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Abstract

Tumour-induced angiogenesis is one of the six hallmarks of cancer. The localized bal-

ance between supply and demand of nutrients and oxygen is disturbed when tumours are

formed resulting in tumours receiving less nutrients and oxygen. The hypoxic (lack of

oxygen) tumours trigger sprouting until the newly-created capillaries develop a network

of blood vessels (through angiogenesis) connecting the tumour to the rest of the cardio-

vascular system. This process is affected by an interplay between different cell types, the

mechanical stresses in the extracellular matrix (ECM), and the cell signalling networks.

Each newly-formed capillary, sprout, is made up of two parts, the tip cell and the stalk

cells, with the morphology of the newly-created cells highly dependent on the tip cells’

movements. In this thesis I developed one of the first phase-field models of angiogenesis

incorporating the mechanics of the phenomenon. In addition, it is the only model to make

a connection between the movement of the tip cell and the fracture of the extracellular

matrix. Furthermore, the model integrates the biochemical elements into the mechanical

progression of the tip.

The solver presented here uses a set of partial differential equations (PDEs) to model

different aspects of the phenomenon. This solver consists of three modules; biomechanical,

biochemical, and the vascular network module. The biomechanical module is a set of two

PDEs. They are the linear momentum balance equation and a phase-field equation for

handling the two phases, the endothelial cells (ECs) and the ECM. The constitutive model

used here is for anisotropic soft material for both the ECs and the ECM. Energy-based

criterion for soft material is used for the fracture of the ECM. Second-order phase-field

models are developed here and are discussed with a set of examples.

The second module, biochemical, is made of four advection-diffusion-reaction equations,
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each of which is responsible for the concentration of one of the elements involved in the

process namely: oxygen, TAF (tumour angiogenesis factor), MMP (matrix metallopro-

teinases), the ECM (extracellular matrix). The third module, vascular network, describes

the movement of the tip cells, possible branching, and anastomosis. Unlike the other mod-

ules this module does not have PDEs and instead uses a nonlinear equation solver and a

stochastic function to find the location of the tip cell in each step.

The results of this modelling approach conform with the results available from older

computational models and experimental models making this work the first model of tumour-

induced angiogenesis considering the formation of matrix pathways prior to the migration

of the endothelial cells.
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Chapter 1

Introduction

1.1 Importance and motivation

Cancer is the leading cause of death in Canada, accounting for more than thirty percent of

deaths in 2012. It is known that one out of every two Canadians is diagnosed with cancer

during his/her lifetime [8]. Although cancer is a complex phenomenon, it is stated that six

(or eight) hallmarks constitute every cancer case including angiogenesis that is investigated

here [9, 10]. Most of cancer research has focused on the biological and biochemical aspects

of cancer with little attention to its mechanical aspects. The final goal of this research is

to propose a new framework to model angiogenesis which improves the understanding of

the phenomenon. The hope is that this framework would help to study what alterations

can slow angiogenesis down.
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1.2 Problem statement

Tumour-induced angiogenesis is the process of formation of new blood vessels that connects

the tumour to the vascular network to supply them with nutrients and oxygen. It is a

multi-physics phenomenon that involves secretion of tumour angiogenesis factors (TAFs),

degradation and remodelling of the extracellular matrix (ECM), proliferation and directed

migration of the endothelial cells towards the tumour cells, branching, anastomosis and

formation of loops in the newly-created blood vessels, and finally flow of blood in the

vessels. The complete modelling of angiogenesis should take into account the fields of

biochemistry, fluid mechanics, and solid mechanics. In this research, a modular solver

is written with each of the modules relating to one aspect of angiogenesis. Researchers

have developed biochemical and fluid mechanical models in the past, but there are only a

handful of models considering the mechanical, biochemical, and biological aspects of the

phenomenon. The model proposed here considers all these aspects of angiogenesis thus it

is called a chemo-bio-mechanical model.

A modified crack phase-field modelling is applied in this research to model the solid

mechanical aspect of the phenomena. It uses a set of partial differential equations (PDEs)

to model the deformations and the phase transition. Phase transition shows the migra-

tion of endothelial cells in the extracellular matrix. The model also incorporates a set of

biochemical advection-diffusion-reaction PDEs to model the biochemical aspect of angio-

genesis.

The model presented in this research is the only in silico model for tumour-induced

angiogenesis which incorporates biochemical equations and biomechanical equations with

phase-field analysis which also considers fracture mechanics for the formation of pathways

in the extracellular matrix for endothelial cells migration.
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1.3 Arrangement of the thesis

The second chapter starts with the biological basis of angiogenesis and continues with

a literature review of the computational research done on angiogenesis. It then briefly

explains phase-field analysis and provides the work done in this field. The third chapter

explains the solver used in this research and then the biomechanical module which includes

the endothelial cell migration and the deformations and stresses. The biochemical aspect

and the remainder of the theoretical basis are all covered in the fourth chapter. Results

from several runs are presented and discussed in chapter five. The last chapter contains the

conclusion and mentions several theoretical enhancements to develop the model further.
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Chapter 2

Literature Review

Angiogenesis is the formation of a network of blood vessels from pre-existing vasculature

[11]. The phenomenon was first observed and described in 1794 by John Hunter. It seems

that Flint, JM first coined the term in 1900 while he was describing the vascularization

of the adrenal gland [12]. The other method for the formation of new blood vessels is

called vasculogenesis. However, it is different from angiogenesis because vasculogenesis is

the formation of a network of blood vessels from mesodermal cells in embryogenesis and

does not require pre-existing vasculature [13].

There are two main types of angiogenesis from a morphological point of view, namely

splitting and sprouting angiogenesis. Splitting (or intussusceptive) angiogenesis is the

splitting of an existing blood vessel into two blood vessels caused by external forces from

the tissue surrounding the blood vessel [14]. Sprouting angiogenesis, as the name suggests,

is the sprouting of a new blood vessel from an existing blood vessel because of an external

stimulus [15] (Figure 2.1). A number of phenomena can trigger angiogenesis in capillaries

such as tissue-repair, wound healing, female reproductive cycle, and tumour growth [16, 17].
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Initial blood vessel

Intussusceptive angiogenesis Sprouting angiogenesis

Figure 2.1: Different types of angiogenesis.

The focus of this research is the modelling of the tumour-induced angiogenesis which is a

sub-category of sprouting angiogenesis with the proteins secreted from a tumour being the

external stimulus for vessel formation [18].

In the first section of this chapter, a brief introduction to the capillaries and tumour-

induced angiogenesis is provided. Capillaries are both the pre-existing blood vessels and

the final products of angiogenesis. In the second section, a review of the related work con-

ducted in the area of modelling angiogenesis, including their types, components, strength,

and weakness are presented. The third section introduces phase-field modelling and its

advanced features for modelling angiogenesis.

2.1 Biological aspect of the work

2.1.1 Capillaries

Capillaries are the thinnest and most abundant of the blood vessels which connect the

arterioles and venules. The blood flow starts from the heart, the blood full of oxygen

5



and nutrients goes to aorta, from aorta to arteries, arterioles, capillaries, venules, veins,

venae cavae, and from there back to the heart [19]. If the aorta, arteries, veins, and venae

cavae are the highways and main streets in the oxygen and nutrient delivery system, the

capillaries are the alleys of the system bringing the nutrients to the doorsteps of the tissues

and cells. Also, diffusion is how the nutrients and oxygen reach every cell in the body.

Unlike other blood vessels in the human body, the capillaries do not have a lot of

structural components such as smooth muscles; they are only made of endothelial cells,

basement membrane, and pericytes. The newly formed capillaries in sprouting angiogenesis

are mostly made up of endothelial cells, and as the vessels mature, the other two parts are

formed in the vessels’ walls [19]. Figure 2.2 shows the cross-section of a capillary where

endothelial cells line the inner wall of capillaries.

2.1.2 Tumour-induced angiogenesis

Cancer cells are products of several mutations resulting in changes in DNA sequences. One

of the significant differences between a cancer cell and a healthy cell is the difference in

the rate of cell proliferation and apoptosis; the processes of increasing and decreasing the

lumen basement

membrane

pericyte

endothilial cell

Figure 2.2: A capillary vessel cross section.
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number of cells, respectively. Proliferation and apoptosis have a balance in healthy cells, so

the total number of cells stays constant in adults; in a phenomenon known as homeostasis

[20, 21]. This is not the case in cancer cells, the mutations increase the proliferation rate

and decrease the apoptosis rate so the tumour will grow compared to the surrounding

tissues [9, 22]. The vasculature in the body is designed to be sufficient for our bodies in

typical situations. When a tumour grows in the human body, the distance of some of the

tumour cells from the blood vessels becomes more than the penetration depth; the depth

that oxygen and nutrients can diffuse in the extracellular matrix (ECM) [23, 24]. This

would generally happen when the tumour diameter exceeds 2 to 3mm [25]. The cells in

the middle of a tumour now lack oxygen and nutrients causing them to become hypoxic

[26]. Hypoxia is dangerous to both healthy and cancer cells but as explained below, the

malignant cells have a way to overcome this lack of resources [27].

The tumour stops growing because of this lack, and the hypoxic cells start excreting

proteins called tumour angiogenesis factors (TAF) [28]. Most significant sub-group of

TAF proteins are named vascular endothelial growth factor (VEGF) [29]. These proteins

will spread in the tumour’s surrounding causing a concentration gradient of TAF towards

the tumour. The receptors on the endothelial cells will recognize these proteins, and the

endothelial cells will start moving towards the TAF’s gradient [30]. This process of cells

moving towards a higher concentration of soluble molecules is called chemotaxis [31]. Cell

migration results in sprouting and the movement of the sprout towards the tumour. The

sprout consists of two main parts; tip cell and stalk cells. The tip cell is the cell moving

because of chemotaxis, haptotaxis1, etc. while the stalk cells are the ones following the

1Haptotaxis is the directional movement of cells towards the higher values of cellular adhesion in the

ECM [32]. The term haptotaxis was first coined in 1967 by Carter [33]. Fibronectin present in the ECM

causes haptotaxis in angiogenesis [34]. At first, it was thought chemotaxis is a subset of haptotaxis but

7



Figure 2.3: Sprouting angiogenesis progress: a) Oxygen and nutrients not reaching the

deep cells in tumour resulting in hypoxia. b) Hypoxic cancer cells secreting TAF creating

a TAF concentration towards the tumour. c) Tip cells start moving toward the higher

gradient, the tumour, called chemotaxis. d) Stalk cells following the tip cell because of cell

adhesion. e) Formation of two sprouts from one. The sprouts finally reach the tumour cell

and the tumour starts to grow again.

tip cell because of the cell adhesion forces [37]. The VEGF molecules also increase the

proliferation rate in the endothelial cells providing the needed cells for sprout elongation

[31]. One other significant effect of VEGF on the sprouts is that it causes the tip cell

to excrete enzymes with the name of matrix metalloproteinase (MMP). These enzymes

will degrade the surrounding ECM and would eventually help the tip cell to penetrate

through it [38, 39, 40]. Different sprouts might merge into one. This phenomenon is called

anastomosis. Anastomosis results in loop formation and blood flow in the loops. Also, one

sprout can branch into two sprouts called branching.

