
A Study on the Effects of Exception
Usage in Open-Source C++ Systems

by

Kirsten Celeste Paquette Bradley

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Kirsten Celeste Paquette Bradley 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/200282767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Exception handling (EH) is a feature common to many modern programming languages,
including C++, Java, and Python, that allows error handling in client code to be performed
in a way that is both systematic and largely detached from the implementation of the main
functionality. However, C++ developers sometimes choose not to use EH, as they feel that
its use increases complexity of the resulting code: new control flow paths are added to the
code, “stack unwinding” adds extra responsibilities for the developer to worry about, and
EH arguably detracts from the modular design of the system. In this thesis, we perform
an exploratory empirical study of the effects of exceptions usage in 2721 open source C++
systems taken from GitHub. We observed that the number of edges in an augmented
call graph increases, on average, by 22% when edges for exception flow are added to a
graph. Additionally, about 8 out of 9 functions that may propagate a throw from another
function. These results suggest that, in practice, the use of C++ EH can add complexity
to the design of the system that developers must strive to be aware of.

iii

Acknowledgements

I’d there is one thing I have learned while completing this thesis, aside from what is
presented in this document, it is that “it is dangerous to go alone”. I honestly would not
have finished this thesis had it not been for the people in my life who support me. I will
attempt to thank everyone here, but I feel I could double the page count if I tried to fit in
everyone who deserves to be here.

Foremost, I would like to thank my supervisor, Mike Godfrey, for guiding me through
this process while also giving me the space and time I needed to do things at my own pace.
You’re a great supervisor, a master of dad jokes, and I am glad you gave me the chance to
be your student.

To Mei Nagappan and Patrick Lam, thank you for being readers for my thesis and
giving me valuable feedback to enhance this final versions.

Thank you to my parents, Sandi and Richard, for not getting too annoyed at the fact
that I was so wrapped up in school at times that I would seem to go forever without
communication. Thanks for all the cute pictures of cats and dogs. Thank you Kyle and
Natasha for putting up with my nerdiness for as long as I can remember. Thank you
Serenity and Billy for being thinking I’m a cool aunt.

I am eternally grateful for the existence coffee that is black as midnight one a moonless
night. I couldn’t have done it without you.

There are many groups of people I have left to thank for the various roles you have
played in my life.

• The Nerd Herd (Beth, Carolyn, Devin, Lindsay): you were the first group of peers
who understood me and helped me learn about myself. We may not talk much these
days due to life going separate ways, but we are there for the important things.

• Grovites (Katie, Melissa, Robin, Sandra, Tannis): living at the Grove was one of the
first times I really felt like I belonged somewhere in university. We had many great
adventures and I hope we have many more. May there always be a couple extra
bananas and canoes in your lives.

• Teaching Option (Alex, Bre, Chelsea, Dylan, Grace, Joel, Katherine, Kendra, Niki,
Sarah): you are a great group of people who made me part of their family. With
such diverse backgrounds and interests, it’s amazing we never won at trivia, but we
always got question 13.

iv

• ISAs (Aabraham, Chantelle, Dhron, Ed, Kaleb, Kevin, Leonard, Max, Marie, Rob,
Sana, Sean): it’s been Marvel-ous to work, watch movies, play games, and eat food
with all of you. I promise I’m not a spy.

• ISCs: A group of people that saw so much potential in me and continued to hire me
for just about every odd job they needed to get done. Without the support from
you, I would not have been able to become a Master’s student. Thank you for giving
me a chance.

• Lecturers (Jeff, Mark, Nomair): one of the most supportive group of people I’ve ever
met. You all let me talk to you far more than you ought to have and always gave
me confidence when I needed it most. You believe in me more than I ever have and
I have truly enjoyed every coffee and adventure we’ve had together.

• Labmates (Aaron, Achyudh, Arman, Ashwin, Bushra, Cassiano, Cosmos, Davood,
Gema, Jeremy, Magnus, Reza, Laksh, Sunjay): you have made my time in the lab
fun. I am sorry that I was the catalyst for so many shenanigans and I’m sure now
that I’m gone, there will be much more work that gets done.

• CS Department: I’ve meet many graduate students, lecturers, instructors, and pro-
fessors over the several years I’ve been involved here. While I could almost never get
to where I wanted to get to on time due to someone stopping me to ask how things
are going (or the dreaded question of ”how’s the thesis?”), you’ve made me feel like
I belong here.

• My Girl Guides (Amy, Ailbhe, Beatrix, Bella, Cassi, Charlotte Original, Charlotte
2.0, Eve, Fiona, Hanh, Hannah Bea, Gabbi, Isabel, Louise, Maya, Meredith, Mor-
gana, Olivia B, Olivia Q, Parnia, Reta): while I’ve been your leader, you hooligans
have taught me so much. It’s been amazing to watch you grow and get to know
you all. I look forward to continuing to camp and be there over the next few years.
You each have so much personality and will be great leaders one day. Thank you for
putting up with how absent minded I’ve been while finishing my thesis and giving me
a break from the rest of my hectic life. To your parents, thank you for sending your
girls on adventures with us. Most importantly, thank you Heather and Glory for all
the extra work you’ve put in this year while I’ve been finishing my thesis. You’ve
been great to lead these girls with and are great leaders!

Finally, I’d like to thank my best friends.

v

Rob, while I didn’t trust you in that first Resistance game, I (mostly) trust you now.
While we’re tired and have so much work to do, I am glad we find time to chat, play games,
and drink coffee.

Brad, since the first time I was an ISA, you’ve been a consistent influence in my life.
Sometimes good and sometimes bad. While you don’t remember it, you taught me C++
which has been kind of crucial to my research. I think I can now safely say that I’m done
at least 10% of my thesis.

Kristina, you’re a wonderful person. From baking cookies, to joyous Mario Kart vic-
tories, to late nights talking about nothing in particular, all of our shenanigans have been
awesome. I don’t think I’ve ever meet a person I can relate to as much as you. The
influence you’ve had on my life isn’t expressible in words.

Thank you everyone for making everyday exceptional.

vi

Dedication

In memory of Earl Paquette. Grandpa, Bumpa, and Good Guy.

vii

Table of Contents

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Thesis Contributions . 2

1.2 Thesis Organization . 2

2 Background and related research 4

2.1 Related Research . 4

2.1.1 History of Exception Research . 4

2.1.2 Exception Usage . 5

2.1.3 Exception handling in C++ systems 5

2.1.4 Exception handling in other languages 6

2.1.5 Static Analysis Tools . 7

2.2 C++ Features . 8

2.2.1 Classes . 8

2.2.2 Resource Management . 8

2.2.3 Run-time Type Information . 9

2.2.4 Exceptions . 10

2.3 Exception Discussion . 14

2.3.1 Research Questions . 15

viii

3 Methodology 17

3.1 Static Analysis Tools . 17

3.2 Annie . 17

3.3 Zee Exception Length and Destination Analyzer 18

3.3.1 Data Extraction . 18

3.3.2 Exception Propagation Algorithm 20

3.4 Exception Graphs . 21

3.5 Corpus and Data . 23

3.6 Exception Metrics . 23

3.7 Analysis Approach . 24

4 Results 26

4.1 Data Set Curation . 26

4.2 Exception Localization . 27

4.3 Exception Flow . 28

4.3.1 Throwing Functions . 30

4.3.2 Exception Graphs . 31

4.4 Implementation . 32

4.4.1 Statement Usage . 32

4.5 Function Annotation . 35

4.6 Summary . 36

5 Conclusions 37

5.1 Limitations . 38

5.2 Future Work . 39

5.2.1 Improvements to Zelda . 39

5.2.2 Additional Programming Languages 41

5.2.3 Code Defects . 41

ix

References 42

A Exception Code Example 46

A.1 Context Graph . 49

A.2 Exception Flow Algorithm . 50

A.3 Stack Unwinding . 51

A.4 Exception Graph . 54

B Corpus 56

x

List of Figures

2.1 Inheritance Hierarchy of Standard Exceptions 11

2.2 Code example that shows aspects of exception handling written in C++. . 13

3.1 Data processing during analysis using Zelda. 18

3.2 Exception graph example . 22

4.1 Functions which throw exceptions that originate from another function. . . 29

A.1 Context graph for divisionByZeroCheck() 49

A.2 Context graph for Rational(int, int). 49

A.3 Context graph for readRational() . 50

A.4 Stack unwinding example 1. 52

A.5 Stack unwinding example 2 . 53

A.6 Stack unwinding example 3 . 54

A.7 Exception graph example . 55

xi

List of Tables

3.1 Projects for call graph comparison . 20

4.1 Metrics of projects with exceptions. 26

4.2 Prevalence of throwing functions . 30

4.3 Prevalence of calls to throwing functions 31

4.4 Control statements usage in projects . 33

4.5 Control statements in code blocks . 33

xii

Chapter 1

Introduction

Robust software must be able to recover from a variety of unforeseen error conditions that
may arise during run-time. Languages such as C++, Java, and Python provide a flexible
language feature for this known as exception handling (EH), where functions can interrupt
normal execution to allow special error handlers to run and, if possible, recover from the
error condition. A key feature of EH is that errors are often handled in a part of the code
that is removed from where the problem is detected; this allows developers to place error
handling code in key spots of the design, rather than insisting that errors be handled when
and where they are first detected.

However, using EH has both costs and risks. For example, EH may degrade performance
significantly; developers sometimes believe EH makes code harder to understand [1][29] and
debug [24]; “stack unwinding” adds extra responsibilities to developers to ensure resources
are not lost if an exception if thrown; and if an exception is thrown but not caught, the
whole program will abort. Google, for example, recommends in its C++ style guide that
EH not be used at all, although this is largely because of the redesign costs that would be
incurred if EH were to be added to their existing products [5].

Despite these beliefs, many modern programming languages have EH mechanisms and
there are known benefits to exception use such as improving error handling across modules
[1]. While there may be some inherent difficulty with exception code, this difficulty could
come from the tasks for which exceptions are used [32].

Most previous exception studies have looked mainly at Java systems, so there is a dearth
of empirical results about the use of EH in C++ code. While the basic EH approach
is similar in Java and C++, there are also important differences. For example, Java
supports checked exceptions, which means functions require exception specifications if they

1

throw exceptions, while C++ has deprecated the analogous feature. C++ requires careful
consideration of how “stack unwinding” may affect resource management and memory
leaks, while Java’s use of Garbage Collection largely obviates this need. Finally, C++
allows programmers to throw any kind of object, not just those that inherit from a master
exception class.

Because of the extra concerns that C++ EH adds and given the relative absence of
studies on EH in C++ systems, we decided to perform an empirical study of how EH affects
C++ code. To facilitate this study, we implemented a tool that can extract expression
flow through call graphs, based on LLVM tooling infrastructure; we could not find any
existing tools that could perform this kind of analysis and produce textual output for
further processing. Thus, a secondary contribution of our work is the development of this
tool, called Zelda, which we will released as open source.

1.1 Thesis Contributions

This thesis has two main contributions:

• We present an exploratory empirical study on understanding EH usage in real-world
C++ code taken from GitHub, and we evaluate the potential impact of EH usage
that may not be immediately obvious from reading the code; this study helps to shed
light on perceived versus observed issues in using EH in C++ systems.

• We present a static analysis tool — Zelda, which is based on LLVM tooling — that
can be used to extract information about EH use in C++ code. Information about
call graphs and exception flow are presented in a text format to allow analysis of
projects without the need of a visual interface. This allows for many projects to be
analyzed and studied, and also for further kinds of analysis to be performed using
the output.

1.2 Thesis Organization

This thesis is organized into five parts. Chapter 2 is a summary of related work and C++
features related to exception. This summary starts with the proposal of EH mechanisms
in programming languages leading to the first programming language to have an exception
mechanism. This is followed by the studies of exceptions in C++ and other languages and
a summary of analysis tools that influenced our tool.

2

Section 2.2 provides background information on the aspects of C++ that are related
to EH. This includes a brief summary of C++ features that are not specific to exceptions,
but are related to them, and C++ exception handling mechanisms (EHM).

Section 2.3 discusses views and opinions on EH from previous research and a software
company. This discussion highlights some of the perceived advantages and disadvantages
to using exceptions in a project. Our research questions reflect the discussion and hope to
provide meaningful results to the discussion about exception usage.

Chapter 3 explains the development of our static analysis tool and the tasks that it is
currently capable of completing. Our final algorithm for exception propagation is given in
detail. This chapter also explains exception graphs and throw length, both of which are
concepts that we use in the analysis of our research questions.

Chapter 4 contains the results of the exploratory empirical study. Each of the research
questions is addressed with an empirical study on an aspect of EH code.

Chapter 5 summarizes the contributions of this thesis, the limitations to this research,
and describes future work that could follow.

3

Chapter 2

Background and related research

2.1 Related Research

2.1.1 History of Exception Research

Prior to the implementation of EHM in programming languages, there was theoretical
research discussing what would be important for such features. This section focuses on
research that introduced mechanisms that are similar to the approach that C++ uses.

Goodenough was one of the first researchers to discuss adding exception handling to
a programming language and developed a formal notation to express exceptions and their
semantics in a language [4]. He proposed that the caller of the function should be able
to handle the error while the function itself should not be able to recover. The idea
that exceptions should be interprocedural is still encouraged today [32]. He also discusses
situations that exceptions should be used for, such as domain and range failure, and how
exceptions should be implemented, such as error codes. Finally, he talks about the potential
control flow of exceptions being either an escape from a procedure or to notify the user of
an event occurring so the user can respond and the process can continue.

Levin proposed properties that make an EHM good, such as verifiablity and practicality,
and proposed a mechanism with these properties [14]. His mechanism involved raising an
exception from within a function to be handled in a calling function based on the type
of the raised exception, similar to the mechanism that is used in modern C++. Different
from C++, the proposed mechanism included resumption of the code where an exception
was raised. Additionally, exception handling was to be performed by a handler procedure
being called, as opposed to a local block of code.

4

PL/I and CLU were the first programming languages to have EHM implemented and
was critiqued by researchers at the time. The existence of exceptions in a programming
language were first researched by Maclaren by reviewing the EMH in PL/Il[16]. This work
was a critique of the mechanisms which existed. The PL/I critique addressed the release
of resources and changes in program state after an exception has occurred. Liskov et al.
explained the EHM which they implemented in CLU and they discuss decisions which
language designers should consider when developing an EHM [15].

2.1.2 Exception Usage

Previous research has addressed several topics related to the use of EH, particularly in
Java and C++ systems. This includes empirical studies of how EH code is written, how
EH code affects defect in systems, as well as studies of how developers perceive the benefits
and drawbacks of using EH.

Shah et al. explored the question of why developers often choose not to use EH at all
[30]. They interviewed Java and C++ developers about the topic, and also developed and
validated a tool for visualizing EH usage. This work did not involve the analysis of existing
code for EH usage.

Xie et al. studied how developers handle exceptions once they have occurred[33]. They
observed that EH is often implemented to handle a conditional case, such as a file not
existing, and to handle external cases, for example checking the results from a call to
an API function. Their work categorizes these situations theoretically without examining
real-world code or consulting developers.

Marinescu studied versions of Eclipse and showed that code that uses exceptions is
more defect-prone than other code[17]. They used their tool iPlasma to inspect code at a
class level to determine if there are functions in a class that throw and catch exceptions[18].

2.1.3 Exception handling in C++ systems

Bonifacio et al. studied C++ exception usage in detail [1]. They analyzed 65 C++ projects
and surveyed C++ developers with a range of experience. They investigated the most
common types of objects caught, what percentage of the code base is dedicated to EH, and
determining what types of actions are performed in catch blocks. The survey included
questions about whether developers believe C++ programmers avoid exception usage and
why it may be avoided. Developers’ responses to their survey influenced our discussion on
exceptions.

5

Schilling created a compiler that can optimise the usage of exceptions in C++ code[27].
This work is of interest because EH relies on the types of objects at run-time which is slow
to determine in C++. While the goals of their work are different from ours, they present al-
gorithms to determine whether functions can throw exceptions based on condition analysis.
Their algorithms are more detailed than our analysis as they look at each expression and
determine if it can throw an exception while we concentrate on analyzing throw statements
and propagation.

Hasu argued that whether libraries use exceptions or another form of error handling in
C++ (and C) should be decided by the user of the library [7]. For instance, the developer
might want to have legacy code from C libraries use exceptions.

De Dinechin discussed the aspects of the assembly language for the IA-64 which must
be altered to accommodate C++ EH [3]. The optimization of code cannot occur in some
situations due to the possibility of a function throwing an exception and additional infor-
mation which must be maintained to ensure destructors are called as the stack unwinds.
Both these situations makes the final machine code more complex.

Prabhu et al. proposed an algorithm for interprocedural exception analysis for C++
[24]. This is the only other work we are aware of that explores call graphs combined with
exceptions for C++ programs. Their goal was to translate C++ code with exceptions into
an equivalent exception-free C++ program. The algorithm presented in [24] influenced the
design of the static analysis tool that we have implemented.

2.1.4 Exception handling in other languages

Kery et al. examined EH in Java [12]. Their work used about 8,000,000 Java repositories
on GitHub. They determined that superclasses, such as Exception and IOException, are
the most common catch types in Java. Additionally, they categorized statements in catch

blocks to determine what actions are taken to recover from exceptions, and found that
rethrowing and terminating are the most common responses.

Nakshatri et al. analyzed patterns of EH in Java systems [22]. Using a corpus of 7.8
million Java projects from GitHub, they analyzed the types of exceptions and the bodies
of catch statements for patterns for exception recovery. While they listed three ways to
analyze the types of exceptions, they stated that “an exception thrown [...] will eventually
be caught by a caller method using a try-catch block”. While this may be true in Java
due to compilation failure if checked exceptions are not handled or specified for a function,
there is no similar requirement in C++.

6

Other research has addressed concerns about the robustness of EH. For example, Kecha-
gia et al. studied context-dependent exceptions in Java code [11], while Oliveira et al. ex-
plored EH in Android and Java applications [23]. Robillard et al. performed static analysis
of exceptions and their flow in Java [25][26]. They introduced the notions of breadth and
depth of exceptions as meaningful ways to reason about global exception flow; they also
included two case studies and discussed how the code would be improved by reducing both
exception depth and breadth.

A concept used in the analysis in this thesis is augmenting a call graph to include
exception flow. Previous work by Choi et al. and Sinha et al. suggested augmentation
of Java flow graphs to represent exception usage [2][31]. Sinha proposed a control flow
graph that condensed potential exception instructions to have less complicated graphs.
Choi augmented the call graph by adding edges and nodes that represent exceptions at
the function level that could be used to create a graph for interprocedural flow. Both
performed an empirical study on their proposed graphs with Choi examining how a typical
flow graph is affected by their augmentation and Sinha examining the change in graph size.

2.1.5 Static Analysis Tools

To ensure accuracy of the call graphs we produced, we compared our results to the com-
mercial tool Understand by Scitools [28]. Understand is a static analysis tool that supports
several tasks to understand code, such as metric calculation, dependency analysis, and
control graphs, in languages including C++, Java, and Python. While the tool outputs
detailed call graphs, the graphs do not consider exception flow. Additionally, call and flow
graphs are produced as visuals with no easily interpreted textual option available.

LLVM is a compiler framework designed to support dynamic and static analysis de-
signed by Lattner et al.[13]. LLVM consists of sub-projects, such as Clang which is a C
and C++ compiler, that are available as open-source code. LLVM Libtooling API is a
library designed for writing tools based on Clang. Some tools the library allow developers
to specialize parsers, code generation, and Abstract Syntax Tree walkers.

