
Serious Game for Fire Evacuation

by

Dafu Deng

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2019

c© Dafu Deng 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Fire safety for buildings has been of increasing concern due to the increase in occupant
density in modern-day infrastructures. Efforts have been made by civil engineers to reduce
loss in building fire accidents. For example, building codes have been refined to reduce the
potential damage caused by fire by enforcing installation of fire detectors, alarm system,
ventilation system, and sprinkler system. In addition, current building codes regulate the
number of exits as well as the widths and heights of exits to allow an efficient evacuation
process if the fire goes out of control. However the fire evacuation training aspect of fire
safety is relatively immature.

The fire evacuation process is still trained by carrying out traditional fire drills. How-
ever, the value of traditional fire drills has been questioned. Traditional fire evacuation
drills fail to present a realistic fire environment to the participants. Traditional fire drills
fail to raise enough seriousness for the participants since in most cases participants are
informed about the drills beforehand. The cost of conducting these traditional fire drills
can also be very high.

Motivated by the problems faced by traditional fire drills, this research explores a new
approach to more effectively and economically train people regarding the fire evacuation
process. The new approach is to use a video game to train people for fire evacuation. The
whole idea of using games for training and educational purposes falls under the concept of
Serious Gaming, which has shown auspicious results in fields of military training, medical
training, pilot training, and so on. In the virtual game environment, the fire environment
can be simulated and rendered to the players. Doing so can allow the players to experience
a more realistic fire environment and hence better prepare them for what to do in response
to fire accidents. By setting a proper rewarding system, the game can motivate the players
to treat the training more seriously. Also, since the training is carried out in the form of
a game, it is more engaging and less costly.

Currently, the game has been developed to render smoke and control the movement
of agents. In order to make the game environment more realistic, the smoke is simulated
and rendered using fire dynamics, and the agent movement is controlled by appropriate
pedestrian models. It is worth mentioning that pedestrian modeling is still a relatively
immature field of science and this game also serves as a tool for collecting and analyzing
data for pedestrian models.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Fue-sang Lien.
Professor Lien has given not only useful technical support and guidance to me, but also
warm encouragement during my time of stress, as well as valuable life lessons.

I would like to thank my co-supervisor, Dr. Steve Gwynne. This thesis involves a
field that I had never touched on before. Fortunately, Dr. Gwynne has well-established
expertise in the field, and he is always willing to teach me and give me advice. Without
his help, the thesis can hardly proceed.

I would also like to thank Game Institute for supporting and funding this project.

My fellow research group members have been a great source of support. Their company
has made my two-year program joyful and fulfilling.

Lastly, I want to thank my family for their love and trust.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 4

1.3 Contributions . 6

1.4 Thesis Organization . 7

2 Background and Literature Review 8

2.1 Serious Game . 8

2.2 Pedestrian modeling . 10

2.2.1 Social-force Model . 11

2.2.2 Modified Social-force Model - Contact Force 14

2.2.3 Rotation Governing Equation . 15

2.2.4 Route Selection Algorithms . 16

2.2.5 Fire and Human Interaction . 20

3 Game Design 24

3.1 Game Interfaces . 25

v

3.2 Design Interface . 26

3.2.1 Room Design . 27

3.2.2 Floor and Wall Design . 28

3.2.3 Obstacle Design . 29

3.2.4 Exit Design . 29

3.2.5 Fire Design . 30

3.2.6 Agent Design . 31

3.2.7 Player Design . 32

3.2.8 Design Example . 32

3.3 Play Interface . 33

3.4 Chapter Summary . 34

4 Fire Simulation Implementation 36

4.1 Write Simulation Input File . 37

4.2 Run Simulation . 39

4.3 Render Simulation . 40

4.4 Result and Discussion . 42

4.5 Chapter Summary . 46

5 Pedestrian Modeling Implementation 47

5.1 Useful Unity Built-in Tools . 48

5.2 Circle Representation . 51

5.3 Exit Selection Algorithm . 53

5.4 Agent-to-agent and Obstacle-to-agent Interaction 54

5.5 Fire-to-agent Interaction . 56

5.6 Enhancing Game Performance . 58

5.7 Result Comparison . 60

vi

6 Concluding Summary 63

6.1 Conclusions . 63

6.2 Future Work . 64

References 66

vii

List of Tables

2.1 Coefficients used for the computation of irritant effects of gases. 22

5.1 Properties of different types of pedestrian. 53

viii

List of Figures

1.1 An evacuation process simulation by Pathfinder. 3

1.2 Serious Game for Fire Evacuation can be used as a platform to collect
data for developing and refining the pedestrian model. The more refined
pedestrian model can be implemented in the game to render a more realistic
game environment. Again, data collected from a more realistic game envi-
ronment are more reliable and hence can be used to develop a more accurate
pedestrian model. 5

2.1 Serious game examples. (a) is Serious Games Développés En Santé, (b) is
Flight Simulator FlyWings 2014. 8

2.2 Three components of a serious game (source: https://i2.wp.com/www.

santacruztechbeat.com/wp-content/uploads/2019/01/serious_game_classification.

png). 9

2.3 Three circle representation. 11

2.4 Social force concept (source: [19]). 13

2.5 f c is the contact force agent j exerts on agent i, and f soc is the social forece
agent i exerts on agent k (source: [19]). 14

2.6 A fictitious 2D pedestrian flow field used to guide agents to the exit doors.
In this case, only the left exit has an “outflow” boundary condition (source:
[19]). 17

2.7 A polygon is used to calculate the distance an agent needs to cover to go to
an exit. 21

3.1 The flow chart of implementation. 25

3.2 Overview of the design interface. 26

ix

https://i2.wp.com/www.santacruztechbeat.com/wp-content/uploads/2019/01/serious_game_classification.png
https://i2.wp.com/www.santacruztechbeat.com/wp-content/uploads/2019/01/serious_game_classification.png
https://i2.wp.com/www.santacruztechbeat.com/wp-content/uploads/2019/01/serious_game_classification.png

3.3 Room design panel. 27

3.4 Floor and wall design panels. 28

3.5 Obstacle design panels. 29

3.6 Exit design panel. 30

3.7 Fire design panel. 30

3.8 Agent design panel. 31

3.9 Player design panel. 32

3.10 A design example. 33

3.11 Overview of the play interface. 34

4.1 Flow chart of fire simulation. 36

4.2 FDS running simulation based on the input file. 39

4.3 FED output data. 40

4.4 Smoke of different opacities (source: https://github.com/firemodels/

fds/issues/5118). 41

4.5 Different opacities of smoke rendered using the particle system in Unity.
The alpha values from left to right are: 255, 196, 137, 78, 20. 42

4.6 Comparison of visualization of smoke in the game and Smokeview at 10 s
and 20 s. 43

4.7 Comparison of visualization of smoke in the game and Smokeview at 40 s
and 80 s. 44

4.8 The look of the smoke from the player’s view in the game. 45

5.1 The built-in physics system of Unity. 49

5.2 Navigation system of Unity (source: https://docs.unity3d.com/Manual/
Navigation.html). 50

5.3 Navigation mesh surface component (script). 51

5.4 Navigation mesh agent component (script). 51

5.5 Using collider for circle representation of human body. 52

x

https://github.com/firemodels/fds/issues/5118
https://github.com/firemodels/fds/issues/5118
https://docs.unity3d.com/Manual/Navigation.html
https://docs.unity3d.com/Manual/Navigation.html

5.6 Navigation algorithm generates a polygon that connects the agent to its
destination. 54

5.7 This figure shows the active range implementation. The focused agent only
reacts to other agents and obstacles within the circle. 55

5.8 Partial script of the modified social-force model. 56

5.9 This is a screenshot of playing in the play interface in the example scenario.
The left top corner shows the health of the player, the right top corner shows
time elapsed and the casualties. 57

5.10 Congestion forms at the narrow passage. 59

5.11 A test geometry used to verify the pedestrian model of FDS+Evac. 60

5.12 Simulation comparison between FDS+Evac and Serious Game for Fire Evac-
uation. 61

5.13 Simulation comparison. 62

xi

Chapter 1

Introduction

1.1 Motivation

Nowadays, due to the increasing population, urban infrastructures are now demanded to
contain more occupants. Therefore, fire safety for buildings is now of greater importance
more than ever. A system of fire codes has been designed by experts to prevent fires from
happening in the first place and lower the damage of fire if it goes out of control. For
example, in modern buildings, alarm system, sprinkler system, ventilation system, and fire
hose are mandatory. Widths of exits are regulated to ensure a fire evacuation goes without
congestion. Many other useful regulations [1] also significantly raise the fire safety level for
buildings.

Although plenty of regulations have been set, people are still using traditional fire
drills to prepare themselves for the evacuation process in fire accidents. There are three
apparent problems with traditional fire drills. First of all, traditional fire drills cannot
present a realistic fire environment. In a real fire accident, many hazards could emerge,
which may change an evacuee’s course of action. For example, fire and smoke can block
exits, reduce visibility, and intoxicate the evacuee. Oftentimes, under this kind of extreme
situation, evacuees’ response might be affected by the perceived risk. In other words, since
traditional fire drills are usually very idealized and cannot immerse participants into a
realistic fire environment, the efficacy of preparing the participants for fire accident is very
questionable.

Second of all, traditional fire drills are usually very costly. When the alarm sounds,
people would have to stop their work at hand and evacuate the building as soon as possible.

1

The cost of pausing their work at hand can hardly be estimated but does exist. One
can definitely conduct a fire drill where the occupants are informed about it beforehand,
and some fire drills are indeed carried out this way so that the occupants would not be
doing anything important at the drilling time. A fire drill conducted this way is called
an announced fire drill. However, an announced fire drill has another obvious problem:
because participants know the fire drill beforehand, they would not take the drill seriously
as if there is a real fire happening, which adds up to the problem of being unrealistic. The
drill will then fail the task of training participants to act correctly in real fire accidents.
In addition, for some special places, like hospitals and nursing homes that usually contain
impeded or paralyzed occupants, it is almost impossible to carry out fire drills while training
them is still necessary.

Lastly, traditional fire drills are often deemed to be a waste of time, and thus people
are not motivated to attend. If fire drills could somehow be made more engaging, people
would be more willing to do the drills.

Another extended motivation for this project is related to pedestrian modeling. Briefly
speaking, pedestrian modeling is the field of science that describes the behavior, mainly the
movement, of pedestrians, which has been successfully used in traffic designs. Pedestrian
models can be divided into two categories, large scale pedestrian models and small scale
pedestrian models. The large scale pedestrian models are interested in describing the
movement of pedestrians as a crowd where the movement of individuals is not important.
The most well-known large scale pedestrian model is the flow-based pedestrian model
[2, 3, 4, 5], which treats a crowd as fluid and laws that are similar to those of fluid dynamics
are used to govern the motion of the crowd. Note that large scale pedestrian models are
only suitable for describing the motion of a large and highly dense crowd.

When the scale or the density of crowd is small, large scale pedestrian models can only
yield a very coarse and imprecise simulation of the crowd’s motion. So when the scale or the
density of the crowd is small, pedestrian models need to describe the motion of the crowd
on the level of individuals, and this motivates the development of small scale pedestrian
models. Small scale pedestrian models focus on the interaction between each pedestrian
and their surroundings. In a computational simulation, a pedestrian is represented by a
computer agent, so agent-based pedestrian models are oftentimes used to refer to small
scale pedestrian models. The majority of agent-based models use fictitious Newtonian
forces to govern the motion of individuals.

Note that both large scale pedestrian models and small scale pedestrian models are
rather empirical. With the increasing concern of building fire safety, fire safety engineers
proposed using pedestrian models to simulate the fire evacuation process in a building

2

design and thus evaluate its fire safety level. The common practice is using third-party
pedestrian modeling software to perform the simulation of the evacuation process in the
examined building design and fetch important simulation data, for example, the rate of
evacuation, to evaluate the building design’s fire safety level. Figure 1.1 shows a simulation
performed using Pathfinder, a pedestrian simulator developed by ThunderHead Engineer-
ing.

