a summary of the results. As opposed to up to 3X variation in throughput
measured using a single TCP flow [36], the benchmark results measured using multiple
flows are similar across data centers. The variation among different sender-receiver pairs
is approximately 10%. All aggregated throughputs are capped around 750 Mbps.

Table 3.1: Average aggregated throughput of inter-DC links.

Virginia Oregon Tokyo Ireland
Virginia - 753 Mbps 702 Mbps 749 Mbps
Oregon 761 Mbps - 760 Mbps 705 Mbps
Tokyo 715 Mbps 738 Mbps - 694 Mbps
Ireland 763 Mbps 700 Mbps 687 Mbps -

3.2 Throughput of one-to-many data transfer

One of the questions I want to investigate is: does the per-VM rate limit apply to one-to-
many data transfer. To answer this question, I set the VM in one datacenter to be the
sender and let it send data to all other VMs concurrently. I use Iperf3 to start 30 TCP flows
from the sender VM to each receiver VM and keep them running for 60 seconds. After
60 seconds, I record the average data transmission throughput of each sender-receiver

11

Virginia Oregon Tokyo Ireland
Sender VM Locations

0

100

200

300

400

500

600

700

800

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Virginia
Oregon
Tokyo
Ireland

Figure 3.1: Aggregated throughput of one-to-many data transfers.

12

pair. The results are presented in Figure 3.1, where the x-axis represents the location of
the sender VM and each bar represents the aggregated throughput of the one-to-many
data transmission at a specific location. Each segment with a particular colour scheme
represents the throughput of the data transmission between the sender and a particular
receiver. From the graph, we can see that, when there are multiple receivers, the aggregated
throughput of data transmission to all receivers is capped around 750 Mbps. This rate is
roughly equivalent to the per VM rate limit. Due to the congestion control mechanism of
TCP, the size of the sending window of a closer receiver grows faster than that of a distant
receiver. If a sender sends data aggressively to each receiver using TCP connections, the
closest receiver usually receives the greatest portion of the sender’s uplink capacity. I also
observe similar trends in many-to-one data transfers where a single receiver receives from
multiple senders at the same time.

3.3 Remarks

As a complement to the conclusion and observation made by prior works, I list conclusions
below based on my benchmark result:

• According to Table 3.1, using multiple inter-DC flows for one-to-one transfer results
in not only higher aggregated throughput, but also less spatial variation. Although
the spatial variance is insignificant in my measurement, [22] reported 2X variation
between EU-US throughput and US-ASIA throughput when using VMs with higher
per-VM rate limit.

• According to Figure 3.1, multiple one-to-one transfers originating at the same sender
VM will contend for the available uplink capacity. The aggregated throughput is still
constrained by the per-VM rate limit. The same arguments apply to the downlink
capacity for multiple one-to-one transfers destined at the same receiver VM.

3.4 Network Model

Instead of assuming a specific network topology for the WAN, this thesis uses the hose
network model [19] which models the network as a set of sites connected by a core network
with unlimited capacity as demonstrated by Figure 3.2. All sites can send and receive
data from each other, bottlenecked only by the edge link capacity between each site and

13

Figure 3.2: An illustration of the hose network model.

the core network. Such a model is often used to represent a WAN in works related to
network flow optimizations [37, 13]. It is not only simple but also valid as shown by recent
measurements [17] and my own measurement presented in Section 3.1 and Section 3.2.

In the remainder of this thesis, the network topology is a directed complete graph
G = (V,E) with n vertices. Each vertex in V represents a geo-distributed site, and each
edge in E represents the logical link between two sites. Due to a WAN’s heterogeneous
bandwidth availability, there are two functions Cu : V → R+ and Cd : V → R+, which
respectively define the uplink and downlink capacity of the edge link between a site and the
core network. The network latency between each pair of sites is denoted by L : E → R+.
The uplink and downlink capacity of a site is shared by all unicast data transmissions
associated with that site. For instance, a sender directly multicasting to n receivers at
the rate of R will consume nR of the sender’s uplink capacity and R of each receiver’s
downlink capacity.

14

Chapter 4

Shallow Overlay Trees Suffice for
High-Throughput Consensus

This chapter demonstrates that, when modelling the network as a congestion-free core and
leveraging overlay multicast, it is possible for all-to-all data transmission to achieve both
high throughput and low latency for data to reach all other nodes. The general idea is
similar to SplitStream and Bullet [11, 24], which split the source stream at each node into
multiple partitions and broadcast each partition with different overlay trees. I build on this
prior work by proving that the optimal data transmission throughput is always achievable
by using broadcast trees with height up to two.

4.1 Terminology

The section below provides the definition of some terminologies used in this chapter.

Overlay

In a network G(V,E), an overlay O(V,E ′) is a spanning tree of G rooted at some site
v ∈ V . It defines a broadcast transmission with site v as the sender and the remaining
sites as receivers. Each edge (vi, vj) ∈ E ′ represents the transmission of v’s data from vi
to vj.

15

Client Data Stream

In a network G(V,E), a client data stream s is an infinite sequence of data bits from clients
to be broadcast to all other sites in the network. The rate Ri of a client data stream si
represents the incoming rate of client data at site vi ∈ V . For instance, letting r be the
number of incoming client requests per second at site v and letting S be the size of the data
payload of each request, the client data rate at site v is rS. I assume that a site’s client
data stream does not consume its downlink capacity as client requests arrive through the
local area network. For all-to-all data transmission, each site vi ∈ V is associated with a
client data stream si that must be received by all other sites.

Partitioning Scheme

Assume for simplicity of analysis that a client data stream can be split at arbitrary fine
granularity. A partitioning scheme P (si, n) of a client data stream si with rate Ri splits
elements of si into n streams si,1, . . . , si,n with rates ri,1, . . . , ri,n such that Ri =

∑n
j=1 ri,j.

I refer to each split of the stream a sub-stream of si.

Aggregated Throughput

In an all-to-all data transmission in a network G(V,E) with n sites, each site vi broadcasts
its data to all other sites at the rate Ri without violating the uplink and downlink capacity
at any site. Then the aggregated throughput of this all-to-all data transmission is defined
as

∑n
i=1Ri.

Base Overlays

Base overlay refers to the following types of overlays:

1. 1-level tree

2. 2-level tree with only one non-leaf node (excluding the root)

Figure 4.1 demonstrates these two base overlays in a network with four sites.

16

Figure 4.1: Two types of base overlays in a cluster of four nodes.

4.2 The Main Property of Sustainable Rates

Sustainable Rates

Client data streams s1, . . . , sn with rates R1, . . . , Rn are said to be sustainable if the fol-
lowing four conditions are all met:

1. For each vi ∈ V , Ri ≤ Cu(vi).

2. For each vi ∈ V ,
∑

j 6=iRj ≤ Cd(vi).

3. (n− 1)
∑n

i=1Ri ≤
∑n

i=1Cu(vi).

4. (n− 1)
∑n

i=1Ri ≤
∑n

i=1Cd(vi).

