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Abstract

Autonomous driving is a challenging domain that entails multiple aspects: a vehicle
should be able to drive to its destination as fast as possible while avoiding collision, obeying
traffic rules and ensuring the comfort of passengers. It’s representative of complex rein-
forcement learning tasks humans encounter in real life. The aim of this thesis is to explore
the effectiveness of multi-objective reinforcement learning for such tasks characterized by
autonomous driving. In particular, it shows that:

• Multi-objective reinforcement learning is effective at overcoming some of the difficul-
ties faced by scalar-reward reinforcement learning, and a multi-objective DQN agent
based on a variant of thresholded lexicographic Q-learning is successfully trained to
drive on multi-lane roads and intersections, yielding and changing lanes according to
traffic rules.

• Data efficiency of (multi-objective) reinforcement learning can be significantly im-
proved by exploiting the factored structure of a task. Specifically, factored Q func-
tions learned on the factored state space can be used as features to the original Q
function to speed up learning.

• Inclusion of history-dependent policies enables an intuitive exact algorithm for multi-
objective reinforcement learning with thresholded lexicographic order.
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Chapter 1

Introduction

1.1 Motivation

Deep reinforcement learning [33] has seen some success in complex tasks with large state
space. From Atari [33] to the ancient game of Go [52], reinforcement learning (RL) offers
an intriguing promise: the agent learns how to behave through trial-and-error with the
environment, without human experts explicitly specifying how the task is to be achieved. It
is therefore natural to ask the question of how to build a RL agent for real-world tasks such
as autonomous driving, where it is potentially infeasible for humans to program the optimal
behavior. These tasks are especially challenging, partially because they entails many,
sometimes conflicting, aspects. For example, in autonomous driving, the vehicle is not
only expected to avoid collisions with dynamic objects, but also follow all the traffic rules
and ensure the comfort of passengers. One motivation for the multi-objective approach
comes from the difficulty of designing a scalar reward that properly weighs the importance
of each aspect of driving so that the designer’s original intention is reflected. Although there
have been attempts to infer the reward function from demonstrations (inverse RL [1, 66]),
supplying sufficient amount of good demonstrations for (all the corner cases) might not
be feasible. Another motivation comes from the problem of exploration [6, 36] in RL. The
multi-objective approach endows an agent the flexibility of choosing which aspect of the
task to explore. For example, if an autonomous driving agent explores randomly, it might
hardly have the chance of reaching the intersection, so the traffic rules at the intersection
might never be learned. In contrast, if the safety aspect is learned separately from traffic
rules, the agent has the potential of exploring traffic rules among the safe actions only.
We therefore consider a multi-objective RL approach to the problem of urban autonomous
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driving, where each objective is learned by a separate agent. These agents collectively
form a combined policy that takes all these objectives into account. In addition to those
mentioned above, there are several other advantages of the multi-objective approach:

• Since each objective only considers one aspect of driving, the entire task is divided
into smaller, simpler tasks, e.g., smaller state space can be used for each objective,
accelerating learning.

• In a new task where only some of the objectives change, the learned policy for other
objectives can be reused or transferred.

1.2 Overview

Reinforcement learning dates back to the research on optimal control, psychology and
neuro-science [23]. Over the years, two main classes of algorithms have been developed
for reinforcement learning, namely the value function approaches and the policy gradient
approaches. Value function approaches maintain an estimate of the optimal action-value
function (Q function) — the maximum expected cumulative reward starting from a state
taking a particular action, and the optimal policy is implied by the action that maximize
the Q function for each state. Well known approaches of this class include Q-learning and
SARSA. However, due to the ‘curse of dimensionality’, success had mostly been limited to
simple toy-domain scenarios until the introduction of deep Q network (DQN) [33] where the
classic Q-learning algorithm was combined with deep neural networks. This was followed
by many improvements, including double DQN, dueling networks, deep deterministic policy
gradient (DDPG), prioritized experience replay, etc. The first policy gradient algorithm,
REINFORCE, was first introduced by Williams [63]. The algorithm suffers from high
variance of gradient, and is slow to learn in practice. Several algorithms have been proposed
to alleviate the issue, including actor-critic algorithms [27], natural policy gradient [24],
and more recent approaches such as trust region policy optimization (TRPO) [48] and
proximal policy optimization (PPO) [47]. Apart from the two main classes of algorithms,
evolution strategies (ES) [42, 53] have recently been shown to be a promising direction for
reinforcement learning.

Multi-objective reinforcement learning [41] was preceded by early research on multi-
objective MDP by White [62]. Instead of having a scalar reward as in (single-objective)
reinforcement learning, in multi-objective reinforcement learning, the agent receives a vec-
tor reward at each time step, with each dimension for one criterion of the task. Since the
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value function is now also a vector, a partial/total order needs to be defined. Different
definitions of partial/total order lead to different multi-objective reinforcement learning
algorithms. In single-policy methods, a total order is defined, and the goal is to find the
maximum value function. In multi-policy methods, the order relation is partial, so not all
realizable value functions can be compared. The goal is thus to find the frontier (typically
the Pareto frontier) of the set of all realizable value functions.

There has been emerging research on autonomous driving using RL. Sallab et al. [43]
compared two deep RL-based end-to-end driving models, DQN and DDPG, in TORCS car
racing simulator. Wang and Chan [60] proposed to represent the Q function as a quadratic
function to deal with continuous action space. Ngai and Yung attempted multi-objective
RL for learning takeover maneuver [35], where they scalarized the learned Q functions of
each objective by weighted sum to form a single policy. The sensor input was quantized
into a discrete state space, and tabular Q-learning was used. Isele et al. [21] trained a DQN
agent that can navigate through an intersection. However, these research either considers
a scenario where safety is not critical (car racing game [43]), or a specific maneuver in a
very specific scenario (highway ramp merge in [60], takeover maneuver in [35], and inter-
section in [21]). Furthermore, none of these works consider traffic rules. The limitations
of these agents suggest that the standard Markov decision process (MDP) formulation of
RL might not capture the structure of the tasks in an effective way. Several research has
been focusing on reducing the complexity by exploiting structure of the problem, which
includes: 1. hierarchical RL [37, 54, 11] that uses the temporal structure of the task; 2. fac-
tored MDPs [8] that aim to leverage context-specific and additive structure of the MDP;
3. multi-objective RL that exploits the structure of the agent’s goals. The first of them
— hierarchical RL — has been explored in the context of autonomous driving by Paxton
et al. [38], where they designed a set of high level options [54], and used Monte Carlo tree
search and DDPG [29] to learn the high level and low level policy, respectively. The thesis
demonstrates how the other two directions — factored MDPs and multi-objective RL —
can be adapted and applied to the task of autonomous driving. Specifically:

• Chapter 2 introduces the relevant background;

• Chapter 3 describes the proposed approach, thresholded lexicographic factored DQN,
which combines multi-objective RL with ideas from factored MDP;

• Chapter 4 shows the corresponding experimental result, where the proposed agent
successfully learns to drive on multi-lane roads and intersections, yielding and chang-
ing lanes according to traffic rules.
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• Chapter 5 revisits thresholded lexicographic Q learning, and analyzes its limitations.
Two new algorithms, one model-based, one model-free, are proposed.
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Chapter 2

Background

This chapter lays out the foundations for later chapters. We start with Makov Decision
Process — the commonly adopted mathematical framework for stochastic sequential de-
cision making problems, and review its exact and approximate solution methods. Then
we briefly go through RL and multi-objective RL, in particular, thresholded lexicographic
Q-learning.

2.1 Markov Decision Process

A finite (single-objective) Markov decision process (MDP) can be represented by a 5-tuple
(S,A, P, r, γ), where S is a finite set of states; A is a finite set of actions; P (s′|s, a) ∈ [0, 1]R
is the transition probability from state s to state s′ taking action a; r(s, a, s′) ∈ R is
reward for taking action a in state s and ending up in s′; and γ is the discount factor.
A policy π tells the agent what action to take at each time step. In the most general
case, a policy can be history-dependent and random, in the form of π = (π0, π1, ..., πt, ...),
where a decision rule πt(ht, s, a) ∈ [0, 1]R is the probability of taking action a in state s
with history ht. A history 1 is a sequence of past states, actions and decision rules ht =
(s0, a0, π0, s1, a1, π1, ..., st−1, at−1, πt−1). A policy is said be deterministic if πt(ht, s, a) = 1
for only one action, in which case we can use a simplified notation π = (d0, d1, ..., dt, ...),
where dt(ht, s) ∈ A. Correspondingly, if the policy is deterministic, a history can be
represented with ht = (s0, d0, s1, d1, ..., st−1, dt−1). A policy is said to be stationary if the

1This definition of history considers decision rules in addition to actions, which makes it slightly different
from the usual definition in literature.
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decision rule only depends on the current state s, and does not change with time, i.e.,
πt(ht, s, a) = π(s, a). The set of all history-dependent random policies, history-dependent
deterministic policies, stationary random policies, and stationary deterministic policies are
denoted by ΠHR, ΠHD, ΠSR and ΠSD, respectively.

The goal of a MDP is to find the policies that maximizes the expected discounted
cumulative reward 2:

max
π∈Π

E[
∞∑
t=0

γ(t)rt|π, st=0 = s], s ∈ S (2.1)

where Π ∈ {ΠHR,ΠHD,ΠSR,ΠSD} denotes the policies we would like to consider. We call
a task an episodic task with horizon T if the state space is augmented with time; γ = 1;
and r(s, a, s′) = 0, ∀t ≥ T .

To measure of how good a policy is, it is convenient to define the value function and
the action-value function. The value function of a policy π is defined as the expected
cumulative reward starting from state s and following policy π:

vπ(s)
def
= E[

t=∞∑
t=0

γ(t)rt|π, st=0 = s], s ∈ S (2.2)

The action-value function (or Q function) of a policy π is defined as the expected cumulative
reward starting from state s and action a, then following policy π:

Qπ(s, a)
def
= E[

∞∑
t=0

γ(t)rt|π, st=0 = s, at=0 = a], s ∈ S, a ∈ A (2.3)

The optimal value function, optimal policy and optimal Q function are denoted by v∗, π∗,
and Q∗, respectively:

v∗(s)
def
= max

π∈Π
vπ(s),∀s ∈ S (2.4)

π∗
def
= arg max

π∈Π
vπ(s),∀s ∈ S (2.5)

Q∗(s, a)
def
= E[

∞∑
t=0

γ(t)rt|π∗, st=0 = s, at=0 = a], s ∈ S, a ∈ A (2.6)

2The (t) at the upper right corner of γ represents exponential.
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For single-objective MDPs, there exists a stationary deterministic optimal policy [40]. That
is

∃π ∈ ΠSD,∀s ∈ S, vπ(s) = arg max
π′∈ΠHR

vπ
′
(s) (2.7)

Unless otherwise noted, we assume a policy is stationary deterministic.