Figure 1.1: An evacuation process simulation by Pathfinder.

This method of evaluating the fire safety level of a building design relies on the ac-
curacy of the pedestrian model. It needs to be mentioned that all pedestrian models are
relatively empirical due to their fictitious nature. These models are usually constructed by
reasoning and verifying on data. Therefore, pedestrian models rely heavily on data, either
from experiments or daily observations. Unfortunately, the data is far from sufficient to
develop reliable pedestrian models for fire evacuation. This is because experiments for

3

fire evacuation are nearly impossible to conduct in the real world and CCTV footage is
either limited or fails to capture representative behaviors. On the whole, using pedestrian
modeling in assessing fire safety requires an accurate pedestrian model, but the problem is
that a pedestrian model that is able to accurately describe pedestrians’ behavior has not
been successfully developed due to the lack of data. Ways need to be found to collect such
data without putting anybody in danger.

1.2 Objectives

As discussed above, traditional fire drills suffer from three main drawbacks: being unre-
alistic, costly, and not engaging. In addition, regarding pedestrian modeling, no reliable
pedestrian model has been developed to describe human behavior in a fire accident situ-
ation due to the lack of data. This project aims to explore a new approach to overcome
the three problems faced by traditional fire drills, as well as the hurdle in developing fire
evacuation pedestrian models. The new approach is using a virtual game not only to train
people to act correctly in a fire accident but also collect useful data for later use. This
game is considered a serious game.

Different from ordinary video games, serious games aim primarily to train and educate
people. Serious games have shown tremendous success in clinical training, pilot training,
classroom education, and so on [6, 7, 8]. The prosperity of the serious game industry
inspired the idea of using a video game to train and educate people about fire evacuation.

Using a game (a virtual environment) to train people can directly solve the three main
problems faced by traditional fire drills. First of all, traditional fire drills cannot present
a realistic fire accident environment. It is believed that people are better trained if the
drilling scenario matches the real scenario. In the virtual environment, visual effects can
be added to imitate real hazards, like smoke and fire, which can alter the course of action
of an evacuee. By adding these visual effects, a more realistic experience can be created for
trainees without risking their safety. However, to make the virtual environment realistic,
these visual effects need to be convincing. To be more specific, the game designed in this
project simulates the spread of smoke and movement of computer-controlled agents based
on fire dynamics and pedestrian models respectively.

The second problem of traditional fire drills lies in the cost of conducting them. How-
ever, if the fire evacuation drills are conducted in a virtual game, the cost is negligible.
People can simply play the game any time they want according to their own schedule.
Using a video game for drilling also saves people from physically moving, which makes it

4

possible to train disabled people in places like hospitals and nursing homes. The third
problem of traditional fire evacuation drills is that they are non-engaging. In contrast, the
whole point of all serious games is making the training and teaching process more fun and
engaging and thus yielding a more desirable training and teaching result. This project, Se-
rious Game for Fire Evacuation, also aims to more effectively and engagingly train people
to act properly in a fire evacuation process.

Last but not least, Serious Game for Fire Evacuation can also be used as a tool for
collecting data. In the game, the course of action of a player can be recorded; this data
can later be used to create or vindicate theories that describe human behavior in the fire
evacuation situation. On the premise that the game is made sufficiently realistic, data
collected could be of value - especially given the challenges highlighted above. Again, a
virtual game environment provides a platform to study human behavior under extreme
conditions without putting people in danger.

The training aspect and the research aspect of Serious Game for Fire Evacuation
are expected to go hand in hand. In the early version of the game, a coarse pedestrian
model would be used to control the movement of agents, which means players experience a
relatively unrealistic agent movement in the game. Actions of the players would be recorded
during the game, which would be used as data to develop a more reliable pedestrian model.
Ideally, an agent’s course of action in the game can mimic that of a real human. Once
a more realistic pedestrian model has been developed, it can be re-implemented into the
game and render a more realistic agent flow to players. Then the data collected from
players playing in a more realistic virtual environment become more reliable for developing
a more accurate pedestrian model. Figure 1.2 demonstrates the circle.

Figure 1.2: Serious Game for Fire Evacuation can be used as a platform to collect data
for developing and refining the pedestrian model. The more refined pedestrian model can
be implemented in the game to render a more realistic game environment. Again, data
collected from a more realistic game environment are more reliable and hence can be used
to develop a more accurate pedestrian model.

5

1.3 Contributions

The contributions of this thesis are summarized as follows:

• This thesis explored the feasibility of using a virtual game to replace tradition fire
drills for fire evacuation training. Although Serious Game for Fire Evacuation has
not been tested on the effectiveness in fire evacuation training, it provides a method-
ology to implement a virtual environment of such. The game itself can also be used
as a foundation where more features can be added to fulfill the purpose of the fire
evacuation training.

• This thesis managed to integrate fire simulation into the virtual environment. For
most video games, fire and smoke are only rendered as visual effects, which are
visually convincing but do not obey physics laws. In contrast, the propagation of the
smoke in Serious Game for Fire Evacuation is based on strict fire dynamics. The
same methodology can be used to integrate other physics simulations into the virtual
environment.

• Serious Game for Fire Evacuationsuccessfully integrated a simple pedestrian model
to control the movement of agents in it. More complicated agent-based pedestrian
models can be implemented in the game using the same methodology.

• Serious Game for Fire Evacuation provides an interactive platform for testing and
developing pedestrian models. In the past, the result of a pedestrian simulation
would be determined once the initial condition of the simulation was fixed. In order
to study different crowd movements under different conditions, one had to repeatedly
change simulation parameters and run simulations, which was very cumbersome. If
pedestrian models were implemented to control the movement of agents in real time,
like in Serious Game for Fire Evacuation, then by changing the condition in real
time, we could observe different crowd flows. For example, in this game, agents
movement would be constantly updated responding to the position of the player.

6

1.4 Thesis Organization

Chapter 2 covers the background of serious game and pedestrian modeling. This chapter
first introduces the definition of serious game and its applications. After that, some popular
pedestrian models are introduced and discussed in terms of their strengths and weaknesses
and their suitability for the game.

Chapter 3 covers the general design of Serious Game for Evacuation. This chapter
discusses the three interfaces of the game, the design interface, the play interface, and the
feedback interface.

Chapter 4 covers the implementation of fire simulation. The chapter discusses how the
fire scenario is set up, translated into simulation input file, simulated, and visualized in
the game.

Chapter 5 covers the implementation of a pedestrian model. The chapter discusses how
pedestrian modeling is accomplished in the game engine and some modifications to make
the pedestrian model computationally efficient for the game.

Chapter 6 gives the conclusion of the thesis. This chapter also discusses some future
work of the project.

7

Chapter 2

Background and Literature Review

2.1 Serious Game

Serious games are games designed for educational and training purposes. Serious games
have yielded profound success in fields like classroom teaching, health care, emergency
management, pilot training, and so on. Figure 2.1a shows a game for surgery training, and
Figure 2.1b shows a game for pilot training.

(a) A serious game for surgery training. (b) A serious game for pilot training.

Figure 2.1: Serious game examples. (a) is Serious Games Développés En Santé, (b) is
Flight Simulator FlyWings 2014.

8

Most of the serious games consist of three main components [9], the learning component,
the gaming component, and the simulation component. The concept of serious gaming is
well illustrated in Figure 2.2.

Figure 2.2: Three components of a serious game (source: https://i2.wp.

com/www.santacruztechbeat.com/wp-content/uploads/2019/01/serious_game_

classification.png).

The learning aspect is what distinguishes a serious game from most other conventional
video games. The main objective of a serious game is to educate and train players instead
of merely providing entertainment. But then, of course, in order to make the education and
training process more engaging, it is done in the form of a video game. Finally, to make
a serious game convincing enough for the educational and training purposes, simulation
needs to be performed to render a realistic virtual environment.

In the hope of providing a more effective way of training people about fire evacuation
using the serious game approach, Serious Game for Fire Evacuation was developed. Com-
pared to traditional fire drills, some of the advantages of using the serious game approach
for training are: more engaging, capable of rendering a more realistic fire scenario, and
cheaper to carry out. Like most other serious games, Serious Game for Fire Evacuation

9

https://i2.wp.com/www.santacruztechbeat.com/wp-content/uploads/2019/01/serious_game_classification.png
https://i2.wp.com/www.santacruztechbeat.com/wp-content/uploads/2019/01/serious_game_classification.png
https://i2.wp.com/www.santacruztechbeat.com/wp-content/uploads/2019/01/serious_game_classification.png

also consists of the three main components. The game needs to be built up realistically so
that it can effectively prepare players for real fire accidents. For this reason, more work
had been done on the simulation part of this game comparing to most other serious games.
The simulation of the game carefully incorporates fire dynamics and pedestrian modeling.

2.2 Pedestrian modeling

In order to simulate a fire evacuation process, it is necessary to make the non-human-
controlled agents move in a naturalistic manner; i.e. to provide a credible social background
within which the user-controlled agent moves. Pedestrian modeling is the field of science
that describes the movement and behavioral patterns of an individual pedestrian or a crowd
of pedestrians. Pedestrian modeling is still a relatively young field of science. The state-of-
the-art models all have their own limitations under certain circumstances. Especially when
fire-to-human physical and psychological impacts are taken into account, these pedestrian
models would give a very imprecise simulation and prediction. Nevertheless, some of these
models suffice to convey a sense of reality in the game environment.

Pedestrian models can be separated into two categories, the fluid-based models and
the agent-based models. Fluid-based pedestrian models [2, 3, 4, 5] treat pedestrians all
together as fluid and use fluid dynamics to describe the motion of the crowd. Because of the
computational efficiency of fluid-based models, they are usually used to describe large scale
pedestrian crowd movement and traffic flow in urban designs, where individual movement
is of no significance. When the scale or the crowd density is small, fluid-based models can
only provide a very coarse simulation. On the other hand, agent-based models focus on
individual agents thus give a more accurate result for small scale simulation. However,
describing each agent individually is computationally difficult or even impossible for some
large scale simulations.

There is always a trade-off between precision and computational power. The game
developed in this research project aims to immerse players into a fire evacuation scenario,
where the density of evacuees is relatively small. Therefore, the game uses an agent-based
model, based on the work of Helbing et al [10, 11, 12, 13], to control the agent movement.
In the following subsections, the theoretical background of this model is introduced. Some
modifications of the model is also introduced to make the model better suit the game.

10

2.2.1 Social-force Model

Social-force model is a popular agent-based model used by pedestrian simulators like
FDS+Evac. The model introduces a force to keep a reasonable distance between an agent
and another agent or an obstacle. This force is interpreted as the “social force”, which is
meant to describe the phenomenon that pedestrians tend to keep a comfortable distance
from each other and from obstacles.

Circle Representation of an Agent

There are two popular ways to represent an agent in a 2-dimensional space, the one-circle
representation and three-circle representation. As shown in Figure 2.3, the three-circle
representation is more complicated, and its advantages are discussed in [14, 15, 16, 17, 18].
Rt represents the radius of the agent’s torso and Rs represents the radius of the shoulder.

Figure 2.3: Three circle representation.

However, the three circle representation is only mentioned for the sake of completeness
of information. The present game only demands a moderate degree of simulation accuracy,
so the game uses the one-circle representation, the outer circle Rd, for simplicity and
computational efficiency.

Motion Governing Equation

The social-force model is a Newtonian physics model. For agent i, its movement is governed
by the equation of motion:

11

mi
d2xi
dt2

= fi(t) + ξi(t), (2.1)

where mi is the mass of agent i, xi is the position, fi is the force exerted on it, and ξi is a
small random fluctuation force.

