
BotChase: Graph-Based Bot Detection
Using Machine Learning

by

Abbas Abou Daya

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

© Abbas Abou Daya 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/200282729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Statement of Contributions

Chapter 3 and Chapter 4 borrow content from two papers "A Graph-Based Machine Learn-
ing Approach for Bot Detection" [11] and "BotChase: Graph-Based Bot Detection using
Machine Learning" [12].

ii



Abstract

Bot detection using machine learning (ML), with network flow-level features, has been ex-
tensively studied in the literature. However, existing flow-based approaches typically incur
a high computational overhead and do not completely capture the network communication
patterns, which can expose additional aspects of malicious hosts. Recently, bot detection
systems which leverage communication graph analysis using ML have gained traction to
overcome these limitations. A graph-based approach is rather intuitive, as graphs are true
representations of network communications. In this thesis, we propose BotChase, a two-
phased graph-based bot detection system that leverages both unsupervised and supervised
ML. The first phase prunes presumable benign hosts, while the second phase achieves bot
detection with high precision. Our prototype implementation of BotChase detects mul-
tiple types of bots and exhibits robustness to zero-day attacks. It also accommodates
different network topologies and is suitable for large-scale data. Compared to the state-
of-the-art, BotChase outperforms an end-to-end system that employs flow-based features
and performs particularly well in an online setting.

iii



Acknowledgements

My genuine acknowledgements reach out to the ones who truly enabled me to be what
I am today. I thank all the people who made this thesis possible.

iv



Dedication

To my beloved father, mother and the rest of the Abou Daya family, this one is for you.

v



Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Botnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Intrusion Detection Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Intrusion Kill-Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Bot & Botnet Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Signature-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Anomaly-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Anomaly-Based Botnet Detection Scopes . . . . . . . . . . . . . . . . . . . 8

2.3.1 Host-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Network-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Graph-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

vi



3 BotChase 11

3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Dataset Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Flow Ingestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Graph Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.4 Feature Normalization (F-Norm) . . . . . . . . . . . . . . . . . . . 15

3.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Evaluation 21

4.1 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Graph Transform, Feature Extraction & Normalization . . . . . . . 22

4.3.2 Stand-alone SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.3 Phase 1 (UL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.4 Phase 2 (SL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.5 Feature Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.6 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1 BotMiner Flow-Based vs. Graph-Based Features . . . . . . . . . . . 36

4.4.2 BClus Flow-Based vs. Graph-Based Features . . . . . . . . . . . . . 36

4.4.3 BClus Hybrid vs Graph-Based Features . . . . . . . . . . . . . . . . 37

vii



4.4.4 BClus End-to-End vs. BotChase . . . . . . . . . . . . . . . . . . . 39

4.4.5 BotGM vs. BotChase . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Analysis in an Online Setting . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Conclusion and Future Work 48

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Extending F-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 Classifier Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.3 Advanced Feature Engineering . . . . . . . . . . . . . . . . . . . . . 49

5.2.4 Advanced Ensemble Learning . . . . . . . . . . . . . . . . . . . . . 50

References 51

APPENDICES 57

A DataFrame4J 58

B Feature Normalization 67

viii



List of Figures

2.1 Intrusion kill-chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Components of the BotChase bot detection system . . . . . . . . . . . . . 12

3.2 Example topology of benign hosts with a gateway . . . . . . . . . . . . . . 16

3.3 Example topology of benign hosts without a gateway . . . . . . . . . . . . 16

3.4 Flowchart of node classification with i nodes and j features . . . . . . . . . 20

4.1 Comparison of SOM and k-Means with respect to training time . . . . . . 28

4.2 Number of hosts outside the benign cluster (HOB) assigned by SOM with
and without feature normalization . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Number of bots outside the benign cluster (BOB) assigned by SOM with
and without feature normalization . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 The variation of the training and testing time as time progresses . . . . . . 44

4.5 The variation of the training time of HAT vs ID3 . . . . . . . . . . . . . . 46

ix



List of Tables

4.1 Hardware Configuration of the Hadoop Cluster . . . . . . . . . . . . . . . . 21

4.2 CTU-13 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Graph Transform, Base Feature Extraction and Normalization Computation 23

4.4 Stand-alone Supervised Learning with F-Norm . . . . . . . . . . . . . . . . 24

4.5 Stand-alone SL with F-Norm and Balanced Input . . . . . . . . . . . . . . 25

4.6 Training Time of Stand-alone Supervised ML Classifiers . . . . . . . . . . . 25

4.7 Stand-alone Supervised Learning against Previously Unknown Bot . . . . . 26

4.8 k-Means Clustering with F-Norm . . . . . . . . . . . . . . . . . . . . . . . 27

4.9 SOM Clustering with F-Norm . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.10 Supervised Learning with F-Norm . . . . . . . . . . . . . . . . . . . . . . . 29

4.11 Supervised Learning with F-Norm on the Balanced Dataset . . . . . . . . . 29

4.12 SOM with Newly Aggregated Dataset . . . . . . . . . . . . . . . . . . . . . 30

4.13 Training Time of Supervised Classifiers on the Pruned Dataset . . . . . . . 30

4.14 SOM Clustering without F-Norm . . . . . . . . . . . . . . . . . . . . . . . 31

4.15 Pearson’s Feature Correlation Matrix with F-Norm . . . . . . . . . . . . . 33

4.16 SOM Clustering without IDW and ODW . . . . . . . . . . . . . . . . . . . 33

4.17 Supervised Learning without IDW and ODW . . . . . . . . . . . . . . . . 33

4.18 SOM Clustering without BC . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.19 Supervised Learning without BC . . . . . . . . . . . . . . . . . . . . . . . 34

4.20 Comparative Training and Testing Datasets . . . . . . . . . . . . . . . . . 35

x



4.21 Supervised Learning with BotMiner Features without F-Norm . . . . . . . 36

4.22 Flow-Based Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 36

4.23 Supervised Learning with BClus Features and without F-Norm . . . . . . . 38

4.24 Supervised Learning with BClus Features and Modified F-Norm . . . . . . 38

4.25 Supervised Learning with BClus Features and Two-way F-Norm . . . . . . 38

4.26 Supervised Learning with F-Norm . . . . . . . . . . . . . . . . . . . . . . . 38

4.27 Supervised Learning with BClus Hybrid Features and F-Norm . . . . . . . 39

4.28 BClus End-to-End Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.29 Accuracy of BotGM vs BotChase . . . . . . . . . . . . . . . . . . . . . . . 40

4.30 Ensemble Learning with Graph-Based Features . . . . . . . . . . . . . . . 41

4.31 Online Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.32 Online Supervised Learning Using HAT . . . . . . . . . . . . . . . . . . . . 45

xi



Chapter 1

Introduction

Undoubtedly, organizations are constantly under security threats, which not only cost bil-
lions of dollars in damage and recovery, but also often detrimentally affect their reputation.
A botnet-assisted attack is a widely known threat to these organizations. According to the
U.S. Federal Bureau of Investigation, “Botnets caused over $9 billion in losses to U.S. vic-
tims and over $110 billion globally. Approximately 500 million computers are infected each
year, translating into 18 victims per second.” The most infamous attack, called Rustock,
infected 1 million machines, sending up to 30 billion spam emails a day [22].

More recently, Mirai knocked offline 900,000 users of Deutsche Telekom [14]. Fur-
thermore, an attack launched on Microsoft Windows systems, called WannaCry (or Wan-
naCrypt), resulted in a widespread hijack of data from more than 230,000 computers in
150 countries [30]. Undeniably, in the face of a cyber arms race, attackers constantly find
clever ways to sabotage networks via botnets, most importantly via zero-day attacks [20].
Hence, it is imperative to defend against these botnet-assisted attacks.

1.1 Botnets

A botnet is a collection of bots, agents in compromised hosts, controlled by botmasters via
command and control (C2) channels. A malevolent adversary controls the bots through a
botmaster, which could be distributed across several agents that reside within or outside
the network. Hence, bots can be used for tasks ranging from distributed denial-of-service
(DDoS), to massive-scale spamming, to fraud and identify theft. While bots thrive for
different sinister purposes, they exhibit a similar behavioral pattern when studied up-close.

1



The intrusion kill-chain [41] dictates the general phases a malicious agent goes through in-
order to reach and infest its target. To fend off these botnets, intrusion detection systems
(IDS) were developed.

1.2 Intrusion Detection Systems

Devising an intrusion detection system for bot detection is an active area of research
that can be broadly divided into two groups based on the employed detection method:
signature-based and anomaly-based [45]. Signature-based methods detect pre-computed
hashes of existing malware binaries. Signature-based IDSs can scale well and efficiently
detect known threats. Systems using this method can be deployed as an agent running
on an end host or a gateway, which can examine binaries in transfer on-the-fly. However,
as they rely on a database of known threats, signature-based approaches require frequent
database updates and can be easily subverted by unknown or modified attacks, such as
zero-day attacks and polymorphism [27, 45]. This undermines their suitability for bot
detection.

Anomaly-based methods are widely used in bot detection, which overcome the limi-
tation of the signature-based approach [20, 26]. They first establish a baseline of normal
behavior for the protected system and model a decision engine. The decision engine de-
termines and alerts any divergence or statistical deviations from the norm as a threat.
Machine learning (ML) is an ideal technique to automatically capture the normal behav-
ior of a system. The use of ML has boosted the scalability and accuracy of anomaly-based
IDSs [20,26].

1.3 Machine Learning

With an ascending advancement in technologies and deluge of flowing data, integrating
AI into present day applications has become more of a necessity than a luxury. Aviation,
autonomous transportation, drone navigation, sentient analysis and data mining are some
of the renowned applications of current day AI research. However, it is not until recently
that machine learning has become possible in fields which did not have the sufficient amount
of data to have feasible predictive models.

For machine learning models and classifiers, there are a myriad of factors which de-
termine their feasibility in production. Indicators such as false positives (FP) and false

2



negatives (FN) are critical to the success of a system in an inverse proportional manner.
For example, it is not acceptable for an intrusion detection system to have machine learn-
ing integrated with absurdly high FP and FN ratios [16]. Such systems are critical and
very sensitive towards prediction outcomes. Allowing a bot to infiltrate a system as a FN
would have immediate repercussions.

The most widely employed learning paradigms in ML include supervised and unsuper-
vised. Supervised learning uses labeled training datasets to create models. It is employed
to learn and identify patterns in the known training data. Typically, this approach is used
to solve classification and regression problems. However, labeling is non-trivial and usually
requires domain experts to manually label the datasets [20]. This is not only cumbersome
but also error prone, even for small datasets. On the other hand, unsupervised learning
uses unlabeled training datasets to create models that can discriminate between patterns
in the data. This approach is most suited for clustering problems.

An important step prior to learning, or training an ML model, is feature extraction.
These features act as discriminators for learning and inference, reduce data dimensionality,
and increase the accuracy of ML models. The most commonly employed features in bot
detection are flow-based (e.g., source and destination IPs, protocol, number of packets sent
and/or received, etc.). However, these features do not capture the topological structure
of the communication graph, which can expose additional aspects of malicious hosts. In
addition, flow-level models can incur a high computational overhead, and can also be
evaded by tweaking behavioral characteristics e.g., by changing packet structure [57].

Graph-based features, derived from flow-level information to reflect the true behaviour of
hosts, are an alternate that overcome these limitations. We show that incorporating graph-
based features into ML yields robustness against complex communication patterns and
unknown attacks. Moreover, it allows for cross-network ML model training and inference.

1.4 Contributions

The major contributions of this thesis are as follows:

• We propose BotChase, an anomaly-based bot detection system which is protocol agnos-
tic, robust to zero-day attacks, and suitable for large datasets.

• We show the limitations of stand-alone supervised learning. Therefore, we employ a two-
phased ML approach that leverages both supervised and unsupervised learning. The first

3



phase filters presumable benign hosts. This is followed by a second phase on the pruned
hosts, to achieve bot detection with high precision.

• We use graph-based features in BotChase and evaluate various ML techniques. The
graph-based features, derived from network flows, overcome severe topological effects.
These effects can skew bot behavior in different networks, exacerbating ML prediction.
Furthermore, these features allow to combine data from different networks and promote
spatial stability [43] in the models.

• We compare the performance of our graph-based features with flow-based features from
BotMiner [37] and BClus [33] in a prototype implementation of BotChase. Furthermore,
we compare BotChase with the end-to-end system proposed for BClus.

• We evaluate the BotChase prototype system in an online setting that recurrently trains
and tests the ML models with new data. This is crucial to account for changes in network
traffic patterns and host behavior.

1.5 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we present a background on
the intrusion kill-chain and bot detection, highlight limitations of the state-of-the-art and
motivate the problem. The system design of BotChase is delineated in Chapter 3. Then,
we evaluate the prototype in Chapter 4. Finally, Chapter 5 concludes with a summary of
our contributions and exposes future research directions.

4



Chapter 2

Background

In this section, we present an overview of the intrusion kill-chain, followed by the state-of-
the-art in bot detection and highlight their limitations.

2.1 Intrusion Kill-Chain

Conventional bot detection assumes successful intrusions and focuses on individual events.
However, in recent sophisticated botnets, a single adversary campaign consists of multiple
small, less detectable attacks. Detecting these bots can be challenging, as a single campaign
may develop over time with multiple steps, each designed to thwart a defense and take place
in different timelines. To cope with this problem, a widely adopted network-based method
is detection of C2 channels. C2 occurs at the early stages of a botnet’s lifecycle, thus its
detection is essential to prevent malicious activities [35,54,62].

