
3D Ground Truth Generation Using
Pre-Trained Deep Neural Networks

by

Jungwook Lee

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2019

c© Jungwook Lee 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Training three-dimensional object detectors on publicly available data has been limited to
small datasets due to the significant effort required to generate annotations. The difficulty
of labeling in 3D using 2.5D sensors, such as LIDAR, is attributed to the high spatial
reasoning skills required to deal with occlusion and partial viewpoints. Additionally, the
current methods to label 3D objects are cognitively demanding because they require fre-
quent task switching. Reducing task complexity and the amount of task switching done
by annotators is key to reducing the effort and time required to generate 3D bounding box
annotations. The following work seeks to reduce the burden on the annotators by leverage
existing 3D object detectors.

This work introduces a novel ground truth generation method that combines human
supervision with pre-trained neural networks to generate per-instance 3D point cloud seg-
mentation, 3D bounding boxes, and class annotations. The annotators provide object
anchor clicks which behave as seeds to generate instance segmentation results in 3D. The
points that belong to each instance are then used to regress object centroids, bounding
box dimensions, and object orientation. The deep neural network model that is used to
generate the segmentation masks and bounding box parameters is based on the PointNet
architecture.

The following method relies on the existing KITTI dataset to analyze the quality of
the generated ground truth. The neural network model is trained on the KITTI training
split and the 3D bounding box outputs are generated with annotation clicks collected from
the validation split. The validation split of KITTI detection dataset contains 3,712 frames
of pointcloud and image scenes, and it took 16.35 hours to label with the method used
in this study. Based on these results, the proposed approach is 19 times faster than the
latest published 3D object annotation scheme. Additionally, the annotators spent less time
per object as the number of objects in the scenes increases, making our apporach a very
efficient for multi-object labeling. The quality of the generated 3D bounding boxes, using
the proposed method is compared against the KITTI ground truth. The model performs
on par with the current state-of-the-art 3D detectors, and the labeling procedure does
not negatively impact the output quality of the bounding boxes. The proposed scheme
is also applied to previously unseen data from the Autonomoose self-driving vehicle to
demonstrate the generalization capabilities of the network.

iii

Acknowledgements

I would like to thank Prof. Steven Waslander for the countless opportunities that he
gave me in the field of autonomous robotics. His optimistic and enthusiastic attitude
towards research has been a positive influence during my time working in the Waterloo
Autonomous Vehicle Laboratory. I would also like to thank all my colleagues in WAVELab
for the wonderful times we had working with together. I would especially like to thank Sean
Walsh for the cooperative work that we managed to accomplish despite the hard times. I
would also like to express my thanks to Ali Harakeh for introducing and mentoring me in
machine learning and computer vision. Finally, I would like to dedicate this work to my
parents and my little sister for always believing in me.

iv

Table of Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges . 2

1.3 Contributions . 3

2 Background 5

2.1 Machine Learning . 5

2.2 Deep Neural Networks . 6

2.3 Convolutional Neural Networks . 7

2.3.1 Feature Pooling Layers . 8

2.3.2 Rectified Linear Unit . 9

2.3.3 Batch Normalization . 9

2.3.4 Dropout . 10

2.3.5 Softmax Classifier . 11

2.3.6 Regression . 11

2.4 PointNets . 12

2.4.1 PointNet Architecture . 13

v

2.4.2 T-Net Architecture . 15

2.4.3 Frustrum PointNet . 15

2.5 Labelling Methods . 18

2.5.1 Center Click Supervision . 18

2.5.2 SUN RGB-D Labelling in 3D . 20

2.5.3 Crowdsourcing . 21

2.5.4 Quality Assurance . 21

2.6 Conclusion . 22

3 Clicked-based Bounding Box Generation Method 23

3.1 Click Collection . 24

3.1.1 Annotator Training . 24

3.1.2 Quality Assurance . 26

3.2 Ground Truth Generation . 27

3.2.1 Click Dataset Pre-processing . 28

3.2.2 3D Point Instance Segmentation . 28

3.2.3 Center Regression . 29

3.2.4 3D Bounding Box Estimation . 29

3.2.5 Data Augmentation . 30

3.2.6 Network Training . 31

3.3 Conclusion . 31

4 Experimental Results 34

4.1 Labelling Statistics . 35

4.1.1 Annotation Time . 35

4.1.2 Annotation Precision and Recall . 36

4.2 3D Instance Segmentation Results . 38

4.2.1 Instance IoU . 38

vi

4.3 3D Bounding Box Estimation Results . 41

4.3.1 3D Bounding Box Center Regression 41

4.3.2 3D Bounding Box Size Estimation 41

4.3.3 Visualizations of 3D Bounding Box Generation 48

5 Conclusion 50

5.1 Limitations . 51

5.2 Future Works . 51

References 53

vii

List of Figures

2.1 Pooling Layer Visualization . 8

2.2 Dropout Visualization . 10

2.3 PointNet Architecture Diagram . 14

2.4 Frustrum Pointcloud Generation . 16

2.5 Frustrum Pointnet Architecture . 17

2.6 Frustrum Pointnet Coordinate Transforms 18

2.7 Click Supervision . 19

2.8 Sun RGB-D Labelling . 20

3.1 Overview of 3D Data Labelling Procedure 23

3.2 Click Collection GUI . 25

3.3 Training Feedback GUI . 26

3.4 Label3D Ground Truth Generation Architecture 33

4.1 Annotation Time vs. Number of Objects Per Scene 36

4.2 Instance Segmentation Results . 39

4.3 Error Case for Segmentation . 41

4.4 Histogram of Bounding Box IOUs . 44

4.5 Histograms of Car Bounding Boxes Z-axis Distances based on IOU 44

4.6 Histograms of Bounding Box Orientation Errors for KITTI Validation . . . 45

4.7 Histograms of Bounding Box Centroid Errors for KITTI Validation 46

viii

4.8 Histograms of bounding box size errors for KITTI Validation 47

4.9 Autonomoose Labelling Results . 48

4.10 KITTI Qualitative Results . 49

ix

List of Tables

3.1 Instance Segmentation PointNet Layers . 29

3.2 Center Regression T-Net Layers . 30

3.3 3D Bounding Box Regression PointNet Layers 31

4.1 Comparison of Test Datasets for Annotation 34

4.2 Precision and Recall Performance On Car Class for KITTI Validation Set . 37

4.3 Statistics on Miss Rates . 38

4.4 Qualitative Performance Evaluations . 40

4.5 KITTI Evaluation on 3D Bounding Boxes 43

x

Chapter 1

Introduction

1.1 Motivation

In recent years, deep learning has emerged as a dominant approach for improving per-
formance on perception tasks related to autonomous driving. This rise has been made
possible by unprecedented access to massive, highly parallelized computing infrastructure,
and to ever expanding datasets, which enable deep networks to distill complex patterns
from noisy sources. For example, the introduction of the ImageNet Large Scale Vision
Recognition Challenge [36] led to breakthrough deep learning models such as GoogLeNet
[40] and ResNet[11] that have been shown to reach close to human performance in image
classification. Similarly, the KITTI Vision benchmark suite shows results of models with
ever improving performance for autonomous driving related tasks, and has led to robust
progress in diverse areas from pose estimation to object detection, depth estimation and
others.

Large datasets are a particularly important factor to achieving good generalization
performance for deep neural networks. As dataset size increases, the transformations and
variations inherent in the base data are better distilled in the learning process, leading to
stronger performance on a given task without any change to the network configuration.
For example, in object recognition tasks in 2D images, representations of a single object
can have various forms. An image of a car can have numerous variations in appearance,
geometric variation, and the sensor used to generate the information are susceptible to
noise. A large, representative dataset will contain more of the possible variations, and
require the learned representation to handle these variations correctly, thereby ensuring
that new observations are more likely to be consistent with the learned representation.

1

Furthermore, large datasets are necessary to highlight progress in the development of
algorithms used in autonomous vehicles. The datasets can be used to provide a stan-
dardized benchmark for comparative analysis amongst the large variety of new algorithms
being proposed. Quantitative measures such as the average precision (AP) are commonly
used as the metric to determine and compare object detection performance. These metrics
provide useful insight into quantifiable algorithmic performance gains, and lead to higher
confidence prior to on-road deployment.

Additionally, having multiple datasets from different domains is critical to ensuring
that the algorithms are not over-designed to accommodate to specific inherent biases in
any particular dataset. Large and varied datasets are still the primary resource to provide
generalization and overfitting analysis for deep networks and there is an ever-increasing
demand for larger datasets, especially in the field of autonomous driving.

Despite the strong demand, the availability of large autonomous driving datasets re-
mains limited. Currently, the most widely used dataset in the domain of autonomous
driving is the KITTI dataset [7]. It is frequently used in the literature to prototype and
provide comparative analysis for a range of perception challenges. The KITTI dataset
contains about 30,000 instances of labelled vehicles with high quality bounding box anno-
tations. Due to its small number of label instances and the lack of variety of the scenarios,
it cannot provide the adequate generalization performance required to ensure safety for
public tests in other environments. Amongst the more recent publications of autonomous
car datasets, ApolloScapes[13] has increased the magnitude of instances of vehicle in their
dataset to 2 million. However, ApolloScapes lacks high quality 3D bounding box anno-
tations and is not widely available. Evidently, the collection of the data itself is not the
primary reason why autonomous driving datasets are hard to publish. The bottleneck is
caused by to the difficulty and the cost required to obtain high-quality annotations.

1.2 Challenges

Specifically, inferring 3D bounding boxes for all relevant objects in a scene is difficult to
annotate using unprocessed 2.5D range data. The data available to annotators from range
scanners is sparse [42], and captures surface information only from the sensor’s viewpoint.
Depending on the position of the sensor, the object to label will not be fully observable
which forces the annotators to rely on mental imagery and spatial reasoning. Additionally,
occlusion, missing parts, extent estimation and consistency across multiple frames are
common problems in 3D labelling procedures. Thus, human annotators spend much of

2

their mental effort in compensating for such ambiguities and incomplete data. leading to
long labelling times per object, with high probability of inaccuracies.

To further complicate the task, 3D bounding boxes labelling methods, such as [38],
involve frequent task switching. It takes more time to complete tasks if a human must
switch between them than if each task is completed for all instances before switching to
the next [8]. Furthermore, humans tend to exhibit higher error rates when task switching,
when compared to performing one task at a time [28]. Also, task switching is cognitively
demanding, resulting in mental fatigue after multiple iterations, which in turn decreases the
annotators’ performance [41]. Therefore, elimination of task switching is key to maintaining
quality of annotation and an effective way to reduce the burden on the annotators.

