
Accepted Manuscript

Three-dimensional micromechanical assessment of bio-inspired composites
with non-uniformly dispersed inclusions

Aram Bahmani, Geng Li, Thomas L. Willett, John Montesano

PII: S0263-8223(18)32953-2
DOI: https://doi.org/10.1016/j.compstruct.2019.01.056
Reference: COST 10573

To appear in: Composite Structures

Received Date: 13 August 2018
Revised Date: 31 December 2018
Accepted Date: 10 January 2019

Please cite this article as: Bahmani, A., Li, G., Willett, T.L., Montesano, J., Three-dimensional micromechanical
assessment of bio-inspired composites with non-uniformly dispersed inclusions, Composite Structures (2019), doi:
https://doi.org/10.1016/j.compstruct.2019.01.056

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.compstruct.2019.01.056
https://doi.org/10.1016/j.compstruct.2019.01.056
James Zhan
The final publication is available at Elsevier via https://doi.org/10.1016/j.compstruct.2019.01.056 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/�



  

1 
 

Three-dimensional micromechanical assessment of bio-inspired composites with non-

uniformly dispersed inclusions 

Aram Bahmani 
a
, Geng Li 

a, b
, Thomas L. Willett 

c
, John Montesano 

a *
 

a 
Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, 

Waterloo, N2L 3G1, Canada. 

b
 College of Advanced Interdisciplinary Studies, National University of Defense Technology, 137 

Yanwachizhengjie Street, Changsha, Hunan, 410073, China. 

c 
Department of Systems Design Engineering, University of Waterloo, 200 University Ave. West, Waterloo, N2L 

3G1, Canada. 

*
Corresponding Author: Email address: john.montesano@uwaterloo.ca (J. Montesano) 

Abstract 

Bio-inspired composites with hexagonal platelet and cylindrical inclusions were studied. A novel 

algorithm termed staggered hardcore algorithm (SHCA) was used to rapidly generate 3D 

periodic representative volume elements (RVE) for bio-inspired composites with staggered non-

uniformly dispersed inclusions. The spatial dispersions of inclusions in these generated RVEs 

were assessed using autocorrelation analysis, demonstrating the effectiveness of the SHCA 

algorithm. Orthotropic elastic properties of two different bio-inspired composites were computed 

and compared with analytical models, namely modified shear-lag, Mori-Tanaka and Halpin-Tsai, 

as well as available experimental data from the literature. For lower inclusion volume fractions, 

the computed results correlated well with experimental data and the analytical results. However, 

for higher inclusion volume fractions and aspect ratios the analytical results diverged, 

particularly Mori-Tanaka and modified shear-lag models which was similarly reported in 

previous studies. The capabilities of the computational model were further demonstrated through 

a comparative study of orthotropic elastic constants for the cylindrical and hexagonal inclusion 

composites. The study revealed the necessity to use 3D micromechanical models with realistic 

inclusion dispersions for accurately assessing the response of high inclusion volume fraction bio-

inspired composites. 

mailto:john.montesano@uwaterloo.ca
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1.  Introduction 

In practice, due to a range of distinct engineering applications, a variety of high-performance 

materials are required to tailor the mechanical response of structures. Many recent studies have 

reported various biological materials that have been naturally optimized over millions of years 

and as a result exhibit remarkable mechanical performance, including bone, tooth enamel, 

mollusk shell, among others [1-4]. These natural composites benefit from simultaneous low 

density, and high specific toughness, specific stiffness, and specific strength, which are 

unmatched in comparison to traditional engineering material counterparts. The key features, 

which are pervasive among the materials mentioned above, are the combination of overlapping, 

stiff inclusions embedded in a compliant, soft matrix arranged in complex staggered 

architectures. Staggered microstructure is the main archetype by which bio-inspired composite 

materials are developed. Various research groups have been motivated to develop and fabricate 

bio-inspired composites in order to investigate microstructure-property relationships [1-4]. 

A number of inclusion types, including hexagonal (i.e., flake-like) platelet and rod shaped (i.e., 

cylindrical), have been utilized to generate bio-inspired composites (see Fig.1) by employing a 

variety of fabrication methods. Examples of these techniques include doctor blading, 3D 

printing, magnetically assisted slip casting, hot-press assisted slip casting, among others [1-4]. 

Characterization of bio-inspired composites with different inclusion shapes and complex 

microstructural arrangements, and the establishment of general design guidelines, is pivotal for 

widespread adoption of these materials. To facilitate this, it is essential to develop robust high-

fidelity design tools to assess the performance of bio-inspired composites.  
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Fig.1. Different inclusion shapes used in bio-inspired composites. (a) aragonite micro-rods [5], 

(b) hexagonal alumina micro-platelets [6], (c) silicon carbide whiskers and carbon fibers [7]. 

Several analytical solutions have been proposed to investigate the characteristics and properties 

of various natural and biological composites, such as stiffness, strength, toughness, and 

interfacial properties [8-10]. However, all of these models were 2D analytical solutions, and the 

third dimension, which defines inclusion shape and dictates whether plane strain constraint is 

imposed, has not been considered. In addition, analytical models often cannot account for the 

complexities of bio-inspired composite microstructures, such as non-uniform inclusion 

distributions. 

Micromechanical finite element (FE) modeling provides an efficient means to conduct virtual 

experiments for various material systems during design, while at the same time allowing for 

greater flexibility with regards to assessing material nonlinearities and local damage progression 

of bio-inspired composites. A representative volume element (RVE) which accurately depicts a 

material’s microstructure is employed to evaluate its response under various loading conditions. 