All adversarial attacks occurring in cyberspace have patterns that can be described
as a chain of events—the intrusion kill-chain [41], depicted in Fig. 2.1. On a high-level,
a bot starts with reconnaissance, observing and identifying a target in the network, and
creating a weaponized payload. Weaponization of payloads take the form of malicious
emails and attachments, which are delivered to the subject of interest. Exploitation starts
after delivery, where the malevolent code gets triggered. While malicious code execution
can be standalone, some malwares exploit applications on the subject’s machine. This can
range from OS-based bugs (e.g., in RDP and PsExec) to application-based faults (e.g.,
in live processes, such as Google Chrome, Mozilla Firefox and Microsoft Word). The bot

5



Reconnaissance Weaponization Delivery

Exploitation

InstallationCommand
& ControlAction

Figure 2.1: Intrusion kill-chain

then proceeds with the installation of a security back-door on the system, which permits
external persistent connections. These connections are then leveraged for C2.

On top of C2, the kill-chain identifies another crucial host-based bot behavior, lateral
movement (LM). LM includes reconnaissance, credential stealing, and infiltrating other
hosts controlled by bots to move laterally within the network to gain higher privileges and
fulfill adversarial objectives. It is less likely that adversaries launch a successful intrusion
without LM, as the adversarial target is typically not directly reachable from the outside of
a network. Thus, detecting bot propagation using LM is also advantageous as it contributes
to early botnet detection and classification [41, 45]. Nevertheless, both C2 and LM leave
network footprints, which is the focus of our network-based bot detection mechanism.

2.2 Bot & Botnet Detection

Bot(net) detection has been an active area of research that has generated a substantial
body of work. Common botnet detection approaches are passive. They assume successful
intrusions and focus on identifying infected hosts (bots) or detecting C2 communications,
by analyzing system logs and network data, using signature- or anomaly-based techniques.

2.2.1 Signature-Based

Signature-based techniques have commonly been used to detect pre-computed hashes of ex-
isting malware in hosts and/or network traffic. They are also used to isolate internet relay

6



chat (IRC) based bots by detecting bot-like IRC nicknames [36], and to identify C2-related
DNS requests by detecting C2-like domain names [53]. More generally, signature-based
techniques have been employed to identify C2 by comparison with known C2 communi-
cation patterns extracted from observed C2 traffic. It may also signify infected hosts by
comparison with static profiles and behaviours of known bots [45]. Signature-based tech-
niques owe their popularity to their ability to detect known threats in an efficient manner.
However, they can be easily subverted by unknown or modified threats, such as zero-day at-
tacks and polymorphism [27,45]. This undermines their suitability to detect sophisticated
modern botnets.

2.2.2 Anomaly-Based

On the other hand, anomaly-based techniques use heuristics to associate certain behaviour
and/or statistical features extracted from system or network logs, with bots and/or C2 traf-
fic. C2 occurs at the early stages of a botnet’s lifecycle, thus its detection is deemed essential
to prevent malicious activities. Most existing anomaly-based C2 detection techniques are
based on the statistical features of packets and flows [19,23,36,37,44,48,49,54,56,58,60–62].
Works like [19, 44] are focused on specific communication protocols, such as IRC, provid-
ing narrow-scoped solutions. On the other hand, Botminer [37] is a protocol-independent
solution, which assumes that bots within the same botnet are characterized by similar ma-
licious activities and communication patterns. This assumption is an over simplification,
since botnets often randomize topologies [45] and communication patterns as we observe
in newer malware, such as Mirai [14]. Other works, such as [54, 62], leverage ML and
traffic-based statistical features for detecting C2 with low error rates. However, such tech-
niques require that all flows are compared against each other to detect C2 traffic, which
incurs a high computational overhead. In addition, they are unreliable, as they can be
evaded with encryption and by tweaking flow characteristics [57]. Therefore, it is evident
that a non-protocol-specific, more efficient, and less evadable detection method is desired.
Based on the information used or the point of observation, anomaly-based detection can
be classified as host-based, network-based and hybrid.

7



2.3 Anomaly-Based Botnet Detection Scopes

2.3.1 Host-Based

Anomaly detection at the host level is useful in early botnet detection. Host-based anomaly
detection systems enable quick microscopic per-host analysis, and are suited for known and
observable malware activities. Host-based anomaly detection is typically accomplished by
examining system traces, such as event logs or system calls. Existing works show that host-
based anomaly detection has better potential compared to signature-based detection [26,
34, 35]. However, as they require extensive monitoring of system activities, they consume
host system resources e.g., CPU cycles, memory, virtual machines. Consequently, they
negatively impact user experience on the host.

Another downside of host-based anomaly detection is high error rates, since it experi-
ences high false positives and false negatives when the established norm does not accurately
represent the host behavior. Several studies, including [13] tend to resolve this problem
by leveraging ML. However, though they indeed lower the error rates, their approaches
are primarily designed for offline learning, requiring complete retraining of the ML model
for each set of new input data. Since botnets rapidly evolve, it is imperative to leverage
online, incremental learning to adapt the ML model to these changes.

2.3.2 Network-Based

Network-based anomaly detection collects and analyzes network traces, such as network
packets and flow statistics. Detecting botnets by examining and monitoring network traf-
fic has surfaced several times in the literature [37, 44, 54, 62]. Compared to host-based
approaches, it offers a broader range of analysis, including traffic classification, botnet
clustering, and network-wide anomaly detection with minimal to no performance degrada-
tion of the monitored systems. Karasaridis et al. [44] propose an algorithm for detection
and characterization of botnets based on the analysis of flow data in the transport layer.
However, some existing works, including [44] are focused on specific network protocols,
such as IRC and P2P, providing narrow-scoped solutions.

2.3.3 Hybrid

Existing works suggest that performing different types of botnet detection techniques in
conjunction improves accuracy and precision [27]. Hybrid botnet detection collectively

8



applies host- and network-based techniques. EFFORT [55] integrates host- and network-
based anomaly detection modules based on intrinsic characteristics of bots, and correlates
detection results from them using ML. The evaluation shows that EFFORT detects mal-
ware activities with low false positive (FP) and minimal performance overhead. However,
the detection methods employed by EFFORT are mostly heuristics that assume certain
bot behaviors varying in degree. This can be easily subverted by adversaries with prior
knowledge about the intrusion detection system e.g., adversaries collaborating with insid-
ers.

2.4 Graph-Based Approaches

Anomaly-based bot detection solutions that do not focus on detecting C2 per se, but
rather identify bots by observing and analyzing their activities and behaviour, address
some of the aforementioned issues. Graph-based approaches, where host network activities
are represented by communication graphs, extracted from network flows and host-to-host
communication patterns, are proposed in this regard [24, 25, 28, 31, 32, 38, 40, 42, 46, 50, 57,
59, 63, 64]. BotGM [46] builds host-to-host communication graphs from observed network
flows, to capture communication patterns between hosts. A statistical technique, the inter-
quartile method, is then used for outlier detection. Their results exhibit moderate accuracy
with low false positives (FPs) based on different windowing parameters. However, BotGM
generates multiple graphs for every single host. In other words, for every pair of unique
IPs, a graph is constructed. Every node in the graph represents a unique 2-tuple of source
and destination ports, with edges signifying the time sequence of communication. This
entails a high overhead and will not scale for large datasets.

Chowdhury et al. [24] use ML for clustering the nodes in a graph, with a focus on
dimensionality and topological characterization. Their assumption is that most benign
hosts will be grouped in the same cluster due to similar connection patterns, hence can be
eliminated from further analysis. Such a crucial reduction in nodes effectively minimizes
detection overhead. However, their graph-based features are plagued by severe topological
effects (cf., Chapter 4). They use statistical means and user-centric expert opinion to
tag the remaining clusters as malicious or benign. Nevertheless, leveraging expert opinion
can be cumbersome, error prone and infeasible for large datasets. Recently, rule-based
host clustering and classification [63,64] have been proposed, where pre-defined thresholds
are used to discriminate between benign and suspicious hosts. Unfortunately, relying on
static thresholds makes the technique prone to evasion and less robust to ML-based outlier
detection.

9



Graph-based approaches using ML for bot detection are intuitive and show promising
results. In this thesis, we propose BotChase, an anomaly-, graph-based bot detection
system, which is protocol agnostic i.e., it detects bots regardless of the protocol. BotChase
employs graph-based features in a two-phased ML approach, which is robust to zero-day
attacks, spatially stable, and suitable for large datasets. It first employs unsupervised
learning to reduce training data points for large datasets, followed by supervised learning
to achieve bot detection with high precision.

10



Chapter 3

BotChase

3.1 Architecture

The BotChase system consists of three major components, as depicted in Fig. 3.1. These
components pertain to data preparation and feature extraction, model training, and infer-
ence. In the following, we discuss these components.

3.2 Dataset Bootstrap

3.2.1 Flow Ingestion

The input to the system are bidirectional network flows. These flows are transformed to
form a set T that contains 4-tuple flows ti = {sipi, srcpktsi, dipi, dstpktsi}. Where
sipi is the source IP address that uniquely identifies a source host, srcpktsi quantifies the
number of data packets sent by sipi to dipi, the destination host IP address. The number
of destination packets, dstpktsi, is the number of data packets sent by dipi to sipi.

Set A is a set of tuples that have exclusive source and destination hosts. That is,
if multiple tuples have the same source and destination hosts, they are reduced to form
an aggregated exclusive tuple ax ∈ A, such that ax = {sipx, srcpktsx, dipx, dstpktsx}.
Therefore, if two tuples ti, tj ∈ T have the same source and destination hosts i.e., sipx =
sipi = sipj and dipx = dipi = dipj, then the number of source packets and the number of

11



Data Bootstrap

Model Training

Flow
Ingestion

Graph
Transform

Feature
Extraction

Feature
Normalization

Phase 1
(Unsupervised)

Phase 2
(Supervised)

InferenceHost

Benign

Bot

Figure 3.1: Components of the BotChase bot detection system

destination packets are aggregated in ax, such that

srcpktsx =
∑

tk∈T | sipx=sipk,dipx=dipk

srcpktsk (3.1)

dstpktsx =
∑

tk∈T | sipx=sipk,dipx=dipk

dstpktsk. (3.2)

12



3.2.2 Graph Transform

The system creates a graph G(V, E), where V is a set of nodes and E is a set of directed
edges ei,j from node vi to node vj with weight |ei,j|. The set of nodes V is a union of hosts
from set A, such that

V =
⋃

∀ax∈A

{sipx ∪ dipx}. (3.3)

For every ax ∈ A, there exist directed edges ei,j and ej,i from vi to vj and vj to vi,
respectively, such that sipx = vi and dipx = vj. Therefore,

E =
⋃

∀ax∈A

{(sipx, dipx) ∪ (dipx, sipx)}. (3.4)

The weights |ei,j| and |ej,i| of edges ei,j and ej,i are srcpktsx and dstpktsx, respectively.
Moreover, if there exists a reverse tuple ay ∈ A | dipy = vi, sipy = vj, then |ei,j| =
srcpktsx + dstpktsy and |ej,i| = dstpktsx + srcpktsy.

3.2.3 Feature Extraction

BotChase creates the required graph-based feature set for the ML models. Features are
intrinsic to the success of ML models that should genuinely represent and discriminate
host behavior, especially that of bots. We leverage the following set of commonly used
graph-based features.

• In-Degree (ID) and Out-Degree (OD)—The in-degree, fi,0, and out-degree, fi,1, of
a node vi ∈ V are the number of its ingress and egress edges, respectively.

F(ei,j) =

{
1, if ei,j ∈ E
0, otherwise

(3.5)

fi,0 =
∑

vj∈V, vi 6=vj

F(ej,i) ∀vi ∈ V (3.6)

fi,1 =
∑

vj∈V, vi 6=vj

F(ei,j) ∀vi ∈ V (3.7)

13



These features play an important role in the network behavior of a host. Although a
higher ID for a host makes it a point of interest, it is often the case that nodes with
a high ID offer a commonly demanded service. Therefore, observing ID alone may not
signify malicious activity. For example, a gateway is a central point of communication in
a network, but it is not necessarily a malicious endpoint. Intuitively, bots attempting to
infect the network will tend to have a higher ID than benign hosts. Similarly, OD is also
an intrinsic feature. Typically, in the reconnaissance stage of the intrusion kill-chain,
bots attempt to survey the network. This mass surveillance can be captured via the OD.

• In-Degree Weight (IDW) and Out-Degree Weight (ODW)—These features aug-
ment the ID and OD of the nodes in the graph. The in-degree weight, fi,2, and the
out-degree weight, fi,3, of a node vi ∈ V is the sum of all the weights of its incoming and
outgoing edges, respectively.

fi,2 =
∑

vj∈V, vi 6=vj , ej,i∈E

|ej,i| ∀vi ∈ V (3.8)

fi,3 =
∑

vj∈V, vi 6=vj , ei,j∈E

|ei,j| ∀vi ∈ V (3.9)

For a fine-grained differentiation, it is important to expose features that will eventually
bring bots closer to each other, and discriminate bots from hosts. IDW and ODW
features add another layer of information, further alienating the malicious hosts from
the benign. Similar to ID, mass-data leeching bots will tend to expose a high IDW in
the action phase of the intrusion kill-chain. Similarly, the ODW is the aggregate data
packets a node has sent, which can potentially expose bots that mass-send payloads to
hosts in a network.

• Betweenness Centrality (BC)—The betweenness centrality of a node vi ∈ V , inspired
from social network analysis, is a measure of the number of shortest paths that pass
through it, such that

fi,4 =
∑

vj ,vk∈V, vi 6=vj 6=vk

σvjvk(vi)

σvjvk
∀vi ∈ V. (3.10)

Where σvjvk is the total number of shortest paths between node pairs vj, vk ∈ V , and
σvjvk(vi) is the number of shortest paths that pass through vi. This feature has a high
computational overhead with O(|V |.|E|+ |V |2. log |V |) time complexity [21]. However, it

14



can alienate bots early on as they attempt their first connections. This is when the bots
exhibit low IDW and ODW. Thus, it would be more favorable for the shortest paths in
the network to pass through the host. Likewise, when the IDW and ODW increase, the
BC of a node decreases immensely, as it is less favored for being included in shortest
paths.

