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Abstract

In this thesis, we explore non-Markovian noise in the central spin system due to the
coupling between the central spin and the environment. We use a solid state nuclear
magnetic resonance system to do the experiment since we have control over both the central
spin and environment. In particular, we can manipulate the interaction between the central
spin and the environment and the interaction between spins from the environment to study
their effects individually. A powder of triphenylphosphine is used in the experiment. A
change of local field seen by the central spin caused by interaction between spins in the
environment is measured experimentally. A quantitative measure of non-Markovianity of
noise on the central spin and a method to estimate non-Markovianity using the randomized
benchmarking protocol are introduced.
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Chapter 1

Introduction

Ever since Richard Feynman suggested the idea that one can use a quantum system to
simulate another, many ways have been explored to build such a machine. Through years,
it has been realized that such a machine can not only be used to simulate other quantum
systems, but can also be used to solve select problems more efficiently than classic com-
puters. However, building a realistic quantum computer is hard due to various practical
obstacles (e.g. robust control of the system and scalability). One barrier is the decoherence
of quantum information that causes loss of quantum information and decreases precision
of control which is due to the coupling between the system and the environment. This
Thesis is concerned with methods to characterize the environment seen by a central spin.
In particular the goal is to separate Markovian from non-Markovian behaviors.

1.1 Open Quantum System

Quantum mechanics is based on a few fundamental principles and axioms. The information
of a quantum system can be summarized with a vector (ray) from a Hilbert spaceH, usually
represented by a “ket” |ψ〉 in Dirac’s notation which represents the quantum state of the
system. Second, evolutions of a state are unitary operators acting on the same Hilbert
space. There exists a continuous dual of the state Hilbert space H† such that ∀φ ∈ H†,
φ : H → C, where C is the complex field. The dual is a linear space of functionals acting
on the Hilbert space, the elements from the dual is denoted with a “bra” 〈b| in Dirac’s
notation, and the inner product of the Hilbert space is defined as the 〈φ|ψ〉 for |ψ〉 ∈ H
and 〈φ| ∈ H†. We make the correspondence 〈a| = |a〉†, and 〈a|a〉 = 1. Observable
physical quantities are represented by Hermitian operators acting on the Hilbert space. A
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measurement with respect to the observable A projects the state |ψ〉 onto an eigenvector |a〉
of the observable, the value of the measurement is the eigenvalue, the probability of such an
outcome is |〈ψ|a〉|2. Such measurements are projection-valued measures (PVMs), they are
represented by projection operators {Pi} with

∑
i Pi = 1 and PiPj = δijPi. A subspace of

a Hilbert space is a linear subspace that inherits the same inner product from the Hilbert
space. A Hilbert space can be formed of the tensor product of Hilbert subspaces. A
bipartite system is a composite system consisting of two subsystems. Suppose the Hilbert
spaces of two subsystems areH1 andH2 respectively, then the Hilbert space of the bipartite
system is H = H1⊗H2. The transformations a system can undergo form a group, therefore
if the Hilbert space of the system is of dimension n, the transformation group of all possible
unitary transformations is SU(n). The group of transformations on a bipartite system is
SU(n1 × n2), where n1 and n2 are the dimensions of the Hilbert subspaces. The reduction
of SU(n1)⊗ SU(n2) follows the Clebsch-Gordan’s rule.

A physical statistical mixture is described by a density matrix

ρ =
∑
i

pi|ai〉〈ai|, (1.1)

where
∑

i pi = 1 and pi > 0 for all is. With this definition ρ† = ρ and Tr(ρ) = 1. Such
a state is a proper mixed state. Eq. (1.1) is a pure state decomposition of the ensemble.
Such a decomposition is not unique. A mixture can be viewed as a mixture of pure states
no matter how the state was prepared. The set of density matrices is a subset of the
Liouville space. The purity of a density matrix is defined as Tr(ρ2) which is one if and only
if the density matrix represents a pure state. For a proper mixed state a unitary operation
acts as UρU †. The outcome of a PVM is Tr(ρA) for some observable A. A density
matrix description is also describing only part of an entangled composite system. For a
measurement on a subsystem of a bipartite system, the only function that preserves the
outcome is the partial trace [1], the stochastic property of the subsystem is included in the
reduced state ρs = Tre(ρ). In general an operator that takes a density matrix to a density
matrix is described by a completely positive and trace preserving (CPTP) operator. The
most general form of measurement is a positive-operator valued measure (POVM). In an
open quantum system, one only has knowledge about the subsystem under study without
fully knowing the environment. In practice, any quantum system in experiment is an open
quantum system due to inevitable coupling to the environment. It can be proved that any
CPTP map (POVM) on a system can be viewed as a unitary evolution (PVM) on a larger
system, this is the Stinespring’s [2] (Naimark’s [3]) dilation theorem. This duality suggests
the special statistical property of an open quantum system could result from its coupling
to an unknown external environment (higher degrees of freedom).
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An ensemble system behaves similarly as an open quantum system. For example when
an inhomogeneous field is applied on an ensemble system, the ensemble undergoes a sum
of unitary evolutions which is not unitary. Moreover, both proper and improper mixed
states can be purified. These properties show similarities between ensemble systems and
open quantum systems.

1.2 Non-Markovian Processes

A CPTP operator is in general not reversible. For example, the relaxation process of an
open quantum system increases the entropy of the system and is irreversible. However,
processes like relaxation are still deterministic, making it relatively easy to analyze. In
general, if the evolution of an open quantum system is both deterministic and smooth, one
can find a master equation to describe the time evolution of the system. Such a process is
Markovian. There are more general forms of master equations [4, 5, 6, 7], and a Markovian
process is defined as a solution that is derived under a memoryless approximation [8, 9].

Non-Markovian processes need not be CPTP maps and indeed some non-Markovian
processes can not be represented by maps. This is due to the existence of the implicit
variable which represents the memory of the system. The memory can be either stored
in an external environment that is coupled to the system or the special paths the system
took. Non-Markovian processes can be found in both open quantum systems and ensemble
systems. In chapter 4, a mathematical formulation for non-Markovian processes in ensem-
ble systems will be given and used to study the non-Markovian processes in the central
spin system.

1.3 Central Spin System

One of the simplest models for studying the system environment interaction is the central
spin model where a single spin-1/2 spin is coupled to an external environment [10, 11, 12].
We are interested in correlations between the central spin and the environment. Informa-
tion exchange and correlations are the reason for non-Markovian noise on the central spin.
Such correlation has been studied in quantum dots with linked-cluster expansion methods
[13, 14, 15, 16, 17] and recently by Niknam with solid state nuclear magnetic resonance
(NMR) [18, 19]. In this thesis, we use solid state NMR [19] to characterize the central spin
system. We have control over both the central spin and the environment, and the coupling
between them [20, 21, 22, 23].
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The central spin system is described by the following Hamiltonian

H = Hs +He +Hint. (1.2)

Here, Hs is the Hamiltonian of the central spin, He is the Hamiltonian of the environment,
andHint is the Hamiltonian of the interaction between the central spin and the environment.
The central spin exchanges information with the environment through the interaction term
Hint, developing a correlation with the environment. The information shared in the envi-
ronment can act as a new source of information, leading to a backflow of information to the
central spin, resulting in a non-Markovian behavior. Moreover, the dynamics of the envi-
ronment plays a very important role, it can be regarded as a mixing process that partially
destroys the information shared in the environment, so that the noise on the central spin
becomes less dependent on the memory of the environment. Such process will result in a
decrease of non-Markovianity, a quantity that measures how non-Markovian a process is,
of the noise. However, as will be shown in later chapters, the symmetry of the environment
plays a critical role in determining the portion of information that can be destroyed. And
it is the goal of the thesis to study the origin of non-Markovian behavior in the central
spin system, how to quantize it, and how the dynamics in the environment can make a
difference.

1.4 Outline of the Thesis

In this thesis, a solid state NMR system is used to study the central spin system. In the
second chapter, a few important experimental concepts and techniques are introduced. In
the third chapter, we discuss how to detect the change of local field seen by the central spin
caused by the mixing process in the environment and present the data obtained. In the
fourth chapter, we introduce the mathematical formula for describing non-Markovian pro-
cesses in ensemble systems, a measure of non-Markovianity, how to generalize the method
to the central spin system, and how to use randomized benchmarking to measure non-
Markovianity in experiments. In the fifth chapter, a brief conclusion and a summary of
potential future work are given.
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Chapter 2

NMR of Dipole Coupled Spins

We choose a solid state NMR system to study the central spin problem since the dipo-
lar interactions is time independent and spectrally resolved. A spin is associated with a
magnetic moment, therefore its evolution under an external magnetic field is an element
from the SU(2) group. Due to the isomorphism between su(2) and so(3), one can adopt
a classical or a semi-classical description for the interaction between spins and external
fields. The classical one is captured by the Bloch equations

d ~M

dt
= γ ~M × ~B + Γ, (2.1)

where γ is the gyromagnetic ratio, ~M is the macroscopic magnetization of the sample bulk,
~B is the external field placed along the ẑ direction and

Γ =

(
−Mx

T2

,−My

T2

,−Mz −M0

T1

)
(2.2)

is the relaxation term, describing the transverse decoherence and longitudinal relaxation.
A semiclassical description exploits the Bloch sphere picture for SU(2) group, where the
density matrix vector on the sphere corresponds to the “direction” of the spin explicitly.
With help of the semiclassical description, one can explain single spin-1/2 dynamics.

2.1 System Hamiltonians

In the experiments, we are only interested in a few terms of the Hamiltonian: Zeeman
interaction, chemical shift, dipolar interaction and control Hamiltonians. The Zeeman

5



term describes the Zeeman splitting of energy levels of a spin in an external field, and it
is the dominant part of the Hamiltonian in high field NMR experiments. The initial state
of a system is the thermal equilibrium state of the Zeeman Hamiltonian. The interaction
frame defined by the time evolution under the Zeeman term is the rotating frame, control
or measurement in the experiments are made within the rotating frame.

The dipolar interaction exists amid objects that have magnetic moments. The direct
interaction between two spin-1/2 spins through magnetic field is described by the dipolar
interaction Hamiltonian.

HD = −µ0γ1γ2~2

16πr3
[3(σ1 · r̂)(σ2 · r̂)− σ1σ2], (2.3)

where r is the distance between the two spins and r̂ is the unit vector connecting the two
spins. The secular part of the homonuclear dipolar Hamiltonian is

Hhomo = −µ0γ
2~2

32πr3
(3 cos2 θ − 1) (2σzσz − σxσx − σyσy) . (2.4)

Here, we have omitted the tensor product notation between Pauli matrices. We will do so
in all following discussions. For heteronuclear interaction, the secular dipolar Hamiltonian
is

Hhete = −µ0γ
2~2

16πr3
(3 cos2 θ − 1)σzσz. (2.5)

The sample we use to explore the central spin model is triphenylphosphine prepared in
powder form (Fig. 2.1). In our experiment, we use a spherical bulb to contain the sample
so that the external magnetic field inside the sample is uniform. As shown in the figure, in
one molecule there is one phosphorus spin and fifteen proton spins. We omit the spins of
carbon 13 nuclei whose natural abundance is about 1.1%. The Hamiltonian that includes
the terms that are important for the experiment is

H = Hchemical shift +Hhete +Hhomo, (2.6)

where

Hchemical shift = δσCS
z ,

Hhete = σCS
z

15∑
i=1

ωiσ
i
z,

Hhomo =
∑

1≤i<j≤15

ωij(2σ
i
zσ

j
z − σixσjx − σiyσjy),

(2.7)
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Figure 2.1: Structure of triphenylphosphine molecule reproduced from [18]. There are
fifteen proton spins as the environment spins and one phosphuros spin as the central spin.
The coupling strength is dependent on the relative orientation of the molecule with respect
to the external field. The possible strongest homonuclear interaction between proton spins
is 49.8 kHz and the possible strongest heteronuclear interaction is 11.8Hz.

where δ is the chemical shift anisotropy for the central spin, ωi’s and ωij’s are coupling
strengths defined in Eqs. (2.5) and (2.4). The above expressions of the Hamiltonians are
for a single molecule, all the coefficients depend on the specific orientation of the molecule
with respect to the external static field. In the experiment, we use a sample prepared in a
powder form, in which every possible orientation of the molecule in the three dimensional
space is equally probable. For the chemical shift, in the principal axis system of the
molecule, the chemical shift anisotropy tensor is diagonal

R =

 δxx
δyy

δzz

 . (2.8)

Let

σ =
1

3
Tr(R),

r =δzz − σ,

η =
δyy − δxx

r
,

(2.9)

α, β and γ be the Euler angles describing the position of the principal axis system relative
to the lab frame, the secular part of the chemical shift is

HCS, secular =
ω0σz

2

[
σ + r

(
3 cos2 β − 1

2
+

1

2
η sin2 β cos 2γ

)]
, (2.10)
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where ω0 is the frequency corresponding to the external magnetic field. For the special
case when η = 0, the distribution the chemical shift anisotropy obeys in a power form is

p(δ) =
1√

3ω0r

1

[1 + (2δ/ωr)]1/2
, − ω0r/2 ≤ δ ≤ ω0r. (2.11)

Similarly, one can obtain the probability distribution function for the dipolar interaction
between two spins, this distribution gives the lineshape known as the Pake doublet. The
probability function for the dipolar interaction in a complex molecule is computationally
hard to calculate.