When the sprouts reach the tumour, and a whole network of new blood vessels is con-

structed, blood would start flowing, and hence the tumour will receive its needed nutrients

later on this hypothesis was rejected [35]. For more information on haptotaxis, please refer to [36].
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and oxygen allowing the tumour to resume its growth. All angiogenesis processes can be

seen in Figure 2.3.

There is another important feature of angiogenesis not discussed above, and that is

ECM remodelling [19]. Before the movement of the endothelial cells in the extracellular

matrix, traction forces exerted by the ECs align the collagen fibres in the ECM along the

cell migration path [41].

2.2 Previous models of angiogenesis

There are three main approaches to model angiogenesis in cancer; continuous, discrete,

and hybrid [42]. Continuum modelling is the oldest of them and is the framework used in

this research. All three approaches are merely constructed by solving a system of partial

differential equations (PDEs). One of the earliest works done using the continuous method

is the paper by Zawicki in 1981 [43]. The first models were mostly one-dimensional models

not covering the morphological aspects of angiogenesis like branching or anastomosis [16].

They were mostly a system of two PDEs, one for the density of endothelial cells and the

other for the concentration of the chemical stimulus (TAF) for cell migration.

The first comprehensive in-silico model of tumour-induced angiogenesis was introduced

by Anderson in 1998 [30]. This model incorporated a system of three PDEs; one for EC

density, one for the concentration of TAF, and the last for fibronectin (FN) concentration.

The model proposed both continuous and discrete approaches for solving the system of

PDEs. The continuous model only showed the average density of the endothelial cells

and could not show the visual illustration of the network of the vessels created by angio-

genesis. However, the discrete approach succeeded in showing the morphological aspect

of angiogenesis and added three simple algorithms to account for branching, anastomosis,
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and EC proliferation. The discrete approach was widely used in recent literature. The con-

tinuous framework we are using in this research incorporates the Ginzburg-Landau type

equations for phase-field modelling to implement both the continuum approach and the

morphological properties of angiogenesis. More on our approach will be discussed later.

Newer models added more PDEs to account for other aspects of angiogenesis like the

evolution of MMP level, the ECM degradation by MMP [38], and the effect of the ECM’s

oxygen level on angiogenesis. However, all the models discussed to this point are purely

biochemical models not accounting for other aspects of tumour-induced angiogenesis like

fluids and solid mechanics. As mentioned before, anastomosis leads to loop formation

and flow of blood in the loops. The blood pressure increases the blood vessel diameter,

and flow of blood brings oxygen and nutrients to the tumour. The first models that also

covered the blood flow in the newly created capillaries during angiogenesis were presented

by McDougall [44, 26] where blood flow in the capillaries was modelled using a Poiseuille-

like expression with a nonlinear viscosity. In these models, the effect of the fluid mechanics

module on the model was limited to initiating new branches.

Migrating cells need to exert traction forces on the ECM to be able to move in a

multi-step process of cell migration. First, the cell senses the stimuli for movement using

the filopodia. Second, the cell extends and forms protruding lamellipodia. It attaches

the protruded parts to the ECM. Then, the cell contracts using its radial fibres. These

radial fibres are connected to finger-like structures on the cell wall holding the cell to the

ECM. It later tears the fibres in the back apart allowing the cell to move forward. To

model this sophisticated phenomena, it is essential to include a biomechanical engine in

our angiogenesis model [45]. One of the earliest attempts to model the interaction between

a cell and the ECM mathematically was presented by Murray in 1984 [46]. Also, the

interaction between the two in cell movement in angiogenesis was modelled by Manoussaki
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in 1996 [47] and Holmes in 2000 [48]. These papers assumed viscoelastic material properties

using Kelvin-Voigt model which is represented by a parallel system of a linear elastic spring

and a dashpot [49, 50]. The mechanical stresses affect both the path and the speed of

angiogenesis.

There is another way to model the migration of the tip cell in angiogenesis. This

approach uses empirical formulas for the speed of the tip cell which is related to the other

parameters, like the concentration of chemotactic and haptotactic stimuli or maximum

stress, which are calculated using the other PDEs. For further discussion on this approach

refer to [1, 5].

2.3 Phase-field modelling of crack propagation

The phase-field method is a method to solve non-equilibrium systems problems by con-

verting the discontinuous interfaces into continuous functions. Used primary in material

science and physics community, the framework was used in solving the problems with a

moving phase boundary [51]. Researchers studied the motion of phase boundaries since

the early 1800s. The problem was first solved in the 1890s by Josef Stefan [52]. At first,

the sharp interfaces were used for the movement of the boundary as seen in the green plot

shown in Figure 2.4; more on the figure in the next chapter. Unlike the second (red) and

fourth-order (blue) plots shown in the figure, these discontinuities were hard to implement.

Therefore to make it solvable using partial differential equations, some phase-field param-

eters, such as d, were assigned to the domain. The phase-field parameter can have two

types; conserved or non-conserved. For the conserved phase-field variables, Cahn-Hilliard

[53] equation is used to describe the evolution of the variable (Eq. 2.1), and for non-

conserved, Allen-Cahn [54] equation (Eq. 2.2) or the time-dependent Ginzburg-Landau
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Figure 2.4: Three different plots for the phase transition, the phase field parameter, d, is

defined to be between zero and one, where zero means that the point in the domain purely

consists of the extracellular matrix and one suggests that the point is occupied entirely

with endothelial cells. In the phase-field analysis, instead of the discontinuous transition

between the two phases, a continuous function is assumed, the red one is called a second-

order phase-field function and is a continuous function but not differentiable at the point

x=0, the blue one is a fourth-order function and is a differentiable function throughout the

domain. In all the plots l = 1 is assumed.

type equation is used.

In equations
∂ci
∂t

= ∇Mij∇
δF

δcj(r, t)
(2.1)

and
∂ηp
∂t

= −Lp∇
δF

δηp(r, t)
(2.2)

r is the location and t is the time, F is the free energy level of the system, cn and ηp are the

conserved and non-conserved field variables, Mi and Lp are the diffusivity and the mobility
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coefficients respectively [55].

A method similar to the one used in fracture modelling is applied to have two phases

in this research. Early work conducted by Griffith [56] and Irwin [57] proposed the base

theories and fundamentals of brittle fracture. However, Franc and Margio [58] made the

first attempts to model brittle fracture using phase-field method and energy minimization

in 1998 that was faced with the challenge of thermodynamic stability issue. A decade later,

Miehe proposed a method for brittle fracture modelling which was also thermodynamically

stable [2, 59]. Many shortcomings in Griffith’s method for crack modelling are addressed

in the proposed phase-field models. Recently, Rania and Miehe proposed a phase-field

method to model fracture in biological tissues [60]. Further improvements was made by

Gültekin [3, 61] to model highly anisotropic material using constitutive models proposed

by Holzapfel and Gasser [62, 63].

To the author’s knowledge, there is limited research effort that applied continuous

mechanical phase-field modelling approach for angiogenesis [51]. The main deficiency of

these models are the linear elastic material assumption, no network formation, and limited

biochemical integration. All the problems above will be addressed in our new model plus

a feature not present in any other papers on angiogenesis. The modelling of the ECM

remodelling and formation of matrix pathways using the equations of failure and crack

propagation in soft materials prior to the ECs penetrating in the ECM.

2.4 Conclusion

Few attempts have been made to develop a biomechanical model of the angiogenesis. Most

of the attention has been paid to the biochemical aspect of angiogenesis. There are semi-

discrete/semi-continuous phase-field models for modelling angiogenesis, but those models
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do not incorporate the mechanical aspects of the phenomenon [64]. However, the inte-

gration of these two, biomechanical and biochemical, has a great potential to realistically

model the process of angiogenesis which can result in a better understanding of the phe-

nomenon and later, this new mechanical oriented view on cancer can help creation of new

treatments for cancer.

Therefore, the proposed model in this research utilizes a modified fracture phase-field

modelling approach for modelling the matrix pathways in the extracellular matrix coupled

with a system of PDEs to account for a wide range of biochemical reactions in angiogenesis.

It also incorporates some advanced features to model the capillary formation. All are

discussed in the next chapter and chapter four.
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Chapter 3

Biomechanical Module

This chapter first discusses the big picture of the solver used in this research. It then

presents the biomechanical aspect of the solver, the base formulas, their derivation, and

the numerical implementation.

3.1 Solver components

The solver used in modelling of angiogenesis consists of three modules to solve three phys-

ical aspect of angiogenesis. They are the biomechanical, the biochemical, and the vascular

network module as shown in figure 3.1A. As illustrated in the figure, the solver starts with

the biochemical module, it calculates the values for the four biochemical variables, the

concentration of oxygen, TAF, and matrix degrading enzymes (MDE), and the density of

the ECM, in each time step. Then, these values are incorporated into the biomechanical

module which calculates the values for deformations, stresses, and phase change. This

module solves a nonlinear system of PDEs which requires nonlinear finite elements to be

15



implemented using the Newton-Raphson method for each time step. This requires a set of

iterations in each time step for the biomechanical module. One iteration is shown in Figure

3.1B. After the second module execution, the results are passed to the third module, the

vascular network module. This module checks if there is a need for updating the location

of the tip cell and if so, it uses the Newton-Raphson method to find the location of the next

tip cell. The module then checks for branching and anastomosis and starts the biochemical

module for the next time step. The analysis is complete when the newly-constructed blood

vessel reaches the tumour.

In the next sections of the chapter, we will address the formulas and their derivations

in the biomechanical module.

3.2 The biomechanical module

This module is the most comprehensive module in the analysis and takes most of the run-

time for the solver. It uses the large deformation, soft material properties, and anisotropic

formulas mainly derived from Bower [65] and Holzapfel and Gasser [63, 62]. This module

consists of two main PDEs in the Lagrange-Euler equations format. One of them is the

equation governing the balance of linear momentum, and the other one is the equation

determining the topology of the diffusive phase transfer.