• Local Clustering Coefficient (LCC)—Unlike BC, local clustering coefficient has a
lower computational overhead, and it quantifies the neighborhood connectivity of a node
vi ∈ V , such that

fi,5 =

∑
vj ,vk∈Ni, vi 6=vj 6=vk

F(ej,k)
|Ni|(|Ni| − 1)

∀vi ∈ V (3.11)

Where Ni is neighborhood set for vi, ∀vj ∈ Ni | ei,j ∈ E∨ ej,i ∈ E. The LCC feature can
play an important role in discriminating malicious host’s behavior. Successfully infected
hosts tend to exhibit a higher LCC, as bots often deploy collaborative P2P techniques,
making adjacent host pairs strongly connected.

• Alpha Centrality (AC)—Alpha centrality, also inspired from social network analysis,
is a feature that generalizes the centrality of a node vi ∈ V . AC extends the Eigenvector
centrality (EC), with the addition that nodes are also influenced by external sources.
These external sources can be user-defined, according to their graphical analysis tech-
nique. In EC, each vi is assigned an influence score xi, that is iteratively exchanged with
adjacent nodes. In essence, EC is the relative weight of a node in the graph, such that
connections to high-scoring nodes contribute more to the score of vi. Hence, AC is given
as

fi,6 = αAT
i xi + ei ∀vi ∈ V. (3.12)

Where Ai is the adjacency matrix, ei is the external influence of node vi, and α is
influence factor that controls the bias in between external and internal sources. AC is
important for the intermediate and terminal phases of the intrusion kill-chain. Early on,
it may be negligible. However, as time progresses and bots perform more actions in the
network, their AC will gradually increase, making it discriminative.

3.2.4 Feature Normalization (F-Norm)

Topological alterations can severely affect the host’s behavior and pattern of communica-
tion in the graph. For example, in Fig. 3.2, g acts as a gateway for host h2 to communicate
with the rest of the network (i.e., hosts h3, h4 and h5). In this configuration, h2 carries

15



h1 h2 g h3

h4 h5

Figure 3.2: Example topology of benign hosts with a gateway

h1 h2 h3

h4 h5

Figure 3.3: Example topology of benign hosts without a gateway

an ID of 2. In contrast, Fig. 3.3 shows the topology without a gateway, where h2 commu-
nicates with other hosts in the network individually. This boosts the ID of host h2 to 4.
To alleviate this adverse effect of different network topologies, we normalize the above base
features to include neighborhood relativity. To control the overhead of computing these
normalized features, the neighborhood set Ni for vi ∈ V is restricted to a certain depth D.
The mean of j features for vi across its neighbors vk ∈ Ni are computed. Each feature for
vi is then normalized by incorporating neighborhood relativity. Thus, features relative to
their neighborhood mean is given as

µi,m =

∑
vk∈Ni

fk,m

|Ni|
∀vi ∈ V, 0 ≤ m ≤ j (3.13)

fi,m =
fi,m
µi,m

∀vi ∈ V, 0 ≤ m ≤ j. (3.14)

After normalizing the features (with D = 2) for h2 and h4 with gateway, their IDs
change from 2 to 0.8 and 3 to 1.1, respectively. Without the gateway, their IDs change
from 4 to 1.6 and 3 to 1.1, respectively. As aforementioned, normalization attempts to

16



make hosts of the same nature look similar, making the topological alterations less severe.
Similarly, in situations where network data is recorded over varying time intervals, IDW and
ODW tend to increase substantially with larger time intervals. By normalizing features,
the effect of time also diminishes. Appendix B depicts a straightforward approach for
implementing F-Norm.

3.3 Model Training

The model accepts graph-based features as input and learns to distinguish between mali-
cious and benign hosts. Two learning phases in BotChase are explained below.

3.3.1 Phase 1

The first ML phase performs unsupervised learning (UL) to cluster the hosts. Generally,
benign hosts exhibit similar behavior that can be gauged by the graph-based features.
These hosts exhibit resembling patterns in data, such as sending (OD/ODW) and receiving
(ID/IDW) similar number of packets [24]. Since BC, LCC and AC are directly affected by
these traits, their influence can be similar for all benign hosts. Therefore, maximizing the
size of the “singleton” benign cluster is crucial.

Not only does this phase act as a first filter for new hosts, but also significantly reduces
the training data for the second phase. If a host is clustered into the benign cluster,
then it is strictly benign. However, it is important to note that a malicious host can
also be incorrectly clustered into a benign cluster, adversely affecting system performance.
Therefore, although the system objective is to maximize the size of the benign cluster, it
is essential to jointly minimize the number of bots that are co-located in this cluster.

Various UL techniques can be deployed in this phase. Some of these techniques include
k -Means, Density-Based Spatial Clustering (DBScan) and Self-Organizing Map (SOM).

• k-Means—The k-Means clustering algorithm attempts to find an optimal assign-
ment of nodes to k pre-determined clusters, such that the sum of the pairwise dis-
tance from the cluster mean is minimized. k-Means is static, it results in the same
cluster composition for a given dataset across different runs of the algorithm, with
the same number of clusters and iterations. Assume k is set to the cardinality of the
label set. Idealistically, there should be a clean assignment of hosts to corresponding
clusters. However, in reality, some benign hosts exhibit an outlier behavior. For

17



example, network nodes which host webservers and public APIs will depict a huge
amount of data and connections. Thus, ID, IDW, OD and ODW features will be
affected. Therefore, depending on the characteristics of the dataset, altering k may
adversely affect clustering performance.

• Density-Based Spatial Clustering (DBScan)—Unlike k-Means, DBScan does
not require the parameter k, the pre-determined number of clusters. In contrast, it
computes the clusters and assignment of nodes according to a rigid set of density-
based rules. DBScan requires a pair of parameters: (i) p, the minimum number
of points required to be assigned as core points, and (ii) e, the minimum distance
required to detect points as neighbors. DBScan classifies points as core, edge or noise,
where core points must have p points in their neighborhood with a distance less than
e. Otherwise, if the point is reachable via e distance from at least one of the core
points, it is considered an edge. The remaining points are considered noise and are
not clustered. In other words, points are not forcefully assigned to clusters as some
points may just be noise. Therefore, DBScan is capable of detecting non-linearly
separable clusters.

• Self-Organizing Map (SOM)—A SOM is a special purpose artificial neural net-
work that applies competitive learning instead of error-correction. It is frequently
used for dimensionality reduction and clusters similar data. However, the notion of
similarity in SOM is looser than that of k-Means and DBScan. In SOM, neurons are
“pushed” towards the data points for a certain number of iterations. SOM uses the
best matching unit to determine the winner neuron and updates its weights accord-
ingly. Furthermore, it also applies a learning radius that affects all the other neurons,
when a close-by neuron is updated. The number of neurons also plays an important
role in clustering. Higher number of neurons results in the dispersion of nodes away
from a single cluster. Importantly, the same logic applies to k-Means, hence the clas-
sifier with the best assignment must be selected, according to the objectives outlined
in this phase.

3.3.2 Phase 2

Phase 1 separates the dataset between nodes that are inside and outside the benign cluster.
All the nodes, ideally small, that reside outside the benign cluster are used as input to
Phase 2 for further classification. Optimally, all the bots should be outside the benign
cluster, regardless of whether or not they are co-located in the same cluster. Depending

18



on the amount of hosts outside the benign cluster, the supervised learning (SL) classifiers
used in this phase will exhibit different results.

The primary objective in this phase is to maximize recall. Recall is a measure of
how many bots are recalled correctly i.e., do not go unnoticed. It is proportional to the
number of true positives (TPs) and inversely proportional to that of false negatives (FNs).
Various SL classifiers can be deployed in this phase to achieve this objective, such as logistic
regression (LR), support vector machine (SVM), feed-forward neural network (FNN) and
decision tree (DT).

• Logistic Regression (LR) and Support Vector Machine (SVM)—LR focuses on
binary classification of its input, based on a sigmoid function. Input features are coupled
with corresponding weights and fed into the function. Once a threshold p is defined,
usually 0.5 for the logistic function, it establishes the differentiator between positive and
negative points. Unlike LR, SVM is a non-probabilistic model for classification. It is not
restricted to linearly separable datasets. There are various methods of computing SVM,
including the renowned gradient-descent algorithm.

• Feed-forward Neural Network (FNN)—FNNs are artificial neural networks that do
not contain any cyclic dependencies. For a given feed-forward network with multiple
layers, a feature vector is dispersed into the input layer, fed to the hidden layer of the
network, and then to its output layer. While the input layer is constrained by the number
of features exposed, the hidden and output layers are not. Every neuron may rely on
a separate activation function that shapes the output. Popular activation functions for
FNNs include identity, sigmoid, ReLU and binary step, among others. FNNs and the
previously mentioned SL techniques are online classifiers. An online classifier is capable
of incremental learning, as the weights associated with the deployed perceptrons are not
static. This makes FNNs an attractive candidate for production-grade deployment.

• Decision Tree (DT)—DTs rely heavily on Information Entropy (IE) and gain to con-
jure its conditional routing procedure. Generally, IE states how many bits are needed to
represent certain stochastic information in the dataset. By using DT, information gain
is maximized from the observed data and the taken path. After training a DT, newly
observed data points can be predicted upon. However, unlike all the other classifiers,
DTs are not online. That is, optimally retraining a DT must be done from scratch.

Recall the objective from Phase 1, i.e., minimize hosts outside the benign cluster
(HOB), while maximizing bots outside the benign cluster (BOB). This results in a mini-
mal training dataset for Phase 2. Also, it is expected that the resultant training dataset

19



from Phase 1 would be unbalanced, with a bias towards benign hosts. This may prove
problematic for LR, SVM and FNN in achieving high recall rates.

3.4 Inference

Once the models are trained, they are deployed in the system to perform bot detection.
Ideally, the system must allow for two modes of execution: (i) model (re)training, to adjust
to the dynamics of the network, and (ii) inference, i.e., for a given host predict whether or
not it is a bot. In BotChase, the inference unfolds in two steps—presumable benign hosts
get filtered out in Phase 1 as they get assigned to the benign cluster, while suspicious hosts
assigned to a different cluster are further classified in Phase 2. Fig. 3.4 captures the inner
workings of host classification. To preserve consistency, the system must synchronize and
execute requests in order of observation.

[f0, f1, f2, ..., fj]i

Phase 1

HOB?

Phase 2

Bot Benign

Yes

No

Figure 3.4: Flowchart of node classification with i nodes and j features

20



Chapter 4

Evaluation

We implement and evaluate the BotChase prototype bot detection system on a Hadoop
cluster. In this section, we detail the experimental setup and the results of our evaluation.

4.1 Environment Setup

4.1.1 Hardware

The Hadoop cluster consists of a management node, a compute node and four data nodes.
Table 4.1 delineates the configuration of these nodes. A 25Gbit and 10Gbit physical net-
works are deployed, interconnecting the nodes. The former network is primarily used for
data and applications, while the latter one is for administration.

Table 4.1: Hardware Configuration of the Hadoop Cluster

Node Configuration

1x Management Node - 2x Intel Xeon Silver 4114
- 192 GB RAM

1x Compute Node - 2x Intel Xeon Gold 5120
- 384 GB RAM

4x Data Node - 2x Intel Xeon Silver 4114
- 192 GB RAM

21



4.1.2 Software

The software implementation is primarily based on Java. To ease dependency management,
we incorporate Gradle [29]. JGraphT [51] graph library is used to construct the graph and
extract graph-based features from network flows. Both Smile [47] and Encog [39] are used
in tandem for ML. In order to support rapid prototyping, a custom in-house DataFrame
(DataFrame4J) library has been developed. DF4J conforms to the incremental streaming
paradigms, data streams with well-defined sources, stages and sinks. Furthermore, the
underlying data structures are immutable, and all the basic stream-based transformations
are available. More details about DF4J are provided in Appendix A.

4.2 Dataset

The evaluation of BotChase is based on the CTU-13 [33] dataset. CTU-13 comprises of 13
different subset datasets (DS) that include captures from 7 distinct malware, performing
port scanning, DDoS, click fraud, spamming, etc. Every subset carries a unique network
topology with a certain number of bots that leverage different protocols. Table 4.2 summa-
rizes the dataset duration, number of flows and bots, and the type of bot in every subset.
CTU-13 labels indicate whether a flow is from/to botnet, background or benign. Known
infected hosts are labeled as bots, while the remaining hosts are tagged as benign. We
leverage 12 datasets as base training data, while a single dataset, #9, is left out for testing
purposes. This test dataset contains NetFlow data collected from a Neris botnet, 10 unique
hosts labeled as bots, performing multiple actions including spamming, click fraud, and
port scanning. We use this dataset configuration for training and testing, unless stated
otherwise.

4.3 Performance

4.3.1 Graph Transform, Feature Extraction & Normalization

For every subset in the CTU-13 dataset, BotChase first ingests all the network flows, creates
the graph, extracts base features and then normalizes them. For each dataset, Table 4.3
highlights the graph creation time i.e., graph transform (GT), number of graph nodes
(|V |), total runtime to extract only base BC feature and all base features (FE), and total
runtime to normalize features (F-Norm).