2.2 Average Hamiltonian Theory

In this section we give a brief review of the theory of average Hamiltonian and give some
examples of applications of the theory. The use of average Hamiltonian theory to design
decoupling sequences can be found in [24]. The preliminary problem of average Hamiltonian
theory can be stated as following: Let a quantum system evolve under a time dependent
Hamiltonian H(t) for time t, what is the time-independent Hamiltonian F such that the
evolution of the system is effectively e−iF t? This was solved in terms of the Magnus
expansion

F =
∞∑
k=0

H̄k(t), (2.12)

where

H̄0 =
1

t

∫ t

0

H(t1)dt1,

H̄1 = − i

2t

1

2

∫ t

0

dt1

∫ t1

0

dt2[H(t1), H(t2)],

H̄2 = − 1

6t

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 ([H(t3), [H(t2), H(t1)]] + [[H(t3), H(t2)], H(t1)]) ,

· · ·.

(2.13)

The above result lays the foundation of average Hamiltonian theory, H̄0 is zeroth order
approximation, the rest are the correction terms. Now we prove a useful theorem that
predicts the effect of strong averaging.
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Theorem 2.2.1. Let A,B ∈ su(n), and ∃T > 0, s.t. eAt = eA(t+T ) for ∀t ∈ R. Define the
adjoint operator of A acting on su(n), s.t. for ∀C ∈ su(n), adA(C) = [A,C]. Therefore
there is an invariant subspace L of su(n) for adA that contains B, then

(i) limn→∞ e
nTA+Bt = 1, if det [D(adA)] 6= 0;

(ii) limn→∞ e
nTA+Bt = exp

[∑
i Tr(BE†i )Eit

]
, if det [D(adA)] = 0.

Here, D(adA) is the representation of adA in L under some orthonormal basis {Bi}, Ei
are basis vectors from {Bi} that satisfies adA(Ei) = 0.

Proof. {Bi} spans an invariant subspace for adA, thus for eadAt for any t ∈ R, and n ∈ Z.
Therefore eadAt(B) can be expressed as a linear combination of the basis vectors from {Bi},
and the coefficient of a basis vector Bi can be calculated as fi(t) = Tr

[
B†i e

adAt(B)
]
. Taking

the Fourier transform of fi(t) yields F [fi](ω) = Tr
[
B†i δ(ω − adA)B

]
. Since fi(t) must be

real, and adA has finite number of eigenvectors in L, we have

fj(t) =
m∑

k=−m

Ajke
−ikt (2.14)

for some positive integer m and Ak = ±A−k. If det[D(adA)] 6= 0, then 0 is not an eigenvalue
of adA in L. Thus, Ai0 = 0 for ∀i. Therefore let H = aA+ B, moving into the interaction
frame defined by u = eaA yields the Hamiltonian HI = u†Bu. There exists τ > 0 such that∫ τ

0
fi(t)dt = 0 and fi(t+ τ) = fi(t) for all i. Therefore when τ → 0 (i.e. a→∞) we have

T e
∫ τ
0 HI(t′)dt′ = e

∫ τ
0 HI(t′)dt′ +O(τ 2)→ 1, (2.15)

where T is the time ordering operator, thus

T e
∫ t
0 HI(t′)dt′ = T e

∫Nτ+δ
Nτ HI(t′)dt′ · · · T e

∫ τ
0 HI(t′)dt′ → 1. (2.16)

Here, Nτ + δ = t, and we have used the fact that δ → 0 when τ → 0. Therefore, by
moving back to the ordinary frame and noting that T is a period for eAt, we obtain the
result limn→∞ e

nTA+Bt = 1.

When det [D(adA)] = 0, note that all the terms except Ai0 in fi(t) average to zero for all

is. Since {Bi} is an orthonormal basis , the part that is left is exp
[∑

i Tr(BE†i )Eit
]
.

A direct corollary of the above theorem is that limn→∞ e
−i(2nπσs+σlt) = e−iδslσst. This

result can be used to obtain the rotating wave approximation and the secular approxima-
tion.
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All terms in the Magnus expansion should be taken into consideration. However, in
many practical cases when t is short enough, H̄0 is more important than other correction
terms since it is obvious from magnus expansion that e−iH̄0t gives a first order approxi-
mation of the evolution. Waugh used average Hamiltonian theory to design the WHH-4
sequence for homonuclear interaction decoupling and demonstrated the power of coherent
averaging in spin space [25, 26]. Since then average Hamiltonian theory has been used
to explain many sequences and averaging processes in quantum mechanics, dynamical av-
eraging technique has been used to manipulate system Hamiltonians in various quantum
systems.

Figure 2.2: Schemiatic for MREV-8 sequence. The MREV-8 sequence is shown at the top,
a timeline is shown below it. The effective Hamiltonians of σz and Hzz in the toggling
frame during different windows are shown below.

The sequence used in the experiment for decoupling interactions between proton spins
in the environment is the MREV-8 sequence (Fig. 2.4). Here, X, Y , X̄ and Ȳ represent
π/2 pulses around x, y, −x and −y axes respectively. The sequence was first proposed
by Mansfield [27] and by Rhim, Elleman, and Vaughan in 1973 [28] to realize robust
decoupling of the homonuclear dipolar interaction. There are decoupling sequences that
are more robust than MREV-8 such as BR-24 [29] and Cory-48 [30], but the MREV-8
sequence gives us a good compromise between complexity and resolution. The MREV-8
sequence is composed of two WHH-4 sequences with different phases, and it is cyclic. For
a cyclic sequence U = E1P1E2 · · ·PmEm+1 where Pi’s stand for pulses, Ei’s stand for free
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evolutions and Ei = e−itiH for some H one wants to manipulate, and ti is the length of the
ith window, we have P1 · · ·Pm = 1. Therefore, the sequence can be written as

U = E1P1E2 · · ·PmEm+1 = P †m · · ·P
†
1E1P1 · · ·Pm · · ·P †mEmPmEm+1 = Ẽ1 · · · Ẽm+1,

(2.17)
where

Ẽi = e−itiH̃i ,

H̃i = P †m · · ·P
†
i EiPi · · ·Pm

(2.18)

for i = 1, · · · ,m, and Ẽm+1 = e−itm+1H̃m+1 with Hm+1 = H. Hence, the whole evolution
under the sequence can be regarded as one under a piece wise constant Hamiltonian, the
frame defined by P †m · · ·Pi is called the toggling frame. Therefore, when the total length of
the sequence T =

∑
i ti is small (here we assume the pulses are infinitely strong thus the

duration of each pulse is zero), one can use the zeroth order term of the Magnus expansion
H̄0 = 1

T

∑m+1
i=1 tiH̃i to approximate F . If we define the Hamiltonian of the “αα” interaction

between spin i and spin j as
H ij
αα = 3σiασ

j
α − σi · σj (2.19)

for α = x, y or z, where σi · σj = σixσ
j
x + σiyσ

j
y + σizσ

j
z, it can be seen from Fig. 2.4

that the average Hamiltonian of Hhomo =
∑

1≤i<j≤n ωijH
ij
zz is zero for both WHH-4 and

MREV-8 sequences. The WHH-4 sequence is also symmetric H(t) = H(T − t), which is
a property that the MREV-8 sequence does not have. It can be proved that all the odd
order correction terms of the Magnus expansion are zero for a symmetric sequence, in this
sense WHH-4 is even better than MREV-8. However in practice, MREV-8 always gives
a much narrower line than WHH-4. This is because the MREV-8 sequence accounts for
finite pulses and is more robust to B1 inhomogeneity and common flip angle error [31].
Another important factor that influences the experiment is how σz is being averaged under
the sequence, this directly affects the form of average Hamitonians of the chemical shift
and the heteronuclear interaction. For MREV-8 the direction of the average Hamiltonian
of σz, namely the axis of effective field, is along (−1, 0, 1) with a scaling factor [18]

S =

√
2
[
1 + 23tw

T

(
4
π
− 1
)]

3
, (2.20)

where tw is the length of each pulse and T is the total length of the MREV-8 sequence. For
our experiment the total length of an MREV-8 sequence is 48µs, the length of a proton
π/2 pulse is 2µs, therefore the scaling factor is about 0.504. Because the direction of
the effective field is not along z axis, a magnetization precessing around the effective field
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projects an ellipse on the x− y plane leads to a spectrum of two individual peaks. There
are two different components of a magnetization one that is perpendicular to the effective
field and another that is along the effective field. The component parallel to the effective
field does not feel the B0 inhomogeneity, and thus decays much slower, resulting in a dc
offset in the free induction decay. The signal is a combination of the two different decays.
This type of effect always appears in a WHH-4 experiment [32] when a single preparation
pulse is used, but does not appear when the initial magnetization is along the y axis in
an MREV-8 experiment. In order to obtain a single peak that corresponds to the signal
perpendicular to the effective field, a phase cycling is required where a quadrature detection
is implemented in the tilted precession plane with respect to the direction of the effective
field. This is often accomplished by a combination of two pulses 90◦)x − 45◦)adjust. Note
here that a better performance of MREV-8 is achieved when it is implemented slightly
off-resonance (about 1kHz off) due to off-resonance averaging, since a strong effective field
partially average out correction terms of the Magnus expansion, leading to a narrower line
width.

Figure 2.3: Schemiatic for MREV-8 sequence with a phase shift. In the second averaging
experiment, the same phase shift is implemented for the first two pulses and the two pulses
sandwiching window 6. By introducing the phase shift, an additional field is introduced
perpendicular to the direction of the effective field.

Another important technique for improving the performance of the decoupling sequence
is using second averaging [33] (Fig. 2.3). The idea is to introduce additional σz terms
in “some” windows by changing the phases of the pulses by the sides of the window.
Second averaging is mostly used to average out unwanted terms along the effective field e.g.
chemical shift anisotropy and inhomogeneity of external field, therefore the direction of the
additional field should be perpendicular to the direction of the effective field. Sometimes,
an additional field that is not perpendicular to the effective field is used to scale down
chemical shift, since only the component perpendicular to the direction of the additional
field is being averaged. In the example shown in Fig. 2.3, since the direction of the effective
field is along (−1, 0, 1), we choose to introduce an additional field along (1, 0, 1). In order
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to achieve this, a phase shift φ is introduced for the pulses by the sides of the second
window and the sixth window. Therefore the sequence becomes

e−iσz
φ
2Xeiσz

φ
2 e−iσz

φ
2 Y eiσz

φ
2 Y X̄e−iσz

φ
2 X̄eiσz

φ
2 e−iσz

φ
2 Y eiσz

φ
2 Ȳ X

=e−iσz
φ
2XY eiσz

φ
2 Y X̄e−iσz

φ
2 X̄Y eiσz

φ
2 Ȳ X

=e−i(σx+σz)φ +O(φ2).

