View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by University of Waterloo's Institutional Repository

The Matching Augmentation Problem: A %-Approximation
Algorithm

by

Jack Dippel

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2019

(© Jack Dippel 2019

https://core.ac.uk/display/200282725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s declaration

This thesis consists of material all of which I authored or co-authored: see
Statement of Contributions included in the thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.
I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The results on the MAP problem are based on joint work with J.Cheriyan,
F.Grandoni, A.Khan, and V.V.Narayan, that is posted on Arxiv
(arXiv:1810.07816 [cs.DS]).

Abstract

We present a % approximation algorithm for the matching augmentation

problem (MAP): given a multi-graph with edges of cost either zero or one such
that the edges of cost zero form a matching, find a 2-edge connected spanning
subgraph (2-ECSS) of minimum cost. We first present a series of approximation
guarantee preserving reductions, each of which can be performed in polytime.
Performing these reductions gives us a restricted collection of MAP instances.
We present a % approximation algorithm for this restricted set of MAP instances.
The algorithm starts with a subgraph which is a min-cost 2-edge cover, contracts
its blocks, adds paths to the subgraph to cover all its bridges, and finally adds
cycles to the subgraph to connect all its components. We contract any blocks
created throughout. The algorithm ends when the subgraph is a single vertex,
and we output all the edges we’'ve contracted which form a 2ECSS.

vii

Acknowledgements

I wish to express my gratitude to Professor Joseph Cheriyan for extended
discussions and valuable suggestions which have contributed greatly to the
improvement of the thesis.

X

Table of Contents

List of Figures

1

Introduction

1.1 Previous literature & possible approaches for MAP
1.2 Hardness of approximation of MAP and FAP
1.3 Our method for MAP

Preliminaries

2.1 2EC, 2NC, bridgesand D2
2.2 Ear decompositions oo
2.3 Polynomial-time computations

Outline of the algorithm

3.1 Preprocessingo
3.2 Base Graph Construction
3.3 Bridge Covering
34 Gluing

Pre-processing

4.1 Handling cut-nodes L oL L
4.2 Handling unit-splits 0oL
4.3 Handling zero-splits L oL
4.4 Handling redundant-cycles
4.5 Handling split-cycles oL
4.6 Handling unit multi-edges L.

Base Graph Construction

51 Creating D2
5.1.1 Calculate a minimal 2-edge cover
5.1.2 Handle Bad-Triangles
5.1.3 Add Credit

52 Creating F2
5.2.1 Contract Blocks
5.2.2 Establish credit invariants

Xi

xiii

W W N =

co o 3 O

19
19
20
22
23
25
27

6 Bridge covering

6.1 Bridge Covering Algorithm

7 The gluing step
7.1 Gluing Algorithm

8 Conclusion

Bibliography

xii

35
35

39
39

43

45

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

6.1

7.1

Split-Cycleo 6
Redundant-Cycle o 6
Zero-Split 6
Unit-Split 7
Example Grapho oo 13
Example Base Graph Construction Stage 14
Example Bridge-Covering Stage 16
Example Gluing Stage oL 17
Example 2ECSS 17
Handling Cut-Nodes 19
Handling Unit-Splits 21
Handling Zero-Splits 22
Handling Redundant-Cycles 24
Handling Split-Cycles 25
Handling Unit Multi-edges 27
Handling Bad-Triangles 31
Contracting Blocks L oo 32
Bridge-Covering Subroutine 38
Gluing Subroutine 40

xiii

Chapter 1

Introduction

A basic goal in the area of survivable network design is to design real-world
networks of low cost that provide connectivity between pre-specified pairs of
nodes even after the failure of a few edges/nodes. Many of the problems in
this area are NP-hard, and significant efforts have been devoted in the last few
decades to the design of approximation algorithms, see [20].

One of the fundamental problems in the area is the minimum-cost 2-edge
connected spanning subgraph problem (abbreviated as min-cost 2-ECSS): given
a graph together with non-negative costs for the edges, find a 2-edge connected
spanning subgraph (abbreviated as 2-ECSS) of minimum cost. This problem is
closely related to the famous Traveling Salesman Problem (TSP), and some of
the earliest papers in the area of approximation algorithms address the min-cost
2-ECSS problem [5, 6]. In the context of approximation algorithms, this research
led to the discovery of algorithmic paradigms such as the primal-dual method
[8, 20] and the iterative rounding method [10, 13], and led to dozens of publica-
tions. Under appropriate assumptions, these methods achieve an approximation
guarantee of 2 for several key problems in survivable network design, including
min-cost 2-ECSS. Unfortunately, these generic methods do not achieve approx-
imation guarantees below 2. Significant research efforts have been devoted to
achieving approximation guarantees below 2 for specific problems in the area of
survivable network design. For example, building on earlier work, an approx-
imation guarantee of % has been achieved for unweighted (min-size) 2-ECSS
[17], where each edge of the input graph has cost one and the goal is to find a
2-ECSS with the minimum number of edges.

There is an important obstacle beyond unweighted problems, namely, the
special case of min-cost 2-ECSS where the (input) edges have cost of zero or
one, and the aim is to design an algorithm that achieves an approximation
guarantee below 2. This problem is called the Forest Augmentation Problem
(FAP). In more detail, we are given an undirected graph G = (V, Ey U Ey),
where each edge in Fy has cost zero and each edge in F; has cost one; the
goal is to compute a 2-ECSS H = (V, F) of minimum cost. Intuitively, the
zero-edges define some existing network that we wish to augment (with edges

1

1.INTRODUCTION

of cost one) such that the augmented network is resilient to the failure of any
one edge. Without loss of generality (w.l.o.g.) we may contract each of the 2-
edge connected subgraphs formed by the zero-edges, and hence, we may assume
that Ey induces a forest: this motivates the name of the problem.

A key special case of FAP is the Tree Augmentation Problem (TAP), where
the edges of cost zero form a spanning tree. Nagamochi [15] first obtained
an approximation guarantee below 2 for TAP, and since then there have been
several advances including recent work, see [1, 3, 4, 9, 12].

We focus on a different special case of FAP called the matching augmentation
problem (MAP): given a multi-graph with edges of cost either zero or one such
that the edges of cost zero form a matching, find a 2-ECSS of minimum cost.
Note that loops are not allowed; multi-edges (parallel edges) are allowed. From
the view-point of approximation algorithms, MAP is “orthogonal” to TAP in
the sense that the forest of zero-cost edges has many connected components in
MAP, whereas this forest has only one connected component in TAP. In our
opinion, MAP (like TAP) is an important special case of FAP in the sense that
none of the previous approaches (including approaches developed for TAP over
two decades) give an approximation guarantee below 2 for MAP.

1.1 Previous literature & possible approaches
for MAP

There is extensive literature on approximation algorithms for problems in surviv-
able network design, and also on the minimum-cost 2-ECSS problem including
its key special cases (including the unweighted problem, TAP, etc.). To the best
of our knowledge, there is no previous publication on FAP or MAP, although
the former is well known to the researchers working in this area.