As seen in Figure 3.1B, this module consists of three steps in each iteration, the first step

solves the balance of linear momentum PDE and outputs the values for deformations, the

second step calculates the values for the history function which is the connection between

the two PDEs. The last step uses the values of the history function to solve the phase

transfer PDE. The loop would run until the convergence criterion is met.
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Figure 3.1: The flow diagram representing the different modules in the solver. A: The three

main modules building up the solver. The solver starts with the biochemical module (mod-

ule I) that calculates the concentration of oxygen and MDE in the domain and implements

their values to calculate the TAF level and the density of the ECM respectively. Module I

feeds the values of concentrations to the biomechanical module (module II). This module

calculates the deformation, the stresses, and the phase movement as shown in B. Vascular

network module (module III) updates the tip cell location and checks for branching and

anastomosis. After the third module’s execution, the solver proceeds to the next time step.

B: This figure is the flow diagram of the second module. At first, the continuum mechanics

sub-module is run to find the deformations and the stresses throughout the domain. Then

the history function is executed in all Gaussian points to find in which, the phase transition

has started. Then the phase-field PDE is solved to calculate the movement of EC in the

ECM.
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F

φ(X,t)

∂S

∂Bφ

∂Bt

Figure 3.2: Large deformation of a solid. The solid has the initial configuration B ⊂ Ren

and deforms because of the external forces to S ⊂ Ren at time t ∈ T ⊂ Re. ϕ maps the

points on X to x and F is the material gradient of ϕ.

In the following sections, the phase variables, large deformations continuum mechan-

ics and diffusive cracks are introduced. In the fifth section, we discuss the constitutive

equations used in this model, hyperelasticity and anisotropicity. The sixth section is about

the active stress causing the cell migration. Then we focus on deriving the main Euler-

Lagrange PDEs. This is followed by a brief description of cell proliferation and the phase

change equations in section ten. The last part will present the matrix form of equations.

3.3 Field variables

Consider a deformable body at the time t = 0, the body is said to be in the reference

configuration at this time. The reference configuration is defined in an n-dimensional

setting by B ⊂ Ren and the material points are designated with X ∈ B as depicted

in Figure 3.2. The surface of B is defined as ∂B ⊂ Ren−1. In the same matter, the

deformed body at any time except the initial time (i.e. t 6= 0 | t ∈ T ⊂ Re) is defined by
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S ⊂ Ren. This configuration is called the spatial configuration and its surface is depicted

as ∂S ⊂ Ren−1. The transformation function mapping the material points to the spatial

point is called the deformation map ϕ(X, t). The deformation map is defined as

ϕt(X) :

 B × T → S,(X, t) 7→ x = ϕ(X, t).
(3.1)

The other main field variable is the phase-field parameter d(X). The parameter is de-

fined on the entire reference configuration, B, and evolves as time proceeds. The phase-field

parameter of one represents an intact state, i.e. the extracellular matrix being untouched,

and zero represents cracked, i.e. endothelial cells moving into the ECM. As apparent in

Figure 2.4 there are several ways to make the transition between the two phases continu-

ous. The red plot is a second-order phase-field function, and the blue one is a fourth-order

function as apparent in Figure 2.4. Intuitively, it can be concluded that any values between

zero and one would mean that the material point is in the process of phase transition. The

phase-field parameter is defined as

dt(X) :

 B × T → [0, 1],

(X, t) 7→ d = d(X, t).
(3.2)

3.4 Large deformations main formulas

Biological tissues experience large deformations when subjected to external forces. The

continuum framework used in this research incorporates large deformations and nonlinear

geometry. Let’s start the discussion by defining the two different types of the gradient.

The material gradient is the gradient with respect to the reference configuration, and the

spatial gradient is the gradient with respect to the spatial coordinates. Equations 3.3 and
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3.4 show the two kinds of gradient respectively.

∇X� = ∇� = �,X =
d�
dX

(3.3)

∇x� = �,x =
d�
dx

(3.4)

in these equations, � (square) can be replaced by any investigated variable.

The first tensor to be defined in this framework is the deformation gradient tensor

which is the material gradient of the deformation map which can be depicted in matrix

form as

F = ∇ϕ = ϕ,X =
dϕ

dX
=

dx

dX
(3.5)

and using the index notation it can be depicted as

Fij =
∂xi
∂Xj

= δij +
∂ui
∂Xj

. (3.6)

This tensor relates fibers’ length in the initial configuration to their length in the spatial

configuration; dx = FdX. The Jacobian of the deformation tensor relates the initial, dV ,

and the spatial, dv, infinitesimal volumes

J = det(F ) dv = JdV. (3.7)

The deformation gradient is unsymmetrical so the right, C, and the left, b, Cauchy-

Green tensor, or the Green and Cauchy deformation tensors respectively, are defined as

C = F TF , Cij = FkiFkj (3.8)

b = FF T , bij = FikFjk. (3.9)

The first tensor utilizes the Lagrangian configuration and the second one uses the Eulerian

configuration. There are n tensor invariants for a second-order tensor in an n-dimensional
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space. The three invariants for the matrix b are as follows:

I1 = tr(b) = bkk, I2 = 1/2[I2
1 − tr(b2)] = 1/2[I2

1 − bikbki)], I3 = det(b) = J2. (3.10)

When the material is incompressible, as it the case with biological tissues, three other

invariants are used instead of the ones in 3.10. The new invariants are

Ī1 =
I1

J (2/3)
, Ī2 =

I2

J (4/3)
, J =

√
det(b). (3.11)

Note that J ≈ 1 in incompressible materials because dv ≈ dV .

The soft material used in the modelling is anisotropic. It means it has different char-

acteristics in different directions. There are two preferred directions in which the material

behaves stiffer. The two are shown with the vectors M and M ′. In the deformed material

they have the preferred directions m and m′ as shown in the Figure 3.4. More information

about the anisotropic behaviour is given in Section 3.6. The deformed preferred directions

are calculated as

m = FM , m′ = FM ′, or mij = FikMkj, m′ij = FikM
′
kj. (3.12)

The preferred directions can be shown in tensor form as

Am = m⊗m, Am′ = m′ ⊗m′ or Amij = mimj Am
′

ij = m′im
′
j. (3.13)

As mentioned in [62, 63, 66], five other pseudo-invariants can be used for the isotropic

media with two preferred directions which only two of them would be considered here.

The two are

I4 = m ·m, I6 = m′ ·m′, or I4 = mimi, I6 = m′im
′
i, (3.14)
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Figure 3.3: The phase-field representation of a line of endothelial cells at x = 0 and

extracellular matrix at ±∞ for a length-scale parameter equal to one. The green plot uses

Kronecker delta function for describing the different phases 3.15, the red and blue plots

use 3.16 and 3.17 respectively. The left side of the plots are the same as Figure 2.4.

3.5 Diffusive crack

As mentioned before, the main difference between the modelling approach used here and the

ones used in the previous biomechanical models is the implementation of fracture-based

phase-field modelling for the phase transformation1. Ginzburg-Landau type equations

would be used to describe the phase-field over the domain.

First, let’s assume an infinite one-dimensional medium L = [−∞,+∞] fully made of

the extracellular matrix d = 0. Endothelial cells are only present at x = 0. The classical

1Only [51] implemented the phase-field modelling without integrating the fracture mechanics.
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method to define the two phases is by use of the Kronecker delta function

d(x) = δij,j=0 = δ(x) =

1 x = 0

0 x 6= 0.

(3.15)

The equation above looks like the Dirac delta function (green plot in Figure 3.3). The

problem is that this formula contains discontinuities which may cause numerical problems

in solving the differential equations2. To overcome the discontinuities, diffusive transition

would be assumed so the phase transition would be gradual throughout the domain. The

red plot in figure 3.3 is a second-order phase-field function which is continuous throughout

the domain and differentiable in all points except x = 0 as represented in equation 3.16.

d(x) = e−|x|/l. (3.16)

To have a phase-field equation which is differentiable throughout the domain the blue

plot can be used which is a fourth-order phase-field equation (3.17). It reduces the numer-

ical problems and is the best approach for isogeometric analysis [70, 71].

d(x) = e−2|x|/l(1 +
2|x|
l

). (3.17)

In the two equations 3.16 and 3.17, l is the length-scale of the transition topology. It shows

how wide the phase transition is. If l→ 0, it results in the green plot in Figure 3.3.

These two equations can be transformed into ordinary differential equations (ODEs)

with Dirichlet-type boundary conditions given below respectively.

d(x)− l2d′′(x) = 0, d(0) = 1, d(±∞) = 0. (3.18)

2 Phase-field analysis turns the discontinuity into continuity and the solves the problem. Alternatively,

extended finite element [67, 68] or phantom nodes [69] like approaches should be implemented to facilitate

solving the problem.
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d(x)− l2

2
d′′(x) +

l4

16
(d(4)(x)) = 0, d(0) = 1, d′(0) = 0, d(±∞) = 0. (3.19)

As seen above, 3.18 is a second-order ordinary differential equation and 3.19 is a fourth-

order ODE which explains the naming for equations 3.16 and 3.17 respectively.

The formulas above can be transformed to Euler-Lagrange equations of the variational

principle for the second-order equation,

d = Arg
{

inf
d∈Wd

I(d)
}
, Wd = {d | d(0) = 1, d(±∞) = 0}

I(d) =
1

2

∫
B
(d2 + l2(d′)2)dx, (3.20)

and for the fourth-order equation,

d = Arg
{

inf
d∈Wd

I(d)
}
, Wd = {d | d(0) = 1, d′(0) = 0, d(±∞) = 0}

I(d) =
1

2

∫
B
(d2 +

l2

2
(d′)2 +

l4

16
(d′′)2)dx. (3.21)

The formulas 3.20 and 3.21 can be written in three-dimensional space in equations 3.22 to

3.25 respectively.

d(X, t) = Arg
{

inf
d∈WΓ(t)

Γl(d)
}
,

WΓ(t) = {d | d(X, t) = 1 @ X ∈ Γ(t)}, (3.22)

Γl(d) =

∫
B
γ(d,∇d)dV,

γ(d,∇d) =
1

2l
(d2 + l2 | ∇d |2). (3.23)
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d(X, t) = Arg
{

inf
d∈WΓ(t)

Γl(d)
}
,

WΓ(t) = {d | d(X, t) = 1,∇d(X, t) = 0 @ X ∈ Γ(t)}, (3.24)

Γl(d) =

∫
B
γ(d,∇d,∆d)dV,

γ(d,∇d,∆d) =
1

2l
(d2 +

l2

2
| ∇d |2 +

l4

16
| ∆d |2). (3.25)

In the formulas above, ∆ is the Laplacian and is defined as ∆� = ∇2� = ∇ · ∇�.

Also, γ is called the volume specific transition surface. By minimizing the two variational

forms above in three-dimensional space, the Euler-Lagrange partial differential equation

d− l2∆d = 0 in B while ∇d ·N = 0 on ∂B (3.26)

would be obtained for 3.22 and

d− l2

2
∆d+

l4

16
∆2d = 0 in B

while ∆d = 0 and [
l2

8
∇(∆d)−∇d] ·N = 0 on ∂B (3.27)

would be obtained for 3.24. In the formulas above, N is the normal vector to ∂B. In this

research project, the second-order formulas are used because of the lower computational

cost and the implementation of the classic finite element method shape functions instead

of the ones introduced in isogeometric analysis or the higher-order finite element method.