Intuitively, being sustainable is the minimum requirement for a set of client data streams
to be broadcast at their incoming rates. Condition (1) ensures that each site has enough
uplink capacity to send out its data at least once to other nodes. As each site has to receive
from all other peers, condition (2) ensures that the aggregated rate of incoming streams
does not exceed a site’s downlink capacity. Condition (3) derives from the fact that the
client data at each site must be sent at least n − 1 times. Similarly, the fact that client
data at each site has to be received n− 1 times lead to condition (4). Note that, condition

17

(4) is the direct result of condition (2) by summing over all possible i. If any of the above
conditions are violated, the aggregated throughput of all-to-all data transmission will be
less than (n− 1)

∑n
i=1Ri.

Theorem 4.2.1. For client data streams s1, . . . , sn with sustainable rates R1, . . . , Rn, there
exists a partitioning scheme for each client data stream and a one-to-one mapping from
sub-streams to overlays such that:

1. Each sub-stream can be broadcast using its overlay at its rate without violating down-
link and uplink capacity constraints at any site.

2. The height of each sub-stream’s overlay is at most 2.

4.3 Proof of Theorem 4.2.1

I prove Theorem 4.2.1 by proving the following stronger theorem:

Theorem 4.3.1. For client data streams s1, . . . , sn with sustainable rates R1, . . . , Rn, there
exists a partitioning scheme for each client data stream and a one-to-one mapping from
sub-streams to overlays such that:

1. Each sub-stream can be broadcast using its overlay at its rate without violating down-
link and uplink capacity constraints at any site.

2. Each sub-stream’s overlay is a base overlay.

Theorem 4.3.1 is a stronger version of Theorem 4.2.1 because Theorem 4.3.1 constrains
overlay candidates to two specific types while there are other alternative forms of 2-level
tree overlays. Later sections provide the proof of Theorem 4.3.1. The general idea is to
construct a possible partitioning scheme for each client data stream and associate each sub-
stream with an overlay such that the resulting data transmission will not violate downlink
and uplink capacity constraints at any site.

4.3.1 Constructing Sub-stream Overlays

Each client stream si will be split into n sub-streams si,1, . . . , si,n with rates ri,1, . . . , ri,n.
The data of the special sub-stream si,i is sent directly from vi to all the remaining sites.
The data of sub-stream si,j for i 6= j is sent from vi to vj first, and then vj will broadcast
the data to the rest of the sites. All overlays defined previously are base overlays.

18

4.3.2 Computing Sub-stream Rates

Table 4.1: Table of notations

Symbol Definition
G(V,E) the network topology
si the client data stream originates at vi ∈ V
Ri the incoming rate of si
R′i the residual rate of si to be partitioned
U ′i the reserved uplink capacity of vi for sending out si once
Ui the residual uplink capacity of vi after reserving Ri for U ′i
si,j the jth sub-stream of si
ri,j the rate of si,j

Algorithm 1: Sub-stream rate assigning algorithm

Input : G(V,E)
Cu : V → R+
Ri . . . Rn

Output: ri,j, 1 ≤ i, j ≤ n
1 ri,j := 0, 1 ≤ i, j ≤ n; // initialize sub-stream rates

2 Ui := Cu(vi)−Ri, 1 ≤ i ≤ n; // initialize each residual uplink capacity

3 for i := 1 to n do // go through all source sites

4 R′i := Ri;
5 for j := 1 to n do // loop through all sub-streams

6 if (n− 2)R′i > Uj then

7 ri,j :=
Uj

n−2 ;

8 else
9 ri,j := R′i;

10 Uj := Uj − (n− 2)ri,j;
11 R′i := R′i − ri,j;
12 if R′i = 0 then
13 break;

14 return r1,1 . . . rn,n;

19

Algorithm 1 computes the rate of each sub-stream defined in the previous section. It
does not aim to compute the latency-optimal partitioning scheme, which favours 1-level
tree overlays. The purpose of Algorithm 1 is to construct a partitioning scheme and an
overlay mapping for proving Theorem 4.3.1. Table 4.1 summarizes the notations used in
Algorithm 1.

For each node vi, its uplink capacity is divided into two parts: U ′i = Ri and Ui =
Cu(vi) − Ri. U

′
i represents the reserved uplink capacity for vi to send out all its data at

least once and Ui is the residual uplink capacity such that Ui+U ′i = Cu(vi). The algorithm
iterates over all site pairs in {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ n} in lexicographical order to
compute sub-stream rates. Using such an order is just for the clarity of the proof and has
no impact on the correctness of the output of Algorithm 1.

For the iteration when sub-stream rate ri,j is computed, the algorithm greedily allocates
as much of Uj as possible to ri,j until either Uj is exhausted or the aggregated sub-stream
rate reaches Ri. According to the overlay trees defined in the previous section, sending si,j
consumes ri,j of U ′i and (n − 2)ri,j of Uj. This rule also applies to the case i = j, where
sending si,i consumes ri,i of U ′i and (n − 2)ri,i of Ui. As a result, sending si,i consumes in
total (n− 1)ri,i of Cu(vi).

Figure 4.2 provides the visualization of Algorithm 1. It demonstrates an example with
three sites v1, v2, v3 with uplink capacity Cu(v1) = 2, Cu(v2) = 10, Cu(v3) = 6. All sites
have the same downlink capacity which equals to 9. Each entry represents the overlay
associated with the sub-stream si,j. Let the client data stream rates be R1 = 1, R2 = 3,
R3 = 5. After the first iteration, r1,1 = 1, r1,2 = 0 and r1,3 = 0. After the second iteration,
r2,1 = 0, r2,1 = 3 and r2,3 = 0. After the final iteration, r3,1 = 0, r3,2 = 4 and r3,3 = 1.

4.3.3 Correctness Criteria

The output of Algorithm 1 is a set of sub-stream rates r1,1, . . . , rn,n. A correct output
satisfies the following three criteria for all 1 ≤ i ≤ n:

1. Valid Partition Constraint: The aggregated rate of all sub-streams of a client data
stream is equal to that client data stream’s rate, which is equivalent to

∑n
j=1 ri,j = Ri.

2. Uplink Capacity Constraint: The aggregated rate of all sub-streams sent by vi
is less than or equal to Cu(vi).

3. Downlink Capacity Constraint: The aggregated rate of all sub-streams received
by vi is less than or equal to Cd(vi).

20

Figure 4.2: Visualization of Algorithm 1.

21

4.3.4 Correctness of Algorithm 1

Let Ui[α] represent the value of Ui at the start of iteration α of the outer loop.

Proposition 4.3.1. For all α such that 1 ≤ α ≤ n, if
∑n

i=1 Ui[α] ≥ (n − 2)Rα, then∑n
i=1 rα,i = Rα at the end of iteration α of outer loop.

Proof. This proposition can be proved by contradiction. Assume:

n∑
i=1

Ui[α] ≥ (n− 2)Rα (4.1)

n∑
i=1

rα,i 6= Rα (4.2)

at the end of iteration α of the outer loop. If that is the case, line 9 is never executed
during iteration α, otherwise, R′α becomes 0 at line 11 and the inner loop terminates with∑n

i=1 rα,i = Rα. At the start of the inner loop’s last iteration, we have:

R′α = Rα −
n−1∑
i=1

rα,i (4.3)

Since line 7 is executed at every iteration of the inner loop, at the start of the inner loop’s
last iteration, we have:

R′α = Rα −
1

n− 2

n−1∑
i=1

Ui[α] (4.4)

(n− 2)R′α > Un[α] (4.5)

Equation 4.4 implies that

(n− 2)R′α = (n− 2)Rα −
n−1∑
i=1

Ui[α] (4.6)

Therefore, we have:

22

(n− 2)R′α > Un[α] =⇒ (n− 2)Rα >
n∑
i=1

Ui[α] (4.7)

contradicts with 4.1.