Let us explain briefly why previous approaches do not help for obtaining
an approximation guarantee below 2 for MAP. Let G denote the input graph,
and let n denote |V (G)|. Let opt denote the optimal value, i.e., the minimum
cost of a 2-ECSS of the given instance. Recall that the standard cut-covering
LP relaxation of the min-cost 2-ECSS problem has a non-negative variable x,
and a cost ¢, for each edge e of G, and for each nonempty set of nodes S, S # V,
there is a constraint requiring the sum of the x-values in the cut (S, V —5) to
be > 2; the objective is to minimize) . 5 ccze.

The primal-dual method and the iterative rounding method are powerful and
versatile methods for rounding LP relaxations, but in the context of FAP, these
methods seem to be limited to proving approximation guarantees of at least 2.

Several intricate combinatorial methods that may also exploit lower-bounds
from LP relaxations have been developed for approximation algorithms for un-
weighted 2-ECSS, e.g., the %—approximation algorithm of [17]. For unweighted
2-ECSS, there is a key lower bound of n on opt (since any solution must have
> n edges, each of cost one). This no longer holds for MAP; indeed, the analo-
gous lower bound on opt is %n for MAP. It can be seen that an a-approximation

2

1.2.HARDNESS OF APPROXIMATION OF MAP AND FAP

algorithm for unweighted 2-ECSS implies a (3« — 2)-approximation algorithm
for MAP. (We sketch the reduction: let M denote the set of zero-cost edges in
an instance of MAP; observe that |M| < opt ; we subdivide (once) each edge
in M, then we change all edge costs to one, then we apply the algorithm for
unweighted 2-ECSS, and finally we undo the initial transformation; the optimal
cost of the unweighted 2-ECSS instance is < opt +2|M]|, hence, the solution of
the MAP instance has cost < a(opt +2|M|) —2|M| = a opt + (2a—2)|M| <
(3 — 2) opt .) Thus the 3-approximation algorithm of [17] for unweighted
2-ECSS gives a 2-approximation algorithm for MAP. (Although preliminary re-
sults and claims have been published on achieving approximation guarantees
below % for unweighted 2-ECSS, there are no refereed publications to date, see
[17].)

Over the last two decades, starting with the work of [15], a few methods
have been developed to obtain approximation guarantees below 2 for TAP. The
recent methods of [1, 4] rely on so-called bundle constraints defined by paths
of zero-cost edges. Unfortunately, these methods (including methods that use
the bundle constraints) rely on the fact that the set of zero-cost edges forms a
connected graph that spans all the nodes, see [4, 12, 15]. Clearly, this property
does not hold for MAP.

1.2 Hardness of approximation of MAP and FAP

MAP is a generalization of the unweighted 2-ECSS problem (consider the special
case of MAP with M = (). The latter problem is known to be APX-hard; thus,
it has a “hardness of approximation” threshold of 1+¢ where € > 0 is a constant,
see [7]. Hence, MAP is APX-hard.

Given the lack of progress on approximation algorithms for FAP, one may
wonder whether there is a “hardness of approximation” threshold that would
explain the lack of progress. Unfortunately, the results and techniques from
the area of “hardness of approximation” are far from the known approxima-
tion guarantees for many problems in network design. For example, even for
the notorious Asymmetric TSP (ATSP), the best “hardness of approximation”
lower bound known is around 22 ~ 1.014, see [11].

1.3 Owur method for MAP

This paper has the same main result as the joint work with J.Cheriyan, F.Grandoni,
A.Khan, and V.V.Narayan [21]. However, the algorithm and analysis are differ-
ent and there is potential to generalize the methods of this thesis to FAP.

We first present reductions from any given instance of MAP to an instance
of MAP without any cut-nodes, unit-splits, zero-splits, redundant-cycles, split-
cycles, and multi-edges. Then we present an approximation algorithm with cost
% opt —2 for instances without these structures, and also prove it can be extend
to general MAP instances. Our algorithm starts with a so-called D2 (this is a

3

1.INTRODUCTION

min-cost 2-edge cover) and F2, the graph resulting from contracting all blocks
of D2. All changes to F2 are also applied to D2. We first alter F2 by covering
its bridges until F2 is a set of isolated vertices. We then contract cycles cycles
of those vertices to F2 and contract them until F2 is a single vertex. When F2
is a single vertex, D2 is a block containing all vertices of the graph, meaning it
is a 2ECSS.

Our presentation is self-contained and formally independent of Vempala &
Vetta’s manuscript [18]; also, we address a weighted version of the 2-ECSS
problem and our challenge is to improve on the approximation guarantee of 2,
whereas Vempala & Vetta’s goal is to achieve an approximation guarantee of %
for the unweighted 2-ECSS problem.

For the sake of completeness, we have included the proofs of several basic
results (e.g., so-called Facts); these should not be viewed as new contributions.

An outline of the paper follows. Chapter 2 has standard definitions and some
preliminary results. Chapter 3 presents an outline of our algorithm for MAP.
Chapter 4 presents the preprocessing steps that remove cut-nodes, unit-splits,
zero-splits, redundant-cycles, split-cycles, and multi-edges. Chapter 5 creates
the subgraph whose cost is a lower bound on all 2ECSS. Chapter 6 alters the
subgraph until it is a collection of blocks. Chapter 7 alters the subgraph until
it is a 2ECSS.

Chapter 2

Preliminaries

This section has definitions and preliminary results. Our notation and terms are
consistent with [2], and readers are referred to that text for further information.

Let G = (V, E) be a (loop-free) multi-graph with edges of cost either zero
or one such that the edges of cost zero form a matching. We take G to be the
input graph, and we use n to denote |V(G)|. Let M denote the set of edges of
cost zero. Throughout, the reader should keep in mind that M is a matching;
this fact is used in many of our proofs without explicit reminders. We call an
edge of M a zero-edge and we call an edge of E — M a unit-edge. We call a
pair of parallel edges a {0, 1}-edge-pair if one of the two edges of the pair has
cost zero and the other one has cost one.

We use the standard notion of contraction of an edge, see [16, p.25]: Given
a multi-graph H and an edge e = vw, the contraction of e results in the multi-
graph H/(vw) obtained from H by deleting e and its parallel copies and identi-
fying the nodes v and w. (Thus every edge of H except for vw and its parallel
copies is present in H/(vw); we disallow loops in H/(vw).)

For a graph H and a set of nodes S C V(H), 61 (S) denotes the set of edges
that have one end node in S and one end node in V(H) — S; moreover, H — S
denotes H[V (H) — S], the subgraph of H induced by V(H)—S. For a graph H
and a set of edges F' C E(H), H — F denotes the graph (V(H), E(H)—F). We
use relaxed notation for singleton sets, e.g., we use dg(v) instead of oy ({v}),
we use H — v instead of H — {v}, and we use H — e instead of H — {e}.