(2.21)

Note here that the first order approximation e−i(σx+σz)φ is dependent on the phase shift φ
only so that even a small phase shift corresponds to a strong field. The effective strength can
be calculated as ωeff = 2φ

τ
. Also a small phase shift is recommended regarding the accuracy

of the first order approximation in the above equation. Here, we compare experimental
data obtained with ordinary MREV-8 sequence and another with second averaging on
powder-form adamantane (Fig. 2.4), It can be seen the decay of the sequence with second
averaging is much slower, indicating a much better narrowing effect.
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Figure 2.4: Proton signals obtained with MREV-8 sequence on adamantane sample with
a single scan. The picture on the left is the time domain data obtained with the ordinary
MREV-8 sequence, while the one on the right is obtained with the MREV-8 sequence
with second averaging. The length of one MREV-8 sequence is 60µs, one complex point
is acquired for each MREV-8 sequence. There are 100 complex data points collected in
total for both results, corresponding to a acquisition time of 6000µs. A phase shift of 10◦

is chosen for second averaging for the result on the right. The linewidth corresponding to
the left one is 400Hz, while the one corresponding to the right one is 65Hz.
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2.3 Tune-up Methods

Successful implementation of decoupling sequences is crucial for our experiment, thus min-
imizing pulse imperfection that affects performance of the sequence is the first step before
implementing the experiment. There are many kinds of pulse imperfection in experiments,
the three we focus to minimize are B1 inhomogeneity, flip angle error that is common to
all pulses, and a phase transient error. B1 inhomogeneity is due to the geometry of the
coil and sample, nuclei at different positions feel different strengths of the B1 field. B1

inhomogeneity is reduced by changing the geometry of the coil [34].

The flip angle error is due to misadjustment of pulse length and power, it leads to an
incomplete decoupling of dipolar interactions and a change of the scaling factor. Phase
transient error is due to the reactance of the probe. During the rising and the falling of
the pulse, there is an out-of-phase component which is the phase transient error. It can
been shown that phase transient is inevitable in a resonance circuit, but symmetric phase
transient is harmless for implementation of a decoupling sequence. A detailed discussion
of how flip-angle error and phase transient error affect the MREV-8 sequence can be found
in [24]. There are other errors such as phase error and individual flip angle error, these
errors are small. An experiment such as a phase altering cycle shows these errors are small
enough in our experiment. Therefore for the following discussion, we assume the power
level is the same for all phases, and there is no phase error or timing error. (Actually in
practice, we always tune the probe for all phases to make sure the errors are simultaneous
minimized for different phases.)

We mainly follow the tune-up methods described in [35, 36, 37]. Consider the flip-
flip cycle (Fig. 2.5 (b)), for perfect pulse if one detects after each pulse, one expects a
response like “positive-zero-negative-zero-· · · ”. If the cycle is repeated n times, one expect
four distinguished lines corresponding to different responses. When there is flip angle
error, the unitary evolution of the pulse becomes Xe−iεσx where ε is a small real number.
Since the error commutes with the pulses, after a full cycle the remaining term is e−i4εσx ,
which gives a sinusoidal modulation of the response. A simple model for phase transient
is given by e−iδ1σyXe−iδ2σy where the π/2 x rotation is sandwiched by two out-of-phase
components with different amplitudes. Since the flip-flip cycle is cyclic, one can apply
average Hamiltonian theory to calculate the effect of the phase transient error

e−iδ1σyXe−iδ2σye−iδ1σyXe−iδ2σye−iδ1σyXe−iδ2σye−iδ1σyXe−iδ2σy

=e−iδ1σyXe−i(δ1+δ2)σyXe−i(δ1+δ2)σyXe−i(δ1+δ2)σyXe−iδ1σy

=1 +O(δ2),

(2.22)
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Figure 2.5: Tune-up cycles. (a) is the flip-flop cycle composed of two π/2 pulses of alter-
nated phases, and (b) is the flip-flip cycle composed of four π/2 pulses of the same phase.
The x phase is shown as an example, but in practice we run the same experiment for all
phases.

where δ is a positive real number that bounds δ1 and δ2. This means the phase tran-
sient error does not affect the response to the flip-flip sequence to the 0th order average
Hamiltonian (actually all the odd order correction terms vanish due to the symmetry of
the cycle). For the flip-flop cycle (Fig. 2.5 (a)), assume the pulses are perfect, if we detect
after each pulse and implement the cycle n times, one expects two lines corresponding to
a positive response and a zero response. It is obvious that the flip angle error does not
affect the response to the flip-flop cycle since they are canceled out after a full cycle. For
the phase transient error, if we detect after X̄ pulses, we can calculate the evolution under
the average Hamiltonian as

e−iδ1σyXe−iδ2σyeiδ1σyX̄eiδ2σy = e−iδ1σyXe−i(δ2−δ1)σyX̄eiδ2σy

= e−i(δ2−δ1)(σz−σy) +O(δ2).
(2.23)

With a similar calculation, it can be obtained that the evolution under the average Hamil-
tonian of the phase transient is e−i(δ2−δ1)(σz+σy) if we detect after X pulses. This means the
flip-flop sequence directly measures the difference between the phase transient amplitudes,
and when the phase transients are not symmetric, one expects a sinusoidal modulation on
each response. Therefore, the strategy for tuning a probe is that we use flip-flip cycle to
minimize the flip angle error, and the flip-flop cycle to minimize the phase transient error.
If we detect after each pulse in both cycles, when a good tuning is achieved, four distin-
guished lines corresponding to “positive”, “zero”, “negative” and “zero” responses for the
flip-flip cycle, and two lines corresponding to “positive” and “zero” responses for the flip-
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flop cycle should be observed. The intensities of the two lines corresponding to “positive”
and “negative” responses for the flip-flip cycle should be maximized to achieve minimal flip
angle error, and the two lines for the flip-flop cycle should be parallel to each other when
the phase transient error is minimized. In our experiment for tuning the probe, the two
experiments are implemented on-resonance with a liquid sample, and the two experiments
are always done in iteration to achieve a global optimum.

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●
●●●●●
●●●●●

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●●

●●●●●
●●●●●
●●●●●●●●●●

●●●●●
●●●●●
●●●●●●●●●●

●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●

0 100 200 300 400 500

-3000

-2000

-1000

0

1000

2000

3000

Sample Point

In
te
ns
ity

Figure 2.6: Proton signals obtained with flip-flip cycles (only real part). The cycle is
repeated 25 times (in total 100 pulses), five data points are sampled after each pulse. It
can be seen that the result mainly follows the “positive-zero-negative-zero-· · · ” pattern,
indicating a small flip angle error. The five points after the same pulse are approximately
on the same level since the experiment is implemented on resonance. The decay of the
signal is due to the inhomogeneity of the control field.

A liquid sample that contains rich proton spins (e.g. water) is used to tune up the probe
due to its strong signal and long coherence time. The flip angle of a pulse can be adjusted
by changing the power or the length of the pulse. In our experiment, we use maximal
power (150W) of the spectrometer for implementing MREV-8, thus the flip angle error is
minimized by adjusting the length of the pulse only. Fig. 2.6 shows the result of a good
tuning for flip angle error. The symmetry and length of phase transient can be adjusted
by changing the Q factor of the probe, which is done by changing the matching capacitor
of the probe. Usually, the tuning capacitor should be subtly adjusted to obtain an optimal
symmetry of the phase transient. A satisfactory phase transient is achieved when there is
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Figure 2.7: Proton signals obtained with flip-flop cycle. The blue dots correspond to the
real part of the signal and the orange dots correspond to the imaginary part of the signal.
The cycle is repeated 250 times, corresponding to 500 pulses in total. Two data points are
sample after each pulse. On the left, a result with asymmetric phase transient is shown,
note the two lines corresponding to the real of imaginary part carry a sinusoidal modulation
due to the phase transient. On the right, a result with almost symmetric phase transient is
shown. It can be seen the two lines corresponding to the real or imaginary part are parallel
to each other, indicating a small phase transient error.

about 50% power reflected. And it is very important to have the probe over-coupled to
ensure minimal loss of signal to noise ratio. In Fig. 2.7, we compare the results of a good
tuning and a bad tuning for phase ransient error using the flip-flop cycle. We note here
there are other tune-up methods described in the literature [38].
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Chapter 3

Detecting a Change of Local Field

In this chapter, the experiment for measuring a change of local field in the central spin
system is discussed. As we mentioned in the introduction, due to memory of the envi-
ronment, the noise on the central spin system is non-Markovian in general. However one
expects a more Markovian noise when a mixing process is introduced in the environment,
since the memory is partially destroyed by the mixing process. Therefore in order to better
understand the transition between Markovian and non-Markovian noises, it is important
to correctly characterize the mixing process. In the central spin system, the central spin
communicates with the environment via the heteronuclear interaction

Hhete = σCS
z

∑
i

ωiσ
i
z. (3.1)

If the central spin system starts with the initial state ρ0 = σCS
x 1⊗n, under the heteronuclear

interaction the central spin develops correlations of different orders with the environment.
When there is the homonuclear interaction in the environment, due to the flip-flop process

σz1
e−iω(2σzσz−σxσx−σyσy)t

−−−−−−−−−−−−−−→ 1

2
{[1 + cos(4ωt)]σz1 + [1− cos(4ωt)] 1σz + sin(4ωt) (σyσx − σxσy)} ,

(3.2)
the correlations between the central spin and the environment are mixed, resulting in a
destruction of correlations and loss of information. This fact can be rephrased in the
picture of local fields in a more general way. Consider a more general form of interaction
Hamiltonian between the central spin and the environment

He = ACSB, (3.3)

18



where A acts on the space of the central spin, and B is a nondegenerate operator acting
on the space of the environment. The evolution of the initial state under He can therefore
be described as

e−iHet
(
σCS
x 1⊗n

)
eiHet = e−iA

CSBt

(
σCS
x

2n∑
i=1

|i〉〈i|

)
eiA

CSBt

=
2n∑
i=1

e−iΩitAσCS
x eiΩitA|i〉〈i|,

(3.4)

where B|i〉 = Ωi|i〉. Here, Ωi’s are the strengths of the local fields seen by the central spin.
Therefore, if [ACS, σCS

x ] 6= 0, the state of the central spin can be regarded as an improper
mixture evolving under different local field. Suppose the dynamics of the environment is
described by the Hamiltonian Hm, if [Hm, B] 6= 0, evolutions under Hm would change the
eigenstructure of A, resulting in a mixing of local fields. In our experiment, B corresponds
to
∑

i ωiσ
i
z, and Hm corresponds to Hhomo. This picture is best compared with a spin

ensemble evolving under a static field gradient, if one implements an echo experiment,
spatial replacement of spins will lead to a change of local fields and an attenuation of the
echo [39]. That is the motivation for choosing an experiment similar to the stimulated echo
experiment to measure the mixing process in the central spin system. Also since in NMR
experiments, we have good control over the system, thus average Hamiltonian theory can
be used to manipulate the system Hamiltonian in a desired way, allowing us to study the
effect of heteronuclear and homonuclear interactions separately.