The static analysis tool Rex — developed by Muscedere [20] — served as a foundation
for using LLVM’s Libtooling API. Rex is a fact extraction tool for detecting hotspots for
feature interaction in C++ code. This is accomplished by walking the Abstract Syntax
Tree (AST) of a program and recording information about how variables are used. The
appendices provide detailed instructions about what is needed to use Libtooling and a
process for downloading the required systems. The source code for Rex is publicly available
and it was used as a guide and foundation for the construction of our static analysis
tool[21].

7

2.2 C++ Features

This section is a brief summary of features in C++ that are related to EH, followed by the
specifics of EH mechanisms in C++. Appendix A contains a code example that contains
the aspects of C++ discussed in this section with an explaination of the state of memory
while the program executes.

2.2.1 Classes

Classes are a central feature in an object-oriented programming languages like C++. A
class is defined as a collection of fields and methods that operate over the internal variables
of those fields. An individual instance of a class is called an object. A field is a variable
that is associated with each object created. A method is a function that is called on an
object. The term member can be used to refer to either a field or a method. An object is
created by calling a method called a constructor and it is deleted by a destructor.

Inheritance

Inheritance means that all of the members of one class are members for another class. The
class that contains the members of another class is said to inherit from the other class.
The class that is inherited from is a superclass and the inheriting class is a subclass. The
subclass can also have additional members and override methods to perform differently on
a subclass object. A subclass object can be used in place of a superclass object in any
context.

A class can have multiple superclasses and subclasses at the same time. A hierarchy
is a directed graph where each node represents a class, and edges indicate inheritance. A
class A is a subclass of a superclass B if A inherits from B or A inherits from a class that
is a subclass of B. Being a recursive definition, a subclass can have an arbitrary number
of inheritances between itself and a superclass.

2.2.2 Resource Management

C++ does not have a garbage collector to reclaim heap allocated-memory or other resources
that are no longer needed by the executing program. C++ uses two memory pools to store
data during execution.

8

Stack Memory

The stack is the default location that a program stores data while it is executing. Stack
memory is associated with a block of code, called a scope, such as the body of a function, if
statement, and loop. When the code associated with the scope is complete, the associated
block of memory goes out of scope. If an object is allocated the stack, the destructor will
be called when the object goes out of scope.

Heap Memory

For data to be persistent outside of the scope it was allocated, the data must be stored
on the heap. Heap-allocated memory will not be freed when it goes out of scope. Mem-
ory is allocated from the heap using a new statement, which calls a constructor for the
object. Heap-allocated memory should be freed using a delete statement, which calls the
destructor for the object. While all classes have a trivial built-in destructor, a developer
can implement their own destructor to release any resources that the object possesses.

Resource Acquisition Is Initialization

Resource Acquisition Is Initialization (RAII) is an idiom that is meant to ensure that all
resources are returned when they are no longer needed. RAII promotes that all resources
an object needs should be acquired when the object is created and returned when an object
is destroyed. A simple way to ensure both happen is for all resources to be acquired within
a constructor and to be freed in the destructor.

However, while a constructor is always executed to create an instance of an object, the
destructor is not always implicitly executed. In particular, if an object is heap-allocated,
the destructor of the object must be explicitly called to free the object and its resources.
Fortunately, the destructor will always be called for stack-allocated objects when the block
they exist in goes out of scope. RAII states that all heap-allocated data should be owned
in an object on the stack, and the owner’s destructor will free the heap-allocated when the
object goes out of scope. This ensures that all resources will implicitly be returned when
they go out of scope.

2.2.3 Run-time Type Information

Run-time type information (RTTI) is a feature in C++ can determine that makes available
the types objects at runtime. While C++ is a statically-typed language, the type of an

9

object is not immediately obvious in all situations. In particular, a superclass pointer
or reference can refer to an instance of any of its subclasses. RTTI is used in exception
handling to determine if exceptions match catch types. However, RTTI is slow as it involves
traversing the entire class hierarchy to determine if an object is of a particular type.

2.2.4 Exceptions

Exception handling mechanisms vary between programming languages but typically are
used as a way to interrupt control flow when an event — an exceptional event! — occurs
that makes continued normal control flow impossible. For example, reading from a file
that does not exist or accessing an array element that is out of bounds are actions that
simply cannot be performed; EH allows the program designer to consider what to do in
these situations.

The rules about which objects can be thrown and how thrown objects must be handled
differ between programming languages. There are four components to exception handling in
C++: throw-able data, code that throws and handles exceptions, exception specifications
declared by functions, and stack unwinding.

Types of Exceptions

In C++, all objects and primitive instances can be thrown, while Java permits only classes
that inherit from Throwable to be thrown. C++ provides several pre-defined exception
classes, similar to Java’s Exception hierarchy, all of which descend from the minimal
std::exception class, presented in Figure 2.1. It is common for standard library utilities
to throw these exceptions when invalid input is received.

Since any object can be thrown, developers can create their own exception classes.
These classes can inherit from a standard exception, their own hierarchy or class, or can be
an independent class. According to Stroustrup, the intermediate exception classes should
be inherited from for different purposes [32]. For example, std::logic error is intended
to be used when the error could be caught before executing the code, such as an invalid
input or division by zero.

Exception Handling Code

There are three language features specific to exceptions: throw expressions, try statements,
and catch statements. Figure 2.2 shows a code example that uses these features.

10

Figure 2.1: Inheritance Hierarchy of Standard Exceptions. Classes marked with an aster-
isk(*) will be introduced in C++20.

11

A throw expression is used to activate exception handling. The exception causes the
normal execution to stop. The runtime system travels through the call stack, popping stack
frames for pending function calls, until it finds a catch statement in a calling function that
is willing to catch the exception. If the main function throws an exception from its function
body, or two exceptions are active at the same time, the program terminates.

A try statement surrounds a block of code that typically could throw an exception
directly, or containing a function calls that throws. A catch statement follows a try

statement and surrounds a block of code that is to be run if an exception occurs. If an
exception from the try block matches the type of the catch statement, the associated
code runs and the program continues running after the last catch statement associated
with the try block of the used handler. A catch statement can catch a type if it is of
the type specified or if RTTI can identify the thrown object as a subclass of the specified
type. A catch statement can indicate that it is willing to catch all possible exceptions by
using an ellipsis instead of a type. However, if a catch statement catches with an ellipsis,
the exception and any information it might hold, such as an error message, cannot be
accessed. Within any catch statement, the caught exception can be rethrown by using a
throw statement without specifying the exception.

Function Exception Declaration

In C++ there are two language features that can be used to indicate that a function may
throw an exception. A throw clause lists all the types of exceptions that might be thrown
from a function. However, throw clauses are deprecated as of C++11 and removed as of
C++17, partially due to relying on the C++ RTTI mechanism which is slow. Declaring
whether functions can throw exceptions is preferred to be done with noexcept(expr)

where expr evaluates to a boolean at compile time. If expr evaluates to true, then the
function will not throw exceptions. Otherwise, the function can throw exceptions. If a
function violates an exception specification, the program will abort.

Stack Unwinding

An exception is thrown from the context of some scope, which could be the body of a
conditional statement, function, try, catch, etc. As the exception propagates, it may
travel through multiple scopes. When an exception leaves a scope, the variables contained
in the scope goes out of scope. The process of blocks on the stack going out of scope while
an exception is propagating is called stack unwinding. When a block goes out of scope,
whether due to stack unwinding or the scope being finished, the destructor will be called for

12

int** matrix(int size) noexcept(false) {

int** n = nullptr;

try {

if (size < 1) throw std::out_of_range;

// calls to new may throw std::bad_alloc

n = new int*[size];

for(int i = 0; i < size; ++i){

n[i] = nullptr;

}

for(int i = 0; i < size; ++i){

n[i] = new int[size];

}

} catch (std::bad_alloc& ba) {

if (n != nullptr){

for (int i = 0; i < size; ++i){

delete[] n[i];

}

delete[] n;

}

throw;

}

return n;

}

Figure 2.2: Code example that shows aspects of exception handling written in C++.

13

each stack-based object and will not be called for heap-based objects. The difference with
stack unwinding and a block of code going out of scope is that the remainder of the code
in the associated scope will not be executed. A possible implication of not executing code
is that manual resource management might not occur. Furthermore, due to destructors
being called during stack unwinding and the inability for multiple exceptions to occur at
once, destructors should not throw exceptions. If adhering to RAII, all resources will be
released while the stack is unwinding because nothing is manually managed.

2.3 Exception Discussion

A widely-held belief that has been discussed by previous researchers — but notably without
empirical evidence — is that the use of exceptions makes code more complicated. This
section summarizes what various researchers, individuals, and companies have stated about
how exceptions might affect design clarity.

As stated by Robillard, EH can improve error recovery across modules [1]. Its use allows
the developer to be notified of incorrect usage of a module and to specify recovery actions
at a location in the system’s design that the developer feels is most appropriate (i.e., not
necessarily where the error is detected). The use of EH can also decrease the amount
of error checking required when returning from a function, as the error can result in an
exception being thrown and the appropriate handler invoked [5]. However, developers from
another survey expressed that the flow of exceptions had a negative impact on modularity
[1].

An important task while programming is knowing the state of the program during a
function call. This requires a developer to be aware of the control flow of the code, including
the expectations from any called functions. In a survey of developers, respondents stated
that exception flow and handlers add new control flow paths to the code, and may run
counter to their natural intuition [1]. This suggests that exceptions may have an impact
on the flow of a program that makes it more complicated to understand.

The use of exceptions may also impact the design style of the code [5]. For instance, if a
programmer knows that exceptions will be thrown when code is misused, they may decide
to forgo checking the validity of their input and to place their error handling code in catch

statements. Furthermore, to account for stack unwinding when an exception occurs, either
intermediate functions have to be prepared to catch all exceptions and free their resources
before rethrowing, or code has to be written that strictly adheres to Resource Acquisition Is
Initialization (RAII). Apart from RAII, there are other important best practices concerning
EH that developers must be aware of, such as “destructors must never throw”[32].

14

How exceptions are used may also influence how they are perceived by developers.
Exceptions are frequently used for error handling due to their ability to travel through
the call stack to a location that can recover from the error. As reported by a survey
participant, “error and EH (code) is hard”[1]. While it is possible that both are difficult
to write and understand, Stroustrup has stated that “exceptions make the complexity of
the error handling visible. However, exceptions are not the cause of complexity” [32]. It is
possible that the perceived difficulty of exceptions comes from how they are used and not
that they are used.

Some programming languages allow the developer to indicate the types of exceptions
which a function can throw. For example, Java has checked exceptions that must caught
or declared to be thrown from a function, or the program fails to compile. Java also has
unchecked exceptions, which a function does not have to catch or declare it throws for the
program to compile. This leads to exceptions that can travel through functions without
handlers and acknowledgement. Research has shown that unchecked exceptions result in
many program crashes in Android applications [11]. C++’s exceptions are equivalent to
Java’s unchecked exceptions. While a function can be specified as to whether it throws, it
is up to the developer to label functions in this manner. Doing so does not force the caller
to handle the exceptions at compile time like Java, but forces the program to terminate if
an unspecified exception is thrown.

This discussion serves to motivate our exploration of EH practice in C++ systems.
From previous research, we observed researchers and developers expressing concerns about
exceptions and they stated how they believed exceptions may affect a system. However,
there was no empirical evidence to support effects. Our goal was to study existing systems
that use EHM and determine how exceptions affect various aspects of a system.

Our research questions were chosen based on concerns mentioned throughout previous
research. We studied the localization of exceptions, the effects of exceptions on the control
flow and implementation of a system, and the effects of exception specification on a system.
These areas reflect previous concerns and distinct ways that the presence of exceptions may
impact a system.

2.3.1 Research Questions

We have investigated four research questions:

RQ1 How localized is exception throwing and catching?

RQ2 How does the use of exceptions impact the control flow of a program?

15

RQ3 How does the use of exceptions impact the implementation of a program?

RQ4 Do C++ exception specifications affect the outcome of exception handling efforts?

We next describe our approach to answering these question.

16

Chapter 3

Methodology

3.1 Static Analysis Tools

To analyze the presence and usage of exceptions in a code base, a static analysis tool
is needed. We could not find an existing tool that met our technical needs of performing
C++ exception flow analysis and giving textual output. We thus created two static analysis
tools, the second of which is used for our research.

3.2 Annie

The first tool we created was named Annie, short for Analyser. Annie read the AST that
is produced from clang++ to rebuild a simplified AST containing the nodes necessary for
exception analysis. Annie had two goals: determine whether exceptions are present in a
code base, and track the flow of exceptions through the call graph. To determine whether
exceptions are present, Annie found all nodes throw, catch, or try nodes and recorded
their type and presence. This step was performed to ensure that exceptions were used
frequently enough in the corpus to provide meaningful results.

The exception flow tracking involved walking the call graph to determine when functions
were called and how their exceptions would flow. In this tool, the analysis started at a
main function to find all functions that it called. This process was repeated recursively
to ensure all called functions were analyzed. This approach was thorough, reflected the
entire call graph, and was slow. It involved searching the entire call graph for exceptions,
which was tedious for large programs. For these programs, large sections did not need to

17

Figure 3.1: Data processing during analysis using Zelda.

be analysed as they had no exceptions. Additionally, the code for uncalled functions was
never analysed which resulted in code without a main function, such as libraries, not being
analyzed.

While this tool worked for basic analysis, we observed that larger programs were causing
Annie to terminate while still processing data. This could have been due to the program
using a lot of disk space to store AST files from clang, and tracking the many paths ex-
ceptions could flow involving a lot of memory to be used while the program was running.
Additionally, from analyzing code, more nodes of interest were identified and the complex-
ity of C++ ASTs were becoming more apparent and, despite our best efforts, the code was
becoming unmanagable. Thus, we built a new tool to address these concerns.

3.3 Zee Exception Length and Destination Analyzer

The second tool we created was named Zelda — Zee1 Exception Length and Destination
Analyzer — based on the LLVM Libtooling infrastructure [13]. Libtooling has a tool for
walking ASTs and stores detailed information about most statements and expressions for
easy access. Zelda consists of a set of AST tree walkers that extract and output information
about exception handling, including the flow of exceptions, and the basic classification of
expressions. The capabilities and implementation details of Zelda are discussed further
below.2

3.3.1 Data Extraction

The first task was to determine the presence of exception code. As discussed in Section
2.2.4, this involves the detection of try statements, catch statements, and throw expres-
sions. Each of these has a specific type of AST node, making finding all instances of these

1Pronounced with an outrageous French accent [10].
2We will release Zelda as open source.

18

nodes a simple task in a walk of the AST. Furthermore, the declaration of the catch

statement and expression of the throw expression are stored in the node, which simplifies
determining the types.

The second task was to collect data about other aspects of the code in the corpus,
specifically line counts and statement classification. The line counts of functions and
catch statements were calculated by counting the number of newline characters present
in the pretty print of the body from LLVM. Statement classification involved recording
the types of statements present. AST nodes of interest were simple to detect due to
having unique nodes in the structure, including returns, breaks, continues, throws, and
deletes. Further classification involved looking at some function calls from the C++
standard library whose use is known. For instance, calls to operator<< and printf were
classified as prints.

The final task for Zelda was to extract and map exception flow through a system.
This involves knowing where exceptions occur, the types of thrown exceptions and catch

statements, and call information. All of this data can be determined from walking the AST;
however, more information is needed than for a typical call graph. Specifically, knowing
about the presence of a throw statement or a function call in a function is not enough
information to understand exception flow. For this purpose, an augmented call graph,
which we call a context graph, is used in this analysis. A context graph associates a call
with the calling function and the context within the calling function. For our purposes,
the context can be either a try statement, catch statement, or function. An example of
a portion of a context graph is presented in Appendix 5.2.3.

While the first two tasks are relatively simple to implement, tracking exception flow
through a program is more complicated. To ensure accuracy, the call graph has to be
correct. Given the size of the corpus, it was infeasible to check the accuracy of the call
graphs on a large sample of projects. The commercial tool Understand by SciTools[28]
was used to compare the call graphs of nine projects that were randomly chosen from the
corpus. Table 3.1 presents the projects used for comparison. The majority of functions in
the call graph were reported by both tools, although both reported functions that the other
did not detect. Each of the programs reported calls to library functions that the other did
not report. Since we are not interested in exceptions thrown from libraries, this is not
a concern. Additionally, Understand reported calls to parent constructors, destructors,
overridden methods, and templated functions that Zelda did not report. Zelda does not
report destructor calls because developers are discouraged from throwing exceptions from
destructors due to a combination of a program terminating if two exceptions are active at
the same time and the fact that destructors are implicitly called while the stack unwinds.
The remaining calls that Zelda does not report may be important to know about and could

19

User Project Called(Zelda) Matching
dermesser libsocket 70 94.5%
Fat-Zer tdeutils 43 97.7%
greg-hellings sword 914 80.5%
gulp21 QeoDart 0 NA
licq-im licq 10 100.0%
nireis pferd 68 93.2%
Nocte- rhea 81 100.0%
tfarina idep 208 97.2%
thaddeusbort cantranslator 33 94.0%

Table 3.1: Projects used to compare call graphs between Understand and Zelda. Matching
represents the number of functions found by Zelda divided by the number of fucntions
found by Understand.

be found by improving the tool.

Aside from comparing the call graphs from Zelda to the call graphs of Understand, the
data extracted about exceptions and their flow was checked for accuracy. The exception
data was checked first by writing small programs which used features during development.
Once initial development was complete, the results of a few randomly selected projects
was analyzed versus a manual traversal of exceptions. Any problems were addressed by
making smaller cases that replicated the observed problem and were fixed.

3.3.2 Exception Propagation Algorithm

Once the call graph is determined, Zelda combines the context and exception information
to determine the flow of exceptions through a program. This is accomplished by looking
at the context of each throw statement with the following algorithm:

Find all throw statements T that are not rethrows
For each throw statement t in T :

Find all context edges C for t
For each context c in C:

Remove c from C
If c is a catch and t is a throw in c

Add edge(context(c),t) to C
If c is a catch and c contains a rethrow

20

Add edge(context(c),t) to C
If c is a catch and c does not contain rethrow

Continue
If c is a try

Find first catch c1 of c of type t
If no such catch exists

Add edge(context(c),t) to C
else

Add edge(c1,t) to C
If c is a function

Find all function calls to c
For each function f that calls c:

add edge(callContext(c,f),t) to C

Through these steps, all exceptions are traced to either the catch statements that catch
them, or to the last function that throws them.

For our empirical study, the graphs and code information are output in the Tuple
Attribute Language (TA) and queried using Grok [8][9]. Grok is a programming language
designed at the University of Waterloo that performs relational algebra. Previous uses of
Grok include analyzing factbases representing relationships from a parser, such as Rex [20].
Operations that are present in Grok, such as transitive closure, relational composition, and
set operations, make it ideal for manipulating the information from Zelda.

3.4 Exception Graphs

Exceptions unwind the stack of an arbitrary number of function calls, which means the
control flow through a program can be drastically changed based on an exception being
thrown. However, in a typical call graph, the semantics of returning to the calling function
is implied by the graph. Thus, call graphs do not account for exceptional behaviour and
the flow is inaccurately expressed. However, due to exceptions travelling up the call stack,
if the developer knows a function can throw an exception, it would not typically be difficult
to trace the exception through the call graph. However, some additional information is
needed in the call graph

Consider a flow graph that includes both calls between functions and returns from
functions. Calling a function that does not throw an exception will result in the return to

21

A

B C D

E

F

l:10 l:20 l:42

l:75

l:5 l:8

int(l:45)

int

int(uc)

int(uc:E)

int(uc)
int

int(l:89)
int(uc:E)

Figure 3.2: Exception graph example. Solid lines indicate a function call and the line the
call is from is a label on the edge. Dashed lines indicate a thrown exception. Dashed lines
that are not directed at a node indicates the function throws the exception.

the caller to be to the same location as the call to the function. Thus, return edges are
not needed and are understood to implicitly be the reverse of call edges.