Ultimately, the current methods to obtain high quality annotations for 3D bounding
boxes rely too much on human effort. Reducing human effort can greatly reduce the time
and cost of labelling, since it is the costliest component of the overall procedure. The more
difficult the task becomes, the more the cost is increased due to the added time to complete
the task, so task complexity must be reduced as much as possible. Research has shown
that proper usage of pre-trained networks and object detectors can greatly reduce human
effort in labelling frameworks in 2D images [30, 32, 31].

Autonomous driving needs 3D labels, however, and there is currently a lack of research
in literature using detectors to assist annotators tailored towards 3D data. The reason is
due to the fact that 3D object detectors are a fairly recent development in computer vision
research. As of now, the top performing 3D detection models trained on KITTI achieves up
to 73 average precision (AP) on medium difficulty for cars. Unfortunately, this implies that
the dependence on human in the labelling framework cannot be completely removed since
the quality of annotation is still unmatched by any other methods. Therefore, the main
challenge addressed in this thesis lies in identifying ways to simplify the human annotator
task as much as possible using 3D object detection networks, while still employing human
annotators to boost overall labelling accuracy to achieve sufficient quality in the resulting
labels.

1.3 Contributions

This work proposes a hybrid annotation scheme that consolidates the strengths of human
annotators and deep 3D object detectors to quickly and efficiently generate high quality
3D detection ground truth labels. The annotators are to click on objects of a specific
class in a LIDAR point cloud, using just one click per object. The provided clicks define

3

segmentation seeds used to generate amodal instance level segmentations on pointcloud
data through a deep neural network. The segmentation results are fed to a 3D bounding
box estimation network to produce the final bounding box results. As a by-product of
the process, each 3D bounding box is associated with an instance level 3D segmentation
mask. The resultant framework eliminates task switching by asking the annotators to
provide a single click for each object of interest in the scene. Additionally, it discards
the need to determine the extents of a bounding box in 3D, reducing the task’s mental
imagery requirements and cognitive load. The proposed method takes advantage of strong
generalization capabilities of annotators to reduce the search space and uses a pre-trained
deep neural network to infer the boxes. The following method is designed to generalize well
to new datasets, and is therefore well suited as an effective labelling scheme for autonomous
driving object detection data collected in a variety of locations.

Leveraging pre-trained deep models to perform 3D instance level segmentation and
3D bounding box estimation leads to efficient generation of high-quality ground truth
labels. The click annotation procedure is proven to be 30x faster than the 3D bounding
box annotation procedure described in [38], taking on average only 3.7 seconds per object
instance. Additionally, it is found that an increase in objects in a scene does not necessarily
take longer to annotate, thus making it an efficient scheme for multi-object annotation.
Quantitative experiments on KITTI data show that the recall of the click supervision
annotation method has similar recall performance to deep neural networks trained only
on KITTI. Additionally, the network generates instance segmentation masks with 0.85
instance intersection over union (IOU) averaged across all classes. The average precision
(AP) of the car 3D bounding box is 88.04 for moderate difficulty with 0.5 IOU, which is
adequate for labelling. Finally, our ground truth generation method is tested on a novel
autonomous driving dataset collected with the Autonomoose platform at the University of
Waterloo to provide qualitative results to demonstrate generalization performance.

4

Chapter 2

Background

This chapter proceeds as follows. Section 2.1 introduces basic machine learning concepts,
including deep neural networks. Section 2.3 briefly explains convolutional neural networks
(ConvNets), which are deep networks that are commonly used for computer vision tasks.
Next, Section 2.4 presents the state-of-the-art deep neural networks designed for operation
on geometric points, and a particular variant that is used in 3D object detection. Section
2.5 briefly presents the latest 2D and 3D labelling methods that are found in the literature.

2.1 Machine Learning

The goal of a machine learning algorithm is to learn by experience E to perform a task T
with respect to a performance measure P [27]. The task T is the goal that the algorithm
is learning to accomplish. For example, a task given to an autonomous car is the ability
to drive safely to a given destination. The performance measure P defines a metric for
quantitative analysis to evaluate the effectiveness of the learned algorithm. Following the
previous example, the standard safety performance measure for autonomous cars is miles
per intervention (MPI), which is the travelled miles between situations where either the
safety driver intervenes, or the software requests a safety driver to resume control of the
vehicle. The experience E describes what kind of learning experience the algorithm can
have. These terms are left undefined for now, and will be made more concrete below.

Mainly, the experience given to the algorithm is divided between supervised and un-
supervised methods. An autonomous driving algorithm that learns from a dataset that
is generated from a model human driver is considered to be supervised learning. A su-
pervised learning method uses a dataset that contains examples associated with explicit

5

ground truth labels. Given a set of training examples, x = (x1, ..., xn), and its corre-
sponding ground truth, y = (y1, ..., yn), the goal of a supervised learning method is to
find a model, ŷi = f(x̂i), that predicts the outcome ŷ = (ŷ1, ..., ŷm), for unseen data
x̂ = (ŷ1, ..., ŷm).

The task of the supervised learning problem can be defined by the format of its output,
y and ŷ. Classification tasks aim to categorize the inputs into a set number of categories
k. Formally, the model is to learn a function: f : Rn → {1, ..., k}. Classification tasks are
commonly used in image classification problems, where the given image must be categorized
to a set number of given class of objects. Regression tasks require the model to learn the
function f : Rn → R, to generate real value outputs. Regression tasks are used to estimate
bounding box parameters for image localization.

2.2 Deep Neural Networks

Neural networks are a common model used in machine learning that allows the parameters
of the basis functions to be adapted during training. Neural networks take the following
form.

y = f

(
M∑
j=1

wjφj(x)

)
(2.1)

where w is the vector of parametric weights for the basis functions, and f is a nonlinear
activation function. M specifies the number of parameters within the network. The key
aspect of neural networks is that the basis function φj(x) depends on activations from
previous layers.

The activation is commonly a weighted linear combination of input data with parame-
ters for the first layer, and uses the same form for subsequent layers taking the outputs of
previous layers as the input to the current layer.

aj =
D∑
i=1

wjixi + bji (2.2)

The variable, D, represents the number of input variables for the first layer, or neuron
in the previous layer for subsequent layers. Neural networks in this form are densely
connected and are often referred to as a multilayer perceptron (MLP). The given activation
is transformed by a differentiable non-linear function h(·) to obtain zj = h(aj), which
are commonly known as the hidden units of a neural network. The final hidden layer

6

activations are linearly combined and transformed again by using f in a similar manner to
the preceding layers to generate output. However, the choice of final activation function
depends on the type of the problem. For example, softmax [16] is a common choice of final
activation function choice for classification problems. The calculation of the prediction in
this manner is referred to as the forward propagation.

During training, the weights, w, and biases, b, are optimized to minimize the loss
between the predicted value and the provided output labels. The optimization technique
most commonly used is the stochastic gradient descent, where a small subset of training
samples is used at each iteration to propagate the descent. This method of organizing
training samples is often referred to as mini-batching in the computer vision literature.
The gradient information for feedforward networks is then calculated by back propagation
using the chain rule.

A deep neural network is a variant of neural networks that has more than one hidden
layer. The deeper neural networks provide an architecture that allows the model to learn a
function that is a composition of several simpler functions [10]. The hierarchical nature of
deep neural networks has been empirically demonstrated to provide better generalization
capabilities in a wide variety of tasks. The following section introduces an application of
deep neural networks with a data-driven approach that is used for computer vision tasks.

2.3 Convolutional Neural Networks

Convolutional neural networks (ConvNets) are designed for efficient computation of high-
dimensional datatypes such as images. Dense connections do not scale well, because there
would need to be a corresponding weight for each pixel of an image and the high number
of parameters is prone to overfitting. Convolutional neural networks also offer spatial
invariance by filtering all pixels through common convolution operators. The sparse form
of the ConvNet is represented by using a convolution operation to calculate the activations
of each layer. The 2D discrete convolution operation is formulated as follows:

I[i, j] ∗ w[i, j] =
∑
n1

∑
n2

I[n1, n2] · w[i− n1, j − n2] (2.3)

where w[x, y] is known as a filter or kernel in image processing. The shape of the convolu-
tional filter is represented by the sequence of n1 and n2. For a 3x3 patch kernel, n1 and n2

would both have sequence of [−1, 0, 1]. In the context of ConvNets, the filter characterizes
the sparse neural connections, the spatial locality of the input and the weights. The linear

7

combination of the weights in the kernel and the image pixel values is transformed through
the non-linear activation function. The neural network hidden layer that computes acti-
vation with the following approach is referred to as a conv layer. Conv layers often have
hyperparameters such as kernel shape and stride that affect the output resolution. Each
layer generates a feature activation map with depth that is equal to the number of kernels.
The following subsections introduce key techniques that are commonly used in ConvNets.

2.3.1 Feature Pooling Layers

A pooling layer is added between each convolutional layer to introduce invariance to small
translations of the input [10]. Local translation invariance is an important property for
enhancing classification performance in images. The pooling operation propagates a sum-
mary of a local set of non-linear activation. The specific summary function has many
variations, such as L2 norm or weighted average pooling. Max pooling [43] is the pooling
operation that is most commonly used in ConvNets, due to its simple implementation and
efficient computation. Figure 2.1 depicts an example of a max pooling operation.

The pooling functions also provide secondary benefits for computation resources. Pool-
ing is an effective strategy that controls the output size of the activation maps at each
layer to reduce the number of weights over the network. The control over the activation
maps allows fully connected layers at the end of most ConvNets to have fewer parameters.
Additionally, smaller activation maps mean fewer computations at each progressive layer.

Figure 2.1: Example of a max pool operation [17].

8

2.3.2 Rectified Linear Unit

The most widely used activation function for ConvNets is the rectified linear unit (ReLU).
The ReLU activation function is as follows:

f(x) = max(0, x) (2.4)

Krizhesky et al. [20] have stated that unlike sigmoid/tanh, the ReLU have linear and
non-saturating regions, which helps to solve the problem of vanishing gradients. Also, the
computation of ReLU is much faster than sigmoid/tanh which involves exponentials. One
disadvantage of using ReLU’s is that once the activation hits 0, the corresponding gradient
is also 0. The learning will stagnate, and it is difficult to recover from this state. A common
remedy to avoid such problems is to initialize with positive bias terms for the weights.