The force exerted on agent i can be expressed as follow:

fi(t) =
mi(v

0
i (t)e

0
i (t)− vi(t))

τi
+

∑
j(6=i)

[f socij (t) + fattij (t)] +
∑
b

f socib (t) +
∑
k

fattik (t), (2.2)

where the first term on the right hand side of the equation is interpreted as the motivation
force that drives agent i to move, f socij is the “social force” between agent i and agent j, fattij

is the “attraction force” between agent i and agent j, f socib is the “social force” between agent
i and boundary b, and the lastly fattik can be used to describe some abstract psychological
attraction, for example, parents tend to go to their children. Each term will be further
explained below.

Motivation Force

The motivation force in equation 2.2, denote it as fm, is expressed as:

fm =
mi(v

0
i (t)e

0
i (t)− vi(t))

τi
.

This is the force that drives agent i towards the desired destination, usually an exit
in a fire evacuation scenario. mi is the mass of pedestrian i. v0i is the desired walking
speed and e0

i is the desired normalized walking direction, for example, towards an exit.
vi is the actual walking velocity of pedestrian i. τi is interpreted as the “relaxation time
constant”, which determines how fast the pedestrian can adapt from its actual velocity vi
to its desired velocity v0i e

0
i .

The desired walking speed v0i is set to be a constant based on the statistical data, the
“relaxation time constant” τi can be tweaked to give the desired simulation. The desired
walking direction e0

i needs to be determined by an appropriate route selecting algorithm.
Different route selecting algorithms will be discussed in subsection 2.2.4.

12

Figure 2.4: Social force concept (source: [19]).

Social Force

Pedestrians tend to keep a distance from each other, and this phenomenon can be described
as a repulsive force, or called as a social force f socij (see Figure 2.4). The social force is
expressed as:

f socij (t) = Aie
(rij−dij)/Binij[λi + (1− λi)

1 + cos(ϕij)

2
]. (2.3)

In equation 5.3, Ai denotes the interaction strength and Bi denotes the range of the
repulsive interactions. Both Ai and Bi can be adjusted to reflect individual preferences. For
example, in cultures where pedestrians tend to keep a larger distance, both Ai and Bi need
to be set larger. For a simulation using one-circle pedestrian representation, rij = ri + rj is
the sum of radii of the two interacting pedestrians, dij = ||xi−xj|| is the distance between
their centers of circle. In other words, dij − rij represents the closest distance between the
bodies of the two interacting agents, and

nij(t) = (n1
ij(t), n

2
ij(t)) =

xi(t)− xj(t)

dij(t)
(2.4)

is the normalized vector pointing from pedestrian j to pedestrian i. λi < 1 is the anisotropic
character of pedestrian interaction. In other words, with λi, the model can describe how
big the impact from behind is comparing to the impact from ahead. The angle ϕij denotes

the angle between the direction of motion ei(t) = vi(t)
||vi(t)|| and the opposite direction of force

−nij(t), i.e. cos(ϕij)(t) = −nij(t)ei(t).

Following the same idea of the social repulsive force, the social attraction force can be
used to describe pedestrians’ tendencies to go towards certain other pedestrians or objects.
For example, a mother pedestrian i tends to go to her child pedestrian j, which is described
by fattij , and pedestrian i tends to go a window k for fresh air, which is described by fattik . The
attraction social force is of the same expression as the repulsive social force in equation 5.3,
but with an interaction strength constant Ai < 0.

13

2.2.2 Modified Social-force Model - Contact Force

When pedestrians come into direct contact, as pointed out by Langston [14], the original
social-force model gives unsatisfactory simulation results. To better describe pedestrians
behavior in direct contact, Langston’s work add in few more force terms in the original
social-force model. The force exerted on pedestrian i is expressed as

fi(t) =
mi(v

0
i (t)e

0
i (t)− vi(t))

τi
+

∑
j(6=i)

[f socij (t) + f cij + fattij (t)] +
∑
b

[f socib (t) + f cib] +
∑
k

fattik (t),

(2.5)
where f cij is the contact force between pedestrian i and pedestrian j and f cib is the contact
force between pedestrian i and obstacle b. The concept of the contact force between two
three-circle represented pedestrians is shown in Figure 2.5.

Figure 2.5: f c is the contact force agent j exerts on agent i, and f soc is the social forece
agent i exerts on agent k (source: [19]).

The contact force f cij is expressed as

f cij = [kij(dij − rij) + cd∆v
n
ij]nij + κij(dij − rij)∆vtijtij, (2.6)

where ∆vtij is the difference of the tangential velocities of the circles in contact, and vector
tij is the unit tangential vector of the contacting circles. This force only applies when the
circles are in contact, i.e., rij − dij ≥ 0. The radial elastic force strength is given by the
constant kij, and the strength of the fractional force by the force constant κij. As described
in [14], cd∆v

n
ij ·nij represents a physical damping force, and ∆vnij is the difference of agent

i’s and agent j’s velocities, nij is the normalized vector pointing from agent j to agent i,
and cd is the damping parameter. Note that the parameter cd reflects the fact that the
collision of two humans is not elastic. The boundary-agent (obstacle-agent) contact force,
f cib, is treated similarly but with different force constants.

14

2.2.3 Rotation Governing Equation

The motion governing equation for the modified social-force model can be extended to also
describe the rotation of each pedestrian, as explained in [19]. The rotation equation for
pedestrian i is

Izi
d2ϕi(t)

dt2
= Mz

i (t) + ηzi (t), (2.7)

where Izi is the moment of inertia for pedestrian i, ϕi(t) is the angle at time t, M z
i (t) is

the torque exerted on it, and ηzi (t) is a small random fluctuation torque.

In correspondence to motivation force, social force and contact force, motivation torque,
social torque, and contact torque are defined in a similar manner. Therefore, the total
torque exerted on pedestrian i can be expressed as

Mz
i = Mτ

i + Msoc
i + Mc

i , (2.8)

where Mτ
i is the motivation torque, Msoc

i is the social torque, and Mc
i is the contact torque.

Motivation Torque

Very similar to the motivation force, the motivation torque makes pedestrian i rotate to
the direction of the desired walking velocity v0

i as mentioned previously. The motivation
torque is expressed as:

Mτ
i =

Izi
τ zi

((ϕi(t)− ϕ0
i)ω

0
i − ωi(t)), (2.9)

where ω0
i is the maximum target angular velocity of a turning pedestrian i, ωi(t) is the

current angular velocity, ϕ0
i is the target angle (in the direction of v0

i), and τ zi is the angular
time relaxation parameter.

Social Torque

The social force exerted on pedestrian i will make it rotate, and this is described by the
social torque. The social torque exerted on pedestrian i from pedestrian j is Rsoc

i × f socij .
Therefore, the total social torque exerted on pedestrian i is expressed as:

Msoc
i =

∑
j 6=i

(Rsoc
i × f socij), (2.10)

where Rsoc
i is the vector pointing from the center of pedestrian i to the fictitious contact

point of the social force (see Figure 2.5), and f socij is the social force exerted by pedestrian
j.

15

Contact Torque

The contact force exerted on pedestrian i will also make it rotate, and this is described
by the contact torque. The contact torque exerted on pedestrian i from pedestrian j is
Rc
i × f cij. Therefore, the total contact torque exerted on pedestrian i is expressed as:

Mc
i =

∑
j 6=i

(Rc
i × f cij), (2.11)

where Rc
i is the vector pointing from the center of pedestrian i to the contact point of the

contact force (see Figure 2.5), and f cij is the contact force exerted by pedestrian j.

2.2.4 Route Selection Algorithms

One of the premises of using social-force model or modified social-force model is that one
has to know the desired walking velocity v0

i . In other words, these two models or in
fact any pedestrian models in general, need an appropriate algorithm to determine the
route a pedestrian needs to take to evacuate. In this subsection, three algorithms will be
introduced, FDS+Evac Fluid Algorithm, Game Theory Algorithm, Closest Exit Algorithm.

FDS+Evac Algorithm

Fire Dynamics Simulator (FDS) [20] is a very powerful simulator for simulating fire and
smoke, which is developed by National Institute of Standards and Technology (NIST).
It mainly simulates fire-driven smoke by using a Computational Fluid Dynamics (CFD)
model. It numerically solves the Navier-Stokes equations using the large eddy simulation
to describe the evolution of smoke as well as the heat transfer.

Later on, FDS+Evac was developed and maintained by VTT, Finland. This is a sim-
ulator for both fire and pedestrians. The fire simulation part is done by FDS, and then
the pedestrian simulation is incorporated. Note that the pedestrian simulation takes into
account the fire-to-human effect. Ideally, a two-way coupling simulation is expected. It
means that fire can influence pedestrian’s behavior; for example, fire can block the pedes-
trian’s evacuation route, slow down the pedestrian’s moving speed, or make the pedestrian
unconscious. On the other hand, pedestrian’s behavior can also influence the fire condition;
for example, pedestrians may simply put out the fire or open up some windows or doors to
create more ventilation. However, since it is almost computationally impossible to do the

16

Figure 2.6: A fictitious 2D pedestrian flow field used to guide agents to the exit doors. In
this case, only the left exit has an “outflow” boundary condition (source: [19]).

two-way-coupling simulation, FDS+Evac only performs the one-way-coupling simulation,
where fire influences pedestrian’s behavior, but not the other way around.

For the pedestrian simulation part, FDS+Evac mainly follows the work of Helbing’s
group [10, 11, 12, 13]. Recall the motion governing equation:

fi(t) =
mi(v

0
i (t)e

0
i (t)− vi(t))

τi
+

∑
j(6=i)

[f socij (t) + fattij (t)] +
∑
b

f socib (t) +
∑
k

fattik (t), (2.12)

and let v0
i (t) = v0i (t)e

0
i (t) be the desired walking velocity.

FDS+Evac uses a fluid dynamics approach to get the desired velocity v0
i (t). It creates

a desired velocity field v0
i in the evacuation field as shown in Figure 2.6. This vector

field is obtained as an approximate solution of a two-dimensional imcompressible potential
flow problem with given boundary conditions, where all walls are inert (i.e. slip) and the
chosen exit door acts as a fan, which extracts fluid out of the domain. A more thorough
description of this algorithm can be found in [19].

Game Theory Algorithm

The game theory approach of describing a pedestrian’s decision on the evacuation route is
discussed in detail in the literature [21, 22]. In a computational simulation, an agent rep-
resents a pedestrian. In short, agents use game theory to choose their routes of evacuation.

17

The goal of each agent is to choose a route that will grant him the shortest evacuation
time while taking other agents’ decisions into account. Generally, an agent decides whether
or not to go to exit ek based on these factors: the distance to ek, the capacity of ek
(maximum crowd flow rate), the congestion (queue) at ek, and the fire condition at ek. For
the sake of demonstration, a simplified game theory algorithm will be introduced where an
agent’s decision is based on only the distance to each exit and the potential queuing time
at each exit.

In game theory, an agent’s decision on which exit to go is called a strategy. Suppose
that there are N agents and K exits in an evacuation scenario. The set of all the agents is
{Ai : i ∈ N = {1, 2, ..., N}}. The set of all available exits is {ek : k ∈ K = {1, 2, ..., K}}.
The strategy of an agent is just the exit that it chooses, which is si ∈ Si = {e1, ..., ek}.
The profile of all agents’ strategies is denoted as

s := (s1, ..., sN) ∈ S1 × · · · × SN := S, (2.13)

and the notation s−i := (s1, ..., si−1, si+1, ...sN) ∈ S−i is used for the strategies of all other
agents but agent i.