Consider an exception that is caught in the function that throws it. While this does
activate stack unwinding, within a function unwinding the stack is effectively equivalent to
breaking out of one or more nested conditionals. Additionally, since control flow remains
in the function, the graph would not be altered outside of the throwing function.

Now consider an exception that is not caught in the throwing function. All calls to this
function may result in an exception throw. To represent these potential throws an edge
that does not have a destination is added from the function to indicate the function throws
that type. If the throwing function is called, an edge annotated with the exception type
and where it is caught are added from the throwing function to the calling function. The
exception being caught will travel back to the call location and then unwind the stack to
find a matching catch statement. While this is occurring, destructors will run for all stack
allocated objects, which means that other function calls will be occurring that should be
added to the graph. For simplicity, these function calls are not considered in our exception
graphs. Eventually, the exception is caught and the control flow is at a different place in a
calling function than where the function call occurred. Thus, this edge, while still returning
to the calling function, would be separate from the call edge. Additionally, each exception
could have a unique catch location that could be represented with a unique throw edge.

Any function that throws an exception results in an edge being added to the excep-
tion graph. Furthermore, these functions need to implement an exception handler or the

22

exception will further propagate resulting in more edges being added to the graph.

Figure 3.2 depicts an exception graph for some arbitrary function. From A, there are
calls to B, C, D, and F. There are calls to E from B and D. The functions E and F each throw
an exception of type int. From E, the function B catches the exception on line 45, while D

does not catch the exception and results in an exception edge being added to D, annotated
with “uc” for uncaught followed by E to indicate where the exception originated. Finally,
A catches the exception from F on line 89 and does not catch the exception from E and
adds an additional exception edge from A.

Another exception graph is in Appendix 5.2.3, representing a code example.

3.5 Corpus and Data

The projects used for analysis are C++ projects that are publicly posted on GitHub. They
have a main language of C++, are at least a year old, have had more than 100 commits
in their lifetime, and have been committed to within the previous year. The projects
were selected using a mirror of GHTorrent [6] from February 2017 with the code being the
current versions from July 2017. There were 3,686 projects that matched these criteria.
Removing instances of repeated projects, there was a total of 2,721 projects. The projects
of the corpus and metrics are presented in Appendix B.

Various subsets of the corpus are used to address our research questions. These subsets
are determined based on what aspects of code are being addressed. For example, projects
that use a specific feature may be compared to projects that lack that feature, or features
are checked between different aspects of the same project. If a specific subset is not
specified, then the entire corpus was studied.

3.6 Exception Metrics

A metric called depth was defined by Robillard et al. to model the number of paths
an exception could travel in a system [26]. Their metric inspired our metric, the throw
length of an exception, which represents the number of unique functions that the exception
will travel through before it is caught. This includes all functions through any path the
exception could flow through. If an exception is rethrown, it is considered to be the same
exception and further propagation increases the distance it travels, while an exception
thrown from a catch statement is a unique exception.

23

The metric is influenced by McCabe’s cyclomatic complexity [19]. The intuition behind
cyclomatic complexity is that more potential paths through a program likely implies that
the program is more complex. The existence of additional paths due to exceptions suggests
that the program may be more complex which reflects the previously expressed concern
from developers.

Similar to cyclomatic complexity, throw length is about the flow of the program. How-
ever, exception flow works in the reverse order of function calls. Additionally, cyclomatic
complexity is calculated as the sum of the number of flows through each function, which
means each function is considered individually. Throw length is calculated by investigating
all the paths exceptions could take through a program. The order of called functions is
crucial to this measurement unlike in cyclomatic complexity. While the order of function
calls is important to the tracking the flow of exceptions, the metric is concerned with the
number of functions visited and not the order of visitation. Using this metric, we can
determine how many functions are affected by the introduction of exceptions.

3.7 Analysis Approach

In this section, we describe the approach used to analyze each of our research questions.

RQ1 How localized is exception throwing and catching?

To determine whether an exception is intermodule, the throw nodes in our context
graph contains the file name of the throw statement and a boolean indicating the throw

is not intermodule yet. As the exception propagates, each time the exception visits to a
function, the file of the function and throw are compared. If these two files do not match,
the throw is labeled as intermodule. Similarly, when an exception visits a catch node, the
file of the catch and the throw are used to determine if there is an intermodule catch.

We analyzed these results to determine how many exceptions are intermodule and
compare the catch rates between intermodule exceptions and non-intermodule exceptions.

RQ2 How does the use of exceptions impact the control flow of a program?

To evaluate the impact exception have on control flow, we consider the paths that an
exception may travel during the execution of a program. We identified the number of
functions that throw due to a throw statement contained within in it, as well as to having
an uncaught exception from a function it called. We also consider the number of calls to
each function that potentially throws an exception. These results are used to determine
how many edges would be added to a call graph to make it an exception graph to evaluate
how many control flow paths are added due to exceptions.

24

RQ3 How does the use of exceptions impact the implementation of a program?

During the analysis of programs, statements that dictate control flow and heap alloca-
tion are counted to determine the number of occurrences in each project. Whether these
nodes occur in exception code is also tracked. This data is used to determine if these state-
ments are used differently in projects that contain exceptions and whether exception code
uses these statements differently. Whether statements are used at different frequencies
between different types of code may give insight into how exceptions are typically used.

RQ4 Do C++ exception specifications affect the outcome of exception handling efforts?

We identified all functions that contain an exception specification as part of their signa-
ture. The presence of a specification is used to group functions and projects. The overall
throw length of exceptions is compared between these groups to determine whether there is
a correlation between exception specification and throw length. Whether there is a differ-
ence between throw length based on exception specification could reflect when exceptions
specifications should be used.

In the next chapter, we discuss the results of these studies.

25

Chapter 4

Results

In this chapter, we discuss the results of our study.

4.1 Data Set Curation

We initially considered all projects in Github that were written mainly in C++, were at
least a year old, had had more than 100 commits in their lifetime, and had been committed
to within the previous year; this resulted in a preliminary set of 2721 distinct projects
containing over 99 MLOC. We then ran these projects through our extractor to filter out
those that did not use any EH features; that is, we discarded projects that did not contain
at least one catch, try, or throw node in their AST. This left us with a set of 1182 projects
comprising over 73 MLOC; Table 4.1 shows the total and median size of these systems,
and the total and median number of catch, try, and throw nodes. The 1,539 projects
that did not use exceptions contained about 22 MLOC with a median of n lines of code.
This suggests that larger projects tend to use exceptions more often.

Total Median
Number of projects 1,182 -
Lines of code 73,309,259 8,299
catch statements 90,947 13
try statements 67,686 12
throw expressions 63,269 10

Table 4.1: Metrics of projects with exceptions.

26

While exception usage seems relatively common across the corpus, with an average of
53.5 throws per project with exceptions, the median number of throws is ten. This suggests
that the majority of projects that use exceptions use them seldomly. In fact, there are
n projects that have no throw expressions but have catch statements, and m projects
that have no catch statements but have throw statements. A project that only catches
exceptions implies that either the developer is attempting to ensure that no exceptions
could be thrown without knowing if exceptions are possible, or the project uses third-party
libraries that throw exceptions. Only having throw expressions suggests that either the
program is meant to terminate if an exception is thrown, or the project could be a library.

4.2 Exception Localization

RQ1 How localized is exception throwing and catching?

Developers are encouraged to separate code into multiple files. A single file should
contain only code which is related to a specific task. For brevity, we call all the code
contained in a single file a module.

Exceptions are an encouraged way to express that an error has occurred between mod-
ule. When used in this way, exceptions force the developer to be aware of and respond
to improper use of code without having to check for return codes signifying an error after
each call. An intermodule throw is a throw statement that unwinds the stack to or past a
function that is part of a different module. If an exception is caught in at least one module
it did not originate from, the catch is an intermodule catch. An exception is classified as
being able to be caught if there is at least one catch statement that the exception could
travel to that can catch the exception.

We found that intermodular exceptions occurred infrequently within the corpus. Of the
78,403 possible exceptions, only 9,241 (11.8%) are intermodular. This means that the vast
majority of exceptions are thrown and caught within the same module. Furthermore, of the
intermodule exceptions, 2,356 (25.5%) can potentially be an intermodule catch, while only
6,203 (9.9%) of exceptions that are not intermodular can be caught. Using a chi-squared
test, the thrown exceptions were split by whether they were intermodule and whether they
were caught. With a p-value of < 0.0001, we conclude that intermodularity and being
caught are not independent variables with exceptions being caught more often if they are
thrown intermodularly.

We conclude that intermodule exceptions are relatively uncommon, but still present.
Considering intermodule error handling is seen as a benefit of exception handling, it is

27

strange that it is uncommon for exceptions to travel between modules. This may suggest
that exceptions are a relatively common way to handle errors within a module while other
means are used to express errors outside of a module. Developers writing a module would
have the freedom to use exceptions within their module while not forcing a developer using
the module to interact with exceptions.

While intermodule exceptions are uncommon, they are about 2.5 times as likely to be
caught than exceptions within a module. This suggests that developers do respond to
exceptions from other modules more commonly than within a module. However, the fact
that exceptions are seldomly caught within a module is a contradiction to the idea that
exceptions may be used within module for error handling.

The result that it is uncommon for exceptions to travel between modules and that
exceptions that stay within are module are uncaught is interesting. If these exceptions are
left uncaught, they must eventually propagate to the main function and cause the program
to crash. This suggests that many throwing functions are in the same file as a main

function, or the function is not called from any functions that can be executed. If most
throws are in the same file as a main, the program could be likely be better modularized. If
most throwing functions are not called, it’s possible that developers avoid these functions
because they may throw exceptions.

This evidence suggests that most of the systems in our study do not handle exceptions
well. The majority of exceptions remain uncaught regardless of if the exceptions travel
intermodule. Further investigation could determine whether these exceptions could be
executed or are dead code and give insight into whether developers fail to catch thrown
exceptions, or avoid potentially throwing code. Considering thrown exceptions between
modules, further analysis could be done to determine whether functions are called that
perform the same task as throwing exceptions without the potential of a exception, such
as vector’s methods at and operator[].

4.3 Exception Flow

RQ2 How does the use of exceptions impact the control flow of a program?

A major concern about using exceptions is the potential for increasing the complexity
of control flow throughout a program. Every exception begins with a throw statement.
However, the path that an uncaught exception travels depends on the state of execution
when the exception is thrown. The exception could be caught by any function on the
current call stack. If a function does not catch an exception thrown by a function that it

28

Figure 4.1: Functions which throw exceptions that originate from another function.

calls, it implicitly throws the exception as well. This could lead to functions that throw
exceptions that do not have throw statements and are not obvious candidates for exception
analysis.

While we did not address if exceptions add complexity to a program, we studied how
the precense of exceptions could affect control flow. We studied this in two ways: first by,
looking at functions that throw exceptions that originated in another function; and second,
by examining edges that would be added to a flow graph to express paths that are due to
exceptions.

29

Direct Indirect Combined
Mean 22.9 237.9 260.8
Median 7.0 10.0 19.0
Standard Deviation 74.3 1491.4 1523.9
95th percentile 72.0 1100.2 1260.4

Table 4.2: Prevalence of functions that throw exceptions.

4.3.1 Throwing Functions

In general, we were curious about how many calls occur to throwing functions. We consider
exceptions to be thrown directly if they originate from the function being considered.
Functions throw indirectly if a function throws due to an exception travels to the function
and is not handled. We addressed the following questions:

1. How many functions throw directly or indirectly?

2. How many throwing functions are called?

3. How many calls exist to throwing functions?

First, we inspected the number of throwing functions in the project. Table 4.2 presents
the results. While most of the results vary drastically between directly and indirectly throw-
ing functions, they have similar medians. Considering the median is 19 when combined,
more than half of the projects have fewer than 20 throwing functions present. Furthermore,
we compare the count of each within a project in Figure 4.1. From a linear regression with
a p-value of < 0.0001, there are 8.39 functions that propagate an exception thrown from a
function. This suggests that there are approximately 8 functions that indirectly throw an
exception for every directly throwing function.

Knowing that there are many occurrences of throwing functions across the corpus, we
wanted to know how many functions call throwing functions. Table 4.3 presents the results.
When considering which functions call these functions, we are not concerned if the caller
throws as well. Additionally, a function with multiple calls to throwing functions is counted
as one function call. We observed that the median number of calls to directly throwing
functions is higher than indirectly throwing calls, while the mean is significantly lower.
This is interesting since there are generally more indirectly throwing functions as seen in
Table 4.2.

Finally, we consider how many calls there are to each throwing function. Unlike the
previous question, this count takes both caller and callee into account and represents the

30

Calls to Direct Calls to Indirect Throwing Calls All Calls
Mean 37.2 107.0 208.5 2417.0
Median 5.0 2.0 11.0 493.0
Standard Deviation 100.2 360.2 675.3 5370.3
95th percentile 232.8 562.4 1270.6 1996.0

Table 4.3: Prevalence of calls to throwing functions. The first two columns represent the
number of unique functions that call exceptional functions. The last two columns represent
the total number of calls.

total number of calls. This considers all directly and indirectly throwing functions. There
is an order of magnitude more calls to all functions than to throwing functions. The impact
of the throwing function calls is discussed with respect to exception graphs.

4.3.2 Exception Graphs

Given the data involved in determining the information of throwing functions, how a flow
graph would be altered due to exceptions can be expressed numerically. In particular, the
number of affected nodes and added edges can be determined.

The number of exception edges that do not lead to another node is the number of
directly and indirectly throwing functions. This is also the number of nodes that are out-
edges for exception edges. The calls to directly and indirectly throwing functions is the
number of nodes that are in-edges for exception edges. Also, the number of added edges is
the the number of calls to any throwing function plus the number of throwing functions.
The number of edges in the graph prior to the augmentation is the number of function
calls and is used to normalize the edges.

Finally, we investigated how the augmented call graph is changed due to exceptions.
The mean growth of the call graph is 22.1% with a median of 5.1%. From a linear regression
with a p-value of < 0.0001, there is a slight positive correlation between the number
of functions present and the number of exception edges added, with a slope of 0.060.
Comparing the number of edges added to the graph to the number of directly throwing
functions, a linear regression with a p-value of < 0.0001 shows a positive correlation with
a slope of 14.2. Thus, we conclude that the number of edges added to the exception graph
is linearly correlated to both the number of functions present and the number of throwing
functions present.

We can conclude that it is common for the number of edges in a call graphs to grow
linearly when exception edges are included. While the rate at which the graph grows it

31

relatively small, this is concerning due to about 8 out of 9 of all throwing functions throw
indirectly. This suggests that in the majority of instances, it is not immediately clear from
the code that an exception could be thrown.

4.4 Implementation

RQ3 How does the use of exceptions impact the implementation of a program?

There are several ways that using exceptions in a project could result in a global change
to the structure of code. The most obvious change is the presence of EHM. Aside from
these mechanisms, the may choose to implement other aspects of their program differently,
such as using instead of checking for invalid input before a function call, they may choose
write a exception handler. Also, if exceptions are used, developers are encouraged to follow
RAII suggests releasing of resources to occur in destructors, and if not, deletes are likely to
occur in catch statements. To answer this question, we studied how the use of statements
changes depending on the presence of exceptions.

Before looking at whether exceptions being used affects the implementation of a project,
we investigated the prevalence of EH code. This includes both the number of projects that
use exceptions and how much of a project is dedicated to EH. EH code was defined to be
the code within catch blocks. The median percent of code in a project with exceptions
that is dedicated to EH is 0.64% and a median across all projects of 0.02%. We compared
this to the previous result from Bonifacio [1] of 0.03% of their corpus being dedicated to
exception recovery. The amount of exception handling code is consistent between the two
studies.

4.4.1 Statement Usage

Comparing across projects in the corpus, we studied whether there was a difference in
control statement usage based on whether any exceptions are present. The measure used
is the total number of occurrences of each statement normalized by the number of lines in
the project. When comparing exception code within a project to other code in the project,
both are normalized by the number of lines of code present for the respective category.

The results in Table 4.4 compare the usage of statements between projects that use
exceptions and those that do not. The difference in control statements used is statistically
significant using a Wilcoxon rank sum test for all the statements that were studied. This

32

Statement exception non-exception p-value
break 0.0054 0.0060 < 0.0001
continue 0.0008 0.0008 < 0.0001
delete 0.0007 0.0008 < 0.0001
loops 0.0059 0.0344 < 0.0001
if 0.0417 0.0430 < 0.0001
return 0.0270 0.0283 < 0.0001
switch 0.0083 0.0077 < 0.0001

Table 4.4: Occurrences of control statements used in projects with and without exceptions
normalized by number of lines. The p-values are calculated from Wilcoxon rank sum tests.

Category NEH try catch NEH vs. catch NEH vs. try try vs. catch
break 0.0051 0.0094 0.0018 < 0.0001 < 0.0001 < 0.0001
continue 0.0008 0.0012 0.0016 < 0.0001 < 0.0001 < 0.0001
delete 0.0007 0.0031 0.0046 < 0.0001 < 0.0001 0.0072
loops 0.0119 0.0235 0.0106 < 0.0001 < 0.0001 < 0.0001
if 0.0400 0.1044 0.0161 0.0085 < 0.0001 < 0.0001
return 0.0268 0.0942 0.0815 < 0.0001 0.0001 < 0.0001
switch 0.0081 0.0094 0.0006 < 0.0001 < 0.0001 < 0.0001
throw 0.0007 0.0089 0.0233 < 0.0001 < 0.0001 < 0.0001

Table 4.5: Occurrences of control statements in different types of code blocks. The p-values
are calculated from Wilcoxon rank sum test. NEH is short for non-exception handling code.

shows that the presence of exception usage has a significant global effect on the control
structures used.

From these results, the statements with the largest difference of use are loops, which
includes do-while, for, and while loops. Loops are significantly more common in systems
that do not use exceptions. While we did not investigate why loops may be more common,
our intuition is that loops may be used to continually prompt a user until valid input is
given and similar error situations.

Studying within a project, the use of control structures is separated into occurring
within catch statements, try statements, or neither, and is presented in Table 4.5. From
the results, it is clear that these control structures contribute to the code in each category
differently. This suggests that these three types of code are written differently which
may reflect their purposes. There are several observations that can be made about these
differences.

33

The first category of statements considered was conditional statements. In general, all
conditional statements were less common in catch statements. This may suggest that once
an exception is caught, recovery is the same regardless of where the exception originated.
break statements are more prevalent in try statements than anywhere else which could be
related to try statements having more loops. Finally, if statements occur most frequently
in try statements and could reflect extra error checking before executing code that may
throw an exception.

delete, throw, and return statements were the other statements considered. delete

statements were considered due to the potential for catch statements to be used for clean-
up of heap allocated variables and were found to be most prevalent in try and catch

statements. This result is interesting due to RAII suggesting developers using exceptions
should release the heap allocated memory that is not wrapped in a class. This may suggest
that developers using exceptions tend to release resources manually before rethrowing.
Additionally, delete statements occurring more frequently in both than in non-exception
handling code may suggest that catch statements often repeat code that would be executed
at the end of a try.

throw statements occurred most often in catch blocks. This suggests that once an
exception is thrown, it is likely for further exceptions to be thrown. Alternatively, the ex-
ception could be rethrown which suggests that the function cleans up what it can and con-
tinues the propagation of the exception. The only instance that was statistically significant
for the difference in return statements was between catch statements and non-exceptional
code. This suggests that functions are often exited upon catching an exception.