Proposition 4.3.2.
∑n

i=1 Ui[α] ≥ (n− 2)
∑n

i=αRi, for all α such that 1 ≤ α ≤ n.

Proof. This proposition can be proved by induction on α.
Base case α = 1:

n∑
i=1

Ui[1] =
n∑
i=1

(Cu(vi)−Ri) (4.8)

According to condition (3) of sustainable rates:

n∑
i=1

(Cu(vi)−Ri) ≥ (n− 2)
n∑
i=1

Ri (4.9)

This proves the base case.

Induction step: choose an arbitrary α > 1 and assume the equation below is true.

n∑
i=1

Ui[α− 1] ≥ (n− 2)
n∑

i=α−1

Ri (4.10)

As a result of proposition 4.3.1,

n∑
i=1

rα−1,i = Rα−1 (4.11)

at the end of the outer loop’s iteration α − 1. Since line 10 is executed at every iteration
of the inner loop, we have:

Ui[α] = Ui[α− 1]− (n− 2)rα−1,i, ∀i : 1 ≤ i ≤ n (4.12)

23

According to equation 4.11, by summing over i, we have:

n∑
i=1

Ui[α] =
n∑
i=1

Ui[α− 1]− (n− 2)
n∑
i=1

rα−1,i (4.13)

=
n∑
i=1

Ui[α− 1]− (n− 2)Rα−1 (4.14)

According to equation 4.14, by subtracting (n− 2)Rα−1 from both sides of inequality 4.10,
we have:

n∑
i=1

Ui[α] ≥ (n− 2)
n∑
i=α

Ri (4.15)

This completes the induction step.

Proposition 4.3.3. The output of Algorithm 1 satisfies the Valid Partition Constraint.

Proof. This proposition holds as the direct outcome of Proposition 4.3.1 and Proposition
4.3.2.

According to Proposition 4.3.2:

n∑
i=1

Ui[α] ≥ (n− 2)
n∑
i=α

Ri ≥ (n− 2)Rα, ∀α : 1 ≤ α ≤ n (4.16)

and Proposition 4.3.1:

n∑
i=1

Ui[α] ≥ (n− 2)Rα =⇒
n∑
i=1

rα,i = Rα (4.17)

We have:
n∑
i=1

rα,i = Rα, ∀α : 1 ≤ α ≤ n (4.18)

Equation 4.18 implies the Valid Partition Constraint.

Lemma 4.3.2. Ui[α] ≥ 0 for all i, α such that 1 ≤ i, α ≤ n

24

Proof. I prove this lemma by induction on α.
Base case α = 1: By line 2, we have: Ui[1] = Cu(vi) − Ri for all i such that 1 ≤ i ≤ n.
According to condition (1) of sustainable rates, Ui[1] ≥ 0 holds for all i such that 1 ≤ i ≤ n.
Induction step: For an arbitrary number α such that 1 < α ≤ n, assume Ui[α − 1] ≥ 0.

Line 6 and line 7 guarantee rα,i ≤ Ui[α−1]
n−2 and Ui[α] = Ui[α − 1]− (n− 2)rα,i according to

line 10. As a result, Ui[α] ≥ 0.

Proposition 4.3.4. The output of Algorithm 1 satisfies the Uplink Capacity Constraint.

Proof. From Lemma 4.3.2, we have Ui ≥ 0 throughout the execution of Algorithm 1 for
all i such that 1 ≤ i ≤ n. According to the overlay defined in the previous section 4.3.1,
sending si,j consumes ri,j of U ′i and U ′i is consumed only by sending vi’s sub-streams. By
Proposition 4.3.3,

∑n
j=1 ri,j = Ri for all i such that 1 ≤ i ≤ n. Since we reserve Ri for

U ′i , sending all of vi’s sub-streams will consume exactly the amount of its reserved uplink
capacity. Because Cu(vi) = Ui + U ′i , no uplink capacity constraint is violated.

Proposition 4.3.5. The output of Algorithm 1 satisfies the Downlink Capacity Constraint.

Proof. Since every sub-stream is broadcast by a tree overlay, each site receives all other
site’s data exactly once and the data is received at the same rate as the source is trying
to send. According to the condition (2) of sustainable rates, there is also no violation of
downlink capacity constraint.

4.4 Discussion

For the sake of simplicity, I define the shallow tree overlay approach as the techniques of
splitting up the client data stream and broadcasting each sub-stream with a shallow tree
overlay. According to Theorem 4.2.1, any sustainable rates in all-to-all data transmission
is achievable by using shallow tree overlays. Comparing to directly broadcasting to other
sites, the equation below captures the throughput improvement achieved by the shallow
tree overlay approach for sustainable client data rates R1, . . . , Rn:∑n

i=1Ri∑n
i=1 min(Ri,

Cu(vi)
n−1)

(4.19)

The numerator is the aggregated throughput achieved by the shallow tree overlay ap-
proach while the denominator is the aggregated throughput achieved by direct broadcast-
ing. If some site vi does not have enough uplink capacity to broadcast its data directly at

25

the rate Ri, using the shallow tree overlay approach results in higher aggregated through-
put. Such a case can happen when there is a mismatch between the distribution of client
load and the distribution of available uplink capacity. Examples of this situation include
but not limited to:

1. All sites have similar uplink capacity and the client load at some site is much higher
than the client load at other sites.

2. The client loads at each site are similar and some site has limited uplink capacity
compared to other sites.

Equation 4.19 implies that one can use the shallow tree overlay approach to improve
the aggregated throughput of all-to-all data transmission for the above scenarios.

4.5 Conclusion

According to Theorem 4.2.1, by leveraging overlay multicast, all-to-all data transmission
can achieve the best possible throughput by using two-hop paths for data transmission.
It provides a theoretical foundation for ruling out deep overlay trees with height greater
than two when optimizing data transmissions for applications such as blockchains and
consensus protocols. Based on those results, I develop a two-phase optimization algorithm
that optimizes data transmission for consensus protocols. At a high level, the first phase
computes the optimal data rates based on available network resources. The second phase
computes the optimal combinations of overlay trees that yield the lowest latency and
provide the data rates obtained in the first phase. The next chapter will describe the
algorithm in detail.

26

Chapter 5

ShallowForest: Optimizing All-to-All
Data Transmission in WANs

ShallowForest is a two-phase algorithm that optimizes all-to-all data transmission in a
WAN environment for consensus protocols and blockchain systems. We assume that net-
work capacity is the critical performance-limiting resource for such systems in a WAN
environment. The primary optimization goal of ShallowForest is to maximize the aggre-
gated data transmission throughput while the secondary goal is to minimize the network
latency subject to the data transmission rate. As a result, the first phase computes the
maximum achievable data transmission throughput constrained by the network capacity
and client load across all sites. In the second phase, ShallowForest computes the optimal
way to partition each client data stream and associates each sub-stream with an over-
lay such that the resulting overlay combination achieves the optimal throughput obtained
from the first phase. As network delay is not negligible in a WAN environment, the sec-
ond phase also minimizes the aggregated latency weight of the resulting overlays. In the
sections below, we describe the ShallowForest algorithm in detail.