We denote the cost of an edge e of G by c.. For a set of edges F' C E(G),
c(F) == cep Ce, and for a subgraph G’ of G, ¢(G') :=>_ c p () Ce-

For ease of exposition, we often denote an instance G, M by G; then, we do
not have explicit notation for the edge costs of the instance, but the edge costs
are given implicitly by ¢ : E(G) — {0,1}, and M is given implicitly by {e €
E(G) : ¢. = 0}. Also, we may not distinguish between a subgraph and its
node set; for example, given a subgraph H that contains nodes v1,vs,v3, vy, . . .
we may say that {v1,ve,v3} is contained in H.

A block is a maximal connected subgraph without a cut-node. Thus, every
block of a graph is either a maximal 2-connected subgraph, or a bridge (with

5

2.PRELIMINARIES

Figure 2.1: In the above figure, unit-edges are drawn as solid lines, zero-edges
are drawn as dotted lines, and large circles represent blocks. The green cycle
is a Split-cycle. It’s contraction results in a cut-node separating two non-trivial
biconnected components

Figure 2.2: In the above figure, unit-edges are drawn as solid lines, zero-edges
are drawn as dotted lines, and large circles represent blocks. The green cycle is
a Redundant-cycle.

its ends), or an isolated node.

A biconnected component (sometimes known as a 2-connected component)
is a maximal biconnected subgraph.

We call a biconnected component with opt > 3 is a non-trivial biconnected
component.

We call a block with two unit-edges and no adjacent zero-edges a split-
cycle if contracting it creates a cut-node separating two non-trivial biconnected
components, (see Figure 2.1 and Section 4.5).

We call a 4-cycle with two zero-edges a redundant-cycle if it has two non-
adjacent vertices that have no neighbours outside the cycle (see Figure 2.2 and
Section 4.4).

We call a zero-edge a zero-split if its contraction creates a cut-node (see
Figure 2.3 and Section 4.3).

Figure 2.3: In the above figure, unit-edges are drawn as solid lines, zero-edges
are drawn as dotted lines, and large circles represent blocks. The green edge is
a Zero-split. It’s contraction creates a cut-node.

2.1.2EC, 2NC, BRIDGES AND D2

Figure 2.4: In the above figure, unit-edges are drawn as solid lines, zero-edges
are drawn as dotted lines, and large circles represent blocks. The green edge is a
Unit-split. Its contraction creates a cut-node separating two non-trivial bicon-
nected components, and the adjacent zero-edges are not in the same biconnected
component.

We call a unit-edge e a unit-split if it has two adjacent zero-edges f1, fo and
the contraction of e creates a cut-node separating two non-trivial biconnected
components, and f; and fy are in different biconnected components (see Figure
2.4 and Section 4.2).

2.1 2EC, 2NC, bridges and D2

A multi-graph H is called k-edge connected if |V (H)| > 2 and for every F C
E(H) of size < k, H—F is connected. Thus, H is 2-edge connected if it has > 2
nodes and the deletion of any one edge results in a connected graph. A multi-
graph H is called k-node connected if |V(H)| > k and for every S C V(H)
of size < k, H — S is connected. We use the abbreviations 2EC for “2-edge
connected,” and 2NC' for “2-node connected.”

We assume w.l.o.g. that the input G is 2-edge connected. Moreover, we
assume w.l.o.g. that there are < 2 copies of each edge (in any multi-graph that
we consider); this is justified since an edge-minimal 2-ECSS cannot have three
or more copies of any edge (see Proposition 2.1.1 below).

For any instance H, let opt (H) denote the minimum cost of a 2-ECSS of
H. When there is no danger of ambiguity, we use opt rather than opt (H).

By a bridge we mean a cut edge, i.e., an edge of a connected (sub)graph
whose removal results in two connected components, and by a cut node we
mean a node of a connected (sub)graph whose deletion results in two or more
connected components. We call a bridge of cost zero a zero-bridge and we call
a bridge of cost one a unit-bridge.

By a Zec-block we mean a maximal connected subgraph with two or more
nodes that has no bridges. (Observe that each 2ec-block of a graph H corre-
sponds to a connected component of order > 2 of the graph obtained from H
by deleting all bridges.) We call a 2ec-block pendant if it is incident to exactly
one bridge.

The next result characterizes edges that are not essential for 2-edge connec-
tivity.

2.PRELIMINARIES

2.1.1 Proposition. Let H be a 2EC graph and let e = vw be an edge of H. If
H — e has two edge-disjoint v, w paths, then H — e is 2EC.

By a 2-edge cover (of G) we mean a set of edges F' of G such that each node v
is incident to at least two edges of F' (i.e., FF C E(G) : [0r(v)| > 2,Yv € V(Q)).
By D2(G) we mean any minimum-cost 2-edge cover of G (G may have several
minimum-cost 2-edge covers, and D2(G) may refer to any one of them); we use
¢(D2(G)) to denote the cost of D2(G); when there is no danger of ambiguity,
we use D2 rather than D2(G), and we use ¢(D2) rather than ¢(D2(G)). Note
that D2 may have several connected components, and each may have one or
more bridges; moreover, if a connected component of D2 has a bridge, then it
has two or more pendant 2ec-blocks.

The next result follows from Theorem 34.15 in [16, Chapter 34].

2.1.2 Proposition. There is a polynomial-time algorithm for computing D2.

The next result states the key lower bound used by our approximation algo-
rithm.

2.1.3 Fact. Let H be any 2EC graph. Then we have opt(H) > ¢(D2(H)).

By a bridgeless 2-edge cover (of G) we mean a 2-edge cover (of G) that
has no bridges; note that we have no requirements on the cost of a bridgeless 2-
edge cover. We mention that the problem of computing a bridgeless 2-edge cover
of minimum cost is NP-hard (there is a reduction from TAP), and there is no
approximation algorithm known for the case of nonnegative costs.

2.2 Ear decompositions

An ear decomposition of a graph is a partition of the edge set into paths or
cycles, Py, P1,..., Pg, such that Py is the trivial path with one node, and each
P; (1 <4 < k) is either (1) a path that has both end nodes in V;_; = V(Py) U
V(P1)U...UV(P;_1) but has no internal nodes in V;_1, or (2) a cycle that has
exactly one node in V;_1. Each of Py, ..., Py is called an ear; note that P is not
regarded as an ear. We call P;,i € {1,...,k}, an open ear if it is a path, and
we call it a closed ear if it is a cycle. An open ear decomposition Py, P1,..., Py
is one such that all the ears Ps, ..., Py are open. (The ear P; is always closed.)

2.2.1 Proposition (Whitney [19]). (i) A graph is 2EC iff it has an ear de-
composition.

(ii) A graph is 2NC iff it has an open ear decomposition.

2.3 Polynomial-time computations

All of the computations in this paper can be easily implemented in polyno-
mial time, see [16]. We state this explicitly in all relevant results but we do not
elaborate on this elsewhere.

2.3.POLYNOMIAL-TIME COMPUTATIONS

At various points, we need to check if an optimal 2ECSS of a subgraph
has cost > 3. This can be done by brute force in polynomial time. If no two
unit-edges form a 2ECSS it is the case that opt 3, otherwise it is not the case.