We conclude that using exceptions is correlated with the overall structure of a program.
Additionally, the structure of try and catch statements are distinct from other code in a
program. Overall, how control flow is handled in catch statements is not similar to general
code.

Noting that EH code is distinct from other code, it is possible that the difference
in the used statements could be related to the tasks that EH commonly performs. For
example, perhaps error handling code is inherently different from other code as suggested
by Stroustrup who suggested that the perceived complexity of exceptions comes from the
inherent complexity of error handling[32]. We saw that conditional statements were most
common in try blocks. Considering cyclomatic complexity, this does suggest that try

blocks are more complex. However, the exception handling occurs in catch blocks which
had the least conditional statements. Thus, it is possible that the complexity is not due
to exceptions and is actually caused by error handling as suggested.

34

4.5 Function Annotation

RQ4 Do C++ exception specifications affect the outcome of exception handling efforts?

Documentation can alleviate some of the requirement for developers to know which
functions can throw exceptions. While a project may have style guides that dictate how
exceptions should be documented, there are built-in features in C++ to annotate functions
as discussed in Section 2.2.4. Both throw and noexcept document and enforce exception
usage and we investigated them together and their change to exception behaviour is not
considered. Within the context of this question, stating a function is documented indicates
that one of these two features is present for the function.

The presence of these features was first considered across the whole corpus. There were
462 projects that throw exceptions and have at least one function marked with exception
information. There were also 71 projects that did not use exceptions and had exception
specifications present for some functions. It was unexpected to find exception specifications
in projects that do not throw exceptions.

We are interested in whether there is a difference in exception distance depending on
whether annotated functions are correlated with throw length. In particular, whether a
function indicates exception usage is used to categorize projects. To determine if exceptions
travel further if the throwing function where some has exception specifications and some did
not were investigated, of which there were 66. The average throw length from a documented
and undocumented function was 3.167 and 3.746 functions respectively. Comparing with
a paired Wilcox rank sum test gives resulted in a p-value of 0.0605. Thus, we cannot
conclude that documenting a function affects the number of functions an exception travels
through.

We next considered whether function annotation existing within a project influences
throw length. This is different from the first analysis as all projects that throw exceptions
were categorized based on the presence of exceptions. The mean throw length was 9.6
functions if there were no exception specifications, and 23.1 functions if there was at least
one function with exception specification, which a t-test show was a statistically significant
difference in means with a p-value of less than 0.0001.

We hypothesized that annotating functions would decrease how far exceptions are
thrown. The fact that exceptions travel similar lengths within a project, regardless of
exception annotation, may suggest that the observed correlation between exception anno-
tations and throw length may actually be due to a some other variable. For instance, a
larger project may have more possible functions for an exception to travel through and
annotating functions could quickly convey exception information. These reasons combined
could explain the significantly higher average throw length when annotations are present.

35

Overall, we cannot conclude that annotating functions within a project affects how far
exceptions will travel. However, projects that annotate functions tend to have exceptions
with longer throw lengths. Thus, we do not see an effect of exception specification on
individual functions, while there is an effect at the project level.

4.6 Summary

We performed an empirical study on open-source projects from Github to determine how
exceptions affect projects. We asked how exceptions may flow between files and through a
program in general. We also considered how the presence of EH may change the structure
of code and whether specifying functions throwing exceptions using exception specifications
may alter the how often the exceptions are caught.

We found the following insights into how exceptions may affect a program.

• Most exceptions do not travel outside of the file they are thrown from, but those that
do can be caught more often.

• Exceptions add a number of control flow paths to a program that is linear correlated
with the number of functions in the program.

• The presence of exceptions in a system changes the use of control flow or memory
management. Code outside of exception blocks is distinct from exception blocks
based on the use of these statements.

• We cannot conclude that exception specifications on a function affect its throw length.
Projects that use exception specifications tend to have exceptions with higher throw
lengths.

Overall, exceptions have an impact on the control flow of a program that is not repre-
sented in a typical call graph. Exception handling code uses language features differently
than other code. Additionally, while a benefit of exceptions is said to be the ability to
handle errors between modules, this is an common case for exception usage.

36

Chapter 5

Conclusions

Our work presents two major contributions:

• A case study involving the use of throw length, exception graphs, and Zelda. The
study involved analyzing a corpus of C++ code for exception usage and flow to
determine how exceptions are used and their unseen effects on the project. We
addressed exception flow between files and exception flow using throw length and
exception graphs. We also studied the effects of exception usage on code structure
through use of C++ features in exception code and how exception annotation on a
function impacts exception flow.

• The development of Zelda, which performs static analysis about exceptions on C++
source code. Zelda will be released as open source code and can serve as a starting
point for further exception research. Zelda currently performs exception detection
and propagation of exceptions through possible paths in a program. Furthermore,
the output from Zelda involves text-based data to faciliate studies on large data sets.

We found that exception usage impacts various aspects of C++ programs including
exception flow increasing the size of a call graph by an average of 22% and that most
exception handling is localized to a file, but exceptions are handled more frequently when
traveling between files. Furthermore, there are about eight functions that throw exceptions
indirectly for every one function that directly throws an exception. Code contained with
try and catch blocks is distinct from non-exceptional code which could reflect the goals
of the code. We could not conclude that exception specifications made a difference in the
throw length of an exception.

37

Overall, it seems that the hesitance from developers to use exceptions may be justified.
The effects of exceptions seem to be significant to several aspects of a program. The flow
of exceptions may not be easily noticed or tracked as systems grow in size. Using software,
such as Zelda, can alleviate some of the burden on developers to track exception flow and
ensure the robustness of their software.

5.1 Limitations

The corpus studied is taken from the portion of GitHub that is publicly available. The
projects in the corpus had a main language of C++, existed for at least one year, had
at least 100 commits, and had been committed to in the last year to ensure the projects
were real, current projects. Additionally, projects that had similar names were examined
to ensure there were not forks of projects already contained in in the corpus. The results
may not generalize to other bodies of code.

The C++ Standard Library contains many classes that developers commonly use such
as string, vector, input and output, as well as other common utilities. Many of these
utilities are designed to throw exceptions when used inappropriately. However, exceptions
from built-in libraries are not considered. Thus, the results in this thesis reflect user
exceptions and may not apply to the usage of the standard library code. We decided that
this was a good trade-off, as we are primarily interested in how ordinary C++ developers
use exceptions, rather that C++ library designers.

Similarly, exceptions originating from third-party libraries are not considered in the
analysis unless the code is included within a project. This is due to the large number of
libraries that exist and the difficulty of ensuring all required information would be pro-
vided, such as compiler flags. While this information could be determined from Makefiles
and other compilation systems, there are many systems used within the corpus making,
determining the required libraries difficult.

Thus, only the code present and exceptions written within the project are analyzed.
While this does not ensure that the code is written as part of the project, it does reflect the
code that is used. This also means that if projects include code for a library, the project
is analyzed with the version of the code that it would use.

Templated functions are not analyzed by Zelda. This is due to the unique AST struc-
ture of such functions. We would also have to consider whether throw statements from
multiple instances of templated functions should be considered different exceptions. There
is uncertainty as to how these exceptions should be considered and there is added complex-
ity that makes handling these functions more difficult. We expect that templated functions

38

would not greatly change the results unless they are implemented significantly differently
than typical functions.

Our analysis also does not account for the use of function pointers. Thus, it is possible
that functions are called through pointers that we were unable to take into consideration.
However, this is a general problem when working with function pointers and higher order
functions. The only ways to address this concern is to either keep track of the possible
variables that have been assigned to a function pointer and assume that a call can be to any
such function, or to assume that any function whose signature matches the pointer could
be called. Either would not be accurate due to over estimating the number of functions
that could be called.

For the analysis of intermodule exceptions, we defined a module to be all code written
within a particular file. Our definition of modules may differ from others’ definitions.
However, our definition reflects that a developer would have to look outside of a file to
determine exception information about code.

There are other possible definitions for a module that were considered. For instance,
functions within a header file could used as a definition for a module. However, this would
not account for static functions that may be present. Classes and namespaces could also be
used which results in different rules about modules being considered. For instance, would
two classes in the same namespace be in the same module despite potentially having no
relation? Would nested classes be considered to be in the same module as the class they
are nested? Thus, we used files as our definition of modules.

While Zelda was tested against another known tool for correctness of call graphs, further
correctness of exception flow was not easily tested because there is no tool available to
compare the results against. However, between the described algorithm, testing during the
development process, and manually checking results from projects in the corpus, we are
confident the tool works as described and intended. However, there is the possibility that
Zelda does not work in situations that we have not encountered.

5.2 Future Work

5.2.1 Improvements to Zelda

While Zelda works as intended, there are aspects of C++ that are not addressed currently.
In particular, improvements could include more inclusive analysis of functions, dead code
analysis, and the analysis of language features.

39

Analysis of Functions

The analysis of templated functions, calls to virtual methods and parent constructors, and
implicit destructor calls would require additional information about class hierarchies than
the current analysis.

Another point of improvement is to distinguish between functions that are marked to
throw exceptions and those that will never throw exceptions. As the C++20 standard,
the only language component will be noexcept(expr), where expr is an expression that
evaluates to true or false. Further analysis of noexcept statements would determine if the
function is marked to never throw, potentially throw, or throw based on some property of a
class. This would both determine how this program feature is used and improve exception
flow analysis.

Dead Code Analysis

At this point, the analysis process assumes any code that is present will be executed at
some point. However, there is certainly code that is not executed included in the analysis.
For example, there are functions that are never called and conditions that can never be
met. Adding basic dead code detection could be used to determine if throw statements
could be executed. With the exception analysis involved, catch statements and code after
a throw statement could also be detected as dead code. Determining what exception code
is dead code, could give insight into where developers use exceptions that are not necessary
and how to use EHM more effectively.

Language Features

Pursuing additional information about the use of language features could lead to a better
understanding of when people use exceptions. Instead of looking at what features are used
in parts of a program, a study could be performed to address what contexts exceptions are
used in. For instance, are exceptions commonly thrown from failed conditional statements,
or how often are functions called to facilitate the throwing of exceptions.

Our work has focused on exceptions that are caught and thrown by the same project.
While one of our questions addressed whether exceptions are thrown between modules,
this question could be extended to between libraries. This would involve having the source
code for third party libraries available for analysis with projects. Ideally, the library code
could be checked separately from a project that includes it, and the exception flow could

40

be analyzed by combining the information from the project and the library. This approach
could also facilitate the analysis of exceptions from the standard C++ library.

5.2.2 Additional Programming Languages

We chose to focus on C++ exceptions when addressing exception concerns. The results in
this work may not reflect how exceptions affect other languages. The research questions
from our work could be answered for other programming languages with exceptions. Due
to exceptions being more restrictive in most programming languages, the results could vary
drastically.

5.2.3 Code Defects

We focused on the effects of exceptions in C++ code without looking at how exceptions
may affect the robustness of a program. The analysis performed could be linked to other
information about code. For instance, one could ask whether code with exceptions is more
likely to lead to code defects and address this by comparing bug reports and pull requests
with exception usage. Combining the knowledge of exception flow from Zelda with such
reports could show that exceptions have a wider impact than it seems.

41

References

[1] Rodrigo Bonifacio, Fausto Carvalho, Guilherme N. Ramos, Uira Kulesza, and Roberta
Coelho. The use of C++ exception handling constructs: A comprehensive study. In
Proc. of the 2015 IEEE International Working Conference on Source Code Analysis
and Manipulation, (SCAM-2015), pages 21–30, 2015.

[2] Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar. Efficient and pre-
cise modeling of exceptions for the analysis of Java programs. In Proc. of the 1999
ACM SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools and
Engineering (PASTE-1999), pages 21–31, 2004.

[3] Christophe De Dinechin. C++ exception handling. IEEE Concurrency, 8(4):72–79,
2000.

[4] John B. Goodenough. Exception handling: issues and a proposed notation. Commu-
nications of the ACM, 18(12):683–696, 1975.

[5] Google. Google C++ Style Guide: Exceptions. https://google.github.io/

styleguide/cppguide.html#Exceptions.

[6] Georgios Gousios and Diomidis Spinellis. GHTorrent : Github ’ s Data from a Firehose.
In Proc. of the 9th IEEE Working Conference on Mining Software Repositories (MSR-
2012), pages 12–21, 2012.

[7] Tero Hasu. Concrete error handling mechanisms should be configurable. In Proc.
of the 5th International Workshop on Exception Handling, WEH ’12, pages 46–48,
Piscataway, NJ, USA, 2012. IEEE Press.

[8] Rick Holt. Ta: The tuple attribute language, 1997.

[9] Rick Holt. Introduction to the grok language, 2002.

42

https://google.github.io/styleguide/cppguide.html#Exceptions
https://google.github.io/styleguide/cppguide.html#Exceptions

[10] T. Jones and T. Gilliam. Monty Python and the Holy Grail, motion picture, Python
(Monty) Pictures, 1975.

[11] Maria Kechagia, Tushar Sharma, and Diomidis Spinellis. Towards a context dependent
Java exceptions hierarchy. In Proc. of the 39th International Conference on Software
Engineering Companion (ICSE-C-2017), pages 347–349. IEEE Press, 2017.

[12] Mary Beth Kery, Claire Le Goues, and Brad A. Myers. Examining programmer
practices for locally handling exceptions. In Proc. of the 13th International Workshop
on Mining Software Repositories (MSR-2016), pages 484–487, 2016.

[13] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis and transformation. In Proc. of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization, pages 75–88,
Mar 2004.

[14] Roy Levin. Program Structures for Exceptional Condition Handling. PhD thesis,
Carnegie Mellon University, 1977.

[15] Barbara H. Liskov and Alan Snyder. Exception Handling in CLU. IEEE Transactions
on Software Engineering, SE-5(6):546–558, 1979.

[16] M Donald Maclaren. Exception Handling in PL/I. In Proc. of an ACM conference on
Language design for reliable software, pages 101–104, Massachusetts, USA, 1977.

[17] Cristina Marinescu. Are the classes that use exceptions defect prone? In Proc.
of the 12th International Workshop on Principles of Software Evolution and the 7th
annual ERCIM Workshop on Software Evolution (IWPSE-EVOL-11), pages 56–60,
New York, New York, USA, 2011. ACM Press.

[18] Cristina Marinescu, Radu Marinescu, Petru Florin Mihancea, Daniel Ratiu, and
Richard Wettel. iplasma: An integrated platform for quality assessment of object-
oriented design. In Proc. IEEE International Conference on Software Maintenance
(ICSM Industrial and Tool Volume), pages 77–80. Society Press, 2005.

[19] Thomas J McCabe. A Complexity Measure. IEEE Transactions on Software Engi-
neering, SE-2(4):308–320, 1976.

[20] Bryan J Muscedere. Detecting Feature-Interaction Hotspots in Automotive Software
using Relational Algebra by. Master’s thesis, University of Waterloo, 2018.

[21] Bryan J Muscedere. Rex. https://github.com/bmuscede/Rex, 2018.

43

https://github.com/bmuscede/Rex

[22] Suman Nakshatri, Maithri Hegde, and Sahithi Thandra. Analysis of exception han-
dling patterns in Java projects. In Proc. of the 13th International Workshop on Mining
Software Repositories (MSR-2016), pages 500–503, 2016.

[23] Juliana Oliveira, Nelio Cacho, Deise Borges, Thaisa Silva, and Fernando Castor. An
Exploratory Study of Exception Handling Behavior in Evolving Android and Java
Applications. In Proc. of the 30th Brazilian Symposium on Software Engineering -
SBES ’16, pages 23–32, 2016.

[24] Prakash Prabhu, Naoto Maeda, Gogul Balakrishnan, Franjo Ivanči, and Aarti Gupta.
Interprocedural Exception Analysis for C++. In Proc. of 25th European Conference
on Object-Oriented Programming (ECOOP-2011), pages 583–608, 2011.

[25] Martin P. Robillard and Gail C. Murphy. Designing robust Java programs with excep-
tions. In Proc. of the 8th ACM SIGSOFT International Symposium on Foundations
of Software Engineerings, pages 2–10, 2000.

[26] Martin P. Robillard and Gail C. Murphy. Static analysis to support the evolution
of exception structure in object-oriented systems. ACM Transactions on Software
Engineering and Methodology, pages 191–221, 2003.

[27] Jonathan L. Schilling. Optimizing away C++ exception handling. SIGPLAN Not.,
33(8):40–47, August 1998.

[28] Scitools. Scitools’ Understand. https://scitools.com, 2019.

[29] Hina Shah, Carsten Görg, and Mary Jean Harrold. Visualization of exception handling
constructs to support program understanding. In Proc. of the 4th ACM Symposium
on Software Visualization, page 19, 2008.

[30] Hina Shah, Carsten Görg, and Mary Jean Harrold. Why Do Developers Neglect Ex-
ception Handling? In Proc. of the 4th International Workshop on Exception Handling,
pages 62–68, 2008.

[31] Saurabh Sinha and Mary Jean Harrold. Analysis and testing of programs with excep-
tion handling constructs. IEEE Transactions on Software Engineering, pages 849–871,
2000.

[32] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 4th edition,
2013.

44

https://scitools.com

[33] Tao Xie and Suresh Thummalapenta. Making Exceptions on Exception Handling. In
Proc. of the 5th International Workshop on Exception Handling, pages 1–3, 2012.

45

Appendix A

Exception Code Example

This appendix provides an extended code example that details the state of memory during
the execution of a program and how exceptions effect the state of the program.

Listing A.1: C++ Rational Number Implementation

1 c l a s s Divis ionByZero {} ;
2
3 c l a s s Inva l id Input {} ;
4
5 c l a s s Rat iona l {
6 pub l i c :
7 Rat iona l () : num{0} , den{1} {}
8
9 Rat iona l (i n t num , i n t den) : num{ num} , den{ den }{

10 divis ionByZeroCheck () ;
11 reduce () ;
12 }
13
14 Rat iona l i n v e r s e (){
15 re turn Rat iona l {den ,num} ;
16 }
17
18 Rat iona l operator ∗(const i n t& k){
19 re turn Rat iona l {num∗ k , den) ;
20 }
21

46

22 Rat iona l operator ∗(const Rat iona l& rhs){
23 re turn Rat iona l {num ∗ rhs .num, den ∗ rhs . den } ;
24 }
25
26 Rat iona l operator /(const Rat iona l& rhs){
27 re turn (∗ t h i s) ∗ rhs . i n v e r s e () ;
28 }
29
30 Rat iona l operator+(const Rat iona l& rhs){
31 re turn Rat iona l {(∗ t h i s) ∗ rhs . den + rhs .num ∗ den ,
32 den ∗ rhs . den } ;
33 }
34
35 Rat iona l operator−(const Rat iona l& rhs){
36 re turn (∗ t h i s) + (rhs ∗ −1);
37 }
38
39 f r i e n d ostream& operator <<(ostream&, const Rat iona l &);
40 p r i v a t e :
41 i n t num, den ;
42
43 void divis ionByZeroCheck (){
44 i f (den == 0) throw Divis ionByZero {} ;
45 }
46
47 void reduce (){
48 i n t gcd = GCD(num, den) ;
49 num /= gcd ; den /= gcd ;
50 i f (den < 0){ num ∗= −1; den ∗= −1; }
51 }
52
53 i n t GCD(i n t a , i n t b){
54 i f (b == 0) re turn a ;
55 i f (a == 0) return b ;
56 re turn GCD(b , a % b) ;
57 }
58 } ;
59

47

60 ostream& operator <<(ostream& out , const Rat iona l& r){
61 out << r .num << ”/” << r . den ;
62 re turn out ;
63 }
64
65 Rat iona l readRat iona l (){
66 i n t num, den ;
67 cout << ” Enter two numbers : ” << endl ;
68 whi l e (c in >> num >> den){
69 try {
70 Rat iona l temp{num, den } ;
71 re turn temp ;
72 } catch (Divis ionByZero& dbz){
73 cout << ”The second number cannot be zero . ”
74 cout << ” Enter two numbers : ” << endl ;
75 }
76 }
77 throw Inva l id Input {} ;
78 }
79
80 i n t main (){
81 Rat iona l r
82 Rat iona l s ;
83 t ry {
84 r = readRat iona l () ;
85 s = readRat iona l () ;
86 cout << ” Ca l cu l a t ing ” << r << ” d iv ided by ”
87 << s << ” : ” << endl ;
88 Rat iona l t = r / s ;
89 } catch (Divis ionByZero& dbz) {
90 c e r r << ”Cannot d iv id e by ” << s << endl ;
91 re turn 1 ;
92 }
93 }

48

A
Function
name: divisionByZeroCheck()

B
Throw
type: DivisionByZero

Figure A.1: Context graph for divisionByZeroCheck(). Arrows shows the context of a
node. In this graph, A is the context of B.