2.1.1 Value Iteration

There are mainly three classes of exact solution methods for MDPs: value iteration, policy
iteration and linear programming. All three algorithms assume complete knowledge of the
MDP — the rewards and the transition probabilities. Here, we only go through value
iteration, which forms the foundation for Q-learning in the next section. Value iteration
is an iterative method that start with some arbitrary estimate of value function. At each
step, we update the estimate according to the Bellman equation:

v∗(s) = max
a

∑
s′∈S

P (s′|s, a) [r(s, a, s′) + γv∗(s′)],∀s ∈ S (2.8)

So the algorithm works as follows:

Algorithm 1 Value Iteration

1: for s in S do
2: v∗(s) := 0
3: end for
4: while stopping condition is not met do
5: for s in S do
6: v∗(s) := maxa

∑
s′∈S P (s′|s, a) [r(s, a, s′) + γv∗(s′)]

7: end for
8: end while

where := denotes assignment. Throughout the thesis, we use underline to represent the
current estimate of the corresponding variable without an underline. For example, v∗(s)
denotes the current estimate of v∗(s). If a parametric function approximator is used, v∗θ(s)
or v∗(s|θ) denotes the current estimate of v∗(s) with parameter θ.
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2.1.2 Factored MDP

The complexity of the above exact solution methods increases exponentially with the num-
ber of state variables. Fortunately, many large MDPs have some internal structures. The
factored MDP framework aims to exploit these internal structures by explicitly represent-
ing a state s ∈ S with a set of state variables s = (s1, s2, ..., sm). For a set C ⊆ {1, 2, ...,m},
s[C] denotes the subset of state variables in s with index that belongs to C. A locally-scoped
function is defined as a function that depends only on a subset of the state variables [16],
and the subset is called the scope of the function. There are mainly two types of structures
discussed in literature: the context-specific structure and additive structure. Context-
specific structure refers to the conditional independence between the state variables. For
example, st+1[C] might only depend on a subset st[C ′] of st, this subset is called the parents
of s[C], and is denoted by s[Γ(C)].

P (st+1[C]|st, at) = P (st+1|st[Γ(C)], at),∀st, st+1 ∈ S,∀at ∈ A (2.9)

This kind of conditional dependency can be graphically described by a dynamic Bayesian
network (DBN). The other structure — the additive structure refers to the fact that the
reward function might be the sum of a few locally-scoped rewards:

r(s, a, s′) =
∑
i

ri(s[Γ(Ci)], a, s
′[Ci]) (2.10)

We may hope the value function to have similar structure as well. However, such structure
is, in general, not preserved in the value function. Nevertheless, we can still take advantage
of these structures to derive approximate algorithms. Here, we consider an approximate
value iteration method where the value function is approximated by a linear combination
of a set of k basis functions {h1(s), h2(s), ..., hk(s)}:

v∗w(s) =
k∑
i=1

wihi(s) (2.11)

Denoting hi as a column vector whose mth element is the hi evaluated at the mth state ms,
i.e. hi(

ms), and H as a matrix whose columns are hi, we can compactly express the above
equation as v∗w = Hw. According to the Bellman equation, we need to find w such that:

w = arg min
w
||Hw −max

a
(diag(PaRa) + γPaHw)|| (2.12)

where max is element-wise maximization, and a is a vector whose mth element is the
action that maximize the mth element of diag(PaRa) + γPaHw. Pa is a matrix with
Pa
mn = P (ns|ms, am), and Ra

nm = r(ms, am,
n s).
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As with exact value iteration, the approximate version also greedily improves v in each
iteration:

v∗ := max
a
{diag(PaRa) + γPaHw} (2.13)

The difference is that there is an extra step that projects v∗ back to the linear space
spanned by H.

w := arg min
w
||Hw − v∗|| (2.14)

To utilized the additive and context-specific structure, factored value iteration considers
the case where hi(s) are locally-scoped, i.e. hi(s) = hi(s[Ci]). By exploiting the conditional
independence as in Eq. 2.9, each element of the right-hand-side of Eq. 2.13 can be simplified
as:

max
a

∑
s′

P (s′|s, a)

[∑
i

ri(s[Γ(Ci)], a, s
′[Ci]) + γ

∑
i

wihi(s
′[Ci])

]

= max
a

∑
i

∑
s′[Ci]

P ((s′[Ci]|s[Γ(Ci)], a)

[
ri(s[Γ(Ci)], a, s

′[Ci]) + γwihi(s
′[Ci])

] (2.15)

Note that the summation over s′ has been reduced to s′[Ci], and the results for states s
with the same s[Γ(Ci)] can be reused. The above is just one example of how the structure
of the MDP can be exploited with this factored representation. Although there are many
other methods for factored MDP, the essence stays the same.

2.2 Reinforcement Learning

The MDP solution methods outlined in the previous section assume knowledge of the
environment model in the form of transition probabilities and rewards. Reinforcement
learning, on the other hand, does not make such assumptions. Of course, the models
can be learned first through execution, so that the methods in the previous section can
be applied, which leads to model-based RL. However, it might be non-trivial to learn and
solve the exact model. In contrast, model-free RL learns the optimal policy directly without
learning the model, which usually leads to simpler algorithms.
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2.2.1 Q-learning

Q-learning is a popular model-free RL algorithm. It works by updating the Q function
according to sampled Bellman error (temporal difference error or TD error) in each step.
Denoting the TD error by δ:

δ(s, a) = r(s, a, s′) + γmax
a
Q∗(s′, a)−Q∗(s, a) (2.16)

where s′ ∼ P (s′|s, a), Q-learning updates the current Q estimate so that the TD error is
reduced:

Q∗(s, a) := Q∗(s, a) + αδ(s, a) (2.17)

where α is the learning rate. Since δ(s) is an unbiased estimate of the true Bellman error∑
s′

P (s′|s, a)
[
r(s, a, s′) + γmax

a
Q∗(s′, a)−Q∗(s, a)

]
(2.18)

If all the states are visited infinitely often, Eq. 2.17 is, in the long term, equivalent to value
iteration, and if α decays at a proper rate, it can be proved that Eq. 2.17 will converge to
the correct Q value.

With function approximation where Q∗
θ
(s, a) is parameterized by θ, we can no longer

directly apply Eq. 2.17. Our goal, however, is still to push Q∗
θ
(s, a) in the direction that

the TD error in Eq. 2.16 is reduced. This can be achieved by applying gradient descent
on 1

2
δ2:

∇θ

[
1

2
δ2

]
= δ∇θ

[
r(s, a, s′)) + γmax

a
Q∗(s′, a)−Q∗

θ
(s, a)

]
= −δ∇θQ

∗
θ
(s, a)

(2.19)

So the update rule now becomes:

θ := θ + αδ∇θQ
∗
θ
(s, a) (2.20)

It is important to notice that in Eq. 2.19 we ignored the fact that Q∗
θ
(s′, a) is also param-

eterized by θ, and treated it as fixed. Therefore the gradient in Eq. 2.19 is not the full
gradient, and it is instead called semi-gradient.

Vanilla Q-learning with function approximation is often unstable in practice, and several
techniques have been introduced to alleviate the issue:
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• The convergence result for stochastic gradient descent relies on the assumption that
the data is independent and identically distributed. However, the samples in Q
learning are temporally correlated — the distribution over the next state s′ depends
heavily on the current state s. Experience Replay attempts to break the correlation
between samples by saving the transition tuple (s, a, s′, r) in an experience replay
buffer. In each Q update, a mini-batch of experiences are sampled randomly from the
replay buffer. This has the additional benefit of being able to reuse past experience,
thus improving sample efficiency.

• Another source of instability for Q learning with function approximation is the con-
stantly moving target r(s, a, s′) + γmaxaQ

∗
θ
(s′, a). When θ is updated, the change

in the learned Q function is not restricted to that specific state and action, Q∗
θ
(·, ·)

changes for all states and actions. This results in θ chasing a target that is itself
moving according to θ. To alleviate this issue, Mnih et al. [33] introduced a separate
target network that is parameterized by another set of parameters θ′, which is used for
computing the target. The target network is synchronized with the action-selection
network from time to time, so that the target is still correct, but not moving too fast.

The TD error (Eq. 2.16) is an unbiased estimate of the Bellman error (Eq. 2.18) only if
Q∗(s′, a) is considered as constant. If Q∗(s′, a) is considered as a random variable, however,
the estimation is biased, because the maxaQ

∗(s′, a) in Eq. 2.18 should now be written as
maxaE[Q∗(s′, a)], while Eq. 2.16 is actually an estimator for E[maxaQ

∗(s′, a)], and

E[max
a
Q∗(s′, a)] ≥ max

a
E[Q∗(s′, a)] (2.21)

Q-learning with function approximation therefore tends to suffer from overestimation,
where consideringQ∗(s′, a) as a random variable is more appropriate. Double Q-learning [17,
18] solves this by introducing a second estimator for Q∗(s, a). The max over actions a ∈ A
taken using one estimator, but the value is taken from the other estimator. This results in
an estimator that underestimates Eq. 2.18 rather than overestimating it.

2.2.2 Generalized Value Function

The value function we discussed above is directly related to learning the optimal policy for
the problem at hand, which is basically what the agent needs to do. However, interacting
with the environment provides much more knowledge beyond the control policy alone,
that might or might not be directly useful for solving the task. For example, in a task
where a robot is asked to pick up an apple from the floor, it does not matter whether
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the robot learns how to jump, so the knowledge of how to jump is not useful for this
particular task. However, in a related task where the apple is hanged on the ceiling, the
knowledge becomes useful. Such knowledge (as jumping in the example) has a separate
reward function and termination condition from the original task, and thus has a separate
value function associated with it, and the associated value function is called a generalized
value function [55]. A generalized value function can be used in various ways, but the idea
is that value functions based on pseudo-reward functions on top the original task, can be
helpful for the task or some similar tasks.

2.3 Multi-Objective Reinforcement Learning

In some cases [41], it is preferable to consider different aspects of a task separately as
different objectives. Multi-objective RL is concerned with multi-objective Markov decision
processes (multi-objective MDPs) (S,A, P, r,γ,≥v) , where S, A and P (s′|s, a) are respec-
tively the state space, action space, and the transition probability as in single-objective
MDPs; Now the rewards r(s, a, s′) = [r1(s, a, s′), r2(s, a, s′), ..., rk(s, a, s

′)] and discount fac-
tors γ = [γ1, γ2, ..., γk] are vectors, the ith element for the ith objective. We denote vπi as
a column vector whose jth element is the value function of the ith objective evaluated at
the jth state sj. To be precise:

vπi = [vπi (1s), vπi (2s), ..., vπi (|S|s)]T , i = 1, 2, ..., k

vπi (s) = E[
∞∑
t=0

γ
(t)
i ri(s

t, at, st+1)|π, st=0 = s], ∀s ∈ S
(2.22)

Multi-objective RL aims to find some policy π ∈ ΠSD, such that

π∗(s) = arg max
π∈Π

Vπ

Vπ = [vπ1 ,v
π
2 , ...v

π
k ]

(2.23)

≥v is a partial order defined on the space of value functions {Vπ|π ∈ Π}. It’s worth noting
that the max in the arg max here refers to maximal elements 3 (not the maximum) . Differ-
ent choice of order relations leads to different multi-objective RL algorithms. In this thesis,
we adopt a thresholded lexicographic approach that we deem suitable for autonomous driv-
ing. However, as we shall see in Chapter 5, thresholded lexicographic Q-learning does not

3a maximal element of a subset X of some partially ordered set is an element of X that no other element
in X is larger
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strictly fit into the framework of Eq. 2.22 and Eq. 2.23, and shall only be treated as an
approximate algorithm.