2.3.3 Batch Normalization

A common problem that arises in mini-batch training is that the output distribution of
each layer changes during training. Training for ConvNets occurs over mini-batches or
mini-batches based on the tasks. Since the optimization of each subsequent layer is based
on the output value from its previous layer, it is vital for the distribution of the output to
remain consistent. Otherwise, the given layers need to constantly re-adjust to the shifting
distributions at each training step.

Ioffe et al. [15] have suggested a method for dealing with the aforementioned problem.
First, the mini-batch mean and variance are calculated using xi, which is the activation
from the ith layer in the network.

µβ ←
1

m

m∑
i=1

xi (2.5)

σ2
β ←

1

m

m∑
i=1

(xi − µβ)2 (2.6)

The mean and the variance are then used to normalize the activation by the following
equation:

x̂i ←
xi − µβ√
σ2
β + ε

(2.7)

9

where ε is a constant added for numerical stability. Two additional parameters, γ and β,
are learned during training to fix the output mean and variance as 0 and 1 respectively.
Thus the final output value before applying the non-linear activation is as follows:

yi ← γx̂i + β (2.8)

The benefit of batch normalization is mainly for training deeper neural networks and has
been demonstrated to reduce training time with minimal loss in performance. For more
details, refer to [15].

2.3.4 Dropout

Dropout is used in ConvNets to assist in regularization. The term regularization in deep
learning refers to any modification to the learning algorithm to lower the generalization
error. Regularization techniques are frequently used to prevent the model from overfitting.
The main idea of dropout is to randomly disable neurons in the network so that only a
subset of the neurons is updated at each training stage. This allows exponential combi-
nations of sampled subnetworks to be trained. Since the weights are still shared, the full
network output is an averaged prediction across all the subnetwork ensembles. This simple
technique has been demonstrated to reduce overfitting and improve regularization during
training [39].

Figure 2.2: Dropout conceptually reduces the full network to a subset of its neurons [39].

10

2.3.5 Softmax Classifier

The softmax function provides a numerically-stable and probabilistic output for defining
the loss for classification problems. The softmax functions is denoted as follows:

p(x) =
exi∑
k e

xk
(2.9)

where k is the number of output classes. The softmax function is used to transform a
set of real-valued numbers to the range [0, 1], with the sum of the set equal to 1, thus
transforming the set of real input values to a discrete probability distribution.

The cross-entropy loss function is frequently used with softmax for classification tasks.
The cross-entropy between a true distribution, p(x), and an estimated distribution, q(x),
can be defined as follows:

H(p, q) = H(p) +DKL(p||q) (2.10)

where H(p) is the entropy and DKL(p||q) is the Kullback-Leibler divergence. The Kullback-
Leibler divergence is a measure of the extent of divergence of the two probability distribu-
tions [3]. The classification targets are represented with one-hot encoding, which is achieved
by representing each class as a binary variable. For a classification task with three classes,
for example, the first class would be represented a 3-D binary vector as [1, 0, 0]. Thus, the
ground truth label is a delta function that is represented as a probability mass distribu-
tion. Equation 2.10 indicates that, the entropy of the delta function is zero and that only
the Kullback-Leibler divergence remains. Therefore, minimizing the cross-entropy term
effectively reduces the difference between the ground truth and the softmax output of the
network. The cross-entropy in discrete form is defined as follows:

H(p, q) = −
∑
k

p(x) log(q(x)) (2.11)

Simplifying the discrete from of the cross-entropy to include the softmax function produces,
the following final cross-entropy loss term:

L = − log

(
exi∑
k e

xk

)
(2.12)

2.3.6 Regression

Regression in machine learning problems aims to predict continuous quantities. Regression
tasks in object detection involve bounding box center and size estimation. The common

11

loss function that is used for regression is the L1 norm. The advantage of using the L1

norm for the error is that it is significantly more robust, because outliers for L2 norms can
causes very large gradients during training [9].

The loss function used for the regression task is a variation of L1 norm known as the
Huber norm [14], which is differentiable everyone, and mimics the L2 norm near the origin.
The Huber norm is defined as follows:

Lhuber =

{
1
2
a2, for |a| ≤ δ.

δ(|a| − 1
2
δ), otherwise.

(2.13)

which is differentiable everywhere. The parameter δ, where δ ∈ R+, is used to control the
width of the quadratic region near the origin.

2.4 PointNets

Pointcloud representations are frequently used with sensor output from LIDAR sensors
for autonomous driving. A point is a 3D vector where pi ∈ R3, and a pointcloud is
defined as a set of points where P = {p1, ..., pr}. The point coordinates are relative
to the LIDAR sensor coordinate frame. The points may have extra added dimensions
for information such as intensity or colour, depending on the capability of the sensors.
Efficient utilization of pointcloud information is crucial to creating a robust object detection
system due to the high accuracy of the range data. Thus, Qi et al. have introduced
PointNet [33] for processing pointcloud data types as a generic neural network. Previous
works to incorporate pointcloud data in neural networks involved voxelization [26] and
dimension reduction [37] to convert a point cloud to image data for a ConvNet. However,
the additional transformations added too much computation and the loss of dimensions
resulted in poor detection performance. A pointcloud is fundamentally different from image
data due to its geometric and non-ordered properties. PointNet primarily focuses on the
following three aspects to apply deep learning for pointclouds: unordered data, invariance
to transformations, and interaction amongst points.

PointNet accounts for the unordered property of the geometric point by using global
functions. The unordered property of pointclouds is handled with symmetric functions
within the network. A symmetric function is one in which the output is the same no matter
the order of the arguments. For example, f = f(x1, x2) is a symmetrical function only if
f(x1, x2) = f(x2, x1) in the domain of f . In the context of PointNet, the general function

12

representation of the symmetrical operations for a given input pointcloud is defined as
follows:

f(x1, ..., xn) ≈ g(h(x1), ..., h(xn)) (2.14)

where f : 2RN → R, h : RN → RK and g : RK × ...×RK → R is a symmetric function [33].
The domain of f is the total number of combinations for N input sets in RN . The h
function is approximated by MLP layers while the function g is a composition of single
variable functions and a max pooling function. Thus, function f describes a set of features
that is summarized globally based on the input point set and is not affected by input order.
Qi et al. have stated that the symmetric functions are the key to retaining a unique feature
representation even with different combinations of the input points.

The transformation invariance of the input points is solved by using a small neural
network, called a transformation net (T-Net). The T-Net is used to regress a linear trans-
formation that is applied to the input set of points or features. The estimated linear
transformation is defined as f : x → y, for x, y ∈ Rφ, where x 7→ Mx. The size of the
transformation matrix M is dependent on the layer in which the transformation is applied,
where the length of each vector is φ. The matrix, M , is applied to the input pointcloud in
the beginning to form a canonical representation of the input data. The T-Net is also used
in a similar fashion to align the intermediate features in the deeper layers of the network.

The geometric points also have meaningful information because they associate based
on spatial locality. Using the spatial relationship between the points allows the model
to learn semantic information. Learning semantics in pointclouds involves the extraction
of per-point details to learn the context of a given region. For example, an area that
contains points that have all been categorized as pedestrian indicates a high probability
of the presence of a pedestrian. The PointNet architecture combines lower layer per-point
features with semantic features from deeper layers to aid in the classification of each point
in the set. The architectures of PointNet and its variants, are covered in the following
subsections.

2.4.1 PointNet Architecture

The input to the network is a pointcloud P of dimension n × 3, where n is the number
of points. Figure 2.3 illustrates how the input points are first passed through an input
transformation. The input transformation consists of two components: T-Net and matrix
multiplication. The T-Net regresses a linear transformation to be applied in the form of a
3×3 matrix. The input points (n×3) are transformed by applying a matrix multiplication
with the regressed matrix (3×3). More detail on the architecture of the T-Net is explained

13

Figure 2.3: PointNet Architecture Diagram [33]. The upper branch, in blue, is used for
classification tasks while the bottom branch, in yellow, is used for segmentation tasks.

in Section 2.4.2. The resultant transformed input points are passed through a set of MLP
with shared weights. The MLP operation can also be represented as a Conv layer with
1 by 3 kernels over each coordinate of the given pointcloud. Subsequent layers after the
first use a kernel size of 1 by 1 for extracting higher-level features. An intermediate feature
transformation layer is then placed between the third and fourth MLP layer to align features
to a canonical format. After five layers of MLP, a max pool is applied along the rows of
the final feature extraction to obtain a set of global features. The classification version
of the PointNet is completed with a densely connected layer that outputs k scores using
softmax and cross-entropy, where k is the number of classes.

The segmentation version of PointNet is also displayed in Figure 2.3 and is denoted
in yellow. A set of intermediate features is concatenated with the global set of features
to include contextual information for segmentation. Instead of classification, the mixture
of local and global information determines the regions where the points belong, based on
spatial cues. The concatenated features are passed through sets of MLP layers to generate
the final output. The output of the segmentation PointNet is n by m scores, where the
size of segmentation class is m. The MLP layers use ReLU for the activation function with
BatchNorm for both segmentation and classification versions. Dropout is used for the last
fully connected layer in the classification variant.

14

2.4.2 T-Net Architecture

The architecture of the T-Net consists of feature extraction layers with 64, 128, and 1024
output sizes as well as a max pool and a densely connected layer to regress the parameters
to form the linear transformation matrix, M . The output values that form the matrices are
initialized as an identity matrix. All feature extraction layers use ReLU with BatchNorm
and the last densely connected layer uses dropout. The output matrix of T-Net has different
sizes depending on where it is located within the network. If it is used to transform the
input points, the estimated matrix is R3×3. The feature transformation version of the T-Net
outputs a R64×64 matrix that is constrained to produce an output close to an orthogonal
matrix. The following equation is used:

Lreg = ||I − AAT ||2F (2.15)

where I is an identity matrix and A is the feature alignment matrix. Both matrices have
a size of 64× 64. The Frobenius norm is defined as follows:

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 (2.16)

2.4.3 Frustrum PointNet

Frustum PointNet [34] (F-PointNet) is an application of PointNet for 3D object detection in
autonomous driving. The inputs to the model are pre-generated image detections that are
trained on ImageNet [4] and COCO datasets [24]. These datasets are then fine-tuned on a
KITTI 2D image dataset. In 2D object detection networks, using a set of region proposals
is a common method to search through a given image for object instances. The proposals
represent a rough region of interest that is a subset of the input data; 2D boxes are used for
2D image input in this region. Each of the proposals are then evaluated through a model
to classify the object and regress tighter-fitting bounding boxes, as introduced in [35].