C
Function
name: Rational(int, int)

D
Call
type: divisionByZeroCheck()

E
Call
type: reduce()

Figure A.2: Context graph for Rational(int, int).

A.1 Context Graph

A context graph is an interpretation of scope required to propagate an exception through
the call stack accurately. For brevity, the calls to output and input operators are not dis-
played. The following examples includes the context graphs for divisionByZeroCheck(),
Rational(int,int), and readRational().

The function divisionByZeroCheck() is displayed in Figure A.1 and contains two
nodes. Node A for the function, and node B for the throw on line 44 with type DivisionByZero.
The throw expression is not in a try or catch block, so the context for the throw is the
function.

The function Rational(int,int) is displayed in Figure A.2 and contains three nodes.
Node C for the function, node D for the call to divisionByZeroCheck() on line 10, and

49

F
Function
name: readRational()

G
Try

H
Call
type: Rational(int, int)

I
Catch
type: DivisionByZero
order: 0

J
Throw
type: InvalidInput

Figure A.3: Context graph for readRational(). A dashed line shows that a catch state-
ment is associated with a try statement.

node E for the call to reduce() on line 11. Node C is the context for D and E.

The function readRational() is displayed in Figure A.3 and contains five nodes. Node
F for the function, node G for the try statement on lines 69 to 72, node H for the call to
Rational(int,int) on line 70, node I for the catch statement on lines 72 to 75 with catch

type divisionByZero, and node J for the throw on line 777 with type InvalidInput.
Node F is the context for G and J . Node G is the context for H. Node I is a catch

statement for Node G.

A.2 Exception Flow Algorithm

Using the context graphs created in the last section, we will demonstrate how exception
flow will be calculated for the three functions in this section. The algorithm is presented
in Section 3.3.2.

The first step in the algorithm is to find all throw nodes which are not rethrows,
thus T =< B, J >. For each throw in T , all context edges are found. For B there is
CB =< (A,B) >, and for J there is CJ =< (F, J) >.

50

To process B, consult each context in CB. The first context is (A,B) and CB =<>. A
is a function, and the context of each call is added to CB. The only call to A is D, whose
context is C, thus CB =< (C,B) >. The next context is (C,B) and CB =<>. C is also
a function and is called from H, whose context is G, thus CB =< (G,B) >. The next
context is (G,B) and CB =<>. G is a try statement with catch statement I. The type
of B is divisionByZero which matches the type of I. Thus (I, B) is added to CB. The
next context is (I, B) and CB =<>. I is a catch, B is not a throw from I, and I does not
contain a rethrow, thus B is caught by I. Since CB is empty, processing B is complete.

To process J , consult each context in CJ . The first context is (F, J) and CJ =<>. F
is a function, and the context of each call is added to CJ . There are no calls to F in this
subset of the context graph, thus exception propagation is complete.

A.3 Stack Unwinding

In this section, we simulate the execution of the given program with two different input.
For the example, the input is “1 0” and the stacks are displayed in Figures A.4 to A.6.

The first point of interest while executing this program is the initialization of r and s

on line 81 and 82 main(). This adds to variables to the context of main. Next, a scope is
added for the try statement.

The call on line 84 to readRational() is added to the stack with variable num and den

on line 66. The scope for the while loop on line 68, the variables num and den are assigned
1 and 0 respectively from reading the first two inputs, and the try statement on line 69
are added.

The call on line 70 to Rational(int,int) is added to the stack which allocates the pa-
rameters num and num to be 1, and den and den to be 0. The call to divisionByZeroCheck()
on line 10 is added to the the stack, represented in Figure A.4.

Due to den being 0, a DivisionByZero exception is thrown from line 44. This exception
unwinds the stack until is reaches the try block from line 69, Figure A.5. The associated
catch has a catch type of DivisionByZero. The catch body is run and control flow
continues at line 75.

The while loop executes again. With no input, the reads from cin fail and the loop
is done. An InvalidInput exception is thrown from line 77. There is no handler on the
stack for this exception. The entire stack unwinds and the program terminates, Figure
A.6.

51

r[num=0, den=1] l:76

s[num=0, den=1] l:77

main()

try; l:78

num = 1 l:61

den = 0 l:61

readRational();

l:79

while; l:63

try; l:64

num = 1 l:6

den = 0 l:6

num = 1 l:6;this

den = 0 l:6;this

Rational(int,int);

l:65

Figure A.4: Stack unwinding example 1.

52

r[num=0, den=1] l:76

s[num=0, den=1] l:77

main()

try; l:78

num = 1 l:61

den = 0 l:61

readRational();

l:79

while; l:63

try; l:64

num = 1 l:6

den = 0 l:6

num = 1 l:6;this

den = 0 l:6;this

Rational(int,int);

l:65

throw DivisionByZero;l:40divisionByZeroCheck();

l:7

Figure A.5: Stack 2. The DivisionByZero exception is caught by the handler for the try

on line 64. The stack frames for divisionByZeroCheck() and Rational(int,int) are
removed by stack unwinding.

53

r[num=0, den=1] l:76

s[num=0, den=1] l:77

main()

try; l:78

num = 1 l:61

den = 0 l:61

throw InvalidInput;l:40

readRational();

l:79

Figure A.6: Stack 3. The handler in the main function only handles DivisionByZero

exceptions. The InvalidInput exception remains uncaught. The stack unwinds main and
the program terminates.

A.4 Exception Graph

Figure A.7 depicts the exception graph for the code example.

54

main() Rational()

B:readRational() Rational::operator/(const Rational&)

Rational::operator*(const Rational&)

Rational::inverse()

Rational(int, int)

A:Rational::divisionByZeroCheck()

Rational::reduce()

l:81,l:82

l:84,l:85 l:88

l:70

l:27

l:15

l:27

l:23

l:11

l:10

DBZ

DBZ(uc)

DBZ(uc:A)
DBZ(uc)

DBZ(l:72)

DBZ(uc)

DBZ(uc)
DBZ(uc:A)

DBZ(uc)

DBZ(uc:A)

DBZ(l:89)

DBZ(uc:A)

II(uc:B)

II(uc)
II(uc)

Figure A.7: Exception graph example. Solid lines indicate a function call and the line the
call is from is a label on the edge. Dashed lines indicate a thrown exception. Dashed lines
that are not directed at a node indicates the function throws the exception. Only functions
reachable from main are included and calls to input and output operators are ignored. DBZ
is short for DivisionByZero and II is short for InvalidInput.

55

Appendix B

Corpus

This appendix provides a summary of the GitHub projects studied, and some metrics which
were used. The project column lists the owner of the project followed by the project’s name.
The project column is the GitHub username followed by the project name. Projects can be
found at www.github.com/Username/Project where Username and Project is the entry
in the Project column of the table.

56

www.github.com

LineCount Occurrences
Project Total try catch try catch throw

matplotlib basemap 37396 2203 2323 394 554 187
cocos2d cocos2d-x 185718 0 0 1 0 1
mana manaserv 7381 12 13 5 5 8
Kitware ParaView 126037 127 21 8 8 32
blackberry WebWorks-Community-APIs 114082 339 55 17 17 60
neubig kytea 6310 18 10 2 2 3
SignFinder FaceCore 194895 22 9 3 3 95
Kimbanjang Mong2Core 180622 60 29 9 9 102
AMDmi3 streetmangler 3570 40 72 11 18 15
freicoin freicoin 23613 678 290 90 86 163
arx ArxLibertatis 25036 31 14 7 6 3
facebook folly 40375 684 624 164 244 70
hpcc-systems HPCC-Platform 307456 13681 4976 1409 1674 554
nmap nmap 100701 3 4 1 1 0
in-silico libann 3686 233 55 15 16 88
mapnik mapnik 15773 1070 298 88 99 106
machinalis protobuf-python3 22767 0 0 0 0 1
enigma-dev enigma-dev 60249 16 7 3 2 1
alcoheca xbmc 316586 5440 4304 556 1488 68
puppetlabs facter 4252 94 67 29 22 2
OKullmann oklibrary 44364 558 246 55 72 63
gerstrong Commander-Genius 39534 9 6 6 4 3
opentibia server 25181 114 89 29 22 5
seomoz simhash-cpp 539 0 0 0 0 3
moai moai-dev 593472 93 67 25 25 1
Singular spielwiese-ci 82972 108 34 34 17 1
lemire FastPFor 47514 0 0 5 0 29
cpp-netlib cpp-netlib 1414 90 51 16 18 3
edubart otclient 14870 343 115 52 45 2
dictoon appleseed 27242 233 184 76 74 69
znc znc 23802 71 64 9 9 2
uspgamedev ugdk 95039 3 3 1 1 23
openframeworks openFrameworks 53319 193 122 45 44 60
zli236 voltdb 10398 480 417 123 123 30
nonolith connect 3873 157 22 16 9 13
fritzo pomagma 819462 10633 11184 1208 2125 29
LibreCAD LibreCAD 63219 47 21 6 6 8
membase ep-engine 22099 323 210 67 92 112
inspircd inspircd 24942 157 99 35 35 93
nuigroup ccv2 17622 262 129 33 32 17
mjwybrow adaptagrams 25587 154 51 18 17 13
garrison vmc 1446 0 0 0 0 5
vlag solarus 91148 125 248 61 124 5
solarus-games solarus 92355 125 248 61 124 5
aseba-community aseba 17811 279 208 72 74 97
pioneerspacesim pioneer 61999 82 66 18 25 229
twitter mysql 781936 2 2 13 1 3
noname22 spank 3712 191 46 4 4 13
kvahed codeare 9995 304 168 55 63 61
apache thrift 78651 1586 1219 257 340 677
visionworkbench visionworkbench 62916 1377 1108 266 355 5
nickbnf glogg 4534 37 31 5 5 5
weyrick roadsend-php-raven 20510 48 30 10 9 33
ispc ispc 28820 21 10 3 3 10
jonigata caper 6751 61 32 6 6 43
ondras TeaJS 470349 2535 2511 369 649 57
toastedcrumpets DynamO 2535 154 62 15 20 14
postgres pgadmin3 57434 14 25 6 8 11
mana mana 11656 49 25 8 8 20
mysmartgrid hexabus 18554 388 354 79 95 119
Eyescale Equalizer 21290 93 29 12 11 8
Razor-qt razor-qt 13720 95 7 3 3 3
Eyescale Collage 6559 63 22 8 7 2
lightspark lightspark 40263 433 223 86 87 6
lindahua light-matrix 9587 0 0 0 0 1
mickem nscp 66966 4017 3169 490 787 157
project8 monarch 1907 361 88 24 31 33
rescrv HyperDex 5416 379 97 24 31 1
broune mathic 978 3 9 1 1 3
blackrim phlawd 4463 0 0 0 0 3
poulson Clique 27418 1104 22 4 11 2
espressomd espresso 14305 108 33 10 9 39
fador mineserver 12345 64 19 4 6 3
oftc oftc-ircd 1482 21 6 2 2 11
dworkin dgd 23520 584 103 28 28 3
p3 regal 684333 92 10 3 4 4
openscenegraph OpenSceneGraph 25282988 1728 310 91 105 183

57

LineCount Occurrences
Project Total try catch try catch throw

pgRouting pgrouting 5805 756 395 43 108 4
krofna Warrior-of-Dreamworld 1301 18 18 10 8 14
celeron55 minetest 47264 996 689 209 301 22
Ummon D-LAN 5258 86 59 16 28 7
BlueBrain codash 381 3 3 2 1 1
openSUSE one-click-installer 699 21 34 6 10 2
kcat openmw 62447 735 244 74 77 392
adobe webkit 304455 3344 563 233 227 4
aburch simutrans 109452 25 12 3 3 4
Dwachs simutrans 101028 25 12 3 3 4
commontk CTK 25610 726 527 179 204 23
Sterios SS Core 181810 68 36 9 9 102
hmmr cnrun 1964 21 22 9 9 21
rsjtdrjgfuzkfg nightingale-hacking 25281 0 0 0 0 1
Slicer Slicer 64313 472 377 121 149 2
OpenCPN OpenCPN 195425 208 21 4 6 11
openSUSE libzypp 16441 817 407 122 127 10
danielkeller vec 3026 2 2 1 1 4
project8 katydid 12539 194 82 35 29 2
worldforge cyphesis 42971 134 69 24 26 10
sjrd mozart2 4117 4 6 8 2 2
tklab-tud umundo 10413 78 24 9 10 7
yetanothergeek fxite 62826 46 32 9 10 6
PongUIO AndroidWars 3315 0 0 1 0 1
bhaak HackedUpReader 154791 168 23 6 7 25
jaaro Shuffla 2791 26 17 11 5 2
YggdrasiI KinectGrid 33378 471 41 17 14 70
mojca xetex 499071 131 32 15 8 36
hpcc-systems GraphControl 3500 56 47 24 17 8
xapian xapian 33333 1521 668 134 205 64
whackashoe cprocessing 2888 0 0 0 0 1
dterei Scraps 4256 24 41 10 12 5
NeoGeographyToolkit StereoPipeline 9147 169 90 27 29 5
lojack5 CBash 29621 451 358 96 157 10
shikadilord morningstar 775 7 8 2 3 4
openexr openexr 24838 2114 1137 261 308 231
wjwwood serial 1182 5 5 2 2 33
rakshasa rtorrent 5680 268 79 33 32 17
rakshasa libtorrent 7297 406 141 30 50 28
audacious-media-player audacious-plugins 75477 9 6 3 2 1
vslavik winsparkle 1262 135 153 27 51 37
diclophis MemoryLeak 57601 431 130 41 40 24
Forkk MultiMC4 10506 168 71 18 27 2
maidsafe-archive MaidSafe-Common 3463 157 91 42 34 3
adamnew123456 SmallWM 7410 1300 1624 375 459 8
plasmodic ecto opencv 1835 0 0 3 0 16
mgyucht Summer 2012 1326 0 0 1 0 1
Twinklebear LPCGame 4595 10 6 2 2 5
BYVoid OpenCC 45790 1204 1216 180 323 35
ailue Shuihusha 31805 3 4 1 1 0
taskwarrior task 12470 652 405 150 163 2
xyzzy-022 xyzzy 55248 786 428 123 123 52
myfavouritekk iGEM2012 3019 0 0 0 0 4
pyne pyne 178725 12 18 4 6 101
Orphus TrinityCore 179888 68 36 9 9 102
klorel clusterisator 2108 0 0 1 0 2
tahoe-lafs pycryptopp 20739 33 28 11 11 80
openwebos db8 56821 1104 1121 163 296 14
Sankore Sankore-3.1 24031 56 17 6 6 18
OpenClovis SAFplus-Availability-
Scalability-Platform

137507 868 685 108 99 133

lattice quda 34558 62 18 2 4 3
Lirusaito SingularityViewer 224073 248 204 66 55 35
codels TrinityNya 193049 22 9 3 3 95
mweidler Inverita 2265 4 0 4 4 15
CJThomson MD-Stepped-Potential-
Simulator

7624 0 0 1 0 6

0ad 0ad 88023 344 112 40 37 57
SamuelCho Freespace-Open-Swifty 184407 3128 2121 542 610 1
dscharrer innoextract 1781 71 48 15 17 10
shewu h4ck4th0n 44952 1106 1124 164 297 35
knz mgsim 6322 81 66 16 16 11
Kitware VTK 749484 4942 1894 363 364 29
hojonathanho bulletsim 194317 305 107 29 29 20
zussel oos 20464 423 419 62 78 76
MITK MITK 141961 13053 2903 791 1122 87
carson airconvision 21858 23 9 5 4 14

58

LineCount Occurrences
Project Total try catch try catch throw

adaptivegenome openge 7652 18 11 5 3 4
NIF-au TissueStack 6392 541 392 90 100 4
Jildor ZoneLimit 165401 68 36 9 9 102
gcross Nutcracker 2286 112 125 20 24 25
ipa-fmw cob driver 7151 45 23 17 10 1
danmar cppcheck 93830 899 1090 224 427 60
tonioni WinUAE 287607 975 236 57 58 100
elixir67 Sandbox 6776 14 16 9 5 0
lmccalman reverend 331 0 0 0 0 8
dblock dotnetinstaller 8369 235 132 55 57 43
openSUSE snapper 4837 141 156 25 59 42
wg-perception object recognition core 1415 11 11 5 4 10
ehebrard Mistral-2.0 37432 526 105 28 32 12
MihailJP MiHaJong 18056 169 117 34 38 39
mobile-shell mosh 4447 233 88 21 26 9
cebix macemu 69041 9 44 3 11 15
pixelballoon pixelboost 22006 0 0 0 0 6
robn pioneer 43007 82 66 18 25 227
laarmen pioneer 62077 82 66 18 25 229
wg-perception libmv 71386 189 234 35 69 6
thomasmoelhave tpie 12363 281 137 45 49 5
Brianetta pioneer 61693 82 66 18 25 230
Eigenlabs EigenD 212415 1023 962 193 437 29
supercollider supercollider 0 142 0 153 142 208
alanbriolat clementine-subsonic 98598 24 19 7 7 44
yedaoq YedaoqCodeSpace 16906 18 18 10 9 21
RhobanProject Common 1613 105 72 16 24 4
mozilla-services services-central 1518719 3597 627 243 249 74
Jackarain avplayer 51396 5425 4680 1190 2329 18
RhobanProject Utils 61815 150 89 21 36 52
dumganhar nui3 314325 8 3 10 1 1
ciyam ciyam 151323 7408 760 141 177 2602
chenshuo muduo 6384 45 27 5 8 5
zaphoyd websocketpp 6890 229 207 74 78 2
Intline9 IntPe9 6809 52 38 8 12 5
Intline9 IntWars 185634 40 22 7 7 0
jckarter clay 13784 74 12 6 4 1
originell jpype 7734 843 1301 213 384 1
yxl Fire-IE 8568 82 29 12 11 3
coolwanglu pdf2htmlEX 3427 61 19 4 6 16
tomahawk-player tomahawk-resolvers 93848 354 254 52 73 5
lteacy maxsum-cpp 1919 323 65 26 26 4
luispedro imread 1661 64 36 3 12 44
Aloshi EmulationStation 4679 4 8 3 2 2
snes9xgit snes9x 106702 43 23 8 8 21
snes9x-rr snes9x 104363 43 23 8 8 21
qreal qreal 56321 216 288 44 84 4
kmatheussen radium 269433 592 471 95 206 75
aldebaran libalmath 3423 0 0 1 0 33
lvinken MuseScore 207968 554 34 12 14 10
Bromeon Thor 2099 2 3 1 1 5
onyx-intl booxsdk 40269 53 13 4 4 2
qpdf qpdf 14820 618 253 61 66 179
imocha passenger 9569 470 337 60 74 27
sbergen ConductorFollower 2892 13 12 11 4 2
OpenVSP OpenVSP 120344 58 43 9 9 7
cook- Ve280 0 31 0 31 31 38
ReneNyffenegger development misc 2097 33 12 4 5 6
Ratstail91 Codebase 440 6 4 1 1 27
bkloppenborg simtoi 9966 20 13 4 4 9
muhrin STools 7065 127 84 32 31 5
msgpack msgpack-c 8045 127 136 41 64 10
Imroy photofinish 2058 50 46 17 16 17
sthalik headtracker 691 0 0 0 0 1
OpenFOAM OpenFOAM-2.1.x 86287 37 28 13 10 4
proycon colibri 7536 3 3 1 1 65
rsnitsch degate 9884 191 127 44 42 194
csete gqrx 5054 2 6 2 2 1
malaterre GDCM 74079 75 33 11 12 51
miquelramirez simulpast-cs1 272184 778 324 115 132 18
maya2renderer maya2renderer 90008 2240 2069 358 678 36
omegaonline oocore 96565 3212 3862 849 1206 473
pilkch library 43309 104 17 5 4 9
erwincoumans bullet3 134333 10 19 4 6 38
drk1wi portspoof 1088 5 5 1 1 4
wichtounet eddic 14431 34 15 3 3 10
bendudson BOUT 30024 126 55 18 18 165