5.1 Throughput-Optimal Data Rates

For client data streams with sustainable rates, ShallowForest starts the next phase directly.
Otherwise, ShallowForest computes a set of sustainable rates that result in the maximum

27

aggregated data transmission throughput by using the following LP formulation:

maximize:
n∑
i=1

R′i (5.1)

free variables: R′i ∀i : 1 ≤ i ≤ n (5.2)

subject to: R′i ≤ min(Cu(vi), Ri) ∀i : 1 ≤ i ≤ n (5.3)∑
j 6=i

R′j ≤ Cd(vi) ∀i : 1 ≤ i ≤ n (5.4)

(n− 1)
n∑
i=1

R′i ≤
n∑
i=1

Cu(vi) (5.5)

Constraints 5.3–5.5 ensure that the resulting rates meet the three of four conditions
of being sustainable. The output of the above formulation is a set of sustainable rates
R′1, . . . , R

′
n with the maximum sum that will be passed to the next phase.

5.2 Latency-Optimal Overlays

The goal of this phase is to compute a partitioning scheme for each client data stream and
construct overlays for all sub-streams such that the network latency incurred by the data
transmission is minimized.

Latency Weight. The latency weight l(O) of an overlay O = (V,E) rooted at v ∈ V
is the aggregated network latency incurred by all receivers to receive v’s data. Let Pi ⊆ E
be the path in O from v to some vi ∈ V , we have l(O) =

∑
vi∈V

∑
e∈Pi

L(e).

Problem Statement. Given a network G = (V,E) with Cu : V → R+, Cd : V → R+,
L : E → R+ and client data streams s1 . . . sn with sustainable rates R1 . . . Rn, for each client
data stream si, find a partitioning scheme P (si, ni) = {si,1, . . . , si,ni

} and the corresponding
overlay of each sub-stream Oi,1, . . . , Oi,ni

such that:

1. Each sub-stream si,j can be broadcast at its rate ri,j without violating downlink and
uplink capacity constraints at any site.

2.
∑n

i=1

∑ni

j=1 l(Oi,j)ri,j is minimized.

The term l(Oi,j)ri,j is the product of sub-stream rate and its overlay’s latency weight,
which represents the network latency subject to the data transmission on Oi,j at rate ri,j.

28

Minimizing the sum of this term over all overlays will promote transmitting more data on
overlays with low network latency to reduce the average network latency incurred by the
entire all-to-all data transmission.

5.2.1 Choosing Overlay Candidates

Overlay candidates are expected to be as shallow as possible to minimize the overhead
of network latency. As a result of the main property of sustainable rates, it is sufficient
to consider overlays with height less than or equal to two in the second phase. I further
reduce overlay candidates to base overlays as illustrated in Figure 4.1. The intuition behind
choosing these two types is that 1-level trees yield the minimum network latency when
the uplink capacity at the root is abundant, while 2-level trees are the most bandwidth
efficient when the uplink capacity at the root is scarce. Also, according to Theorem 4.3.1,
base overlays are sufficient for achieving any sustainable rates. As a result, each site has n
overlay candidates, one 1-level tree and n− 1 2-level trees.

5.2.2 LP formulation

I start by setting up a partitioning scheme for each client stream and pairing each sub-
stream with an overlay. Since there are n overlay candidates for each site, each client
data stream si will be split into n sub-streams si,1, . . . , si,n with rates ri,1, . . . , ri,n. Those
sub-stream rates are the variables to be optimized. I assign an overlay Oi,j = (V,Ei,j) to
a sub-stream si,j such that the data transmission is handled in the following way: (1) the
data of si,i is sent directly from vi to all the remaining sites; (2) the data of si,j for i 6= j
is sent from vi to vj first, and then vj broadcasts the data to the rest of the sites. The
resulting LP formulation is as follows:

minimize:
n∑
i=1

n∑
j=1

l(Oi,j)ri,j (5.6)

free variables: ri,j ∀i, j : 1 ≤ i, j ≤ n (5.7)

subject to: Ui ≤ Cu(vi) ∀i : 1 ≤ i ≤ n (5.8)
n∑
j=1

ri,j = Ri ∀i : 1 ≤ i ≤ n (5.9)

ri,j ≥ 0 ∀i, j : 1 ≤ i, j ≤ n (5.10)

29

For all i, j such that 1 ≤ i, j ≤ n:

Ui = (n− 1)ri,i + (n− 2)
∑
j 6=i

rj,i +
∑
j 6=i

ri,j (5.11)

Constraint 5.11 represents the amount of vi’s uplink capacity consumed by the data
transmission with respect to the overlay setup. Constraint 5.8 characterizes the uplink
capacity constraint at a specific site: the aggregated rates of data sent out of a site should
be less than or equal to that site’s uplink capacity. Constraint 5.9 enforces the sum of all
sub-stream rates being equal to the rate of the original stream. Constraint 5.10 enforces
the all sub-stream rates to be non-negative. Since the client data rates output by the
first phase are sustainable, and each site receives the data from other sites exactly once
according to the overlay setup, we do not need the downlink capacity constraint in the
formulation.

Note that, the actual throughput achieved by the overlays computed in this phase is
approximate to the optimal throughput due to two reasons: (1) the LP formulations relax
the integrality constraint on the rate of each sub-stream. In contrast to the assumption I
made in Section 4.1, you cannot split a data stream at a granularity finer than one bit; (2)
there could be rounding error when solving the LP problem.

30

Chapter 6

Amoeba Paxos: Making EPaxos
Workload-Aware

EPaxos [31] is a state of the art decentralized consensus protocol that achieves equal or
better performance than many other protocols in a WAN environment. However, its work-
load agnostic approach to handle data transmission will lead to sub-optimal performance
when dealing with skewed load across replicas. To make EPaxos workload-aware, I build
Amoeba Paxos (APaxos) on top of the publicly available EPaxos implementation [32] by
applying ShallowForest to the data transmission. This section provides the design and
implementation of Amoeba Paxos.

6.1 Overview

Figure 6.1 depicts the software architecture. There are three major components in APaxos:
the ordering plane, the data plane and a centralized controller. The ordering plane re-
ceives incoming client requests and orders them using original EPaxos protocol. Instead of
broadcasting messages with client operations directly to other replicas, the ordering plane
replaces actual client operations in protocol messages with client operation IDs and offloads
the job of broadcasting client operations to a co-located data plane thread.

The data plane broadcasts client operations with specific overlays according to its over-
lay configuration updated by the controller. The overlay configuration determines how
much data to transmit with a specific overlay. The data plane also transmits the client
operations received from other replicas based on the overlay information encapsulated in

31

Figure 6.1: The software architecture of APaxos. Red lines represent the transmission of
protocol messages and blue lines represent the transmission of client operations.

32

the received data. Besides handling data transmission, the data plane also buffers the
received client operations and reassembles them into protocol messages required by the
ordering plane.

The controller applies ShallowForest to compute the optimal partitioning scheme and
overlays for each site and updates each site’s overlay configuration through RPC calls.
In my prototype implementation, I hard-code the client data rates and available network
resources in the controller.