Frustums are geometric shapes that are generated by cutting a 3D geometrical solid
between 2 parallel planes. A viewing frustum is a common variation of a frustum used in
computer vision. The viewing frustum can be generated from a pyramid that represents
the image sensor’s field of view. Two planes are used to define the final extents of the
viewing frustum, which generates a truncated pyramid. The plane nearer to the origin of
the field of view pyramid is defined as the near plane and the furtherw away from the origin
is defined as the far plane. In the case of F-PointNet, a 3D viewing frustum is generated

15

Figure 2.4: Visualization of frustum pointcloud generation used in F-PointNet [34].

by extending a line from the sensor origin to each corner of the 2D detection bounding box
from the image plane. The far plane is parallel to the image plane, and the distance in
depth is a configurable parameter. Figure 2.4 illustrates an example of a frustum generated
with using a 2D detection.

In F-PointNet, the 2D region proposals are used to create frustums from the camera’s
viewpoint. These frustum are used to extract a subset of the pointcloud from the scene,
referred to as a frustum pointcloud. Each frustum pointcloud is assigned a one-hot class
vector that represents the class of the object inside the cloud. The frustum points are
processed through a segmentation PointNet. The output of the network is a mask that is
used to extract a subset of the frustum points that only belongs to the object. This subset
is referred to as an instance pointcloud. The instance pointcloud is further processed to
infer the 3D bounding box parameters using regression losses. Figure 2.5 depicts the full
procedure for 3D object detection for F-PointNet.

The regressed bounding box parameter include the centers (cx, cy, cz), size (h,w, l)
and heading angle θ. The centers are regressed in what the authors term a residual ap-
proach [34]. The instance pointcloud is normalized by its centroid and is followed by a
T-Net to obtain an offset towards a predicted object center, as depicted in Figure 2.6.

The box sizes are regressed in a similar approach to Fast R-CNN [9]. A set of templates
contain a fixed set of pre-determined sizes (h,w, l) that is further regressed to generate the
final output box. Intuitively, the network regression values scale the size of the final 3D

16

Figure 2.5: Frustrum PointNet Architecture [34].

output bounding box. The target regression values are parameterized as t as follows:

th = log(Gh/Th) (2.17)

tw = log(Gw/Tw) (2.18)

tl = log(Gl/Tl) (2.19)

where G is the ground truth bounding box size and T is the template size. The estimated
parameterized value for each of the size is denoted as t̂. The final set of estimated bounding
boxes sizes Ĝ is calculated by the following set of equations:

Ĝh = The
t̂h (2.20)

Ĝw = Twe
t̂w (2.21)

Ĝl = Tle
t̂l (2.22)

The yaw angles are regressed using a method derived from [29] which employs a discrete-
to-continuous strategy for angle regression, known as the MultiBin. First, the full range of
possible orientations is divided into nbins equal overlapping bins. An additional parameter
is regressed to add an offset to include a minor adjustment. The full loss function is defined
as follows:

Lθ = Lbin + βLloc (2.23)

where Lbin is a classification loss for the angle bins. Lloc is the loss for minimizing the
difference between the estimated angle and the ground truth angle. The parameter, β, is a

17

Figure 2.6: Frustrum Pointnet Coordinate Transforms [34].

hyperparameter to control the relative importance of the two losses. The loss for the angle
difference uses a cosine distance that is formulated as follows:

Lloc = − 1

nbins

∑
cos(θ∗ − ci −∆θi) (2.24)

where θ∗ is the ground truth angle, ci is the center angle of a bin and ∆θi is the regressed
angle offset. Thus, Lloc minimizes the difference between the ground truth and all the bins
that cover a given orientation in [29].

2.5 Labelling Methods

Previous labelling methods have focused on decreasing the difficulty of the human tasks by
offloading as much as possible to automation. The following section briefly describes the
current state-of-the-art methods in both 2D and 3D object labelling found in the literature.

2.5.1 Center Click Supervision

Papadopoulos et al. [32] have provided a 2D click supervision annotation method that solves
weakly-supervised object localization (WSOL). Weakly-supervised object localization aims
to obtain localization information by only relying on classification labels. It is typically

18

solved by formulating a multiple instance learning (MIL) problem. MIL is defined as a
learning method in which a single annotation is given for a set of instances. For example,
instead of a single image with a single class, a training set of images is grouped and placed
in a single class. Any set of images that contains a positive image from a given class is
considered positive during inference. Papadopoulos et al. have augmented MIL to utilize
the click information from annotators. This idea is formulated to find the true positive
ground truth bounding box from a set of proposals by learning an appearance model that
uses support vector machines (SVM) and ConvNets.

Figure 2.7: Click Supervision Procedure [32].

Click supervision utilizes EdgeBoxes [45] as their main proposal generator. The method
uses a recurring two-step procedure of re-localization and re-training. In the re-localization
step, the proposal with the highest appearance score is selected. The re-training step uses
the highest-scoring proposal and the proposals from negative images to update the weights
of the appearance model. At the end of the iterations, the output is the best fitting
bounding box for each image.

During labelling, the annotators are asked to provide an imaginary bounding box center
location for an image of an object (see shown in Figure 2.7). The annotation is provided
in the form of single click per object. The clicks are used to provide a localization score,
which is simply the Euclidean distance error from the true center. The overall score for
selecting the best proposal is a combination of the least localization and the appearance
score.

19

2.5.2 SUN RGB-D Labelling in 3D

The only recorded statistic that is related to the 3D bounding box labelling procedure
is mentioned in the work on SUN RGB-D [38]. The SUN RGB-D dataset is an indoor
3D object dataset that relies on a flat ground assumption to make the labelling procedure
easier. The ground plane is extracted with the gravity vector from the IMU that is built into
the camera setup. The annotators draw a 2D bounding box from the bird’s eye view (BEV)
that encompasses the x-y extents of the objects and the yaw orientation. In this view, the
object’s name and its natural facing direction are annotated. Then, the annotators are
shown the object’s y-z and x-z planes to verify object height and its position in z. Figure
2.8 depicts a visualization of this procedure.

Figure 2.8: Sun RGB-D Labelling Procedure [38].

This procedure is documented to have taken 2,051 hours for 64,595 3D boxes. Each 3D
box took 2 minutes and the annotators were paid 4 dollars per hour. Annotating 10 million
instances with this procedure would cost about 1.5 million dollars. Furthermore, there are
few key differences between indoor scenes and driving scenes that further complicate the

20

problem. One cannot assume that autonomous driving will take place on a flat surface
ground. Therefore, rotations in all three coordinate axes must be permitted. The max
range for the RGB-D dataset is 5.5m, but objects need to be detected at ranges up to 80m
in the KITTI dataset. Therefore, the sparsity of the 2.5D data is significantly different
in the indoor and outdoor scenes. Because there are less points that represent far away
road elements, labelling in 3D for autonomous driving is a significantly more challenging
problem.

2.5.3 Crowdsourcing

Crowdsourcing is the practice of obtaining information by using technology to enlist the
service of a larger population. Services, such as Amazon Mechanical Turks, serve as a mar-
ketplace for human intelligence. It is possible to collect annotations by developing a user
interface to collect information and a database for storage. The benefit of crowdsourcing
is that large amounts of data can be collected quickly and cheaply, which helps to collect
a greater sample size for annotation statistics.

2.5.4 Quality Assurance

One main problem of using crowdsourcing as the main method of gathering data is quality
control. The procedure must include steps to add robustness against incorrect results and
degradation of performance. Training the annotators is compulsory to reduce errors. A
clear and automated training program helps to reduce ambiguity by providing feedback to
the annotator. The prior error rate of an annotator and the time taken to train annotators
can also be measured. Figure 2.7 depicts an annotator training procedure. The problem of
degradation of performance can be reduced with intermittent tests. Injecting pre-generated
tests between sessions can pre-emptively detect loss in performance due to reasons such as
loss in focus.

The aforementioned labelling methods have different ways to maintain quality of the
annotations. Click Supervision [32] facilitates training with synthetic data. The training
consists of generating synthetic polygons and labelling the approximate center clicks. This
training procedure allows the generation of unlimited test samples which help to improve
annotator’s mental imagery in a short amount of time. By contrast, SUN RGB-D utilizes
a small number of well trained annotators to label data because it is not crowdsourced.
The only downside of this method is that selection bias makes it harder to obtain insightful
statistics on the performance of the labelling method.

21

2.6 Conclusion

The proposed labelling method in this work builds upon the concepts described in the
previous sections. The overall goal of the proposed method is to leverage existing datasets
and current advances in deep neural networks to facilitate the difficult process of 3D object
labelling. The current state-of-the-art generalization performance of 3D object detector
F-PointNet allows simultaneous output of point-wise segmentation and 3D bounding box
generation. The architecture of the network is modified to take location hints from the an-
notators. Instead of relying on 2D detections to reduce the search space as with F-PointNet,
the annotators are asked to provide a simple click to pinpoint the location of possible ob-
jects. The 3D clicks provided by human annotators are much more accurate locators of
possible objects compared to 2D frustums. Furthermore, the click-based annotation has
a few benefits that make it superior to previously mentioned techniques. The annotation
task does not involve frequent task switching to shorten time. Additionally, the click-based
scheme has been proven to be effective as a multi-object labelling scheme. Quality assur-
ance of the click-based method is easy to implement, which makes the method suitable for
training the annotators and continuous testing. The next section goes into greater detail
of the implementation of the method.

22

Chapter 3

Clicked-based Bounding Box
Generation Method

This chapter presents the main contribution of this thesis, a 3D dataset labelling procedure
that is assisted by deep neural networks that is significantly faster than today’s hand
labelled approaches.

Instructions Qualification Test Feedback

Pass ?
Yes

No

Collect Clicks Quality Assurance

Pass ?

No

Yes

Instance SegmentationBox Center Regression3D Extent and Orientation Regression

Clicks

Database

Figure 3.1: Overview of 3D Data Labelling Procedure

Figure 3.1 provides an overview of the labelling or annotation scheme. The first stage
consists of collecting click annotations with a custom labelling tool. A click is a singular
3D point that is obtained from annotators and indicates the presence of an object instance.

23

The annotators are trained with a qualification test that provides feedback on click accuracy
and recall. Once the annotators pass the test, they are permitted to begin the annotation of
the dataset. Quality assurance tests are randomly injected during click labeling to monitor
the ongoing performance of the annotators. If the quality drops below a threshold, the
annotator’s permission is revoked, and must re-qualify to continue. The collected clicks
are stored into a central database for processing in the second stage.

The second stage uses the clicks to generate subsets of pointclouds that represent an
object instance. The sample pointcloud is further processed through a deep neural network
to obtain instance-level object segmentation followed by 3D bounding box estimates. The
final output is a 3D bounding box and an instance segmentation mask for every collected
click.