59

LineCount Occurrences
Project Total try catch try catch throw

youbot youbot driver 4901 26 7 2 3 3
cyclops1982 powerdns 47094 3886 905 219 280 296
scrawl shiny 2456 112 31 12 6 34
sirikata sirikata 77679 203 339 65 55 15
doughodson OpenEaagles 499431 97 63 20 22 62
wojdyr fityk 17276 217 171 42 46 100
jasonroelofs rice 23326 5779 127 132 498 111
paulscode mupen64plus-ae 204929 49 29 8 7 1
vezzi FRC align 22709 233 103 21 26 82
Riateche ridual 6363 94 102 14 16 3
xalpha iris 2496 56 23 10 10 8
mworks mworks 7134 51 45 31 19 5
scalien scaliendb 28724 44 84 15 17 4
alanxz SimpleAmqpClient 839 0 0 1 0 13
Mankarse TINS2012Game 537 5 9 1 3 16
iut-ibk DynaMind 48145 1119 1160 170 306 14
raymond-w-ko omegacomplete.vim 1364 0 0 8 0 1
aria2 aria2 46008 1601 947 260 260 330
Tasssadar Lorris 599507 176 113 40 43 2
gang-chen samoyed 0 151 0 122 151 116
Darkpeninsula Darkcore 210741 60 31 9 9 102
ccoffing OcherBook 2909 6 3 1 1 4
freelan-developers freelan 12930 720 181 54 51 152
libLAS libLAS 14847 1563 541 132 152 113
reginakim BRAINSStandAlone 22584 628 450 287 307 125
bytbox EVAN 1784 65 15 3 4 38
mrquincle aim modules 89867 932 112 48 47 93
girving pentago 1692 4 9 2 2 2
DDMAL libmei 13572 2 7 2 1 8
3breadt UPB-ADT-Automata-Tools 2131 0 0 0 0 9
usc-clmc usc-clmc-ros-pkg 35315 164 122 57 48 1
percolator percolator 21186 276 88 17 29 63
bzar spacerocks 1544 0 0 0 0 1
nextgen-astrodata DAL 2674 51 62 20 23 84
vast-io vast 5506 68 37 14 14 9
yast yast-core 26697 20 20 3 2 14
livingstream madlib 5037 3 2 1 1 5
ViviCoder GM-Assistant 2526 38 36 11 13 21
kbinani libvsq 21810 42 34 13 13 6
cfit cfit 5966 0 0 0 0 104
emdeha Star-Game 250464 27 30 7 6 45
robertmaynard VisIt-Bridge 141804 451 81 29 28 36
g1257 spf 4503 0 0 0 0 3
llvm-mirror lldb 274755 12 10 7 2 3
pelican pelican-lofar 5098 487 111 56 58 1
nasa World-Wind-Java 182248 405 122 48 52 1
mikrosimage duke 2730 13 9 2 4 23
llvm-mirror libcxx 187764 1695 1546 488 507 107
broune mathicgb 6193 39 18 16 6 13
MythTV mythtv 794141 3447 2054 193 369 25
openbabel openbabel 107071 10 8 4 3 1
phys-tools pi-qmc 60883 1104 1121 170 296 14
simsong bulk extractor 18399 270 111 35 36 27
daviddoria PatchComparison 186 0 0 1 0 1
fasterisk BA-Teil2 193830 2336 751 177 192 530
robotconscience ofxLibwebsockets 1552 40 4 2 2 0
xboxdrv xboxdrv 9664 123 64 15 14 33
DavidPH DH-acc 38659 108 67 16 21 15
jacob1 The-Powder-Toy 29063 279 38 11 11 1
nsmoooose csp 10279 36 43 11 15 8
Constellation iv 30814 3 9 1 3 3
w2schmitt depth-complexity2 4947 78 23 4 8 17
jarad gpuIntroduction 4753 12 21 10 10 10
anttisalonen libcommon 1576 0 0 1 0 11
Obi-Wan vARCH 3271 93 61 11 12 60
mosra magnum 10870 0 0 10 0 1
vsiivola variKN 2764 31 8 4 3 22
patrickmmartin winampremote 5054 1292 1518 88 168 2
OpenNebula one 30492 397 163 47 47 62
simonfuhrmann mve 4554 95 89 34 34 19
chenshuo recipes 19604 108 28 12 7 6
NUbots robocup 101042 994 519 107 147 140
irods irods 115103 1135 858 248 255 3
deek0146 framework2d 5550 94 49 16 16 39
nightingale-media-player nightingale-
hacking

26647 0 0 0 0 1

pathscale stdcxx 646366 5439 3807 809 1033 152

60

LineCount Occurrences
Project Total try catch try catch throw

ioquatix dream 4721 92 25 6 6 30
JelleZijlstra EH 5816 66 55 12 13 12
alanwww1 xbmc-txupdate 4710 78 5 1 1 1
zeux pugixml 53811 597 252 109 110 27
psi-im psi 32518 0 0 8 0 1
marvins Code Sandbox 4617 43 11 5 4 19
jackaudio jack2 24735 147 87 26 26 5
workflo shaback 11968 107 33 12 12 45
petroules silverlock 7658 502 164 50 58 19
fluxbox fluxbox 23807 76 32 8 13 10
felleh cdec 30711 246 61 26 20 7
kpu kenlm 8304 356 93 34 28 4
chenm001 thevc 20893 30 13 3 4 22
libyui libyui-ncurses 7493 19 21 7 6 8
theunknownxy slin 404 21 12 7 6 2
losalamos CLAMR 26582 74 21 11 7 4
iwiwi programming-contests 86411 133 70 21 21 37
adiknoth ffado 27892 70 47 14 16 1
gunnarbeutner shroudbnc 16461 0 0 0 0 68
sashman terrain generator 2323 18 18 6 6 24
KPWhiver DimLib 12637 187 3 1 1 20
peteratt ida 15286 207 339 49 86 134
elidupree Lasercake 23004 201 122 52 38 13
rousseau fbrain 0 131 0 103 131 5
OpenChemistry avogadrolibs 18677 0 0 6 0 7
mertdikmen ViVid 8125 15 25 4 3 16
scummvm scummvm-tools 11595 171 65 24 24 8
eurotech edc-examples 82651 354 253 52 73 4
ukoethe vigra 42154 1060 364 100 100 6
otcshare automotive-message-broker 8249 79 39 23 19 26
davidmandle MADTraC 12319 131 17 13 7 2
avxsynth avxsynth 17235 709 383 85 92 47
janm399 akka-patterns 3656 6 12 9 4 18
makerbot Miracle-Grue 31740 571 482 194 192 63
wheresjames winglib 77518 374 193 60 71 2
plasmodic ecto 3894 86 228 37 63 25
CamelliaDPG Camellia 41400 11 10 3 3 6
geovanisouza92 ares 811 12 6 3 2 1
zotero zotero-standalone-build 5720 167 40 9 13 18
anttisalonen brigades2 2598 0 0 1 0 4
jglaser metadynamics-plugin 685 0 0 1 0 10
sfiera libsfz 3974 0 0 0 0 24
blackvladimir hermes-dev 277136 368 148 31 31 101
shaybarak HQMP 978 0 0 6 0 10
GerHobbelt uncrustify 24556 34 28 10 11 8
LORDofDOOM MMOCore 181364 64 31 10 10 102
lyase witty-tutorial 783 16 15 14 7 9
RuslanKutdusov dinosaur 6744 696 507 108 134 188
whiledoing Out Of Core Module 711 41 18 6 5 1
sakhnik gpwsafe 1384 12 9 4 3 35
sgolodetz hesperus2 9752 519 114 54 54 62
audacious-media-player audacious 7618 0 0 0 0 3
aedansilver HD-TCore 168213 68 36 9 9 102
prefetchnta questlab 4925 8 8 1 4 8
Kazade KGLT 37050 48 61 21 21 87
asoroa ukb 5060 868 114 24 28 61
ewxrjk rsbackup 4013 368 149 55 57 30
LASzip LASzip 14696 1726 798 192 192 10
dsth capmon 2108 66 81 10 15 62
wITTus Brute-Force-Game-Engine 6959 514 366 102 108 26
licq-im licq 67525 436 136 36 35 20
takke MZ3 22765 13 9 3 3 0
impulze team one 2043 297 165 42 51 106
macBdog game 133495 18 21 4 6 15
Monceber Task-1.1 4435 533 299 51 60 27
SergeyStrukov CCore 19593 336 175 69 64 2
gnychis gnuradio-3.5.0-dmr 40435 35 34 14 8 319
pauldoo scratch 4856 198 57 16 20 37
kentron imprudence 160233 209 39 16 16 27
ahiguti pxc 14840 96 81 11 12 21
openstreetmap osm2pgsql 2938 63 85 15 19 36
TeddyDesTodes openttd 125697 484 182 29 34 37
timbaker pzworlded 29098 3 4 1 1 0
bacek xscript 15830 1504 835 217 331 245
FreeRDP FreeRDP-WebConnect 2386 214 34 19 12 10
gnuradio gnuradio 68710 68 60 26 18 554
ddemidov vexcl 2490 24 7 10 3 1

61

LineCount Occurrences
Project Total try catch try catch throw

paul-h mythtv 796546 3447 2054 193 369 25
shin1m xemmai 33451 135 244 38 43 22
Mendeley Update-Installer 21115 72 36 13 14 1
ruuda deadlock 1225 49 82 15 21 68
jdebrabant h-store 150540 783 619 176 195 14
yudjin87 carousel 3083 0 0 0 0 11
parpwhick Distanze Entropiche 4659 4 4 1 1 1
m-mizutani swarm 9831 3 9 1 3 3
dermesser libsocket 1913 142 44 14 15 50
vilarion Illarion-Server 10962 1051 302 105 106 64
Illarion-eV Illarion-Server 10878 1047 302 105 106 64
davidiw Dissent 15308 9 17 5 7 3
BerndGabriel simutrans-experimental 125151 29 18 4 5 4
bkaradzic bgfx 169636 6166 7071 525 974 7
aarizaq inetmanet-3.x 15256 16 15 6 6 9
JAChapmanII pbrane 938 23 15 6 5 31
AlexMax odamex 68235 8 9 3 3 1
Gear2D gear2d 7515 6 8 2 2 3
mynew WingsEMU 175751 68 36 9 9 102
shurcooL Conception 6830 32 11 4 4 23
echofourpapa RealTimeTactics 5060 37 18 6 6 3
markboots peg 1270 158 6 2 2 25
Henne dosbox-svn 17210 142 26 4 7 19
BigSisl metoritewars 723 0 0 0 0 1
herumi cybozulib 13463 617 346 78 117 3
mrotondo SuperCollider 124615 813 328 94 104 233
onyx-intl boox-opensource 242679 2847 2762 453 738 48
fonsinchen openttd-cargodist 122202 443 179 29 34 36
datasift zmqpp 2763 41 46 12 13 34
go4and lib 8211 243 127 31 32 15
imageworks OpenColorIO 3011 381 137 31 46 4
but-spanel srs public 14240 160 166 57 50 16
mediastandardstrust superfastmatch 8737 38 54 8 16 4
jiwonshin aseba 11590 157 142 57 55 80
GordonSmith GraphControl 3480 56 47 24 17 8
tvwerkhoven libsiu 2333 14 7 3 2 22
tvwerkhoven FOAM 4644 21 41 9 15 12
metabrainz libmusicbrainz 4105 84 144 4 24 14
mlang bmc 4662 3 3 2 1 3
setiQuest SonATA 53873 950 355 110 138 15
makerbot MightyBoardFirmware 40320 354 254 52 73 4
npadmana nputils 894 23 10 4 3 1
plexydesk plexydesk 12509 11 3 1 1 2
VoltDB voltdb-client-cpp 4160 48 67 22 16 57
mthomure glimpse-project 357 0 0 0 0 1
xmcpp Cppguru 4241 18 12 12 6 38
fangism hackt 6145 49 50 18 18 9
ankush-me sandbox444 1370 4 6 9 2 6
khwillia repss 5454 133 12 3 3 1
BeginnerSlob TouhouTripleSha 49484 24 18 7 7 0
skyshaw snippets 2051 7 5 3 2 2
4gsim 4Gsim 29806 21 21 8 8 11
pjmikkol bwtc 8702 64 32 5 8 5
i-saint scribble 9989 3 3 1 1 1
MelanieBittl hermes-1 276915 368 148 30 31 81
akrennmair newsbeuter 16679 1166 1152 372 382 39
mawww kakoune 7111 145 78 29 31 79
mariusroets Audit-Agent 7740 0 0 1 0 5
openBliSSART openBliSSART 10330 331 82 17 25 34
danomatika ofxLua 19215 3 4 2 1 36
sawjlab hcana 2951 0 0 0 0 34
goc9000 megas2 5122 10 3 1 1 2
jackyf cupt 11291 633 148 53 54 3
ttsou openbts-p2.8 25596 384 191 36 48 78
firestarter firestarter 347 38 46 18 16 1
svalaskevicius ionPulse 951 27 22 8 10 4
Visomics Visomics 6671 3 3 1 1 1
gec dnp3 21490 599 576 153 149 46
villagereach mScan 2158 13 24 6 6 1
Fadis hermit 3532 0 0 1 0 5
furious-luke libhpc 1288 3 3 8 1 2
DigitalPulseSoftware NazaraEngine 1312533 1053 1083 360 360 4126
anope anope 34192 442 283 106 108 202
couchbase libcouchbase 55153 35 43 14 15 44
geometer FBReader 48032 3 8 13 2 2
Chiru naali 39053 733 296 115 118 13
ipa-rmb cob people perception 5051 141 17 15 8 1

62

LineCount Occurrences
Project Total try catch try catch throw

pixhawk mavconn 11624 138 57 19 18 4
OpenJabNab OpenJabNab 13329 92 15 5 5 11
ufz ogs 44220 246 173 48 57 3
K2InformaticsGmbH erloci 2234 109 285 13 39 35
iut-ibk CityDrain3 8400 450 295 88 88 31
LancasterLogRes Noted 1386 0 0 7 0 9
Henne Bright-Eyes 49697 143 26 4 7 18
mcvsama haruhi 3630 25 13 6 4 6
martingt89 OniboConverter2 4318 19 13 5 5 3
daviddoria Mask 409 0 0 0 0 1
daviddoria PoissonEditing 287 38 31 9 11 2
dmitryduka quadcopter 2349 34 4 3 2 21
ickby openDCM 1929 217 94 20 22 1
kerautret DGtal 19939 111 56 19 20 5
falconpl falcon 146446 684 452 86 89 1691
freundlich fcppt 10696 156 86 28 26 3
OPM opm-core 5920 438 93 28 27 10
arsf lag 8004 83 26 7 9 15
ruisleipa kp2 2475 78 23 11 12 22
wallix redemption 13825 196 184 37 48 6
synfig synfig 67166 1800 528 163 213 98
nebw gsoc2012 102364 1196 1157 177 309 42
makerbot jsonrpc 66 0 0 0 0 2
maidsafe MaidSafe-DHT 4498 124 19 12 5 5
broesdecat Minisatid 79273 2006 1671 259 449 94
apoloval open-airbus-cockpit 17843 702 676 209 221 6
g1257 PsimagLite 1027 0 0 1 0 22
lfranchi tomahawk 102813 454 273 60 82 10
jbcoe CppSandbox 5342 97 89 24 26 16
scoopr vectorial 1458 3 9 1 3 1
encukou desmume 127365 391 206 77 79 83
cpputest cpputest 29816 41 72 13 24 2
robertop pelet 150360 16323 18379 5168 5648 8
arq5x bedtools 17547 247 91 21 21 72
TheJosh chaotic-rage 550928 72 27 9 9 8
alan-wu FieldML-API 6676 3 3 1 1 1
c2s C2Serve 2297 23 15 5 4 5
lucab vermont 10644 37 22 11 10 7
metno wdb 6252 436 203 70 84 62
veltzer demos-linux 24117 28 26 16 9 14
cocaine cocaine-core 2346 84 81 33 29 16
iut-ibk DynaMind-ToolBox 354538 6800 5718 827 1241 249
dc2011 td 6105 0 0 0 0 7
mvan td 6105 0 0 0 0 7
inkooboo areks 78255 3 4 1 1 0
Gris87 ProtocolCreator 3732 83 71 35 35 162
lemire Code-used-on-Daniel-Lemire-s-blog 41542 6 8 2 2 24
sbooth SFBAudioEngine 6464 13 11 4 4 9
KDAB Charm 5967 147 73 17 21 2
Noxalus YAPOG 75973 182 73 23 27 76
qbittorrent qBittorrent 11754 70 29 14 13 5
popcornmix omxplayer 6571 43 17 4 5 2
yllekkram xbpl4kyn 2920 441 823 124 207 9
mrdooz kumi 14853 60 5 1 1 0
theY4Kman viper 4905 99 42 22 21 345
ALive-WoW RC2 166556 60 31 9 9 102
LK8000 LK8000 35016 14 17 4 5 2
ipa-fxm cob manipulation 27393 6 4 9 2 0
melpon wandbox 2469 90 32 10 9 9
opengm opengm 30015 2519 67 23 22 13
ipa-bnm cob driver 7098 49 26 18 11 1
micknoise Maximilian 39047 7 7 2 2 53
nu774 qaac 13970 995 1059 277 515 54
vovoid vsxu 53855 440 137 37 39 8
jinchizhong qt-kso-integration 556895 135 161 52 48 22
pvbrowser pvb 268840 3 4 5 1 0
rescrv e 2608 12 11 5 5 1
vogel kadu 22287 105 38 14 15 19
tpaviot oce 116215 1594 1369 246 401 14
Hoikas dirtsand 5869 452 97 26 33 11
MaZderMind osmium 1659 47 20 9 8 1
pkunavin ncxmms2 11264 95 26 5 8 21
openmeeg openmeeg 2085 32 40 7 17 9
CTSRD-CHERI gxemul 66203 3 4 1 1 32
BramvdKroef clessc 4762 83 28 4 8 40
pokerth pokerth 80537 278 12 12 4 13
ElementalAlchemist RoBoBo 3369 30 48 6 13 55