22



Table 4.2: CTU-13 Dataset

DS Duration # Flows Bot # Bots

1 6.15 2824637 Neris 1
2 4.21 1808123 Neris 1
3 66.85 4710639 Rbot 1
4 4.21 1121077 Rbot 1
5 11.63 129833 Virut 1
6 2.18 558920 Menti 1
7 0.38 114078 Sogou 1
8 19.5 2954231 Murlo 1
9 5.18 2753885 Neris 10
10 4.75 1309792 Rbot 10
11 0.26 107252 Rbot 3
12 1.21 325472 NSIS.ay 3
13 16.36 1925150 Virut 1

Table 4.3: Graph Transform, Base Feature Extraction and Normalization Computation

DS GT Nodes BC FE F-Norm
(seconds) (hours) (hours) (seconds)

1 9 606829 24.12 24.121 11.3
2 6 441845 10.387 10.624 7.9
3 21 434489 9.463 9.713 13.755
4 5 185742 1.37 1.431 6.307
5 1 41548 0.057 0.06 0.556
6 3 107056 0.28 0.295 2.112
7 1 38081 0.021 0.022 0.488
8 13 383339 9.67 9.954 9.617
9 10 366881 8.677 8.97 7.879
10 7 197542 1.06 1.108 4.861
11 1 41809 0.055 0.057 0.627
12 2 94164 0.287 0.302 1.412
13 9 315343 3.667 3.852 6.824

23



It is evident that there is a non-linear relationship between BC and the number of
nodes in the graph. Furthermore, the inconsistent variation between GT and the number
of nodes is due to the differing time windows across datasets. Also, dataset #3 has a much
higher number of flows than #2, which increases the runtime of graph creation. This is
primarily due to the repeated modification of exclusive flow tuples in set A. The system
then normalizes the base features, and Table 4.3 depicts its total runtime with D = 1.
Evidently, normalizing features does not significantly increase the total runtime of the
system. The largest runtime reported for the most complex dataset is 13.755 seconds.

4.3.2 Stand-alone SL

We start by highlighting the limitations of a stand-alone supervised learning approach.
This consists of evaluating supervised ML classifiers, including DT, LR, SVM and FNN
for bot detection. Each classifier employs graph-based normalized features and is trained
on the entire training dataset. In our experiments, DT uses the Gini instance split rule
algorithm, LR is used without regularization, and SVM uses the Gaussian kernel with a
soft margin penalty of 1. Moreover, NN is configured to use cross entropy as an error
function and 10 hidden layers of 1000 units each. Table 4.4 highlights the results, where
LR and DT show meaningful classification. Both LR and DT classifiers result in a 100%
recall, with 91% and 83% precision, respectively. With LR’s superiority in precision, it
seems to be the classifier of choice. The other classifiers were able to accurately classify all
the benign hosts, but failed to identify any bots.

Table 4.4: Stand-alone Supervised Learning with F-Norm

Classifier TP FP TN FN Recall Precision

DT 10 2 366869 0 100 83
LR 10 1 366870 0 100 91
SVM 0 0 366871 10 0 0
FNN 0 0 366871 10 0 0

To be fair to SVM and FNN, the input must be balanced. The bots to benign hosts
ratio is quite minimal. This heavily affects the bias in the aforementioned classifiers to the
benign hosts. To provide balance, we follow a mixed sampling approach. The benign hosts
become subject to downsampling to a defined set size (1k, 2k, 5k, 10k). We then perform
oversampling with replication for the bots. This provides a balance in between the labels.
Given this technique, Table 4.5 depicts the corresponding results.

24



Table 4.5: Stand-alone SL with F-Norm and Balanced Input

Classifier TP FP TN FN Recall Precision

DT 10 13 366858 0 100 43
LR 10 7 366864 0 100 59
SVM 10 381 366490 0 100 2
FNN 10 250 366621 0 100 4

We find that all the classifiers are viable now. In particular, SVM and FNN are now
able to classify bots, albeit with quite a few FPs. DT and LR remain the most promising
models after the balancing changes, giving them an edge against the other classifiers.

We then evaluate the training time and robustness of the stand-alone classifiers, as
depicted in Tables 4.6 and 4.7. DT requires the least training time of 4.9 seconds, which is
in high contrast to the 58.2 seconds for LR. That is, DT requires only 8.4% of LR’s training
time for the entire training dataset. It is also essential for a bot detection system to detect
bots that the classifier has never seen before i.e., unknown or zero-day attacks. Therefore,
to evaluate robustness to zero-day attacks, we change the selection of the training and
testing datasets. We choose dataset #6 for testing, which has a unique bot that is not
present in any other dataset. The remaining datasets are aggregated to form the training
set, with 34 bots and a total of ≈3.1M hosts. Evidently, DT outperforms LR, which
misclassifies a benign host, with a low precision of 50%.

Table 4.6: Training Time of Stand-alone Supervised ML Classifiers

Classifier Training Time (s)

DT 4.9
LR 58.2
SVM 6832.3
FNN 93

Based on the above evaluations, LR outperforms DT in precision, while DT shows
superior training time and robustness to unknown attacks. However, precision, training
time and robustness are all crucial for our bot detection system. Can we achieve the best
of all three? To investigate this, we set out to evaluate a two-phased system that employs
an initial clustering phase (UL), followed by a classification phase (SL). We delineate its
evaluation in the following subsections.

25



Table 4.7: Stand-alone Supervised Learning against Previously Unknown Bot

Classifier TP FP TN FN Recall Precision

DT 1 0 107055 0 100 100
LR 1 1 107054 0 100 50
SVM 0 0 107055 1 0 0
FNN 0 0 107055 1 0 0

4.3.3 Phase 1 (UL)

For Phase 1 in BotChase, we evaluate three UL techniques, namely k-Means, DBScan
and SOM. However, DBScan results are inconclusive, where bots are co-located with be-
nign hosts. DBScan is evaluated with varying minimum number of neighborhood points
(minPts) and distance (ε). Multiple ε values are tested in the range of [10-5, 10-4, ..., 105].
Also, we infer ε values that correspond to the boundary of the bots themselves. We vary
minPts in [1, 2, ..., 25] depending on the number of bots in the aggregated training dataset.
However, maximal separation of bots from benign hosts could not be achieved with the
tested parameters. In essence, DBScan does not produce a single, prevalent benign clus-
ter. On the other hand, both k-Means and SOM show appreciable results, where SOM is
trained with a learning rate of 0.7.

Tables 4.8 and 4.9 highlight the evaluation metrics, including number of clusters or
neurons, number of hosts outside the benign cluster (HOB), percentage of hosts outside
the benign cluster relative to the total number of hosts (HOB%), number of bots outside
the benign cluster (BOB), and percentage of bots relative to the total number of bots
(BOB%). Recall, the dataset #9 is removed for testing, which includes 10 hosts labeled
as bots and ≈366K hosts. Also, ≈3.2M hosts from the remaining datasets are used to
train the classifiers. In comparison to the number of clusters for k-Means, SOM is able
to alienate its first bot outside the benign cluster with a lower number of neurons (9 vs.
16). With 81 neurons, SOM has a recall rate of 92% compared to the 42% of k-Means.
However, k-Means catches up with 121 clusters. Nevertheless, SOM outperforms k-Means
by maximizing the number of bots isolated with a smaller number of neurons.

With a cluster size of 100, k-Means alienates 21 bots, while having an outside host sum
of 3028 for the remaining non-benign clusters. In contrast, SOM removes 23 bots from
the benign cluster with an outside host sum of 3675. The very next k-Means cluster size
i.e., 121, boosts HOB from 3028 to 26935, while SOM remains at a close 3894. However,
k-Means isolates three extra bots, yielding 24 BOB for 26935 HOB. That is, three extra
bots were detected for a ≈23K increase in HOB. Recall, our objective in this phase is to

26



Table 4.8: k-Means Clustering with F-Norm

# of Clusters HOB HOB% BOB BOB%

4 5 0.0002 0 0
9 12 0.0004 0 0
16 36 0.0012 1 4
25 94 0.0033 6 24
36 170 0.0059 6 24
49 473 0.0164 8 32
64 1071 0.0371 10 40
81 1133 0.0392 10 40
100 3028 0.1049 21 87.5
121 26935 0.9327 24 96
144 27100 0.9384 24 96
169 27302 0.9454 24 96
196 27359 0.9474 24 96
225 28752 0.9956 24 96

Table 4.9: SOM Clustering with F-Norm

# of Neurons HOB HOB% BOB BOB%

4 10 0.0004 0 0
9 29 0.0010 1 4
16 49 0.0017 1 4
25 113 0.0039 6 24
36 286 0.0099 7 28
49 556 0.0193 8 32
64 1709 0.0592 10 40
81 3524 0.1222 23 92
100 3675 0.1274 23 92
121 3894 0.1350 23 92
144 27591 0.9647 24 96
169 27856 0.9740 24 96
196 28342 0.9912 24 96
225 28449 0.9950 24 96

27



0 50 100 150 200

0

20

40

60

80

100

Number of Clusters / Neurons

Tr
ai
ni
ng

T
im

e
(s
)

k-Means
SOM

Figure 4.1: Comparison of SOM and k-Means with respect to training time

jointly minimize HOB while maximizing BOB. Therefore, SOM with 100 neurons becomes
the natural choice.

With respect to runtime, k-Means mostly outperforms SOM, as depicted in Fig. 4.1.
With 100 clusters, k-Means took 16.8 seconds to train, in comparison to 47.1 seconds
of SOM. We speculate that SOM’s ever increasing training time is attributed to how it
updates the surrounding neurons. As the number of neurons increases, the density of their
neighborhood also increases. Eventually, more neurons will tend to be within the threshold
radius. Nevertheless, with recall being our top priority, we leverage SOM as UL classifier
in Phase 1.

4.3.4 Phase 2 (SL)

The training set for Phase 2 is determined by the number of hosts outside the benign
cluster in Phase 1. These are the relevant hosts for this phase, as hosts that are assigned
in the benign cluster never make it to Phase 2. With a 10×10 (i.e., 100 neurons) SOM and
normalized features in Phase 1, the size of the dataset is significantly reduced. Therefore,
we have 3675 HOB, including 23 bots, for further classification in Phase 2.

The DT classifier shows the best performance with the small dataset, as depicted in
Table 4.10. It successfully detects all bots in the test dataset, with only a single FP out of
the 366871 benign hosts. In contrast, all other classifiers are lackluster and unable to recall

28



Table 4.10: Supervised Learning with F-Norm

Classifier TP FP TN FN Recall Precision

DT 10 1 366870 0 100 90.9
LR 0 0 366871 10 0 0
SVM 0 0 366871 10 0 0
FNN 0 0 366871 10 0 0

even a single bot from the dataset. We believe this is because all classifiers, except DT,
rely on gradient-descent for error-correction. This implies that every single node in the
dataset will affect the end-hypothesis function. Thus, with a dataset that is unbalanced,
the hypothesis will be biased towards the benign hosts, which is the case for LR, SVM
and FNN. Table 4.11 shows the results with a balanced training dataset in this current
scenario. SVM and FNN remain unfazed, not being able to classify a single bot. However,
DT shows a significant depreciation of its classification performance. Since this is the
pruned dataset, the number of unique data points present is minimal and the imbalance
isn’t as significant as that observed in the previous standalone SL section. As DT incurs a
significantly less training time than LR, we proceed with the vanilla pruned dataset in the
following analyses.

Table 4.11: Supervised Learning with F-Norm on the Balanced Dataset

Classifier TP FP TN FN Recall Precision

DT 1 0 366871 9 10 100
LR 10 9 366862 0 100 53
SVM 0 0 366871 10 0 0
FNN 0 0 366871 10 0 0

Table 4.13 highlights the training time for the supervised classifiers. For Phase 1,
a 10×10 SOM incurs a training time of 47.1 seconds, while DT has the lowest training
time of 88 milliseconds in Phase 2. Thus, the aggregate training time for both phases is
≈47.2 seconds. This is an 11 seconds improvement over the 58.2 seconds observed for a
stand-alone LR classifier [11].

Using dataset #6 for testing, the robustness test harbors more hosts for training in
Phase 2. Most importantly, there are more BOB, yielding a higher ratio of bots to hosts
outside the benign cluster, as depicted in Table 4.12. The robustness results are portrayed
in Table 4.7. Though LR is able to recall the malicious bot while incurring only a single FP,

29



Table 4.12: SOM with Newly Aggregated Dataset

# of Neurons HOB HOB% BOB BOB%

100 3769 0.0011 32 94.12

Table 4.13: Training Time of Supervised Classifiers on the Pruned Dataset

Classifier Training Time (ms)

DT 88
LR 2454
SVM 864
NN 3278

DT exhibits perfect results on this specific test dataset. It is able to detect the previously
unknown bot, as well as correctly classify all the benign hosts. Therefore, with SOM
selected for Phase 1 and DT for Phase 2, the system ensures minimal training time and
robustness to unknown attacks, with high recall and precision.

4.3.5 Feature Normalization

Recall that aggregating datasets from different networks can negatively impact the base
features, thus compromising system performance. Essentially, the topological structure of
different networks affect the extracted graphical features, greatly skewing bot pattern and
behavior. Thus, the intuition behind feature normalization is to make hosts, including
bots, from different datasets look alike.

Table 4.14 showcases the crucial depreciation of the SOM results without normalizing
graph-based features. For example, with 81 neurons, SOM with and without F-Norm
scores 92% and 60% on BOB, respectively. On average, the results without F-Norm have
a higher HOB. This intrinsic observation signifies the lack of similarity between hosts of
the same category. For example, benign hosts from different networks are not co-located
due to the stark differences in their features. Conversely, with F-Norm, similarly labeled
hosts are more frequently co-located, yielding better BOB and HOB. Hence, normalized
graph-based features significantly improve the spatial stability of ML in BotChase.