Chapter 3

Outline of the algorithm

We first present reductions from any given instance of MAP to an instance
of MAP without any cut-nodes, unit-splits, zero-splits, redundant-cycles, split-
cycles, and multi-edges. Then we present an approximation algorithm with cost
% opt —2 for instances without these structures, and also prove it can be extend
to general MAP instances. Our algorithm starts with a so-called D2 (this is a
min-cost 2-edge cover) and F2, the graph resulting from contracting all blocks
of D2. All changes to F2 are also applied to D2. We first alter F2 by covering
its bridges until F2 is a set of isolated vertices. We then contract cycles cycles
of those vertices to F2 and contract them until F2 is a single vertex. When F2
is a single vertex, D2 is a block containing all vertices of the graph, meaning it
is a 2ECSS.

Algorithm (outline):

1. Apply Preprocessing, reducing the MAP instance to a set of MAP instances
without cut-nodes, unit-splits, zero-splits, redundant-cycles, split-cycles and
multi-edges.

2. Perform Base Graph Construction, which computes D2 and F2, lower bounds
on the optimal solution, and introduces ”credit”, which can be traded to
"buy” more edges.

3. Perform Bridge-Covering, which iteratively trades credit to add paths of
edges to D2 and F2. This repeats until D2 and F2 no longer contain any
bridges.

4. Perform Gluing, which iteratively trades credit to add cycles of edges to D2
and F2. This repeats until D2 and F2 are connected with no bridges.

5. Output the 2ECSS for the MAP instance obtained from undoing the reduc-
tions for multi-edges, split-cycles, redundant-cycles, zero-splits, unit-splits,
and cut-nodes.

11

3.0UTLINE OF THE ALGORITHM

3.1 Preprocessing

The goal of this subroutine is to break the given MAP instance into manageable
subproblems. We aim to find a subgraph in polytime which lower bounds a
2ECSS. Were we to do this on an arbitrary MAP instance, the edges required
to augment it to a 2ECSS might cost > opt, meaning we would not beat a factor
2 approximation. When we can guarantee that a MAP instance has none of the
elements we preprocess, our algorithm augments a base graph to a 2ECSS using
at most %opt edges.

This subroutine has 6 stages. If we are given a MAP instance that we cannot
solve optimally, i.e. more than a constant number of vertices, then we perform
six different reductions. Each of the six stages performs one of the reductions
until it is no longer possible.

Stage 1 handles cut-nodes. To handle them, we treat each biconnected
component of the graph as its own graph. We solve each recursively and then
combine the solutions into a solution for the original graph.

Stage 2 handles unit-splits. To handle them, we contract them, and deal
with the resulting cut-node as in stage 1.

Stage 3 handles zero-splits.To handle them, we contract them, and deal with
the resulting cut-node as in stage 1.

Stage 4 handles redundant-cycles. To handle them, we contract them

Stage 5 handles split-cycles. To handle them, we contract them, and deal
with the resulting cut-node as in stage 1.

Stage 6 handles unit-multiedges. To handle them, we delete them. We solve
the resulting graph, which is also a solution to the original graph.

In Chapter 4 we elaborate on these stages, one in each section. A MAP
instance with the first 7 elements eliminated is called a MAP: instance. We
prove that we can eliminate all these elements in polytime. Moreover, we prove
that each of these stages preserves our approximation guarantee. That is, if a
MAPi + 1 can be approximated within factor %, then so can a MAPi instance.

3.2 Base Graph Construction

In this subroutine, the goal is to create a subgraph which will become our
solution. It will have the same cost as our solution, thanks to the concept of
credit. Credit is a value placed on the vertices of a graph that contributes to
the weight of the graph. Its purpose is to be exchanged for edges, so we can
add edges to a graph without increasing its weight. This subroutine creates two
graphs. D2, which will become a 2ECSS, and F2, which is just D2 but with the
blocks contracted. We introduce F2 to more easily describe the algorithm and
maintain credit invariants, which are introduced in stage 5 below.

This subroutine has 5 stages. If we are given a preprocessed MAP instance,
then we create two graphs D2, and F2.

The first graph, D2, requires three stages to create.

12

3.2.BASE GRAPH CONSTRUCTION

Figure 3.1: The above figure illustrates an Example Graph. Unit-edges are
drawn as solid lines, and zero-edges are drawn as dotted lines. The blue and
black edges are part of D2(and F2), while the red unit-edges are not. This graph
does not require any preprocessing

Stage 1 finds a minimal 2-edge cover. This graph’s cost is a lower bound
on the cost of an optimal 2ECSS because all vertices in a 2ECSS have degree
at-least 2.

Stage 2 handles bad-triangles. To handle them, we swap one of the unit-
edges of the triangle for a different unit-edge.

Stage 3 adds credit. Each vertex receives % credit for every unit edge of the
2-edge cover adjacent to it. This makes the graph plus the credit a lower bound
on % times the cost of an optimal 2ECSS.

The second graph, F2, requires two stages to create.

Stage 4 contracts the blocks of D2.

Stage 5 establishes credit invariants: all trees have 1 credit, all special ver-
tices have .5 credit, all other contracted vertices have 1 credit, all uncontracted
vertices have % credit for each adjacent unit edge.

Finally, in what follows we refer to graph that results from the input graph
by contracting all blocks of D2. We call this graph G’.

In Figure 3.2, the first subfigure contains a minimal 2-edge cover, marked
by blue unit-edges and dotted zero-edges. In the second subfigure, a red edge
and blue edge are swapped on the right side of the figure. This corresponds to
the only bad-triangle in the 2-edge cover, which we handle with this swap. The
third figure we add credit. % per adjacent unit edge for each vertex, though we
omit the denominator of 8 for a clearer picture. At this point, we have D2. In
the fourth subgraph, we contract all blocks in D2. In the fifth, we reorganize
credit, giving 1 to each tree. This completes the Base Graph Stage, as we have
created F2.

13

3.0UTLINE OF THE ALGORITHM

Figure 3.2: The above figure illustrates the Base Graph Construction Stage on
the Example Graph. The figures are read from left to right, top to bottom.
Unit-edges are drawn as solid lines, and zero-edges are drawn as dotted lines.
The blue and black edges are part of D2(and F2), while the red unit-edges are
not. The numbers represent the amount of % credits on each vertex. For details,
see the discussion in the text of Section 3.2

3.3 Bridge Covering

In this subroutine, the goal is to alter F2 and D2 until they contain no more
bridges. We work with F2 in G’ because the credit invariants are useful for our
algorithm. But all edges added to F2 and all credit removed from F2 are also
added and removed from D2 in G. The key to altering bridges is to add paths
to F2 that start at a leaf [of a tree T in F2 and end at some vertex u in 7.
Thus all the edges of T between [and u are no longer bridges. We select u so
that credit of all vertices between u and [help pay for the path we add, thereby
keeping all credit invariants intact.

To cover all bridges from F2, select a tree T' of F2 such that 7" has bridges.
Select a leaf [in T. For each vertex v in T', let P, be the path from v to [in T'.