63

LineCount Occurrences
Project Total try catch try catch throw

encukou pokemon-online 19389 77 38 15 16 10
pogliamarci robotower 5985 13 5 2 2 24
psi-plus psi-plus-snapshots 72675 0 0 20 0 1
eartle liblastfm 1992 23 7 3 3 22
freelan-developers freelan 12930 720 181 54 51 152
benni0815 SchafKopf 2958 0 0 0 0 9
tomaszmrugalski dibbler 27616 271 101 21 22 127
kylelutz chemkit 90566 8 12 11 4 1
TyRoXx Sandboxx 5074 32 22 7 6 49
timschmidt repsnapper 22641 104 100 24 17 17
NDN-Routing ndnSIM 1675 0 0 1 0 1
Malvineous libgamecommon 7300 148 103 33 24 46
Malvineous libgamearchive 6202 127 75 20 23 4
albertjiang gambit 49951 440 201 57 69 170
libbitcoin libbitcoin 360353 264 221 52 37 11
kees-jan scroom 4329 160 43 20 12 20
ashiaro ashiaro 44549 170 182 29 34 212
Marian0 ICFich 6754 0 0 0 0 1
palmer-dabbelt mhng 0 1 0 1 1 1
falconindy ponymix 858 15 15 5 5 4
gcross Illuminate 1675 38 28 13 9 6
Kezeali Fusion 24086 841 333 122 122 20
smogpill dataspace 35970 3 4 1 1 0
eartle lastfm-desktop 15977 397 222 71 78 92
mumurik xyzzy 59782 779 440 125 125 53
hackcraft-de linwarrior 6649 55 25 11 12 21
srz-zumix iutest 357370 2992 7057 706 1395 941
makerbot G3Firmware 68393 635 508 52 73 4
Granjow slowmoVideo 5410 63 51 19 21 2
muchenshou HorseReader 145592 168 23 6 7 25
karlbennett Transcode 1325 123 115 29 28 0
gunoodaddy coconut 5503 309 69 35 31 42
norihiro-w ogs 37071 209 154 41 50 3
jamescoxon dl-fldigi 76062 787 432 82 87 78
thegrandpoobah voronoi 2430 33 14 5 4 7
sipa bitcoin-seeder 2343 13 4 1 1 3
mrlukeparry freecad 246278 1972 950 312 375 61
c-ares c-ares 88604 1246 1289 184 336 14
EternalWind The-Dark-Crystal 3633 0 0 0 0 16
mikael-s-persson ReaK 12406 1399 959 282 287 22
EternalWind ducttape-engine 1558 0 0 0 0 3
ermaker sheep 1885 64 12 3 3 11
flipcoder bitplanes 876 17 13 6 5 13
FroboLab frobomind 9706 76 52 23 19 6
DC2012 DC2012 1929 0 0 0 0 2
chipdude libten 32164 552 179 50 55 21
noam-c EDEn 9282 19 20 4 5 1
MEPP-team MEPP 14982 65 74 22 20 62
clarkcyt QSanguosha 27234 14 10 3 3 0
blackberry-webworks Ripple-Framework 71448 1334 1351 191 352 14
Shawn-Smith InspIRCd 24095 157 95 25 25 50
Wassasin librusql 617 141 123 49 43 1
Dgzt knapsen 1382 97 14 23 7 20
kaos ecos 187814 1289 649 126 182 67
gambitproject gambit 62463 617 195 62 69 222
sempuki code 7377 33 16 31 3 10
evemuproject evemu crucible 50113 12 12 2 2 140
deltafrog drops 11344 1332 149 80 79 1
patentnetwork CPP Disambiguation 4525 214 45 10 11 124
Zordey pioneer 61944 82 66 18 25 230
MaxKellermann MPD 21451 1165 777 236 250 226
luminans MultipleViewPipeline 7389 84 124 19 33 3
peadar pstack 2203 38 34 12 12 4
sdayu nokkhum-processor 1888 16 12 6 5 5
luceneplusplus LucenePlusPlus 123932 2605 2574 486 624 11
MHesham IStrategizer 5773 47 15 5 6 2
krivenko triqs 4142 116 27 14 13 6
peter-ch MultiNEAT 4426 3 3 8 1 3
dvanthienen youbot-ros-pkg-erf-demo 4842 19 23 14 7 2
rpavlik loki-lib 13925 706 357 82 102 50
Heeks libarea 10491 89 27 8 7 12
crocdialer KinskiGL 42352 122 72 43 36 11
mborne SFCGAL 8998 323 381 122 122 1
Beman filesystem-proposal 3799 134 155 41 44 2
zmike shotgun 8935 0 0 0 0 6
balint256 gr-baz 6244 0 0 7 0 5
soundradix JUCE 155291 378 399 58 190 7

64

LineCount Occurrences
Project Total try catch try catch throw

vancegroup vr-jugglua 20282 594 1040 262 481 29
ecell epdp 6204 77 69 19 18 23
Jintram egfrd 7895 92 69 19 18 29
ITKTools ITKTools 0 65 0 63 65 3
saleyn eixx 2769 129 126 40 32 2
georgmartius lpzrobots 99887 174 88 20 26 13
Aico mudlet 5722 4 25 3 2 1
davetcoleman clam 47039 445 231 68 78 183
HongjianLi idock 2458 152 11 4 3 1
homann Quantum-GIS 207444 376 190 63 60 25
hexhex mcsieplugin 662 0 0 1 0 1
angavrilov dfhack 59883 50 99 21 25 8
apolukhin type index 850 16 12 4 5 1
youbot youbot-ros-pkg 5515 42 20 12 5 2
mateuszboryn mrrocpp 17055 693 961 96 293 29
bdsullivan INDDGO 8942 161 42 18 26 5
kouretes Monas 96619 459 355 104 118 11
visore Visore 88559 0 0 0 0 1
uwssg APS 10977 271 184 47 47 38
elmindreda Nori 50930 2 4 1 1 14
enGits engrid 47192 851 194 37 37 0
korslund Tiggit 2873 229 94 34 37 7
ChaiScript ChaiScript 2326 320 487 91 126 6
GamePad64 p2pnet 1587 66 52 19 18 9
andersk mosh 3946 205 32 7 10 19
ajtack riak-cpp 74633 1246 1289 190 336 14
statgen libStatGen 20174 135 174 58 58 71
jzarl kphotoalbum 12583 21 14 6 6 1
GerHobbelt hamsterdb 84262 93 192 37 40 1
y2q-actionman zatuscheme 4186 115 56 14 15 13
schwehr libais 78438 1286 1302 190 342 11
pvpgn pvpgn-server 39474 117 42 17 18 9
benlabs sassena 8294 43 70 17 18 125
pkok bsc-pga 49849 203 49 22 23 6
Olga-Yakovleva RHVoice 15649 276 121 41 45 104
PMBio peer 150917 6272 5879 1067 1887 1739
H4311 Projet-Grammaire-Langages 1783 245 105 20 19 6
Ratstail91 Sketch 825 6 3 1 1 29
vinzenz vsqlite– 546 42 9 5 4 25
Robnocop parlevision 4542 50 20 5 6 35
renxi-cu srs public 14240 160 166 57 50 16
Kazade kazbase 1703 55 56 16 16 31
kmx mirror-iup 78405 86 10 5 5 52
peterwittek trotter-suzuki-mpi 2466 0 0 0 0 1
pelican pelican 3230 89 49 14 19 3
daisukekoba sakura-editor-trunk2 24450 209 108 26 37 6
namecoin namecoin-legacy 12465 183 126 40 43 127
khalahan namecoin 7571 107 78 27 25 100
libgeos libgeos 40325 2093 2220 442 603 141
CSB-at-ZIB PARKINcpp 102879 2497 1025 190 257 282
vozbu libslave 2087 25 11 4 3 34
markusfisch PieDock 2983 117 8 2 2 39
flipcoder qor 4054 102 103 38 41 8
orlandoacevedo MCGPU 53222 1118 1149 168 304 14
timvdalen OGO-2.3 6619 2 3 1 1 2
inventos OpenHttpStreamer 1315 70 3 2 1 17
Danvil dasp 2688 4 6 9 2 10
zrax Plasma 181073 1617 1209 189 323 57
filipkunc MeshMaker 4130 0 0 0 0 3
guruofquality grextras 806 4 4 8 2 10
legnaleurc komix 537 0 0 0 0 2
airekans Tpool 2243 61 31 11 11 10
hmmr aghermann 6265 259 123 34 39 79
j0sh crtmpserver 30169 3 4 1 1 0
spring mingwlibs 6711 200 12 5 4 5
rug-compling dact 1255 24 8 2 3 5
pank7 pank7-test 11215 17 9 3 3 7
HEROES-GSFC SAS 13316 150 39 13 15 28
ehsteve SAS 13316 150 39 13 15 28
bachan coda 2636 10 4 1 1 4
rhdunn cainteoir-engine 15595 1024 294 80 81 75
mscdex node-mariasql 33008 0 0 0 0 3
jhasse jntetri 1752 15 13 5 4 5
Conedy Conedy 2178 9 6 3 2 17
spearse FSOM 5184 5 3 2 1 17
ppcoin ppcoin 14400 871 184 54 56 206
martinrunge muroa 22712 696 171 61 59 30

65

LineCount Occurrences
Project Total try catch try catch throw

jhasse poly2tri 1106 0 0 0 0 1
jwatte robotcode 20260 144 96 19 15 145
Detegr pwskoag 634 2 3 1 1 4
guns rxvt-unicode 2521 9 6 2 2 1
kallisti5 sheepshear 31385 3 16 1 4 4
silvest HEPfit 53980 435 72 22 22 386
ioquatix kai 4946 41 37 9 10 42
kpu lazy 16197 188 61 25 19 5
storance dcpu16 4296 46 22 7 7 32
Cyberbeing xy-VSFilter 75457 1538 1273 193 334 29
NixOS patchelf 1001 10 8 2 2 7
cocaine cocaine-plugins 4528 210 146 67 64 34
kuzmas razor-qt 13681 95 7 3 3 3
iannix IanniX 14086 464 299 86 94 30
supergillis tibia-hook 791 25 5 2 2 8
fankee snigdha123 938 9 9 3 3 4
genome breakdancer 971 52 6 3 2 7
Foran Descent-Bot 1346 0 0 0 0 9
MiKom karstgen 625 62 43 7 11 20
ahorn libse 51279 1120 1145 166 302 14
rubenvb Ambrosia 0 3 0 1 3 15
OPM opm-upscaling 3800 2163 178 60 63 40
Tapsa genieutils 3587 68 19 5 4 14
gatgui gcore 11566 88 30 11 10 92
matthewfl ilang 4039 71 71 23 12 6
Loki-Astari ThorsSerializer 1907 0 0 0 0 52
nickrmc83 ioc container 278 79 56 19 19 1
lantimilan topcoder 54815 87 24 3 3 7
StarvingMarvin llvmj 752 8 12 2 4 5
wg-perception linemod 221 0 0 1 0 1
Frederic-bioinfo rTANDEM 13648 44 7 2 2 6
tomka mitsuba-renderer 91774 896 216 52 61 11
easterbunny273 Project-Cube 6188 5 2 1 1 2
daviddoria PatchBasedInpainting 3679 0 0 1 0 32
sboli twmn 137 21 6 3 2 1
SimonWallner kocmoc-core 109339 18 21 4 6 15
evenator swri-ros-pkg 23500 16 24 14 8 0
yavdr vdr-plugin-restfulapi 4897 27 18 9 9 1
steinwurf gauge 381 3 3 8 1 8
godexsoft x2d 43199 486 959 233 447 24
uboot stromx 1265 24 17 13 6 4
mderezynski Youki2 17532 438 259 92 102 109
manitou-mail manitou-mail-ui 14142 1675 610 146 149 25
pixie16 pixie scan 13943 263 100 10 14 68
pelyot Amicale-TD 3535 16 13 6 5 15
felipemontefuscolo FEPiCpp 24324 442 406 172 171 14
jameshanlon tool axe 6858 9 3 1 1 2
AndreLouisCaron w32 6085 261 109 34 41 31
kjax Stroika 88332 443 345 76 97 169
ledyba Cycloa 3339 54 33 5 8 30
msoos cryptominisat 10440 87 75 20 25 8
cheetah0216 CodeRepository 992 7 3 5 1 2
vbeffara Simulations 7808 0 0 2 0 6
Nocte- hexahedra 18353 222 138 48 60 73
openigtlink OpenIGTLink 10974 15 10 3 4 2
cyclus cyclus 55829 151 103 37 37 119
ntoussaint Cardiac-Prolate-Spheroidal-
ToolKit

0 18 0 18 18 6

moshbear mosh-fcgi 6155 132 46 23 15 61
santazhang sandbox 67176 268 268 69 84 33
libspatialindex libspatialindex 58288 2480 2250 296 542 457
bkloppenborg liboi 75128 1634 1600 247 431 30
JayDz PPP-answers 8977 1698 400 69 115 13
kallaballa Janosh 2322 231 98 18 26 2
InMobi scribe 2844 210 268 16 22 9
herumi xbyak 4274 251 134 35 52 7
samindaa RLLib 8478 14 3 7 1 1
kmaehashi jubatus 4300 331 155 43 61 7
Slicer SlicerExecutionModel 2170 291 30 8 10 3
rug-compling alpinocorpus 2229 151 178 65 59 62
FernetMenta xbmc-pvr-addons 41795 245 21 7 7 7
plfs plfs-core 14906 240 119 32 59 49
apache xerces-c 21862 792 884 136 233 28
ros ros comm 20644 121 393 41 37 8
ldmt-muri alignment-with-openfst 5333 15 9 12 3 6
frankyeh DSI-Studio 9727 115 19 6 7 2
deeplearningais CUV 5315 0 0 7 0 6

66

LineCount Occurrences
Project Total try catch try catch throw

Kangz epyx 6934 293 54 22 19 68
snaewe omniorb 73717 2372 1799 304 490 522
wg-perception tabletop 178476 2204 881 269 268 649
chrispap TKN 1296 2 4 1 1 15
dmbryson apto 17232 3 9 1 3 3
rrnntt SmallProject 61741 1213 1228 184 328 18
ulrichard ftgl 3620 184 14 3 3 9
rafewenger sharpiso 0 57 0 29 57 6834
ctSkennerton crass 6657 935 358 71 102 88
okard depot 2735 0 0 0 0 21
tacaswell tracking 8218 750 462 110 145 255
LibRaw LibRaw 15071 2 2 1 1 34
x37v datajockey 4336 211 73 29 32 6
lballabio QuantLib 19526 462 125 36 52 3
starpos ioreth 897 47 18 4 6 9
william0wang meditor 36492 272 7 1 1 0
cjacoby libmanta 5019 139 98 19 32 18
dimock chess 6758 7 4 2 2 0
barak djvulibre 34302 1869 812 138 138 2
plasmodic ecto pcl 407 0 0 7 0 3
myint perceptualdiff 492 90 18 2 4 4
GNOME gnote 6907 356 214 79 88 9
PrinceCreed TrilliumEMU 222162 957 174 38 51 170
XhmikosR notepad2-mod 41417 300 34 10 13 8
zigarrre asteroids 638 0 0 1 0 1
andrewfenn Hardwar 59336 1352 1660 395 472 18
it-workshop UniSched 1309 46 56 19 20 14
martiert Pandora3D 77434 1490 1561 221 412 14
jwmatthys rtcmix-in-pd 113909 0 0 0 0 1
cjlano eliot 7433 354 135 50 53 12
falkTX dssi-vst 2534 143 72 18 21 40
spinos aphid 64955 159 101 40 37 7
adegroote hyper 13024 202 84 24 17 15
GNOME gparted 13904 28 26 6 10 6
BartVandewoestyne Cpp 7753 83 46 17 16 13
smistad SIPL 635 0 0 0 0 9
w-bamberger CPProb 4750 158 147 22 23 10
oniko ok-snap 3072 64 54 11 25 41
guruofquality gras 1955 49 39 19 14 8
n319 xPL 7047 16 9 4 4 6
ccrma chugins 9573 0 0 0 0 1
toddsundsted stunt 33727 269 51 15 15 5
martinhaefner simppl 1004 18 14 8 7 2
telnet2 gradworks 83154 2160 1066 280 326 36
schnorr pajeng 3960 42 6 3 2 125
patrickfrey textwolf 430 107 11 3 3 5
salilab rmf 6713 361 193 53 45 1
striezel pmdb 2612 158 69 19 19 3
zakinster detiq-t 7967 59 24 7 10 108
zakinster eiimage 3863 31 23 8 8 38
bakwc Epsilon5 8780 148 73 29 29 15
m1kc mkvtoolnix 20545 1179 133 51 52 39
ianj-als mosesdecoder 48164 433 129 47 40 75
chazmatazz proto-mirror 12942 22 27 4 7 20
t-crest patmos 22263 249 49 10 9 17
ushakov mapsoft 22767 366 142 54 53 41
Revolutionary-Games Thrive 1836 9 11 11 4 27
nodakai exp 7105 7 6 8 2 38
plasmodic ecto ros 217 0 0 7 0 1
GraphicsEmpire FemBrain 125931 34 27 11 10 94
rofl0r exult 55000 630 236 75 72 39
kudkudak Growing-Neural-Gas 1186 13 13 5 3 8
jkovacic math 49591 6098 1433 435 463 2089
Zguy ProtoZed 1282 0 0 0 0 10
openwebos libpbnjson 10113 39 3 2 1 2
hfiguiere libopenraw 9405 168 95 21 24 21
makerbot json-cpp 4088 23 7 2 2 0
Thomas1205 RegAligner 7519 0 0 0 0 4
PacificBiosciences ConsensusCore 7969 21 22 5 6 12
vancegroup util-headers 23687 551 526 139 138 2
thp numptyphysics 17218 2 2 1 1 2
mta1309 mulberry-main 8236 101 43 17 17 14
tclarke opticks-extras-Spectral 12658 292 56 27 17 2
apache activemq-cpp 24998 3276 2454 1069 1150 24
mungerd latbuilder 4464 94 33 13 11 37
pmiecio Smart game 2060 0 0 0 0 3
chikuzen avs2pipemod 0 7 0 4 7 6