3.6 Constitutive model

The biological tissues are categorized into two types; soft tissues and hard tissue [72]. Hard

tissues are mostly bones and teeth, and soft tissues are the rest of the tissues in the body.
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Soft tissues consist of muscular, epithelial, nervous, and some of the connective tissues.

Arterial tissues’, a subgroup of muscular tissues, properties are used in this research for

modelling of the endothelial cells’ and the extracellular matrix’s mechanical response. In

this section, a brief explanation of the soft tissues characteristics will be presented first,

followed by the energy function and its derivatives.

3.6.1 Soft tissue’s mechanical characteristics

Hyperelasticity

The two-word definition for hyperelasticity is “nonlinear elastic.” So the strain-stress curve

is nonlinear, but the loading and unloading happen on the same curve. There is no need

for hysteresis, and only an energy function and a value for stress is enough to find the

strain at any given time.

Anisotropicity

Anisotropicity is a material having different material properties in different directions. In

blood arteries, there are some preferred directions which the soft material, both the blood

vessels and the extracellular matrix, behaves stiffer in those directions. This behaviour is

because the biological tissues are constituted of different materials which the main ones

are elastin and collagen proteins. Elastin behaves the same in every direction, and “is

the most linear elastic of the biosolid materials known” [73]. On the other hand, collagen

fibres only act in certain directions and cause the anisotropicity. A good analogy is to

compare the vessel wall with a reinforced concrete member. Elastin acts isotropically like

concrete with the difference of acting both in compression and tension. On the other hand,
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a collagen fibre works better in one direction just like the steel rebars with one difference

that collagen fibres only work in tension. The other difference is that in the vessel wall,

there is an infinite number of rebars in the selected directions. Recent studies indicate that

the number of preferred directions are different in different tissues [74]. Figure 3.4 shows

a tissue with two preferred directions before and after the deformation.

Heterogeneity

Heterogeneity is the state of having diverse properties at different points of the material.

The ECM and blood vessels are mostly defined by the average values of their mechanical

properties, but yet they are highly heterogeneous [24].

Incompressibility & viscoelasticity

Soft tissues are considered nearly incompressible because of their high water content. They

are also considered viscoelastic because their behaviour is a function of time [75, 76].

Hyperelasticity, anisotropicity, and incompressibility are recognized in the constitutive

model discussed below.

3.6.2 Formulization

As mentioned before, the energy function alone is enough to describe the mechanical be-

haviour of hyperelastic materials. The energy function is constituted of two parts, an

isotropic term for the elastin proteins and an anisotropic term for the collagen fibres’ ef-

fect. The isotropic term is a function of deformation invariants discussed in 3.11. Simple

material models, like the Neo-Hookean model [77, 78], make use of only Ī1 and J . For the
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anisotropic term, only two pseudo-invariants are used, each of the invariants is for one of

the fibre directions. The energy function is

Ψ0 = Ψ0(F ,Am,Am′) = Ψiso
0 (J, Ī1) + Ψani

0 (I4, I6) = Ψiso
0 (J, Ī1) + Ψani

0 (I4, I6), (3.28)

Ψiso
0 (J, I1) =

µ1

2
(Ī1 − 3) +

K1

2
(J − 1)2, (3.29)

Ψani
0 (I4, I6) =

k1

2k2

∑
i=4,6

{exp
(
k2(Ii − 1)2

)
− 1}. (3.30)

The anisotropic term is based on [62] and defines an exponential function for each fibre

direction which behaves stiffer as the strain values go higher. Here, µ1 is the shear modulus

and K1 is the penalty parameter and the higher it is, the more incompressible the material

is. The parameters k1 and k2 are material constants. Note that µ1, K1, and k1 have the

unit of stress while k2 is dimensionless. Also, only the values over 1 for I4 and I6 are

considered because the collagen fibres work only when the fibre is engaged in tension. If

the fibres go through compression and each of the pseudo-invariants go under 1, the related

term for anisotropic energy would be zero. So, if the values for both I4 and I6 are less than

1, the material would behave completely isotropic. The preferred directions are shown in

Figure 3.4 in both initial and spatial configurations.

Passive true stress σ̄ij and passive Kirchhoff stress τ̄ij are defined as

σ̄ij =
1

J
Fik

∂Ψ

∂Fjk
and τ̄ij = Jσ̄ij = Fik

∂Ψ

∂Fjk
. (3.31)

Inserting the equations 3.29 and 3.30 in 3.31 results in

τ̄ iso,0ij =
µ1

J2/3
(Bij −

1

3
Bkkδij) +K1J(J − 1)δij (3.32)

and

τ̄ ani,0 = 2ψ,4m⊗m+ 2ψ,6m
′ ⊗m′, τ̄ani,0ij = 2ψ,4mimj + 2ψ,6m

′
im
′
j. (3.33)
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Figure 3.4: The top figure shows the anisotropic material in nondeformed configurations

with two preferred directions M and M ′. The bottom figure shows them in the spatial

configuration with the two directions m = FM and m′ = FM ′. Red shows the elastin

protein which governs the isotropic response of soft tissues.

In equation 3.33 ψ,i=4,6 is the derivative of the energy function with respect to the psuedo-

invariants

ψ,i=4,6 = ∂IiΨ0 = k1(Ii − 1) exp
(
k2(Ii − 1)2

)
. (3.34)

The tangent stiffness tensor or the Eulerian elasticity tensor is defined as

Cijkl =
∂τij
∂Fkm

Flm = Jσijδkl + J
∂σij
∂Fkm

Flm. (3.35)

So using the same approach the isotropic and the anisotropic terms are

Ciso,0
ijkl =

µ1

J2/3
(δikBjl +Bilδjk−

2

3
(Bijδkl +Bklδij) +

2

3

Bqq

3
δijδkl) +K1(2J − 1)Jδijδkl (3.36)
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and

Cani,0 = 4ψ,44m⊗m⊗m⊗m+ 4ψ,66m
′ ⊗m′ ⊗m′ ⊗m′,

Cani,0
ijkl = 4ψ,44mimjmkml + 4ψ,66m

′
im
′
jm
′
km
′
l, (3.37)

with ψi=4,6
,ii being the second derivative of the energy functions with respect to the pseudo-

invariants

ψi=4,6
,ii = ∂Iiψ,i = k1(1 + 2k2(Ii − 1)2) exp

(
k2(Ii − 1)2

)
. (3.38)

3.7 Active stress

The stress value equations in the last section only account for the passive stress generated

by the material in response to some other sources of stress or deformation. The total stress

is the summation of the active and passive stress

τ = τact + τ̄ = τact + τpas. (3.39)

The active stress is a contraction stress caused by the tip cells trying to migrate towards

the TAF source [51]. Extensive experiments have been conducted to study the active stress

caused by the tip cells in migrations. Reinhart-King observed that the tip cell generates the

most traction stress close to its walls and the least in its center [7, 6]. Edgar [5] believed that

the traction’s magnitude is maximum at the point of the tip cell and decreases exponentially

with radius. Combining the results from the two researchers, an exponential function for

the active stress value is developed here by changing the formula proposed by Edgar so the

stress first increases around the tip cell’s center point until it reaches the tip cell’s walls,

then it disperses exponentially (Figure 3.5). It was also said that the value of active stress

would be maximum towards a tumour and decreases in other directions (Figure 3.6).
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Figure 3.5: The term e−b(‖r‖−r0)2
in 3.41. It shows the intensity of the active stress with

respect to distance. As seen in this figure, the magnitude of active stress increases until

it reaches cell walls and then decreases exponentially. b = 2 × 106 r0 is assumed in this

figure.

When the tip cell is at point xs, the active stress at any arbitrary point x can be

calculated using the formulas (Figure 3.7),

r =‖ r ‖ r̂ = xs − x, (3.40)

τact = Jae−b(‖r‖−r0)2
∣∣∣cosN(

α

2
)
∣∣∣r̂ ⊗ r̂, (3.41)

α = ψ − θ. (3.42)

The part r̂⊗ r̂ in 3.41 defines the direction of the stress tensor radial towards the tip cell.

N , a, and b are parameters for adjusting the width, the magnitude, and the range of the

stress field, respectively. In Figure 3.7, ev is a unit vector towards the TAF source, and
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Figure 3.6: The term
∣∣cosN(α

2
)
∣∣ in the active stress formula. α = 0 is the direction of the

tip cell migration in the time step. As shown, increasing the value for N decreases the

width of the stress field and makes it more concentrated towards the migration direction.

ev2 is a unit vector showing the direction of the tip cell movement. This direction, ev2, is

calculated by rotating ev by θ. The value of θ is discussed in the next chapter.

The formula above is multiplied by a term to account for the effect of TAF level on the

magnitude of active stress. The term is presented in [35, 30] and accounts for the decrease of

chemotactic sensitivity with the increase of TAF concentration. It has a Michaelis-Menten

rate law form as
1

1 + βξ
, (3.43)
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Figure 3.7: The tip cells generate active stress on the media. The location of the tip cell

is represented by TC and the stress can be calculated at any point of x. The unit vector

ev is directed towards the maximum TAF gradient and ev2 shows the direction of the tip

cell movement.

in which, ξ is the dimensionless TAF concentration and β is a dimensionless constant. The

higher β is, the easier for the endothelial cells is to lose their chemotactic sensitivity. Other

biomechanical variables can also affect the active stress. To see how active stress formulas

are linked to the ECM density, please refer to [79].

The final value for active stress is shown below,

τact =
1

1 + βξ
Jae−b(‖r‖−r0)2

∣∣∣cosN(
α

2
)
∣∣∣r̂ ⊗ r̂. (3.44)

3.8 Degradation function

The mechanical energy storage function for a multi-phase medium can be defined as [80]

Ψ(F ,Am,Am′ , d) = g(d)ΨECM
0 (F ,Am,Am′) + (1− g(d))ΨEC

0 (F ,Am,Am′). (3.45)

Here, g(d) is the degradation function; it correlates the amount of phase transition to the

change in mechanical energy storage. The equation above is an interpolation between the

two values of energy for the ECM and the ECs so the value of g(d) should be to be between
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Figure 3.8: The quadratic and the cubic degradation functions for correlating the phase

transition and mechanical energy storage.

0 and 1. All the conditions needed for g(d) are

g′(d) ≤ 0, g(0) = 1, g(1) = 0, g′(1) = 0. (3.46)

The most popular equations for the degradation function are the quadratic

g(d) = (1− d)2, (3.47)

and the cubic

g(d) = m[(1− d)3 − (1− d)2] + 3(1− d)2 − 2(1− d)3 (3.48)

equations (Figure 3.8). The cubic function is newer and it has been proposed in 2016 [81]

by Borden. He proved that the cubic equation functions better in linear elastic problems.