Next we need to select a vertex u € T such that:

1. There is a path from u to ! in G’ — E(F2)

14

3.4.GLUING

2. P, satisfies one of the following:

(a) P, contains > 2 contracted vertices
(b) P, has > 3 edges

(¢) P, has exactly 2 edges and P, contains a vertex, (possibly one of its
end vertices) which has > 2 adjacent unit edges in T

Once we have u, we choose a path from u to [internally disjoint from 7" that
uses the fewest edges of G’. We’ll call this path @,. We add @,, to F2, contract
the resulting cycle created by @, and P,. Finally we remove |Q,| credit from
the resulting contracted vertex. This process covers all the bridges in P, and
does not add any.

We prove in Chapter 6 that we can always do this in polytime as long as F2
has bridges, and that doing so maintains the credit invariants.

In Figure 3.3, the first subfigure we continue the algorithm by adding a path
to F'2 to create a cycle. The path of bridges P,, that we cover satisfies |P,,| > 3
and P,, has > 2 contracted vertices. We contract the cycle we’ve created in the
second subfigure. In the third subfigure, we cover another path P,, satisfying
P,, has > 2 contracted vertices, and |P,,| = 2 and it contains a vertex which
has > 2 adjacent unit edges in T'. Again we contract in the fourth subfigure. At
this point, we’ve covered all bridges in one tree. We move onto the final tree,
where we cover a final path P,, such that |P,,| > 3 and P,, has > 2 contracted
vertices. The final subfigure contracts the resulting cycle and marks the end of
the Bridge Covering Stage, as there are no more bridges.

3.4 Gluing

In this subroutine, the goal is to continue altering F2 until it is a single vertex.
To do so, we first contract cycles in G’ of length > 3 until none remain. After
that, we can contract cycles of length 3 in G’ until none remain. We show in
Chapter 7 that doing so maintains credit invariants in F2. This gives us a graph
where the only simple cycles are of length 2.

The last step of the gluing stage involves handling all cycles of length 2. The
details are covered in Chapter 7. Handling all cycles of length 2 means that G’
and thus F2 will be a single vertex. This means D2 is a block containing all
vertices of G, which is a 2ECSS. This completes the algorithm.

In Figure 3.4, our graph G’ has only cycles of length 2. Therefore, in the
first subfigure, we find a cycle where both vertices are non-special contracted
vertices and add it. We then contract it in the second subfigure. At, this
point, there are no more cycles of non-special contracted vertices. Thus in
the third subfigure, we uncontract a special vertex, resulting in a 4-cycle. In
subfigure four, we carefully pick 2 red edges to "buy” in exchange for 1 blue
edge and 1 credit, in order to 2-edge connect the 4-cycle to the non-special
vertex. Finally, we contract this new block in subfigure five. Subfigures 6-8 are

15

3.0UTLINE OF THE ALGORITHM

Figure 3.3: The above figure illustrates the Bridge Covering Stage on the Ex-
ample Graph. The figures are read from left to right, top to bottom. Unit-edges
are drawn as solid lines, and zero-edges are drawn as dotted lines. The blue and
black edges are part of D2(and F2), and light blue means the edges were just
added, while the red unit-edges are not in D2(or F2). The numbers represent
the amount of % credits on each vertex. For details, see the discussion in the
text of Section 3.3

identical to Subfigures 3-5. However, subfigure 8 completes the Gluing Stage of
the algorithm, because F2 is a single vertex at that point.

16

3.4.GLUING

Figure 3.4: The above figure illustrates the Gluing Stage on the Example Graph.
The figures are read from left to right, top to bottom. Unit-edges are drawn
as solid lines, and zero-edges are drawn as dotted lines. The blue and black
edges are part of D2(and F2), while the red unit-edges are not. The numbers
represent the amount of % credits on each vertex. For details, see the discussion
in the text of Section 3.4

Figure 3.5: The above figure illustrates a 2ECSS found algorithmically on the
Example Graph. Unit-edges are drawn as solid lines, and zero-edges are drawn
as dotted lines. The blue and black edges are part of D2(and F2), while the red
unit-edges are not.

17

Chapter 4

Pre-processing

In this section, we describe several reductions which we can apply to a MAP
instance. The algorithm will remove all instances of the first reduction, then
all instances of the second reduction and so on. We only apply reductions to
MAP instances with 20 or more vertices, as all others can be solved optimally
in constant time. There is one set of terms we define here, and that is a MAP
instance where the first 7 reductions cannot be applied are also MAP? instances
for 1 <4 < 6. All remaining definitions and proofs relating to each of these
reductions are contained in the respective subsections. For the more complicated
reductions, we include figures showing what a graph looks like before and after
that reduction is applied.

4.1 Handling cut-nodes

O0l05.0

) Find a cut-node (green) b) Separate biconnected components

Figure 4.1: The above figure illustrates Handling Cut-Nodes. Unit-edges are
drawn as solid lines, zero-edges are drawn as dotted lines, and large circles
represent blocks. The green vertex x is a cut-node. We create duplicates u, v
(orange) of x in order to separate all maximal biconnected components sur-
rounding x.

4.1.1 Lemma. We can find and remove a cut-node, or prove none exist, in
polytime

19

4.PRE-PROCESSING

Proof. There are n potential cut-nodes. We can check to see if deleting a vertex
disconnects the graph in polytime. If it does, we can decompose the graph G
by treating the biconnected components as individual graphs Gy,..., G. O

4.1.2 Lemma. Removing a cut-node preserves the matching property of zero-
edges.

Proof. Decomposing the graph does not make any zero-edges adjacent to each
other. 0

4.1.3 Lemma. Given 2ECSS’s Sy,, S, for G1,..., Gj, with costs s(G1), ...,s(Gy)
respectively, we can find a 2ECSS S for G with cost Y5, s(G;)

Proof. Let S = Ule S1. Then S is a 2ECSS for G because if S can be dis-
connected by deleting < 2 edges, then so can some S;,1 < ¢ < k, which is a
contradiction. Clearly, S has cost Zle s(G;), as desired. O

4.1.4 Lemma. Zle opt (G;) < opt (G)

Proof. Given an optimal solution S for G, all the cut-nodes of G must be
cut-nodes of S, therefore decomposing the solution on these cut-nodes gives
us a solution S; for each of the biconnected component G, with cost s(G;).
We have opt (G;) < s(G;) because of optimality, therefore Ele opt (G;) <

¥ s(Gy) = opt (G) O

4.1.5 Lemma. If we have a polytime algorithm for MAP1 with cost £ opt (G)—
2, then we have a polytime algorithm for MAP with cost % opt (G) —2

Proof. Proof by induction. Let G be a minimal counter example. G must have
a cut-node, which we can remove in polytime. Removing the cut-node gives
us graphs G1,...,Gi. We can find solutions Si,..,Sk in polytime by induction.
Either we solve G; optimally for all ¢, in which case our solution S for G has
cost opt (G) < T opt (G) — 2, or without loss of generality, our solution S for
G has cost % opt (G1) — 2. All other components are solved either optimally
or algorithmically, and therefore will have cost < % opt . Thus by our above

result, we can find a 2ECSS for G in polytime with cost < Zf:l Topt (Gy)-2<

% opt (G) — 2, which completes the proof. O

4.2 Handling unit-splits

A unit-split is a unit-edge whose contraction creates a cut-node with two ad-
jacent zero-edges, such that two of the resulting biconnected components have
opt > 3, and the zero-edges are in different biconnected components.