Although for single-objective MDPs, the optimal value can be attained by a determin-
istic stationary policy, this is in general not true for multi-objective MDPs. White [62]
showed that history-dependent deterministic policies can dominate stationary determinis-
tic policies; Chatterjee, Majumdar, and Henzinger [9] proved for the case γ1 = γ2 = ... = γk
that there exists a stationary random optimal policy. Although random policies can domi-
nate deterministic policies, they do not necessarily add value to the solution as far as a single
trial is concerned. Suppose that we have two policies π and π′ for a task with two objectives,
with value function [vπ1 , v

π
2 ] and [vπ

′
1 , v

π′
2 ], respectively. By mixing π and π′ with probability

α and 1−α, the value function of the mixture policy is [αvπ1 + (1−α)vπ
′

1 , αv
π
2 + (1−α)vπ

′
2 ].

Depending on the partial order ≥v, the mixture policy might in expectation ‘outperforms’
the pure policies over multiple trials. However, as far as one trial is concerned, the exe-
cuted policy is either π or π′, so no better result is gained. In this thesis, we restrict our
discussion to deterministic policies.

2.3.1 Thresholded Lexicographic Q-learning

Assuming lexicographic ordering 1, 2, ..., k on the k objectives of multi-objective MDP
(S,A, P, r, γ), and τi a local threshold that specifies the minimum admissible Q value for
each objective, thresholded lexicographic Q-learning finds k sets of policies Π̂i, i = 1, 2, ..., k
that maximize

{Q̂Π̂0
1 (s, a), Q̂Π̂1

2 (s, a), ..., Q̂
Π̂k−1

i (s, a)} (2.24)

in lexicographic order:

Π̂i
def
=

{
πi ∈ Π̂i−1

∣∣∣∣πi(s) = argmaxa∈{πi−1(s)|πi−1∈Π̂i−1}Q̂
Π̂i−1

i (s, a) ,∀s ∈ S
}
, i = 1, 2, ..., k

(2.25)

with Π̂0
def
= ΠSD being the set of all deterministic stationary policies, and Q̂

Π̂i−1

i (s, a) is the
Q function rectified to τi:

Q̂
Π̂i−1

i (s, a)
def
= min(τi, Q

Π̂i−1

i (s, a)) (2.26)
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Here, Q
Π̂i−1

i (s, a) is the maximum expected accumulative reward over all policies πi−1 ∈
Π̂i−1 starting from state s and action a. It follows that

Q̂
Π̂i−1

i (s, a) = min

(
τi,

∑
s′

P (s′|s, a)
[
ri(s, a, s

′) + γi max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q
Π̂i−1

i (s′, a′)
])
≥

= min

(
τi,

∑
s′

P (s′|s, a)
[
ri(s, a, s

′) + γi max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q̂
Π̂i−1

i (s′, a′)
])
(2.27)

Gábor, Kalmár, and Szepesvári [13] propose to approximate Q̂
Π̂i−1

i (s, a) by treating the
inequality in Eq. 2.27 as equality, and do the following value iteration:

Q̂
Π̂i−1

i
(s, a) := min

(
τi,

∑
s′

P (s′|s, a)
[
ri(s, a, s

′) + γi max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q̂
Π̂i−1

i
(s′, a′)

])
(2.28)

which we refer to as thresholded lexicographic Q-learning 4. The framework allows some
relaxation to each objective so that other objectives can be considered, which intuitively
resembles how humans balance different aspects of a task.

4We made some slight changes from the original formulation given in [13].
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Chapter 3

Methods

3.1 Thresholded Lexicographic DQN

In many applications, we have several objectives with different priorities. We would like
to guarantee the more important objective to a certain degree before considering other
objectives. Autonomous driving is one such application: we would like to guarantee safety
before considering other objectives such as traffic rules; and only among the policies that
follow the traffic rules, we consider even less important aspects such as passenger comfort,
etc. Thresholded lexicographic learning follows a similar procedure. However, approxi-

mating Q̂
Π̂i−1

i (s, a) (Eq. 2.26) directly by Eq. 2.28 as proposed by Gábor, Kalmár, and
Szepesvári [13] has a few drawbacks, especially in the DQN setting:

1. Eq. 2.28 is only an approximate fix point equation for the true Q̂
Π̂i−1

i (s, a), because
the inequality in Eq. 2.27 is arbitrarily replaced by equality.

2. Since ∑
s′

P (s′|s, a) max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q̂
Π̂i−1

i
(s′, a′|θ)
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is estimated by samples of s′, and

Es′∼P (s′|s,a)

[
min

(
τi, ri(s, a, s

′) + γi max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q̂
Π̂i−1

i
(s′, a′|θ)

)]

≤ min

(
τi, Es′∼P (s′|s,a)

[
ri(s, a, s

′) + γi max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q̂
Π̂i−1

i
(s′, a′|θ)

]) (3.1)

where θ is the parameter of the function approximator, the estimation is biased,
similar to the bias introduced by the max operator in DQN as discussed in [18].

3. Noise in function approximation can create additional bias due to the min operator.
Consider the safety objective where the reward is −1 when ego vehicle collides, 0
otherwise. Assume that 0 ≥ τi ≥ −1, and s is a safe state, so that ∃As 6= ∅ s.t.

Q̂
Π̂i−1

i (s, a) = τi,∀a ∈ As. The target for Q̂
Π̂i−1

i (s, a), a ∈ As computed from the
right-hand-side of Eq. 2.28 is

min

(
τi, ri(s, a, s

′) + γi max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q̂
Π̂i−1

i
(s′, a′|θ)

)
≤

min

(
τi, γi max

a′∈{πi−1(s)|πi−1∈Π̂i−1}
Q̂

Π̂i−1

i
(s′, a′|θ)

)
For the target to be correct,

γi max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q̂
Π̂i−1

i
(s′, a′|θ) ≥ τi

must hold, which means that:

∆Q = max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q̂
Π̂i−1

i (s′, a′)− max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q̂
Π̂i−1

i
(s′, a′|θ)

≤ τi − max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q̂
Π̂i−1

i
(s′, a′|θ) ≤ (1− 1

γi
)τi

where Q̂
Π̂i−1

i (s′, a′) is the true Q̂
Π̂i−1

i function, and ∆Q is the noise of function approx-
imation. In other words, the noise in neural network must be smaller than (1− 1

γi
)τi

to avoid creating additional bias. If the look-ahead horizon is long, so that γi ≈ 1,
the margin is very small.
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4. There is no guarantee the DQN will converge to the true Q value [58], and the learned
Q-value are empirically very inaccurate. Therefore, using a static threshold τi might
be problematic, and an adaptive threshold that depends on the learned Q function
might be preferrable.

Observe that the only purpose of introducing Q̂
Π̂i−1

i (s, a) is to bring some relaxation to

maxa∈{πi−1(s)|πi−1∈Π̂i−1}Q
Π̂i−1

i (s, a) so that all actions in {a ∈ {πi−1(s)|πi−1 ∈ Π̂i−1}|QΠ̂i−1

i (s, a) ≥
τi} are treated as equally ‘good enough’ for that objective. So instead of estimating

Q̂
Π̂i−1

i (s, a), which introduces bias through the min operator, we can estimate Q
Π̂i−1

i (s, a)
directly through the following Bellman equation:

Q
Π̂i−1

i (s, a) = ri(s, a, s
′) + γi

∑
s′

P (s′|s, a) max
a′∈{πi−1(s)|πi−1∈Π̂i−1}

Q
Π̂i−1

i (s′, a′) (3.2)

where Π̂i is redefined as:

Π̂i
def
=
{
πi ∈ Π̂i−1

∣∣∣QΠ̂i−1

i (s, πi(s)) ≥ max
a∈{πi−1(s)|πi−1∈Π̂i−1}

Q
Π̂i−1

i (s, a)− τi
}
, i = 1, 2, ..., k

(3.3)

As in the previous chapter, Π̂0
def
= ΠSD, Q

Πi−1

i (s, a) is a shorthand for maxπ∈Πi−1
Qπ
i (s, a),

and v
Πi−1

i (s) is a shorthand for maxπ∈Πi−1
vπi (s). Note that the fixed threshold has been

replaced by an adaptive threshold that depends on the learned Q function, and the algo-
rithm essentially becomes the Q-learning version of lexicographic value iteration [64, 39].
Here, we restrict τi to be non-negative, and thus give it a different meaning: it specifies
how much worse than the best action is considered acceptable in each state.

The update rule implied by Eq. 3.2 for objective i, i = 1, 2, ..., k is similar to Q-learning,
except that the next action a′ is now restricted to those allowed by objective i− 1 (In the
case of i = 1, it degenerates to Q-learning). Once objective i − 1 converges, it becomes
regular Q-learning for an MDP whose action space is dependent on s. During training, one
of the objectives i ∈ {1, 2, ..., k} can be chosen for exploration at each simulation step. If
objective i is chosen for exploration, objectives j = i+1, i+2, ..., k are no longer considered
for action selection. The action selection procedure is described in algorithm 2.

17



Algorithm 2 Action Selection

1: function select action(Q, s)

// Q = [QΠ̂0

1
, QΠ̂1

2
, ..., Q

Π̂k−1

k ] is the list of
// learned Q functions for each objective

2: A0(s) := A
3: for i in {1, 2, ..., k} do
4: Ai(s) :=

{
a ∈ Ai−1(s)

∣∣∣QΠ̂i−1

i (s, a) ≥ maxa′∈Ai−1
Q

Π̂i−1

i (s, a′)− τi
}

5: if objective i is chosen to be explored then
6: return random action from Ai−1(s)
7: end if
8: end for
9: return random action from Ak(s)

10: end function

Since the only interface between objectives is the set of acceptable actions for that
objective, not all objectives have to be RL agents (some of them can be rule-based agents),
as long as they provide the same interface.

3.2 Factored Q Function

As more surrounding vehicles are considered, the complexity of the problem increases
exponentially. However, a human learner is able to reduce complexity by focusing on a few
important vehicles in a particular situation, presumably because a human learner exploits
some sort of structure of the problem. For example, if a human learner is following a car
too close, he not only knows the fact that he is following too close, but he also knows:
1. which car he is following too close; and 2. the car on the other side of intersection has
very little, if anything, to do with the situation. In other words, in addition to viewing the
state space as a whole, humans are, at the same time, learning on each individual factored
state space (the car ahead, and the car on the other side of intersection, etc.) as well, then
they use the knowledge learned on the factored state space to help with the original task.
To mimic this behaviour, we propose to decompose factored MDPs into auxiliary tasks,
then the factored Q functions learned on the factored state space can be used as additional
features for the original Q function.