The quadratic equation is used for this research for its computational efficiency.

In the same way as the energy function, the active stress and the stiffness tensor are
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interpolated as

τ pasij = Fik
∂Ψ

∂Fjk
=Fik

∂(g(d)ΨECM
0 + (1− g(d))ΨEC

0 )

∂Fjk

= g(d)τECMij0
+ (1− g(d))τECij0 ,

(3.49)

Cijkl =
∂τij
∂Fkm

Flm =
∂(g(d)τECMij0

+ (1− g(d))τECij0 )

∂Fkm
Flm

= g(d)CECM
ijkl0

+ (1− g(d))CEC
ijkl0

.

(3.50)

3.9 Derivation of the main two PDEs

In this section, using the minimization principle for the global power balance, the two main

PDEs are derived.

First, an isotropic medium with no phase transition is considered. The energy storage

function is

E(ϕ) =

∫
B

Ψ(F ,Am,Am′)dV, (3.51)

and the external work function is defined as

P (ϕ) =

∫
B
ρ0γ̄ ·ϕdV +

∫
∂B
T̄ ·ϕdA. (3.52)

In the formula above, ρ0 is the density, γ̄ is the prescribed body force and T̄ is the

prescribed traction. All three are defined in the reference configuration. Also, note that Ψ

is the free-energy function per unit volume in the reference configuration. The balance of

the two formulas above are minimized below

ϕ = Arg
{

inf
ϕ∈Wϕ

E(ϕ)− P (ϕ)
}
. (3.53)

The Dirichlet-type boundary conditions below are assigned to the minimization equation

Wϕ = {ϕ | ϕ ∈ H1(B),ϕ = ϕ̄ in ϕ̄ ∈ ∂Bϕ}. (3.54)
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Solving equation 3.53 using the boundary conditions 3.54 the PDE below with the Neumann-

type boundary conditions stated is derived

∇X · P + ρ0γ̄ = 0→ ∇ · P + ρ0γ̄ = 0 BC: P ·N = T̄ on ∂Bt. (3.55)

Now, the same approach as above, for a multi-phase medium would be used. The

formulas derived here are the main formulas used in the biomechanical module. This time

the energy storage function is defined using the free-energy function in 3.45 as below

E(ϕ, d) =

∫
B

Ψ(F ,Am,Am′ , d)dV. (3.56)

The external work function is the same as 3.52. Differentiating the energy storage function

with respect to time results in rate of energy storage function

E(ϕ̇, ḋ,ϕ, d) =

∫
B
(P : Ḟ − fḋ)dV. (3.57)

In the formula above, P is the first Piola-Kirchhoff stress tensor

P = ∂F Ψ(F ,Am,Am′ , d) (3.58)

and f is an energetic force conjugate to the crack phase-field

f = −∂dΨ(F ,Am,Am′ , d). (3.59)

In the same way, by differentiating the external work function with respect to time, its

rate is derived

P(ϕ̇) =

∫
B
ρ0γ̄ · ϕ̇dV +

∫
∂B
T̄ · ϕ̇dA. (3.60)

Note that in the problem in this research, the terms in external work function are all zero

because all the external effects are shown in active stress in the stress term in the energy

storage function.
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Another difference that the multi-phase energy formulas have with the formulas derived

at the beginning of this section is the introduction of a new energy term. This term is

called the transition energy function and is the amount of energy dissipated for the rupture

of the ECM and the take over of the ruptured area with ECs

Dc(d) =

∫
B
gtε

2γ(d,∇d)dV. (3.61)

In the equation above, gt is the critical energy needed to occupy the ECM space with

the ECs and ε is the normalized ECM density discussed in the next chapter. Note that

this parameter is always between zero and one so it reduces the energy needed for rupture.

Differentiating this energy term with respect to time gets the transition dissipation function

Dc(ḋ) =

∫
B
gtε

2(δdγ(d,∇d))ḋdV, (3.62)

δdγ(d,∇d) =
1

l
(d− l2∆d). (3.63)

Power balance equation is simply written by setting the summation of 3.57, 3.60, and

3.62 to zero

Π (ϕ̇, ḋ) = E(ϕ̇, ḋ) +D(ḋ)− P(ϕ̇) = 0. (3.64)

It can be written in the form of equation 3.53

{ϕ̇, ḋ} = Arg
{

inf
ϕ∈Wϕ

inf
d∈Wd

Π (ϕ̇, ḋ)
}

(3.65)

with Wϕ and Wd defined as

Wϕ = {ϕ̇ | ϕ̇ = 0 on ∂Bϕ}, Wd = {ḋ | ḋ = 0 on ∂Bd}. (3.66)

Solving the minimization problem above, the two PDEs below are derived

∇ · P + ρ0γ̄ = 0 (f − gtε2δdγ)ḋ = 0. (3.67)
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The first PDE above can also be written as

J∇x · (J−1τ ) + ρ0γ̄ = 0 (3.68)

with τ denoting the Kirchhoff stress as defined in 3.31. As seen here, the first PDE is the

same as the PDE seen for simple one-phase problems in 3.55. In the next section, we talk

a little about the second PDE.

3.10 Phase change

The second PDE in 3.67 is discussed here, irreversibility of phase transition and mitosis

will be added to the formulation.

First, using 3.63 and the second equation in 3.67, results in

f − gtε
2

l
(d− l2∆d) = 0 (3.69)

and considering 3.59 leads to

f = fECM − fEC = 2(1− d)(ΨECM
0 −ΨEC

0 )

→

f
ECM − (gECMt /l)ε2(d− l2∇d) = 0

fEC − (gECt /l)ε2(d− l2∇d) = 0.

(3.70)

In this formula, gECMt is the critical energy needed for breaking the bonds in the ECM and

gECt is the energy needed for the formation of the ECs. Only the formula for the ECM is

taken to account here to calculate the value for d. Renaming gECMt to gc and decomposing

fECM to isotropic and anisotropic responses and solving 3.69 for each response results in

Ψiso
0 = ΨECM

iso,0
, Ψani

0 = ΨECM
ani,0

, (3.71)

2(1− d)
Ψiso

0

gisoc ε2/l
= d− l2∆d, 2(1− d)

Ψani
0

ganic ε2/l
= d− l2∆d. (3.72)

38



Now, dimensionless mechanical transition driving functions for both responses can be

defined as

H̄iso =
Ψiso

0

gisoc ε2/l
, H̄ani =

Ψani
0

ganic ε2/l
. (3.73)

The total mechanical transition driving function can be defined as the summation of the

two so 3.69 would be transformed into

H̄ = H̄iso + H̄ani → d− l2∆d = (1− d)H̄. (3.74)

Now the irreversibility condition would be added to the formula above with defining the

history function H̄ as below

H = max
s∈[0,t]

[〈H̄(s)− 1〉]. (3.75)

Here, 〈�〉 is the Macaulay brackets and is defined as 〈�〉 = (� + |�|)/2. This function

simply makes the value of H either be constant or increase in each time step (Figure 3.9).

Also note that the minus one is there so that the phase transition would not start with

any values of deformation. It would start when the Ψ0 is more than the critical value gc/l.

Note that the formula above provides an energy-based failure criterion for mode I fracture.

Mode I of fracture is the propagation of the crack because of tensile stress normal to plane

of the crack. Stress-based failure criteria are provided in [61].

As mentioned in [48] a new term can be added to 3.69 to account for cell mitosis

f − gc
l

(d− l2∆d) + νd(1− d)〈ω − ωt〉 = 0. (3.76)

In the formula above, ν is the proliferation constant for the endothelial cells and ωt is

the critical value of TAF concentration for the start of the proliferation. Also, ω is the

normalized TAF concentration which is always between 0 and 1. Repeating everything

done in this section, the formula below would be derived for irreversible phase transition
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Figure 3.9: The relationship between the history function H and the total mechanical

transition driving function H̄.

with mitosis

d− l2∆d︸ ︷︷ ︸
Geometric resistance

= (1− d)H︸ ︷︷ ︸
Driving force

+ νcd(1− d)Ḡ︸ ︷︷ ︸
Proliferation

, Ḡ = 〈ω − ωt〉, νc =
ν

gc/l
. (3.77)

Note that the formula above and 3.74 are the main difference between the modelling

framework in this research and the framework in other works on angiogenesis [30, 26, 48,

82]. In other research projects, there is no correlation between the biomechanical aspects

of angiogenesis and ECs migration towards a tumour. Instead, they offer a term for

chemotaxis which in this work is taken care of with the active stress term 3.39. They also

model haptotaxis, related to ECM degradation, with a term in their phase-transition like

PDE which is modelled here with ε in 3.73.

Refer to [82] to see sever al other terms like a term for natural degradation and a term

for necrosis of the ECs.
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3.11 Numerical implementation

In this section, the matrix form of formulas used in the computer code would be explained.

To solve the two PDEs in 3.67, the staggered (as named in [59]) or the one-pass operator-

splitting (as named in [3]) algorithm would be used. In this method, in every iteration, the

two PDEs would be solved separately with the assumption of the other field variable staying

constant. Here, first the displacement PDE would be solved, then the history function

would be calculated over the domain followed by second PDE. This loop is repeated until

convergence is met. The three steps are shown below.

→ (1) J∇x · (J−1τ ) + ρ0γ̄ = 0 & ḋ = 0,

→ (2) H = max
s∈[0,t]

[〈H̄(s)− 1〉],

→ (3) d− l2∆d = (1− d)H & ϕ̇ = 0.

(3.78)

Discretizing the space of field variables and the reference domain B into subdomains

∂B̂ will result in the equation

R =

Rϕ

Rd

 = 0. (3.79)

In this equation, R is the residual vector and Rϕ and Rd are the residual vectors for

deformation and phase transition respectively. The formula above and the PDEs in 3.78

with the assumption of γ̄ and T̄ being equal to zero can be written in indicial form as

follows

R̂a
ϕ,i =

∫
B̂

(
∂N a

∂xj
τ̂ij

)
dV = 0,

R̂a
d =

∫
B̂

(
N a
(
d̂− (1− d̂)Ĥ

)
+
∂N a

∂Xj

l̂2
∂d̂

∂Xj

)
dV = 0,

(3.80)
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. Note that the sign �̂ shows that the quantities in the formulas above are associated with

each element, for example, Ĥ is the value of the history function in each element or R̂a
ϕ,i is

the value of the residual vector of the balance of linear momentum PDE in each element

which needs to be assembled in the global residual vector. Also, the formulas are written

for each node and each degree of freedom shown with the a superscript and i, j subscripts

respectively. Here, τ̂ij is the Kirchhoff stress in each element and is calculated using 3.39.