3.1 Experimental Design

We want to design an experiment that achieves a unitary evolution as shown in Fig. 3.1
on the central spin system. Assume the initial state of the system is ρ0 = σCS

x 1⊗N , if the
observable being measured at the end of the experiment is also σCS

x 1⊗N , a formal expression
of the signal of the experiment can be given as

S(t1, t2) =
1

d
〈σCS

x 1⊗N |eiĤhetet2e−iĤhomo∆e−iĤhetet1|σCS
x 1⊗N〉

=
1

d

(∑
n

〈σx|eiΩnσ̂
CS
z t2〈an|

)
e−iĤhomo∆

(∑
m

|am〉e−iΩmσ̂
CS
z t1|σx〉

)
=

1

d

∑
n,m

〈σx|ei(Ωnt2−Ωmt1)σ̂CS
z |σx〉〈an|e−iĤhomo∆|am〉,

(3.5)
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Figure 3.1: Schematic for the experiment measuring the change of local field. In this
experiment, we want separate the effect of heteronuclear interaction and homonuclear
interaction, so that we can realize an experiment that is like “evolution under local field-
mixing-inverse evolution under local field”. With this experiment, we can compare the
difference of local field before and after the mixing, thus measuring the effect of mixing.

where d is the dimension of the Liouville space, B̂|ai〉 = Ωi|ai〉 where B =
∑

i ωiσ
i
z,

and |1⊗N〉 =
∑

n |an〉. The states and the unitary evolutions are all represented in the
Liouville space, the hat notation above an operator refers to its conjugation action, and a
representation such as 〈a|B̂|c〉 should be understood as Tr(a†BcB†) in the corresponding
Hilbert space. Therefore, when ∆ = 0, since 〈an|am〉 = δnm, S(t1, t1) = 1. When ∆ 6= 0,

〈an|e−iĤhomo∆|am〉 gives the conditional probability of the change of local field, the intensity

is therefore dependent on e−iĤhomo∆. For a complex system such as the central spin system
in our experiment, due to many configurations of the coupling constant, the local field the
central spin sees should be described by a probability distribution function, the effect of
e−iĤhomo∆ can be characterized by a conditional probability function. If we denote the local
field before mixing by Ω, that after mixing by Ω′, the distribution function of the local
field by ρ(Ω), and the conditional probability function describing change of local field by
p(Ω′|Ω), the result of the experiment can be written as

S(t1, t2) =

∫ ∞
−∞

∫ ∞
−∞

e−iΩt1ρ(Ω)p(Ω′|Ω)eiΩ
′t2dΩdΩ′. (3.6)

In order to see the process more clearly, we use a functional decomposition of the conditional
probability as p(Ω′|Ω) ≈

∑l
k=−l pk(−Ω + rkΩ

′), where rk < rk+1 for all k. According to the
convolution theorem∫ ∞

−∞

∫ ∞
−∞

g(ω)f(−ω + aω′)dωe−iω
′tdω′ =

1

a
g̃(at)f̃(at) (3.7)

for any f, g ∈ L1(R), we have

S(t1, t2) =
k=N∑
k=−N

1

rk
ρ̃[rk(t2 − t1)]p̃k(rkt2), (3.8)
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where the tilde denotes the inverse Fourier transform of the function. As an example,
assume p(Ω′|Ω) = p(Ω′ − Ω) and takes the form of a Gaussian function, then S(t1, t2) is
also modulated by a Gaussian decay. If we further assume that ρ̃[rk(t2 − t1)] is centered
at 0, then we obtain the attenuation is approximately dependent on t1 in the form of a
Gaussian function. For an infinite environment the longer the system evolves under the
heteronuclear interaction, the more sensitive it is to the mixing process. This argument is
consistent with intuition and the experiment done by Niknam [18]. In general, the function
p(Ω′|Ω) depends on Hhomo, and can be very complex.

The experiment we designed to realize the above purpose is shown in Fig. 3.2. The first

Figure 3.2: Pulse sequence of the experiment for measuring change of local field. The first
part of the experiment is cross-polarization for transferring polarization from proton spins
to phosphorus spins. The second part is a stimulated-echo-like pulse sequence for realizing
the scheme plotted in Fig. 3.1. The phases of each pulse and continuous waves are shown
in Table 3.1. The pulses π

4

)
1

and π
4

)
3

on proton spins after t1 rotate pronton magnetization
from the direction of the effective field of the MREV-8 sequence to z direction and back
after mixing.

part of the experiment is cross-polarization denoted by “CP” for preparing the the initial
state ρ0 = σCS

x 1⊗n, where the the central spin is polarized along x axis and the environment
is in the fully mixed state. The rest of the experiment is a stimulated-echo-like experiment
for realizing the unitary evolution depicted in Fig. 3.1. The stimulated echo experiment
has been a standard experiment to measure the effect of diffusion process [40]. We note
here there are other choices for measuring the decoherence caused by the mixing process in
the environment [41, 42]. A typical stimulated echo experiment is shown in Fig. 3.3, the
2nd echo that appears after τ after the last pulse is the stimulated echo, τ is the length
of the window between the first and second pulses. The magnetization contributing to the
stimulated echo is stored along the quantization axis during the storage time (∆), thus it is
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not affected by the local field during that window. This corresponds to the window where
we introduce the mixing in our experiment. The experimental design is very similar to that
used in measuring spin diffusion [43, 44, 45]. Note in our experiment, the first preparation
pulse in stimulated echo experiment is substituted by the cross-polarization process.

Figure 3.3: Pulse sequence for stimulated echo experiment. The first pulse is to rotate the
magnetization of spins from the z axis to the x− y plane. There is one echo at τ after the
second pulse and four echoes at τ , ∆ − τ , ∆, and ∆ + τ after the last pulse respectively.
The phase dependence of the echoes on the pulses can be calculated using the k-space
formula, and summarized in Table. 3.2. The echo at τ after the last pulse (echo 2) is the
stimulated echo.

A phase cycling (Table 3.1) is designed to remove the artifacts and unwanted signals
in the experiment. The phases of free induction decays only depend on the pulses right
before, while the phases of echoes can be calculated using the k-space formula [46], the
result is summarized in Table 3.2. Spin temperature alteration and quadrature detection
are also included in the phase cycling to remove the artifact from the cross-polarization
and misalignment.

The t1 and t2 periods in Fig. 3.2 correspond to the first and last windows in Fig.
3.3 respectively. The MREV-8 sequence is used to decouple the homonuclear interaction
during the two windows. Since the direction of effective field under the MREV-8 sequence
is (−1, 0, 1), it is important to rotate the magnetization of the proton spins back to the
quantization axis during the mixing process, and rotate it back to (−1, 0, 1) after mixing.
This is the reason for the two pulses on proton spins sandwiching the mixing window (Fig.
3.2). In the next section, we will present the data collected from the experiment.

3.2 Data and Discussion

We implemented the experiment shown in Fig. 3.2 on a Bruker 300MHz high resolution
solid state NMR system. The tune-up cycles are used to minimize the pulse imperfection.
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Table 3.1: Phase cycling of experiment in Fig. 3.2. Here, 0, 1, 2, and 3 correspond to 0◦,
90◦, 180◦, and 270◦ respectively. A full cycle requires at least 16 scans, while we run 32
scans in our experiment.

ph1 ph2 ph3 ph4 ph5 ph31
1 0 0 0 0 0
1 0 0 0 2 2
1 2 2 0 0 0
1 2 2 0 2 2
1 1 1 1 0 1
1 1 1 1 2 3
1 3 3 1 0 1
1 3 3 1 2 3
1 0 1 1 0 2
1 0 1 1 2 0
1 2 3 1 0 2
1 2 3 1 2 0
1 1 2 2 0 3
1 1 2 2 2 1
1 3 0 2 0 3
1 3 0 2 2 1

Table 3.2: Phase dependence of echoes in the stimulated echo experiment calculated using
the k-space formula. Note here θ is the phase of the initial state.

No. Phase
1 −θ + 2φ
2 −θ + φ+ ψ
3 θ − 2φ+ 2ψ
4 π

2
− φ+ 2ψ

5 −θ + 2ψ
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The length of a π/2 pulse on proton spins is 1.65µs, that on phosphorus spins is 1.4µs.
The length of each MREV-8 cycle is 48µs, therefore, t1 and t2 are incremented in step
of 48µs. The experiment is repeated for different t1’s and ∆’s, and the data is acquired
continuously during t2. t1 is chosen from 48µs, 96µs, · · · , 384µs, ∆ is chosen from the set

{10µs, 15µs, 20µs, 30µs, 50µs, 70µs, 90µs, 110µs, 130µs, 150µs, 170µs, 190µs, 210µs,
230µs, 250µs, 300µs, 400µs, 600µs, 800µs, 1000µs, 1500µs, 2000µs, 2500µs}

(3.9)
and for each combination of t1 and ∆, twenty complex points are sampled during t2 with
the delay between each two adjacent points being 48µs. A few echoes from the experiment
are shown in Fig. 3.4.

Afterwards, a Fourier transform is taken for each echo. The integral of the magnitude
of the Fourier transforms are plotted in Fig. 3.5.
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Figure 3.4: Stimulated echoes measured on phosphorus spins. The blue points correspond
to the real part of the signal, while orange points correspond to imaginary part of the
signal. The y axis is the intensity of the signal normalized with respect to the first point of
the first echo (the amplitude of the first complex point in the figure on the top left corner).
It can be seen from the plot, the amplitude of the echoes decays as t1 increases (from the
left to the right). The decay with respect to ∆ is not so prominent.
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Figure 3.5: Plot of amplitudes of echoes with respect to ∆ for different t1s. The blue lines
are plots of exponential fitting of the data points. The decay is faster for larger t1. The
saturation level of the fit is also lower for larger t1.
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Figure 3.6: Decay rate of the exponential fit for different t1. The error bars are calculated
according to the standard error of the estimate.
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In order to measure the decay rate of the intensities of echoes with respect to the storage
time ∆, the data is fitted to an exponential function A + Be−r∆ (blue solid lines in Fig.
3.5). The decay rates are shown in Fig. 3.6.

The intensity of the echo decays as a function of ∆. We choose an exponential function
to fit the data for simplicity. The decay rate increases monotonically as a function of
t1, which is consistent with the experimental result obtained by Niknam [18]. This is
because with more shared information between the central spin and the environment, the
system is more sensitive to perturbation in the environment. Note that in Fig. 3.5, the
decays saturate at some point. This is due to the symmetry of the mixing process in the
environment. The mixing process is complex. As one possible explanation, suppose all
possible mixing processes on the environment of a single molecule form a group G which
is a subgroup of SU(2n). Since the mixing process may have different effect on different
molecules of the ensemble, assume the initial state of the environment is ρe, after a mixing
process the state of the environment becomes

ρ′e =

∫
g∈G

gρgeg
†dτg (3.10)

for some invariant measure τg on G and
∫
g∈G ρ

g
edτg = ρe. When the system is saturated,

we have sρ′es
† = ρ′e for ∀s ∈ G. Therefore, ρ′e must commute with G, anything else is

killed in the process. Hermitian operators that commute with G are defined as symmetries
of G. For example,

∑
i σ

i
z and σ1

z · · ·σnz are both symmetries of the mixing process in
our experiment. Due to the many symmetries of the mixing process, the information is
not entirely destroyed. Instead, it is preserved as a symmetry and later gives a non-zero
echo. If G = SU(2n), the only symmetry is the identity, then any correlation between the
central spin and the environment could be destroyed given a mixing process that is long
enough. However, we note that G = SU(2n) is not a necessary condition for the signal to
decay to zero. Actually, as long as the elements that commute with G do not end up as
observables, the echo could decay to zero. The fact that the signal monotonically decays
until it saturates suggests that it is very similar to a diffusion process. This fact is the
fundamental approximation we will take in the next chapter.
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Chapter 4