Consider the safety objective of self-driving, and the factored representation of state
s = (se, s1, s2, ..., sm) , where se is the state variable for ego vehicle, and s1, s2, ..., sm are
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the state variables for the surrounding vehicles. Informally, the problem has the following
internal structure: 1. collision is directly related to only a small subset of vehicles (in most
cases, ego vehicle and the vehicle ego is crashing into), so it is natural to view the reward
as a function of some locally-scoped rewards r(s) = f(r(se, s1), r(se, s2), ..., r(se, sm)) 2. In
some cases, (st+1

e , st+1
i ) is only weakly dependent on stj, j 6= i, where sti denotes the value

of si at time t. For example, a vehicle on the right-turn lane does not have much influence
on the next state of a vehicle approaching the intersection from the opposite side. Formal
formulation of what it means by being ‘weakly’ dependent, and its effect on the value
function, is difficult. However, it is reasonable to hypothesize that these structures result
in some kind of structure in the value function. In fact, the task of driving safe can be
thought of as the composition of a set of smaller tasks: driving safely with regard to each
individual vehicle. If we learn how to drive safely with regard to each individual vehicle, we
can use the knowledge to help with the original task of driving safely. In other words, we
can use the Q functions of the smaller tasks as auxiliary features for the Q function of the
bigger original task. This idea can be formalized as follows.

Viewing (se, si), i = 1, 2, ...,m as observations from the original factored MDP, and the
locally-scoped rewards r(se, si) as rewards corresponding to the observations, we get a set
of m smaller auxiliary (partially observable) MDPs. To exploit the structure of the factored
MDP, the Q functions of these smaller MDPs (ignoring the partial observability) can be
used as features for the Q function of the original factored MDP. To be more specific,
instead of estimating the Q function of the factored MDP QΠ̂i−1(s, a) directly, we learn an

estimation of each of the Q functions of the auxiliary MDPs QΠ̂i−1((se, si), a), and use these

auxiliary Q functions as additional features φ(s) = [QΠ̂i−1((se, s1), a), ..., QΠ̂i−1((se, sm), a)]
for estimating the Q function of the factored MDP. Now the original Q function can
be approximated using the augmented feature (s, φ(s)). The assumption here is that

the additional features φ(s) will help with the learning of QΠ̂i−1(s, a). These factored Q
functions in φ(s) essentially fall into the framework of generalized value functions, and are
updated according to their own TD errors during training. Section 3.4 describes this idea
in the context of neural networks.

3.3 State Space

Most existing RL approaches for autonomous driving consider a state space of either raw vi-
sual/sensor input [43, 21], or the kinematics of a few immediately surrounding vehicles [35,
60]. Since road and lane information is not explicitly considered, the policy learned using
these types of state space in limited scenarios cannot be expected to be transferable to
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roads with different geometry. To overcome this limitation, the state space not only needs
to include all the necessary information for driving (vehicle kinematics, road information,
etc.), but should also be at such an abstraction level that policies learned on a particular
road are readily transferable to roads with slightly different geometry. Our state space
consists of three parts:

1. ego state (table 3.1);

2. state of surrounding vehicles relative to ego (table 3.2);

3. road structure, expressed by topological relations between surrounding vehicles and
ego (table 3.3).

Only a subset of the state variables might be needed for each objective, e.g. the safety

objective does not need to consider road priority information, since the goal of safety is
to learn a generic collision avoidance policy

Table 3.1: State Space — Ego State

se ego state

ve ego speed
de distance to intersection
in intersectione whether in intersection
exist left lanee whether left lane exists
exist right lanee whether right lane exists
lane gape lateral offset from correct (turning) lane

A maximum of m surrounding vehicles are considered. If there are more vehicles in
the scene, only the m closest vehicles are considered. exist vehicle1...m is included in the
state space in case the number of vehicle is fewer than m. In the experiment of this thesis
m = 32.
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Table 3.2: State Space — Surrounding Vehicles

s1...m surrounding vehicles

exist vehicle1...m whether vehicle exists
v1...m relative speed to ego
d1...m distance to intersection
in intersection1...m whether in intersection
exist left lane1...m whether left lane exists
exist right lane1...m whether right lane exists
x1...m , y1...m relative position to ego
θ1...m relative heading to ego
has priority1...m whether has right-of-way over ego
ttc1...m time-to-collision with ego
brake1...m brake signal
left turn1...m left turn signal
right turn1...m right turn signal

In order to deal with complex roads with multiple lanes, topological relations between
ego and each surrounding vehicle also need to be included. Inspired by the lanelet model
introduced by Bender, Ziegler, and Stiller [7], we define seven topological relations between
vehicles (table 3.3), which are illustrated in figure 3.1. These relations capture the inter-
connection between roads through vehicles in the scene and their intended path, without
explicitly modelling the road structure.

Table 3.3: State Space — Topological Relations with Ego

merge merging into the same lane
crossing routes intersecting each other
left in left lane
right in right lane
ahead ahead in the same or succeeding lane
behind behind in the same or previous lane
irrelevant none of the above
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Figure 3.1: Illustration of topological relations. With respect to the green vehicle, vehicle
2, 4, 7 are crossing ; vehicle 8 is merge; vehicle 5 and 6 are irrelevant . Vehicle 1 is to the
left of the green vehicle, and the latter is to the right of the former. Vehicle 3 is behind
the green vehicle, and the latter is ahead of the former.

3.4 Network Architecture

The state s = (se, s1, s2, ..., sm) ∈ S contains the state variables of m surrounding vehicles
si, i = 1, 2, ...,m (including their topological relations with ego). Since swapping the order
of two surrounding vehicles in the state does not change the scene, the Q value should
remain the same:

Q((se, s1, ...,
usi, ...,

vsj, ..., sm), a) = Q((se, s1, ...,
vsj, ...,

usi, ..., sm), a)

where usi denotes the uth possible instantiation of dom(si). To build this invariance into
the neural network, the network needs to be symmetric with respect to each si. In other
words, the weights connecting Q(s, a) to each si should be the same (shown in Figure 3.2).
The loss function at time step t is the usual TD loss:

Lt(θ) = Es,a∼ρ(·)[r(s) + γmax
a′

Q
θ
(s′, a′)−Q

θ
(s, a)] (3.4)

where ρ(s, a) is the probability distribution (s, a) pair.
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Figure 3.2: Neural network architecture with built-in invariance to the order of surrounding
vehicles in the state. We first pass s1, s2, ..., sm through a few shared layers to get the
corresponding features. Then these features are merged through addition and activation.
After that, the network is fully-connected.

If factored Q function is used, then m additional heads for these value functions are
needed (Figure 3.3). During each update, m Q functions are improved simultaneously in
addition to the original Q function, each of which corresponds to learning to avoid collision
with each of the m surrounding vehicles, in the case of the safety objective. The loss
function for each auxiliary task is thus Lti(θ) = Es,a∼ρ(·)[r(s

′
e, s
′
i) + γmaxa′ Qθ

((s′e, s
′
i), a

′)−
Q
θ
((s′e, s

′
i), a)]. Since the agent utilizes a single scene to learn multiple aspects within the

scene, better data efficiency can be expected.
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Figure 3.3: Neural network architecture with factored Q function. The shared layer
branches off for the factored Q functions (auxiliary branch), which is merged back in
higher layers.
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Chapter 4

Experiments

4.1 Environment

SUMO (Simulation of Urban Mobility [5]) traffic simulator is used as the simulation en-
vironment for our experiment. A RL interface similar to OpenAI Gym is written on top
SUMO to provide the state and action space. 1 Given a map, the set of all possible routes
a vehicle can travel is predefined. The vehicle needs to control throttle and lane change
behavior. The action space is a discrete set of 9 actions:

1. max deceleration;

2. med deceleration;

3. min deceleration;

4. maintain speed;

5. min acceleration;

6. med acceleration;

7. max acceleration;

8. change to right lane;

9. change to left lane

The vehicle kinematics follows a point-mass model, and lane changes are instantaneous.
Speed is assumed to be maintained during lane changes. The learning scenario is a typical
urban four-way intersection of a major road and a minor road with random traffic. Traffic
coming from the minor road needs to yield to the major road, and turns need to be made
from the correct lane(s).

1Source code can be found at https://gitlab.com/sumo-rl/sumo_openai_gym
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4.2 Objectives

We consider four objectives in this thesis. In lexicographic order, the objectives are:

1. lane_change: rule-based; all it does is to rule out invalid lane change actions, namely:
lane change to the left/right when there is no left/right lane, and lane change
in intersections. The state space only has three state variables: exist left lanee,
exist right lanee and in intersectione; thus, it is trivial to learn even if it were im-
plemented as a RL agent.

2. safety: RL-based; it ensures that collision does not happen. −1 reward if collision
occurs, or if time-to-collision with at least one surrounding vehicle is less than 3s and
is still decreasing; 0 reward otherwise. 2 The state space includes everything except
lane gape and has priority1..m. Factored Q functions are learned on the auxiliary
MDPs

(dom(se, si), A, γ, ri) , i = 1, 2, ...,m

Where ri is just the locally-scoped version of r: −1 if ego collides with vehicle i or
the time-to-collision with vehicle i is less than 3s and is still decreasing; 0 reward
otherwise. Since up to m = 32 vehicles are considered, up to 32 instances of auxiliary
POMDPs (which share the state space with the original factored MDP) can be run-
ning at the same time. If vehicle i goes out of scene or crashes with ego vehicle, the
episode ends for instance i of the auxiliary task. Adaptive threshold is used, and τ
is set to 0.2 during training; then it is manually fine-tuned on the training set before
testing.

3. regulation: RL-based; it makes sure that traffic rules are followed. We consider
two traffic rules: (a) to make turns from the correct lane(s); (b) to yield according
to right-of-way. A reward of −1 is given for failure to yield right-of-way, −0.02 for
failure to proceed when having right-of-way, and up to −1 for staying in the wrong
lane (e.g. staying in the left-turn lane, if the assigned route is straight). The state
space is comprised of has priority1...m, lane gape, in intersectione, ve and de. Change
of right-of-way or change of road is considered end of episode, since these changes
would happen regardless of the actions chosen. τ is set to 0.2 during training.

2This is only a simplified description of the actual reward used. Since we use a simple calculation for
time-to-collision, sometimes it is not suitable to make the reward dependent on the (inaccurate) estimates
of time-to-collision. In these cases, the reward is set to 0. For the intricacies of the reward function, please
refer to the source code.
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4. comfort&speed: rule-based; prefers acceleration unless speed limit is reached, while
avoiding extreme actions (e.g. maximum acceleration) and lane changes.

4.3 Training

The agent is trained on two intersecting roads with random surrounding traffic. Traffic
enters the scene with a random probability in each episode. An episode ends when ego
collides with other vehicle(s), when ego goes out of scene, or when the timeout is reached.
Each surrounding vehicle has a normally distributed maximum speed, and is controlled by
SUMO’s rule-based behavioral model, which attempts to mimic human drivers. The inter-
section part of the map is shown in Figure 3.1. The north/south-bound traffic needs to yield
to the east/west-bound traffic. In each episode, ego vehicle is randomly assigned one of the
possible routes within the map. Each RL-based objective is trained using double DQN [18]
with prioritized experience replay [46]. To speed up training, 10 simulation instances run
in parallel, adding experience to the experience replay buffer. Asynchronous [32] update
is performed on the Q functions of each objective.