6.2 The Ordering Plane

There are three types of messages in EPaxos that enclose client operations: PreAccept,
TryPreAccept and PrepareReply. The ordering plane replaces client operations in
PreAccept messages with client operation IDs. The resulting message is referred to as
PreAcceptLight to distinguish it from the original PreAccept message. The ordering plane
only separates client operations from PreAccept messages because broadcasting PreAccept

messages consumes the greatest amount of bandwidth in normal operation while the latter
two messages are only involved in the EPaxos’s recovery process. The ordering plane broad-
casts PreAcceptLight messages and handles the protocol messages from other replicas in
the same way as an EPaxos replica does.

6.3 The Data Plane

This section provides further implementation details regarding the data plane.

6.3.1 Overcoming the Per-flow Rate Limit

To overcome the per-flow rate limit enforced by public cloud providers, APaxos sets up
multiple TCP connections between each pair of replicas located in different areas. For a
specific recipient, the data plane picks the TCP connection from the pool in a round-robin
fashion and transmits one client operation using a selected TCP connection in a separate
thread. The purpose of letting each TCP connection have equal chances to transmit client
operations is to make each TCP connection have a similar congestion control window size.
With a high incoming rate of client operations, there could be multiple TCP connections
concurrently sending client operations to the same recipient.

33

6.3.2 Overlay Configuration

For the data plane thread running on site vj, it sends client operations based on a local
overlay configuration overlay config, an array with the same size as the number of overlay
candidates. Each entry overlay config[i] is the amount of data out of a configurable
window size w KB that should be broadcast using the ith overlay. That is, among w KB
of data broadcast by vj, overlay config[i] KB of data should be broadcast using the ith
overlay. The ith entry of the overlay configuration is also referred to as the quota of the ith
overlay. In my implementation, w is set to 200KB to achieve the best performance.

After computing an optimal solution for the ShallowForest optimization, the controller
sets overlay config[i] to b rj,i

Rj
cw. When sending out a client operation γ with size x KB,

the data plane picks a random overlay with enough quota to send out γ. If the ith overlay
is picked, the data plane subtracts x from overlay config[i]. If no overlay has enough
quota to send out γ , the data plane will update each entry of overlay config with the
latest partitioning scheme computed by the controller. With such an approach, the client
data stream is partitioned at the granularity of the size of a client operation.

6.3.3 Overlay Information

Another advantage of using only the base overlay candidates demonstrated in Figure 4.1 is
minimizing the overhead of overlay information in the data transmitted by the data plane
process. To broadcast a client operation γ, the data plane process simply piggybacks a
re-transmission bit to the original message based on its transmission overlay. The bit is
set to 0 for a 1-level tree overlay and 1 otherwise. When a data plane process receives
data from other replicas, it checks the piggybacked re-transmission bit. If the bit equals
1, the data plane process will multicast the message to the remaining replicas with the
re-transmission bit set to 0.

The code snippet below shows the send and recv procedures implemented in the data
plane. The original data plane code is written in golang, which is directly integrated with
the EPaxos source code. However, for the clarity of the demonstration, here I use the
equivalent Python code instead.

Listing 6.1: Code for sending and receving client operations at the data plane

1 #the procedure for sending client operations

2 def send(self):

3 ’’’

34

4 :param self: the data plane thread

5 :return:

6 ’’’

7 # loop forever until the data plane shuts down

8 for not self.shut_down:

9 # obtain a client operation not yet broadcast

10 client_operation = self.get_client_operation()

11 # get the index of the overlay with enough quota to send

client_operation

12 i = get_overlay_id(client_operation)

13 # if i equals to the replica ID, the overlay is a 1-level tree

14 if i == self.id:

15 # broadcast client_operation

16 broadcast(client_operation)

17 # otherwise, the overlay is a 2-level tree and replica i is the

non-leaf node

18 else:

19 # set retransmission bit to 1

20 client_operation.do_retrans = 1

21 # send to replica i only

22 send_to_replica(i, client_operation)

23

24 #the procedure to handle received client operations

25 def recv(self):

26 ’’’

27 :param self: the data plane thread

28 :return: nothing

29 ’’’

30 #loop forever until the data plane shuts down

31 for not self.shut_down:

32 # go through all replicas

33 for i in range(self.replica_num):

34 # receive client operation from replica i

35 client_operation = self.recv_client_operation(i)

36 # store the client operation in data plane’s local cache

37 self.cache[client_operation.id] = client_operation

38 # the client operation need to be send to other replicas

39 if client_operation.do_retrans == 1:

40 # set retransmission bit to 0

41 client_operation.do_retrans = 0

35

42 # send client_operation

43 for i in range(self.replica_num):

44 """

45 send the client operation to replicas

46 other than the source replica

47 """

48 if not i == client_operation.source:

49 send_to_replica(i, client_operation)

6.3.4 Assemble Ordering Plane Messages

Upon receiving a PreAcceptLight message, the data plane assembles a PreAccept message
by retrieving all client operations referenced by the PreAcceptLight message and feeds
it to the ordering plane. As client operations are transmitted with different overlays, it
is possible that some referenced client operations are not presented in the cache at the
time the PreAcceptLight message arrives. In such a case, the data plane waits for a
configurable period of time for the missing client operations to present in the cache.

The code snippet below shows the handle light preaccept procedure for handling
received PreAcceptLight messages. The procedure is triggered and executed in a separate
thread whenever the data plane receives a PreAcceptLight message.

Listing 6.2: Code for reassembling PreAccept messages

1 #The procedure for handling PreAcceptLight messages

2 def handle_light_preaccept(self, pre_accept_light):

3 ’’’

4 :param self: the data plane thread

5 :param pre_accept_light: the PreAcceptLight message object to be processed

6 :return: nothing

7 ’’’

8 # creating a PreAccept message object from the PreAcceptLight message

9 # by copying all fields of PreAcceptLight message

10 pre_accept = PreAccept(preaccept_light)

11 # go through all operation ids referenced by the PreAcceptLight message

12 for operation_id in pre_accept_light.id_list:

13 #check if the corresponding client operation is in local cache

14 if operation_id in self.cache:

15 #add the client operation to PreAccept message

36

16 pre_accept.command_list.append(self.cache[operation_id])

17 else:

18 #wait for a period of time for the missing client operation

19 time.sleep(WAIT_TIME)

20 #once all client operations have been added to the PreAccept message,

21 #send it to the ordering plane

22 self.feed_to_order_plane(pre_accept)

6.3.5 Handling Failures

EPaxos does not rely on a controller to determine data transmission overlays. To avoid
the single point of failure, APaxos can deploy multiple controllers and each controller can
independently compute the optimal partitioning scheme and overlay mapping for each site.
When the current controller fails, a backup controller will continue to update each site’s
overlay configurations.

The other difference between EPaxos and APaxos lies in the way PreAccept messages
are sent out. EPaxos assumes message passing is asynchronous between replicas and in-
troducing a data plane does not break this assumption. As a result, APaxos inherits the
safety property from EPaxos. For the liveness property, EPaxos guarantees the client
operation will eventually be committed if there are f + 1 non-faulty replicas and the client
retries (possibly with another replica) if it doesn’t receive a response within a certain pe-
riod of time. As a result, the data plane should guarantee all non-faulty replicas finally
receive both PreAcceptLight and all client operations it references.