Quantitative Measure of
Non-Markovianity

A stochastic chain is a collection of random variables X(t) = Xt on a common probability
space [47], where t ∈ N. Usually Xt takes values from a fixed set S, the state space of the
process. The probability of finding the system to be in some specific state sn+1 at time
t = n + 1 given all the previous states of the system is a conditional probability. The
process is a Markov chain when the probability only depends on the state of the system
at time t = n for all n ∈ N

P (Xn+1 = sn+1|Xn = sn, · · · , X0 = s0) = P (Xn+1 = sn+1|Xn = sn). (4.1)

Now suppose that the state space is finite, S = {1, 2, · · · , d}, the transition matrix from
t = n to t = n+ 1 of the Markov chain is

(Mn+1,n)ij = P (Xn+1 = i|Xn = j). (4.2)

When Mn+1,n is independent of n the Markov chain is stationary, but in general Mn+1,n can
be different for different n’s. Define the distribution vector in the d-dimensional probability
space as

πn = (P (Xn = 1), · · · , P (Xn = d))T , (4.3)

we have
πn = Mn,n−1 · · ·M1,0π0 (4.4)

where Mn,0 = Mn,n−1 · · ·M1,0 is a matrix, π0 is the initial distribution of the system.
When the state space is finite, a stochastic chain is Markovian if and only if the the time
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evolution of the distribution vector from arbitrary time t1 to arbitrary time t2 can be
represented as a matrix acting on the probability space. Generalizing the classic definition
to quantum mechanics, the distribution vector corresponds to the density matrix of the
quantum system and the probability space corresponds to the Liouville space. A quantum
process is Markovian if and only if the evolution of the system from arbitrary time t1
to arbitrary time t2 can be represented as a matrix acting on the Liouville space. This
is equivalent to saying that the evolution from t1 to t2 is always linear. Therefore, a
measurement of linearity of the evolution gives an estimation of non-Markovianity of the
process.

We are interested in two kinds of non-Markovian processes. The first kind is due to
the memory stored in the environment, and the second kind is due to different paths taken
by different parts of the ensemble system. The state of an ensemble is represented by a
density matrix ρ, assume the quantum systems in the ensemble are all closed, they can
only undergo unitary evolutions, therefore the evolution the ensemble undergoes can be
represented as

ρ −→
N∑
i

wiUiρiU
†
i , (4.5)

where ρ = 1
N

∑
i ρi, ρi’s are density matrices, and wi > 0 is the probability to find a

particle of the ensemble to be in the state ρi. Here, the decomposition of the density
matrix represents the memory of the system, it can be represented by a vector

β = (w1ρ1, · · · , wiρi, · · · , wNρN) . (4.6)

In this chapter, we refer to the vector β as the memory of the system, it is a vector in
the space L⊕N , which we refer to as the memory space for simplicity. Each ρi is a vector
in the Liouville space L. Without ambiguity, the same symbol is used for the density
operator and its vector representation in the Liouville space. When ρi = ρ for all i, the
system is uncorrelated, and the evolution can be reduced to a linear operator. In general
the process is not a linear operator on the Liouville space when the system is correlated.
The process is linear, therefore Markovian, if and only if Ui = U for all i’s. Therefore, it
is natural to define the non-Markovianity of the process as a measure of how different the
Ui’s are on average. Since a good definition of the non-Markovianity of the process should
be independent of its arguments, the non-Markovianity should be a function of Ui’s and
wi’s only. For some metric d : SU(n)×SU(n)→ [0,+∞), a measure of nonlinearity of the
evolution with respect to the metric d is

ξd =
∑
i,j

wiwjd (Ui, Uj) . (4.7)
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When the decomposition of the density matrix is dependent on some parameter x (x could
be either a number or a vector), the evolution of the density matrix of an ensemble is
represented as

ρ −→
∫
w(x)U(x)ρ(x)U(x)†dx. (4.8)

Then the nonlinearity of the evolution is

ξd =

∫∫
w(x)w(y)d(U(x), U(y))dxdy, (4.9)

and the memory β = w(x)ρ(x). ξd gives a measure of the non-Markovianity of the pro-
cess. In the following analysis we will refer to ξd as the non-Markovianity for simplicity.
Additionally, when d is induced by some norm ‖ · ‖, it is translationally invariant and
homogeneous

d(A+ C,B + C) = d(A,B),
d(αA, αB) = |α|d(A,B),

(4.10)

and obeys the strong version of the triangle inequality

d(A+B,C +D) ≤ d(A,C) + d(B,D). (4.11)

In this chapter, we are only concerned with d that is induced by a norm. In general, the
non-Markovianity of a process is different from the non-Markovianity of a combination
of the process with another Markovian process. Sometimes it is convenient to require the
non-Markovianity of a process to be independent of the coordinate, namely d (V Ui, V Uj) =
d (UiW,UjW ) = d (Ui, Uj) for arbitrary unitaries V and W . The non-Markovianity defined
with such a metric is unitarily invariant. For an open quantum system, however, it is
hard to have a similar definition. But as will be seen later, the case of the central spin
system can be reduced to a case similar to an ensemble system, thus one can still use
Eq. (4.7) to calculate the non-Markovianity. In this chapter, we show how to measure the
non-Markovianity in the central spin system using the randomized benchmarking protocol.

4.1 Twirl

Let Mn(C) denote the space of all n × n matrices with complex entries. For E ∈ Mn(C),
its unitary twirl is defined as

Etwirl =

∫
U∈SU(n)

UEU †dτU . (4.12)
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Here, dτU is the invariant measure such that dτU = dτV U for ∀V ∈ SU(n). Therefore,

V EV † =

∫
U∈SU(n)

V UEU †V †dτU =

∫
U∈SU(n)

UEU †dτV †U = E. (4.13)

This means [Etwirl, SU(n)] = 0. The twirl is closely related to the average gate fidelity of
the operator E [48]

F̃ (E) =

∫
〈φ|E|φ〉dφ =

∫
U∈SU(n)

〈φ|UEU †|φ〉dτU = 〈φ|Etwirl|φ〉. (4.14)

Note here the definition of average gate fidelity is the fidelity between E and 1. The
twirl of an operator preserves the minimal information of the operator about how close
the operator is to the identity. There are only two invariant subspaces for the conjugation
action of SU(n) on L: {1} and L−{1} [49]. Therefore, according to Schur’s Lemma, Etwirl

must be a multiple of the identity in each irreducible subspace. If the identity is chosen
as the first basis vector of L, then Etwirl = Diag(1, λ, · · · , λ) where (n2 − 1)λ+ 1 = Tr(E).
Here, we have assumed E preserves the identity. Repeated application of Etwirl onto some
state ρ ∈ L yields

Ek
twirl(ρ) = λkρ+ 1(1− λk). (4.15)

Therefore, the survival probability of the quantum state is an exponential function of k

Tr
[
ρEk

twirl(ρ)
]

= λk, (4.16)

and

F̃ (E) = λ+
1− λ
n

. (4.17)

Benchmarking protocols are based on using the twirl to estimate the average gate
fidelity of quantum channels [48]. An efficient benchmarking protocol requires the use of
the unitary-t design [50]. Let G be a finite subgroup of SU(n), G is a unitary-t design if∫

U∈SU(n)

Pt(U)dτU =
1

|G|
∑
U∈G

Pt(U), (4.18)

where Pt(U) is a polynomial of U and U † of order of at most t. Therefore, a unitary-2
design can efficiently achieve twirling. Clifford group is a unitary-2 design. Therefore, the
twirl of an operator E can be realized as

Etwirl =

∫
U∈SU(n)

UEU †dτU =
1

|C|

|C|∑
i=1

CiEC
†
i . (4.19)
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Hence, according to the rearrangement theorem

Ek
twirl =

1

|C|k

 |C|∑
i=1

CiEC
†
i

k

=
∑
i1,··· ,ik

Ci1ECi2E · · ·Cik+1
= E ~C∈Ck

(
Ci1ECi2E · · ·Cik+1

)
,

(4.20)

where Cik+1
= (Ci1Ci2 · · ·Cik)

† and ~C = (Ci1 , · · · , Cik). In the randomized benchmarking
protocol, one can estimate E ~C∈Ck

(
Ci1ECi2E · · ·Cik+1

)
by the mean of picking uniformly

at random from the Clifford group for m times for each Cij [51, 52]. Randomized bench-
marking protocol is free of state preparation and measurement error. It is a more efficient
and reliable way for estimating the average gate fidelity of a unitary-2 design compared to
state tomography [53].

Markovian noise on an open quantum system gives rise to an exponential decay in a
randomized benchmarking experiment. Any deviation of the decay function from a single
exponential function is an indication of the non-Markovianity.

4.2 Measuring Non-Markovianity in the Central Spin

System

The fact that the randomized benchmarking protocol is reliable and easy to implement and
that Markovian noise results in an exponential decay provides motivation to explore its
use to measure the non-Markovianity. In the central spin system, the noise on the central
spin is due to the coupling between the central spin and the environment. Therefore, the
noise is a function of the evolution under the heteronuclear interaction. This process in
general is non-Markvovian, and we want to use a twirl on the central spin to study this
non-Markovianity. Especially, we want to study the effect that mixing in the environment
has on the non-Markovianity of the noise on the central spin. We implement a randomized
benchmarking experiment as described in Fig. 4.1. The experimental design is quite similar
to that of symmetrized characterization of noise [54, 55]. Here, since the Clifford gates only
act on the central spin. Define

E = e−iHheteτe ,

M = e−iHhomoτm .
(4.21)

This protocol implements
(

Λ̃M
)m

, where Λ̃ is the partial twirling of the heteronuclear
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Figure 4.1: Schematic of randomized benchmarking experiment for measuring the non-
Markovianity in central spin system. Ci’s are Clifford gates acting on the central spin only.
The sequence is repeated m times in each experiment with Ci’s uniformly at random chosen
from the Clifford set of one qubit. Each experiment is repeated many time (300 times in
the simulation), and the average of the results of the experiments are taken to obtain the
survival probability after m steps. Since the Clifford gates only act on the central spin,
one is effectively twirling the evolution under the heteronuclear interaction.

evolution

Λ̃ =
∑
i

Ci1e ◦ e−iσz⊗Aτe ◦ C†i 1e = 1⊗ cos(τeA) + (σz)twirl ⊗ sin(τeA), (4.22)

where A =
∑n

i=1 ωiσ
i
z. If the initial state of the system is ρ0 = σCS

x 1, a simple picture is
obtained from the standard local field picture in Eq. (3.4) and note here that He = Hhete,
we have

ρCS
t = Tre(Eρ0E

†) = Tre

(
1

2n

2n∑
i=1

e−iσ̂zΩiτe(σx)|i〉〈i|

)
=

1

2n

2n∑
i=1

e−iσ̂zΩiτe(σx), (4.23)

where A|i〉 = Ωi. Therefore, when there is only heteronuclear interaction, the central spin
system can be decomposed into 2n components that evolve under different local fields.
This is similar to an ensemble system composed of 2n single quantum systems, using the
definition in Eq. (4.7), the non-Markovianity of the process is

ξd =
1

22n

∑
i,j

d
(
e−iσ̂zΩiτe , e−iσ̂zΩjτe

)
. (4.24)

And the survival probability after m applications of Λ̃ is

Sm =
1

2n
〈σx|

2n∑
i=1

(
e−iσ̂zΩiτe

)m
twirl
|σx〉 =

1

2n

2n∑
i=1

pmi , (4.25)

where

pi =
Tr
[(
e−iσ̂zΩiτe

)
twirl

]
− 1

d2 − 1
=

2 cos(2Ωiτe) + 1

3
. (4.26)
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According to [52], the difference of average fidelity of two channels is

∆F̃ (A,B) = |F̃ (A)− F̃ (B)|, (4.27)

then
∆F̃ (A,B) ≤‖ A−B ‖H1→1≤‖ A−B ‖�, (4.28)

where ‖ · ‖H1→1 is the one norm restricted to Hermitian input, and ‖ · ‖� is the diamond
norm. For the following quantity

ξ̃ =
1

22n

∑
i,j

|pi − pj|, (4.29)

the following relation holds
0 ≤ ξ̃ ≤ ξH1→1 ≤ ξ�. (4.30)

Since both ξH1→1 and ξ� give a measure of the non-Markovianity, measuring ξ̃ always gives a
lower bound of the non-Markovianity. In the following discussion, we will refer to ξ̃ as the
average non-Markovianity. In general ∆F̃ (A,B) is not a metric. However, It will be shown
later when τe is small, pi is a monotonic function of τe and Ωi, thus we expect larger ξ̃ for
longer τe. It is not generally possible to obtain an analytic solution if we treat the mixing
as an unitary acting on the environment. However, if the mixing is modeled as diffusive,
then there is a simple understanding of how it leads to decrease of the non-Markovianity.
The well-known models of spin diffusion are an example of such analysis [56, 57, 58].