67

LineCount Occurrences
Project Total try catch try catch throw

0xfeedface grdfs 1875 46 79 10 10 23
inducer meshpy 35412 4 8 3 3 3
aparent QCViewer 4739 78 46 13 14 27
nazgee libosock 2533 41 15 13 6 37
sholsapp gallocy 53958 4 6 5 2 1
salvestrini haze 1183 27 76 3 5 15
reenigne reenigne 42643 459 81 41 35 1
jirkamarsik trainable-tokenizer 1096 15 16 12 4 3
quietfanatic rata 0 1 0 1 1 3
pal-robotics perception blort 27913 11 14 12 5 285
pavlinux ctorrents-plx 9653 5 4 1 1 11
mrtazz restclient-cpp 48121 1115 1153 167 304 17
keithw sprout 2342 61 13 5 4 2
metno wdb-feltload 588 64 41 13 16 12
vinniefalco LuaBridgeDemo 132891 132 42 21 17 12
fengwang random variate generator 6449 161 117 27 30 31
rawler bithorde 4021 60 42 25 14 17
nschloe nosh 4417 159 36 13 15 3
araqnid pqwx 1820 0 0 0 0 2
rdanbrook nestopia 54604 1600 357 54 109 94
Overdrivr ZNoise 909 0 0 1 0 5
thjaeger easystroke 2573 36 24 8 7 5
gingi fastbit 138489 6513 3451 345 553 419
squeesh hex-grid-test 1070 84 21 7 7 15
sequencing gvcftools 3135 118 168 36 45 11
yetanothergeek fxscintilla 34949 43 28 8 9 6
ahamez libsdd 3339 61 60 30 30 5
westlab negi 48266 1135 1160 168 305 11
artm WatchThatSound 1112 0 0 0 0 2
veprbl libepecur 2768 27 23 8 7 44
dln medida 43879 1104 1121 163 296 14
vecna sniffjoke 3794 47 22 7 7 0
sim82 papara nt 5245 0 0 7 0 52
dataseries DataSeries 18285 65 48 15 16 0
lemire EWAHBoolArray 2138 0 0 0 0 2
mnmlstc unittest 843 167 391 46 79 3
xrubio pandora 13941 359 149 42 48 38
uentity bluesky 5808 93 54 22 20 24
lucas8 Cancer-game 1626 17 12 2 4 7
lettis Kubix 2458 15 8 2 3 15
dicarlolab-mworks NIDAQ 531 5 16 9 6 2
matiu2 witty-plus 365 8 7 8 3 2
aconley pofd affine 14599 985 254 57 70 79
pwr Sigil 58653 335 113 42 41 10
codemer libtpt 0 18 0 8 18 16
paulasmuth brokerd 3393 85 48 13 13 2
lwinkler markus 3790 200 115 33 42 4
gunoodaddy SharedPainter 7276 77 6 11 3 4
SysFera libdadi 5061 607 468 106 99 2
nireis pferd 6716 0 0 0 0 4
i-rinat reiserfs-defrag 2566 73 14 2 4 7
glipari rtscan 2831 207 268 71 74 1
jasonmccampbell scipy-refactor 164751 0 0 0 0 2
mateuszboryn DisCODe 1638 65 62 27 23 2
jezhiggins arabica 1654 24 25 7 9 2
sim82 ivy mike 989 6 5 1 1 27
jfnavarro PrimeTV2 5667 236 60 10 16 54
emeryberger Heap-Layers 989 0 0 0 0 4
lotten daoopt 12531 154 8 2 2 5
ericprud SWObjects 39445 9312 4329 394 1024 96
Grumbel viewer 4726 2 3 2 1 10
bytemaster tornet 2777 270 130 50 59 11
striezel libstriezel 6458 504 99 28 30 35
dreamsxin Gnoll 2874 87 88 35 29 12
mpusz Condor2Nav 1147 48 29 12 12 4
feelx88 Explore 2069 24 20 8 7 4
CppMicroServices CppMicroServices 29605 1876 696 167 246 44
Error323 E323AI 3952 0 0 7 0 2
ethz-asl libpointmatcher 12295 169 170 41 52 101
sebjameswml futil 2889 87 49 18 18 38
marcovc casper 5079 12 14 6 5 28
metno wdb-libwdbload 211 21 16 9 8 1
zerebubuth openstreetmap-cgimap 5470 335 240 60 76 130
codespear GameEx 3370 25 30 6 12 24
tclarke opticks-extras-IDL 2485 77 14 6 6 9
sarum9in DEPRE-
CATED yandex contest invoker flowctl game

511 25 11 6 7 1

68

LineCount Occurrences
Project Total try catch try catch throw

stnava ANTs 0 107 0 101 107 22
guyrt WFUBMC 52099 1567 2093 300 592 650
gitj dspsr 16914 2135 308 103 122 1
ibd1279 logjammin 2850 93 100 30 42 10
goodfella libtq 361 25 16 4 4 5
mathieu dtEntity 25603 1319 1680 381 468 8
CyborgSummoners Summoner-Wars 2909 28 17 5 5 39
wedesoft hornetseye-ffmpeg 802 257 54 26 25 2
britram libfc 4840 10 18 5 5 16
ibsh libKeyFinder 858 0 0 0 0 37
segfault87 Konstruktor 4815 17 35 7 7 3
mgbellemare Arcade-Learning-Environment 21967 477 312 52 104 10
paoloambrosio cucumber-cpp 2023 69 42 16 14 12
bunsanorg common 4230 390 667 53 165 48
shumatech BOSSA 3200 234 57 13 15 83
graehl carmel 3562 407 15 5 5 2
Ethatron squish-ccr 33772 522 12 4 4 4
Oberon00 luabind 3665 635 643 311 311 10
amorilia formast 755 8 9 3 2 4
byon myrrh 4119 118 92 37 30 8
Yubico yubikey-personalization-gui 3292 145 18 6 6 22
olavolav te-causality 5323 1479 1278 84 145 0
couchdeveloper JPJson 5238 18 8 4 3 7
sedna sedna 51746 494 321 62 115 20
PMBio limix 39473 14 16 2 2 17
arktools arkmath 819 0 0 6 0 1
eNoise pichi 27677 23 27 12 9 9
ghedo p5-FFI-Raw 16066 9 9 3 3 3
jean-marc objrdf 2308 6 9 2 4 31
fclaude libcds2 46185 1144 1046 166 299 24
vancegroup stlport-avr 33691 1434 907 140 248 63
ruven iipsrv 6622 249 88 10 14 69
bekaus pgmlink 1200 0 0 1 0 19
tonttu Shaderkit 166819 1746 750 230 229 572
pkarasev3 kslice 14075 34 34 14 13 21
dascandy hippomocks 1480 100 240 28 30 4
schwa423 Sketchy 5519 13 19 5 6 11
godai0519 BoostConnect 1121 6 3 2 1 10
OpenWaterAnalytics epanet-rtx 8659 123 54 28 21 7
ros nodelet core 619 5 15 10 3 3
timowest flauta 3935 3 3 1 1 2
colobot colobot 9506 36 50 15 20 8
yangacer BehaviorDB 1547 15 19 7 7 13
jehugaleahsa spider-cpp 1021 82 28 13 8 3
HongjianLi igrow 541 52 4 8 1 1
esrf-bliss Lima 11138 256 110 30 37 73
imvu-open istatd 15826 563 232 65 63 82
James-Jones HLSLCrossCompiler 177533 1751 760 231 232 581
svn2github vmpk 66205 1380 224 94 95 8
ramntry homeworks 3837 71 20 5 5 15
vancegroup-mirrors eigen 17718 458 412 175 174 1
fperrad tvm 14289 87 53 9 9 8
gman0 fsync 1322 9 11 4 5 6
AoD314 pat 184 8 3 1 1 5
hfiguiere niepce 2914 101 76 29 30 1
victorparmar zsearch 40249 19 10 4 5 7
osh gr-eventstream 915 0 0 7 0 11
steinwurf gtest 39911 1112 1144 166 301 11
WrinklyNinja libloadorder 619 94 81 29 31 12
Amxx MDMA 5397 29 16 5 5 6
neuront stekin 1645 3 3 1 1 9
jafyvilla vrpn 35112 178 35 17 16 15
BrewPi brewpi-avr 7274 3 9 1 3 3
luispedro elgreco 1341 0 0 1 0 9
pgengler pinot 11100 0 0 0 0 1
alopatindev ponic 15302 0 0 0 0 6
nebirhos yaml-cpp 7051 108 39 18 19 54
android platform external protobuf 142787 354 254 52 73 7
Yubico yubikey-personalization-gui-dpkg 3265 145 18 6 6 22
reverbrain elliptics 22383 618 393 70 80 27
rdnelson Libra 77163 1617 1574 239 421 19
tanjeff agentXcpp 784 9 12 3 5 33
glastonbridge SuperCollider-Android 38234 49 36 9 17 7
ros-perception vision opencv 1345 15 13 6 5 5
Nocte- rhea 2972 58 61 11 10 18
jinmei queryperfpp 1168 102 14 6 5 5
JerrySievert plv8 121 8 6 1 2 3

69

LineCount Occurrences
Project Total try catch try catch throw

avakar libyb 3181 120 66 24 25 87
Wicker25 Rpi-hw 1761 0 0 0 0 15
cbsrbiobank dmscanlib 22981 26 26 5 8 13
donut-lang Chisa 14074 26 41 5 12 10
scyptnex computing 10384 107 15 4 3 19
ros bond core 379 43 40 16 10 11
ros-perception image pipeline 1764 116 57 31 24 5
evido wotreplay-parser 5719 17 15 4 4 10
danopernis hcc 5394 46 23 5 5 30
zsiciarz aquila 15020 2479 6508 777 1632 11
fhoefling halmd 5346 334 300 76 77 22
fhoefling h5xx 686 111 100 26 26 1
m-mcgowan brewpi-avr 7757 3 9 1 3 3
worldforge metaserver-ng 1134 207 18 8 7 2
Alphax nifskope 26469 208 25 9 9 1
cdunn2001 jsoncpp 7329 134 133 44 44 2
psoetens orocos-rtt 27649 422 465 103 129 12
volkszaehler vzlogger 8701 1082 665 138 225 130
DamianZaremba cluebotng 287 35 9 10 3 5
uesp tes5lib 11457 0 0 0 0 1
jlaire dlx-cpp 2568 33 23 3 3 40
tsvaton hermes 56601 555 135 37 49 534
openscenegraph VirtualPlanetBuilder 33779 98 24 4 6 56
sofianehaddad privot 93172 14785 2093 432 532 1435
openstreetmap merkaartor 22745 16 18 6 7 1
d3cod3 GAmuza 33578 120 50 17 18 0
kripken intensityengine 111654 28 29 19 13 7
tmolteno necpp 12491 282 281 77 80 68
Flusspferd flusspferd 7832 648 663 156 172 193
crishoj OpenPNL 150705 1088 846 119 212 1
borisbrodski sevenzipjbinding 139850 3504 1022 187 334 292
Medo42 Faucet-Networking-Extension 1196 49 32 23 16 1
slowfrog chickenpix 6412 28 26 9 11 19
o11c tmwa 126626 730 519 108 139 99
themiwi OpenFOAM-1.7.x-OSX 75733 51 36 15 12 4
exavideo exacore 5153 71 39 14 13 68
RealBadAngel minetestHD 47968 1004 695 211 304 13
ledger ledger 14644 811 365 96 97 26
raceintospace raceintospace 37783 3 11 2 3 8
BizarreCake hCraft 21275 276 159 56 55 83
NoLifeDev NoLifeStory 2292 0 0 0 0 35
larsnystrom alma 11972 28 23 3 6 20
snogglethorpe snogray 9963 54 22 13 9 30
jetty840 Sailfish-G3Firmware 71125 635 508 52 73 4
mateuszbaran ECG-analyzer 70917 3377 1859 625 618 975
ThQ memc 4299 3 9 1 3 3
ilpincy argos3 575066 19444 7544 90 92 0
iut-ibk DynaMind-Extensions 43123 1104 1121 163 296 14
vle-forge vle 8490 252 118 48 44 6
pronobis rocs 76721 2446 1902 282 418 31
mcvsama xefis 5332 123 82 31 37 8
YggdrasiI TinyPrint 2949 18 16 6 5 6
MicroMagnum MicroMagnum 3453 0 0 0 0 81
wichtounet gooda-to-afdo-converter 2550 120 10 4 3 16
rorywalsh cabbage 133344 327 399 56 190 6
pmiddend fruitcut 2068 16 8 2 2 16
jbarreneche 75.74-Aeropuerto 6448 733 416 92 160 44
sakrejda Lux 220 0 0 0 0 4
c42f displaz 21266 211 157 34 32 11
allan-simon tatowiki 602 0 0 0 0 1
sdressler EPerF 531 24 57 8 11 9
cvjena nice-core 3773 15 16 6 6 5
guruofquality PMC 1366 281 23 5 4 6
slra slra 1653 160 27 5 5 31
romankuznietsov phyz 697 17 9 16 3 1
pr061012 pr061012 5027 40 22 7 7 16
robertramey safe numerics 68358 221 187 48 52 2
AeroNotix freepoint 260 8 13 3 4 2
wichtounet btrees 1304 0 0 0 0 1
ros-planning navigation 8428 98 84 33 31 4
fabianschuiki Auris 3219 112 56 12 21 31
pjgrenyer aeryn 2336 435 393 79 128 18
bkloppenborg ccoifits 73270 1626 1592 243 427 30
daritter OpenMPIFitter 880 53 29 9 9 2
performous performous 10348 496 171 67 66 153
r-lyeh moon9 216266 1284 688 142 181 148
HoverRace HoverRace 35659 686 1142 287 514 90

70

LineCount Occurrences
Project Total try catch try catch throw

icecc icecream 7093 198 51 7 8 7
monocasual giada 7984 60 62 18 18 1
msiemens UH-INF-StrategicGame 682 6 2 8 1 1
lvmguy thin-provisioning-tools 3381 63 32 12 11 26
rtrepos vle 8490 252 118 48 44 6
sebkur swp12 1090 0 0 0 0 4
limhyon Pangolin 4855 3 3 8 1 9
dannyedel dspdfviewer 627 16 12 4 3 7
felipealmeida mORBid 1681 0 0 7 0 5
xypron skyldav 1674 79 25 10 10 18
forsaken1 compiler 2284 45 2 1 1 76
april-org april-ann 31521 6 13 6 4 4
erikreed HadoopBNEM 35719 1339 810 119 118 38
iHateInventNames synergy-through-usb 95623 1769 1755 257 451 192
ros diagnostics 7835 10 20 9 4 5
ytakano catenaccio dpi 2834 21 8 8 2 13
Team3512 DriverStationDisplay 1461 0 0 0 0 2
invor space-lion 10224 0 0 0 0 32
wingfiring xirang 4950 93 86 24 29 1
rr- CRC-manipulator 467 7 6 2 2 7
tysonite asn1-compiler 12815 1512 1402 352 352 34
pellegre libcrafter 5903 0 0 0 0 23
k-stachowiak space-shooter 2230 6 3 1 1 24
systemdatarecorder recording 14818 0 0 0 0 6
chrislu schism 10572 101 104 34 26 39
ros-gbp shape tools-release 33 0 0 0 0 1
rhaberkorn sciteco 3258 86 116 30 35 30
lheckemann licht-raiders 332 2 9 2 1 1
pisto laurea 980 199 63 9 11 19
patrickdemond Alder 0 4 0 4 4 36
SuperV1234 SSVOpenHexagon 1027 0 0 13 0 5
anttisalonen freekick3 1187 24 21 5 7 2
jktjkt trojita 14963 53 36 16 16 16
bsutton openscad 10394 36 23 6 5 2
vslavik xmlwrapp 0 32 0 33 32 28
manucorporat FORZE2D 22353 51 64 14 14 8
pemryan Ipopt 10238 240 116 18 38 77
YoruNoHikage CaSFML-Defender 857 32 15 7 7 2
Krigu Gaze 2053 19 16 3 4 6
vitei moon 7125 59 220 18 19 44
doomtech gzdoom 198891 543 155 24 28 50
ralph-mcardell dibase-rpi-peripherals 2011 218 63 15 17 74
naoyam physis 12348 3 9 2 3 3
Morwenn POLDER 7008 43 8 3 3 23
studentls MolSimDS 2922 5 5 2 2 3
TheWatcher twscript 1801 3 6 1 2 2
brucekarsh PhotoSelect 3483 22 46 16 13 1
statismo statismo 0 42 0 44 42 6
Oxyd APNS 2687 66 18 7 3 22
maeikei xclang 13948 79 10 4 4 0
Neoracle DymonRepo 3352 20 12 6 6 31
dirkm cheapshot 1970 63 21 8 7 9
ptroja orocos-rtt-qnx 23875 288 304 69 86 8
shlagbaum quantlib 14503 342 89 26 37 1
sasvariagoston SG2PS 17470 14 49 3 13 17
wuye9036 SalviaRenderer 50787 0 0 7 0 1
visualfc liteide 38888 54 18 8 8 4
evincarofautumn protodata 346 13 12 3 4 2
zbigg tinfra 2808 8 13 3 6 10
djeedjay BoostTestUi 1680 22 14 12 5 11
wibus MouvementDeMasse 904 6 5 1 2 3
rhcad vglite 14281 0 0 0 0 23
skelcl skelcl 3898 118 105 17 19 10
riemervdzee TrafficSimulator 13174 65 34 4 4 32
lfranchi libechonest 2615 22 8 4 4 39
whudson The-Game 605 3 5 1 1 5
TyounanMOTI ARD 42893 1104 1121 164 296 14
hirisc m2dec 17257 0 0 0 0 1
fraunhoferipk tuiframework 10164 183 107 36 41 2
mirsoleimani SAMMicrobenchmark 12030 206 125 37 42 5
kloper openvrml 2932 175 55 24 20 2
kloper scooter 1413 16 8 10 3 4
meshula LabSound 7745 4 6 2 2 29
etano library 52066 3 15 2 2 2
bchareyre trunk 9207 19 18 11 5 38
yast yast-pkg-bindings 3490 442 228 93 100 5
code-canvas webapp-xul-wrapper 5720 167 40 9 13 18

71

LineCount Occurrences
Project Total try catch try catch throw

maxdebayser SelfPortrait 4654 150 9 3 4 30
ripples paol 2704 2 2 1 1 1
springlobby springlobby 10624 440 171 84 79 4
reverbrain elliptics-fastcgi 692 83 34 11 13 10
dogbert2 bro 48581 88 54 21 21 1
pgerdt timed 6868 70 44 5 10 13
soundcloud barn 118566 2378 2460 353 633 14
PaulPrice healpy 7919 0 0 0 0 1
bbellon nbites 13601 85 69 30 29 29
AnomalyDetection2012 AnomalyDetec-
tion2012PWR

2371 65 10 3 3 1

jeeb avisynth 30365 1199 360 95 102 180
cpaproth sk 1497 75 21 20 10 6
janpaulus BRICS OODL 4016 165 137 39 48 17
vecnatechnologies navigation 7212 101 78 30 28 6
simsong be13 api 1519 12 11 4 4 2
ddemidov amgcl 1811 33 6 3 2 2
stonier ecl core 4051 258 174 77 77 1
cristal StrawberryCore Old 189556 60 31 9 9 102
funnyfan c10t 1968 41 61 19 18 11
zhangchn sunpinyin 13126 39 13 2 2 3
DigitalInBlue Celero 46019 1131 1169 170 308 14
dakeyrasKhan gravityBot 1749 9 9 3 3 5
mpreisler ember 37442 729 462 171 185 11
el-bart avr servo 761 73 36 5 7 2
amate unDonut 572 68 13 12 5 4
mohammadzakwan inetmanet 19068 0 0 0 0 4
nanoant Catch 9940 2149 2107 685 688 9
schmunzel mmoserver 11716 81 41 27 15 7
FrankPetrov Vault-Tec-Multiplayer-Mod 37787 451 79 17 17 112

72

	List of Figures
	List of Tables
	Introduction
	Thesis Contributions
	Thesis Organization

	Background and related research
	Related Research
	History of Exception Research
	Exception Usage
	Exception handling in C++ systems
	Exception handling in other languages
	Static Analysis Tools

	C++ Features
	Classes
	Resource Management
	Run-time Type Information
	Exceptions

	Exception Discussion
	Research Questions

	Methodology
	Static Analysis Tools
	Annie
	Zee Exception Length and Destination Analyzer
	Data Extraction
	Exception Propagation Algorithm

	Exception Graphs
	Corpus and Data
	Exception Metrics
	Analysis Approach

	Results
	Data Set Curation
	Exception Localization
	Exception Flow
	Throwing Functions
	Exception Graphs

	Implementation
	Statement Usage

	Function Annotation
	Summary

	Conclusions
	Limitations
	Future Work
	Improvements to Zelda
	Additional Programming Languages
	Code Defects

	References
	Exception Code Example
	Context Graph
	Exception Flow Algorithm
	Stack Unwinding
	Exception Graph

	Corpus