Mirkhalaf and Barthelat [11] developed a 2D RVE to assess the longitudinal performance of 

nacre-mimetic composites. Recently, Mirkhalaf and Ashrafi [12] proposed 2D RVEs to explore 

the effects of voids on the mechanical performance of staggered microstructures. During the past 

decade, Barthelat and coworkers [13-15] have proposed 2D and 3D RVEs to characterize the 
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interfaces and junctions of the nacreous layer from mollusk shells. These studies have made 

notable contributions; however, most proposed FE models for biological or bio-inspired 

composites utilized 2D RVEs, the limitations of which include the inability to assess out-of-

plane mechanical properties or 3D damage evolution under realistic and practical multiaxial 

stress states. Although several 3D FE micromechanical models have been proposed to 

characterize various staggered and aligned discontinuous inclusion-reinforced composites, 

overall microstructure, inclusion shape, and boundary conditions are often simplified and not an 

accurate representation of the material. Also, complicated algorithms are often employed to 

generate 3D RVE geometries, mesh schemes, and apply periodic boundary conditions [16-21]. In 

addition, the influences of various inclusion shapes and aspect ratios under different stress states 

have not been broadly compared using micromechanical FE models. Hence, to accurately assess 

the local damage evolution or 3D mechanical properties of bio-inspired materials, 3D RVEs with 

staggered or aligned microstructures consisting of non-uniformly dispersed inclusions with 

various shapes are required. This is challenging, particularly if periodic geometries and boundary 

conditions are required.  

The main goal of this study was to develop a new robust FE-based micromechanical tool for 

assessing the response of high-performance bio-inspired composite materials with relatively high 

inclusion volume fractions and complex microstructures. First, a novel and efficient algorithm 

was developed to generate realistic 3D RVEs for various bio-inspired composites containing 

staggered and aligned inclusions with non-uniform dispersions and high volume fractions, which 

is challenging at best with existing algorithms or commercial software. The generated RVEs 

facilitated the application of periodic boundary conditions, while two inclusion shapes, different 

aspect ratios and volume fractions were considered in the study. To assess the non-uniformity of 
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the RVE inclusion dispersion, a 3D autocorrelation statistical analysis was employed. 

Furthermore, the generated RVEs for two bio-inspired composites, namely hexagonal platelet 

and cylindrical inclusion-based, were used to calculate all homogenized orthotropic elastic 

constants over a range of inclusion volume fractions and aspect ratios, which is useful for 

calibration of continuum-based constitutive equations. The models were validated using 

experimental data reported in the literature and compared with established analytical models. 

The advantages of the proposed model for predicting homogenized properties when compared to 

existing analytical and computational models was also revealed, in particular for cases with high 

inclusion volume fractions and aspect ratios. The study demonstrates that the proposed 

computational tool may be a suitable plug-in with commercial FE software for accurately 

assessing the mechanical properties of bio-inspired composites, and in the future may be used for 

predicting and better understanding their complex progressive failure characteristics. 

2. Analytical models for discontinuous inclusion-based composites 

Established analytical models, including Mori-Tanaka, modified shear lag and Halpin-Tsai, were 

utilized to calculate the elastic properties for the studied composites and provide a comparison 

with the generated 3D RVEs. These models are reviewed herein, while relevant predictions are 

presented in Section 4. 

2.1. Mori–Tanaka model 

The Mori–Tanaka model can predict the elastic stiffness tensor of a composite material with 

assumed elliptical inclusions using [12]: 

   
1

c m i i m i i i i1C C C C A I A  


                                                         (1)                                            
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where Cc, Cm, and Ci are elastic stiffness tensors of the composite, matrix, and inclusion 

respectively. φi is the inclusion volume fraction, I is fourth order unit tensor, and Ai is the dilute 

mechanical strain concentration tensor which can be expressed as follows: 

   
1

1

i m i mA I S C C C


   
 

                                                                      (2)                                            

The elements of Eshelby’s tensor S are functions of the inclusion aspect ratio (ρ) and the matrix 

Poisson’s ratio (νm), which are presented in Table 1 and by Eqs. (3)-(7). 

 

Table.1 Eshelby’s tensor elements for elliptical inclusions. 

Tensor element Expression 

s11 4Q/3 + R I3 + 2ρ
2
T 

s22= s33 Q + R I1 + 3T/4 

s23= s32 Q/3 – R I1 + 4T/3 

s21= s31        – RI1 – ρ
2
T 

s12= s13 – R I3 – T 

s44 Q/3 – R I1 + T/4 

s55= s66 2R – R I1/2 + (1+ ρ
2
) T/4 

All other sij 0 
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2.2. Modified shear lag 

Another well-known analytical model for discontinuous composites is the shear lag model, of 

which many versions have been developed [8-10, 22]. A modified shear lag model is employed 

herein to predict longitudinal modulus (E1) of aligned discontinuous composites using the 

following: 
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   
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                           (8) 

where Ei and Em represent Young’s modulus of inclusion and matrix respectively, 
i and 

m

denote inclusion and matrix volume fraction respectively, and l is the length of cylindrical 

inclusions or diameter of hexagonal inclusions (see Fig.5). Moreover, h is the diameter of 

cylindrical inclusions or the thickness of hexagonal inclusions. 

2.3. Halpin-Tsai model 

Another well-known model used to predict the longitudinal Young’s modulus of discontinuous 

composites is the Halpin-Tsai model, which is defined as follows [22]: 
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                                                                 (9) 

This model also is used to predict and compare the Young’s modulus of discontinuous 

composites with other analytical models and finite element micromechanical models. 

3. RVE generation and micromechanical finite element modeling 

3.1. 3D staggered hard-core algorithm (SHCA)  

One of the main challenges in modeling multi-inclusion 3D RVEs is to efficaciously generate 

non-uniformly dispersed inclusion geometries. In this regard, several algorithms have been 

developed including the hard-core random dispersion algorithm (HCRDA) and its variants [23]. 

Due to jamming limitations, these algorithms are not efficient in generating periodic 3D RVEs 

with non-uniformly dispersed staggered inclusions at high volume fractions. Other established 

algorithms including the nearest neighbor algorithm (NNA), the modified NNA (MNNA), and 

the elastic collision algorithm (ECA) have similar shortcomings [23-31]. These, along with other 

algorithms, [20, 32-37] have additional shortcomings including an inability to converge at high 

inclusion volume fractions, being limited to the generation of 2D RVEs with simplified inclusion 

shapes, being inappropriate for composites with discontinuous inclusions, being too complex to 

implement or not easily linkable to commercial FE software, or requiring significant time to 

converge. 