Denote the location of agent i by ri, i ∈ N , and the location of exit ek by bk, k ∈ K.
The distance between agent i and exit ek is hence calculated as

d(ek; ri) = ||ri − bk||. (2.14)

Let r := (r1, ..., rN) be the collection of all the locations of the agents. The payoff func-
tion of agent i is the estimated evacuation time, Ti(si, s−i; r), which it needs to minimize.
Note that the estimated evacuation time is the sum of the time to cover the distance to an
exit and the time waiting in queue at the exit. When agent i chooses strategy si = ek, Ti
is evaluated as

Ti(ek, s−i; r) = βkλi(ek, s−i; r) + τi(ek; ri), s−i ∈ S−i, (2.15)

where βk is the exit capacity scalar of exit ek, λi(ek, s−i; r) is the number of other agents that
are also heading towards exit ek and are closer to the exit than agent i, and τi(ek; ri) is the
time for agent i to go to exit ek. The function λi is defined by λi(ek, s−i; r) := |Λi(ek, s−i; r)|
where

Λi(ek, s−i; r) := {j ∈ N|sj = ek, d(ek; rj) < d(ek; ri)}, (2.16)

and | · | denotes the number of elements in a set. Note that Λi(ek, s−i; r) is essentially the
set containing all the other agents besides agent i that choose to go to exit ek (sj = ek)

18

and are closer to it than agent i (d(ek; rj) < d(ek; ri)). Larger λi(ek, s−i; r) means longer
queuing time at exit ek. The estimated moving time to an exit is evaluated as

τi(ek; ri) :=
1

v0i
d(ek; ri), (2.17)

where v0i is the moving speed of agent i.

Given the decisions of all other s−i, the “best response” of agent i is expressed as

BRi(s−i; r) := argmin
s
′
i∈Si

{Ti(s
′

i, s−i; r)}, (2.18)

which is interpreted as choosing strategy that gives the shortest evacuation time.

With all the necessary tools introduced above, the exit selection of the agents can now
be updated periodically. The strategy of agent i on period t is the best response to the
other agents’ strategies on the previous period:

s
(t)
i = BRi(s

(t−1)
−i ; r). (2.19)

Note that a Nash equilibrium of the “evacuation game” si satisfies si = BRi(s−i; r) for all
i.

The game theory algorithm is a state-of-the-art algorithm in pedestrian modeling. One
version of the game theory algorithm is implemented in FDS+Evac. This algorithm works
fine for a non-interactive simulation. However, this algorithm is not suitable for an inter-
active real-time game, where agents have to update their course of actions in accordance
with the player’s movement. The algorithm is too computationally expensive to be imple-
mented in a real-time game. For this reason, a simpler algorithm, Closest Exit Algorithm
[23] is used in the game.

Closest Exit Algorithm

Closest Exit Algorithm can be seen as a simplified version of Game Theory Algorithm, but
under certain conditions, it is still able to yield satisfactory simulation results.

Recall that the objective of Game Theory Algorithm is to minimize the evacuation time

Ti(ek, s−i; r) = βkλi(ek, s−i; r) + τi(ek; ri), s−i ∈ S−i,

19

where the first term βkλi(ek, s−i; r) on the right hand side of the equation represents the
estimated queuing time at exit ek and the second term τi(ek; ri) represents the walking
time towards exit ek. The estimated time towards exit ek is estimated by

τi(ek; ri) :=
1

v0i
d(ek; ri),

d(ek; ri) = ||ri − bk||.

In Closest Distance Algorithm, the consideration of the queuing time is omitted, and
thus each agent’s objective is now simply to go the nearest exit. The estimated evacuation
time is now simplified as

Ti(ek, s−i; r) = τi(ek; ri), s−i ∈ S−i. (2.20)

However, a more complicated algorithm is used to determine the distance to an exit.
Previously, the distance to a specific exit, say exit ek, is calculated as d(ek; ri) = ||ri −
bk||, which represents the straight-line distance between agent i and exit ek. However,
oftentimes agents have to walk around obstacles to go to an exit. Therefore, a more
accurate estimation of the distance is calculated by considering a polygon instead of a
straight line as shown in Figure 2.7.

The distance is now calculated as

d(ek; ri) =
∑
s

ds, (2.21)

where ds is the length of the line segment s of the distance polygon. In the example
shown in Figure 2.7, the actual distance from agent i’s position to exit ek is calculated as
d(ek; ri) = d1 + d2 + d3 + d4 + d5.

The main advantage of Closest Distance Algorithm lies in its simplicity. This algorithm
is quite straightforward to implement and is also very computationally efficient. For these
reasons, this algorithm is used as a starting-point in Serious Game for Fire Evacuation.

2.2.5 Fire and Human Interaction

FDS+Evac is used as the template of this project, and the fire and human interaction
interpretation in [19] is what we are going to discuss here.

Fire condition can influence pedestrian’s behavior in two main aspects. Firstly, smoke
reduces visibility and thus impedes the movement of pedestrians. Secondly, smoke can
intoxicate pedestrians and cause deaths.

20

Figure 2.7: A polygon is used to calculate the distance an agent needs to cover to go to an
exit.

Impeding Effect

According to literature [24], pedestrian walking speed decreases with increasing smoke
concentration by the formula v(Ks) = α+βKs, where α = 0.706 m s−1, β = −0.057 m s−1

are both empirical coefficient values, while Ks is the extinction coefficient ([Ks] = m−1).
For agent i, the walking speed is determined by the formula

v0i (Ks) = Max{v0i,min, v
0
i (1 +

β

α
Ks)}, (2.22)

where the minimum walking speed of agent i is v0i,min = 0.1 · v0i , i.e. smoke does not
completely stop an agent.

Toxic Effect

The toxic effect of gaseous fire products is incoperated by using Purser’s Fractional Effective
Dose (FED) concept [25]. The FED value is calculated as

FEDtot = (FEDCO + FEDCN + FEDNOx + FEDirr)× HVCO2 + FEDO2 . (2.23)

21

Table 2.1: Coefficients used for the computation of irritant effects of gases.

HCI HBr HF SO2 NO2 C3H4O CH2O

FFLD (ppm×min) 111400 11400 87000 12000 1900 4500 22500
FFLD (ppm) 900 900 900 120 350 20 20

The fraction of an incapacitating dose of CO is calculated as

FEDCO =

∫ t

0

2.764× 10−5(CCO(t))1.036dt, (2.24)

where t is time in minutes and CCO is the CO concentration (ppm). The fraction of an
incapacitating dose of CN is calculated as

FEDCN =

∫ t

0

(
exp(CCN(t)

43
)

220
− 0.0045)dt, (2.25)

where t is time in minutes and CCN is the concentration (ppm) of HCN corrected for the
protective effect of NO2. CCN is calculated as

CCN = CHCN − CNO2 . (2.26)

The fraction of an incapacitating dose of NOx is calculated as

FEDNOx =

∫ t

0

CNOx(t)

1500
dt, (2.27)

where t is time in minutes and CNOx is the sum of NO and NO2 concentration (ppm).

The Fraction Lethal Dose (FLD) of irritants is calculated as

FLDirr =

∫ t

0

(
CHCI(t)

FFLD,HCI

+
CHBr(t)

FFLD,HBr

+
CHF(t)

FFLD,HF

+
CSO2(t)

FFLD,SO2

+
CNO2(t)

FFLD,NO2

+
CC3H4O(t)

FFLD,C3H4O

+
CCH2O(t)

FFLD,CH2O

)dt,

(2.28)
where t is time in minutes, the numerators are the instantaneous concentrations (ppm) of
each irritant and the denominators are the exposure doses of respective irritants predicted
to be lethal to half the population. The lethal exposure doses [15] are given in Table 2.1 .

22

The fraction of an incapacitating dose of low O2 hypoxia is calculated as

FEDO2 =

∫ t

0

dt

60 exp[8.13− 0.54(20.9− CO2(t))]
, (2.29)

where t is time in minutes and CO2 is the O2 concentration. The hyperventilation factor
induced by carbon dioxide is calculated as

HVCO2 =
exp(0.1903CCO2(t) + 2.0004)

7.1
, (2.30)

where t is time in minutes and CCO2 is the CO2 concentration.

An agent in the simulation is considered to be incapacitated if the FED value exceeds
unity. An incapacitated agent no longer moves or be affected by social forces from other
agents.

23

Chapter 3

Game Design

Serious Game for Fire Evacuation is a video game that trains players about the fire
evacuation process. First of all, an appropriate game engine should be selected as the
platform to implement the simulation. In the game engine, the fire simulation is developed
using a third-party fire simulator, and then the simulation result is transferred into the
game to be visually rendered. Pedestrian models are written as scripts to control the
background agents in the game. In addition, for the implementation of this game, a rather
simple fire-to-human impact model is used as a starting point. Again, the pedestrian model
used in this game is a rather simplified one because the main objective of this project is
to explore the feasibility of fire evacuation training through the manner of a video game.
More complicated models can later be implemented on this platform following the same
methodology.

The general implementation flow chart is demonstrated in Figure 3.1. As shown in
the flow chart, the pedestrian model is directly scripted in the game. At the beginning
of the project, using a third-party pedestrian simulator, e.g. Pathfinder, was considered.
However, if the simulation is performed before the game starts, the movement of each agent
would be fixed and no longer able to adjust in accordance with the action of the player. For
this reason, the pedestrian model is scripted directly into the game, and then the course of
action of each agent is able to be updated according to change of the surroundings, including
the player, during the run time of the game. However, the downside of implementing the
pedestrian models this way is the slowing-down of the game itself; players may experience a
certain level of “stuttering” due to the computational power spent on constantly updating
agents’ actions. Some remedies of the “stuttering” problem will be further discussed in
chapter 5.

24

Figure 3.1: The flow chart of implementation.

3.1 Game Interfaces

As shown in Figure 3.1, the game mainly consists of three interfaces, the design interface,
the play interface, and the feedback interface.

For designers, the design interface is where they can customize the fire scenario, for
example, the locations of the exits, the spawning position of the player, the sizes of the
obstacles, the type of the fire, and so on. This interface was created in order to let building
designers have a platform to design the game environment that better reflects their own
building designs.

After the design is completed in the design interface, the simulation would be performed
according to the environment setup of the design, and after the simulation is done, players
could then enter the play interface to play the game.

In the play interface, the designed fire scenario would be loaded and the player would
spawn at the preset location, and then the game would begin. The objective of the player
is not only to escape the fire scene as fast as possible but also to perform a particular series
of actions; for example, pressing the alarm soon as realizing there is a fire, helping people

25

in need, and so on. The game would end when the player successfully escapes the building.
However, as mentioned previously, the score that the player gets does not depend solely
on how fast he/she escapes.

Some data during the game would be recorded, like how long it takes to evacuate,
whether or not the player sets off the alarm to warn others, whether or not the player
helps others, and so on. Based on these data, the game would then switch to the feedback
interface in which feedback would be given to the player on their performance during the
game and how they might improve. This aspect of the game is still under development.

3.2 Design Interface

Figure 3.2: Overview of the design interface.

For now, as shown in the element box in Figure 3.2, the game provides seven types
of elements for designers to customize; they are floor, wall, obstacle, exit, fire, agent, and
player.

26

3.2.1 Room Design

Figure 3.3: Room design panel.

The fire scenario can have different scenes, which are called rooms in the game. Each
room consists of the seven fundamental types of elements mentioned in section 3.2. The
player can go from a room to another room through a specific exit. A simulation would
be run for each room separately, which means that the fire condition of one room would
not influence the fire condition of another room. Similarly, agents in one room cannot go
into another room. Once an agent enters an exit, it would just disappear. For this reason,
designers are expected to place and customize agents separately for each room.