It is helpful to represent the process as a linear operator acting on the memory space
P : L⊕N 7→ L⊕N

P =


Û1

Û2

. . .

ÛN

 , (4.31)

where L is the Liouville space. Therefore,

Pβ =
(
Û1(ρ1), · · · , ÛN(ρN)

)
. (4.32)

P is a unitary operator. The Liouville space is homomorphic to the memory space, and
the homomorphism is represented by the matrix

T = (1, 1, · · · , 1). (4.33)
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When there is diffusion, different components of the memory β may mix after a short time
δt

β =

 ρ1
...
ρ2n

→
 ρ1

...
ρ2n

+

 d11ρ1 + · · ·+ d1,2nρ2n

...
d2n,1ρ1 + · · ·+ d2n,2nρ2n

 δt, (4.34)

the differential equation for β under a diffusion process is

dβ

dt
= Dβ, (4.35)

where D = (dij) and t ≥ 0. Here, each matrix entry in D should be understood as a
multiple of the identity when applied on β. This equation describes a diffusion (exchange)
process between finite sites. Because there are no new particles generated in a diffusion
process, it is required that dii ≤ 0 for all i. And by conservation of number of particles,∑2n

j=1 dij = 0 for all i. When dii = 0, the ith site is a sink since particles can only go into
the ith site but never out. A signature of such diffusion process is that, it reaches some
equilibrium when t→∞, the equilibrium only depends on

∑
i ρi, and the diffusion process

monotonically takes the vector towards equilibrium. For an isotropic diffusion, dij = d for
all i 6= j, namely

D =


−N + 1 1 · · · 1

1 −N + 1 · · · 1
...

...
. . .

...
1 1 · · · −N + 1

 γ, (4.36)

where γ > 0. The equilibrium is βeq = (ρ̄, · · · , ρ̄), where ρ̄ = 1
2n

∑2n

i=1 ρi. A system with a
memory of βeq is uncorrelated. When the system is uncorrelated, the process can always
be written as a linear map acting on the Liouville space. That means if we combine some
process P with a diffusion process M as P = PM , the non-Markovianity of the new
process should be less than that of the old one, since the new process always first erases
some meomory. And the non-Markovianity of the process MP should be the same with
that of P , since erasing memory after P does not change the state in the Liouville space.
Therefore, we give the following generalized form of the non-Markovianity of P

Definition 4.2.1. Let

P =

 w11Ĉ11 · · · w1N Ĉ1N
...

. . .
...

wN1ĈN1 · · · wNN ĈNN

 (4.37)
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act on the memory space L⊕N , where wij > 0,
∑

i,j wij = N and Ĉijs are quantum
channels. Any operator of this form is defined as a process on the memory space. The
non-Markovianity and the average non-Markovianity of the process are defined as

ξd(P ) =
∑
i,j

wiwjd
(
C̄i, C̄j

)
,

ξ̃(P ) =
∑
i,j

wiwj|pi − pj|,
(4.38)

where wi =
∑N

j=1wji, C̄i = 1
wi

∑N
j=1 wjiĈji, pi is the decay rate of the depolarizing channel

(C̄i)twirl and d is a metric on Mn(R).

The non-Markovianity inherits the same unitary invariance from the metric d and obeys
the inequality Eq.(4.30), and it is positive definite. Then we have the following theorem.

Theorem 4.2.2. (Monotonicity of the non-Markovianity) Let P be a process without ex-
change of particles between different sites acting on the memory space L⊕N , M = eDt be
an isotropitc diffusion process. Then ξd(MP ) = ξd(P ) for any t and ξd(PM) ≤ ξd(P ) if
t ≥ 0.

Proof. Since M has the structure of a semigroup, it is sufficient to prove the theorem in
the infinitesimal case. The first part of the theorem is trivial since applying M on P from
the left only mixes the components of column vectors of P thus it does not change the sum
of the components. When D is isotropic and P is a process without exchange of particles
between different sites,

∑
iwij = w for all j. When D is isotropic, dij = (−Nδij + 1)d,

then for infinitesimal dt let M = eDdt = 1 +Ddt we have

(PM)ij = (1−Nddt)wijĈij +
∑
k

wikĈikddt = w′ijĈ
′
ij, (4.39)

where w′ij = (1−Nddt)wij+
∑

k wikddt and (PM)ij/w
′
ij. Therefore, the average of elements

of each column of PM is∑
i

w′ijĈ
′
ij = (1−Nddt)wC̄j +

∑
k

wC̄kddt = w′C̄ ′j, (4.40)

where w′ = w and C̄ ′j =
∑

iw
′
ijĈ
′
ij/w

′. Therefore, the non-Markovianity of the process
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PM is

ξd(PM) =
∑
i,j

w′iw
′
jd(C̄ ′i, C̄

′
j)

=
∑
i,j

{
w

[
(1−Nddt)wC̄i +

∑
k

wC̄kddt

]
, w

[
(1−Nddt)wC̄j +

∑
k

wC̄kddt

]}
=
∑
i,j

w2(1−Nddt)d
(
C̄i, C̄j

)
≤
∑
i,j

w2d
(
C̄i, C̄j

)
= ξd(P ).

(4.41)

Note here we have used the homogeneity and translational invariance of d.

Another important fact is that for D isotropic and any process P ,

ξd

(
lim
t→∞

PeDt
)

= 0. (4.42)

This is due to the fact that the only equilibrium state of eDt is βeq = (ρ̄, · · · , ρ̄), thus after
long enough the sums of components of columns of PM all become the same, corresponding
to a zero non-Markovianity.

If we regard the mixing process in the central spin system as a diffusion process, we
have M = eDτm . However, M cannot be an isotropic diffusion due to its special symmetry.
Indeed, recall that if the mixing is applied to the state

∑2n

i=1 ρi|i〉〈i|, it does not change the
number of spin-up spins in |i〉, therefore, the |i〉’s corresponding to the same number of
spin-up spins span an invariant subspace for mixing. Therefore, if we represent D in the
memory space, it must be block-diagonalized

D =


D0

D1

. . .

Dn

 , (4.43)

and dim(Di) = Ci
n. For simplicity, assume each Di is isotropic in the corresponding

subspace, thus the equilibrium state in the memory space is

β′eq = (ρ̄(0), · · · , ρ̄(0), · · · , ρ̄(n), · · · , ρ̄(n)). (4.44)
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Here, ρ̄(k) = 1
Ckn

∑
s=k ρi where ρi is the state of the central spin corresponding to the state

|i〉〈i| of the environment and s is the number of spin-up spins in |i〉. We have rearranged
the order of the states in β′eq so that states that correspond to the same number of spin-up
spins are in the same block, under the same basis we can represent P as

P =



Û
(0)
1

. . .

Û
(i)
1

. . .

Û
(i)

Cin
. . .

Û
(n)
1


=

 P0

. . .

Pn

 , (4.45)

where Û
(i)
j is the ith unitary acting on the jth invariant subspace of mixing and

Pi =

 U
(i)
1

. . .

U
(i)

Cin

 . (4.46)

For any P = (wijĈij) acting on the memory space L⊕N , it is defined as a subprocess if
it satisfies all properties of a process except

∑
i,j wij = 1. Define a memory subspace of

L⊕N a linear subspace that is isomorphic to L⊕N ′ for some positive integer N ′. Now for
convenience, define the following quantity between subprocesses P1 and P2 acting on two
disjoint memory subspaces M1 and M2 of L⊕N as

ξd(P1, P2) =
∑
i,j

w
(1)
i w

(2)
j d(C̄

(1)
i , C̄

(2)
j ), (4.47)

where Pα = (w
(α)
ij Ĉ

(α)
ij ), w

(α)
j =

∑
iw

(α)
ij and C̄

(α)
j =

∑
iw

(α)
ij Ĉ

(α)
ij /w

(α)
j for α = 1, 2, then we

have the following theorem

Theorem 4.2.3. Let P1 and P2 be subprocesses acting on two disjoint memory subspaces
M1 = L⊕N1 and M2 = L⊕N2 of L⊕N , then for an isotropic diffusion process M acting on
M1, the following relations hold

ξd(MP1, P2) = ξd(P1, P2),

ξd(P1M,P2) ≤ ξd(P1, P2).
(4.48)
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Proof. The first half of the theorem is trivial, since applying M on P1 from the left does
not change C̄

(1)
i . For the second half, since D = (dij) is isotropic, dij = (−N1δij + 1)d and

w
(1)
j =

∑
iw

(1)
ij = w(1) for all j. Therefore, for infinitesimal dt there is

ξd(P1M,P2) = w(1)
∑
j

w
(2)
j

∑
i

d

[
(1−Nddt)C̄(1)

i +
∑
k

C̄
(1)
k ddt, C̄

(2)
j

]

≤ w(1)
∑
j

w
(2)
j

∑
i

[
(1−Nddt)d

(
C̄

(1)
i , C̄

(2)
j

)
+ ddt

∑
k

d
(
C̄

(1)
k , C̄

(2)
j

)]
=
∑
i,j

w(1)w
(2)
j d

(
C̄

(1)
i , C̄

(2)
j

)
= ξd(P1, P2).

(4.49)

Note here we have used the homogeneity of d and the triangle inequality due to the fact d
is always induced by some norm.

Using the results of Theorem V.2. and Theorem V.3. yields the result that
ξd(Ee

Dt) ≤ ξd(Ee
Dt′), if t′ ≥ t, where we have used E instead of P to refer to the representa-

tion of E in the memory space. Now we draw the following conclusion: when there are only
heteronuclear interactions, the process is non-Markovian, and the non-Markovianity of the
process is larger for longer τe when τe is small. When there is mixing, the non-Markovianity
of the process decreases as τm increases, and the saturation of the non-Markovianity is de-
termined by the symmetry of the mixing. Although the original experiment design depicted
in Fig. 4.1 suggests implementing ME instead of EM , the non-Markovianity of ME is
equal to that of E. But since the initial state commutes with M , we are effectively im-
plementing EM repeatedly. In the randomized benchmarking experiment, the effect of M
accumulates so that for a different m, the randomized benchmarking is measuring a differ-
ent process, and for a larger m the non-Markovianity of the process is smaller. Therefore,
it is important to make sure the survival probability is measured for the same m’s when
one wants to compare the non-Markovianity of E and EM . The effect of Λ on the memory
is omitted. In many practical situations, the diffusion happens at the same time with the
evolution, in that case the evolution of the system in the memory space can be describe
by the differential equation

dβ

dt
= (−iH +D)β, (4.50)

where −iH generates the evolution process and D generates the diffusion. A similar
conclusion on the non-Markovianity can be drawn using the perturbation theory.