For 100 neurons, SOM with F-Norm results in 23 BOB and 3675 HOB. Without F-
Norm, it results in 22 BOB and 8465 HOB, as shown in Figures 4.2 and 4.3. Thus, for the

30



Table 4.14: SOM Clustering without F-Norm

# of Neurons HOB HOB% BOB BOB%

4 8 0.0003 0 0
9 39 0.0014 0 0
16 689 0.0239 0 0
25 935 0.324 0 0
36 2280 0.0790 9 36
49 3792 0.1315 11 44
64 4207 0.1459 14 56
81 6721 0.2333 15 60
100 8465 0.2940 22 88
121 12923 0.4495 24 96
144 20780 0.7248 24 96
169 22607 0.7890 24 96
196 23714 0.8280 24 96
225 42125 1.4803 24 96

same number of neurons, feature normalization was able to maximize BOB, while mini-
mizing HOB. Therefore, we choose 100 neurons with F-Norm as our primary configuration
for SOM.

4.3.6 Feature Engineering

It is important to gauge the significance and impact of the chosen graph-based features on
bot detection. Albeit different feature combinations may impact the results, are all features
necessary? Table 4.15 shows the Pearson’s feature correlation matrix for the normalized
graph-based features. At a glance, we can determine that the first five features are highly
correlated, with a correlation close to or greater than 0.9. Therefore, feature combinations
that exclude some of these features may not exacerbate classification accuracy. On the other
hand, the last two features are highly uncorrelated, with LCC being the least correlated.
Hence, we start with removing IDW and ODW, which decreases the benign cluster size but
results higher on BOB, as shown in Table 4.16. However, Table 4.17 shows the lackluster
performance of the SL classifiers when we eliminate IDW and ODW features. Precision
drops to 52.6% for DT from 90.9% (cf., Table 4.10). Also, LR now misclassifies two benign
hosts as bots.

31



0 50 100 150 200

0

1

2

3

4

·104

Number of Neurons

H
O
B

With F-Norm
Without F-Norm

Figure 4.2: Number of hosts outside the benign cluster (HOB) assigned by SOM with and
without feature normalization

0 50 100 150 200

0

5

10

15

20

25

Number of Neurons

B
O
B

With F-Norm
Without F-Norm

Figure 4.3: Number of bots outside the benign cluster (BOB) assigned by SOM with and
without feature normalization

32



Table 4.15: Pearson’s Feature Correlation Matrix with F-Norm

ID IDW OD ODW BC LCC AC

ID 1 0.99 0.92 0.95 0.96 0.03 0.32
IDW 0.99 1 0.91 0.96 0.97 0.03 0.33
OD 0.92 0.91 1 0.89 0.90 0.08 0.37
ODW 0.95 0.96 0.89 1 0.97 0.04 0.43
BC 0.96 0.97 0.90 0.97 1 0.01 0.46
LCC 0.03 0.03 0.08 0.04 0.01 1 0.01
AC 0.32 0.33 0.37 0.43 0.46 0.01 1

Table 4.16: SOM Clustering without IDW and ODW

# of Neurons HOB HOB% BOB BOB%

100 27404 0.958 24 96

Table 4.17: Supervised Learning without IDW and ODW

Classifier TP FP TN FN Recall Precision

DT 10 9 366862 0 100 52.6
LR 0 2 366869 10 0 0
SVM 0 0 366871 10 0 0
FNN 0 0 366871 10 0 0

33



A weakness of the chosen features is the runtime of BC. For the first dataset, it took
over 24 hours to compute BC. This will render any effort to expedite the learning process in
vain. However, removing BC from the feature set adversely affects the performance of DT,
but not for SOM, as depicted in Tables 4.18 and 4.19. SOM without BC performs identical
to the use of the entire feature set. On the other hand, DT’s precision is affected by the
removal of BC, but it is better than that of the removal of IDW and ODW from the feature
set. While the precision deteriorated, only 6 and 9 benign hosts were misclassified out of
the ≈367K hosts with the removal of BC and IDW/ODW, respectively. This reinforces
the correlation matrix i.e., having these features the most correlated. Since recall and
precision are sought after metrics in BotChase, it is important to include these features for
training and testing classifiers.

Table 4.18: SOM Clustering without BC

# of Neurons HOB HOB% BOB BOB%

100 3622 0.125 23 96

Table 4.19: Supervised Learning without BC

Classifier TP FP TN FN Recall Precision

DT 10 6 366865 0 100 62.5
LR 0 0 366869 10 0 0
SVM 0 0 366871 10 0 0
FNN 0 0 366871 10 0 0

4.4 Comparative Analysis

Given the modularity of BotChase, in-place substitution of modules is possible. For exam-
ple, rather than having graph-based features, the system can leverage flow-based features,
while maintaining the two-phased bot detection. Therefore, we first compare the perfor-
mance of our graph-based features with flow-based and hybrid features from BotMiner
and BClus in BotChase. Furthermore, we compare BotChase with the end-to-end system
proposed for BClus. Finally, we provide a rough comparison against BotGM. For a fair
comparison, we reselected the training and testing datasets. This conforms to the selection
in [33], where the test dataset contains multiple bot types and different network topologies.
The dataset selection of these comparisons is depicted in Table 4.20.

34



Table 4.20: Comparative Training and Testing Datasets

Purpose Dataset

Training 3,4,5,7,10,11,12,13
Testing 1,2,6,8,9

BotMiner aggregates flows based on their source IP, protocol, destination IP and its
corresponding port. These aggregated flows, called C-Flows, are processed in a time epoch
that lasts up to a full day of flow capture. After flows are aggregated, 52 features are
extracted by first mapping every C-Flow into a discrete sample distribution of four random
variables: (i) total number of packets sent and received in a flow, (ii) average number of
bytes per packet, (iii) total number of flows per hour, and (iv) average number of bytes
per second. These random variables are then binned into 13 slots according to pre-defined
percentiles. Through this technique, every variable is converted into a vector of 13 elements,
totaling 52 features per C-Flow.

BClus undertakes a similar clustering approach by grouping flows into instances. These
instances are identified by unique source IPs in a certain time window. Each instance is
represented using 7 features: (i) source IP address, (ii) number of distinct source ports,
(iii) number of distinct destination ports, (iv) number of distinct destination IPs, (v)
total number of flows, (vi) total number of bytes, and (vii) total number of packets. These
instances are then clustered using Expectation Maximization (EM). More features are then
extracted from the clusters themselves to aid JRip, a propositional rule learner, in their
labeling. These features include: (i) total number of instances, (ii) total number of flows,
(iii) number of distinct source IP addresses, and (iv) the average and standard deviation
amount of distinct source ports, distinct destination IPs, distinct destination ports, number
of flows, number of bytes, and number of packets. Hence, every cluster exhibits 15 features,
which are then used by JRip. After training, JRip is capable of classifying each cluster
as malicious or benign. Ground truth label of clusters is determined through a bot flow
threshold that is varied to find the best JRip model.

BotGM uses graph-based outlier detection to detect suspicious flow patterns. It starts
off with extracting events, i.e., converting flows into a key-value entry. The key represents
the source and destination IPs while the value represents the source and destination ports.
Then, a sequence is extracted that tracks the source and destination port variations of
two unique IPs. A directed graph is then extracted from these variations, with vertices
representing a port 2-tuple. The aggregate graphs are then mined for outlier detection.
They use the graph edit distance to gauge how different a graph is from another. The

35



inter-quartile method is then used to detect outliers.

4.4.1 BotMiner Flow-Based vs. Graph-Based Features

We start with the aforementioned flow-based features from BotMiner in BotChase. Ta-
ble 4.21 showcases the outcome of classifying flows using BotMiner features, where only LR
is able to detect a few malicious flows, misclassifying the majority of benign and malicious
flows. To compare, we convert our host classification into flow classification in Table 4.22.
With a recall (RCL) of 0.02% and a precision (PRC) of 16.28%, BotMiner features perform
poorly against the graph-based features. The latter scores 81.57% and 99.51% on recall
and precision, respectively. However, in comparison to host classification (cf., Table 4.26),
the precision is significantly higher as the flows originating from the identified FP hosts
were relatively minimal. Likewise, the different number of flows per host may result in a
lower or higher recall rate. While LR and DT highlight similar host classification results,
DT is the more favorable flow classifier as it does not misclassify prominent benign hosts.

Table 4.21: Supervised Learning with BotMiner Features without F-Norm

Classifier TP FP TN FN RCL PRC

DT 0 1 2550094 34966 0 0
LR 7 36 2550059 34959 0.02 16.28
SVM 0 0 2550095 34966 0 0
FNN 0 0 2550095 34966 0 0

Table 4.22: Flow-Based Supervised Learning

Classifier TP FP TN FN RCL PRC

DT 211452 1037 20145929 47776 81.57 99.51
LR 67006 59657 20087309 192222 25.85 52.9
SVM 0 0 20146966 259228 0 0
FNN 0 0 20146966 259228 0 0

4.4.2 BClus Flow-Based vs. Graph-Based Features

Implementing BClus features in BotChase was an incremental process. Alongside choosing
the optimal number of EM clusters, F-Norm had a major impact on the results. Unlike

36



BotMiner, BClus strictly classifies instances pertaining to unique source IPs. Using a large
time window that fits the entire test dataset, an instance becomes a full representation of
host behavior. As depicted in Table 4.23, our preliminary implementation of BClus without
F-Norm had a zero recall rate across all the trained supervised classifiers. Therefore, to
improve BClus we modified F-Norm to process all the hosts.

Recall that BClus extracts features for source IPs only, thus features of destination IPs
are missing from our data pipeline. The data pipeline only consists of hosts that have
had their features extracted based on previous aggregations. Hence, a direct application
of F-Norm, as implemented in BotChase, results in missing data elements for hosts that
are present in the graph but not in the data pipeline. Therefore, we first naïvely modify
F-Norm to handle non-existent data points with a zero vector. This improves the results of
LR, which now captures a single bot out of 14, while the remaining classifiers still perform
poorly, as depicted in Table 4.24. This comes with no surprise, as a zero vector still affects
the relative values of the host features.

Finally, we transform BClus to account for both source and destination IPs as instances.
This solves the issue with F-Norm, since all unique IPs in the network are mapped into
a corresponding data point and host node in the graph. Using this two-way analysis,
Table 4.25 shows an appreciable improvement over the former iterations. DT manages
a jump from 0% to 64.29% in recall and 81.82% in precision. However, even after the
improvements to BClus features, it significantly underperforms our graph-based features.
Table 4.26 showcases the performance of the graph-based features on the new dataset
selection. It exhibits convincing results for both DT and LR, with high rates of 85.71%
and 80% on recall and precision, respectively.

Interestingly, DT and LR have similar performance on host classification yet different
on flow classification. Although both classifiers agree metrics-wise, the underlying sets of
hosts tagged as bot or benign are different. Hence, it is possible to combine the classifiers
into a single decision making entity. A simple rule to boost our classification results could
be to flag a host as a bot if at least one classifier concurs. While this can potentially increase
the recall rate, precision is expected to decline as FPs are aggregated across classifiers.

4.4.3 BClus Hybrid vs Graph-Based Features

So far, we have experimented with both BClus’ flow-based features and BotChase’s graph-
based ones. How would they fair if paired in the same ML model? With 6 flow-based and 7
graph-based features, every unique host in the network depicts 13 features to be processed
by the system. In this experiment, we resort to BotChase as our base architecture, only

37



Table 4.23: Supervised Learning with BClus Features and without F-Norm

Classifier TP FP TN FN Recall Precision

DT 0 10 1651678 14 0 0
LR 1 3 1651685 13 7.14 25
SVM 0 0 1651688 14 0 0
FNN 0 0 1651688 14 0 0

Table 4.24: Supervised Learning with BClus Features and Modified F-Norm

Classifier TP FP TN FN Recall Precision

DT 0 1 1651687 14 0 0
LR 1 4 1651684 13 7.14 20
SVM 0 0 1651688 14 0 0
FNN 0 0 1651688 14 0 0

Table 4.25: Supervised Learning with BClus Features and Two-way F-Norm

Classifier TP FP TN FN Recall Precision

DT 9 2 1905934 5 64.29 81.82
LR 7 8 1905928 7 50 46.67
SVM 0 0 1905936 14 0 0
FNN 0 0 1905936 14 0 0

Table 4.26: Supervised Learning with F-Norm

Classifier TP FP TN FN Recall Precision

DT 12 3 1905933 2 85.71 80
LR 12 3 1905933 2 85.71 80
SVM 0 0 1905936 14 0 0
FNN 0 0 1905936 14 0 0

38



changing the amount of features computed per unique source IP. Table 4.27 shows the
results of the corresponding analysis. When compared to the graph-based baseline, LR
was able to detect an additional bot while incurring 6 additional FPs. This boosts the
recall rate to 92.86% while bringing down the precision to an unimpressive 59.09%. On
the other hand, the metrics for DT did not change.

Table 4.27: Supervised Learning with BClus Hybrid Features and F-Norm

Classifier TP FP TN FN Recall Precision

DT 12 3 1905933 2 85.71 80
LR 13 9 1905927 1 92.86 59.09
SVM 0 0 1905936 14 0 0
FNN 0 0 1905936 14 0 0

4.4.4 BClus End-to-End vs. BotChase

As part of our comparative analysis, we also implement the entire BClus approach and
perform classification on their pre-defined selection of datasets. After optimizing the num-
ber of EM clusters and JRip folds, we converge on the best possible configuration. With
12 EM clusters, BClus performs a record 100% recall rate on the test datasets, with an
extremely poor precision rate of 6%. Additionally, Table 4.28 shows a high cost of 423.9
seconds to solely train EM. BClus significantly underperforms BotChase, which scores a
minimal 21.9 seconds of total training time and high rates of ≥ 80% on both recall and
precision.

Table 4.28: BClus End-to-End Results

EM Training TP FP TN FN RCL PRC
Clusters Time (s)

12 423.9 14 219 1651469 0 100 6

4.4.5 BotGM vs. BotChase

As the final comparison, we compare BotChase to BotGM. Both systems, attempt to
catch malicious and outlier behavior using graph methodologies. In [46], BotGM shows an

39



impressive accuracy of up to 95% on one of the test datasets. Can BotChase do better?
We perform a leave-one-out approach, targeting one test dataset and taking the rest for
training. The results are depicted in Table 4.29.