Designers can either build a very large room that includes all the details of a fire
evacuation scenario or divide the fire evacuation scenario into several rooms. The apparent
advantage of using one large room is that a complete simulation can be done on it. However,
if the room scale is too large, the fire simulation will be very slow to generate and also
very slow to render in the game. In addition, having a large scale room also means that
there could be too many agents running the pedestrian model algorithm during the game
run time. Therefore, this kind of design can cause the run time stuttering problem. On
the other hand, designers can choose to divide a big scale fire scenario into several smaller
rooms, and simulations will then be run and rendered in these smaller rooms separately.
Each time, only the fire simulation of the room that the player is in would be rendered.
Similarly, only the agents in that room run the pedestrian model algorithm. This design can
undoubtedly speed up the game, but the continuity of the fire and pedestrian simulation

27

of the fire scenario would be sacrificed, meaning that the condition of the fire and the
pedestrians in one room has nothing to do with that of another room. For now, only three
pieces of information are carried from one room to another: the player’s health, the time
elapsed since the game begins, and the total casualties. Therefore, designers have to be
well aware of what level of simulation continuity of the fire scenario is demanded for the
training purpose. As shown in Figure 3.2, the “New Room” button creates a new room,
and the “Existing Rooms” button displays all the existing rooms.

Figure 3.3 shows the room design panel. On the panel, designers need to specify the
dimension of the room, and the simulation time of the room, which will later be used to
write the fire simulation input file in the simulation phase.

3.2.2 Floor and Wall Design

(a) (b)

Figure 3.4: Floor and wall design panels.

As shown in Figure 3.4a, upon creating a floor in the room, designers can customize the
new floor’s length, width, and position. It is recommended to use only few floor elements
in a room for the navigation mesh will later be built on the floor elements. If there are too
many floor elements or the floors’ alignments are too irregular, the navigation mesh might
not be successfully built. The navigation mesh is for the later use of the pedestrian model
algorithms, which will be discussed into details in chapter 5. A workaround for building a
more complicated and irregular floor is through building one big floor first, and then add
obstacles and walls on it to block certain areas out.

As shown in Figure 3.4b, upon creating a wall in the room, designers can customize the

28

new wall’s length, height, position, and rotation. Technically, one can use walls to separate
the scene (or “Room”) into several smaller rooms.

3.2.3 Obstacle Design

(a) (b) (c)

Figure 3.5: Obstacle design panels.

Currently, three types of obstacles are available for the designers to put in the room,
which are bed, sofa, and box. Only three types of obstacles are implemented for the
demonstration purpose. More varieties of obstacles can later be added to the game with
ease. As shown in Figure 3.5, upon creating an obstacle, designers can customize its length,
width, height, position, and rotation. During the run time of the game, obstacles are static.
In other words, agents and players cannot move these obstacles.

3.2.4 Exit Design

Figure 3.6 shows the design panel for exits. Designers have to specify not only the location
and dimension of the exit but also whether or not the door is open and which other room
the exit would lead the player to. If an exit is set to be not open, then during the run
time, this exit will not be considered by the pedestrian model algorithm of agents, and the
player cannot pass through this exit. If an exit is open and the room it leads to is specified
(in “Next room”), then upon the arrival of the player at the exit, the player would be
placed in that new room, and the game would continue in it. However, if “Next room” is
specified to be “Outside”, then when the player makes it to the exit, the game would end,
meaning that the player has successfully finished the game.

29

Figure 3.6: Exit design panel.

Figure 3.7: Fire design panel.

3.2.5 Fire Design

Figure 3.7 shows the fire design panel. Since FDS is the third-party fire simulator used
by this game, specifications about the fire are made in accordance with the features imple-
mented in FDS. First of all, designers need to specify the location of the fire source. Then
one needs to specify the length and width of the fire. In FDS, fire source is treated as a heat
releasing surface. After that, one needs to specify the fuel of the fire source, for example,
propane, hydrogen, methane etc. The intensity of the fire is reflected by Heat Release Rate

30

Per Unit Area (HRRPUA). One can also specify the CO yielding rate and soot yielding
rate in the panel. All these specifications would later be translated and written into an
FDS input file, which can later be run by FDS.

3.2.6 Agent Design

Figure 3.8: Agent design panel.

Figure 3.8 shows the agent design panel. “Modern People” package of Unity was used
as the prototypes of agents. There are twenty different prototypes of agents in the package,
including ten males and ten females. All of them differ only in their appearances. Figure 3.8
shows one male prototype. On the agent design panel, one can specify the spawning
location of the agent. Some additional specifications for agents are the health, walking
speed, and the delay time. These three specifications are all related to the pedestrian model
algorithm used in this game. For the current development, the fire-to-human impact is
reflected by the intoxicating effect of gas. The health of an agent will be reduced according
to the density of the toxic gases. Therefore, by adjusting the health of an agent, one can,
in turn, determine how long an agent can sustain in the fire scenario. One can use “Speed”
to specify the normal walking speed of an agent, say agent i. This value would be used as
the desired walking speed term of agent i, v0i , in the social-force model. The delay time,
also called pre-evacuation time, is a new concept. Literature [26, 27, 28] suggests that the
evacuation time of an agent is calculated as tev = tp + tm, where tp is the pre-evacuation
time, and tm is the time of an agent moving to an exit (including the queuing time at

31

the exit). The pre-evacuation time tp reflects the phenomenon that people tend not to
immediately take action even after realizing the fire. Designers can use “Delay Time” to
set how long an agent should wait until it starts to move. If unspecified, by default, the
agents start as soon as the room has been loaded.

3.2.7 Player Design

Figure 3.9: Player design panel.

Figure 3.9 shows the player design panel. The Unity-built-in third-person-controlled
character is used as the prototype of the player to differ from the prototypes of other
agents. Besides the usual specifications, like all other agents, designers can also specify the
health of the player, and once the health runs out due the intoxicating effect of the gas,
the player dies, and the game ends. Also, the speed can be specified to determine how fast
the player moves. In contrast to the other agents, the player is the only character with
genuine agency in the game, so it is not restricted by the pre-evacuation time (delay time)
and is able to influence the agents’ actions.

3.2.8 Design Example

Figure 3.10 shows the design of a fire evacuation scenario. The room “Apartments” (Fig-
ure 3.10a) contains several apartments that people live in. Fire is placed at the position

32

(a) Apartments (b) Hall

Figure 3.10: A design example.

shown in the figure. Furniture is placed in each apartment, which is treated as obstacles.
As fire spreads out, people need to escape from the scene. The exit at the top-left corner
is set to be unavailable due to the fire condition, while the exit at the top-right corner con-
nects to the second room “Hall” (Figure 3.10b). After entering the top-right exit in room
“Apartments”, the player would spawn at the left exit in “Hall”. Agents are scattered in
the left half of “Hall”, and a fire is burning behind a wall. Note that the passage narrows
down in the middle, where congestion is expected to be observed. The exit on the right of
“Hall” leads to a safe place, meaning that, game ends upon entering this exit.

This simple design example meant to demonstrate that one can build more complicated
fire evacuation scenarios using the very fundamental tools provided in the design interface.

3.3 Play Interface

After the design of a fire evacuation scenario is finished, one can click the “Build” button
on the top-right of the screen (see Figure 3.10) to perform the fire simulation based on the
design and then play in the designed scenario in the “Play” interface.

For the moment, the game is only available on PCs. In the “Play” interface, the player
can move freely using the standard “WASD” keyboard control, and the view rotation is
controlled by the movement of mouse.

Figure 3.11a shows what it looks like in the “Play” interface in the “Apartments”

33

room of the example discussed above. Agents evacuate and the smoke spreads based on
the pedestrian model and the fire simulation respectively in real time. The details of
pedestrian model implementation and fire simulation implementation will be discussed in
later chapters.

The top-left corner of the monitor indicates the health of the player, which is influ-
enced by the smoke. If the player’s health drops to 0, it means that the player has been
incapacitated by the smoke, and the game is over. The fire-to-human interaction is part
of the pedestrian model and will be discussed in chapter 5. On the top-right corner of the
monitor are a clock and a casualty indicator. The clock indicates the time elapsed from
the start of the game and the casualty indicator shows the number of casualties that have
occurred.

Figure 3.11b shows the scene in the “Hall” room. One can notice that two casualties
have already occurred, the health of the player has dropped to 83, and congestion has
formed at the narrow passage as expected.

(a) Play in room “Apartments”. (b) Play in room “Hall”.

Figure 3.11: Overview of the play interface.

3.4 Chapter Summary

Serious Game for Fire Evacuation consists of three interfaces, the design interface, the
play interface, and the feedback interface. The design interface allows designers to design
the fire scenario to carry out the evacuation. The design interface can be seen as a GUI

34

of some third-party fire simulators, like FDS, but with some additional features. The play
interface is where the player gets to play in the designed fire scenario. In the play interface,
the fire simulation and the pedestrian simulation of the fire scenario will be rendered. The
player is expected to perform a certain course of actions as if in a real fire evacuation
situation. After the player finishes in the fire evacuation scenario, the game will switch to
the feedback interface where an evaluation on the performance of the player will be given.
The feedback is meant to instruct the player how to improve in the fire evacuation. The
feedback interface has not been implemented into the game.

35

Chapter 4

Fire Simulation Implementation

Fire dynamics simulation is too complicated to be implemented into the game manually.
Therefore, this game uses a third-party fire simulator to do the simulation. Fire Dynamics
Simulator (FDS) is chosen because it is very well developed and is an open source.

Figure 4.1: Flow chart of fire simulation.

Once the design phase is complete, designers can click the “Build” button in the design
interface to build the scenario. The flow chart of the fire simulation is shown in Figure 4.1.
An FDS input file will be generated for each room according to its setup. Then through

36

scripts, FDS would run these FDS input files to perform the simulation. Once the simu-
lation is done, a simulation output file would be created, and all the requested simulation
result is stored in the output file. The last step is to read the output file and render the
simulation result back into the game. These steps briefly conclude the implementation of
the fire simulation.

4.1 Write Simulation Input File

After the design of the scenario is completed and the “Build” button is pressed, a folder will
be created through scripts for each room to store the design and the simulation result of
that room. First of all, for each room, an FDS input file (.fds) will be generated according
to the design of that room. A typical FDS input file is shown as follows:

1: &HEAD CHID =′ Hall′, TITLE =′ Hall′/
2: &MESH IJK = 20, 40, 4, XB = −10, 10,−20, 20, 0, 4/
3: &TIME T END = 60/
4: &OBST XB = −10,−2.5, 1.45, 1.55, 0, 4/
5: &OBST XB = −10,−2.5,−1.55,−1.45, 0, 4/
6: &OBST XB = −2.55,−2.45,−1.5, 1.5, 0, 4/
7: &OBST XB = 2.5, 10, 1.45, 1.55, 0, 4/
8: &OBST XB = 2.5, 10,−1.55,−1.45, 0, 4/
9: &OBST XB = 2.45, 2.55,−1.5, 1.5, 0, 4/
10: &OBST XB = 5.5, 8.5, 2.5, 5.5, 0, 2/
11: &REAC ID =′ HallReaction′

12: FUEL =′ PROPANE′

13: CO YIELD = 0.4
14: SOOT YIELD = 0.4/
15: &SURF ID =′ HallReaction′, HRRPUA = 1000/
16: &VENT XB = 5.5, 8.5, 2.5, 5.5, 2, 2, SURF ID =′ CorridorReaction′/
17: &SLCF PBZ = 0.5, QUANTITY =′ DENSITY′, SPEC ID =′ SOOT′/
18: &SLCF PBZ = 1.5, QUANTITY =′ DENSITY′, SPEC ID =′ SOOT′/
19: &SLCF PBZ = 2.5, QUANTITY =′ DENSITY′, SPEC ID =′ SOOT′/
20: &SLCF PBZ = 3.5, QUANTITY =′ DENSITY′, SPEC ID =′ SOOT′/
21: &DEVCXYZ = −25,−25, 1.5,QUANTITY =′ EXTINCTIONCOEFFICIENT′/
22: &TAIL/

37

The details of the fire scenario specified previously in the design interface are now
translated and written into the simulation input file. The commands in the input file are
explained below [20].