38



Now we prove that for small errors in the central spin system, the average non-
Markovianity ξ̃ gives an faithful estimation of the non-Markovianity. To this end, we just
need to prove that |pi − pj| is a metric. Note that the matrix representation of e−iσ̂zΩkτe

under the basis {1, σx, σy, σz} is

e−iσ̂zΩkτe =


1

cos 2Ωiτe sin 2Ωiτe
− sin 2Ωiτe cos 2Ωiτe

1

 , (4.51)

therefore, when 0 ≤ 2Ωiτe ≤ π, Tr(e−iσ̂zΩkτe) =Tr(e−iσ̂zΩlτe) if and only if e−iσ̂zΩkτe =
e−iσ̂zΩlτe . The triangle inequality is trivial

| cos 2Ωiτe − cos 2Ωjτe| ≤ | cos 2Ωiτe − cos 2Ωkτe|+ | cos 2Ωkτe − cos 2Ωjτe|. (4.52)

If we choose τe such that 2Ωiτe ≤ π for all i, according to the above analysis |pi − pj| is a
metric, thus the average non-Markovianity is a non-Markovianity.

In general ξ̃ is not a faithful measure of the non-Markovianity. For example, for the
following process

ρt =
1

2

(
U1ρ1U

†
1 + U2ρ2U

†
2

)
, (4.53)

let U1 = V U2V
† for some unitary V . Then

p1 =
Tr(Û1)− 1

d2 − 1
= p2. (4.54)

The average non-Markovianity of the process is zero, but it is a non-Markovian process and
gives a non-vanishing non-Markovianity. However as proved, the average non-Markovianity
always provides a lower bound of the non-Markovianity at worst.

4.3 Simulation

In this section we show simulation results of the randomized benchmarking experiment of
a finite ensemble system to test the theory. We choose five proton spins from one phenyl
group to simulate the environment. To simulate an ensemble average, we pick 100 different
oriantations of the external field uniformly at random and calculate the interaction Hamil-
tonian with respect to each orientation. Then the result of the simulation of a randomized
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benchmarking experiment is obtained with the Hamiltonian of each orientation, and the
mean value of the 100 results with respect to different orientations is taken as the final
result. The twirl is estimated by picking 300 random Clifford sequences and taking the
average and the survival probability is measured for m = 1, 2, 4, 8, 16, 32, 64.

When there is no mixing, an analytic result can be obtained for a randomized bench-
marking experiment. Suppose the local field seen by the central spin obeys a normal
distribution function

Ω ∼ f(Ω|0, σ2) =
1√

2πσ2
e−

Ω2

2σ2 . (4.55)

In absence of mixing, the signal can be regarded as an average of signals from spins that
see different local fields. Therefore the survival probability of the mth step is

S(m) =

∫
[p(Ω)]mf(Ω|0, σ2)dΩ. (4.56)

Using the formula that
∫

exp(ax− bx2)dx = exp(a
2

4b
)
√
π/
√
b for Re(b) > 0, one can obtain∫

cos(2Ωx)ne−
Ω2

2σ2 dx =

√
2πσ2

2n

n∑
k=0

Ck
ne
−2σ2t2(2k−n)2

. (4.57)

Therefore,

S(m) =

∫
[p(Ω)]mf(Ω|0, σ2)dΩ

=

∫ [
2 cos(2Ωt) + 1

3

]m
1√

2πσ2
e−

Ω2

2σ2 dΩ

=
1

3m

m∑
n=0

Cn
m

n∑
k=0

Ck
ne
−2σ2t2(2k−n)2

.

(4.58)

Since the linewidth at half height of the normal distribution is 2
√

2 ln 2σ ≈ 2.355σ, one
can use the the linewidth of the spectrum of the central spin to determine the value of σ.
The analytic result is compare to the simulation result in Fig. 4.2, where σ is obtained
from the linewidth of the local field distribution plot of the 100 orientations usedin the
simulation (Fig. 4.3).

We choose the average non-Markovianity as the non-Markovianity we want to estimate.
The average non-Markovianity is related to the deviation of the decay function from a single
exponential function (Fig. 4.4). Some examples of the survival probability obtained in the

40



●

●

●

●

●

●
●

■

■

■

■

■

■

■

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

m

S
ur
vi
va
lP
ro
ba
bi
lit
y

● Simulation ■ Analytic

τe=80μs, τm=0μs

●

●

●

●

●

●

●

■

■

■

■

■

■
■

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

m

S
ur
vi
va
lP
ro
ba
bi
lit
y

● Simulation ■ Analytic

τe=120μs, τm=0μs

Figure 4.2: Comparison between the theoretical calculation and simulation of randomized
benchmarking experiment when there is no mixing. The blue dots correspond to the
simulation result and the orange squares correspond to the theoretical calculation. It can
be seen they almost coincide.
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Figure 4.3: Histogram plot of local field of heteronuclear interaction Hamiltonian of 100
different orientations used in the simulation. It can be seen the local field is symmetric
about the center, and the approximate half-height width of the distribution is 9kHz.
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Figure 4.4: Correspondence between the non-Markovianity and the deviation from sin-
gle exponential decay. According to the analysis in last section, we expect less non-
Markovianity for shorter τe and longer τm. Since for small error in the central spin system,
the average non-Markovianity gives a faithful measure of the non-Markovianity, one can
use deviation from a single exponential decay to measure the non-Markovianity. The plot
on the left show when τe is small and τm is large, the process should be more Markovian,
corresponding to the plot on the right a less deviation from a single exponential function.

simulation are shown in Fig 4.6, it can be seen that with longer τm, the data points are
more close to an exponential decay. We use the coefficient of determination (R2) to measure
the deviation. Finding a explicit analytic relation between ξ̃ and R2 is hard. In Fig. 4.5,
N pi’s are generated uniformly at random from the interval [a, 1] and then the survival
probability S(m) =

∑N
i=1 p

m
i as a function of pi’s are calculated for m = 1, 2, 4, 8, 16, 32, 64.

Then 1−R2 of a single exponential fit to S(m) is calculated, and compared to ξ̃ calculated
as a function of pi’s. From the plot we see that when N is large and ξ̃ is small, R2 gives a
good estimate of ξ̃.

In Fig. 4.7, the result of R2 calculated with respect to survival probability of simulation
of different configurations is shown. The result is consistent with the theoretical prediction:
For the same τe, the greater τm is the greater R2 is; for the same τm, the greater τe is the less
R2 is before it saturates. The saturation, as we explained, is due to the symmetry of the
mixing process. Another interesting phenomenon is that for greater τe, R

2 is more sensitive
to increase of τm. This is also consistent with the argument we made in the last chapter
that with more correlation (greater τe) between the central spin and the environment, the
system is more sensitive to perturbation in the environment (τm). The fluctuation is due to
statistical error of the simulation and the scale of the environment used in the simulation.
However, due to a larger environment, a smoother behavior is expected in the experiment.
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Figure 4.5: Comparison between the average non-Markovianity and the coefficient of de-
termination of the exponential fit of the survival probability as a function of pi’s. In the
simulation, pi’s are uniformly at random generated from the interval [a, 1], as a decreases
the average non-Markovianity decreases. Then 1− R2 is plotted as a function of ξ̃, it can
be seen from the plot when the number of pi’s (N) is big and the average non-Markovianity
is small, 1−R2 gives a relatively better estimate of ξ̃. Otherwise, the fluctuation of 1−R2

around the same value of ξ̃ is quite large. For our randomized benchmarking simulation,
N = 25 = 32, that means R2 fluctuates a lot and the fluctuation depends even more on
the scale of ξ̃.

4.4 Implementing the Clifford group

In order to efficiently implement the randomized benchmarking protocol, we need to use
gates from the Clifford group. There are 24 elements in the Clifford group of one qubit, it
is important to implement every element from the Clifford group precisely. The X and Z
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gates generate the whole Clifford group. And since Z gates can be efficiently implemented
by changing the phase of the pulses, and for a well tuned spectrometer one can choose the
phase of a pulse very precisely, we only need to optimize the X gate to achieve a precise
implementation of the Clifford group [59]. On average, the X gate is implemented once
for all Clifford gates, thus this approach does not increase the error. We need to minimize
errors due to B1 inhomogeneity and the heteronuclear interaction during the pulse. For
B1 inhomogeneity, we use the GRAPE algorithm [60] developed based on optimal control
theory to find a shape pulse that is robust with respect to a range of Rabi frequency. The
nonlinearity of the spectrometer is considered. Also the amplitude distortion is minimized
by over-coupling the probe. The B1 inhomogeneity measured with a Rabi experiment is
about 24%, the fidelity of the shape pulse is optimized to cover the whole range of B1

inhomogeneity. In Fig. 4.8, we compare the experimental results of flip-flip experiments
implemented with a hard pulse and a robust shape pulse, it can be seen the decay due to B1

inhomogeneity is greatly suppressed with the robust pulse. The heteronuclear interaction
under the pulse gives every Clifford gate a non-Markovian gate-dependent error, but it can
be decomposed into a sum of Markovian errors. In fact, when one implements a Clifford
gate C ⊗ 1 on the central spin, the Hamiltonian that generates the gate with noise can be
written as
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Figure 4.8: Proton signals obtained from flip-flip experiments with a hard pulse and a
robust shape pulse. The experiments are implemented on water, the length of the hard
pulse is 1.6µs while the length of the shape pulse is 9.6µs. The outer lines of the data
obtained with the shape pulse decay much slower than those of the hard pulse due to its
robustness again B1 inhomogeneity.

H = H0(t)⊗ 1 + V, (4.59)
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where
V = σz ⊗ A, (4.60)

with the condition that

Ũ(t) = T
[
e−i

∫ t
0 H0(τ)⊗1dτ

]
,

Ũ(t0) = C ⊗ 1.
(4.61)

Here, V generates the noise due to the heteronuclear interaction. Moving into the interac-
tion frame defined by Ũ , one obtains HI = Ũ †V Ũ , according to the Lie product formula

UI(t) = T e−i
∫ t
0 HI(τ)dτ = e−i

∫ t
0 HI(τ)dτ +O(t2). (4.62)

Moving back to the ordinary frame we get

U(t) = Ũ(t)UI(t) = Ũ(t)e−i
∫ t
0 HI(τ)dτ +O(t2). (4.63)

Therefore, if t0 is relatively short, we have

U(t0) ≈ C ⊗ 1e−i
∫ t0
0 HI(τ)dτ , (4.64)

and ∫ t0

0

HI(τ)dτ = δC ⊗ A. (4.65)

Therefore, using the local field picture, U(t0) is a CPTP map on each ρi. According to
[61], Markovian gate dependent error has an exponentially weaker affect on the exponential
decay. Therefore, except for the first few points, the gate dependent error does not has a
prominent effect. Alternatively, we can design a shape pulse that simultaneously decouples
σz under the pulse to the first order using the OCT algorithm with average Hamiltonian
theory [62]. Note that under such a pulse the heteronuclear interaction is decoupled, and
the pulse is automatically robust to other B0 inhomogeneity.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, some solid state NMR techniques have been introduced and used to study
the change of local field in the central spin system. Due to the heteronuclear interaction
between the central spin and the environment, the information is shared between them. By
detecting the change of local field, we learned that information shared between the central
spin and the environment is destroyed monotonically by the mixing caused by homonuclear
interaction in the environment, which allows us to use a conditional probability to interpret
the perturbation in the environment. After about 100µs of the mixing, the decay saturates.
This is due to the symmetry of the mixing. In chapter four, we started by giving a general
description of non-Markovian processes and a measure of the non-Markovianity ξd for
ensemble systems and then generalize the method to the central spin system by taking the
local field picture.