Three models are trained for comparison, which we later refer to as DQN, TLDQN,
and TLfDQN respectively:

1. Scalar-valued DQN: The neural network architecture is as shown in Figure 3.2, with 4
shared layers and 2 merged layers. Each layer has 64 hidden units. The reward func-
tion is a weighted sum of the rewards used for the multi-objective case. The weights
are chosen in a way that try to reflect the relative importance of each objective.

2. Thresholeded lexicographic DQN: The safety objective uses the same neural net-
work architecture as above. The regulation objective uses a 4-layer fully connected
network with 64 hidden units in each layer.

3. Thresholded lexicographic DQN with factored Q function: The safety objective uses
the neural network architecture as shown in Figure 3.3, but with only the auxiliary
branch. The auxiliary branch has 4 shared layers, each with 64 hidden units; the
merged layer is a fixed min layer that takes the minimum of the factored Q functions
for each action. Q(s, a|θ) = miniQ((se, si), a|θ) The regulation objective uses the
same network structure as above.
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4.4 Results

The three models are first evaluated on the same intersecting roads they have been trained
on, with random traffic; then their zero-shot transfer performance is evaluated on a ring
road (Figure 4.5) they have never seen during training. The vehicle can enter the ring road
through either right or left turn. Traffic entering the ring road needs to yield to traffic
already on the ring road.

Figure 4.1 shows the learning curve of DQN, TLDQN and TLfDQN. The x-axis is the
training step, and the y-axis is the (squared) rate of safety (collisions) and traffic rule
(yielding and turning) violations combined. Timeouts are counted as yielding violations.
TLDQN and DQN are trained for 30 hours, while TLfDQN is only trained for 18 hours
since it has already converged. We see that TLfDQN is able to reach a good policy within
500, 000 training steps, as compared to 3 million training steps for TLDQN, improving
the data efficiency by 6 times. It should be noted that the training time of TLfDQN per
training step is longer than TLDQN (26 minutes as compared to 14 minutes), mostly due
to the computational overhead of the 32 additional targets for the factored Q functions,
one for each surrounding vehicle in the scene. However, the overhead can potentially be
alleviated by parallelizing the computation of the target. Within 30 hours of training,
scalar-valued DQN is not able to learn an acceptable policy, indicating the effectiveness of
the multi-objective approach. Different weightings for the objectives in the reward function
were tried for scalar-valued DQN, no significantly better result was observed. 3

Figure 4.2 shows the learning curves with a breakdown of different types of violation.
Ideally, we would like to show how the agent performs on each objective. However, many
violations are inter-correlated, e.g., safety violations are usually preceded by failure to
yield; improperly stopping in the middle of the road leads to low safety violation rate;
high safety violation rate often leads to lower turning violation rate, because the agent
simply collides before even reaching the intersection. Therefore, we group the more serious
violations — safety, failure to yield and timeouts, into one category; and the less serious
violation — failure to change to correct lane, into another category. The blue curves show
the first category, and the green curves show both categories. Note that failure to change
to correct lane does not necessary imply a bad policy, because in some scenarios, the road
is just too crowded for lane changes. We see in the figure that in both categories, TLfDQN
performs the best. It is worth noting that it might seem that the scalar-valued DQN briefly
achieves better performance before getting worse. However, the videos indicate that the

3A good weighting scheme for the reward might exist, but nevertheless hard to find; and to test a set
of new weights, the agent has to be re-trained.

28



Figure 4.1: Learning curve of DQN, TLDQN and TLfDQN. The dark curves are the moving
averages.

Table 4.1: Violation Rate after 30 Hours of Training

Model Collision Yielding Turning

DQN 32.9% 8.5% 16.4%
TLDQN 10.9% 0.9% 7.6%
TLfDQN 3.6% 1.0% 2.4%
TLfDQN (transfer) 3.5% 0.4% N/A

lower collision rate is due to the agent learning an incorrect policy that stops abruptly in
the middle of the road and waits until all the traffic clears before moving.

Videos of the learned policy of our multi-objective RL agent can be found online 4.
Figure 4.3 and Figure 4.4 are some snapshots from the videos. Ego vehicle is colored as
green, and vehicles that have right-of-way over ego are colored as orange. In Figure 4.3,
the ego vehicle is assigned a left-turning route, so it needs to first change to the left lane,
then take a left turn. The ego vehicle learns to slow down (notice the braking lights) until
a gap is found, and then change lane to the left. In Figure 4.4, the ego vehicle slows down
to yield for traffic on the major road, then proceeds to complete the left turn after the
road is clear. The vehicle is not yielding for the right-turning vehicle because there is no
conflict between them. Figure 4.5 shows the zero-shot transfer performance on a ring road.

4https://www.youtube.com/playlist?list=PLiZsfe-Hr4k9VPiX0tfoNoHHDUE2MDPuQ
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(a) DQN (b) TLDQN

(c) TLfDQN

Figure 4.2: Learning curves showing different types of violations. The blue curves show col-
lisions, timeouts and failures to yield combined; the green curves show collisions, timeouts,
failures to yield and failures to change to correct lane for turning combined

30



The agent is able to drive through the ring road safely and yield to traffic already on the
ring road before entering. The performance of the three models after 30 hours of training
evaluated on 1, 000 random episodes is shown in Table 4.1.

(a) need to change to left-turn
lane

(b) slow down to find a gap

(c) successful lane change (d) wait for traffic ahead

Figure 4.3: Ego vehicle (green) is assigned a left-turning route in this episode. The agent
slows down to find a gap and successfully changes to the left-turn lane.
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(a) slow down (b) yield

(c) proceed when the way is clear (d) successful left turn

Figure 4.4: The agent (green) yields to the traffic on the main road, and then proceeds
when it has right-of-way.
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(a) slow down (b) yield

(c) on ring road (d) exit

Figure 4.5: Zero-shot transfer performance. The agent (green) is able to drive through the
ring road without safety or traffic rule violation.
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Chapter 5

Revisiting Multi-Objective RL with
Thresholded Lexicographic Order

5.1 A Deeper Look at Thresholded Lexicographic Q-

Learning

So far we have introduced thresholded lexicographic Q-learning (Eq. 2.25) and its variant
(Eq. 3.3) without examining the order relations they define on the space of value functions
{Vπ|π ∈ S → A}. Unfortunately, it turns out that these algorithms do not define an order
relation on {Vπ|π ∈ S → A} for all multi-objective MDPs, thus do not strictly fit into
the multi-objective RL formulation of Eq. 2.22 and Eq. 2.23. Due to the issues with the
original thresholded lexicographic Q-learning, here we only focus on its variant Eq. 3.3,
and in the following text, thresholded lexicographic Q-learning refers to this variant. Since
we no longer consider the factored representation, a state will be denoted by s instead of
s.

By defining the optimal policy as arg maxπV
π (Eq. 2.23), it is implicitly assumed that:

π ≥p π′ ⇐⇒ Vπ ≥v Vπ′ (5.1)

In other words, we are assuming that the order on {π|S → A} is defined by the order
of the corresponding value function Vπ. However, thresholded lexicographic Q-learning
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works differently, it defines the order relation on {π|S → A} through

π ≥q π′ ⇐⇒ ∃i ∈ {0, 1, ..., k},
π ∈ Π̂i ∧ π′ ∈ Π̂i ∧ π′ /∈ Π̂i+1∧
[∀s ∈ S, (QΠi

i+1(s, π(s)) ≥ QΠi
i+1(s, π′(s))∧

QΠi
i+1(s, π′(s)) < arg max

a∈{πi−1(s)|πi−1∈Π̂i−1}
QΠi
i+1(s, a)− τi+1)∨

QΠi
i+1(s, π(s)) ≥ arg max

a∈{πi−1(s)|πi−1∈Π̂i−1}
QΠi
i+1(s, a)− τi+1)]

(5.2)

where Π̂i, i = 1, 2, ..., k is defined by Eq. 3.3. Π̂k+1 and QΠk
k+1(s, a) are only technical, and

are defined to be ∅ and 0 respectively. Now it comes down to whether there exists an order
relation ≥v, such that

π ≥p π′ ⇐⇒ π ≥q π′ (5.3)

If such an order relation exists for all multi-objective MDPs, then thresholded lexicographic
Q-learning can be thought of as an exact solution algorithm for Eq. 2.23 with order relation
≥v on {Vπ|π ∈ S → A} implicitly defined through Eq. 5.2. However, it is easy to construct
an example where no such ≥v exists. Consider the following single-objective problem
(which is a special case of multi-objective problems) as shown in Figure 5.1 where there
are three states: s1, s2 and s3. s2 and s3 are absorption states with reward of 0. From s1

there are three actions: a1 leads the state back to s1 with a reward of −1, a2 leads to s2 with
reward −10, a3 leads to s3 with reward of 0. The discount factor is γ = 0.9. There are only
three stationary deterministic policies: π(s1) = a1 and π(s1) = a2 and π(s1) = a3, denoted
as π1, π2 and π3 respectively. The optimal Q value for the problem is: Q∗(s1, a1) = −1,
Q∗(s1, a2) = −10, Q∗(s1, a3) = 0. Assume that we apply thresholded lexicographic Q-
learning with threshold τ = 2. According to Eq. 5.2, we have π1 ≥q π2 ∧ π2 6≥q π1 because
Q∗(s1, a1) = −1 > v∗(s1) − τ = 0 − 2 = −2, while Q∗(s1, a2) = −10 < −2. However,
vπ1(s1) =v v

π2 = −10, so π1 =p π2. Therefore, Eq. 5.3 cannot hold for any order relation
≥v on {Vπ|π ∈ S → A}.

The above analysis suggests that the intuitively elegant thresholded lexicographic Q-
learning may not have strong theoretical results. To gain deeper understanding, we need
to reexamine the motivation behind the algorithm — we wish to find the set of policies
Π1 ⊂ Π such that policies π ∈ Π1 are not worse than the best policy to a certain degree,
or formally, vπ11 (h0, s) ≥ vΠ

1 (h0, s) − δ1(s) if and only if π1 ∈ Π1, where h0 is the empty
history, vπ(h, s) denotes the expected cumulative reward starting from history h and s

following policy π, and v
Πi−1

i (·) a shorthand for maxπ∈Πi−1
vπi (·). δ1(s) is the slackness we

allow for this objective, and can be tighter or looser for different starting states. Then
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Figure 5.1: Thresholded lexicographic Q-learning is not an exact algorithm for multi-
objective MDP.

among this set of policies Π1, we further find the set of policies Π2 ⊂ Π1, such that
vπ22 (h0, s) ≥ vΠ1

2 (h0, s) − δ2(s) if and only if π2 ∈ Π2, and so on. This can be represented
by a multi-objective MDP with the following partial order on {Vπ|π ∈ S → A}:

Vπ ≥v Vπ′ ⇐⇒ ∃i ∈ {0, 1, ..., k},
[∀0 < j ≤ i, ∀s ∈ S, vπj (h0, s) ≥ v

Πj−1

j (h0, s)− δj(s)∧

vπ
′

j (h0, s) ≥ v
Πj−1

j (h0, s)− δj(s)]∧
[∃s ∈ S, vπ′i+1(h0, s) < vΠi

i+1(h0, s)− δi+1(s)]∧
[∀s ∈ S, (vπi+1(h0, s) ≥ vπ

′

i+1(h0, s)∧
vπ
′

i+1(h0, s) < vΠi
i+1(h0, s)− δi+1(s))∨

vπi+1(h0, s) ≥ vΠi
i+1(h0, s)− δi+1(s)]

(5.4)

where Πi is defined as:

Πi
def
= {π ∈ Πi−1|vπi (h0, s) ≥ v

Πi−1

i (h0, s)− δi(s),∀s ∈ S} (5.5)

and Π0
def
= Π. Such a multi-objective MDP is called thresholded lexicographic MDP

(TLMDP) [64, 39]. However, finding Πi is non-trivial, and that’s where thresholded lexico-
graphic Q-learning comes into play. Consider a TLMDP with state-independent slackness
δi(s) = δi, by setting τi = (1 − γi)δi, it is guarantee that Π̂i ⊂ Πi [64, 39]. In this sense,
thresholded lexicographic Q-learning is an approximate algorithm for TLMDP.
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5.2 Pseudo-Markov Thresholded Lexicographic Value

Iteration

In this section, we provide further insights into multi-objective RL with thresholded lex-
icographic value iteration by introducing two algorithms. One is an exact algorithm, but
is impractical because it requires knowledge of the transition probabilities; the other is
a practical model-free approximate algorithm, which is a direct extension of thresholded
lexicographic Q-learning, and gives strictly better approximation.