N a is a scalar and contains the shape function for each node a.

The above nonlinear equations need to be linearized to be solved. The linearization

process is done by using the first two terms of the Taylor series

R+
∂R

∂U
∆U = 0. (3.81)

In this equation U contains the phase variables as

U =

ϕh

dh

 . (3.82)

There is a stiffness term also apparent in 3.81 which can be defined as follows

K =
∂R

∂U
=

∂Rϕ/∂ϕ 0

0 ∂Rd/∂d

 =

Kϕϕ 0

0 Kdd

 . (3.83)

The two stiffness matrices above for the nodes a, b and the degrees of freedom i, k in each

element can be calculated with

K̂ab
ϕϕ,ik =

∫
B̂

(
∂N a

∂xj
Ĉijkl

∂N b

∂xl
− ∂N a

∂xk
τ̂ij
∂N b

∂xj

)
dV,

K̂ab
dd,ik =

∫
B̂

(
N a
(

1 + Ĥ
)
N b +

∂N a

∂Xj

l̂2
∂N a

∂Xj

)
dV,

(3.84)
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in indicial form. As a result, the equation 3.78 can be written in matrix form as

→ (1) ∆ϕh = −K−1
ϕϕRϕ,

→ (2) H = max
s∈[0,t]

[〈H̄(s)− 1〉],

→ (3) ∆dh = −K−1
dd Rd.

(3.85)

3.12 Conclusion

This chapter discussed the different components and the flow of the code. It explained

the biomechanical module and the basic knowledge needed to comprehend it. All the

equations presented here are borrowed from mentioned references except equations 3.44

and 3.61 which are modified to capture the physics of this problem better. At the end of

running this part of the code, the stress and displacement fields and the propagation of

the endothelial cells are calculated and will be passed on to the vascular network module.
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Chapter 4

Biochemical & Vascular Network

Modules

This chapter talks mainly about the two remaining modules in the solver. First, the

biochemical module and then the vascular network module.

4.1 The biochemical module

This module is run once at the beginning of each time step. It uses the values of biochemical

concentrations and the deformations from the previous time step to produce the new values

for the concentrations and their rate of change. Because the PDEs in this module are both

time and space dependent, both spatial and time discretization are required.

As seen in Figure 3.1A, this module first calculates the concentration of oxygen and

MDE throughout the domain, then the values for TAF and the ECM level. The formulas
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are based on mass conservation and Fick’s laws, and the time integration is done using

Crank-Nicolson method.

In this section, an approach like the one taken in the third chapter would be made. It

will start with defining the field variables. Then the derivation of the formulas and their

matrix form used in the solver will be presented.

4.1.1 Field variables

Four field variables are defined in this module representing the normalized values for con-

centrations that range between 1 and 0. Normalization is done by setting a maximum

value for each of the four and then dividing the values for each concentration by that con-

centration. These phase variables are defined on the initial configuration, B, and evolve

with time. The four variables are normalized concentrations for oxygen, TAF, MDE, and

the ECM’s normalized density, denoted by ξt(X), ωt(X), µt(X), εt(X), respectively. All

the four can be defined as

�t(X) :

 B × T → [0, 1],

(X, t) 7→ � = �(X, t).
(4.1)

4.1.2 Fluxes, diffusion, and advection

Mass conservation equation and Fick’s first law result in the advection-diffusion-reaction

equation
dc

dt
= −∇ · Jc + Pc −Qc, (4.2)

where c is the dimensionless normalized concentration. Jc is the diffusive flux of c. Pc and

Qc are the production and consumption rates, respectively. Using Fick’s second law, the
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diffusive flux can be defined as Jc = −Dc∇c so the mass transfer formula becomes

dc

dt
= Dc∆c+ Pc −Qc. (4.3)

The material derivative of normalized concentration (dc)/(dt) can be defined as

dc

dt
=
∂c

∂t
+
∂c

∂x
· ∂x
∂t
, (4.4)

the second term here can be interpreted as the advection term when the flow is incom-

pressible [83].

4.1.3 Reactions

The consumption rate in 4.3 is assumed to be only dependent on the species decay. The

simplest decay model for a species is a linear decay with the reaction rate δc and only

dependent on the substrates concentrations [84]. The decay process for Oxygen, TAF, and

MDE can be depicted as

C
δc−−−→

Qc = δcc.
(4.5)

The decay of the ECM needs two substrates. It needs both ECM and MDE to decay

so the formulas will be as

ECM + MDE
δε−−−→

QECM = δεεµ,
(4.6)

where δε is the decay rate. The normalized concentrations of ECM and MDE are ε and

µ respectively. Note that the formula only applies to the domain which tumour does not

exist. The MDE does not degrade the tumour cells. To incorporate this into the formula,
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a parameter ρ̄tum can be defined which is equal to 0 where there is tumour and is equal to

1 anywhere else. Now 4.6 can be multiplied by ρ̄tum.

The easiest assumption for calculating the production rate is having an unlimited

amount of substrates. This would result in a constant rate of production λc defined as

(if cond)
λc−−−→ C,

P c = ρcondλc,
(4.7)

which if a certain condition satisfies for each substrate in an element, then a constant rate

is assumed or else the rate is zero. The first ρcond is ρtum which shows where the tumour

is so ρtum is equal to 1 on the tumour and is equal to 0 everywhere else. The second ρtum

is ρv, a parameter to show where vessels exist so it is equal to 1 on the capillaries and

0 on the ECM. Finally, ρt is equal to 1 in elements where tip cells exist and equal to 0

everywhere else. The three production rates are

Pξ = PO2 = ρvλξ

Pω = PTAF = ρtumλωexp(−2ξ/ξ̄)

Pµ = PMDE = ρtumλµ−c + ρtλµ−v.

(4.8)

4.1.4 Final PDEs

Setting the values for consumption and production rates for the four substrates in equation

4.3, results in the four equations

dξ

dt
=

∂

∂X
· [Dξ

∂ξ

∂X
]︸ ︷︷ ︸

Diffusion

+ ρvλξ︸︷︷︸
Production

− δξξ︸︷︷︸
Decay

, (4.9)

dω

dt
=

∂

∂X
[Dω

∂ω

∂X
] + ρtumλωexp(−2ξ/ξ̄)− δωω, (4.10)
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dµ

dt
=

∂

∂X
[Dµ

∂µ

∂X
] + ρtumλµ−c + ρtλµ−v − δµµ, (4.11)

dε

dt
= −δερ̄tumεµ, (4.12)

where ξ and ω are the values for the normalized concentration of oxygen and TAF respec-

tively.

Equations 4.9 and 4.11 give the values for oxygen and ECM concentrations independent

from the values for the other two substrates. So, to solve the system of PDEs, at first

equations 4.9 and 4.11 are solved and then, the other two equations are solved.

4.1.5 Numerical implementation

The two main differences between the formulas derived here and the ones obtained in the

previous chapter 3.67 are that the equations derived in this chapter are linear and time-

dependent while the formulas in the other chapter where nonlinear and time independent.

This time dependency requires the discretization of the PDEs both in time and space.

Crank-Nicolson method [85] does the discretization in time. This method needs two steps

to solve each of the PDEs. The two steps are

→ (1) dn+1
c =

(
An+1

)−1

Rn+1,

→ (2) ḋn+1
c =

2

∆t

(
dn+1
c − dnc

)
− ḋnc .

(4.13)

In the formulas above, the superscript in �n+1 shows the time step and �̇ shows the deriva-

tive with respect to time. The vector dc contains the value of normalized concentration

for each ξ, ω, µ, and ε so in a four-node element is a 4 × 1 vector. The time step size is
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defined with ∆t. The matrix An+1 and the vector Rn+1 are defined as

An+1 = C +
∆t

2
Kn+1

t , (4.14)

Rn+1 =
∆t

2
fn+1 +

∆t

2

(
Cḋnc

)
+Cdnc . (4.15)

In the two formulas above, the definition ofKn+1
t and fm

n+1
are dependent on the substrate

as shown below.

if material = ECM → Kn+1
t = Kmn+1

t = Kn+1
adv +Umn+1

,

→ fm
n+1

= 0.

other → Kn+1
t = Kcn+1

t = Kn+1
adv +U +K,

→ f c
n+1

= P n+1
c .

(4.16)

Matrix C in equation 4.15 and the five new matrices above are defined as

K̂ab
adv =

∫
B̂

(
N aviDil

∂N b

∂Xl

)
dV, K̂ab =

∫
B̂

(
∂N a

∂Xi

Dc
∂N b

∂Xi

)
dV,

Ĉab =

∫
B̂

(
N aN b

)
dV, P̂ a =

∫
B̂

(
N aP̂

)
dV,

Ûmab =

∫
B̂

(
N aµ̂N b

)
dV, Ûab = δcĈ

ab.

(4.17)

The notation here is the same as the one used in chapter 3.11. Note that P̂ is calculated

from 4.8. Matrix D is defined in the same fashion as the deformation gradient in 3.5 and

v is the velocity vector,

D =
dX

dϕ
=

dX

dx
, Dil =

∂Xi

∂xl
,

v =
dv

dt
, vi =

∂xi
∂t
.

(4.18)
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Figure 4.1: A branch in angiogenesis. Except tumour location, all the data presented here

are all the biochemical and biomechanical data needed for vascular network module.

4.2 The vascular network module

The last module in the solver is the vascular network module. In contrast to the other

modules, this module is not about solving any PDEs and the most computational intensive

calculation done in it is solving a one-dimensional nonlinear equation using the Newton-

Raphson method. This module is run at the end of each time step and calculates the force

at each tip cell, checks if there is a need for the movement of the tip cell, and finds its new

location. All these are discussed in the first subsection. The second subsection presents

branching formulations.

4.2.1 Update tip cells

This sub-module first calculates the magnitude of force at each of the tip cells linearly,

based on whether the tip cell is on the rising phase or not (all the tip cells k−4, k−3, ..., k
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dk-3=dm
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dk-1=dm
dk=dm
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Figure 4.2: Loading on different locations of the tip cell throughout the time. The load

factor is a dimensionless parameter which will be multiplied to equation 3.44 in each time

step to calculate the active stress. This figure shows that in the vicinity of t = tn the load

factor for the tip cell k−1 is decreasing and increasing for tip cell k. Figure 4.1 corresponds

to t ∈ [tk, tk+1].

in Figure 4.1). When a new tip cell is formed, it is defined in the rising phase, and the

previous tip cell on the same branch will be marked in decline phase. In problems here

only the last two of the tip cells have a value other than zero. The load factor change with

time for Figure 4.1 is depicted in Figure 4.2. The last two tip cells can be interpreted as a

stretched tip cell as seen in [7, 6].