4.2.1 Lemma. We can find and remove a unit-split, or prove there are none,
in polytime

20

4.2, HANDLING UNIT-SPLITS

(a) Find a unit-split e (green)

(b) Contract and separate biconnected components A,B (orange)

Figure 4.2: The above figure illustrates Handling Unit-Splits. Unit-edges are
drawn as solid lines, zero-edges are drawn as dotted lines, and large circles
represent blocks. The green edge e is a Unit-Split. Contracting it creates a
cut-node, which we handle identically to any other cut node.

Proof. There are m potential unit-splits. We can contract each in constant time
and check if doing so creates a cut-node. If it does, we can also check if the two
adjacent zero-edges are in different biconnected components in constant time,
and finally we can check if some G and G2 have opt (G1), opt (G2) > 3. If
all of these conditions are satisfied, we can decompose the graph G by treating
the biconnected components as individual graphs G, Gs,..., Gi. Otherwise we
uncontract and move to the next potential unit-split. O

4.2.2 Lemma. Removing a unit-split preserves the matching property of zero-
edges, and creates no cut-nodes

Proof. Our contraction only makes two zero-edges adjacent, but when we de-
compose the graph, those zero-edges are no longer adjacent, therefore the match-
ing property is restored. There are no cut-nodes in the original graph, therefore
the only potential cut-node is the newly created node, but because of our decom-
position, we know it is not a cut-node. Therefore no cut-nodes are created. [

4.2.3 Lemma. Given 2ECSS’s Sy,, Sy for Gi,..., G with costs s(G1), ...,
s(G},) respectively, we can find a 2ECSS S for G with cost Zle s(Gi) +2

Proof. Let e be the contracted unit-edge. Let S* = Ule S1. We showed in a
previous section that S* is a 2ECSS for G/e. Then S* + e has at most 1 bridge
in G which is e, as otherwise S* would have a bridge in G/e. Let f be any edge
between the two blocks of S* + e. Let S = S5* + e+ f. We showed before that
S* has cost Zle s(G}), therefore S has cost Zle s(Gi) + 2, as desired. O

4.2.4 Lemma. Zle opt (G;) < opt (G)

21

4.PRE-PROCESSING

Proof. Given an optimal solution S for G, we can contract a unit-split e, creating
a cut-node in G and S. We showed in a previous section that Zle opt (G;) <

opt (G/e). Therefore Zle opt (G;) < opt (G). O

4.2.5 Lemma. If we have a polytime algorithm for MAP2 with cost % opt —2,
then we have a polytime algorithm for MAP1 with cost % opt —2

Proof. Proof by induction, let G be a minimal counter example. G must have a
unit-split, which we can remove in polytime. Removing the split gives us graphs
G1,...,Gg. We can find solutions Si,..,S) in polytime by induction. Without loss
of generality, S7 will have cost % opt (G1)—2 and Sy will have cost % opt (G2)—
2. All other components are solved either optimally or algorithmically, and
therefore will have cost < % opt . Thus by our above result, we can find a
2ECSS for G in polytime with cost < Zle T opt (G;)—4+2< T opt (G)—2,
which completes the proof. O

4.3 Handling zero-splits

A zero-split is a zero-edge whose contraction creates a cut-node

(a) Find a zero-split e (green)

“

(b) Contract and separate biconnected components A,B (orange)

Figure 4.3: The above figure illustrates Handling Zero-Splits. Unit-edges are
drawn as solid lines, zero-edges are drawn as dotted lines, and large circles
represent blocks. The green edge e is a Zero-Split. Contracting it creates a
cut-node, which we handle identically to any other cut node.

4.3.1 Lemma. We can find and remove a zero-split in polytime

Proof. There are § potential zero-splits. We can contract each in constant time
and check if doing so creates a cut-node. If all of these conditions are satisfied,
we leave the zero-split contracted and decompose the graph G by treating the
biconnected components as individual graphs G1, Gs,..., Gx. Otherwise we
uncontract and move to the next potential zero-split. O

22

4.4 HANDLING REDUNDANT-CYCLES

4.3.2 Lemma. Removing a zero-split preserves the matching property of zero-
edges and does not create unit-splits or cut-nodes

Proof. Our contraction does not make any zero-edges adjacent therefore the
matching is maintained. There are no cut-nodes in the original graph, there-
fore the only potential cut-node is the newly created node, but because of our
decomposition, we know it is not a cut node. Therefore no cut-nodes are cre-
ated. There are no unit-splits in the original graph, and unit-splits only involve
vertices with an adjacent zero-edge. No such vertices are created, therefore no
unit-splits are created. O

4.3.3 Lemma. Given 2ECSS’s Sy,, Sy for Gi,..., G with costs s(G1),...,
s(G},) respectively, we can find a 2ECSS S for G with cost Zle s(Gi)+1

Proof. Let e be the contracted zero-edge. Let S* = Ule S1. We showed in the
previous section that S* is a 2ECSS for G/e. Then S* + e has at most 1 bridge
in G which is e, as otherwise S* would have a bridge in G/e. Let f be any edge
between the two blocks of S* +e. Let S = S* + e+ f. We showed before that
S* has cost Zle s(G}), therefore S has cost Zle s(G;) + 1, as desired. O

4.3.4 Lemma. Zf:l opt (G;) < opt (G)

Proof. Given an optimal solution S for GG, we can contract a zero-split, creating
a cut-node in G and S. Decomposing S on this cut-node gives us a solution .S;
for each of the biconnected component G; with cost s(G;). We have opt (G;) <
s(G;) because of optimality, therefore Zle opt (G;) < Zle s(G;) = opt (G)

O

4.3.5 Lemma. If we have a polytime algorithm for MAP3 with cost % opt —2,
then we have a polytime algorithm for MAP2 with cost % opt —2

Proof. Proof by induction, let G be a minimal counter example. G must have a
unit-split, which we can remove in polytime. Removing the split gives us graphs
G1,...,Gg. We can find solutions S7,..,S5 in polytime by induction. Either
we solve G; optimally for all ¢, in which case our solution S for G has cost
opt (G) +1 < I opt (G) — 2, or without loss of generality our solution S for
(1 has cost % opt (G1)—2. All other components are solved either optimally or
algorithmically, and they all have a vertex with no adjacent zero-edges, therefore
they all have cost < % opt — 1. Thus by our above result, we can find a 2ECSS
for G in polytime with cost < 32 | 7 opt (G;) —3+1 < T opt (G) — 2, which
completes the proof. O

4.4 Handling redundant-cycles

A redundant-cycle is a 4-cycle with two zero-edges with two vertices that have
no neighbours outside the cycle and are not adjacent.

23

4.PRE-PROCESSING

(a) Find a redundant cycle abed (green) (b) Contract abed into vertex u (orange)

Figure 4.4: The above figure illustrates Handling Redundant-Cycles. Unit-edges
are drawn as solid lines, zero-edges are drawn as dotted lines, and large circles
represent blocks. The green cycle abced is a redundant-cycle. Vertices a and ¢
are non-adjacent and have no neighbours outside abcd. We contract abced into
vertex u. If u is a cut-vertex, we handle it as any other.