The remainder of this Chapter expands on the first and second stages of our labelling
approach, starting with click collection in Section 3.1, followed by the ground truth gener-
ation method in Section 3.2.

3.1 Click Collection

Click collection is performed in 3D space with a user interface visible in Figure 3.2. Anno-
tators are presented with a 3D and colorized point cloud, which is generated by running
depth completion [21] on the LIDAR pointcloud. Annotators are then asked to click on all
instances that belong to a single class. The annotators are restricted to labelling a single
class to harness their knowledge of the scene to find all object class instances and to mini-
mize task switching. Scenes are presented in temporal sequence to allow the user to carry
knowledge of the previous scene over to the next, which eases the task of annotation. As
the focus is solely on 3D labels, the clicks are only collected in 3D space. This requirement
forces the annotator to be fully aware of the structure of the objects and that the click
has been properly placed on each object. In cases of poor visibility, such as heavily shaded
areas, the object’s structure will still be distinguishable in the 3D space. The camera
sensor view of the scene is also provided to the annotators to help them locate the object
instances.

3.1.1 Annotator Training

To maintain high-quality results, annotators must be trained before collecting clicks. They
are initially provided with a set of instructions on how to properly perform the 3D anno-

24

Figure 3.2: The labelling GUI used by annotators to provide click labels for each object in
the scene. The red points indicate points that are placed in the scene. The purple point
signifies the current selection by the user. The right side of the GUI contains buttons for
deletion, selection and submission of annotations.

tation task. Additionally, the annotators must go through a training sequence comprising
of 5 test scenes. All of the test scenes are previously labelled such that the annotator’s
attempts can be evaluated to provide performance analysis. The annotators are required
to achieve a minimum threshold of recall and precision per scene. In addition, this task
must be done under a time constraint, relative to the number of objects in the scene. The
allowable time for a single test scene is computed as Tmax = N × Tobject + Tscene, where N
is the number of objects in the scene, Tobject is the time allocated for clicking each object
and Tscene is the time allocated to initially scan and understand the whole scene. Both
Tobject and Tscene are set to 7 seconds. When the annotators complete the annotation of
these 5 scenes, they are provided with a review window which can be seen in Figure 3.3.

The review window displays each of the annotated scenes, and indicates the position of
the annotations as well as the ground truth bounding boxes of objects in the scene. Clicks
that are located inside ground truth bounding boxes are displayed in green, while those that

25

Figure 3.3: The annotator assessment window depicts the annotators correct and erroneous
attempts. The green bounding boxes with the green points indicate a proper annotation at-
tempt. The red bounding boxes are missed object instances. The red point is an erroneous
attempt that is not near to any of the correct instances.

are outside the boxes are displayed in red. Statistics pertaining to recall, precision, and the
time taken to annotate the scene are also provided for the annotator. The annotator must
attain a recall of 0.8, a precision of 0.6, and complete all scenes within the allocated time
to pass the training. Otherwise, another set of five scenes is provided and the annotator
must attempt a new training sequence. Annotators can repeat training as needed until
they pass, allowing for simultaneous training and ability validation. This removes the
need for the explicit annotator qualification test that is usually present in state-of-the-art
methods [32, 31].

3.1.2 Quality Assurance

To maintain accurate results during the annotation process, one test scene is injected in
each batch at a random location. This test scene is pre-labelled and thus can be used to

26

detect a drop in the quality of annotations. Annotators are unaware of the existence of
these scenes and are tested on the same passing criteria as in annotator training. If the
annotator fails, the labels in the batch are discarded and the annotator must retake training
to continue. If the annotator passes, the annotations in the batch are committed to the click
database and a new batch begins seamlessly. This methodology diminishes the likelihood
that new labels are saved when a particular annotator’s performance deteriorates.

Another approach to quality assurance is to collect clicks from multiple annotators
for each scene. This allows additional processing of the results at the cost of multiple
labelling. The added benefit of having multiple sources of annotation is that it allows
more robust post-processing methods. A voting mechanism can be added such that clicks
with agreement within a group or cluster of clicks are kept for further steps, while clicks
that are outside of such clusters can be rejected. Additionally, the final single location of
the click for an object instance can be represented by averaging the points within a cluster.

3.2 Ground Truth Generation

After click annotations have been collected and stored in a click database, a deep neural
network is designed to perform instance-level object segmentation followed by 3D bounding
box estimation. The model is based on the state-of-the-art F-PointNet [34], as outlined in
Section 2.4.3. The proposed model contains three submodules, an instance segmentation
network, a centroid regression network, and a bounding box estimation network that are
run in succession, as illustrated in Figure 3.4. The submodules are preceded by a data
pre-processing step which involves the production of the input to the overall network.
The input to the network is a set of sub-sampled points near the collected clicks. The
instance segmentation module removes background points using a mask generated from
the likelihood of it belonging to the object in question. The centroid regression network
takes the remaining object instance points as the input to estimate the object’s bounding
box centroid. The final subnetwork, which is the bounding box estimation network, takes
the 3D points and the estimated box centroid and outputs the final object bounding box
that is parameterized by its centroid position, height, width, length and orientation. The
following subsections describe each of the components of the ground truth generation in
more detail.

27

3.2.1 Click Dataset Pre-processing

The purpose of the pre-processing step is to prepare the input data Pclk for the overall
network from the dataset and annotation clicks.

The input is generated as a set of 3D points, with a size of N , that is contained in
a K × K × K 3D volume centered at the click provided by the annotator, where K is a
class-specific scale parameter. The points are centered around the click by subtracting the
click coordinate from every point coordinate. A set of sampled points is thereby generated
for every click recorded in the database.

The procedure differs if the model is being trained. For training, the set of points are
generated using random click simulation from the KITTI 3D object detection dataset. A
random point is selected from the points within a ground truth 3D bounding box. This
random selection of points aims to replicate the annotator’s click selection during the
labelling procedure. The output set of 3D points is sampled using a cubic volume centered
at the selected random click. Five randomly-generated clicks are used to generate training
data for each instance. This random selection serves as data augmentation to provide
additional training data.

3.2.2 3D Point Instance Segmentation

The segmentation variant of PointNet [33] is used to perform instance level segmentation
on Pclk. The network is required to classify each point in Pclk with a label that indicates
whether it belongs to an object or the background. Table 3.1 describes the architecture
used for the instance segmentation module. Outputs from the conv3 and conv5 layers are
extracted for the feature concatenation layer. Class information is also appended along
with the local and global features. The parameter k is the number of classes and is encoded
as a one-hot vector. The class information is obtained from the click database, where each
click is associated with a class.

The output of the segmentation network is an N × 2 sized matrix, where the sec-
ond dimension represents object and background class. The matrix is processed as a
N -dimensional binary vector to create a mask for the input. Masking Pclk generates a
set of points with size M , where M ≤ N , that only contains the object points. During
this process, the background points are filtered from Pclk. Finally, the masked points are
normalized by its centroid Cmask to generate the object pointcloud Pobj. This is done such
that the set of points in Pobj does not vary too much in bias.

28

Layer Kernel Weights Output
conv1 1×1 64 n×64
conv2 1×1 64 n×64
conv3 1×1 64 n×64
conv4 1×1 128 n×128
conv5 1×1 1024 n×1024
maxpool - - 1×1024
concat - - n×(1024+64+k)
conv6 1×1 512 n×512
conv7 1×1 256 n×256
conv8 1×1 128 n×128
conv9 1×1 128 n×128
conv10 1×1 2 n×2

Table 3.1: Instance Segmentation PointNet Layers

3.2.3 Center Regression

The object pointcloud is provided as an input to a 3D spatial T-Net, as described in Section
2.4.2. The output of the T-Net is a 3-d vector that represents the offset of the center of
a bounding box ∆Ct−net with respect to the origin of Cmask. The center regression is
accomplished in a similar fashion to the residual centroid estimation of F-PointNet [34].
The object pointcloud is then normalized by Pobj − (Cmask + ∆Ct−net) to generate the
bounding box pointcloud, Pbox. The bounding box pointcloud is used as the input for
bounding box estimation. Table 3.2 lists the layers used for the center regression T-Net.
Like the instance segmentation network, the class vector is appended in the concat layer.

3.2.4 3D Bounding Box Estimation

The classification variant of PointNet is used for bounding box estimation, but the final
layers are replaced with regression output. The bounding box extent estimation follows
the discrete-continuous loss definition described in Section 2.4.3. The model employs four
templates (two for car, one for cyclists and one for pedestrians) based on the mean size of
each object class from the training data split. Unlike traditional 3D object detectors [22]
where every template is regressed and pruned via non-maximum suppression, the following
model generates one best solution for each instance. This is done by classifying which

29

Layer Kernel Weights Output
conv1 1×1 (3×128) n×128
conv2 1×1 (128×256) n×256
conv3 1×1 (256×512) n×512
maxpool - - 1×512
concat - - 1×(512+k)
fc1 - 256 256
fc2 - 128 128
fc3 - 3 3

Table 3.2: Center Regression T-Net Layers

template best fits given input Pbox and then regressing the offset in height, width, length,
and orientation from that template. During the training stage for the 3D box regression
network, ground truth templates are chosen as those that have the greatest 3D IOU with
the ground truth 3D bounding box.

The final output size of the bounding box regression layer is 3+4NS+2NH, as depicted
in Table 3.3. NS is the number of templates, and NH is the number of heading bins. Three
parameters for size and one parameter for classification are required for bounding box
estimation. Similarly, a single parameter for heading bin and another single parameter
for heading offset is regressed for orientation. The additional three parameters are for
residual offset ∆Coff to be applied to the center regression. The additional offset from
the bounding box estimation network uses a different feature set to produce the correction
from the initial estimation. The final center of the generated bounding box is formulated
as Cbox = Cmask + ∆Ct−net + ∆Coff .

3.2.5 Data Augmentation

During the training of the networks, data augmentation is added to the sampled pointcloud
to reduce overfitting. The input points, Pclk, are jittered to add variation to the input
data. The random noise is added to each of the points of the pointcloud with a normal
distribution with a mean of 0 and standard deviation of 0.1. Additionally, the input
points are randomly shuffled to vary the combination sequence of input points. This forces
the network to avoid memorizing any specific pattern from the individual sequence and
instead focus on the geometric shape of the object to learn hierarchical features, as this

30

Layer Kernel Weights Output
conv1 1×1 128 n×128
conv2 1×1 128 n×128
conv3 1×1 256 n×256
conv4 1×1 512 n×512
maxpool - - 1×512
concat - - 1×(512+k)
fc1 - 512 512
fc2 - 256 256
fc3 - 3 + 4NS + 2NH 3 + 4NS + 2NH

Table 3.3: 3D Bounding Box Regression PointNet Layers

shape remains present in the jittered examples. Random flip augmentations used in [20]
are also applied in the following model to further augment the training data.