In order to overcome these limitations, a new random algorithm, called the 3D Staggered Hard-

Core algorithm (SHCA), was developed in this study. It is written based on the well-known 
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Hard-Core model. In the primary hard-core model, random particle dispersions are generated 

through a spherical core, and the RVEs have non-periodic and non-staggered morphology. 

However, our 3D SHCA can generate periodic RVEs with hexagonal or cylindrical particles 

having various aspect ratios in a non-uniformly staggered scheme. This rapid algorithm is simple 

to use and flexible for generating the coordinates and the geometry of different inclusion shapes 

and volume fractions. Hence, this three-dimensional algorithm is notably novel and useful, 

particularly in the field of biomimetic and bio-inspired composite materials. 

The 3D SHCA depicted as a flowchart in Fig. 2 was implemented into a MATLAB code for 

generating RVEs with inclusion volume fractions up to 40%. This volume fraction is remarkably 

high for 3D discontinuous staggered and aligned inclusion-reinforced bio-inspired composites.  

 

Fig.2. Flowchart of the 3D staggered hard-core algorithm (SHCA).  

The SHCA includes a main procedure and an overlap check function. The main procedure begins 

with parameter initialization which consists of the RVE dimensions, inclusion shapes and aspect 

ratios, as well as, the desired inclusion volume fraction (
i ). Subsequently, the new coordinate, 

j

cN , for an inclusion is generated by a random function in the MATLAB code. Periodic 
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staggered adjustment is executed if the inclusion is adjacent to corners, exterior edges or surfaces 

of the RVE, then new coordinates will be generated to maintain geometric periodicity. Moreover, 

inclusion intersections for each generated coordinate are examined using the overlap check 

function. The depiction of overlap check functions for hexagonal and cylindrical inclusions are 

shown in Fig. 3 and Fig. 4 respectively. For the overlap check function for hexagonal inclusions, 

each hexagon edge and vertex must be checked to distinguish inclusion intersections. Fig. 3 (a) 

exhibits closest aggregate hexagons. Hexagon Rf in the middle is the reference one and the others 

are the nearest hexagons to Rf. In order to avoid inclusion intersections, the center of newly 

generated hexagon must be retained outside of the orange dash-dot line. Further depictions are 

indicated in the fourth quarter of the XY-plane in Fig. 3 (b) where Or is the XY-coordinate origin 

and center of Rf, also, O1, O2, and O3 are the center of three typical hexagons nearest to Rf. 

Thereupon, the function of the orange dash-line can be expressed as: 

  
3 ,( 60 )

2 3 3 ,( 60 )

r

r r

y y r

y y r x x





     


      

 ,                                                                 

(10) 

where (xr,yr) and (x’, y’) are the center coordinates of Rf and the newly generated hexagon 

respectively. r is the radius of the hexagon circumscribed circle, and θ is defined as:

      arctan ' / 'r ry y x x                                                                                           

(11) 

The other three quadrants follow the same procedure to guarantee generation of newly non-

intersected hexagons. With regards to inclusion intersections in the Z-direction, illustrated in Fig. 
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3 (c), the YZ-coordinates are checked if the Z-coordinate of the newly-generated hexagon is 

within range of Rf thickness. 

 

Fig.3. 3D and 2D views of overlap check function for hexagonal inclusions. 

With regards to the overlap check function for cylindrical inclusions, analogous principals are 

applied. However, as is shown in Fig. 4 (a-b), in the XY-plane, the distance between cylinder Rf 

and newly generated cylinder must be greater than the Rf  diameter while in Z-direction distance 

between two cylinders must be less than the cylinder length (see Fig. 4 (c)). 

 

Fig.4. 3D and 2D views of overlap check function for cylindrical inclusions. 

Finally, once the desired inclusion volume fraction is attained, the inclusion coordinates were 

imported into the commercial finite element software ABAQUS to produce 3D periodic 
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staggered and aligned RVEs using customized PYTHON scripts. Fig. 5 (a) and (b) depict the 

dimensions of both considered inclusions, along with the definition of aspect ratio, /L h  . 

 

Fig.5. Inclusion dimensions used in aspect ratio ( ) calculation for 3D RVE models. (a) 

hexagonal platelet inclusion, (b) cylindrical inclusion. 

Three different aspect ratios (  = 5, 15, 25) for four inclusion volume fractions (
i = 10, 20, 30, 

40) were explored for both hexagonal platelet and cylindrical inclusion RVE models. Due to the 

distinct shape of the inclusions considered, the corresponding 3D RVE sizes were different. The 

length, width, and height of the hexagonal platelet 3D RVE are 15, 15, and 5 μm. The length, 

width, and height of cylindrical inclusion 3D RVE are 5, 5, and 15 μm. Note that these chosen 

dimensions for 3D RVEs were based on a sensitivity analysis and are compared with 

experimental data in Section 4. Fig. 6 illustrates 3D RVEs generated with non-uniformly 

dispersed staggered hexagonal and aligned cylindrical inclusions for a 30% volume fraction, 

containing periodic geometries. Light blue particles are inclusions intersecting the outer surfaces 

providing periodic surface pairs, and yellow particles are inclusions within the RVE. 


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Fig.6. Generated periodic 3D RVEs with nonuniformly dispersed (a-c) staggered hexagonal  and 

(e-g) aligned cylindrical inclusions with 30% volume fraction.  