4.4.1 Lemma. We can find and remove a redundant-cycle, or prove one does
not exist, in polytime

Proof. There are n? potential redundant-cycles. We can check 2 zero-edges to
see if they form a cycle where two vertices have neighbourhoods which meet the
requirements in constant time. If all of the conditions are satisfied, we leave
the redundant-cycle contracted. We label the biconnected components in the
resulting graph Gy, ..., Gk, and we decompose the graph if £ > 1. Otherwise we
uncontract and move to the next potential redundant-cycle. O

4.4.2 Lemma. Removing a redundant-cycle preserves the matching property
of zero-edges and does not create unit-splits, zero-splits,or cut-nodes

Proof. Our contraction does not make any zero-edges adjacent and creates a
vertex with no adjacent zero-edges, therefore the matching is maintained. There
are no cut-nodes in the original graph, therefore the only potential cut-node is
the newly created node, but because of our decomposition, we know it is not a
cut node. Therefore no cut-nodes are created. There are no unit-splits or zero-
splits in the original graph, and both only involve vertices with an adjacent
zero-edge. No such vertices are created, therefore no unit-splits or zero-splits
are created. O

4.4.3 Lemma. Given 2ECSS’s Sy,, Sy, for G1,...,Gy, with costs s(G1),...,s(Gx)
respectively, we can find a 2ECSS S for G with cost Z?zl s(Gy) +2

Proof. Let C' be the contracted cycle. Let S* = Ule S1. We showed in a
previous section that S* is a 2ECSS for G/C. Then S* + C has no bridges, as
otherwise S* would have a bridge in G/C. We showed before that S* has cost
Zle s(G;), therefore S has cost Zle s(Gi) + 2, as desired. O

4.4.4 Lemma. YF_ | opt (Gi) +2 < opt (G)

Proof. Given an optimal solution S for G, we can contract a redundant-cycle
C in G and decompose if a cut-node is created. We will have contracted two

24

4.5.HANDLING SPLIT-CYCLES

unit-edges of S, because all vertices have degree 2 in S and there are the unad-
jacent vertices in C' with no neighbours outside C. Therefore opt (G/C)+2 =
opt (G). We know that Zle opt (G;) < opt (G/C) from a previous section,
therefore Zf;l opt (G;) +2 < opt (G) as desired. O

4.4.5 Lemma. If we have a polytime algorithm for MAP4 with cost * 1 opt —2,
then we have a polytime algorithm for MAP3 with cost < 7 opt —2

Proof. Proof by induction, let G be a minimal counter example. G must have
a redundant-cycle, which we can remove in polytime. Removing the cycle gives
us graphs G1,...,Gi. We can find solutions Si,..,5k in polytime by induction.
Elther we solve G; optimally for all ¢, in which case our solution S for G has cost
< Z 1 opt (Gi)+2 < opt (G) < T opt (G) —2, or without loss of generality
our solution S; for Gy has cost 1 7 opt (G1) — 2. All other components are
solved either optimally or algomthmlcally7 therefore they all have cost g £ opt .

Thus by our above result, we can find a 2ECSS for G in polytime With cost
< Zle T opt (G;) —2+2 < T opt (G) — 2, which completes the proof. O

4.5 Handling split-cycles
A split-cycle is a block with two unit-edges and no adjacent zero-edges, whose

contraction creates a cut-node such that two of the biconnected components
have opt > 3.

(=)

) Find a split-cycle abcd (green)

“4

) Contract and separate biconnected components A,B (orange)

Figure 4.5: The above figure illustrates Handling Split-Cycles. Unit-edges are
drawn as solid lines, zero-edges are drawn as dotted lines, and large circles
represent blocks. The green cycle abed is a Split-Cycle. Contracting it creates
a cut-node, which we handle identically to any other cut node.

4.5.1 Lemma. We can find and remove a split-cycle, or prove one does not
exist, in polytime

25

4.PRE-PROCESSING

Proof. There are n? potential split-cycles. We can contract each in constant
time and check if doing so creates a cut-node. If it does, we can check if two of
the biconnected components have opt > 3 in polytime. If all of these conditions
are satisfied, we leave the split-cycle contracted. We label the biconnected
components in the resulting graph G, ..., Gy and decompose the graph G into
these components. Otherwise we uncontract and move to the next potential
split-cycle. O

4.5.2 Lemma. Removing a split-cycle preserves the matching property of zero-
edges and does not create cut-nodes, redundant-cycles, unit-splits or zero-splits

Proof. Our contraction does not make any zero-edges adjacent therefore the
matching is maintained. There are no cut-nodes in the original graph, there-
fore the only potential cut-node is the newly created node, but because of our
decomposition, we know it is not a cut node. Therefore no cut-nodes are cre-
ated. There are no redundant-cycles, unit-splits or zero-splits in the original
graph, and all three only involve vertices with an adjacent zero-edge. No such
vertices are created, therefore no unit-splits, zero-splits or redundant-cycles are
created. O

4.5.3 Lemma. Given 2ECSS’s Sy, ..., Sy, for Gy,..., Gy, with costs s(G1),...,s(Gk)
respectively, we can find a 2ECSS S for G with cost Ele s(Gy) +2

Proof. Let C be the contracted block. Let S* = Ule S1. We showed in a
previous section that S* is a 2ECSS for G/C. Then S* + C has no bridges, as
otherwise S* would have a bridge in G/C. We showed before that S* has cost
Zle s(G;), therefore S has cost Zle s(Gi) + 2, as desired. O

4.5.4 Lemma. Zle opt (G;) < opt (G)

Proof. Given an optimal solution S for GG, we can contract a split-cycle C, cre-
ating a cut-node. We know that Zle opt (G;) < opt (G/C) from a previous
section. Also, opt (G/C) < opt (G), therefore Zle opt (G;) < opt (G) O

4.5.5 Lemma. If we have a polytime algorithm for MAP5 with cost % opt —2,
then we have a polytime algorithm for MAP4 with cost % opt —2

Proof. Proof by induction, let G be a minimal counter example. G must have a
split-cycle, which we can remove in polytime. Removing the split gives us graphs
G1,...,Gk. We can find solutions S1,..,S% in polytime by induction. Without loss
of generality, S7 will have cost % opt (G1)—2 and Sy will have cost % opt (G2)—
2. All other components are solved either optimally or algorithmically, and
therefore will have cost < % opt . Thus by our above result, we can find a
2ECSS for G in polytime with cost < Zle T opt (G;)—4+2< T opt (G)—2,
which completes the proof. O

26

4.6.HANDLING UNIT MULTI-EDGES

(a) Find a unit multi-edge f (green) (b) Delete the edge f

Figure 4.6: The above figure illustrates Handling Unit Multi-edges. Unit-edges
are drawn as solid lines, zero-edges are drawn as dotted lines, and large circles
represent blocks. The green edge f is a unit multi-edge. We delete f.