Since direct broadcast will guarantee that all non-faulty replicas receive the data, client
operations transmitted using a 1-level tree overlay and PreAcceptLight require no addi-
tional mechanism to ensure data delivery to all non-faulty replicas. However, if a message
is transmitted using a 2-level tree overlay, all leaf nodes will not receive the message when
the node in the middle crashes. To preserve the property that the protocol can make
progress with f + 1 non-faulty replicas, the middle node sends ACK to the root replica
after it completes sending the message to the remaining replicas. If the ACK from the
middle node is not received after a period of time, the root node broadcasts the message
directly to other replicas and marks the middle node as a potentially crashed node, which
needs to be avoided in future data transmissions.

37

Chapter 7

Evaluation

This section presents the evaluation of ShallowForest. The focus of the evaluation is to
compare the commit throughput and commit latency of APaxos with and without the
ShallowForest optimization. This evaluation omits the performance of original EPaxos
because APaxos has superior performance even without the ShallowForest optimization
due to other optimizations, such as decoupling the data plane from the ordering plane,
parallelizing message serialization, and using multiple TCP connections between each pair
of replicas.

7.1 Experiment Setup

For the experiment, APaxos is deployed across nine Amazon EC2 regions: Tokyo (TK),
Singapore (SG), Sydney (SY), Frankfurt (FF), Ireland (IR), Oregon (OR), Virginia
(VA), London (LD), and California (CA). Table 7.1 summarizes the network latency
measured using ping between each pair of regions. In each region, the experiment uses an
m4.xlarge VM instance with four 2.4 GHz Intel Xeon E5-2676v3 processors and 16 GB
main memory. The OS version on each VM is Ubuntu 16.04 and the golang version used
to compile APaxos is 1.9.4. A client process and an APaxos replica are executed on each
VM, as well as a controller process on a single VM chosen at random. The client process
sends requests only to its co-located APaxos replica.

The purpose of the experiment is to evaluate the effectiveness of the ShallowForest
optimization when the network is the bottleneck. Therefore, the workload consists of only
write requests as they involve broadcasting a significant amount of payload data. All

38

Table 7.1: Network latency (ms) between each pair of sites used in the experiment.

IR CA VA TK OR SY FF LD SG
CA 146 -
VA 74 64 -
TK 228 113 166 -
OR 135 22 79 101 -
SY 275 152 203 116 143 -
FF 25 149 90 245 165 288 -
LD 13 140 80 236 144 274 15 -
SG 184 178 244 74 165 173 179 173 -

requests are committed on the fast-path as each request is associated with a distinct key.
For saturating the network resource provisioned to each VM, the request size is set to 4
KB and 20 TCP connections are established between each pair of VMs. Those parameter
values are picked by increasing both request size and the number TCP connections until
the throughput of APaxos cannot be improved further.

The client process can be configured to issue requests to an APaxos replica at a specific
rate in an open loop. In the experiments, client request rates are enforced to be sustainable.
The experiment uses the Zipfian distribution to model the skewed client load across replicas.
For the network topology, the experiment uses the average network capacity measured
in 1-minute intervals for a total of 30 minutes, and the average latency measured by 3
pings between each pair of replicas. I use APaxos+SF to denote APaxos optimized using
ShallowForest in all results.

7.2 Different Skewness Levels

Workloads in the real world can be highly skewed across different geo-areas and contin-
uously changing over time. Therefore, for the first experiment, I use five geo-distributed
replicas to evaluate the effectiveness of ShallowForest in dealing with skewed client load
across replicas. I vary the exponent parameter s of the Zipfian distribution to tune the
skewness level of client load distribution. Client load is uniformly distributed when s
equals to zero and increasing s leads to a more skewed client load distribution. Table 7.2
demonstrates the load on each replica at different skewness levels. For each skewness level,

39

0 5000 10000 15000 20000
Throughput (req/s)

500

1000

1500

2000

2500

La
te
n
cy
 (
m
s)

s = 0.0

APaxos+SF
APaxos

0 5000 10000 15000 20000
Throughput (req/s)

500

1000

1500

2000

2500

La
te
n
cy
 (
m
s)

s = 0.5

APaxos+SF
APaxos

0 5000 10000 15000 20000
Throughput (req/s)

500

1000

1500

2000

2500

La
te
n
cy
 (
m
s)

s = 1.0

APaxos+SF
APaxos

0 5000 10000 15000 20000
Throughput (req/s)

500

1000

1500

2000

2500

La
te
n
cy
 (
m
s)

s = 1.5

APaxos+SF
APaxos

Figure 7.1: Latency vs throughput for 5 replicas under different levels of skewness of client
load.

40

Table 7.2: Load on replicas with under different skewness levels

s IR CA VA TK OR
0.0 20% 20% 20% 20% 20%
0.5 38% 20% 16% 13% 12%
1.0 62% 15% 9% 6% 5%
1.5 82% 8% 4% 2% 1%

I increase the aggregated client request rate and measure the commit throughput as well
as the corresponding average commit latency. Figure 7.1 presents the experimental results
where each data point is the average of 4 runs and the error bar represents the standard
deviation of 4 runs. Each run lasts for 20 seconds and each VM is warmed by executing
the workload for 40 seconds before each run.

As shown in Figure 7.1, the commit latency of APaxos without the ShallowForest
optimization grows more rapidly with the increasing commit throughput due to contention
for uplink capacity at replicas with high client load. When optimized using ShallowForest,
APaxos achieves higher commit throughput with lower commit latency. For instance,
when s = 1.5, ShallowForest improves the commit throughput of APaxos by 100% with
60% reduction in commit latency.

Figure 7.1 also shows that ShallowForest only improves APaxos slightly when the client
load is moderately skewed. When s = 0.5, ShallowForest improves the commit throughput
of APaxos by 10% with 30% reduction in commit latency. As each VM instance is provi-
sioned with similar uplink and downlink capacity, the optimal overlays become increasingly
1-level tree dominated with a more uniformly distributed client load. This also explains
why ShallowForest brings no performance improvement when s = 0.

7.3 Different Cluster Sizes

I also compare the effectiveness of ShallowForest for various replication factors. For this
experiment, I measure the commit throughput of APaxos with five, seven and nine geo-
distributed replicas. For all replication factors, I set s to 1 and the aggregated data rate of
incoming client requests to 750 Mbps. Table 7.3 summarizes the load on each replica for
various replication factors.

41

5 7 9
Replication Factor

0

5000

10000

15000

20000

T
h
ro
u
g
h
p
u
t
(r
e
q
/s
)

APaxos+SF APaxos

Figure 7.2: Throughput for different numbers of replicas.

42

Table 7.3: Load on replicas with different replication factors

RF IR CA VA TK OR SY FF LD SG
5 62% 15% 9% 6% 5%
7 53% 15% 9% 6% 5% 4% 3%
9 47% 15% 9% 6% 5% 4% 3% 3% 2%

Figure 7.2 demonstrates the experimental results, where each bar is the average of
4 runs and the error bar represents the standard deviation. ShallowForest improves the
commit throughput of APaxos by 43%, 32% and 32% for replication factors 5, 7, and
9. When optimized using ShallowForest, the commit throughput drops faster with the
increasing number of replicas. This is due to the higher network latency yielded by 2-level
tree overlays in a larger scale deployment, which contains replicas deployed in more distant
regions (Sydney and Singapore). However, comparing to APaxos without the optimization,
APaxos optimized using ShallowForest still achieves higher commit throughput for all
replication factors resulting from more effective use of the network capacity at replicas
with low client load.