Table 4.29: Accuracy of BotGM vs BotChase

Algorithm Scenario ID
1 2 6 8 9

BotGM 0.91 0.78 0.95 0.89 0.83
BotChase 0.98 0.97 0.94 0.84 0.99

BotChase scores an aggregate high of 99% with a low of 84%. BotGM shows a marginal
improvement for scenarios 6 and 8, but lags behind in the remaining scenarios.

4.5 Ensemble Learning

When multiple classifiers are used together for prediction, they are categorized under en-
semble learning. Earlier, we have showed that DT and LR classify 12 out of the 14 bots
with 3 FPs incurred. However, once we translated the results into flows in Table 4.22,
the numbers were completely different. This shows that the classifiers have successfully
predicted a different set of bots. In essence, having them both act as a single classifier
conservatively should result in a higher recall rate. We experimented with both of our
two successful classifiers working in tandem, DT and LR. Our conservative approach is
depicted in Alg. 1.

Algorithm 1 Classifying hosts with an ensemble
p1← dt.predict(host)
p2← lr.predict(host)
if p1 = 1 or p2 = 1 then

return 1
else

return 0
end if

The results depicted in Table 4.30 reflect our hypothesis. The ensemble is able to cor-
rectly predict 13 bots, boosting the recall rate to 92.86%. However, given the conservative

40



approach, an FP incurred in any classifier will be accounted for. In this case, the classifiers
on their own predicted different hosts as FPs, resulting in an aggregate of 6 FPs. While
this approach has brought down the precision of our second phase to 68.52%, it enabled
us to successfully classify one more bot.

Table 4.30: Ensemble Learning with Graph-Based Features

Classifier TP FP TN FN Recall Precision

DT + LR 13 6 1905930 1 92.86 68.42

4.6 Analysis in an Online Setting

While our infrastructure fully supports streaming, our initial evaluation of BotChase was
carried out on the entire CTU-13 dataset as a single data batch. However, it will be
crucial to constantly retrain the ML models to account for changes in network traffic
patterns and host behavior. This will indeed be fundamental in realizing autonomic security
management [15]. Most ML models are trained offline, and retrained from scratch. When
this proves to be computationally intensive and time consuming, it prohibits the aspects
of online deployment. The ability to retrain the model as new data becomes available, is
fundamental to accommodate ML models’ boundary changes after deployment.

To evaluate BotChase in an online setting, we iteratively retrain the ML models with
new data and test the models. The training and testing datasets are inferred from Ta-
ble 4.20. We assess the different ML models as we increase the amount of flows ingested
into the system, from the aggregated training dataset. Therefore, a time window (w) of
5 minutes spawns N time windows, where N is the number of training sub-datasets. In
the current dataset, a 5 minute time window is equivalent to 40 minutes of ingested data.
Furthermore, the smallest training dataset has 15 minutes of flows, while the largest has
4011 minutes. This is due to the nature of network flows. For example, the number of flows
captured in one minute of a DDoS attack will outweigh that of an idle network. Therefore,
the percentage of flows ingested into the system will increase in a non-linear manner. Also,
it is ideal for the time window to be smaller than the smallest dataset.

With w = 5 and the same aggregated test dataset to assess the different ML models, we
expose the elapsed time (t), percentage of flows ingested online (Ing.), and the classification
metrics in Table 4.31.

41



Table 4.31: Online Supervised Learning

i Time TP FP TN FN Ing. RCL PRC
(mins) (%)

1 5 0 0 1905936 14 0.00 0.00 0.00
2 10 0 0 1905936 14 0.00 0.00 0.00
3 15 0 21 1905915 14 1.10 0.00 0.00
4 20 0 22 1905914 14 2.24 0.00 0.00
5 25 0 23 1905913 14 2.28 0.00 0.00
6 30 8 19 1905917 6 3.61 57.14 29.63
7 35 8 19 1905917 6 3.61 57.14 29.63
8 40 8 19 1905917 6 3.61 57.14 29.63
9 45 8 19 1905917 6 3.62 57.14 29.63
10 50 8 19 1905917 6 3.62 57.14 29.63
11 55 8 3 1905933 6 4.26 57.14 72.73
12 60 0 14 1905922 14 5.07 0.00 0.00
13 65 1 5 1905931 13 5.87 7.14 16.67
14 70 1 3 1905933 13 7.15 7.14 25.00
15 75 12 5 1905931 2 10.32 85.71 70.59
16 80 12 2 1905934 2 10.73 85.71 85.71
17 85 12 2 1905934 2 11.86 85.71 85.71
18 90 12 2 1905934 2 13.53 85.71 85.71
19 95 12 2 1905934 2 15.81 85.71 85.71
20 100 12 2 1905934 2 16.72 85.71 85.71

42



• At t = 5 mins , only a few flows are ingested into the system. There are a total of
9697049 flows in the dataset, while the percentage of ingested flows is minuscule, hence
it shows as 0.00%. Since DT is the second phase classifier, having only benign data
points does not suffice. Therefore, when the system detects this edge case, it defaults to
classifying all data points as benign.

• At t = 15 mins , 1.1% of flows are now ingested into the system. Given the early
condition of hosts, it is expected to have high false alarms. In this case, the system
results in 21 FPs and 14 FNs. The first bot flows also start to appear at this time.

• At t = 30 mins , we reach 3.61% of ingested flows. The number of TPs detected
improves from 0 to 8, leading to the first model that is able to detect malicious hosts.
Hence, it takes exactly 15 minutes for the system to exhibit its initial TPs, after the
first bot flows start to appear. At this point, a baseline of malicious behavior is formed,
matching the classification system’s bot profile.

• At t = 60 mins , the model’s performance declines. The amount of flows ingested is
5.07%, while the model incurs 14 FPs and 14 FNs. At this stage, the malicious hosts have
camouflaged their features through benign communication and exhibit benign host-like
behavior.

• At t = 75 mins , the system reaches a state which is close to that of ingesting the full
training dataset. At only 10.32%, it is able to detect 12 out of 14 bots. This achieves a
recall of 85.71%. However, there are 2 additional FPs over the standard system, resulting
in a 70.59% precision.

• At t = 80 mins , the system reaches its best outcome with only a tenth of the data
ingested. Interestingly, one FP is shaved off the standard system metrics. As afore-
mentioned, having more or less training data points may alter the constructed bot and
benign profiles. A bot may initially behave like a benign host. Once more flows are
ingested, a bot behavior can become more prominent and anomalous to that of benign.
However, with further flows, the bot may also be able to disguise itself as benign. Since
BotChase depends on graph-based features, an additional flow either adds weight to an
existing edge or creates one. This will effectively change the neighbouring malicious and
benign host features used in training, thus skewing performance.

Fig. 4.4 showcases the different training and testing times observed as the time window
progresses. Since we are dealing with flows in this scenario, the training time incorporates
the time needed to extract the features from the flows. This requires building the graph

43



incrementally with the given flows and extracting the features of every node. The plot
takes on a positive slope for the training time, while the testing time remains at a plateau
of around 9 seconds. At 75 minutes, the training time jumps to 227 seconds, slightly
incrementing to 244 seconds at 80 minutes. Even at this optimal mark, the training time
remains < w. This implies that the system is ready for classification prior to the processing
of the next window interval.

0 5 10 15

0

50

100

150

200

250

Iteration (i)

T
im

e
(s
)

Training
Testing

Figure 4.4: The variation of the training and testing time as time progresses

Some variations in performance are observed beyond t = 100 minutes. This is because
over-fitting can occur that contributes to additional FPs and FNs. The system reaches a
steady state at t = 270 minutes, when only 37.22% of the flows are ingested. The sooner
an online system becomes effective, the better. The amount of ingested flows and required
training time dictates the total system overhead over time. The second phase supervised
classifier used is DT, and it uses the ID3 algorithm [52]. This specific algorithm does not
permit incremental learning, thus the tree is reinitialized at every epoch. Obviously, this
is not efficient. Can we do better?

We set out to experiment with a very fast decision tree (VFDT) variation, the Hoeffding
Adaptive Tree (HAT) [17]. This tree algorithm can be trained on the fly as new data arrives.
It maintains old branches, making sure it prunes them when they become obsolete. An
internal naive bayes selector is used when the tree leaves have the same values but different
labels. Using MoA’s HAT [18], we set out to experiment with BotChase using the Hoeffding
algorithm. The results are depicted in Table 4.32.

44



Table 4.32: Online Supervised Learning Using HAT

i Time TP FP TN FN Ing. RCL PRC
(mins) (%)

1 5 0 0 1905936 14 0.00 0.00 0.00
2 10 0 0 1905936 14 0.00 0.00 0.00
3 15 0 0 1905936 14 1.10 0.00 0.00
4 20 0 0 1905936 14 2.24 0.00 0.00
5 25 0 0 1905936 14 2.28 0.00 0.00
6 30 0 0 1905936 14 3.61 0.00 0.00
7 35 0 0 1905936 14 3.61 0.00 0.00
8 40 0 44 1905892 14 3.61 0.00 0.00
9 45 0 40 1905896 14 3.62 0.00 0.00
10 50 1 20 1905916 13 3.62 7.14 4.76
11 55 7 25 1905911 7 4.26 50.00 21.88
12 60 7 18 1905918 7 5.07 50.00 28.00
13 65 7 20 1905916 7 5.87 50.00 25.92
14 70 9 36 1905900 5 7.15 64.29 20.00
15 75 9 36 1905900 5 10.32 64.29 20.00
16 80 9 24 1905912 5 10.73 64.29 27.27
17 85 9 13 1905923 5 11.86 64.29 42.85
18 90 13 6 1905930 1 13.53 92.85 68.4
19 95 13 3 1905933 1 15.81 92.85 81.25
20 100 13 3 1905933 1 16.72 92.85 81.25

45



0 5 10 15 20

0

100

200

300

400

Iteration (i)

T
im

e
(s
)

HAT
ID3

Figure 4.5: The variation of the training time of HAT vs ID3

We ran the algorithm with the same settings as that of the former experiment. Ta-
ble 4.32 shows the results.

• At t = 5 mins , HAT should be very similar to ID3 as both trees have the same exact
data. This is exposed with minimal flow ingestion and zero recall and precision rates.

• At t = 40 mins , 3.61% of flows are now ingested into the system. This is the first
epoch at which the system attempts to positively label hosts. However, this results in
44 FPs.

• At t = 55 mins , we reach 4.26% of ingested flows. At this point, the system was able
to successfully detect 7 out of the 14 bots. Compared to ID3, the system maintains its
momentum to converge to a state that is capable of detecting bots. While the number
of FPs have decreased, 20 still remain.

• At t = 70 mins , the system was able to successfully detect 2 more bots, incurring alot
more FPs along the way.

• At t = 90 mins , the model becomes capable of capturing most of the bots, misclas-
sifying only one. The amount of flows ingested is now 13.53%, The model still incurs a
few FPs, only 1 more FP than that of the former algorithm.

46



• At t = 95 mins , the system reaches a steady state. The recall rate does not change,
but the precision increases to 81.25%.

Fig. 4.5 shows the stark difference of training time once an incremental classifier is de-
ployed. Retraining from scratch entails that the training time is ever increasing. Leveraging
an incremental model allows for the training time to only be restrained to new data.

In general, HAT takes longer to achieve a good system state for detection, but will
do so incrementally without retraining from scratch. There is a prominent compromise in
between convergence speed, training time, and efficacy of the model. When training time
is paramount, one would favor HAT over ID3. Moreover, HAT appears to be more stable
over time, as we’ve seen some dips in performance across intermediate iterations for ID3.
With only ≈14% of the flows ingested and ≈2 minutes of training time incurred at every
iteration, BotChase proves suitable for deployment in an online classification setting.

47



Chapter 5

Conclusion and Future Work

5.1 Conclusion

The struggle to detect malicious agents in a network has recently converged to ML. High
FPs and FNs are detrimental to any intrusion detection system. The network-based ap-
proaches exhibit plausible detection rates. When paired with a proper modeling technique,
such as graphs, high detection accuracy can be achieved with low FPs. In this thesis, we
propose BotChase, a system that is capable of efficiently transforming network flows into
an aggregated graph model. It leverages two ML phases to differentiate bots from benign
hosts.

Using SOM, the first phase establishes an acceptable compromise between maximizing
the benign cluster and alienating the malicious bots. Furthermore, the results of the sec-
ond phase favor DT, showcasing high TPs and low FPs. Moreover, feature normalization
significantly improves the spatial stability of the models. BotChase is robust against un-
known attacks and cross-network ML model training and inference. It detects bots that
rely on different protocols and is suitable for large-scale data. In our comparative analy-
sis, flow-based features employed in BotChase underperform in comparison to graph-based
features. Last but not least, BotChase outperforms an end-to-end system that employs
flow-based features and performs particularly well in an online setting.

48



5.2 Future Work

5.2.1 Extending F-Norm

The F-Norm employed in BotChase has a degree (D) of 1. This implies that only the
immediate neighbors are considered for normalization. Degrees beyond this are unexplored
and can prove to be a computational challenge in complex networks. For example, the
time complexity of breadth-first search that can be used to create the neighborhood set, is
O(|V |+ |E|). Thus, in the worst case when all nodes are connected, |E| = |V |2. Therefore,
performing F-Norm on the highest D results in a O(|V |3) time complexity. Thus, covering
the entire graph may not be as feasible as covering second and third degree neighbors,
which may influence the accuracy of bot detection.

5.2.2 Classifier Tuning

We employ both unsupervised and supervised learning techniques in BotChase. In Phase
1, SOM is tuned and evaluated based on the number of neurons and epochs. As for Phase
2, the supervised classifiers still have room for improvement. For example, FNNs can be
evaluated against different number of hidden layers, activation functions and number of
neurons per layer. On the other hand, LR and SVM can benefit from boosting, to remove
the bias in the dataset for benign hosts.