3.2. 3D assessment of inclusion spatial distribution in generated RVEs 

The spatial distribution nonuniformity of the staggered and aligned inclusions within the 

generated RVEs was assessed using 3D spatial analysis functions, namely 3D autocorrelation 

analysis. In other studies, several 2D approaches have been used for this purpose including 

nearest neighbor analysis and Voronoi tessellation analysis [38-41]. 3D autocorrelation analysis 

describes the relative position of each inclusion in a region relative to not only the nearest 

inclusions but also, every other inclusion. Fig. 7 and Fig. 8 illustrate the 3D autocorrelation 

analyses for RVEs generated with non-uniformly staggered hexagonal and aligned cylindrical 

inclusions, respectively, both with inclusion volume fractions of 30%. The 3D autocorrelation 

diagram is depicted by taking one inclusion as the reference and plotting the relative positions of 

all other inclusions within a spherical space. This space is composed of several layers, and within 

each layer, the density of inclusions is utilized to define a density recovery profile (DRP) (see 

[40, 41] for more details). Fig. 7a and 8a show the 3D autocorrelation analysis DRPs for 3D 

RVEs with randomly dispersed inclusions. The remaining plots in Fig. 7b and 8b exhibit distance 

distributions and two direction distributions of the random inclusions relative to the reference 
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inclusion (i.e., azimuthal angle, theta, and elevation angle, phi), which make up the spherical 

coordinate autocorrelation tri-histogram plots. The constant DRP values at an average magnitude 

within the spherical space demonstrate that the generated 3D RVEs have consistent 

nonuniformly distributed inclusions. For the direction distribution analysis, the generated 3D 

RVEs have consistent inclusion densities in all radial directions for both the theta and phi angles, 

which is represented by circles with smooth edges. This further suggests that the inclusions 

within the generated 3D RVEs have consistent nonuniform random distributions, and thus 

accurately depict the microstructure of the studied materials.  

 

Fig.7. (a) 3D Autocorrelation analysis and density recovery profile (DRP) for 3D RVEs with 

hexagonal inclusions for 30% volume fraction. (b) autocorrelation tri-histogram plots. 
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Fig.8. (a) 3D Autocorrelation analysis and density recovery profile (DRP) for 3D RVEs with 

cylindrical inclusions for 30% volume fraction. (b) autocorrelation tri-histogram plots. 

The main benefits of the developed SCHA when compared to previously reported algorithms 

include (i) applicability for multiple distinct bio-inspired materials, (ii) rapid generation of 3D 

periodic staggered and aligned RVEs within minutes, and (iii) ability to generate 3D RVEs for 

high inclusion volume fractions (i.e., 40%). In practice, the developed algorithm can be 

employed to accurately evaluate homogenized material properties to be used in the macroscopic 

analysis of different bio-inspired composite structures. 

3.3. Finite element modeling 

The generated 3D RVEs, beginning with the creation of the RVE volumes, were subsequently 

implemented into ABAQUS using custom PYTHON algorithms for further preprocessing prior 

to analysis. In order to apply periodic boundary conditions (PBC) for the generated RVEs, a 

dummy element and copy mesh technique we previously developed in ABAQUS was employed 

in this study [37]. The technique is summarized in Fig.9. In the copy mesh method, only 
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tetrahedral elements with a diminutive seed size can be used. Hence, C3D4 elements with sizes 

less than 1/10
th

 of the cylindrical inclusion diameter and hexagonal platelet thickness were 

employed.  

 

Fig.9. Flowchart of copy mesh module and dummy element technique for generating analogous 

mesh scheme on the opposing faces of periodic 3D RVEs. 

PBCs were applied to the RVEs using translational symmetry derived by Li and co-workers [42, 

43]. Based on Fig.10, the derivation of these boundary conditions can be defined as follows: 

' 'Q T Q Tu u u u     

' 'Q T Q Tv v v v                                                                                                                 (12) 

' 'Q T Q Tw w w w    

where u, v, and w are displacements in the x, y and z directions respectively. These equations 

can be rearranged as follows: 

' 'Q Q T Tu u u u     
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' 'Q Q T Tv v v v                                                                                                                 (13) 

' 'Q Q T Tw w w w    

 

Fig.10. Periodic RVE where points 'Q and 'T  are the image points of Q and T in the adjacent 

RVE. 

The relationship between six independent macroscopic strains (i.e., εx, εy, εz, εyz, εxz, εxy) can be 

expressed as follows:  

' ( ' ) ( ' ) ( ' )x xy xzu u x x y y z z           

' ( ' ) ( ' )xy yzv v y y z z                                                                                            (14) 

' ( ' ) zw w z z     

where 'x , 'y , and 'z are the coordinates of 'Q  or 'T point. These equations can be written in 

the form of translational symmetry transformations A, B, and C, where i, j and k represent the 

number of RVE periods in x, y and z directions respectively. 

( ' ) ( , , ) 2x x A i j k ai     

( ' ) ( , , ) 2y y B i j k bj                                                                                                 (15) 



  

18 
 

( ' ) ( , , ) 2z z C i j k ck    

where 2a, 2b and 2c are the width, height and depth of the RVE respectively. By employing 

these equations and substituting values for i, j and k, periodic boundary conditions on the eight 

corners, twelve edges and six faces (see Fig.11) of the RVE can be applied. These relations are 

given in Table 2. 

 

Fig.11. The labels of 3D RVE faces, edges, and corners for applying PBCs. 

Table 2. PBCs equations for the faces, edges, and corners of 3D RVE. 

Faces Edges (E1-E4) Edges (E5-E8) Edges (E9-E12) 

1, 0,  0i j k  

2 1

2 1

2 1

2

0

0

F F x

F F

F F

u u a

v v

w w

 

 

 

  

0, 1,  0i j k    

2 1

2 1

2 1

2

2

0

E E xy

E E y

E E

u u b

v v b

w w





 

 

 

 

0, 1,  0i j k  

6 5

6 5

6 5

2

2

0

E E xy

E E y

E E

u u b

v v b

w w





 

 

 

 

1, 0,  0i j k    

10 9

10 9

10 9

2

0

0

E E x

E E

E E

u u a

v v

w w

 

 

 
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0, 1,  0i j k  

4 3

4 3

4 3

2

2

0

F F xy

F F y

F F
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Isotropic linear elastic properties were designated for both inclusions and matrix. Their interface 

was modeled as perfectly bonded; given that this is a study of the elastic behavior, this approach 

is suitable. The Young’s modulus and Poisson’s ratio of the inclusions and matrix were assigned 
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as Ei =330 GPa, 0.2i  , Em =1.88 GPa, and 0.4m   for all generated RVEs, which are 

typical values for stiff alumina inclusions and chitosan polymer, respectively, and allowed for a 

comparison with results reported in Ref. [11]. For additional comparisons between the predicted 

results and reported experimental data for the cylindrical inclusion RVE model, constituent 

properties were taken from Ref. [44]. 