In order to quantify the non-Markovianity in the central spin system, we gave a measure
based on measuring linearity of the process. Such a measure is metric-dependent and
positive definite. A theory describing the effect of diffusion on the non-Markovianity was
given, in which we proved that the diffusion destroys memory monotonically, resulting in
less non-Markovianity. We generalized the theory to the central spin system and showed
how the non-Markovianity would change given different correlation time and mixing time.
We also showed that the average non-Markovianity, which is closely related to deviation
from a single exponential decay of survival probability, gives a lower bound for the non-
Markovianity. And we showed that by measuring the deviation from the single exponential
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function, one can obtain a faithful estimation of the average non-Markovianity ξ̃ of the
process when the system is large enough.

5.2 Future Work

We are still working on many subjects related to the material in this thesis.

First, average Hamiltonian theory is an old topic. However, the close relationship
between control and decoupling suggests its application in quantum control theory. For
instance, the theorem proved in chapter two can also be used in a quantum control the-
ory: Given anti-Hermitians A,B and C, 1B ∈ spanLie{A1 + 1B,C1}, if and only if
limn→∞ e

naA+Ct = 0 for some a and any t. On the other hand, quantum control can
also be used in designing decoupling sequence, since all reachable average Hamiltonians
are elements of the dynamical Lie algebra of the system. An interesting work is to connect
this two areas explicitly.

For the third chapter, we want to obtain a 2D spectrum illustrating the change of
local field. When there is no change of local field, the peaks should only appear along the
line ω1 = ω2 (diagonal line) in the 2D spectrum. When there is mixing (change of local
field), one should see off-diagonal peaks. Also, it is sufficient to project data onto the line
ω1 = −ω2 to show the change of local field.

For the fourth chapter, we will do a randomized benchmarking experiment on the
central spin system to test the theory. It is also interesting to explore in what cases the
randomized benchmarking protocol gives a faithful estimation of the non-Markovianity.

48



References

[1] F. Petruccione and H. P. Breuer. The theory of open quantum systems. Oxford Univ.
Press, 2002.

[2] W. F. Stinespring. Positive functions on C*-algebras. Proc. Amer. Math. Soc., 6:211-
216, 1955.

[3] M. A. Naimark. About second-kind self-adjoint extensions of symmetrical operator.
Izv. Akad. Nauk. SSSR Ser. Mat., 4:277-318, 1940.

[4] A. G. Redfield. On the theory of relaxation processes. IBM J. Res. Dev., 1:19-31,
1957.

[5] A. G. Redfield. The theory of relaxation processes. Adv. Magn. Reson., 1:1-32, 1965.

[6] S. Nakajima. On quantum theory of transport phenomena: steady diffusion. Prog.
Theo. Phys., 20: 948?59, 1958.

[7] R. Zwanzig. Ensemble method in the theory of irreversibility. J. Chem. Phys., 33:
1338-1341, 1960.

[8] V. Gorini, K. Kossakowski, and E. Sudarshan. Completely positive dynamical semi-
groups of N -level systems. J. Math. Phys. (N.Y.), 17:821, 1976.

[9] G. Lindblad. On the generators of quantum dynamical semigroups. Commun. Math.
Phys., 48:119-130 ,1976.

[10] P. W. Anderson. Spectral diffusion, phonons, and paramagnetic spin-lattice relax-
ation. Phys. Rev., 114:10021005, 1959.

[11] J. R. Klauder and P. W. Anderson. Spectral diffusion decay in spin resonance exper-
iments. Phys. Rev., 125:912932, 1962.

49



[12] B. Herzog and E. L. Hahn. Transient nuclear induction and double nuclear resonance
in solids. Phys. Rev., 103:148166, 1956.

[13] S. K. Saikin, Wang Yao, and L. J. Sham. Single-electron spin decoherence by nuclear
spin bath: Linked-cluster expansion approach. Phys. Rev. B, 75:125314, 2007.

[14] W. L. Ma, G. Wolfowicz, N. Zhao, S. S. Li, J. J. L. Morton, and R. B. Liu. Uncovering
many-body correlations in nanoscale nuclear spin baths by central spin decoherence.
Nature Comm., 5:4822, 2014.

[15] W. Yao, R. Liu and L. J. Sham. Restoring coherence lost to a slow interacting
mesoscopic spin bath. Phys. Rev. Lett., 98:077602, 2007.

[16] W. Yang and R. Liu. Quantum many-body theory of qubit decoherence in a finite-size
spin bath. Phys. Rev. B, 78:085315, 2008.

[17] W. Yang and R. Liu. Quantum many-body theory of qubit decoherence in a finite-size
spin bath. II. Ensemble dynamics. Phys. Rev. B, 79:115320, 2009.

[18] M. Niknam. Dynamics of quantum information of the central spin problem. PhD
diss., University of Waterloo, 2018.

[19] M. Niknam, L. F. Santos, and D. G. Cory. Sensitivity of quantum information to
environment perturbations measured with the out-of-time-order correlation function.
arXiv:1808.04375v1, 2018.

[20] S. R. Hartmann and E. L. Hahn. Nuclear double resonance in the rotating frame.
Phys. Rev., 128:2042-2053, 1962.

[21] W. K. Rhim, A. Pines, and J. S. Waugh. Time-reversal experiments in dipolar-
coupled spin systems. Phys. Rev. B, 3:684-696, 1971.

[22] J. S. Waugh. Uncoupling of local field spectra in nuclear magnetic resonance: de-
termination of atomic positions in solids. Proceedings of the National Academy of
Sciences, 73(5):1394-1397, 1976.

[23] P. Caravatti, L. Braunschweiler, and R. R. Ernst. Heteronuclear correlation spec-
troscopy in rotating solids. Chem. Phys. Lett., 100:305-310, 1983.

[24] U. Haeberlen. High resolution NMR in solids selective averaging: supplement 1 ad-
vances in magnetic resonance. Vol. 1. Elsevier, 2012.

50



[25] J. S. Waugh, L. M. Huber, and U. Haeberlen. Approach to high-resolution NMR in
solids. Phys. Rev. Lett., 20:180, 1968.

[26] U. Haeberlen and J. S. Waugh. Coherent averaging effects in magnetic resonance.
Phys. Rev., 175:453, 1968.

[27] P. Mansfield. Symmetrized pulse sequences in high resolution NMR in solids. J. Phys.
C, 4:1444, 1971.

[28] W.K. Rhim, D. D. Elleman, and R. W. Vaughan. Analysis of multiple pulse NMR
in solids. J. Chem. Phys., 59:3740-3749, 1973.

[29] D. Burum and W. K. Rhim. Analysis of multiple pulse NMR in solids. III. J. Chem.
Phys., 71:944, 1979.

[30] D. G. Cory, J. B. Miller, and A. N. Garroway. Time-suspension multiple-pulse se-
quences: Applications to solid-state imaging. J. Magn. Reson., 90:205-213, 1990.

[31] P. Mansfield and U. Haeberlen. Phase compensation in multi-pulse NMR experi-
ments. Z. Naturforsch. A, 28:1081-1089, 1973.

[32] U. Haeberlen, J. D. Ellett Jr., And J. S. Waugh. Resonance offset effects in multiple-
pulse NMR experiments. J. Chem. Phys., 55:53, 1971.

[33] D.G. Cory , J.B. Miller , R. Turner, and A.N. Garroway. Multiple-pulse methods of
1H NMR imaging of solids: Second-averaging. Mol. Phys., 70:331-345, 1990.

[34] S. Idziak and U. Haeberlen. Design and construction of a high homogeneity rf coil
for solid-state multiple-pulse NMR. J. Magn. Reson., 50:281-288, 1982.

[35] B. C. Gerstein and C. R. Dybowski. Transient techniques in NMR of solids: an
introduction to theory and practice. Academic Press, 1985.

[36] B. C. Gerstein. High-resolution NMR in solids with strong homonuclear dipolar
broadening: Combined multiple-pulse decoupling and magic angle spinning. Philos.
Trans. R. Soc. London, A299:521, 1981.

[37] W. K. Rhim, D. D. Elleman, L. Schreiber, and R. W. Vaughan. Analysis of multiple
pulse NMR in solids. II. J. Chem. Phys., 60:4595, 1974.

[38] D. P. Burum. M. Linder, and R. R. Ernst. Low-power multipulse line narrowing in
solid-state NMR. J. Magn. Reson., 43:173-188, 1981.

51



[39] P. Sun, J. Seland, and D. Cory. Background gradient suppression in pulsed gradient
stimulated echo measurements. J. Mag. Reson., 161:168-173, 2003.

[40] J. Tanner. Use of the stimulated echo in NMR diffusion studies. J. Chem. Phys.,
52:2523, 1970.

[41] H. Cho, P. Cappellaro, D. Cory, and C. Ramanathan. Decay of highly correlated
spin states in a dipolar-coupled solid: NMR study of CaF2. Phys. Rev. B, 74:224434,
2006.

[42] H. Cho, T. Ladd, J. Baugh, D. Cory, and C. Ramanathan. Multispin dynamics of
the solid-state NMR free induction decay. Phys. Rev. B, 72:054427, 2005.

[43] W. Zhang and D. Cory. First direct measurement of the spin diffusion rate in a
homogenous solid. Phys. Rev. Lett., 80:1324, 1998.

[44] C. Ramanathan. Dynamic nuclear polarization and spin diffusion in nonconducting
solids. Appl. Magn. Reson., 34:409, 2008.

[45] G. Boutis, D Greenbaum, H. Cho, D. Cory, and C. Ramanathan. Spin diffusion of
correlated two-spin states in a dielectric crystal. Phys. Rev. Lett., 92:137201, 2004.

[46] A. Sodickson and D. Cory. A generalized k-space formalism for treating the spatial
aspects of NMR experiments. Prog. Nucl. Magn. Reson. Spectrosc., 33:77, 1998.

[47] P. G. Hoel, S. C. Port, and C. J. Stone. Introduction to stochastic processes., Wave-
land Press, 1986.

[48] J. Emerson, R. Alicki, and K. Zyczkowski. Scalable noise estimation with random
unitary operators. J. Opt. B, 7:S347, 2005.

[49] D. Gross, K. Audenaert, and J. Eisert. Evenly distributed unitaries: On the structure
of unitary designs. J. Math. Phs., 48:052194, 2007.

[50] C. Dankert, R. Cleve, J. Emerson, and E. Livine. Exact and approximate unitary
2-designs and their application to fidelity estimation. Phys. Rev. A, 80:012304, 2009.

[51] E. Magesan, J. Gambetta, and J. Emerson. Scalable and robust randomized bench-
marking of quantum processes. Phys. Rev. Lett., 106:180504, 2011.

[52] E. Magesan, J. Gambetta, and J. Emerson. Characterizing quantum gates via ran-
domized benchmarking. Phys. Rev. A, 85:042311, 2012.

52



[53] W. K. Wootters and B. D. Fields. Optimal state-determination by mutually unbiased
measurements. Ann. Phys., 191:363, 1989.

[54] J. Emerson, M. Silva, O. Moussa, C. Ryan, M. Laforest, J. Baugh, D. Cory, and
R. Laflamme. Symmetrized characterization of noisy quantum processes. Science
317:1893-1896, 2007.

[55] E. Magesan et al. Efficient measurement of quantum gate error by interleaved ran-
domized benchmarking. Phys. Rev. Lett., 109:080505, 2012.

[56] A. Abragam. The principles of nuclear magnetism. Oxford University Press, Oxford,
1961.

[57] A. Abragam, M. Goldman. Nuclear magnetism: Order and disorder. Clarendon Press,
Oxford, 1982.

[58] D. Greenbaum. Magnetization and spin-spin energy diffusion in the XY model: A
diagrammatic approach. J. Magn. Reson., 179:11-19, 2006.

[59] D. McKay, C. Wood, S. Sheldon, J. Chow, and J. Gambetta. Efficient Z-Gates for
quantum computing. arXiv:1612.00858v2, 2017.

[60] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. Glaser. Optimal
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