43

Chapter 8

Related Work

This chapter presents the related work on consensus protocols, overlay multicast protocols,
and other techniques for optimizing data flows.

8.1 Consensus Over WAN

Mencius [28] is a variant of Paxos that rotates the leader for each command to distribute
the load evenly across replicas. Mencius also addresses the issue of unevenly distributed
client load across replicas. It allows a replica with low client load to voluntarily skip its
leader term to favour replicas with higher client load. Mencius is not completely leaderless
and skipping a leader term cannot help a replica with high client load to utilize network
resources at a replica with low client load.

E-Paxos [31] further improves scalability and reduces commit latency by removing the
role of the leader. Each client is able to send the request to the nearest replica, which
is referred to as the command leader. Committing non-conflicting commands requires
a single round trip between the command leader and a super-majority of all replicas. A
conflicting command requires an extra round of communication for replicating dependencies
of conflicting commands to a majority of replicas. However, unlike APaxos, EPaxos does
not consider the availability of network capacity and unbalanced client loads across replicas.

Canopus [38] is a network-aware consensus protocol that parallelizes the dissemination
of messages according to a leaf only tree (LOT). LOT organizes nodes into several consensus
groups based on locality. The main goal of using LOT for data transmission is to minimize
the usage of highly contented links. To order commands, different consensus groups first

44

reach their local consensus and then communicate in parallel with other groups to reach a
global consensus. Canopus assumes that all nodes in the same consensus group cannot fail
together, otherwise the protocol halts until some nodes in the group recover. In terms of
data transmission, LOT might incur higher network latency in a WAN environment. For
n nodes, LOT requires O(log n) transfers for data to reach all nodes, while ShallowForest
requires at most two transfers.

8.2 Decoupling Data Transmission From Ordering

Decoupling data transmission from ordering is a common technique used by many consen-
sus protocols [7, 30, 29, 12] and blockchain systems. To separate the ordering plane from
data transmission, S-Paxos [7] associates each batch of client requests with a unique ID
and uses Paxos as its ordering plane protocol to order batch IDs. Disseminating client
requests is handled by a separate process. The data plane of S-Paxos is leaderless, mean-
ing that a client may contact any replica to broadcast the request to other replicas. Ring
Paxos [30, 29] handles data dissemination using one or more logical ring overlays. To
multicast messages to a group of receivers, all servers are placed on a logical ring. The
sender just sends data once to its immediate successor and all subsequent receivers store-
and-forward the message until the last receiver receives it. Logical ring overlay minimizes
the data replication at the sender to achieve high throughput data transmission and the
optimal network utilization. However, when using a ring overlay, the network latency of the
data transmission grows proportionally with the number of participants. Both Ring Paxos
and S-Paxos handle the data dissemination with a static overlay which does not change
adaptively to various client loads across replicas. Some permissionless blockchain systems
[33, 10] use gossip protocols [18] for high-throughput data dissemination. ShallowForest is
not applicable to those systems as it requires the location and identity of each participant
to be known apriori.

8.3 Application-Level Multicast

Application level multicast [11, 24, 35] has been studied extensively for content distribution
in P2P networks. Among those systems, ShallowForest is most similar to SplitStream and
Bullet network [11, 24]. SplitStream [11] partitions the data to be broadcast into several
disjoint sections called stripes and constructs a separate broadcast tree for each stripe. To
receive the complete stream, a node must be presented in every broadcast tree. SplitStream

45

enforces that any two broadcast trees must be interior-node-disjoint, which means every
node is an interior node in precisely one tree and a leaf node in all other trees. This
property improves the robustness of the system because the failure of a node only affects
the delivery of a single stripe. Bullet [24] divides the data into multiple disjoint blocks which
are further divided into packet-size objects. For data dissemination, Bullet uses an epoch-
based algorithm called RanSub for membership management and overlay construction.
Within each epoch, RanSub collects newly joined peers and distributes a random subset
of peers collected in previous epochs to each participating node. RanSub also organizes
all nodes discovered in an epoch into a single overlay tree rooted at the source. For data
dissemination, each participating node receives a subset of the data objects of the source
from its parent and request the remaining data objects from peers in the random subsets
received in each epoch.

Since both protocols are designed for P2P networks, overlays are constructed in a de-
centralized fashion. They also have a complicated mechanism to improve the robustness
of the system when the node can join and leave at any time. Both protocols focus on opti-
mizing data transmission throughput and do not impose any constraints on the height of
overlays. ShallowForest only uses shallow tree overlays and optimizes both the throughput
and the network latency subject to the data transmission.

8.4 Optimizing Data Flows

Varys [16] and Orchestra [15] optimize coflows [14], which are a group of collective flows
sharing a common computation goal, such as shuffling in map-reduce systems. Hedera
[4] uses simulated annealing to optimize flow scheduling in Intra-datacenter network. The
optimization objectives of those systems are the flow completion time [16, 15] and the
bisection bandwidth [4], which do not fit into the settings of a consensus protocol.

Network coding [39, 3] is a technique to reduce the bandwidth consumption of multicast
by allowing end hosts to not only store and forward but also encode incoming data for
transmission. The encoded data will be decoded at the destination host. On the basis
of network coding, [27] uses linear programming to compute the optimal throughput of
multiple concurrent multicast communications. The core idea of this paper is to introduce
conceptual flows in the linear programming formulation, which are network flows that
co-exist in the network without contending for link capacities.

Although network coding can provide theoretically optimal throughput, it is not an
ideal technique for optimizing data transmission for consensus protocols. First, encoding

46

and decoding data introduce additional computation overhead. Second, a node must wait
for the presence of all involved data partitions before encoding them and sending them
out, which further increases the latency of the data transmission.

47

Chapter 9

Conclusion

In this thesis, I present the ShallowForest algorithm and apply it to optimize data transmis-
sion in a WAN environment for the EPaxos consensus protocol. The key idea of ShallowFor-
est is to partition the data stream and use shallow tree overlays for data transmission. The
experimental results demonstrate that the performance of consensus protocols can become
more resilient to the uneven distribution of client load by handling the data transmission
in a more workload-aware and network-aware manner.

ShallowForest enhances consensus protocols from the angle of optimizing data trans-
mission overlays. The integration of ShallowForest with consensus protocols is still at its
early stage. For instance, the prototype controller hard-codes the available network capac-
ity and the client load at each replica. A fully autonomous controller should be able to
estimate client load and available network capacity at each replica.

This thesis leaves open several research problems. First of all, ShallowForest relies
on the hose network model, and I want to generalize the ShallowForest optimization to
be applicable in other network models. Second, it is worth considering whether shallow
tree overlays can also achieve the optimal throughput for other types of data transmission
in a hose network model. For instance, instead of sending data to all other receivers,
some sites just send their data to a subset of receivers. Last but not least, it would
be interesting to know how much benefit in terms of network latency ShallowForest can
gain from considering additional overlay candidates other than base overlays in the second
phase.

48

References

[1] Amazon Web Services (AWS). https://aws.amazon.com/.

[2] iPerf - the ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr.

[3] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Network
information flow. IEEE Trans. Inf. Theor., 46(4):1204–1216, September 2006.

[4] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang,
and Amin Vahdat. Hedera: Dynamic flow scheduling for data center networks. In
Proceedings of the 7th USENIX Conference on Networked Systems Design and Imple-
mentation, pages 19–19, 2010.