For the purpose of computing the bulk mechanical properties of the bio-inspired composite 

materials using the generated 3D RVEs, a homogenization process shown in Fig. 12 was 

employed [37, 45, 46]. Fig. 12(a) illustrates a heterogeneous periodic microstructure with 

volume, , under external forces per area, F , on the boundaries, 
tA , as well as exterior 

displacements per area, u , on boundaries, 
uA . Equilibrium relations, strain-displacement law, 

constitutive equations, and boundary conditions for a heterogeneous microstructure can be 

expressed using Eq. (16) to Eq. (20) respectively.  

, 0ij j if    in  ,                                                                                                                 (16) 

, ,

1
( )

2
ij i j j iu u    in   ,                                                                                                      (17) 

ij ijkl klC   in  ,                                                                                                                   (18) 

ij j in F    on  At ,                                                                                                                                                                            (19) 

i iu u  on Au ,                                                                                                                           (20) 

where 
,ij j  are the derivatives of stress components with respect to j,  

if  are the prescribed 

body forces per unit volume, ij represents strain components in equilibrium equations, 
ijklC is 
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the linear elastic material stiffness matrix, 
jn denotes outward normal vectors on the volume 

boundaries. For inhomogeneous materials such as nacre-like composites, the stiffness matrix 

may vary in different regions of the microstructure, and hence the solution of Eqs. (16-20) 

becomes intricate. Therefore, addressing homogenized responses or averaged mechanical 

properties is essential for continuum-based calculations. As indicated in Fig. 11 (b), by means of 

a simple RVE or unit cell with volume, 
e , a heterogeneous periodic microstructure can be 

generated for homogenization. The terms 
m  and 

i denote the matrix and inclusions volume 

fraction of the RVE respectively. Thus, 
e m i   is the total volume of the RVE, and 

e tm umA A A  represents the summation of exterior boundaries, where 
tmA and 

umA  are 

regions under tractions and displacements respectively. 

 

Fig.12. (a) Heterogeneous periodic microstructure of a representative biomimetic composite (b) a representative 

volume element (RVE) of composite microstructure with inclusion and matrix phases.  

Jansson [45] derived the relation between volume average stress and volume average strain for 

the inhomogeneous materials which were defined as: 

0 (0)1
( , )ij ij e ij

e

x y d


   


                                                                                       (21) 
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0 01
( , ) ( )H

ij ij e ijkl kl

e

x y d C    
 

  ,                                                                (22) 

 

where 
ij  and 

ij are sequentially volume averaged strain and stress for the RVE. 
0

ij and 

0

ij denote local strain and stress in the RVE respectively. The equivalent homogenized stiffness 

matrix is introduced by 
H

ijklC . For a homogenized elastic microstructure, the relation between 

stress and strain can be expressed via Eq.(23). Additionally, for 3D RVEs, 
H

ijklC constants are 

calculated via applying six independent unit macrostrains and PBCs for six independent models. 

00
(0) 1

( )
2

ji
ij

j i

uu

x x



 

 
 expresses imposed unit macroscopic strains for any mentioned six 

independent loading cases. Thus, by means of the computed volume averaged stresses and 

strains in each case, one column of effective stiffness matrix can be calculated using the 

following: 
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                                                               (23) 

The inverted form of 
H

ijklC matrix is compliance matrix 
H

ijklS . The elastic constants are calculated 

using the following 
H

ijklS coefficients: 
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                                                               (24) 

In this study, the volume averaged stresses and strains, i.e., Eqs. (21-22), were computed 

numerically for all RVEs, and the elastic constants were calculated using Eqs. (23-24). The 

results are presented in Section 4. 

4. Results and discussion 

The numerical results computed using the developed 3D RVE FE models and constituent 

properties outlined in Section 3 are presented subsequently. First, normalized volume averaged 

elastic moduli, 
mE E  calculated using homogenization theory are compared with predictions 

using the analytical models presented in section 2, as well as experimental data from the 

literature for two different material systems. Then, the capabilities of assessing in- and out-of-

plane orthotropic elastic properties for the developed 3D RVEs are also presented. 

4.1. Comparison with experimental data, analytical models, and 2D RVEs 

In order to highlight the deformation of the generated 3D RVEs and accurate use of periodic 

boundary conditions for both normal and shear loading conditions, typical normal and shear  

stress contours for RVEs with 30%i   and 15   are shown in Fig. 13 (a-b) and Fig. 14 (a-

b). The applied strain for all normal and pure shear loading cases was 0.5%. The stress contours 

reveal the variability of stress at the inclusion/matrix interfaces within the 3D RVE resulting 
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from the staggered non-uniform inclusion dispersion. Furthermore, the characteristic shear lag 

behavior for both models under an applied normal strain can be observed via the shear stress 

contours in the matrix (see Fig. 13 (a) and 14 (a)). In this case, the shear lag response is not as 

pronounced as one would observe for lower volume fractions due to the influence of surrounding 

inclusions and their constraining effect on the matrix, which highlights the importance of 

considering the inclusion geometry and non-uniform inclusion dispersion in a prediction model. 

Similarly, as expected the peak normal stress in the fibers of the cylindrical RVE model under an 

applied normal strain occurs at the fiber center and reduces towards the fiber ends. The 

variability in stress magnitudes between adjacent fibers is also a result of the constraining effect 

between the fibers and their nonuniform dispersion. 



  

25 
 

 

Fig.13. Stress contours for hexagonal inclusion RVE model with (a) uniaxial applied load along 

3-direction, (b) pure shear applied in 23-plane. 
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Fig.14. Stress contours for cylindrical inclusion RVE model with (a) uniaxial applied load along 

1-direction, (b) pure shear applied in 23-plane. 