3.2.6 Network Training

Cross-entropy loss is used as the output of each point to train the instance segmentation
network. The smooth L1 (Huber) loss is used as the loss function for centroid and bounding
box regression, as described in Section 2.3.6. For all the networks, the Adam optimizer [18]
is used with an initial learning rate of 0.01 and an exponential learning schedule that decays
the initial learning rate by 0.7 every 12, 500 iterations. Dropout is used for regularization
at 0.7 keep probability, and early stopping is used to choose the best model weights.
All other parameters are kept as in the default implementation provided in the PointNet
Architecture[33].

3.3 Conclusion

The proposed method utilizes the advantages of powerful human generalization capability
and object detection networks to optimize the ground truth generation procedure. The
use of spatial cues to assist the model to automatically generate accurate boxes and masks
aims to reduce the tasks that must be undertaken by humans in the labelling effort. In
the next Chapter, both quantitative and qualitative analysis of the proposed method is
presented. The effectiveness and quality of the proposed method are demonstrated by

31

labelling an existing dataset. Finally, the method is applied to a novel dataset collected
with the Autonomoose, the University of Waterloo self-driving vehicle testbed.

32

Click
Database

Click Dataset
Pre-processing

Center Regression
T-Net

3D Bounding Box Size
Regression

Pointcloud
Normalization

MultiBin Angle
Regression

Segmentation
PointNet

Pointcloud
Masking

Instance Segmentation

Center Regression

3D Bounding Box Estimation
(PointNet)

Residual Offset
Regression

Instance Level
Segmentation Masks

 Pointcloud

Pointcloud sampling
near Clicks

3D Box Size (L, W, H) 3D Box Orientation 3D Box Center (x, y, z)

Figure 3.4: High Level Architecture Used for 3D Ground Truth Generation

33

Chapter 4

Experimental Results

In the chapter, the performance of this study’s annotation scheme is evaluated. The
analysis focuses on the evaluation of annotation time and the qualitative performance of
the generated annotations. The KITTI object detection dataset is used as example of that
which is to be labelled. The training-validation split of [2] is used, resulting in a 1:1 ratio
for training and validation sets. All the neural network training is performed on the 3, 712
frames from the training set, while the annotation procedure is tested on the 3, 769 scenes
of the validation set.

The annotation method’s generalization capabilities are also demonstrated by testing
it on 300 frames of data collected from the University of Waterloo autonomous vehicle
data collection platform, which is referred to as the Autonomoose dataset. The datasets
differ in terms of location and the quality of pointcloud data because of the use of different
Velodyne LIDAR sensors, depicted in Table 4.1. The difference in the quality of the LIDAR
is a property that serves as an effective test for generalization. The differing cities have
differing distributions of car sizes and pedestrian representation between the datasets; these
are additional properties that test for generalization.

Dataset Velodyne Model Frames Car Pedestrian Cyclist City

KITTI (VAL) HDL-64E 3712 Y Y Y Karlsruhe
Autonomoose VLP-32 300 Y Y N Waterloo

Table 4.1: KITTI 3D Object Validation Dataset vs. Autonomoose Dataset

Thirty volunteers from the University of Waterloo Autonomoose team were chosen to

34

label the KITTI Validation set. Each volunteer was taught to annotate based on the train-
ing scheme mentioned in Section 3.1.1. The annotators were only permitted to progress
with the actual labelling procedure if they passed the training. It is important to note
that the frame sequences for KITTI were randomized due to the original design of the
dataset. The annotations for Autonomoose dataset were collected by a small number of
highly-trained annotators to obtain results for maximized efficiency. Autonomoose data
was ordered sequentially during annotation to minimize annotator cognitive load.

4.1 Labelling Statistics

4.1.1 Annotation Time

In total, 58, 832 seconds (16.34 hours) were required to annotate all 15, 996 car instances
in the 3, 769 frames from the KITTI validation set. The car class was used exclusively
because other classes comprised a very low percentage of the validation data. Annotating
the 300 frames collected with the Autonomoose required 6, 954 seconds (just under two
hours) for 1, 152 car and 138 pedestrian labels.

The proposed annotation scheme required around 3.7 seconds to annotate a single
bounding box on the KITTI dataset and around 6 seconds to annotate a single bounding
box on our data. The sole 3D object annotation times that have been pushlished [38] took
roughly 114 seconds per instance, which is 19× longer than our approach. Generating
annotations on our data took around 1.3 additional seconds per label on average, when
compared to KITTI annotation by the same labeller. This can be attributed to the lower-
quality LIDAR and camera images provided by our data when compared to the KITTI
dataset, which required annotators to spend more time searching for all object instances
in the scene.

However, the average time does not fully capture the efficiency of our annotation
scheme. Figure 4.1 depicts a plot of the annotation time per object vs. the number
of instances in the scene. Annotators tended to spend less time per object as the number
of objects in the scene increased for both KITTI and Autonomoose data. This implies that
annotation speed increases as the time spent observing the scene increases, which suggests
that our approach can be quite efficient for multi-object label generation.

35

0 2 4 6 8 10
Objects Per Frame

0

2

4

6

8

10
A

nn
ot

at
io

n
T

im
e

P
er

 O
bj

ec
t (

S
ec

on
ds

)
Autonomoose Data
KITTI Data

Figure 4.1: Annotation time per object (in seconds) vs the number of objects in the scene
plots for annotating the KITTI validation set and Autonomoose data using the proposed
annotation scheme.

4.1.2 Annotation Precision and Recall

The goal of the annotations is to maximize the performance of the trained model by pro-
viding a pointcloud with a precise area. Thus, additional statistics that must be analyzed
include precision, recall and accuracy. True positive (TP) is considered as having a click
in the ground truth (GT) bounding box from the KITTI dataset. A missed GT box cor-
responds to a false negative (FN). For cases where there are multiple clicks on a single
vehicle, all the points are considered to be duplicates and are counted as false positives
(FP). Clicks that are not in any GT boxes are categorized as FP. For evaluation, the orig-
inal 3D GT boxes are inflated by a factor of 1.5 to allow a larger area to be considered
as positive. Pinpoint accuracy is not necessary because the network can perform well in
producing the final bounding box so long as the click lies in the close vicinity of the object.
Ground truth bounding boxes without any points in KITTI datasets are filtered out for

36

training and evaluation of the statistics. Table 4.2 summarizes the statistics from the click
annotation database. Each of the categories are calculated using the subset of GT based
on the difficulties of the KITTI object detection evaluation.

Category Easy Medium Hard All

Total GT Boxes 2,907 7,876 10,963 14,385
Found GT Boxes (TP) 2,842 7,430 9,900 12,330
Missed GT Boxes (FN) 65 446 1,063 2,055

Duplicate Clicks (FP) 12 52 76 89
Missed Clicks (FP) 1,664 2,005 2,598 3,577
Total Clicks 4,518 9,487 12,574 15,996

Recall 0.98 0.94 0.90 0.86
Precision 0.63 0.78 0.79 0.77
Accuracy 0.62 0.75 0.73 0.68

Table 4.2: Precision and Recall Performance of Car Class for KITTI Validation Set

The validation set ground truth bounding boxes are used to test precision and recall of
the click collection scheme. Table 4.2 illustrates that a 94% recall was achieved on KITTI
validation set with a precision of 78% on medium difficulty. The main reason for missed
instances was the lack of enough points that belonged to these instances in the point cloud.
This can be remedied by using higher-resolution point clouds, which can be attained by us-
ing more advanced hardware, depth completion, or temporal concatenation. Additionally,
higher-resolution pointclouds should help to boost the precision of annotations, because
the pointcloud will then have more visible details, which should help to identify object
classes accurately.

Table 4.3 depicts different kinds of click errors. In terms of the difficulties, there is a
clear trend of the further and more occluded GT bounding boxes having a higher missed
box rate. This is mainly due to the sparse representation of the LIDAR at further distances
and the lack of information to clearly classify objects in 3D scenes. The change in distance
and occlusion does not seem to affect duplicate click rates as much as the missed box rates.

The misplaced click rate is calculated by dividing the missed clicks (clicks that are not
in any GT box) by the number of GT bounding boxes for a given difficulty. The missed
clicks cannot simply be grouped into specific difficulty classes for evaluation. Therefore,
the total cumulative negative clicks are used to calculate against each GT difficulty class.

37

As such, the easiest difficulty has the highest misplaced click rate because the number of
GT boxes is the lowest of all classes. The total rate of 22.36% provides the most accurate
estimate of misplacements of clicks for this method. The sources of error for misplaced
clicks arise from incorrect judgment of an area of the pointcloud as an object of interest or
inaccurate click placement. Human errors contribute to duplicates and misplaced clicks,
and it is the role of the user interface to help to reduce these error as much as possible.
Possible improvements are outlined in Section 5.2.

Category Easy Medium Hard All

Misplaced Click Rate (%) 36.83 21.13 20.66 22.36
Duplicate Click Rate (%) 0.27 0.55 0.60 0.56
Missed Box Rate (%) 2.23 5.66 9.69 14.28

Table 4.3: Statistics on Miss Rates for KITTI Validation Set

Overall, the click annotations achieve a high recall with moderate performance in ac-
curacy and precision. Although the results may seem subpar compared to state-of-the-art
3D proposal generators such as [22, 2, 44], this method is much more robust since it lever-
ages the generalization capability of humans. One example is that most of the current
proposal generators assume that there is flat ground to speed up the proposal generation.
This would result in errors in areas with varying elevations. Additionally, due to the lim-
itations of the sizes of the current autonomous driving dataset, the 3D detectors need to
be fine-tuned for new environments. However, this is not possible without an adequate
dataset with effective representation of the new environment. The goal of this method is
to generate such required datasets efficiently and swiftly.

4.2 3D Instance Segmentation Results

4.2.1 Instance IoU

The average instance-level IOU in 3D is used to measure how well instance segmentation
labels can be generated:

iIOU =
P ∩ P∗

P ∪ P∗ , (4.1)

38

Figure 4.2: Instance level segmentation results for the three classes are depicted in green
for cars, yellow for pedestrians, cyan for cyclists, and black for background.