[5] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari
Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić,
Sharon Weed Cocco, and Jason Yellick. Hyperledger fabric: A distributed operat-
ing system for permissioned blockchains. In Proceedings of the 13th ACM EuroSys
Conference, pages 30:1–30:15, 2018.

[6] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations
and Advanced Topics. John Wiley & Sons, Inc., USA, 2004.

[7] Martin Biely, Zarko Milosevic, Nuno Santos, and Andre Schiper. S-paxos: Offloading
the leader for high throughput state machine replication. In Proceedings of the 31st
IEEE Symposium on Reliable Distributed Systems, pages 111–120, 2012.

[8] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J.
ACM, 32(4):824–840, October 1985.

49

https://aws.amazon.com/
https://iperf.fr

[9] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th USENIX Symposium on Operating Systems Design and Imple-
mentation, pages 335–350, 2006.

[10] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized ap-
plication platform. https://github.com/ethereum/wiki/wiki/White-Paper, 2014.
Accessed: 2018-06-22.

[11] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Row-
stron, and Atul Singh. Splitstream: High-bandwidth multicast in cooperative envi-
ronments. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pages 298–313, 2003.

[12] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings
of the 3rd USENIX Symposium on Operating Systems Design and Implementation,
pages 173–186, 1999.

[13] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion Stoica. Hug: Multi-resource
fairness for correlated and elastic demands. In Proceedings of the 13th USENIX Con-
ference on Networked Systems Design and Implementation, pages 407–424, 2016.

[14] Mosharaf Chowdhury and Ion Stoica. Coflow: A networking abstraction for cluster
applications. In Proceedings of the 11th ACM Workshop on Hot Topics in Networks,
pages 31–36, 2012.

[15] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion Stoica.
Managing data transfers in computer clusters with orchestra. In Proceedings of the
ACM SIGCOMM’11 Conference, pages 98–109, 2011.

[16] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow scheduling with
varys. SIGCOMM Comput. Commun. Rev., 44(4):443–454, August 2014.

[17] David Clark, Steven Bauer, kc claffy, Amogh Dhamdhere, Bradley Huffaker, William
Lehr, and Matthew Luckie. Measurement and Analysis of Internet Interconnection
and Congestion. In Telecommunications Policy Research Conference (TPRC), 2014.

[18] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database maintenance. In Proceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing, pages 1–12, 1987.

50

https://github.com/ethereum/wiki/wiki/White-Paper

[19] N. G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K. Ramakrishnan,
and Jacobus E. van der Merive. A flexible model for resource management in virtual
private networks. SIGCOMM Comput. Commun. Rev., 29(4):95–108, August 1999.

[20] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, April 1988.

[21] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[22] Osama Haq, Mamoon Raja, and Fahad R. Dogar. Measuring and improving the reli-
ability of wide-area cloud paths. In Proceedings of the 26th International Conference
on World Wide Web, pages 253–262, 2017.

[23] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX
Annual Technical Conference, pages 11–11, 2010.

[24] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat. Bullet: High
bandwidth data dissemination using an overlay mesh. SIGOPS Oper. Syst. Rev.,
37(5):282–297, October 2003.

[25] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed systems.
ACM Trans. Program. Lang. Syst., 6(2):254–280, April 1984.

[26] Leslie Lamport. Paxos made simple. pages 51–58, 2001.

[27] Zongpeng Li, Baochun Li, and Lap Chi Lau. On achieving maximum multicast
throughput in undirected networks. IEEE/ACM Trans. Netw., 14(SI):2467–2485, June
2006.

[28] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building efficient
replicated state machines for wans. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, pages 369–384, 2008.

[29] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. Multi-ring paxos. In
Proceedings of the 2012 IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 1–12, 2012.

[30] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and Fernando Pedone. Ring
paxos: A high-throughput atomic broadcast protocol. In Proceedings of the 2010

51

IEEE/IFIP International Conference on Dependable Systems Networks, pages 527–
536, 2010.

[31] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus
in egalitarian parliaments. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles, pages 358–372, 2013.

[32] Iulian Moraru, David G. Andersen, and Michael Kaminsky. Epaxos source code.
https://github.com/efficient/epaxos, 2014.

[33] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.
org/bitcoin.pdf, 2008.

[34] Diego Ongaro and John K. Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of 2014 USENIX Annual Technical Conference, pages 305–
319, 2014.

[35] Olga Papaemmanouil, Yanif Ahmad, Uğur Çetintemel, John Jannotti, and Yenel
Yildirim. Extensible optimization in overlay dissemination trees. In Proceedings of
the 2006 ACM SIGMOD International Conference on Management of Data, pages
611–622, 2006.

[36] Valerio Persico, Alessio Botta, Antonio Montieri, and Antonio Pescape. A first look at
public-cloud inter-datacenter network performance. In Proceedings of the 2016 IEEE
Global Communications Conference, pages 1–7, 2016.

[37] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya Akella,
Paramvir Bahl, and Ion Stoica. Low latency geo-distributed data analytics. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data Communication,
pages 421–434, 2015.

[38] Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav. Canopus: A scalable and mas-
sively parallel consensus protocol. In Proceedings of the 13th International Conference
on Emerging Networking Experiments and Technologies, pages 426–438, 2017.

[39] Peter Sanders, Sebastian Egner, and Ludo Tolhuizen. Polynomial time algorithms for
network information flow. In Proceedings of the 15th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 286–294, 2003.

[40] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 931–948, 2018.

52

https://github.com/efficient/epaxos
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

[41] Hong Zhang, Kai Chen, Wei Bai, Dongsu Han, Chen Tian, Hao Wang, Haibing Guan,
and Ming Zhang. Guaranteeing deadlines for inter-datacenter transfers. In Proceedings
of the 10th European Conference on Computer Systems, pages 20:1–20:14. ACM, 2015.

53

	List of Tables
	List of Figures
	Introduction
	A Simple Example
	Motivation
	Contributions
	Thesis Organization

	Background
	Consensus Problems
	Paxos
	Egalitarian Paxos

	Measuring Inter-DC WAN Throughput
	Throughput of one-to-one data transfer
	Throughput of one-to-many data transfer
	Remarks
	Network Model

	Shallow Overlay Trees Suffice for High-Throughput Consensus
	Terminology
	The Main Property of Sustainable Rates
	Proof of Theorem 4.2.1
	Constructing Sub-stream Overlays
	Computing Sub-stream Rates
	Correctness Criteria
	Correctness of Algorithm 1

	Discussion
	Conclusion

	ShallowForest: Optimizing All-to-All Data Transmission in WANs
	Throughput-Optimal Data Rates
	Latency-Optimal Overlays
	Choosing Overlay Candidates
	LP formulation

	Amoeba Paxos: Making EPaxos Workload-Aware
	Overview
	The Ordering Plane
	The Data Plane
	Overcoming the Per-flow Rate Limit
	Overlay Configuration
	Overlay Information
	Assemble Ordering Plane Messages
	Handling Failures

	Evaluation
	Experiment Setup
	Different Skewness Levels
	Different Cluster Sizes

	Related Work
	Consensus Over WAN
	Decoupling Data Transmission From Ordering
	Application-Level Multicast
	Optimizing Data Flows

	Conclusion
	References