Table 2 indicates a comparison among computed normalized moduli 
2 mE E  values for five 

hexagonal platelet models with randomly generated non-uniform particle dispersion 

morphologies, along with results from the analytical models presented in section 2, as well as, 

experimental data of a nacre-mimetic material generated using alumina micro-platelets and 
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chitosan by Mirkhalaf and Barthelat [11]. All have 10% inclusion volume fraction. Similarly, 

Table 3 presents another comparison among calculated normalized modulus, 
1 mE E , values for 

five cylindrical inclusion models with randomly generated non-uniform particle distribution 

morphologies, along with results from the presented analytical models in section 2, and 

experimental data for a short carbon fiber/polypropylene composite having 10% fiber volume 

fraction studied by Fu et al. [44]. It should be noted that the constituent material properties and 

inclusion aspect ratios used here for the cylindrical inclusion RVE models were taken from Ref. 

[44]. As it is evident from Tables 2 and 3, the average deviation of 3D RVE results with 

experimental data is approximately 5% for both models and each morphology, demonstrating an 

excellent agreement. The minor deviations may be due to assuming perfectly aligned inclusions 

in the 3D RVE models, while the real material could have several inclusion misalignments. Note 

that a number of 3D RVEs with different dimensions were considered to determine a suitable 

size. Based on the very good agreement with experimental data in Table 2 and 3, the selected 

volume for the hexagonal and cylindrical inclusion models were 1125 and 375 μm
3
, and used for 

all subsequent predictions.  

The higher deviation of analytical models from both experimental and 3D RVE results can be 

seen for both material systems. However, among these analytical models, the modified shear lag 

model has a good agreement for hexagonal platelet inclusion (Table 2) with both experimental 

and 3D RVE results. Other studies also used different versions of the shear lag model to predict 

the mechanical responses of platelet inclusion bio-inspired composites [8-10]. Regarding 

cylindrical inclusions, Mori-Tanaka model has a good agreement with both experimental and 3D 

RVE results compared to other analytical models (Table 3). More details of reasons for these 

deviations will be discussed in the following paragraph. 
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Table.2 Comparison between normalized moduli (
2 mE E ) from 3D RVEs (5 trials), analytical 

models, and experimental data of a nacre-mimetic material (i.e., alumina/chitosan) with a volume 

fraction (
i ) of 10%. Error is calculated against the experimental data. 

 

3D 

RVE 

Trial 

1 

3D 

RVE 

Trial 

2 

3D 

RVE 

Trial 

3 

3D 

RVE 

Trial 

4 

3D 

RVE 

Trial 

5 

3D 

RVE 

Avg. 

Mori-

Tanaka 

Mod. 

shear-

lag 

H-T 
Exp 

[11] 

2 mE E  3.72 3.75 3.70 3.69 3.73 3.72 3.30 3.76 3.88 3.56 

Error 

(%) 
4.61 5.48 3.96 3.65 4.95 4.53 7.37 5.78 8.98 - 

 

Table.3 Comparison between normalized moduli (
1 mE E ) from 3D RVEs (5 trials), analytical 

models and experimental data from a short carbon fiber/polypropylene composite having a 

volume fraction (
i ) of 10%. 

 

3D 

RVE 

Trial 

1 

3D 

RVE 

Trial 

2 

3D 

RVE 

Trial 

3 

3D 

RVE 

Trial 

4 

3D 

RVE 

Trial 

5 

3D 

RVE 

Avg. 

Mori-

Tanaka 

Mod. 

shear

-lag 

H-T 
Exp 

[44] 

1 mE E  9.11 8.92 9.00 9.01 9.15 9.04 9.33 9.41 6.82 8.58 

Error 

(%) 
6.08 3.92 4.85 4.95 6.63 5.28 8.66 9.60 20.54 - 

 

Figures 15 (a-b) compare the predictions for E2 from hexagonal inclusion 3D RVE model and E1 

for cylindrical inclusion 3D RVE model with the aforementioned analytical models. For the 

Mori-Tanaka model, the inclusion shape was approximated as ellipsoidal with a perfectly aligned 

distribution assumption. As seen in these figures, for lower aspect ratios, the analytical model 

predictions are close to those of the 3D RVEs for both inclusion shapes. However, with 

increasing volume fraction and aspect ratio, the discrepancy between 3D RVE and analytical 

models tends to increase. According to previous studies [39], inaccurate predictions for higher 

aspect ratios and volume fractions for shear lag and Halpin-Tsai models are expected since they 
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do not accurately account for the inclusion shape, their dispersions and three-dimensional effects, 

including inclusion overlap, which are characteristic of realistic microstructures. Modified shear 

lag models [8-10], which are often used for bio-inspired composites, have similar limitations and 

thus cannot be used to predict all elastic constants. The reason for notable discrepancies between 

the Mori-Tanaka model and the 3D RVEs, particularly for higher volume fractions, stems from 

assuming ellipsoidal shape inclusions instead of cylindrical and hexagonal shapes as well as 

assuming non-realistic inclusion dispersions. Previous studies have reported inaccuracies with 

the Mori-Tanaka model for higher aspect ratios [22, 47, 48]. By accurately representing inclusion 

shape/size and their realistic non-uniform dispersion in three dimensions, such as with the 3D 

RVE models reported herein, the local stress field variability and cylindrical inclusion 

interactions can be considered, which allows for prediction of all orthotropic elastic constants. 

 

(a) 
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(b) 

Fig.15. Comparisons of Young’s modulus versus volume fraction for different aspect ratios 

among established analytical models (i.e., Mori-Tanaka, modified shear lag, and Halpin-Tsai) 

and 3D RVE results (a) E2 for hexagonal platelet and (b) E1 for cylindrical inclusions model. 