• The namelist group &HEAD on the first line specifies the name of the simulation.
CHID is a string of 30 characters or less used to tag the output files. TITLE is a
string of 60 characters or less that describes the simulation. Here, the game will
generate the input file for a room with both CHID and TITLE being the name of
the room.

• The &MESH namelist group on the second line specifies the alignment and size of the
simulation meshes. For a simulation mesh alignment that counts i meshes going from
x0 to x1 in the x direction, j meshes from y0 to y1 in the y direction, and k meshes from
z0 to z1 in the z direction, it is written as &MESH IJK = i, j, k, XB = x0, x1, y0, y1, z0, z1/.
Note that meshes are of length (x1−x0)/i, width (y1−y0)/j, and height (z1− z0)/k.
In our example, mesh size is set to be 1 m, and thus the &MESH namelist group is
set accordingly to be so.

• On the third line, the &TIME namelist group specifies the simulation time and
time step. For a simulation that starts from t0 and ends at t1 , it is written as
&TIME T BEGIN = t0 T END = t1/. In our example, the simulation covers up to
60 s, and since the beginning time of the simulation is not specified, it starts from
0 s by default. In the same line, the initial time step can be specified to be dt
using the command DT = dt. The initial time step, DT, is not specified in the
simulation of this game. If the initial time step DT is not specified, then by default,
it will be automatically set to be the value of dividing the size of a mesh by the
characteristic velocity of the flow. To be more specific, the default value of DT is
5(δxδyδz)

1
3/
√
gH s, where δx, δy, and δz are the dimensions of the smallest mesh cell,

H is the height of the height of the computational domain, and g is the acceleration of
gravity. In our example, since all the meshes are of dimensions δx = 1 m, δy = 1 m,
δz = 1 m, and the domain height is H = 4 m, the initial time step is thus DT = 0.79 s.
During the simulation, the time step is adjusted so that the CFL (Courant, Friedrichs,
Lewy) condition is satisfied. This is an advanced topic, one can just let FDS take
care of it.

In the design interface, one has to specify the dimensions of all the obstacles. Note that
all walls are also treated as obstacles when writing the FDS input file. For obstacles, only
the dimensions need to be specified in the FDS input file. Line 4 to line 10 of the example
input file show the specification of all obstacles of the example scenario.

38

Line 11 to line 16 specify the fire. The &REAC namelist group specifies the reaction
of the fire. When extracting the setup of the game into the input file, the name of the
reaction would be automatically set to be the name of the room combined with keyword
“Reaction”. In the design phase, one needs to specify the fire as shown in Figure 3.7, and
these details will be translated and written into the input file as shown.

Line 17 to line 20 specify four slices at height 0.5 m, 1.5 m, 2.5 m, and 3.5 m to
collect the soot density data. Later four soot density profiles will be generated at these
four different heights. Line 21 specifies a device that records the FED value profile at the
specified position. There are actually many more command lines like line 21 in the actual
input file, which put a device recording the FED value profile at each mesh point at height
1.5 m (covers from 1 m to 2 m in z direction, where a human’s head should be). Note
that the current design of the game is to render smoke according to the soot density, and
use FED value for the intoxicating effect. But for later development, one can use other
commands [20] to extract other data of interest.

4.2 Run Simulation

Figure 4.2: FDS running simulation based on the input file.

39

After the FDS input file has been created, the game will externally use FDS to run the
FDS input file (see Figure 4.2). FDS will then generate output files which contain data
requested, like the FED value data shown in Figure 4.3. Note that the simulation process
is hidden from the users in the game.

Figure 4.3: FED output data.

4.3 Render Simulation

Smokeview is the visualization program that renders the simulation result of FDS. The
way that Smokeview determines the opacity of smoke is described in section 17.10.2 [29].
The intensity of monochromatic light passing a distance L through smoke is attenuated
according to

I/I0 = e−KL, (4.1)

where K is the light extinction coefficient (see [30] for more information).

The intensity of monochromatic light, I/I0 can be used to determine the opacity of
smoke. Note that, not digging into details, the light extinction coefficient K is calculated
as K = KmρYS, where Km is a constant, and ρYs is soot density. Then one can see that
a higher soot density leads to a lower intensity of monochromatic light, meaning less light
can go through and thus more opaque. Smokeview uses the conventional RBGA color, the
opacity is calculated as 255 · (I/I0). Figure 4.4 demonstrates different smoke of different
opacities. Note that, different from the RBGA color convention where 255 is the most
opaque and 0 is the most transparent, Smokeview interprets the opacity reversely with 255
being the most transparent and 0 being the most opaque.

40

Figure 4.4: Smoke of different opacities (source: https://github.com/firemodels/fds/
issues/5118).

For this project, in the game engine Unity, the smoke is rendered using the built-in
particle system [31]. The particle system is essentially an animation that runs repeatedly.
The texture of the smoke can be achieved using the appropriate design of the particle
system. One can certainly use more advanced tools to more realistically render the smoke,
but for the moment, the particle system suffices to do the job. Figure 4.5 shows one design
of smoke using the particle system. The smoke opacities 255, 196, 137, 78, 20 go from left
to right respectively. Unity uses the conventional RBGA color with 255 alpha value being
the most opaque and 0 being the most transparent.

The data required to update the opacity of the smoke particle system is light extinction
coefficient K, which can be directly extracted from the simulation. The time profile of
opacity, A, of a particle system is then calculated by

A = 255 · (1− I

I0
) = 255 · (1− e−KL), (4.2)

where (1 − e−KL) accounts for the different interpretation of RGBA alpha value in Unity

41

https://github.com/firemodels/fds/issues/5118
https://github.com/firemodels/fds/issues/5118

Figure 4.5: Different opacities of smoke rendered using the particle system in Unity. The
alpha values from left to right are: 255, 196, 137, 78, 20.

from Smokeview, and L is set to be 1 since in this project meshes are of size 1 m.

In the building phase of the game, an empty game object will be created at each mesh
point, calling it mesh-object. In Unity, an empty game object has no physical appearance,
which can be simply considered as a reference. One smoke particle system will then be
attached to each mesh object. Through scripts, each mesh object also contains essential
data profiles at the corresponding mesh point in the simulation. For example, the opacity
profile for smoke rendering, the fractional effective dose (FED) profile for human-fire in-
teraction, and any other profiles for other purposes. Because the time step of this game is
set to be 1 s, the opacity of each smoke particle system is updated every 1 s based on the
opacity pre-stored in its attached mesh object. Note that in Figure 4.5, if the alpha value
is smaller than 20, the smoke is almost transparent. Therefore, if the opacity profile of a
mesh-object contains no opacity bigger than 20 throughout the simulation time, then no
smoke particle system will be created for that mesh object. This simplification saves up a
lot of computational power.

4.4 Result and Discussion

Figure 4.6 and Figure 4.7 compare the smoke visualization in the game and in Smokeview
of the example scenario. Despite the textures, the propagations of the smoke are identical
because they are based on the same simulation result.

Figure 4.8 is how it looks like standing in the midst of the smoke. The overall visual-
ization of the smoke in the game is slightly crude due to the fact that the particle system
representation might not be the best tool to render the smoke, and it should also be re-
membered that the simulation/rendering mesh size is set to be 1 m, which is rather coarse.
Later on, some advanced animation tools, like Blender [32], can be used to improve the
smoothness of the visualization. Also, if system permits, a more elaborate fire simulation

42

can be done using smaller simulation mesh sizes, which would result in a more continuous
and smooth smoke visualization in the game.

(a) Simulation at 10 s.

(b) Simulation at 20 s.

Figure 4.6: Comparison of visualization of smoke in the game and Smokeview at 10 s and
20 s.

43

(a) Simulation at 40 s.

(b) Simulation at 80 s.

Figure 4.7: Comparison of visualization of smoke in the game and Smokeview at 40 s and
80 s.

44

Figure 4.8: The look of the smoke from the player’s view in the game.

45

4.5 Chapter Summary

Serious Game for Fire Simulation uses FDS to perform the fire simulation. The fire
scenario is first translated and written into an FDS input file, and then the input file is
run by FDS.

There is a trade-off between simulation accuracy and the game run time performance.
It takes more computational power to render simulations that are more accurate. For the
purpose of this game, the simulation is done with a 1 m mesh size and 1 s time step, which
results in a satisfactory accuracy and game run time experience.

For the moment, the soot density data and the FED value data are extracted from the
simulation. The soot density data is used directly for the visualization of smoke in the
game. The particle system in the game engine Unity is used to visualize the smoke. The
particle system is essentially an animation tool, which makes the smoke visualization look
smoother, compensating the coarseness of the simulation. FED value data is used by the
fire-to-human interaction part of the pedestrian model.

In the field of pedestrian modeling, the two-way coupling of fire and pedestrian has not
been accomplished. In this game, fire affects pedestrians, but not the other way around.

46

Chapter 5

Pedestrian Modeling Implementation

In this chapter, the implementation of a pedestrian model will be introduced. This part of
the implementation includes the one-circle representation of agents, route selection algo-
rithm, agent-to-agent interaction algorithm, fire-to-agent interaction algorithm, and tricks
to enhance the smoothness of the game.

The project mainly focused on the modified social-force model, see section 2.2 for the
theoretical background. Here’s a brief review of the model. The equation governing the
movement of each agent is

mi
dxi
dt2

= fi(t) + ξi(t), (5.1)

where fi(t) is expressed as

fi(t) =
mi(v

0
i (t)e

0
i (t)− vi(t))

τi
+

∑
j(6=i)

[f socij (t) + f cij] +
∑
b

[f socib (t) + f cib]. (5.2)

Note that the attractive forces fattij , f
att
ik in the original equation 2.5 are omitted due to their

vagueness. Therefore, the task was to implement all the other forces. The implementation
of the pedestrian model in this game mostly followed the setup of the pedestrian model
used in FDS+Evac, and thus used the same parameter values in the equation.

In 5.2, recall that
mi(v

0
i (t)e

0
i (t)−vi(t))

τi
represents the motivation force, which leads agent i

towards an exit. τi is the relaxation time parameter, which is set to be uniformly distributed
from 0.8s to 1.2s. For simplicity, τi was set to be the average value, 1 s.

Recall that the agent-to-agent social force,, is expressed as:

f socij (t) = Aie
(rij−dij)/Binij[λi + (1− λi)

1 + cos(ϕij)

2
], (5.3)

47

whereAi andBi describe the strength and spatial extent of the force, respectively. Ai = 2000 N
and Bi = 0.04 m were used in this game. The parameter λi controls anisotropy of the social
force, meaning that if λi = 1, the force is symmetric, and if 0 < λi < 1, the force is larger in
front of the agent than behind. λi = 0.5 was used in this game. For the boundary-to-agent
social force f cib, Ab = 2000 N, Bb = 0.08 m, and λb = 0.2 were used.

Recall that the contact force is expressed as:

f cij = [kij(dij − rij) + cd∆v
n
ij]nij + κij(dij − rij)∆vtijtij, (5.4)

where the force constant kij represents the radial elastic force strength, the force constant
κij represents the frictional force strength, and cd is a damping parameter of the physical
damping force. Values kij = 12× 104 kg m−2, κij = 4× 104 kg s−1m−1, and cd = 500 kg s−1

were used for both agent-to-agent and boundary-to-agent interactions.

The rotation aspect of the modified social-force model was omitted for simplicity. An
agent will always face the direction of the path that leads it to the closest exit, which will
be discussed more in subsection 5.3.

5.1 Useful Unity Built-in Tools

Physics system

Unity provides a very powerful physics system under which the object’s motion can be
governed by Newtonian forces, namely by the classic force equation f = ma. As shown in
Figure 5.1, Unity provides a lot of interesting and powerful tools under the physics system.
The two that this project had utilized were the rigid body component and the collider
component.