Then the last tip cells in each of the branches (tip cell k) is checked to see if the phase

transition parameter d(r) in each of them exceeds dmax, if it does, the search for the new

tip cell in that branch will be started (tip cell k + 1).

The new tip cell is found in the direction of the ev2 (Figure 4.3A) as defined in Figure
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Figure 4.3: A: The direction of the next tip cell. B: The evolution of the transition

parameter in the ev2 direction from the point rk and the distance (∆r) of the next point

rk+1 from the point rk.

3.7. The formulas for calculating ev2 are

ev =
∇ω(rk)

‖ ∇ω(rk) ‖
, (4.19)

ev2 = A(θ)ev, (4.20)

where rk is the location of the tip cell k andA(θ) is the transformation function rotating ev

by θ. The angle θ is calculated using the normal distribution to account for the stochastic

movement of the tip cell.

When the direction of the next tip cell is found, its location is calculated as (Figure

4.3B)

∆dv = ∇d(r) · ev2,

∆r =
d(r)− d0

∆dv
,

rk+1 = rk + ev2∆r.

(4.21)

In the formulas above d0 is the initial transition value at the tip cell k + 1.
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4.2.2 Branching

Most of the branching models in the literature use probability functions in each time step

on unbranched areas of the newly formed vessel to see if branching happens or not. In

these models, a random number for each of the previous tip cell locations using the uniform

distribution would be generated. These numbers are between 0 and 1. The probability of

branching is B, and if the random number is smaller than B, then branching occurs in the

selected previous tip cell.

The same is implemented in this solver for branching. If the steps above indicates that

branching is required, the solver searches for the next tip cell that originates from the node

that caused the branching. The equations 4.20 and 4.21 would be used to find the new tip

cell with a small difference. Now, θ2 would be used instead of θ which is defined as

θ2 = θ + θ0 (4.22)

with θ0 being a constant.

Here, B is assumed constant but as referred in [5, 30, 26] it can be a function of TAF

concentration, the age of the vessels, the distance of the point from a tumour, or the

biofluidic parameters like wall shear stress in the capillaries.

4.3 Conclusion

This chapter first discussed the biochemical module and presented a set of four partial

differential equations to model the concentration of each substrate in the domain. This

module uses the displacement field generated by the biomechanical module as an input.

The chapter then discusses the vascular network module which is the most innovative part
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of this chapter. This module uses the phase transition data to find the next tip cell location

in each time step and check for branching. The components discussed in this chapter and

the one before it complete the engine needed for this new approach to analyze angiogenesis.
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Chapter 5

Results and Discussion

The previous chapters discussed the theoretical aspects and the numerical implementations.

This chapter covers the specifics about the model and the results. The specifics include the

values for parameters, the geometry, and the initial and boundary conditions. The results

are generated for a certain problem, and are discussed in the last section of the chapter.

The final thoughts are presented in the next chapter.

5.1 Parameters

Different parameters are investigated through this model. Just as the modules, they can be

classified as biochemical, biomechanical, and vascular parameters and they are represented

by the three following tables. Table 5.1 contains the biochemical parameters as reported

in [1]. Note that the parameterless entries in the table are the value used to make the

concentration values, ω, ξ, µ, ε, dimensionless. Also, note that the oxygen uptake is different

in the tumour and the host.
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Table 5.1: Biochemical parameters [1]

Substrate Description Parameter Value Unit

TAF

production rate λω 9.996 d−1

decay rate δω 8.64× 10−2 d−1

diffusion coefficient Dω 9.99× 10−1 mm2 d−1

max concentration − 1× 10−8 g cm−3

Oxygen

production rate λξ 0.288 d−1

uptake by the host δξ 1.38× 10−3 d−1

uptake by the tumour δξ 1.725× 10−2 d−1

diffusion coefficient Dξ 3.455× 10−3 mm2 d−1

TAF related parameter ξ 0.6 −

MDE

tumour’s production rate λµ−c 4.32× 10−2 d−1

TC’s production rate λµ−v 8.64× 10−3 d−1

decay rate δµ 1.0368× 102 d−1

diffusion coefficient Dµ 7.344× 10−1 mm2 d−1

max concentration − 1× 10−13 Mol cm−3

ECM
degradation rate δε 6.912 d−1

reference density − 0.1 g cm−3

Table 5.2 contains parameters and their values for the biomechanical module. The

values for the mechanical properties of both the ECM and the ECs are derived from

[51, 3, 86]. As seen in the table, the anisotropic parameters related to the endothelial cells

are zero because it is assumed that it takes some time for the network of collagen fibres to
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Table 5.2: Biomechanical parameters [2, 3, 4, 5, 6, 7]

Category Description Parameter Value Unit

EC

shear modulus µEC
1 5.0× 10−3 MPa

penalty term KEC
1 5.0 MPa

stress-like material parameter kEC
1 0 MPa

dimensionless parameter kEC
2 0 −

ECM

shear modulus µECM
1 1.0× 10−2 MPa

penalty term KECM
1 10 MPa

stress-like material parameter kECM
1 2.0× 10−2 MPa

dimensionless parameter kECM
2 1.0 −

Phase

transition

length-scale parameter l 2.0× 10−2 mm

critical transition energy gisoc 5.0× 10−4 MPa mm

critical transition energy ganic 1.5× 10−3 MPa mm

Active

stress

magnitude a 0.200 MPa

range b 1.4× 104 mm−2

width N 2 −

EC’s radius r0 1.4× 10−2 mm

Michaelis-Menten coefficient β 0.6 −

form in the newly-constructed capillaries. The phase transition parameters are taken from

[2, 3, 4]. Finally, stress-related equation was developed based on [5] and calibrated with

experimental data provided by [6, 7].

To our knowledge, no parameters required for the vascular network module are available
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in the literature. To find the value of parameters reported in 5.3 required for our model,

we ran our model several times (trial and error) using the examples reported in [26] until

the same results are reached.

Table 5.3: Vascular parameters

Sub-module Description Parameter Value Unit

Tip cell

migration

production rate dmax 0.20 −

decay rate d0 0.15 −

mean for θ in 4.20 − 0.0 −

standard deviation for θ in 4.20 − π/18 −

Branching
branching probability B0 0.1 −

new sprout angle θ0 π/2 −

5.2 Initial and boundary conditions

There are six partial differential equations in this analysis. Boundary and initial conditions

are defined for each of the PDEs. Two types of boundary conditions exist in this problem.

Neumann boundary conditions which specify the value of the normal derivative of the

functions are already included in the formulations (3.26) but will be included here for

convenience.

T̄ = 0 , ∇d ·N = 0 on ∂B,

qω = qξ = qµ = qε = 0 on ∂B. (5.1)

The values for q� show the flux of � on the boundaries.
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Dirichlet boundary condition is only defined for the first PDE, the deformations PDE.

This type of boundary condition defines the value of the function on the boundaries. Here,

the deformation is set to be zero in the normal direction to the boundary.

The initial values (t = 0) for the deformation PDE are the deformation being equal

to zero throughout the domain. So the system is at rest mechanically at the beginning.

The phase transition is set to zero over the domain, so the entire domain is filled with the

extracellular matrix at the beginning. The nodes with the parent vessel on them will have

H = 5.0. Equation 3.74 calculates the value for the phase-field parameter using the initial

value for H in the first time step so by the end of the initial time step the location of the

parent vessel is set.

The rate of change for all the biochemical concentrations is set to zero at the initial

time. The concentrations for MDE and TAF are also supposed to be zero throughout the

domain at time zero. The normalized oxygen concentration is equal to one throughout the

domain except inside the tumour where it is equal to zero to account for the hypoxia (as

an extreme case) inside the tumour initiating the tumour-induced angiogenesis. The initial

normalized ECM density is equal to one.

5.3 Geometry

All the problems solved in this project are defined in the two-dimensional space. Bilinear

quadrilateral elements are used in the analysis with the plane strain assumption. The

domain is a square with the dimension of 0.4 mm. The geometry is depicted in Figure 5.1.

The result of the Dirichlet boundary conditions explained in the previous section is simple

supports constraining the movement of the boundaries in their normal directions, so the

top and bottom boundaries constrain the movement in y-direction and the left and right
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Figure 5.1: The general geometry of the examples solved here. The parent vessel is gener-

ated in the first time step. Dimensions in the figure are in mm.

boundaries constrain the movement in x-direction. According to [2], the maximum value

for the element size is half of the value of l. So, the element size h = 0.01 is used here.

The tip cell is at (0.2, 0.08) initially for the first, second, and the last examples and it

later moves towards the tumour in the next time steps using the vascular network module.

5.4 Models and discussion

This section contains four models. They are different in the vascular network module and

initial conditions. The first model has no stochastic movement, θ in 4.20 is equal to zero.

Next models get more detailed with the guided random walk, more initial tip cells, and

branching, each added in the second, third, and fourth model, respectively. The differences
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between the four models are demonstrated in Table 5.4.

Table 5.4: Differences between the four models

Model Stochastic Movement Number of tip cells Branching

I 7 1 7

II 3 1 7

III 3 2 7

IV 3 1 3

5.4.1 Model I: No stochastic movement

In this model, the normal distribution which produces the values for θ in 4.20 is turned off.

Figure 5.2 shows the resulting phase transition at four different time steps. The parent

vessel and the tumour location is the same as the one depicted in 5.1. The maroon area

is the location of a tumour. The white dots show the path of the movement of the tip

cell. The first tip cell is on the parent vessel wall. The tip cell moves upward towards

the tumour, and a branch starts forming behind it. As seen in the figure, the tip cell has

moved in a straight line because all the TAF gradient vectors between the initial tip cell’s

location and the tumour are collinear. That is because of the symmetry in the problem.

The bar on the right side defines the value for the phase-field parameter. As seen here, the

parameter is higher on the parent vessel compared to the newly created capillary.

The shape of the parent blood vessel at the junction is the same shape seen in [51].

Note that the transition parameter in the figure is shown in the initial configuration, so

the deformations are not shown here. As seen in the figure, the first jump for the tip cell
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Figure 5.2: The growth of one capillary towards a tumour for model I. This figure shows the

phase-field parameter at the end of the analysis. The maroon rectangle is a tumour. The

white dots show the tip cell path throughout the time which the lowest is the location of

the tip cell at time zero. The bar shows the phase-field parameter, zero is for extracellular

matrix and one is for endothelial cells.
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Figure 5.3: Tip cell load factor and tip cell location evolution throughout the analysis time

for model I.

is longer than other jumps; it is because the tip cell jumped at d = 0.50 at this point while

it jumps at d = dmax = 0.20 at other points. The initial jump can be reduced by closing

the values for dmax and d0 or reducing the value for l and the mesh size.