Figures 16 (a-b) demonstrate further comparisons between the results predicted with the 3D RVE 

model and that of the Mori-Tanaka method, particularly the in-plane shear modulus G12 and 

Poisson’s ratio ν12. As seen in these figures, although the results for very low inclusion volume 

fractions are comparable, there are large discrepancies between the Mori-Tanaka model and the 

3D RVE model predictions with increasing inclusion volume fractions. According to previous 

studies [22], inaccurate predictions for shear modulus for the Mori-Tanaka model are expected. 
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(a) 

 

(b) 

Fig.16. Comparisons of in-plane (a) shear modulus and (b) Poisson’s ratio versus volume 

fraction for cylindrical inclusion 3D RVEs and the Mori-Tanaka analytical model for different 

aspect ratios. 

The importance of accurately considering the shape, size and three-dimensional non-uniform 

dispersion of inclusions in bio-inspired composites is highlighted through the results presented in 

this paper. Here, the need to consider a 3D analysis versus a 2D ‘plane strain’ analysis, which is 

often assumed in many analytical and computational models of bio-inspired composites, will be 

discussed. Figure 17 shows the predicted variation of normalized Young’s modulus with 

inclusion volume fraction along the fiber direction (E1) for a composite with aligned cylindrical 

inclusions and along the in-plane direction (E2) for a composite with hexagonal platelet 

inclusions. The results from a 2D RVE model reported by Mirkhalaf and Barthelat [11], where 

the hexagonal inclusion shape is simplified as a rectangle, is also included in Fig. 12. Note that 

the constituent properties (i.e., Ei =330 GPa, 0.2i  , Em =1.88 GPa, and 0.4m  ) and 

inclusion aspect ratio (i.e., ρ = 15) for all three of the models are the same. Although the 
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predicted results for the hexagonal platelet 3D RVE model are comparable with the 2D RVE 

model predictions, there is a notable discrepancy with the results from the cylindrical inclusion 

3D RVE. The reason for this discrepancy stems from the inclusion cross-sectional shape and the 

corresponding inclusion dispersion. Based on the tri-histogram plots in Fig. 7 and 8, the 

variations of theta and phi for   cylindrical inclusions are lower than hexagonal platelet. This 

implies that cylindrical inclusions can achieve better packing than hexagonal (rectangular cross-

section) inclusions [20]. This increases the efficiency of the load transfer from the matrix to the 

inclusions, thus leading to a stiffer RVE relative to the hexagonal platelet RVE at the same 

volume fraction [22]. Therefore, a 2D RVE model under predicts the stiffness of cylindrical 

inclusion bio-inspired composites in the fiber direction. Furthermore, 2D RVEs cannot provide 

all the orthotropic elastic constants, whereas 3D RVEs can.  

 

Fig.17. Comparison of normalized Young’s modulus (E / Em, where Em is the Young’s modulus 

of the matrix) versus volume fraction between 2D RVE and both 3D RVE models (i.e., hexagon 

platelet in-plane (E2 or E3) and cylindrical inclusion in the longitudinal direction (E1)). 
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4.2. Prediction of orthotropic elastic constants 

To demonstrate the capabilities of the developed 3D RVE models for predicting all in- and out-

of-plane elastic constants, a series of simulations were performed using the constituent properties 

outlined in Section 3. Figures 18 (a-e) illustrate the predicted elastic constants versus volume 

fraction (
i ) with various aspect ratios (ρ = 5, 15, 25) for the hexagonal platelet 3D RVE model. 

Note that all directions and planes for this model were defined based on the coordinate system 

indicated in Fig. 9. Fig. 18 (a) demonstrates the non-linear relationship between E2 and 
i  and 

between E3 and 
i . By increasing 

i from 10% to 40%, the discrepancy between each aspect 

ratio (  ) tends to be increased. For the hexagonal platelet model, a direct relationship exists 

between L and E2 or E3 based on isostrain equations; thus, by enlarging L for a constant volume 

fraction, E2 and E3 should increase. Transverse isotropic properties can be implied by the 

approximately identical values of E2 and E3 for a given volume fraction, which is expected since 

the platelet inclusions are staggered and non-uniformly dispersed. Fig. 18 (b) shows the expected 

linear relationship of E1 with volume fraction for all aspect ratios ( ). According to 

micromechanical analytical models, such as the Rule of Mixtures, in a variety of composites, E1 

has a direct and linear relation with volume fraction [22]. In addition, in the platelet model, by 

increasing volume fraction or aspect ratio, cross-sectional overlaps among platelets are created; 

therefore, E1 increased linearly. The approximately linear relationship between G12 and volume 

fraction (
i ) and between G13 and volume fraction (

i ) are shown in Fig. 18 (c). By increasing 

 , the nonlinear trend of these out-of-plane shear moduli, tend to increase through 
i . The 

nonlinear trend of in-plane shear modulus G23 versus 
i is represented in Fig. 18 (d). The 

discrepancy between each   tends to increase with 
i   due to the complex shape of the 
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hexagonal inclusions. Also, by increasing L and the area of hexagons, the effect of increased 

cross-sectional overlaps among platelets in shear modulus can be seen in this figure. 

Furthermore, the nonlinear relationship of ν12, ν13, and ν23 which are in- and out-of-plane 

Poisson’s ratios versus 
i are presented via Fig. 18 (e). The similarity between ν12 and ν13 for 

different volume fractions and aspect ratios further confirms that the predicted properties are 

consistent with a transversely isotropic material. It is evident in this figure that the nonlinearity 

of in-plane Poisson’s ratio (ν23) versus 
i is slightly greater than out-of-plane Poisson’s ratios, 

which may be attributed to the hexagonal shape of the particles. It can be noted that the size of 

micro-platelets (i.e., aspect ratio (  )) in these types of microstructures can play a pivotal role in 

mechanical performances for various bio-inspired material systems and applications [8-10].  

 (a) (b) 
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 (c) (d) 

(e) 

 

Fig.18. Predicted orthotropic elastic constants for hexagonal platelet model versus volume 

fraction ( i ) for various aspect ratios. (a) E2, E3, (b) E1, (c) G12, G13, (d) G23, and (g) ν12, ν13, 

and ν23. 