The rigid body component is the most fundamental component that an object must
have to use the physics system. The rigid body component allows the user to specify mass
and some other physics properties to an object. In this project, all the obstacle object were
made static, so there was no need to assign them rigid bodies. For each agent, a rigid body
was assigned, and its mass was set to be 70 kilograms by default. For simplicity, the mass
of an agent is not accessible in the design phase of the game, but the feature of changing
the mass of an agent could be easily added in the future.

Once an agent possesses a rigid body, forces of pedestrian models could be applied on
it through scripts. This game mainly used the physics system to simulate the interaction
forces, i.e. the agent-to-agent interaction force and the obstacle-to-agent interaction force.

48

Figure 5.1: The built-in physics system of Unity.

The collider component is essential for obstacle and agent avoidance. With the collider
component, an agent is not allowed to go through other agents and obstacles. From a
relatively large distance, agents interaction is governed by forces of pedestrian models.
Ideally, once two agents are relatively closed to each other, both the contact force and
the colliders are effective to take care of the interaction of the two agents. However, to
enhance the computational performance of the game, when an area contains too many
agents, which means congestion has formed, then the contact force script is turned off and
only the collider is effective to take care of the bumping between every two agents. This
implementation significantly eases the calculation and yields a result not much different
from that of also considering the contact force effect.

Navigation System

Unity also provides a very useful navigation system, Figure 5.2. The navigation system
allows agents to navigate in the game world. Using the navigation system, agents can go
to target positions, choosing the shortest path and walking around obstacles. Note that
the target position does not need to be fixed; it can be altered during the run time of the
game.

49

Figure 5.2: Navigation system of Unity (source: https://docs.unity3d.com/Manual/

Navigation.html).

In order to use the navigation system, one needs to assign the Navigation Mesh Surface
component (script), as shown in Figure 5.3, to surfaces that agents are allowed to walk on.
At the beginning of the game, meshes would be created on these surfaces, and these meshes
would be used by the navigation algorithm to control the movement of agents. Note that
no mesh is created on places covered by obstacles.

One also needs to assign the Navigation Mesh Agent component, as shown in Figure 5.4,
to agents that are expected to be controlled by the navigation algorithm. Once the surface
meshes are available, these agents would be controlled by the navigation algorithm to move
to the target destination.

A brief introduction of the navigation system algorithm will be given in the exit selection
algorithm section. A more detailed documentation of the navigation system can be found
in [33].

50

https://docs.unity3d.com/Manual/Navigation.html
https://docs.unity3d.com/Manual/Navigation.html

Figure 5.3: Navigation mesh surface component (script).

Figure 5.4: Navigation mesh agent component (script).

5.2 Circle Representation

Unity provides built-in colliders in the physics system. Objects with collider cannot go
through each other in the game; in other words, objects collide when in contact. Colliders
come in different shapes, the collider used in this game is the capsule collider as shown in
Figure 5.5a. Here the one-circle-representation is equivalent to using one capsule collider
to represent an agent’s physical body. Figure 5.5b shows the top view of the one-circle-

51

(a) Capsule collider.

(b) One-circle-representation using one capsule
collider.

(c) Three-circle-representation using three cap-
sule colliders.

Figure 5.5: Using collider for circle representation of human body.

representation of an agent. Roughly based on Table 5.1, for simplicity, the capsule radius
is set to be 0.255 m for all types of agents including the player.

The three-circle-representation has not been fully implemented, due to the complica-
tion it brings to the pedestrian model relating to the contact force. If we only consider he
physical shape, then the three-circle-representation can be implemented using three cap-
sules of different radii as shown in Figure 5.5c. One capsule represents the torso, two other
capsules represent the shoulder, and the radii of the three capsules can be obtained from
Table 5.1.

52

Table 5.1: Properties of different types of pedestrian.

5.3 Exit Selection Algorithm

In order to use the modified social-force model, one has first to determine the desired
walking velocity v0

i = v0i e
0
i . An agent’s desired walking speed v0i is set in the design phase

of the game; data in Table 5.1 is a good reference for designers to set the speed. The main
challenge lies in finding an appropriate moving direction e0

i .

As discussed in subsection 2.2.4, there are several ways to determine the desired walking
velocity v0

i of agent i, which are the fluid algorithm, the game theory algorithm, and the
closest exit algorithm. So far, the closest exit algorithm has been implemented into the
game.

The Unity built-in navigation system is used to implement the closest exit algorithm.
The route for an agent to go to an exit is a polygon. The navigation system is efficient to
find the shortest polygon which allows the agent to walk around all the obstacles on its
way. The polygon generated for an agent is shown in Figure 5.6. The distance between an
agent and an exit is calculated as the sum of the lengths of the segments of the polygon.

At each frame, a route polygon of such will be generated for each available exit. The
distance of each route (the length of the polygon) will then be calculated and the closest
exit can be found. The desired route of agent i is the route polygon that leads it to the
closest exit. Therefore, the desired walking direction e0

i is the direction of the segment of
the shortest polygon that agent i is on at that frame. Once the desired walking direction
e0
i is determined, together with the predetermined walking speed v0i , the motivation force
mi(v

0
i (t)e

0
i (t)−vi(t))

τi
can be calculated.

53

Figure 5.6: Navigation algorithm generates a polygon that connects the agent to its desti-
nation.

5.4 Agent-to-agent and Obstacle-to-agent Interaction

Agent i detects all the other agents and obstacles within 5 meters. The calculation of the
social force and the contact force from each of the other agents and obstacles is done based
on their positions. Note that the force exerted from another agent or obstacle is negligibly
small if it is far away from agent i. Therefore, by only considering the interactions between
an agent and its surroundings within a certain range, the calculation of can be significantly
sped up without causing any noticeable difference. For this reason, an active range has

54

Figure 5.7: This figure shows the active range implementation. The focused agent only
reacts to other agents and obstacles within the circle.

been implemented. The active range was set to be 5 meters, which is adjustable. Forces
exerted from agents and obstacles from beyond 5 meters are negligible. For example, as
shown in Figure 5.7, the agent focused, namely agent i, is only affected by the two other
agents and the wall within its active range. The three agents, all the other walls, and the
couch make no impact since they are out of the active range.

Figure 5.8 shows part of modified social-force model script that calculates the social
force exerted from other agents and obstacles. All the other forces and other kinds of
interactions are scripted in the same manner. These forces can be applied to an agent
through the physics system of Unity.

At each frame of the game, the calculation of forces and other interactions needs to
be done for all the agents, so if there are too many active agents in the room, the game
will stutter. After testing, it is suggested that the room should contain no more than five
hundred agents. The number may vary for different computer systems. Stuttering of the
game can sometimes occur when too many agents are packed within the active range. A

55

Figure 5.8: Partial script of the modified social-force model.

trick that solved this problem is introduced in section 5.6.

5.5 Fire-to-agent Interaction

The implementation of the fire-to-agent interaction was planned to follow the theoretical
basis described in section 2.2.5. For the moment, the implementation of the toxic effect
has been finished while the impeding effect is still under development.

Recall that an agent is incapacitated if the FED value it has exposed to accumulates
up to unity. The FED profile for each mesh point can be extracted from the simulation
result and put into the mesh object in Unity as mentioned in section 4.3. The time step of
the simulation is 1 s, so the FED value is recorded every 1 s. To synchronize the change
of the FED value, the toxic effect is applied on agents on a second-to-second basis as well.

The way this game accounts for the toxic effect goes as follows. In the design phase,
one can specify an agent’s health, and by default, an agent’s health is set to be 100. At
each second when the game is in the play interface, agent i’s health will be deducted by
100 · FEDi(x, y, t), where FEDi(x, y, t) is the FED value read from the mesh object that
agent i is in at time t. Note that the z location value of the mesh object is not considered.
Only the meshes on the height level z = 1.5 m (from 1 m to 2 m) are used because this
is where the agents’ heads are. Also for this reason, only the mesh objects on the height
level z = 1.5 m contain the FED value profiles.

Once an agent’s health drops down to 0, it is considered incapacitated. During the

56

Figure 5.9: This is a screenshot of playing in the play interface in the example scenario.
The left top corner shows the health of the player, the right top corner shows time elapsed
and the casualties.

design phase, one can adjust how susceptible an agent is by changing its health value, with
obviously a lower health indicating a higher susceptibility. When an agent is incapacitated,
it can either be treated as a static obstacle which is no longer affected by forces exerted
from the surrounding but still able to exert agent-to-agent force to other active agents; or
simply be removed from the game, not leaving a physical carcass. For simplicity, in this
game, when an agent is incapacitated, it is removed from the game.

The player character is also influenced by the toxic effect the same way as all other
agents. If the player’s health drops down to 0, the player fails, and the game ends. The
player will then be given some feedback and given the options to either restart the game or
quit. A game interface is shown in Figure 5.9. In the game, the top left corner shows the
health of the player, and the top right corner shows the time elapsed and the casualties.

57

5.6 Enhancing Game Performance

One common measure of the smoothness of a game is its FPS (frames-per-second) rate
during run time. An article online [34] gives a very concise introduction about FPS. FPS
essentially measures the number of images a GPU (graphics processing unit) is able to
render on a monitor each second. For example, if a game was running at 1 frame per
second, the game is no much different from a slideshow, and the game is pretty much
unplayable in this state.

FPS is rounded up to 30, 60, 120, and 240. Note that the stuttering feeling of a game
is only noticeable at under 20 FPS, so anything above 20 FPS can be considered playable.
Running at 30 FPS, a game is targeted to be played on consoles and lower-end PCs; a 30-
FPS game is usually good for single player and for a more cinematic experience. 60 FPS
is the target goal for most gaming PCs; on consoles, only the less demanding or better-
optimized games can manage a stable 60 FPS. 60 FPS is what competitive multiplayer
games should aim for as it can improve reaction time. 120 FPS is a framerate that is
only possible on monitors with 144-165 Hz refresh rates, and it is only achievable for some
powerful high-end gaming PCs. 120 FPS is not achievable by consoles, and it is only
aimed by some more serious competitive gamers. 240 FPS is the very highest framerate
only possible with the most advanced 240 Hz monitors and the most powerful hardware.

Although the main purpose of Serious Game for Fire Evacuation is training and edu-
cation instead of competitive gaming, in order to give players a smooth game experience,
it still aims to maintain an at least 30 FPS framerate during run time on most PCs. Ide-
ally, updates need to be made at each frame for accurate fire and pedestrian simulations.
However, updating at each frame significantly drops the framerate of the game, so a com-
promise updating rate needs to be found. For this reason, this game currently performs
some necessary calculations and updates every certain period, irrespective of the number
of frames have run by in the period. To be more specific, in the game, a smoke particle
updates its opacity according to its density every one second; the intoxicating effect is
applied on agents and the player every one second. The interaction forces and navigation
changes on each agent are still updated every frame.

A trick has been implemented to enhance the smoothness of the game when congestion
has occurred in the game. As shown in Figure 5.10, congestion has formed. When agent i
detects that there are more than 20 (an adjustable threshold) other agents in its active range
(a circle of 5 meters in radius), it knows there is a congestion around. Agent i will then
turn on the congestion mode, in which it is no longer affected by the fictitious forces, the
social force and the contact force, but it is still driven by the navigation system to move to

58

Figure 5.10: Congestion forms at the narrow passage.

the exit. The rigid body component of agents prevent them from going through each other,
so in the congestion, agents are basically bumping and squeezing together to go through a
narrow passage. The apparent benefit of the implementation of the congestion mode is that
no calculation of pedestrian model forces needs to be performed, which significantly saves
up the computational power. Moreover, this implementation does not cause a noticeable
difference from the simulation that strictly follows the pedestrian model used.

59

5.7 Result Comparison

Figure 5.11: A test geometry used to verify the pedestrian model of FDS+Evac.