39

where P is the set of predicted points and P∗ is the set of ground truth points of each
instance. Table 4.4 provides the results of instance segmentation on the three classes
of the KITTI dataset. Note that random points were used inside the ground truth 3D
bounding box to train and evaluate for pedestrians and cyclists because point clicks were
not collected for these classes. Annotator clicks are used for the car class. The average
instance IOU’s were larger than 80% for the three classes of the KITTI dataset. Figure
4.2 presents qualitative results that showcase the quality of the generated instance masks.
The points on most object instances were distinctly differentiated from the background.
The advantage of the following result is that unlike traditional 3D segmentation methods,
no additional step for clustering the pointcloud is necessary.

Class Number of Instances i-IoU Centroid Distance Error [m] 3D Box IoU

Car 14,318 0.84 ±0.23 0.70

Pedestrian 2,280 0.88 ±0.13 0.47

Cyclist 893 0.82 ±0.22 0.56

Table 4.4: Qualitative performance evaluation of the subnetworks in our annotation
scheme. All metrics are averages across all instances belonging to a single class.

Table 4.4 depicts how pedestrians have the highest score out of all the classes. The
geometric locations of the points that represent pedestrians do not vary as much as the other
classes. Also, most of the points that represent pedestrians have a cluster of points that is
evident in most of the cases. As such, instance segmentation for pedestrian segmentation
is much easier than for cars or cyclists. The ranges of geometric location of points for
cars vary significantly more than for pedestrians. The shapes of cars are usually biased
to an orientation in most cases. As such, the model needs to learn many more variations.
Cyclists’ cases have a larger variance in the distributions of points than pedestrians’ cases.
Cyclists’ cases also have the lowest amount of training data.

One of the common sources of error is the use of a fixed sampling area, which Figure
4.3 illustrates. A fixed-size sampling area allows for significantly faster computation and is
easier to implement. However, the inflexibility causes very large objects to be unobservable
by the network input for segmentation. This is not a common case, because it occurs for
cars with sizes that are almost at the outliers of the distribution. An adaptive spatial
sampling approach may remedy such error cases.

40

Figure 4.3: Error in Segmentation Due to Fixed Sized Sampling Areas

4.3 3D Bounding Box Estimation Results

4.3.1 3D Bounding Box Center Regression

Table 4.4 summarizes the average distance error in centroid estimation is 0.12 m for pedes-
trians, 0.23m for cars, and 0.22 m for cyclists. As objects increase in size, it becomes
more challenging for our deep model to perform centroid estimation from incomplete point
clouds. Figure 4.7 visualizes the error histograms of all the different classes that are in-
cluded in the hard difficulty. Pedestrian errors in each axis have a high peak with low
variance. However, the z-axis, which is the axis normal to the camera plane, has the high-
est variance of error for both cars and cyclists. For cars, the x-axis error has significantly
more variance than the z-axis error. This can be attributed to the cases where only the rear
side is visible from the pointcloud. In such cases, the z-axis center estimation is difficult to
estimate because there is not enough information about the shape of the vehicle to properly
visualize the front of the car. At ranges longer than 20m, the density of the pointcloud
representation of the rear views of the cars or cyclists becomes very small, which further
adds to the difficulty.

4.3.2 3D Bounding Box Size Estimation

The average box 3D IOU metric is used to test the quality of our bounding box estimation
scheme. The IOU decreases as the boxes are further away from the ground truth boxes

41

in terms of size, position, and orientation. Figure 4.4 plots the IOU comparison between
the KITTI ground truth and the annotation method. There are three peaks that appear
in the histogram of the IOUs. Figure 4.5 is generated by using the instances of bounding
boxes that have IOU values in the lower peak (between IOU of 0 and 0.4) to generate a
histogram based on the z-axis location of where the boxes occur. The average distance for
boxes with IOU lower than 0.4 is 30.59m, and the average distance for boxes with IOU
higher than 0.4 is 24.24m. Evidently, estimated boxes with lower IOUs occur significantly
more frequently at further distances. The final peak occurs at IOU of 0. These cases of
failed box regressions can be attributed to erroneous clicks that are providing poor prior
information. Additionally, a small number of the 0 IOU cases occur when there is more
than one object instance of the same type. For example, if there are two pedestrians in a
sampled space, the model may output two boxes that are placed on only one pedestrian.
In other words, the model may output a bounding box in the wrong instance of the same
object type, which is another contributor to the 0 IOU cases.

The average IOU of the histogram is summarized in Table 4.4. The car class has
the highest average 3D bounding box IOU, followed by cyclists and pedestrians. This
method has higher performance for 3D bounding box IOUs on larger object classes (cars
and cyclists). This phenomenon can be attributed to the higher sensitivity of IOU to
equivalent sized estimation errors when computing IOU for objects whose GT bounding
boxes are smaller. This is also supported by observing the error histograms for the bounding
box size errors, which can be seen in Figure 4.8. For cars, the only dimension that has
a large error variance is length, while pedestrians can have large variance errors for both
length and width. The length and width for pedestrians can be thought of as the tightest
BEV box that fits the pedestrian.

In terms of orientation, car and cyclist detections are expected to perform better due
to their elongated shape. Figure 4.6 demonstrates that the orientation estimation for cars
has the least amount of error, with a high peak near 0. On the other hand, pedestrians
have a high error variance. This also negatively affects the overall IOU performance for
the pedestrian class.

Furthermore, the annotation scheme is treated as a standard 3D detector and its per-
formance is evaluated with the AP metric in 3D [7] at a 0.5 IOU threshold for the car class
and a 0.25 IOU threshold for the pedestrian and cyclist classes in 2D and 3D respectively.
The 2D AP is calculated by projecting the resulting 3D bounding boxes to the image
plane and comparing them with the 2D KITTI object detection labels. The BEV AP is
calculated by projecting both the 3D bounding box and the GT to the x-z plane, which
is the ground plane assuming there is flat ground. Both the BEV and 3D categories have
separate AP calculations that consider the heading of the vehicles. As such, the AP output

42

is expected to be lower if the heading is considered. Table 4.5 presents the results of the
bounding box estimation on the three classes of the KITTI dataset. At medium difficulty,
the proposed annotation scheme achieves 88.04%, 88.51%, and 77.84% 3D AP for the car,
pedestrian, and cyclist classes respectively.

Category Easy Medium Hard

Car 2D AP 86.56 85.29 78.43
Car BEV AP 89.11 89.22 89.21
Car Heading BEV AP 88.54 88.29 87.84
Car 3D AP 88.32 88.04 88.00
Car Heading 3D AP 87.76 87.16 86.82

Pedestrian 2D AP 81.00 81.81 74.64
Pedestrian BEV AP 88.90 88.94 88.96
Pedestrian Heading BEV AP 85.14 84.31 83.18
Pedestrian 3D AP 88.73 88.51 88.58
Pedestrian Heading 3D AP 84.98 83.88 82.84

Cyclist 2D AP 85.17 75.06 74.89
Cyclist BEV AP 88.20 86.78 78.78
Cyclist Heading BEV AP 87.57 82.88 75.56
Cyclist 3D AP 87.30 77.84 77.65
Cyclist Heading 3D AP 86.68 75.37 74.61

Table 4.5: Results of KITTI AP Evaluation with [0.5, 0.25, 0.25] IoU Thresholds.

43

Figure 4.4: Histogram of bounding box IOUs calculated against ground truth for KITTI
validation. The IOUs are evaluated using car ground truths on hard difficulty.

Figure 4.5: Histograms of car bounding boxes with z-axis distances that are based on IOU
against the ground truth. The left histogram depicts all bounding boxes’ z-axis distances
that have IOUs between [0, 0.4]. The right histogram depicts all bounding boxes’ z-axis
distances that have IOU between [0.4, 1]. In KITTI, the z-axis is the axis that is normal
to the camera plane.

44

Figure 4.6: Histograms of bounding box orientation errors for KITTI validation compared
against ground truth. The histograms are divided into car, pedestrian, and cyclist, respec-
tively, from left to right respectively. The histogram axes are scaled independently between
the classes due to the difference in the number of instances between each class.

45

Figure 4.7: Histograms of bounding box centroid errors for KITTI validation compared
against ground truth. The histograms are categorized by class based on rows; the top
row is for cars, the middle row is for pedestrians, and the bottom row is for cyclists. The
histogram axes are scaled independently between the classes due to the difference in the
number of instances between each class.

46

Figure 4.8: Histograms of bounding box size errors for KITTI validation compared against
ground truth. The histograms are categorized by class based on rows; the top row is for
cars, the middle row is for pedestrians and the bottom row is for cyclists. The histogram
axes are scaled independently between the classes due to the difference in the number of
instances between each class.

47

4.3.3 Visualizations of 3D Bounding Box Generation

Figure 4.10 contains qualitative results that showcase the quality of the generated 3D
bounding box. The annotation scheme was tested for its ability to facilitate the labelling of
otherwise previously unseen unlabeled data. The system expected the unseen data to have
similar point clouds to the dataset on which the system was trained. The Autonomoose
dataset was collected with using a VLP-32 Velodyne LIDAR and the generation of an-
notations was attempted with the proposed scheme. Three subnetworks trained on the
3,712 training scenes from the KITTI dataset, were used to generate annotations for 300
collected frames. Figure 4.9 depicts the qualitative results that contain multiple cars and
pedestrians from the annotated frames. The three subnetworks coupled with the click
collection scheme effectively generalized well to the new unseen data.

Figure 4.9: Qualitative results of the annotation scheme on data collected by the Au-
tonomoose autonomous vehicle. Instance level segmentation results for the three classes
are depicted in green for cars, yellow for pedestrians and cyan for cyclists. Centroid esti-
mation is depicted in red and the final 3D bounding box is depicted in blue.

48

Figure 4.10: Qualitative results of the three subnetworks of the proposed system. Instance
level segmentation results for the three classes are depicted in green for cars, yellow for
pedestrians, and cyan for cyclists. Centroid estimation is depicted in red and the final 3D
bounding box in blue.

49

Chapter 5

Conclusion

This work proposed a hybrid annotation scheme to create high quality 3D ground truth
labels with minimal annotator effort. The annotation scheme requires annotators to simply
click on objects within a 3D LIDAR point cloud. The proposed network employs a first-
stage segmentation structure that uses the annotation labels as seeds to generate accurate
instance level segmentation results for each object. The centroid of each object is estimated
with a center-regression T-Net, and a bounding box is fit to the object in the third stage.
Since the only interaction required of the annotators is to provide the initial object instance
clicks, the time taken to generate a bounding box for each object can be reduced to the
annotation time. This method is therefore up to 30 times faster than existing methods for
producing ground truth for 3D object detection.