Similar results for the cylindrical inclusion 3D RVE model are presented in Fig. 19 (a-e). 

Directions and planes for this model were defined with the coordinate system in Fig. 10. The 

similar non-linear relationship between E2 and E3 versus
i  is shown by Fig. 19 (a). Unlike the 

hexagonal platelet model, by increasing 
i from 10% to 40%, the discrepancies between aspect 

ratios ( ) are relatively minor. The reason for these differences are likely due to the shape of the 

inclusion. By increasing the length of the cylinders (L), the inclusion enlarges only in the 
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longitudinal direction. Therefore, the transverse moduli, E2 and E3, are not greatly affected. 

However, by increasing L in the hexagon platelet model, the particle is enlarged in both 

transverse directions. This affects E2 and E3. Similar to the hexagonal platelet model, this model 

also demonstrates transverse isotropy, as one would expect due to the aligned cylindrical 

inclusions. The linear behavior of E1 is displayed via Fig. 19 (b), which is consistent with other 

aligned discontinuous cylindrical inclusion composites [22, 49]. For the cylindrical inclusion 

model, the relationship of G12, G13, and G23 with volume fraction shown in Fig. 19 (c) 

demonstrates greater nonlinearity when compared to the hexagonal platelet model. The reason 

for this greater nonlinearity may be that for higher volume fractions, the degree of non-

uniformity of the cylindrical inclusion tends to be greater when compared with the platelets. 

Therefore, the discontinuity of cross-sectional overlaps among cylindrical inclusion tends to be 

decreased leading to the higher magnitudes for G12, G13, and G23. However, discrepancies among 

different aspect ratios (  ) are negligible for shear modulus due to the shape of cylinder. Due to a 

direct relation between Poisson's ratio and the volume fraction of stiff inclusions, Fig. 19 (d) 

shows a linear behavior of ν12 and ν13 which gradually decrease with increasing volume fraction (

i ). Also, because of the transverse isotropic nature of this model, the trend of ν12 and ν13 is 

approximately identical. The decreasing nonlinear behavior of ν23 versus 
i  is represented in 

Fig. 19 (e). ν23 is greater in magnitude compared to the in-plane Poisson’s ratios, and this is 

consistent with other aligned fiber-reinforced composites [22, 49]. The results presented in Figs. 

18 and 19 demonstrate that unlike the hexagonal platelet model, in the cylindrical inclusion 

model, elastic coefficients were not sensitive to aspect ratios ( ), except for E1 and ν23. 

Understanding this issue can be effective in passing several obstacles in generating and applying 

bio-inspired composites. 
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(a) (b) 

 (c) 
(d) 

(e) 

 

Fig.19. Predicted orthotropic elastic constants for cylindrical inclusion model versus volume 

fraction ( i ) for various aspect ratios (a) E2, E3, (b) E1, (c) G12, G13, G23, (d) 
12 ,

13 , and (e) 
23 . 
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4.3. General discussion 

The presented results for two different bio-inspired composites have demonstrated that 3D RVEs 

with realistic non-uniform staggered inclusion dispersions that account for appropriate inclusion 

size and geometry, are critical for assessing their mechanical behavior. In fact, the local 

constraining effects for higher volume fractions can only be captured with such a model. Thus, 

the effect of the third dimension and the ability to simulate the actual response of inclusion-

reinforced bio-inspired composites in all directions is a significant advancement. Employing the 

SHCA for generating non-uniformly staggered and aligned 3D RVEs of two different bio-

inspired composites can be an effective method due to its straightforward and rapid nature. 

Consequently, not only can orthotropic elastic constants be evaluated, but also, in future work, 

the generated 3D RVEs may be used to predict the onset and evolution of local damage and 

cracking in different inclusion-reinforced bio-inspired composites as well as local nonlinear or 

time-dependent behavior. Furthermore, these micromechanical models can be an applicable and 

efficacious tool in designing a variety of new composite material systems and optimizing their 

microstructures. 

5. Conclusions 

A new robust micromechanical computational tool for assessing the response of bio-inspired 

composite materials with high inclusion volume fractions and complex microstructures was 

proposed. A novel and effective algorithm named staggered hard-core algorithm (SHCA) was 

developed for rapidly generating realistic three-dimensional periodic staggered and aligned non-

uniformly dispersed multi-inclusion representative volume elements (RVEs) for bio-inspired 

composites reinforced by different types and sizes of inclusions (i.e., hexagonal and cylindrical), 

which is challenging at best with existing algorithms or commercial software. The spatial non-
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uniformity of the RVE inclusions, and thus the accuracy of microstructural representation, was 

assessed using 3D autocorrelation analysis.  The resulting 3D RVE geometries were 

implemented in the commercial finite element software ABAQUS for micromechanical 

assessment using customized PYTHON scripts. Volume-averaged orthotropic elastic properties 

were subsequently computed and compared with available experimental data and well-known 

analytical models, revealing good correlation for low inclusion volume fractions. However, the 

analytical model predictions diverge from those of the 3D RVEs for increasing inclusion volume 

fraction and aspect ratio for both material systems studied, revealing that computational models 

with accurate depiction of the inclusion geometry, size and spatial dispersion (and thus the inter-

inclusion constraining effects) are required for accurately assessing the response of the studied 

bio-inspired composites. These findings are consistent with those from previously reported 

studies. Although deemed true for all high inclusion volume fraction bio-inspired composites, 

this was particularly the case for composites with cylindrical inclusions where a 3D assessment 

in lieu of a reduced 2D plane strain assessment is necessary for accurate microstructural 

representation. Furthermore, a comparative study of orthotropic elastic constants was performed 

for the cylindrical and hexagonal inclusion composites studied. A distinct response to varying 

inclusion volume fractions and aspect ratios was revealed for each material system, providing 

insight for future material system design efforts. Furthermore, the proposed computational tool 

may be an efficient plug-in for commercial FE software ABAQUS to assess the mechanical 

properties of bio-inspired composites, and in the future may be used for predicting and better 

understanding their failure characteristics. 
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