Reiterating Eq. 3.3, thresholded lexicographic Q-learning finds the Π̂i:

Π̂i = {π ∈ Π̂i−1|Qi(s, π(s)) > v
Π̂i−1

i (s)− (1− γi)δi,∀s ∈ S} (5.6)

Here, τi has been substituted by (1 − γi)δi so that Π̂i ⊂ Πi. For episodic tasks, this
translates to:

Π̂i = {π ∈ Π̂i−1|Qi(s, π(s)) > v
Π̂i−1

i (s)− 1

Ti
δi,∀s ∈ S} (5.7)

In essence, the algorithm spreads the slackness δi evenly throughout the episode, thus
leading to an incomplete solution: the slackness does not have to be spread evenly across
states — we can decide to use more slackness in some time steps or in some states, and less
slackness in others, so that the overall deviation of vπi (s0) from v

Πi−1

i (s0) is within δi. This
would potentially (but not necessarily) result in history-dependent policies, because we
might need to keep track of how much slackness has already been used. We are, however,
not interested the most general form of history-dependent policy that depends arbitrarily
on the history — for one thing, storing such a policy would require space exponential to the
time horizon. We are interested in policies that depends on a fixed-size Markov summary
of the history bt = g(ht, st), ht ∈ H t, where g is the summary function. The fixed-size
summary should be Markov, meaning that P (bt|ht−1, st−1, dt−1) = P (bt|bt−1, dt−1). Let B
denote the set of all summaries, we call this type of policy π = (d0, d1, ..., dt, ...), dt : B → A
a pseudo-Markov 1 deterministic policy.

Now we introduce an exact solution algorithm for TLMDP as defined by Eq. 5.4. Since
it considers pseudo-Markov policy and requires the knowledge of the transition prababili-
ties, we call it pseudo-Markov thresholded lexicographic value iteration (PsM-TLVI).

1The term semi-Markov policy would have been more appropriate, but is already taken in [54] for a
different meaning.
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Algorithm 3 Pseudo-Markov TLVI

1: function PsM-TLVI(Q, s0)

// Q∗ = [QΠ0
1 , QΠ1

2 , ..., Q
Πk−1

k ] is the list of Q functions for each objective.
// s0 is the initial state.
// Dt

0 denotes the set of all deterministic decision rules {d : S → A}.
// ηΠ

i (h, s, d) denotes vΠ
i (h, s)−QΠ

i (h, s, d(s))
2: for i in {1, 2, ..., k} do
3: D0

i := {d ∈ D0
i−1|η

Πi−1

i (h0, s, d) ≤ δi(s),∀s ∈ S}
4: end for
5: choose d0 ∈ D0

k

6: for i in {1, 2, ..., k} do
7: ε0i := δi(s

0)− ηΠi−1

i (h0, s0, d0)
8: end for
9: for t in {0, 1, ...} do

10: take action at = dt(st), and arrive at state st+1

11: for i in {1, 2, ..., k} do
12: Dt+1

i :=
{
d ∈ Dt+1

i−1

∣∣∣Es∼p(s|st,at)[ηΠi−1

i (ht+1, s, d)] ≤ 1
γi
εti

}
13: end for
14: choose dt+1 ∈ Dt+1

k

15: for i in {1, 2, ..., k} do
16: εt+1

i := 1
γi
εti − Es∼p(s|st,at)[η

Πi−1

i (ht+1, s, dt+1)]
17: end for
18: end for
19: end function

To go through the algorithm, we start with the first objective, and for now we assume
that v

Πi−1

i (h, s) is somehow available. The allowed slackness can be thought as a quantity
to be consumed, and we want to make sure that in expectation, the discounted cumulative
slackness consumed does not exceed δi(s). Suppose that the remaining slackness is εt1 after
executing action at in state st according to the decision rule dt, we are faced with the
choice of the decision rule for the next step dt+1. For that we need to make sure that in
expectation, the slackness we use at time t + 1 does not exceed 1

γ1
εt1. Since the slackness

we will use in st+1 following dt+1 would be:

ηΠ0
1 (ht+1, st+1, dt+1) = vΠ0

1 (ht+1, st+1)−
QΠ0

1 (ht+1, st+1, dt+1(st+1))
(5.8)
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dt+1 needs to satisfy:

1

γ1

εt1 ≥
∑
s

p(s|st, at)
[
ηΠ0

1 (ht+1, s, dt+1)
]

(5.9)

The decision rule for the initial time step d0 should instead guarantee that:

δ1(s) ≥ η
Π0
1 (h0, s, d0),∀s ∈ S (5.10)

The set of decision rules dt+1 that satisfy Eq. 5.9 (or Eq. 5.10 if t + 1 = 0) can then be
passed down to the second objective for further selection following the same procedure,
and so on, till the kth objective. After selecting dt+1, we need to calculate the remaining
slackness for the next step εt+1

i , according to how much slackness dt+1 uses at time t + 1
in expectation:

εt+1
i :=

1

γi
εti − Es∼p(s|st,at)

[
η

Πi−1

i (ht+1, s, dt+1)
]

(5.11)

If t+ 1 = 0, the remaining slackness should be calculated according to:

ε0i := δi(s
0)− ηΠi−1

i (h0, s0, d0) (5.12)

The complete algorithm is described in Algorithm 3. At each time step t, the algorithm
returns k sets of feasible decision rules Dt

i ⊂ {S → A} (for the first i objectives). This
essentially implies k sets of history-dependent policy Π̃i by:

π = (d0, d1, ..., dt, ...) ∈ Π̃i ⇐⇒ dt ∈ Dt
i ,∀t (5.13)

As can be seen from Line 12 of the algorithm, Dt
i is dependent on the history only through

st−1, at−1, and the remaining slackness of the first i objectives εt−1
1:i = [εt−1

1 , εt−1
2 ..., εt−1

i ], so
we have:

Dt
i = Di(ε

t−1
1:i , s

t−1, at−1) (5.14)

Notice that bt = (εt−1, st−1, at−1, st) is a fixed-sized summary of the history, and is Markov
(Eq. 5.11), therefore the policies π ∈ Π̃k are pseudo-Markov.

Proposition 1. PsM-LVI is an exact algorithm for TLMDP as formulated by Eq. 5.4,
i.e., Π̃k = Πk
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Proof. We first prove Π̃k ⊂ Πk. In other words, we need to prove that any π = (d1, d2, ...)

with dt ∈ Dt
k, ∀t, satisfies vπi (h0, s) ≥ v

Πi−1

i (h0, s) − δi(s), ∀i, ∀s ∈ S. This can be

shown by induction. Let Q
Πi−1

i (h0, s0, d0, d1, ..., dt−1) be the maximum expected cumu-
lative reward that can be achieved following a policy in Πi−1, after acting according to
d0, d1, ..., dt−1 in the first t time step starting from empty history and state s0. We start
with Q

Πi−1

i (h0, s0, d0),∀s0 ∈ S. Since d0 satisfies η
Πi−1

i (h0, s0, d0) ≤ δi(s
0) (Line 3), and

ε0i = δi(s
0)− ηΠi−1

i (h0, s0, d0) (Line 7), it follows directly that:

Q
Πi−1

i (h0, s0, d0) = v
Πi−1

i (h0, s0)− (δi(s
0)− ε0i )

ε0i ≥ 0

Assume

Q
Πi−1

i (h0, s0, d0, d1, ..., dt) = v
Πi−1

i (h0, s0)− (δi(s
0)− γ(t)εti)

εti ≥ 0

Since εti ≥ 0, Line 12 and Line 16 ensures that

εt+1
i ≥ 0 (5.15)

and that dt+1 satisfies

Es∼p(s|st,at)[η
Πi−1

i (ht+1, s, dt+1)] =
1

γi
εti − εt+1

i

We have

Q
Πi−1

i (h0, s0, d0, d1..., dt)−QΠi−1

i (h0, s0, d0, d1, ..., dt+1)

=γ(t+1)Es1,...,stEs∼p(s|st,at)[η
Πi−1

i (ht+t, s, dt+1)]

=γ(t)εti − γ(t+1)εt+1
i

Therefore

Q
Πi−1

i (h0, s0, d0, d1, ..., dt+1)

=Q
Πi−1

i (h0, s0, d0, d1..., dt)− γ(t)εti + γ(t+1)εt+1
i

=v
Πi−1

i (h0, s0)− (δi(s
0)− γ(t)εti)− γ(t)εti + γ(t+1)εt+1

i

=v
Πi−1

i (h0, s0)− (δi(s
0)− γ(t+1)εt+1

i )

(5.16)

Eq. 5.15 and Eq. 5.16 completes the induction. Therefore:

vπi (h0, s0) = QΠi−1(h0, s0, d0, d1, ...) ≥ v
Πi−1

i (h0, s0)− δi(s0)
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finishing the proof.

Now we prove Πk ⊂ Π̃k, for which we need to show that every policy π that satisfies
vπi (h0, s) ≥ vΠi−1(h0, s) − δi(s),∀i, ∀s ∈ S are in Π̃k. If π 6∈ Π̃k, it means that for some i
and t, dt violates either Line 3 or Line 12. According to Line 7 and Line 16, this would
result in εti < 0. So we have

vπi ≤ Q
Πi−1

i (h0, s0, d0, d1..., dt)

= v
Πi−1

i (h0, s0)− (δi(s
0)− γ(t)εti)

< v
Πi−1

i (h0, s0)− δi(s0)

Therefore π 6∈ Πk.