This method allows for fast generation of the ground truth of 3D object instances. The
method is designed to handle generic 3D scenes and can also be used in specific areas such
as autonomous driving. The larger number of instances of 3D objects can assist with the
research for 3D object detection, as the ImageNet Challenge did for 2D object detection.
The lack of variety and size in autonomous driving 3D object detection datasets makes it
difficult to gauge the true performance of the models. As 3D object datasets grow, the
research community will be forced to design 3D object detection deep networks that have
the optimal capacity and the complexity to handle generalization for larger datasets. The
faster labelling algorithm can also reduce the cost of constructing proprietary datasets for
development in autonomous vehicle algorithms, which will benefit the relevant industries.

50

5.1 Limitations

The proposed scheme is not free from limitations. First, the error in centroid estimation is
still too large; it results in a reduction of 3D IOU when compared to the KITTI dataset.
One possible reason why the center errors are high is because the size and the centers
are estimated in separate stages of the network. These separate stages have dramatically
different architectures that do not share the weights. However, the extent or the size of an
object should be considered while approximating the location of the center of an object.

Second, the bounding box regression networks require a minimum number of points on
the object to accurately generate 3D bounding boxes. However, we argue that this limita-
tion is somewhat generally shared with human beings who try to estimate the bounding
box extents from 2.5D information. This problem can be remedied by upgrading the qual-
ity of the LIDAR pointcloud by increasing its point density on distant objects. However,
occlusions and partial representation would persist in the scenes. Labelling ability in the
face of occlusions and partial viewpoints could be improved by using full 3D maps that are
built with sequences of 2.5D data, as opposed to limiting the approach to a single frame
of data as is currently done.

Finally, the annotation scheme lacks a validation procedure to filter out erroneous re-
sults from each subnetwork. This leads to cascaded errors from each subnetwork that affect
the overall performance in a compound manner. A possible error that may occur is when
two instances of the object of same class are nearby each other. Errors in detection may
occur when the model outputs 2 identical bounding box for one of the two object instances
while neglecting the second instance. This case may easily be checked by comparing the
click location and the model’s centroid output. Additionally, a simple yes or no test can be
placed in between each of the ground truth generation processes to filter erroneous output.

5.2 Future Works

Outsourcing the labelling labor is one of the better methods to obtain a large amount of
data in a short period of time. Services such as Amazon Mechanical Turk provide an online
marketplace that allows for faster data collection with a greater sample size. With a larger
dataset to sample from, more analysis can be performed of the efficiency of the annotation
method. However, creating an online website to gather clicks and store the information to
a database requires a heavy overhead of software development work.

The current generated labels are inadequate to be defined as of ”Ground Truth” quality.
However, this method is the first of its kind in the field of autonomous driving. A common

51

strategy to reduce output error is to have additional annotation refinement steps after the
bounding boxes have been generated. The errors in estimation can be divided and classified
by an annotator into a common set of errors, such as size error, placement error, or class
error. Then, the following errors can be used as a hint for the network to adjust for the
next set of the generated output of ground truth. This strategy has been used in [30], to
further improve the output space of the bounding boxes.

An important property of the dataset that is not used in this method is the temporal
nature of consecutive frames. Instead of labelling frames in a random and disconnected
order, an extension of this work can be used to label a sequence of input images. Such meth-
ods allow the aggregation of a more complete representation of object instances through
multiple viewpoints.

Finally, it is expected that a deep model that is specifically tailored for click annotations
would provide better results than the current architecture that is inspired by F-PointNet.
Future work can directly incorporate clicks within the model and incorporate a validation
and retraining process to fix errors in the output of the subnetworks, such as in the work
of [30].

52

References

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[2] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object detection net-
work for autonomous driving. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, USA, July 2017.

[3] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, New York, NY,
USA, 2006.

[4] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Miami Beach, USA, June 2009.

[5] Pedro Domingos. A few useful things to know about machine learning. Communica-
tions of the ACM, 55(10):78–87, October 2012.

[6] Krista A Ehinger, Barbara Hidalgo-Sotelo, Antonio Torralba, and Aude Oliva. Mod-
elling search for people in 900 scenes: A combined source model of eye guidance.
17(6-7):945–978, 2009.

[7] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In IEEE Conference on Computer Vision
and Pattern Recognition, (CVPR), Providence, USA, June 2012.

[8] Sam J Gilbert and Tim Shallice. Task switching: A pdp model. In Cognitive psychol-
ogy, volume 44, pages 297–337. Elsevier, 2002.

[9] Ross Girshick. Fast R-CNN. In IEEE International Conference on Computer Vision
(ICCV), Las Condes, Chile, December 2015.

53

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
(CVPR), Las Vegas, USA, June 2016.

[12] M. Himmelsbach and H. j. Wunsche. Lidar-based 3d object perception. In 1st Inter-
national Workshop on Cognition for Technical Systems, Munich, Germany, 2008.

[13] Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao, Dingfu Zhou, Peng Wang,
Yuanqing Lin, and Ruigang Yang. The apolloscape dataset for autonomous driving.
arXiv preprint arXiv:1803.06184, 2018.

[14] Peter J. Huber. Robust estimation of a location parameter. Annals of Mathematical
Statistics, 35(1):73–101, March 1964.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning (ICML), Lille, France, July 2015.

[16] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for deep neural
networks in classification. arXiv preprint arXiv:1702.05659, 2017.

[17] Andrej Karpathy. CS231n Convolutional Neural Networks for Visual Recognition.
Standford University, 2018. http://cs231n.github.io/convolutional-networks/.

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In International Conference for Learning Representations (ICLR), San Diego, USA,
May 2015.

[19] Alex Krizhevsky. Learning multiple layers of features from tiny images. University of
Toronto, May 2012.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012.

[21] Jason Ku, Ali Harakeh, and Steven L Waslander. In defense of classical image pro-
cessing: Fast depth completion on the cpu. In 15th Conference on Computer and
Robot Vision (CRV), Toronto, Canada, May 2018.

54

http://www.deeplearningbook.org
http://cs231n.github.io/convolutional-networks/

[22] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven Waslander.
Joint 3d proposal generation and object detection from view aggregation. In IEEE
International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
October 2018.

[23] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. In Proceedings of the IEEE, pages 2278–2324,
1998.

[24] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common objects in context. In European Conference on
Computer Vision (ECCV), Zurich, Switzerland, September 2014.

[25] Shie Mannor, Dori Peleg, and Reuven Rubinstein. The cross entropy method for clas-
sification. In International Conference on Machine Learning (ICML), Bonn, Germany,
August 2005.

[26] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network
for real-time object recognition. In IEEE International Conference on Intelligent
Robots and Systems (IROS), Hamburg, Germany, September 2015.

[27] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1
edition, 1997.

[28] Stephen Monsell. Task switching. In Trends in cognitive sciences, volume 7, pages
134–140. Elsevier, 2003.

[29] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka. 3d bounding
box estimation using deep learning and geometry. In IEEE Conference on Computer
Vision and Pattern Recognition, (CVPR), Honolulu, USA, July 2017.

[30] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Ferrari. We don’t need no
bounding-boxes: Training object class detectors using only human verification. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
USA, June 2016.

[31] Dim P. Papadopoulos, Jasper R. R. Uijlings, Frank Keller, and Vittorio Ferrari. Ex-
treme clicking for efficient object annotation. In IEEE International Conference on
Computer Vision (ICCV), Venice, Italy, October 2017.

55

[32] Dim P. Papadopoulos, Jasper R. R. Uijlings, Frank Keller, and Vittorio Ferrari. Train-
ing object class detectors with click supervision. In IEEE Conference on Computer
Vision and Pattern Recognition, (CVPR), Honolulu, USA, July 2017.

[33] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, (CVPR), Las Vegas, USA, June 2016.

[34] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum
pointnets for 3d object detection from rgb-d data. In IEEE Conference on Computer
Vision and Pattern Recognition, (CVPR), Salt Lake City, USA, June 2018.

[35] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In Advances in Neural
Information Processing Systems (NIPS), Montreal, Canada, December 2015.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. International
Journal of Computer Vision, 115(3):211–252, December 2015.

[37] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(4):640–651, April 2017.

[38] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene
understanding benchmark suite. In IEEE Conference on Computer Vision and Pattern
Recognition, (CVPR), Boston, USA, June 2015.

[39] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res., 15(1):1929–1958, jan 2014.

[40] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In IEEE Conference on Computer Vision and Pattern
Recognition, (CVPR), Boston, USA, June 2015.

[41] Dimitri Van der Linden, Michael Frese, and Theo F Meijman. Mental fatigue and
the control of cognitive processes: effects on perseveration and planning. In Acta
Psychologica, volume 113, pages 45–65. Elsevier, 2003.

56

[42] George Vosselman, Ben GH Gorte, George Sithole, and Tahir Rabbani. Recognising
structure in laser scanner point clouds. In International archives of photogrammetry,
remote sensing and spatial information sciences, volume 46, pages 33–38, 2004.

[43] Yi Ting Zhou and Rama Chellappa. Computation of optical flow using a neural
network. In International Conference on Neural Networks (ICNN), pages 71–78, 1988.

[44] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d
object detection. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, USA, June 2018.

[45] C. Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals from
edges. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
European Conference on Computer Vision (ECCV), Zurich, Switzerland, September
2014.

57

	List of Figures
	List of Tables
	Introduction
	Motivation
	Challenges
	Contributions

	Background
	Machine Learning
	Deep Neural Networks
	Convolutional Neural Networks
	Feature Pooling Layers
	Rectified Linear Unit
	Batch Normalization
	Dropout
	Softmax Classifier
	Regression

	PointNets
	PointNet Architecture
	T-Net Architecture
	Frustrum PointNet

	Labelling Methods
	Center Click Supervision
	SUN RGB-D Labelling in 3D
	Crowdsourcing
	Quality Assurance

	Conclusion

	Clicked-based Bounding Box Generation Method
	Click Collection
	Annotator Training
	Quality Assurance

	Ground Truth Generation
	Click Dataset Pre-processing
	3D Point Instance Segmentation
	Center Regression
	3D Bounding Box Estimation
	Data Augmentation
	Network Training

	Conclusion

	Experimental Results
	Labelling Statistics
	Annotation Time
	Annotation Precision and Recall

	3D Instance Segmentation Results
	Instance IoU

	3D Bounding Box Estimation Results
	3D Bounding Box Center Regression
	3D Bounding Box Size Estimation
	Visualizations of 3D Bounding Box Generation

	Conclusion
	Limitations
	Future Works

	References