Tip cell load factor defined in Figure 5.3A is the sum of the loading factors depicted

in Figure 4.2. As seen in 5.3A, the load factor increases until it reaches 1, meaning that
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maximum load is a = 200 kPa, the value defined in Table 5.2, then stays roughly constant

until the end of analysis in the branch. Figure 5.3B shows the closest location of the tip

cell to the tumour, tip cell k in Figure 4.1, with respect to time. The jumps discussed in

Figure 5.2 are seen here too. As discussed before, the first jump which happens in the first

time step is longer and can be seen here at t ≈ 0. The time difference between the jumps

is close to equal which is because the total time is short and the TAF level is low for the

term 1/(1 + βξ) to have any major effects on the active stress produced by 3.44. Figure

5.3C correlates the last tip cell location and the total tip cell load factor. The jags seen

in this plot are similar to those reported in [61]. The aberrations seen in Figure 5.3A and

5.3C can be diminished by reducing the time step size or the element size. The verification

of this model in presented in the next section.

5.4.2 Model II: Stochastic movement of the tip cell

The second model is the same as the first model with the normal distribution turned on

allowing a directed random movement of the tip cells. The normal distribution parameters

are chosen so that the end result of the solver are morphologically consistent with the

results from the earlier analysis done by others.

Figure 5.4 shows the formation of the capillary towards a tumour. Now, the cell did

not go in a straight line to reach the tumour. It also went a little slower than in model I

which is intuitive because the path it is taking the model is a little longer.

Figure 5.5 shows the same information shown in Figure 5.3. Here, the fluctuations in

tip cell load factor are a little larger. This is because the local geometry at the different

tip cell locations constantly changes because of the stochastic movement of the tip cell.

This change in the geometry can make the extracellular matrix less prone to crack at some
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Figure 5.4: The growth of one capillary towards a tumour for model II. This model is

different from the first model in using a normal distribution to find the tip cell location.

points or more prone at some other points.
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Figure 5.5: Tip cell load factor and tip cell location evolution throughout the analysis time

for model II.

5.4.3 Model III: Two tip cells

Unlike previous models, this model has two tip cells initially at the same y-coordinate

as the one in the previous models and the x-coordinates of 0.133 mm and 0.267 mm,

respectively. The tip cell locations are not shown in Figure 5.6 to better see the phase
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transition. As seen in the figure the “straighter” branch, the branch on the left, reached

the tumour slightly sooner than the other branch which is intuitive.

Figure 5.7A shows the tip cell load factor for the branches and same as the previous

models the two branches have fluctuations. Figure 5.7B confirms that the left branch is

slightly faster than the right branch.

Comparing this model with model II, it can be inferred that the speed of the endothelial

cells migration is about the same in the two models. As mentioned in chapter three,

equation 3.41, e−b(‖r‖−r0)2
defines the magnitude of the active stress exerted by the tip cells

on the extracellular matrix. With the parameters defined in Table 5.2, the effective range

of the active stress is 27 µm. The effective range is defined here as the range that active

stress is more than 10% of its maximum value. It is intuitive that to have two active stress

fields affecting each other, their distance, the distance of their centers, should be at most

summation of the two effective ranges. The distance of the two tip cells in this model is

134 µm which is more than twice the effective range of the tip cells, 54 µm, so the two tip

cells effect on each other is negligible. The distance between the two tip cells is why model

I and model II tip cells have the same speed.

Decreasing the distance between the two tip cells will result in the two stress fields

affecting resulting in tip cells migrating faster. This phenomenon also occurs in the next

model, as at some points, the tip cells for different branches are closer to each other than

the effective range. The effect of this will be discussed in the next subsection.

5.4.4 Model IV: Stochastic movement with branching

This model is the same as the second model, but the branching engine is turned on in this

model. Because of the random nature of branching, some constraints are set in the branch-
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Figure 5.6: The growth of one capillary towards a tumour for model III. This model is

different from the second model by having two tip cells initially.

ing engine to improve the model’s operation. Similar approach was applied in literature as

seen in [64]. First, no branching would happen in y < 0.12 mm. When a branch appears

in a location, no more branches can occur in the next eight tip cell locations. Moreover,
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Figure 5.7: Tip cell load factor and tip cell location evolution throughout the analysis time

for model III. The two plot colours stand for the two different branches shown in 5.6.

the first tip cell of the new branch will be in the normal direction of the current vessel.

The first two assumptions are made so that the branching would not be affected by the

transition diffusion depth, parameter l, of the other capillaries. Decreasing the element

size and the length-scale parameter will ease the constraints.

Running the simulations with the above constraints results in Figure 5.8. The first
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Figure 5.8: The growth of one capillary towards a tumour for model IV. This model is

different from the second model by turning the branching engine on.

branch initiated at t = 0.51 days and followed by the second one at t = 1.01 days. As

mentioned before, in this model the tip cells are closer to each other than as seen in model

III. At the time that the first branching occurs, the distance between the two tip cells is
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Figure 5.9: Relationship between the distance between the two tip cells right after the first

branching occurs and the velocity of migration of the main branch.

53.9 µm. As shown in Figure 5.9A, this distance increases initially and then decreases but

stays over the effective range, 54 µm, for the first 24.5 hours of the simulation. The decrease

continues to the degree that at t = 30.7 h the distance between the two tip cells reaches

6.94 µm. The stress fields of the adjacent tip cells result in bigger local deformations and

higher potential energy. This results in the energy-based crack criterion being met sooner
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and finally in a faster migration towards the tumour. Figure 5.9B is the evidence for this

increase in migration speed. This is the greatest significance of this modelling approach.

It shows the role of the mechanical properties and the mechanical fields on the progress of

angiogenesis.

5.5 Verification

Comprehensive verification of this model is a challenge because of the type of outputs pro-

duced by the model. These outputs include the displacement and stress fields in addition

to the phase-change variable (i.e. changing of the ECM to the EC lining the blood vessels).

Due to the difficulties associated with experimental measurement, little attention has been

paid in literature to measure these parameters as extensive as shown here. Therefore, lim-

ited verification was conducted and focused on some defining outputs which are extracted

and compared to available experimental data.

The two defining outputs are the width of the capillaries and speed of the endothelial

cells migration. The newly-formed capillaries have the width of about 10 µm which is

represented by the yellow zone in branches in figures such as in Figure 5.7. This width is

close to the average capillary width [19] of around 9 µm. The measured speed of tip cells

migration in the proposed model is about 7.5 µm/hr. This is acquired by determining the

average speed of the endothelial cells migration throughout the entire time frame of the

model which is close to 6.0 µm/hr proposed in [26] and is in the range suggested in the

mathematical models by Zaman and DiMilla [87, 88] and the experimental data in [89].

Other characteristics like the direction of the endothelial cells movement and the oc-

currence of branching can be modified easily by changing their respected parameters in the

vascular network module and are not discussed here.

72



5.6 Conclusion

This chapter started with acquiring most of the parameters’ values from the literature and

setting the rest by calibrating the model with respect to the results in the model proposed

by McDougall [26]. Then, initial and boundary conditions were set, and a domain was

defined to run the analysis. Four different simulations as shown by Table 5.4 were run,

and the results were discussed. Each of the four simulations became more detailed and

added new aspects of angiogenesis. The experimental observations verified the model by

comparing the defining characteristics seen in vitro with the output of the in silico model.

These defining characteristics are the vessel width and the migration speed of the tip cells

and were found compatible with the experimental observations.

Overall, this chapter shows the stability of the model proposed here and the power it

holds.
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Chapter 6

Conclusion & Future Works

6.1 Conclusion

Some in silico tumour-induced angiogenesis models are proposed every year. Each of these

models tries to focus and capture distinct aspects of the complex phenomenon [90, 91]. The

core of the model developed in this research is the mechanical aspect of the propagation of

the endothelial cells in the extracellular matrix. This work models the matrical pathways

in angiogenesis with fracture mechanics formulation. This formation of matrix pathways in

the ECM is assumed to be equivalent to the migration of the ECs. A modular solver with

three modules is the backbone of this research with each module accounting for one aspect

of the phenomenon. One of the novelties in this solver is the integration of ductile fracture

mechanics in the phase-field equation. This innovation is based on the crack phase-field

equations proposed in [92, 3]. Unlike the hybrid models in the literature, the continuum and

discrete components here are more interrelated than the models which extract a velocity

function from the continuum component for the movement of the tip cell. The solver
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implements finite element method to solve the PDEs present in the continuum component.

Several numerical simulations presented here prove the stability and reliability of the

framework. Yet, there is a need for a better calibration of the parameters given in tables

5.1, 5.2, and 5.3 with more experimental data. Also, further improvement of the model

can result in a better understanding of the processes in tumour progression with a po-

tential contribution to new treatments for cancer, as mentioned in the next section. The

treatments in mind here are solid mechanics related. An example of this is increasing the

energy needed for the fracture of the extracellular matrix or make it more resistant to the

MDEs so that the ECM averts the progression of angiogenesis.

6.2 Future Works

The experimental data on angiogenesis is still minimal but yet, a lot of theoretical im-

provements can be added to the solver presented in this work to make the model more

comprehensive and more realistic. The list of improvements is as follows:

• Branching and anastomosis are the first two essential phenomena that need to be

improved in the modelling. Most of the algorithms found in the literature purely rely

on experimental works with no good theories existing on these matters yet.

• Incorporating higher-order phase-field function [71] like the one discussed in 3.27; for

numerical implementation there is need for using either higher-order finite element

[93, 94], i.e. Hermite shape functions, or isogeometric analysis for providing H2 space

using C1 shape functions.

• Isogeometric Analysis [70, 95] is the only computational feasible way to produce C1
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shape functions in a three-dimensional space. It can help better integrate the geom-

etry with no significant increase in computational cost. Incorporating isogeometric

analysis in future modellings instead of conventional finite elements can facilitate the

usage of higher-order phase-field functions.

• Better degradation functions for better modelling of the softening behaviour asso-

ciated with the mechanical aspect of phase transition. Many experiments need to

be performed to find the best degradation function such as the cubic degradation

function as seen in 3.48 [81, 61].

• The cells life cycles can be modelled by modelling mitosis, apoptosis, and necrosis

in the endothelial cells [48]. The last term in 3.77 is an example of the modelling of

mitosis.

• More parameters can be used to construct multiphase-field model[96]. The phase-

field parameter defined in this work showed the interface between the endothelial

cells and the extracellular matrix. The new parameters can model other phases such

as the lumen.

• Porous material properties for the ECM can be applied. Also, fluid mechanics and

solid-fluid interaction can be added for modelling the blood flow using [92, 97].

• The force exerted on the matrix for the migration process needs some more extensive

experimental work to develop better equations.

• Agent-based modelling can be introduced to model the discrete parts of the problem

[64, 98] in the vascular network module.

• Cellular potts approach can be used instead of phase-field approach which integrates

the cells individually [99].
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