So far we have assumed v
Πi−1

i (ht, st) is already available. Now we discuss how v
Πi−1

i (ht, st)

can be learned. v
Πi−1

i (ht, st) is influenced by ht only through the set of allowed de-
cision rules Dτ

i−1, τ ≥ t. As discussed above, the policies in Πi−1 are pseudo-Markov
and Dt

i−1 = Di−1(εt−1
1:i−1, s

t−1, at−1). For each objective, we construct a MDP with state
sti+ = (εt−1

1:i−1, s
t−1, at−1, st) and action set a+ ∈ Di−1(s+) ⊂ {S → A} (Note that now the

actions are decision rules). The transition probabilities of this MDP are implied by the
underlying MDP and Eq. 5.11. Denoting the optimal value function of this new MDP by
v∗i+, it is clear that:

v
Πi−1

i (ht, st) = v∗i+(sti+) (5.17)

Therefore v
Πi−1

i (ht, st) can be learned by doing regular value iteration or Q-learning on

this new MDP. Since the action set Di depends on Di−1, the convergence of v
Πi−1

i (ht, st) is
sequential, from objective 1 to objective k.

Although Algorithm 3 is exact, it requires knowledge of the model. In Line 12 and Line
16, we need the transition probabilities to calculate Es∼p(s|st,at)[η

Πi−1

i (ht+1, s, d)]. A conve-

nient approximation would be to use η
Πi−1

i (ht+1, st+1, at) in place of Es∼p(s|st,at)[η
Πi−1

i (ht+1, s, d)].
This would lead to an incomplete solution, but obviates the need for the transition proba-
bility. An added benefit is that we no longer need to think in terms of the decision rules dt

both in policy selection and the learning of v
Πi−1

i (h, s), just as in thresholded lexicographic
Q-learning. We call the resulting algorithm pseudo Markov thresholded lexicographic Q-
Learning.

41



Chapter 6

Conclusions

A RL problem consists of two parts: the environment model, and the interface between
the agent and the task designer. The vast majority of RL literature restricts the agent-
designer interface to a scalar reward that is a function of the transition tuple (st, at, st+1).
However, more often than not, it is hard for humans to tell what reward they receive at
a certain point of time, especially when there are multiple aspects involved. Since the
reward function ultimately needs to be specified by a human, this creates a challenge for
complex tasks such as autonomous urban driving. This thesis explored a more general
form of agent-designer interface that allows multi-dimensional rewards — multi-objective
RL. Each dimension of the reward deals with one aspect of the task, and a partial order
relation is defined on the space of multi-dimensional value functions. Particularly,

• We have shown that an approximate algorithm for multi-objective RL with lexico-
graphic order, thresholded lexicographic Q-learning, can be successfully applied to
autonomous driving in a simulated environment.

• The limitation of thresholded lexicographic Q-learning is analyzed and further insight
is provided by introducing a novel exact algorithm. A tractable form of history-
dependent policy, pseudo-Markov policy is shown to be the key concept of this exact
algorithm.

This thesis focused on a value function based approach to multi-objective RL. However
in practice, Q-learning, especially when combined with function approximation, tends to
give inaccurate estimates of the real Q function, which poses a challenge for value function
based approaches. One future direction would be to explore policy gradient methods for
multi-objective reinforcement learning with relaxed lexicographic order.
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Learning”. In: Proceedings of the Fifteenth International Conference on Machine
Learning (ICML 1998), Madison, Wisconsin, USA, July 24-27, 1998. 1998, pp. 197–
205.

[14] Peter Geibel and Fritz Wysotzki. “Risk-Sensitive Reinforcement Learning Applied
to Control under Constraints”. In: CoRR abs/1109.2147 (2011). arXiv: 1109.2147.
url: http://arxiv.org/abs/1109.2147.

[15] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Reading, Massachusetts: Addison-Wesley, 1994.

[16] Carlos Guestrin et al. “Efficient Solution Algorithms for Factored MDPs”. In: J.
Artif. Intell. Res. 19 (2003), pp. 399–468. doi: 10.1613/jair.1000. url: https:
//doi.org/10.1613/jair.1000.

44

https://doi.org/10.1016/S0004-3702(00)00033-3
https://doi.org/10.1016/S0004-3702(00)00033-3
https://doi.org/10.1016/S0004-3702(00)00033-3
https://doi.org/10.1007/11672142\_26
https://doi.org/10.1007/11672142%5C_26
https://doi.org/10.1007/11672142%5C_26
http://papers.nips.cc/paper/714-feudal-reinforcement-learning
http://papers.nips.cc/paper/714-feudal-reinforcement-learning
https://doi.org/10.1613/jair.639
https://doi.org/10.1613/jair.639
https://doi.org/10.1613/jair.639
https://doi.org/10.1287/moor.25.1.130.15210
http://dx.doi.org/10.1287/moor.25.1.130.15210
http://dx.doi.org/10.1287/moor.25.1.130.15210
http://arxiv.org/abs/1109.2147
http://arxiv.org/abs/1109.2147
https://doi.org/10.1613/jair.1000
https://doi.org/10.1613/jair.1000
https://doi.org/10.1613/jair.1000


[17] Hado van Hasselt. “Double Q-learning”. In: Advances in Neural Information Pro-
cessing Systems 23: 24th Annual Conference on Neural Information Processing Sys-
tems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British
Columbia, Canada. 2010, pp. 2613–2621. url: http://papers.nips.cc/paper/
3964-double-q-learning.

[18] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning
with Double Q-learning”. In: CoRR abs/1509.06461 (2015). arXiv: 1509.06461. url:
http://arxiv.org/abs/1509.06461.

[19] Ping Hou, William Yeoh, and Pradeep Varakantham. “Revisiting Risk-Sensitive MDPs:
New Algorithms and Results”. In: Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling, ICAPS 2014, Portsmouth, New
Hampshire, USA, June 21-26, 2014. 2014. url: http://www.aaai.org/ocs/index.
php/ICAPS/ICAPS14/paper/view/7798.

[20] Leemon C. Baird III. “Residual Algorithms: Reinforcement Learning with Function
Approximation”. In: Machine Learning, Proceedings of the Twelfth International
Conference on Machine Learning, Tahoe City, California, USA, July 9-12, 1995.
1995, pp. 30–37.

[21] David Isele et al. “Navigating Intersections with Autonomous Vehicles using Deep
Reinforcement Learning”. In: CoRR abs/1705.01196 (2017). arXiv: 1705 . 01196.
url: http://arxiv.org/abs/1705.01196.

[22] Max Jaderberg et al. “Reinforcement Learning with Unsupervised Auxiliary Tasks”.
In: CoRR abs/1611.05397 (2016). arXiv: 1611.05397. url: http://arxiv.org/
abs/1611.05397.

[23] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. “Reinforcement
Learning: A Survey”. In: CoRR cs.AI/9605103 (1996). url: http://arxiv.org/
abs/cs.AI/9605103.

[24] Sham Kakade. “A Natural Policy Gradient”. In: Advances in Neural Information
Processing Systems 14 [Neural Information Processing Systems: Natural and Syn-
thetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada]. 2001,
pp. 1531–1538. url: http://papers.nips.cc/paper/2073-a-natural-policy-
gradient.

[25] Donald Knuth. The TEXbook. Reading, Massachusetts: Addison-Wesley, 1986.

45

http://papers.nips.cc/paper/3964-double-q-learning
http://papers.nips.cc/paper/3964-double-q-learning
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7798
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7798
http://arxiv.org/abs/1705.01196
http://arxiv.org/abs/1705.01196
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/cs.AI/9605103
http://arxiv.org/abs/cs.AI/9605103
http://papers.nips.cc/paper/2073-a-natural-policy-gradient
http://papers.nips.cc/paper/2073-a-natural-policy-gradient


[26] Sven Koenig and Reid G. Simmons. “Risk-Sensitive Planning with Probabilistic De-
cision Graphs”. In: Proceedings of the 4th International Conference on Principles
of Knowledge Representation and Reasoning (KR’94). Bonn, Germany, May 24-27,
1994. 1994, pp. 363–373.

[27] Vijay R. Konda and John N. Tsitsiklis. “Actor-Critic Algorithms”. In: Advances
in Neural Information Processing Systems 12, [NIPS Conference, Denver, Colorado,
USA, November 29 - December 4, 1999]. 1999, pp. 1008–1014. url: http://papers.
nips.cc/paper/1786-actor-critic-algorithms.

[28] Leslie Lamport. LATEX — A Document Preparation System. Second. Reading, Mas-
sachusetts: Addison-Wesley, 1994.

[29] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”.
In: CoRR abs/1509.02971 (2015). arXiv: 1509.02971. url: http://arxiv.org/
abs/1509.02971.

[30] Chunming Liu, Xin Xu, and Dewen Hu. “Multiobjective Reinforcement Learning: A
Comprehensive Overview”. In: IEEE Trans. Systems, Man, and Cybernetics: Systems
45.3 (2015), pp. 385–398. doi: 10.1109/TSMC.2014.2358639. url: https://doi.
org/10.1109/TSMC.2014.2358639.

[31] R.T. Marler and J.S. Arora. “Survey of multi-objective optimization methods for
engineering”. In: Structural and Multidisciplinary Optimization 26.6 (Apr. 2004),
pp. 369–395. issn: 1615-1488. doi: 10.1007/s00158-003-0368-6. url: https:
//doi.org/10.1007/s00158-003-0368-6.

[32] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”.
In: Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016. 2016, pp. 1928–1937. url: http:
//jmlr.org/proceedings/papers/v48/mniha16.html.

[33] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: CoRR
abs/1312.5602 (2013). arXiv: 1312.5602. url: http://arxiv.org/abs/1312.5602.

[34] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. “Policy Invariance Under Re-
ward Transformations: Theory and Application to Reward Shaping”. In: Proceed-
ings of the Sixteenth International Conference on Machine Learning. ICML ’99. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 278–287. isbn:
1-55860-612-2. url: http://dl.acm.org/citation.cfm?id=645528.657613.

46

http://papers.nips.cc/paper/1786-actor-critic-algorithms
http://papers.nips.cc/paper/1786-actor-critic-algorithms
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://doi.org/10.1109/TSMC.2014.2358639
https://doi.org/10.1109/TSMC.2014.2358639
https://doi.org/10.1109/TSMC.2014.2358639
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/s00158-003-0368-6
http://jmlr.org/proceedings/papers/v48/mniha16.html
http://jmlr.org/proceedings/papers/v48/mniha16.html
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://dl.acm.org/citation.cfm?id=645528.657613


[35] Daniel C. K. Ngai and Nelson Hon Ching Yung. “Automated Vehicle Overtaking
based on a Multiple-Goal Reinforcement Learning Framework”. In: 20th IEEE Inter-
national Conference on Intelligent Transportation Systems, ITSC 2017, Yokohama,
Japan, October 16-19, 2017. 2007, pp. 818–823. doi: 10.1109/ITSC.2007.4357682.
url: https://doi.org/10.1109/ITSC.2007.4357682.

[36] Ian Osband et al. “Deep Exploration via Bootstrapped DQN”. In: Advances in Neu-
ral Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain. 2016, pp. 4026–
4034. url: http://papers.nips.cc/paper/6501- deep- exploration- via-

bootstrapped-dqn.

[37] Ronald Parr and Stuart J. Russell. “Reinforcement Learning with Hierarchies of
Machines”. In: Advances in Neural Information Processing Systems 10, [NIPS Con-
ference, Denver, Colorado, USA, 1997]. 1997, pp. 1043–1049. url: http://papers.
nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines.