5.2.3 Advanced Feature Engineering

Feature engineering is a critical aspect in ML that includes feature selection and extrac-
tion. It is used to reduce dimensionality in voluminous data and to identify discriminating
features that reduce computational overhead and increase accuracy of ML models. Feature
selection is the removal of features that are irrelevant or redundant. Specialized feature
selection techniques (e.g., correlation-based filtering, consistency-based filtering) must be
explored and evaluated.

On the other hand, feature extraction is often used to derive extended features from
existing features, using techniques, such as entropy, Fourier transform and principal com-
ponent analysis. Though our normalized features have shown to improve model accuracy,
advanced feature extraction techniques should be evaluated. Nevertheless, it is crucial to
carefully select an ideal set of features that precisely strike a balance between exploiting
correlation and over-fitting for improving accuracy and reducing computational overhead.

49



5.2.4 Advanced Ensemble Learning

With the capability of creating ML models for different time windows and data arrange-
ments, our system can be used to create specialized ML models. Therefore, it would be
interesting to explore how the BotChase would fare against a more advanced ensemble of
models. Both Phase 1 and 2 can incorporate ensemble learning. By achieving a unanim-
ity of classifications from the ensemble of ML models, FNs and FPs are guaranteed to
lessen [55]. Correlating the inferences from these models can potentially uncover bots that
may otherwise be overlooked as benign. The inferences from all models can be combined
into a single output using a conservative approach (e.g., bot detected, if inferred by at
least one model), majority vote, weighted vote, or an ML model itself.

50



References

[1] Apache flink. https://flink.apache.org/.

[2] Apache spark. https://spark.apache.org/.

[3] Apache storm. http://storm.apache.org/.

[4] Google cloud dataflow. https://cloud.google.com/dataflow.

[5] Java 8 sdk. http://www.oracle.com/technetwork/java/javase/overview/
java8-2100321.html.

[6] Mapreduce. https://www.ibm.com/analytics/hadoop/mapreduce.

[7] Netflix mantis. https://techblog.netflix.com/2016/03/
stream-processing-with-mantis.html.

[8] Project reactor. https://projectreactor.io/.

[9] Reactivex. https://reactivex.io/.

[10] Twitter heron. https://github.com/twitter/heron/.

[11] Abbas Abou Daya, Mohammad Salahuddin, Noura Limam, and Raouf Boutaba.
A Graph-Based Machine Learning Approach for Bot Detection. In Proceedings of
IFIP/IEEE International Symposium on Integrated Network Management (IM), 2019.

[12] Abbas Abou Daya, Mohammad Salahuddin, Noura Limam, and Raouf Boutaba. A
Graph-Based Machine Learning Approach for Bot Detection. IEEE Transactions on
Network and Service Management (TNSM), 2019.

51

https://flink.apache.org/
https://spark.apache.org/
http://storm.apache.org/
https://cloud.google.com/dataflow
http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
https://www.ibm.com/analytics/hadoop/mapreduce
https://techblog.netflix.com/2016/03/stream-processing-with-mantis.html
https://techblog.netflix.com/2016/03/stream-processing-with-mantis.html
https://projectreactor.io/
https://reactivex.io/
https://github.com/twitter/heron/


[13] Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab. Zero-
day malware detection based on supervised learning algorithms of API call signatures.
In Proceedings of the Australasian Data Mining Conference, pages 171–182, 2011.

[14] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis,
Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Sea-
man, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding the Mirai Botnet. In
Proceedings of USENIX Security Symposium, pages 1093–1110, 2017.

[15] Sara Ayoubi, Noura Limam, Mohammad A Salahuddin, Nashid Shahriar, Raouf
Boutaba, Felipe Estrada-Solano, and Oscar M Caicedo. Machine learning for cog-
nitive network management. IEEE Communications Magazine, 56(1):158–165, 2018.

[16] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar.
Can machine learning be secure? In Proceedings of the 2006 ACM Symposium on
Information, computer and communications security, pages 16–25. ACM, 2006.

[17] Albert Bifet and Ricard Gavaldà. Adaptive learning from evolving data streams. In
International Symposium on Intelligent Data Analysis, pages 249–260. Springer, 2009.

[18] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive
online analysis. Journal of Machine Learning Research, 11(May):1601–1604, 2010.

[19] James R Binkley and Suresh Singh. An Algorithm for Anomaly-based Botnet Detec-
tion. SRUTI, 6:7–7, 2006.

[20] Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara Ayoubi, Nashid
Shahriar, Felipe Estrada-Solano, and Oscar M. Caicedo. A comprehensive survey on
machine learning for networking: evolution, applications and research opportunities.
Journal of Internet Services and Applications, 9(1):1–99, 2018.

[21] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25(2):163–177, 2001.

[22] Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. Measuring pay-
per-install: the commoditization of malware distribution. In Proceedings of USENIX
Security Symposium, pages 13–13, 2011.

[23] Hyunsang Choi and Heejo Lee. Identifying botnets by capturing group activities in
DNS traffic. Elsevier Computer Networks, 56(1):20–33, 2012.

52



[24] Sudipta Chowdhury, Mojtaba Khanzadeh, Ravi Akula, Fangyan Zhang, Song Zhang,
Hugh Medal, Mohammad Marufuzzaman, and Linkan Bian. Botnet detection using
graph-based feature clustering. Journal of Big Data, 4(1):14, 2017.

[25] M Patrick Collins and Michael K Reiter. Hit-list worm detection and bot identification
in large networks using protocol graphs. In Proceedings of Springer International
Workshop on Recent Advances in Intrusion Detection, pages 276–295, 2007.

[26] G. Creech and J. Hu. A Semantic Approach to Host-Based Intrusion Detection Sys-
tems Using Contiguous and Discontiguous System Call Patterns. IEEE Transactions
on Computers, 63(4):807–819, 2014.

[27] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-
detection systems. Elsevier Computer Networks, 31(8):805–822, 1999.

[28] Qi Ding, Natallia Katenka, Paul Barford, Eric Kolaczyk, and Mark Crovella. Intrusion
as (anti) social communication: characterization and detection. In Proceedings of ACM
International Conference on Knowledge Discovery and Data mining, pages 886–894,
2012.

[29] Hans Dockter et al. Gradle Build Tool, 2007.

[30] Jesse M. Ehrenfeld. WannaCry, Cybersecurity and Health Information Technology:
A Time to Act. Journal of Medical Systems, 41(7):104, 2017.

[31] Jerome Francois, Shaonan Wang, Walter Bronzi, Radu State, and Thomas Engel.
Botcloud: Detecting botnets using mapreduce. In Proceedings of IEEE International
Workshop on Information Forensics and Security, pages 1–6, 2011.

[32] Jérôme François, Shaonan Wang, and Thomas Engel. BotTrack: tracking botnets
using NetFlow and PageRank. In Proceedings of International Conference on Research
in Networking, pages 1–14, 2011.

[33] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. An empirical
comparison of botnet detection methods. Computers & Security, 45:100–123, 2014.

[34] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based archi-
tecture for intrusion detection. In Proceedings of The Network and Distributed System
Security Symposium (NDSS), volume 3, pages 191–206, 2003.

53



[35] Frederic Giroire, Jaideep Chandrashekar, Nina Taft, Eve Schooler, and Dina Papagian-
naki. Exploiting temporal persistence to detect covert botnet channels. In Proceedings
of International Workshop on Recent Advances in Intrusion Detection, pages 326–345,
2009.

[36] Jan Goebel and Thorsten Holz. Rishi: Identify Bot Contaminated Hosts by IRC
Nickname Evaluation. HotBots, 7:8–8, 2007.

[37] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. BotMiner: Clustering
Analysis of Network Traffic for Protocol-and Structure-Independent Botnet Detection.
In Proceedings of USENIX Security Symposium, pages 139–154, 2008.

[38] Huy Hang, Xuetao Wei, Michalis Faloutsos, and Tina Eliassi-Rad. Entelecheia: De-
tecting p2p botnets in their waiting stage. In Proceedings of IEEE/IFIP Networking
Conference, pages 1–9, 2013.

[39] Jeff Heaton et al. Encog Machine Learning Framework, 2013.

[40] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu,
Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. Rolx: structural role
extraction & mining in large graphs. In Proceedings of ACM International Conference
on Knowledge Discovery and Data mining, pages 1231–1239, 2012.

[41] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-driven com-
puter network defense informed by analysis of adversary campaigns and intrusion kill
chains. Leading Issues in Information Warfare & Security Research, 1(1):80, 2011.

[42] Padmini Jaikumar and Avinash C Kak. A graph-theoretic framework for isolating
botnets in a network. Wiley Security and communication networks, 8(16):2605–2623,
2015.

[43] Yu Jin, Nick Duffield, Jeffrey Erman, Patrick Haffner, Subhabrata Sen, and Zhi-Li
Zhang. A modular machine learning system for flow-level traffic classification in large
networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1):4,
2012.

[44] Anestis Karasaridis, Brian Rexroad, David A Hoeflin, et al. Wide-Scale Botnet De-
tection and Characterization. HotBots, 7:7–7, 2007.

[45] Sheharbano Khattak, Naurin Rasheed Ramay, Kamran Riaz Khan, Affan A Syed,
and Syed Ali Khayam. A taxonomy of botnet behavior, detection, and defense. IEEE
Communications Surveys & Tutorials, 16(2):898–924, 2014.

54



[46] Sofiane Lagraa, Jérôme François, Abdelkader Lahmadi, Marine Miner, Christian Ham-
merschmidt, and Radu State. BotGM: Unsupervised graph mining to detect botnets
in traffic flows. In Proceedings of IEEE Cyber Security in Networking Conference
(CSNet), pages 1–8, 2017.

[47] Haifeng Li et al. Statistical Machine Intelligence and Learning Engine, 2016.

[48] Wei Lu, Goaletsa Rammidi, and Ali A Ghorbani. Clustering botnet communica-
tion traffic based on n-gram feature selection. Elsevier Computer Communications,
34(3):502–514, 2011.

[49] Wei Lu, Mahbod Tavallaee, Goaletsa Rammidi, and Ali A Ghorbani. BotCop: An
online botnet traffic classifier. In Proceedings of IEEE Communication Networks and
Services Research Conference, pages 70–77, 2009.

[50] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov.
BotGrep: Finding P2P Bots with Structured Graph Analysis. In USENIX Security
Symposium, volume 10, pages 95–110, 2010.

[51] Barak Naveh et al. JGraphT, 2013.

[52] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[53] Anirudh Ramachandran, Nick Feamster, David Dagon, et al. Revealing botnet mem-
bership using dnsbl counter-intelligence. SRUTI, 6:49–54, 2006.

[54] Sherif Saad, Issa Traore, Ali Ghorbani, Bassam Sayed, David Zhao, Wei Lu, John Fe-
lix, and Payman Hakimian. Detecting P2P botnets through network behavior analysis
and machine learning. In Proceedings of IEEE International Conference on Privacy,
Security and Trust (PST), pages 174–180, 2011.

[55] Seungwon Shin, Zhaoyan Xu, and Guofei Gu. EFFORT: efficient and effective bot
malware detection. In Proceedings of IEEE International Conference on Computer
Communications (INFOCOM), pages 2846–2850, 2012.

[56] W Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas. Botnet detection
based on network behavior. In Botnet detection, pages 1–24. Springer, 2008.

[57] Bharath Venkatesh, Sudip Hazra Choudhury, Shishir Nagaraja, and N Balakrishnan.
BotSpot: fast graph based identification of structured P2P bots. Springer Journal of
Computer Virology and Hacking Techniques, 11(4):247–261, 2015.

55



[58] Ricardo Villamarín-Salomón and José Carlos Brustoloni. Identifying botnets using
anomaly detection techniques applied to dns traffic. In Proceedings of IEEE Consumer
Communications and Networking Conference, pages 476–481, 2008.

[59] Jing Wang and Ioannis Ch Paschalidis. Botnet detection using social graph analy-
sis. In Proceedings of IEEE Allerton Conference on Communication, Control, and
Computing, pages 393–400, 2014.

[60] Hossein Rouhani Zeidanloo, Azizah Bt Manaf, Payam Vahdani, Farzaneh Tabatabaei,
and Mazdak Zamani. Botnet detection based on traffic monitoring. In Proceedings on
International Conference on Networking and Information Technology (ICNIT), pages
97–101, 2010.

[61] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo. Detecting stealthy P2P bot-
nets using statistical traffic fingerprints. In Proceedings of IEEE/IFIP International
Conference on Dependable Systems Networks (DSN), pages 121–132, 2011.

[62] David Zhao, Issa Traore, Bassam Sayed, Wei Lu, Sherif Saad, Ali Ghorbani, and Dan
Garant. Botnet detection based on traffic behavior analysis and flow intervals. Elsevier
Computers & Security, 39:2–16, 2013.

[63] Di Zhuang and J Morris Chang. PeerHunter: Detecting peer-to-peer botnets through
community behavior analysis. In Proceedings of IEEE Conference on Dependable and
Secure Computing, pages 493–500, 2017.

[64] Di Zhuang and J Morris Chang. Enhanced PeerHunter: Detecting Peer-to-peer Bot-
nets through Network-Flow Level Community Behavior Analysis. arXiv preprint
arXiv:1802.08386, 2018.

56



APPENDICES

57



Appendix A

DataFrame4J

Streaming engines (SE) date back to the first inception of Google’s MapReduce model [6];
a model to handle realtime data and their appropriate logical execution. However, such a
model has been superseded with more complex engines. While MR offloaded most of the
intermediate data transformations to the user, current SEs extend such a functionality. A
rich API has become one of the essential features of software which support data pipelining.
It has become such an important feature that even Oracle integrated Google’s Stream API
as a native Java library in JDK 8 [5].