A test geometry was used to compare the pedestrian simulation results of the imple-
mentation of the game and FDS+Evac. The test geometry is demonstrated in Figure 5.11,
there are 100 agents in the room. The simulated evacuation processes of FDS+Evac and
the game are shown in Figure 5.12a and Figure 5.12b respectively. This test geometry was
also used by FDS+Evac to verify their model, details about this test is in [19]. Note that
the pre-determine time of agents have been changed to be 0.

The chart 5.13 shows the simulation data comparison. The x-axis is the time elapsed
while the y-axis is the number of agents in the room. As expected, without the intervention
of the player, the pedestrian model implemented in the game yielded a very close simulation
as the simulation yielded by FDS+Evac for this test. However, this is not to say that
the pedestrian model implemented in the game is good enough. More tests need to be
conducted to verify other features of the implementation; for example, the route selection
algorithm and the fire-to-human interaction implementation.

60

(a) Test simulation in FDS+Evac.

(b) Test simulation in Serious Game for Fire Evacuation.

Figure 5.12: Simulation comparison between FDS+Evac and Serious Game for Fire Evac-
uation.

The validity of the pedestrian model used in this game is questionable, so are the many
other pedestrian models used in FDS+Evac and other third-party simulators. However,
the validity of the pedestrian model is not of the primary concern for the moment, for this
project mainly wanted to explore the feasibility of implementing and running pedestrian
models in an interactive virtual game environment. In future development, pedestrian
models that are more complicated can be implemented following the same methodology.

61

Figure 5.13: Simulation comparison.

62

Chapter 6

Concluding Summary

6.1 Conclusions

This project explored the feasibility of using a virtual game to replace conventional fire
drills to train people about fire evacuation. Training in the virtual game environment has
the advantages of rendering hazards, easy and cheap conduction, and being more engaging.
The game developed in this project, Serious Game for Fire Evacuation, serves mainly for
training and research purposes; therefore, it is regarded as a serious game. The game is
able to provide a relatively realistic game experience, which shows that the idea of training
people for fire evacuation in a virtual game is promising.

The game was designed to firstly provide a platform for designers to customize the fire
evacuation scenario. Secondly, it provides a virtual environment that is set up based on
the designed scenario for players to play in. Lastly, it gives feedback to help players to
learn. The design interface and the play interface have been developed while the feedback
interface has not. The feedback interface and some other instructive features need to be
designed by people with expertise in fire drilling.

The game is built on the game engine Unity. To make the virtual environment realistic,
the game incorporates fire simulation and pedestrian modeling. The fire simulation is based
on fire dynamics, and is done by a third-party fire simulator, FDS. After the simulation is
done, the result will be visualized in the game engine. Since the simulation is performed
before the actual game starts, its result cannot be altered during run time, which means
there is no human-to-fire interaction in the game.

A pedestrian model is directly implemented into the game through scripts, which control
the movement of background agents. The pedestrian model implemented in the game is

63

a simplified version of the social-force model [10, 11, 12, 13]. Since agents are controlled
by scripts, they are interactive with the surroundings. The agents’ states and actions will
be constantly updated in the run time of the game. The game’s pedestrian model yields
a similar pedestrian simulation as the pedestrian simulation done by FDS+Evac, a third-
party pedestrian simulator, for a simple fire evacuation scenario. However, more tests need
to be done to verify the game’s pedestrian model.

6.2 Future Work

• Instructive features: More instructive features need to be implemented into the
game. To meet the goal of training, features like giving instruction to the player on
what to do should be implemented. Also, the feedback interface needs to be designed.
These instructive features need to be designed by people with expertise in fire drilling
for they have the insight of what is crucial for people to do in fire evacuation.

• Pedestrian models: More complicated pedestrian models can be implemented and
tested in this game. Testing a pedestrian model in the game tells how sensitive the
model is to a character of genuine agency (the player).

• Smoke visualization: The graphic of the game can be improved by using some
animation tools, for example Blender. After the simulation is done, one can first
create an animation of the simulation, and then put the complete animation into the
game. Doing this can ease the game from updating the smoke visualization in the
run time, which can save up a tremendous amount of computational power and thus
largely improve the game performance. In addition, doing this can potentially give
a much better visualization.

• Multi-player gaming: For now, the game only allows one player to play in. In the
future, the game can be developed to allow multiple players to play together. With
less algorithm-controlled agents and more human players, the game will better reflect
a real fire evacuation.

• Artificial intelligence: The movement of the player can be recorded as data. The
data can be used to tweak the parameters in pedestrian models. To think out of the
box, the data can be directly used to let agents mimic the player’s course of actions
instead of relying on some vague and fictitious models. This idea taps into the field
of artificial intelligence and has been mentioned in [35].

64

• Virtual reality and augmented reality: The idea and methodology of bringing
simulation into an interactive virtual environment can be incorporated in virtual
reality and augmented reality as well. [36] has shown that using augmented reality
in evacuation training is possible and promising.

65

References

[1] Fire Safety Design in Buildings. Canadian Wood Council, 1996.

[2] D. Helbing et al. A Fluid Dynamic Model for the Movement of Pedestrians. Complex
Systems, volume 6: pp. 391-415, 1998.

[3] R.L. Hughes The Flow of Human Crowds. Annual Review of Fluid Mechanics 35: pp.
169-182, 2003.

[4] M. Moussad, The Collective Dynamics of Human Crowd Motion: Where Physics Meets
Cognitive Science. 2011.

[5] S. Ali, M. Shah. A Lagrangian Particle Dynamics Approach for Crowd Flow Segmen-
tation and Stability Analysis.

[6] CityOne, by IBM, 2010.

[7] A Force More Powerful: The Game of Nonviolent Strategy, by the International Center
on Nonviolent Conflict (ICNC) and York Zimmerman Inc., 2006.

[8] Ship Simulator, by VSTEP, 2006.

[9] Frederick Joseph F.. Defining Serious Games. 2016.

[10] D. Helbing, P. Molnr. Social Force Model for Pedestrian Dynamics. Physical Review
E51: pp. 4282-4286, 1995.

[11] D. Helbing, I. Farkas, T. Vicsek. Simulating Dynamical Features of Escape Panic.
Nature 407: pp. 487-490, 2000.

[12] D. Helbing, I. Farkas, P. Molnr, T. Vicsek. Simulating of Pedestrian Crowds in Normal
and Evacuation Situations. Pedestrian and Evacuation Dynamics, Schreckenberg, M.
and Sharma, S.D.(eds.), Springer, Berlin, pp. 2158, 2002.

66

[13] T. Werner, D. Helbing. The Social Force Pedestrian Model Applied to Real Life Sce-
narios. Pedestrian and Evacuation Dynamics Proceedings of the Second International
Conference, University of Greenwich, London, pp. 17-26, 2006.

[14] P.A. Langston, R. Masling, B.N. Asmar. Crowd Dynamics Discrete Element Multi-
circle model. Safety Science 44: pp. 395-417, 2006.

[15] T. Korhonen, S. Hostikka, S. Helivaara, H. Ehtamo, H., K. Matikainen. Integration
of an Agent Based Evacuation Simulation and the State-of-the-Art Fire Simulation.
Proceedings of the 7th Asia-Oceania Symposium on Fire Science and Technology, 2007.

[16] T. Korhonen, S. Hostikka, S. Helivaara, H. Ehtamo, K. Matikainen. FDS+Evac: Evac-
uation Module for Fire Dynamics Simulator. Proceedings of the Interflam: 11th Inter-
national Conference on Fire Science and Engineering, Interscience Communications
Limited, London, UK, pp. 1443-1448, 2007.

[17] T. Korhonen, S. Hostikka, S. Helivaara, H. Ehtamo. FDS+Evac: Modelling Social
Inter-actions in Fire Evacuation. Proceedings of the 7th International Conference on
Performance-Based Codes and Fire Safety Design Methods, Auckland, New Zealand,
2008.

[18] T. Korhonen, S. Hostikka, S. Helivaara, H. Ehtamo. FDS+Evac: An Agent Based Fire
Evacuation Model. Proceedings of the 4th International Conference on Pedestrian and
Evacuation Dynamics, Berlin, Heidelberg, 2008.

[19] T. Korhonen. Fire Dynamics Simulator with Evacuation: FDS+Evac Technical Ref-
erence and Users Guide. 2018.

[20] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, K. Overholt
Fire Dynamics Simulator Users Guide. 2013.

[21] H. Ehtamo, S. Heliovaara, T. Korhonen, S. Hostikka. Game Theoretic Best-Response
Dynamics for Evacuees Exit Selection. 2010.

[22] S. Bouzat, M. N. Kuperman. Game Theory in Models of Pedestrian Room Evacuation.
2013.

[23] T. Kretzp, A. Grobep, S. Hengstp, L. Kautzschp, A. Pohlmannp, P. Vortisch. Quickest
Paths in Simulations of Pedestrians. 2011.

[24] H. Frantzich, D. Nilsson. Evacuation in Dense Smoke: Behaviour and Movement.
2003.

67

[25] D. A. Purser. Toxicity Assessment of Combustion Products. in SFPE Handbook of
Fire Protection Engineering, 3rd ed., pp. 2/83-2/171, 2003.

[26] M. Spearpoint. The Effect of Pre-evacuation on Evacuation Times in the Simulex
Model. Journal of Fire Protection Engineering 14(1): pp. 33-53, 2004.

[27] J.D. Sime. Crowd Psychology and Engineering. Safety Science, Volume 21, Issue 1,
1995.

[28] S. M. V. Gwynne, E. Kuligowski, M. Spearpoint, E. Ronchi Bounding Defaults in
Egress Models. Safety Science, Volume 21, Issue 1, 1995.

[29] G.P. Forney. Smokeview, A Tool for Visualizing Fire Dynamics Simulation Data —
Volume I: Users Guide. 2019.

[30] G.W. Mulholland. SFPE Handbook of Fire Protection Engineering, chapter Smoke
Production and Properties.

[31] Unity User Manual: Particle Systems,
https://docs.unity3d.com/Manual/ParticleSystems.html

[32] Blender Website:
https://www.blender.org/

[33] Unity User Manual: Navigation and Pathfinding,
https://docs.unity3d.com/Manual/Navigation.html

[34] S. Stewart. What Is The Best FPS For Gaming?.
https://www.gamingscan.com/best-fps-gaming/

[35] Y. Ma, E.W.M. Lee, R.K.K Yuen. An Artificial Intelligence-Based Approach for Simu-
lating Pedestrian Movement. IEEE Transactions on Intelligent Transportation Systems
17(11): pp. 1-12, 2016.

[36] H. Mitsuhara, M. ShishiboriJunya, K. Iguchi. Game-Based Evacuation Drills Using
Simple Augmented Reality. IEEE 16th International Conference on Advanced Learning
Technologies, 2016.

68

	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives
	Contributions
	Thesis Organization

	Background and Literature Review
	Serious Game
	Pedestrian modeling
	Social-force Model
	Modified Social-force Model - Contact Force
	Rotation Governing Equation
	Route Selection Algorithms
	Fire and Human Interaction

	Game Design
	Game Interfaces
	Design Interface
	Room Design
	Floor and Wall Design
	Obstacle Design
	Exit Design
	Fire Design
	Agent Design
	Player Design
	Design Example

	Play Interface
	Chapter Summary

	Fire Simulation Implementation
	Write Simulation Input File
	Run Simulation
	Render Simulation
	Result and Discussion
	Chapter Summary

	Pedestrian Modeling Implementation
	Useful Unity Built-in Tools
	Circle Representation
	Exit Selection Algorithm
	Agent-to-agent and Obstacle-to-agent Interaction
	Fire-to-agent Interaction
	Enhancing Game Performance
	Result Comparison

	Concluding Summary
	Conclusions
	Future Work

	References