[38] Chris Paxton et al. “Combining neural networks and tree search for task and motion
planning in challenging environments”. In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2017, Vancouver, BC, Canada, September
24-28, 2017. 2017, pp. 6059–6066. doi: 10.1109/IROS.2017.8206505. url: https:
//doi.org/10.1109/IROS.2017.8206505.

[39] Luis Enrique Pineda, Kyle Hollins Wray, and Shlomo Zilberstein. “Revisiting Multi-
Objective MDPs with Relaxed Lexicographic Preferences”. In: 2015 AAAI Fall Sym-
posia, Arlington, Virginia, USA, November 12-14, 2015. 2015, pp. 63–68. url: http:
//www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11678.

[40] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. 1st. New York, NY, USA: John Wiley & Sons, Inc., 1994. isbn: 0471619779.

[41] Diederik Marijn Roijers et al. “A Survey of Multi-Objective Sequential Decision-
Making”. In: CoRR abs/1402.0590 (2014). arXiv: 1402.0590. url: http://arxiv.
org/abs/1402.0590.

[42] Tim Salimans et al. “Evolution Strategies as a Scalable Alternative to Reinforcement
Learning”. In: CoRR abs/1703.03864 (2017). arXiv: 1703.03864. url: http://

arxiv.org/abs/1703.03864.

[43] Ahmad El Sallab et al. “End-to-End Deep Reinforcement Learning for Lane Keeping
Assist”. In: CoRR abs/1612.04340 (2016). arXiv: 1612.04340. url: http://arxiv.
org/abs/1612.04340.

47

https://doi.org/10.1109/ITSC.2007.4357682
https://doi.org/10.1109/ITSC.2007.4357682
http://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn
http://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn
http://papers.nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines
http://papers.nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines
https://doi.org/10.1109/IROS.2017.8206505
https://doi.org/10.1109/IROS.2017.8206505
https://doi.org/10.1109/IROS.2017.8206505
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11678
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11678
http://arxiv.org/abs/1402.0590
http://arxiv.org/abs/1402.0590
http://arxiv.org/abs/1402.0590
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1612.04340
http://arxiv.org/abs/1612.04340
http://arxiv.org/abs/1612.04340


[44] Atri Sarkar et al. “Trajectory prediction of traffic agents at urban intersections
through learned interactions”. In: 20th IEEE International Conference on Intelli-
gent Transportation Systems, ITSC 2017, Yokohama, Japan, October 16-19, 2017.
2017, pp. 1–8. doi: 10.1109/ITSC.2017.8317731. url: https://doi.org/10.
1109/ITSC.2017.8317731.

[45] Makoto Sato, Hajime Kimura, and Shibenobu Kobayashi. “TD Algorithm for the
Variance of Return and Mean-Variance Reinforcement Learning”. In: Transactions
of the Japanese Society for Artificial Intelligence 16.3 (2001), pp. 353–362. doi:
10.1527/tjsai.16.353.

[46] Tom Schaul et al. “Prioritized Experience Replay”. In: CoRR abs/1511.05952 (2015).
arXiv: 1511.05952. url: http://arxiv.org/abs/1511.05952.

[47] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: CoRR abs/1707.06347
(2017). arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347.

[48] John Schulman et al. “Trust Region Policy Optimization”. In: CoRR abs/1502.05477
(2015). arXiv: 1502.05477. url: http://arxiv.org/abs/1502.05477.

[49] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. “Safe, Multi-Agent,
Reinforcement Learning for Autonomous Driving”. In: CoRR abs/1610.03295 (2016).
arXiv: 1610.03295. url: http://arxiv.org/abs/1610.03295.

[50] Craig Sherstan et al. “Comparing Direct and Indirect Temporal-Difference Methods
for Estimating the Variance of the Return”. In: Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, Califor-
nia, USA, August 6-10, 2018. 2018, pp. 63–72. url: http://auai.org/uai2018/
proceedings/papers/35.pdf.

[51] Olivier Sigaud and Olivier Buffet. Markov Decision Processes in Artificial Intelli-
gence. Wiley-IEEE Press, 2010. isbn: 1848211678, 9781848211674.

[52] David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature
550.7676 (Oct. 2017), p. 354. issn: 1476-4687. doi: 10.1038/nature24270. url:
https://doi.org/10.1038/nature24270.

[53] Felipe Petroski Such et al. “Deep Neuroevolution: Genetic Algorithms Are a Compet-
itive Alternative for Training Deep Neural Networks for Reinforcement Learning”.
In: CoRR abs/1712.06567 (2017). arXiv: 1712.06567. url: http://arxiv.org/
abs/1712.06567.

48

https://doi.org/10.1109/ITSC.2017.8317731
https://doi.org/10.1109/ITSC.2017.8317731
https://doi.org/10.1109/ITSC.2017.8317731
https://doi.org/10.1527/tjsai.16.353
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1610.03295
http://arxiv.org/abs/1610.03295
http://auai.org/uai2018/proceedings/papers/35.pdf
http://auai.org/uai2018/proceedings/papers/35.pdf
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1712.06567


[54] Richard S. Sutton, Doina Precup, and Satinder P. Singh. “Between MDPs and Semi-
MDPs: A Framework for Temporal Abstraction in Reinforcement Learning”. In: Ar-
tif. Intell. 112.1-2 (1999), pp. 181–211. doi: 10.1016/S0004-3702(99)00052-1.
url: https://doi.org/10.1016/S0004-3702(99)00052-1.

[55] Richard S. Sutton et al. “Horde: a scalable real-time architecture for learning knowl-
edge from unsupervised sensorimotor interaction”. In: 10th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan,
May 2-6, 2011, Volume 1-3. 2011, pp. 761–768. url: http://portal.acm.org/
citation.cfm?id=2031726%5C&CFID=54178199%5C&CFTOKEN=61392764.

[56] Richard S. Sutton et al. “Policy Gradient Methods for Reinforcement Learning with
Function Approximation”. In: Advances in Neural Information Processing Systems
12, [NIPS Conference, Denver, Colorado, USA, November 29 - December 4, 1999].
1999, pp. 1057–1063. url: http : / / papers . nips . cc / paper / 1713 - policy -

gradient-methods-for-reinforcement-learning-with-function-approximation.

[57] Aviv Tamar, Dotan Di Castro, and Shie Mannor. “Temporal Difference Methods
for the Variance of the Reward To Go”. In: Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013.
2013, pp. 495–503. url: http://jmlr.org/proceedings/papers/v28/tamar13.
html.

[58] J. N. Tsitsiklis and B. Van Roy. “An analysis of temporal-difference learning with
function approximation”. In: IEEE Transactions on Automatic Control 42.5 (May
1997), pp. 674–690. issn: 0018-9286. doi: 10.1109/9.580874.

[59] Frederick M. Waltz. “An engineering approach: hierarchical optimization criteria”.
In: IEEE Transactions on Automatic Control 12.2 (1967), pp. 179–180.

[60] Pin Wang and Ching-Yao Chan. “Autonomous Ramp Merge Maneuver Based on
Reinforcement Learning with Continuous Action Space”. In: CoRR abs/1803.09203
(2018). arXiv: 1803.09203. url: http://arxiv.org/abs/1803.09203.

[61] Pin Wang, Ching-Yao Chan, and Arnaud de La Fortelle. “A Reinforcement Learning
Based Approach for Automated Lane Change Maneuvers”. In: CoRR abs/1804.07871
(2018). arXiv: 1804.07871. url: http://arxiv.org/abs/1804.07871.

[62] D.J White. “Multi-objective infinite-horizon discounted Markov decision processes”.
In: Journal of Mathematical Analysis and Applications 89.2 (1982), pp. 639–647.
issn: 0022-247X. doi: https://doi.org/10.1016/0022-247X(82)90122-6. url:
http://www.sciencedirect.com/science/article/pii/0022247X82901226.

49

https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
http://portal.acm.org/citation.cfm?id=2031726%5C&CFID=54178199%5C&CFTOKEN=61392764
http://portal.acm.org/citation.cfm?id=2031726%5C&CFID=54178199%5C&CFTOKEN=61392764
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation
http://jmlr.org/proceedings/papers/v28/tamar13.html
http://jmlr.org/proceedings/papers/v28/tamar13.html
https://doi.org/10.1109/9.580874
http://arxiv.org/abs/1803.09203
http://arxiv.org/abs/1803.09203
http://arxiv.org/abs/1804.07871
http://arxiv.org/abs/1804.07871
https://doi.org/https://doi.org/10.1016/0022-247X(82)90122-6
http://www.sciencedirect.com/science/article/pii/0022247X82901226


[63] Ronald J. Williams. “Simple statistical gradient-following algorithms for connection-
ist reinforcement learning”. In: Machine Learning 8.3 (May 1992), pp. 229–256.
issn: 1573-0565. doi: 10.1007/BF00992696. url: https://doi.org/10.1007/
BF00992696.

[64] Kyle Hollins Wray, Shlomo Zilberstein, and Abdel-Illah Mouaddib. “Multi-Objective
MDPs with Conditional Lexicographic Reward Preferences”. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA. 2015, pp. 3418–3424. url: http : / / www . aaai . org / ocs /

index.php/AAAI/AAAI15/paper/view/9471.

[65] Stella X Yu, Yuanlie Lin, and Pingfan Yan. “Optimization Models for the First
Arrival Target Distribution Function in Discrete Time”. In: Journal of Mathematical
Analysis and Applications 225.1 (1998), pp. 193–223. issn: 0022-247X. doi: https:
//doi.org/10.1006/jmaa.1998.6015. url: http://www.sciencedirect.com/
science/article/pii/S0022247X98960152.

[66] Brian D. Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning”. In:
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI
2008, Chicago, Illinois, USA, July 13-17, 2008. 2008, pp. 1433–1438. url: http:
//www.aaai.org/Library/AAAI/2008/aaai08-227.php.

50

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9471
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9471
https://doi.org/https://doi.org/10.1006/jmaa.1998.6015
https://doi.org/https://doi.org/10.1006/jmaa.1998.6015
http://www.sciencedirect.com/science/article/pii/S0022247X98960152
http://www.sciencedirect.com/science/article/pii/S0022247X98960152
http://www.aaai.org/Library/AAAI/2008/aaai08-227.php
http://www.aaai.org/Library/AAAI/2008/aaai08-227.php

	List of Figures
	List of Tables
	Introduction
	Motivation
	Overview

	Background
	Markov Decision Process
	Value Iteration
	Factored MDP

	Reinforcement Learning
	Q-learning
	Generalized Value Function

	Multi-Objective Reinforcement Learning
	Thresholded Lexicographic Q-learning


	Methods
	Thresholded Lexicographic DQN
	Factored Q Function
	State Space
	Network Architecture

	Experiments
	Environment
	Objectives
	Training
	Results

	Revisiting Multi-Objective RL with Thresholded Lexicographic Order
	A Deeper Look at Thresholded Lexicographic Q-Learning
	Pseudo-Markov Thresholded Lexicographic Value Iteration

	Conclusions
	References