Most major software companies use their own version of streaming engines. Although
such data engines come in two variants (streaming and batching), APIs have evolved to
handle both cases efficiently (Apache Spark [2]). NetFlix uses its closed-source Netflix
Mantis [7], Twitter moved from Apache Storm [3] to its own Twitter Heron [10] engine and
Google has its own variant with Cloud Dataflow [4] in GCP. Other renowned open-source
streaming engines include Apache Storm, Spark and Flink [1]. Some lightweight libraries
that only offer data manipulation include ReactiveX [9] and Project Reactor [8].

Although all of the engines mentioned have their own methodology for creation and
deployment, they share common features that are intrinsic to realtime data ingestion.

Sourcing and Sinking. The concept of sourcing data stems from need of a source
for data flow. While having a single source of data is a nice feature, it is not the common
case in the industry. A streaming source, by definition, is a source of indefinite data.
Data streams start with a source and end with a sink. A sink is a user-defined consumer
function that dictates the final outcome of the stream transformation. However, any data
that passes through the source is not guaranteed observability in the sink. This is where

58



data functions and staging steer, mutate and filter out data that is not relevant to the
outcome.

Data Staging. The most intuitive form of a pipeline is explicit data staging. While
an MR model obliges the user to define two stages, namely Map and Reduce, current
streaming APIs allow for more complex data manipulations as shown in Alg. 2.

Algorithm 2 Example Stream Pipeline
1: Source(X)
2: .map(X → Y)
3: .filter(Y → Y.count > 3)
4: .groupBy(Y → Y.firstLetter)
5: .reduce((X1, X2) → X1.count + X2.count)
6: .sink(Z → print(Z))

If applied in a verbal context, this pipeline would be mapping a word into another,
filtering out words with length less than 3, grouping the words by their first letter, reducing
every group into an aggregate of their length and simply printing the output.

Streaming and Windowing. One powerful and necessary data staging function is
windowing. It allows users to block and aggregate data points into an iterable object. This
can cause effective efficiency gains if leveraged with data caching. Time and count windows
are two popular variants of data windowing. If applied on the previous context, a count
window would allow the user to populate words until a certain count is achieved. A time
window uses a time-based frame.

Result Caching and Polling. Unlike batching systems, a user cannot predict when
the source stream of data ends. This is one of the difficulties which users face when
leveraging streaming engines for data consumption. A mechanism to occasionally check if
a certain data point has finished execution is necessary for model correctness. Essentially,
this is data polling, a technique to capture data status and results from a defined data
housing location. The latter can be a cache, database or file system as long as it has the
capability of temporal storage.

Our purpose was not to reinvent the wheel, but write a lightweight package that
would support rapid prototyping of machine learning data points and features. In essence,
DataFrame4J is a data streaming library that intends to provide column mappings to every
unique data point. Beyond the aforementioned features, DF4J also insures immutability of
the underlying data structures used. This prevents cross stage dependencies which can af-
fect the integrity of the results. Any dataframe which is returned from any transformation

59



will be unique on its own, with its own set of underlying data structures. In the context of
machine learning, this feature aids in faster prototyping and intermediate analysis. Here
are some of the intrinsic methods required to achieve the data staging process.

Listing 1 depicts adding a column to the dataframe which entails that every data point
gains a new value. One intuitive way to provide this transformation would be to allow the
user to supply a function mapping in-between the row ID and the resulting new value.

1 public DataFrame addColById(String colName, Function<String, Double> fn) {
2 Map<String, List<Double>> addedVals = vals.entrySet()
3 .stream()
4 .map(entry -> {
5 List<Double> row = Lists.newArrayList(entry.getValue());
6 row.add(fn.apply(entry.getKey()));
7 return newPair(entry.getKey(), row);
8 })
9 .collect(Collectors.toMap(Pair::a, Pair::b));

10

11 return new DataFrame(safeAdd(cols, colName), addedVals);
12 }

Listing 1: DF method to add a column by id

Another way of adding a column into a dataframe would be to simply provide a function
that maps a collection of values into a new value. Listing 2 shows this method which is
agnostic of the row or data point ID.

A third way of adding a column into a dataframe would be to simply provide a function
that maps a single value into a new value. This value would be identifiable via explicitly
stating the desired source column. Listing 3 depicts this method which is also agnostic of
the row or data point ID.

We would also like to be able remove columns by name or index, as shown in Listing 4.
This would iterate over the data frame points and safely the corresponding value. Then,
a new dataframe is constructed with the selected column removed.

It is important to provide safe methods which can alter values without inhibiting
concurrency. These methods are not optional and are a byproduct of immutability. Since
all data structures used to form the dataframe are immutable (columns, maps, value lists),
new mutable structures must be formed as intermediate data hosts. Additions and removals

60



1 public DataFrame addCol(String colName, Function<List<Double>, Double> fn) {
2 Map<String, List<Double>> addedVals = vals.entrySet()
3 .stream()
4 .map(entry -> {
5 List<Double> row = Lists.newArrayList(entry.getValue());
6 row.add(fn.apply(entry.getValue()));
7 return newPair(entry.getKey(), row);
8 })
9 .collect(Collectors.toMap(Pair::a, Pair::b));

10

11 return new DataFrame(safeAdd(cols, colName), addedVals);
12 }

Listing 2: DF method to add a column

are then performed on these structures and fed back into a new dataframe. All dataframe
construction methods will convert any supplied data structure into an immutable entity.
Listing 5 exposes these safe methods.

Filtering out undesired data points is a basic operation in the streaming paradigm.
Listing 6 shows how it looks like in the dataframe context. A predicate is a functional
interface implemented by the user to supply user-defined predicates. Once a predicate
fails, the data point is filtered out.

A transformation of a column is essentially a removal followed by an addition of a
new column. However, these two methods can be merged into one, where the removal
and addition of a new column can be done in a single iteration. Rather than calling the
previously defined methods for introducing a new value, Listing 7 implements a column
transform method that alters the mapping accordingly.

Likewise, a transformation of a single row follows the same behavior. In this case, the
user supplies a function that takes in an identifier and mapping function. The output is a
new row with the former function applied on every single value, as depicted in Listing 8.

Listing 9 exhibits another transformation which is applied on all data rows. The user
inputs a bifunction that takes in an identifier and a list of values. The output is a new list
of values with the former function applied.

61



1 public DataFrame addFromPresent(String baseCol, String colName,
2 Function<Double, Double> fn) {
3 int index = cols.indexOf(baseCol);
4

5 Map<String, List<Double>> addedVals = vals.entrySet()
6 .stream()
7 .map(entry -> {
8 List<Double> row = Lists.newArrayList(entry.getValue());
9 row.add(fn.apply(row.get(index)));

10 return newPair(entry.getKey(), row);
11 })
12 .collect(Collectors.toMap(Pair::a, Pair::b));
13

14 return new DataFrame(safeAdd(cols, colName), addedVals);
15 }

Listing 3: DF method to add a column from a present column value

62



1 public DataFrame removeCol(String colName) {
2 int index = cols.indexOf(colName);
3 return removeCol(index);
4 }
5

6 public DataFrame removeCol(int colIndex) {
7 Map<String, List<Double>> filteredVals = vals.entrySet()
8 .stream()
9 .map(entry -> {

10 List<Double> entryVals = entry.getValue();
11 entryVals = safeRemove(entryVals, colIndex);
12

13 return newPair(entry.getKey(), entryVals);
14 })
15 .collect(toLinkedMap());
16

17 return new DataFrame(safeRemove(cols, colIndex), filteredVals, idName);
18 }

Listing 4: DF method to remove a data column

63



1 private static <T> List<T> safeRemove(List<T> row, int index) {
2 return union(row.subList(0, index), row.subList(index + 1, row.size()));
3 }
4

5 private static <T> List<T> safeAdd(List<T> row, T... elem) {
6 List<T> modifiedList = Lists.newArrayList(row);
7 modifiedList.addAll(Arrays.asList(elem));
8

9 return modifiedList;
10 }
11

12 private static <K, V> Map<K, V> safePutAllMap(Map<K, V> map, Map<K, V> otherMap) {
13 Map<K, V> modifiedMap = new HashMap<>(map);
14 modifiedMap.putAll(otherMap);
15

16 return modifiedMap;
17 }
18

19 private static <K, V> Map<K, V> safePutMap(Map<K, V> map, K key, V value) {
20 Map<K, V> modifiedMap = new HashMap<>(map);
21 modifiedMap.put(key, value);
22

23 return modifiedMap;
24 }

Listing 5: DF method to safely transform the underlying data structures

64



1 public DataFrame filter(String colName, Predicate<Double> pred) {
2 int index = cols.indexOf(colName);
3

4 Map<String, List<Double>> filteredVals = vals.entrySet()
5 .stream()
6 .filter(entry -> pred.test(entry.getValue().get(index)))
7 .map(entry -> newPair(entry.getKey(), entry.getValue()))
8 .collect(toLinkedMap());
9

10 return new DataFrame(cols, filteredVals, idName);
11 }

Listing 6: DF method to filter rows based on a boolean predicate

1 public DataFrame transformCol(String colName, Function<Double, Double> fn) {
2 int index = cols.indexOf(colName);
3 Map<String, List<Double>> addedVals = vals.entrySet()
4 .stream()
5 .map(entry -> {
6 List<Double> row = newArrayList(entry.getValue());
7 Double val = row.remove(index);
8 row.add(index, fn.apply(val));
9

10 return newPair(entry.getKey(), row);
11 })
12 .collect(Collectors.toMap(Pair::a, Pair::b));
13

14 return new DataFrame(cols, addedVals);
15 }

Listing 7: DF method to transform a column

65



1 public DataFrame transformRow(String id, Function<Double, Double> fn) {
2 List<Double> modifiedVals = vals.get(id)
3 .stream()
4 .map(fn::apply)
5 .collect(toList());
6

7 return new DataFrame(cols, safePutMap(vals, id, modifiedVals));
8 }

Listing 8: DF method to transform a single row

1 public DataFrame transformRows(BiFunction<String, List<Double>, List<Double>> fn) {
2 Map<String, List<Double>> transformedVals = vals.entrySet()
3 .stream()
4 .map(entry -> newPair(entry.getKey(),
5 fn.apply(entry.getKey(), entry.getValue())))
6 .collect(toLinkedMap());
7

8 return new DataFrame(cols, transformedVals, idName);
9 }

Listing 9: DF method to transform multiple rows

66



Appendix B

Feature Normalization (F-Norm)

67



1 DataFrame normalize(DataFrame dataFrame, Graph<Host, DefaultWeightedEdge> directedGraph, int degree) {
2 Graph<Host, DefaultWeightedEdge> graph = Graphs.undirectedGraph(directedGraph);
3 return dataFrame.transformRows((ip, row) -> {
4 Set<Host> hosts;
5 if (degree > 1) {
6 hosts = newHashSet();
7 BreadthFirstIterator<Host, DefaultWeightedEdge> iter = new BreadthFirstIterator<>(graph, newHost(ip));
8 try {
9 // Skip root

10 iter.next();
11 Host nextHost = iter.next();
12 while (nextHost != null && iter.getDepth(nextHost) != degree + 1) {
13 hosts.add(nextHost);
14 nextHost = iter.next();
15 }
16 } catch (NoSuchElementException ex) {
17 // Do nothing
18 }
19 } else {
20 hosts = Graphs.neighborSetOf(graph, newHost(ip));
21 }
22

23 List<Double> sum = hosts.stream()
24 .map(v -> dataFrame.row(v.getBaseIP()))
25 .reduce((row1, row2) ->
26 IntStream.range(0, row2.size())
27 .mapToObj(j -> row1.get(j) + row2.get(j))
28 .collect(Collectors.toList())
29 ).orElse(new ArrayList<>());
30

31 int count = hosts.size();
32 List<Double> relativeVals = sum.stream()
33 .map(val -> val / count)
34 .collect(Collectors.toList());
35

36 return IntStream.range(0, row.size())
37 .mapToObj(j -> {
38 Double val = row.get(j);
39 if (relativeVals.get(j) != 0) {
40 return val / relativeVals.get(j);
41 }
42 return val;
43 }).collect(Collectors.toList());
44 });
45 }

Listing 10: F-Norm code snippet to normalize dataframes

68


	List of Figures
	List of Tables
	Introduction
	Botnets
	Intrusion Detection Systems
	Machine Learning
	Contributions
	Thesis Organization

	Background
	Intrusion Kill-Chain
	Bot & Botnet Detection
	Signature-Based
	Anomaly-Based

	Anomaly-Based Botnet Detection Scopes
	Host-Based
	Network-Based
	Hybrid

	Graph-Based Approaches

	BotChase
	Architecture
	Dataset Bootstrap
	Flow Ingestion
	Graph Transform
	Feature Extraction 
	Feature Normalization (F-Norm)

	Model Training
	Phase 1
	Phase 2

	Inference

	Evaluation
	Environment Setup
	Hardware
	Software

	Dataset
	Performance
	Graph Transform, Feature Extraction & Normalization
	Stand-alone SL
	Phase 1 (UL)
	Phase 2 (SL)
	Feature Normalization
	Feature Engineering

	Comparative Analysis
	BotMiner Flow-Based vs. Graph-Based Features
	BClus Flow-Based vs. Graph-Based Features
	BClus Hybrid vs Graph-Based Features
	BClus End-to-End vs. BotChase
	BotGM vs. BotChase

	Ensemble Learning
	Analysis in an Online Setting

	Conclusion and Future Work
	Conclusion
	Future Work
	Extending F-Norm
	Classifier Tuning
	Advanced Feature Engineering
	Advanced Ensemble Learning


	References
	APPENDICES
	DataFrame4J
	Feature Normalization