4.6 Handling unit multi-edges

4.6.1 Lemma. We can find and remove a unit multi-edge, or prove there are
none, in polytime

Proof. There are m potential multi-edges. We can check any edge to see if it is
a unit multi-edge in polytime. If it is, we delete it resulting in the graph G;. O

4.6.2 Lemma. Removing a unit multi-edge preserves the matching property of
zero-edges and does not create unit-splits, zero-splits, split-cycles, cut-nodes, or
redundant-cycles

Proof. Deleting a multi-edge does not alter 2-connectivity or adjacency at all,
therefore it cannot destroy the matching property or create any of unit-splits,
zero-splits, split-cycles, cut-nodes, or redundant-cycles. O

4.6.3 Lemma. Given 2ECSS’s Sy for Gy with costs s(G1), we can find a 2ECSS
S for G with cost s(G1)

Proof. Let S = 57. S is 2ECSS because S7 is a 2ECSS, and clearly S has cost
S(Gl). O

4.6.4 Lemma. opt (G1) < opt (G)

Proof. Let S be an optimal solution for G. Let e, f be multi-edges such that
e is a unit-edge and G — e = G;. If S does not contain e, then let S; = S. If
S does not contain f, then S; =5 —e+ f. If S; contains both, then the only
possible bridge in S — e is f, and because G is 2-connected, there is an edge h
between the two blocks of S — e, thus let S; =5 — e+ h. In all cases, S; is a
2ECSS for G with cost opt (G), completing the proof. O

4.6.5 Lemma. If we have a polytime algorithm for MAP6 with cost % opt —2,
then we have a polytime algorithm for MAP5 with cost % opt —2

Proof. Proof by induction, let G be a minimal counter example. G must have a
unit multi-edge, which we can remove in polytime. Removing the split gives us
graph G;. We can find solution 57 in polytime by induction. S; will have cost <
? opt (G1)—2. Therefore we can find a 2ECSS for G with cost < 7 opt (G) -2,
which completes the proof. O

27

Chapter 5

Base Graph Construction

For this section, we need the following definitions: Bad triangles are 3-cycles
which contain a zero-edge and a zero-edge as their only adjacent edge. A con-
tracted vertex in some graph is the result of contracting a block of G. An
uncontracted vertex in some graph is a vertex of G. A special vertex in some
graph is a neighbourless vertex which results from contracting a block with 2
unit-edges in G.

At the start of this section, we have a MAPG6 instance, i.e. a MAP instance
wherein no reductions are possible. This means that we have at least 20 vertices
and thus opt (G) > 10 = % opt (G) —2 > opt (G).

At the end of this section, we’ll have created two graphs. The first is D2,
which is a spanning subgraph of G with cost < % opt (G) in which all vertices
have degree > 2 and there are no bad-triangles. Both graphs will have ”credit”
on them, which increases their cost without increasing their number of edges.
The point of the credit is we can remove 1 credit to add 1 unit-edge without
increasing the cost of the graph.

The second graph is F2. F2 is a minor of G created by contracting the blocks
of D2 (which makes it a forest) and assigning its credit as follows: All trees of
F2 have 1 credit, all special vertices of F2 have .5 credit, all other contracted
vertices have 1 credit, all uncontracted vertices have % credit for each adjacent
unit edge. Note that any vertex of F2 with degree < 2 must be a contracted
vertex.

We work with F2 because it is easier to manage, but D2 will ultimately be
our 2ECSS for the MAP6 instance.

5.0.1 Lemma. If have a polytime algorithm to find an F2 which is a single
vertex, then we have a polytime algorithm for MAPG with cost I opt (G) — 2.

Proof. If F2 is a single vertex, then it is a contracted vertex because it has
degree 0. It also is a tree. Therefore F2 has 2 credit. Because F2 results from
contracting the blocks of D2, D2 must be a block with 2 credit. Thus the edges
of D2 cost < % opt (G) — 2 and for a 2-edge-connected spanning subgraph, as
desired. O

29

5.BASE GRAPH CONSTRUCTION

5.1 Creating D2

5.1.1 Lemma. The three steps below create a D2 in polytime

Proof. There are only 3 steps and each is polytime, therefore it suffices to prove
the 3 steps create a D2. A minimal 2-edge cover has the property, that all
vertices have degree > 2, and step 2 removes all its bad triangles. Finally the
credit we add will have cost % opt (G), giving our D2 a cost of % opt (G).

O

5.1.1 Calculate a minimal 2-edge cover

We calculate a minimal 2-edge cover, which we can do in polytime. Its cost is
a lower-bound on opt (G) because all vertices in a 2ECSS have degree at-least
2.

5.1.2 Handle Bad-Triangles

We handle any bad-triangles in our minimal 2-edge cover.

5.1.2 Lemma. We can remove all bad triangles from a minimal 2-edge cover
in polytime.

Proof. Proof by contradiction. Suppose any minimal 2-edge cover we can find in
polytime has at-least b > 0 bad-triangles. Therefore let xyz be a bad triangle.
Without loss of generality, let yz be a zero-edge and thus x has an adjacent
zero-edge. This is a MAPG instance, therefore x is not a cut-node. Without loss
of generality, let y be adjacent to some w # z,y, z. Therefore if we swap edge
zy for wy, which maintains the 2-edge cover property, thus we get a minimal
2-edge cover with one less b — 1 bad-triangles, completing the proof.

O

5.1.3 Add Credit

We add credit to our minimal 2-edge cover. For each unit-edge, we add % credit
to each of the vertices. This credit and the minimal 2-edge cover together form
D2. As a result, the cost of D2 is a lower-bound on I opt (G). We can add this
credit in linear time.

5.2 Creating F2

5.2.1 Lemma. Given a D2, the two steps below create an F2 in polytime

Proof. There are only 2 steps and each is polytime, therefore it suffices to prove
the 2 steps create an F2. Step 1 contracts the blocks of D2 and makes it a forest.
Step 2 proves we can assign the credit of D2 to satisfy the credit invariants of
F2, which completes the proof.

O

30

5.2.CREATING F2

(a) Search for a bad-triangle

O @

(b) Swap a unit edge in the bad-triangle for another edge

Figure 5.1: The above figure demonstrates Handling Bad-Triangles. Unit-edges
are drawn as solid lines, zero-edges are drawn as dotted lines, and large circles
represent blocks. The bad triangle ABD (green) is replaced by a square ABC D
(orange)

5.BASE GRAPH CONSTRUCTION

5.2.1 Contract Blocks

We contract all the blocks of D2, which we can do in polytime. Contracting all
blocks of a graph creates a forest, because all cycles are blocks.

C

(a) Select all maximal 2-edge-connected components.

C
B
D
A .
.
. N
. .
. .
. .

(b) Contract all maximal 2-edge-connected components.

Figure 5.2: The above figure demonstrates Block Contraction. Unit-edges are
drawn as solid lines, zero-edges are drawn as dotted lines, and large circles
represent blocks. The blocks A, B, C, D, E, F are turned into contracted vertices

5.2.2 Establish credit invariants

Credit Invariants of F2:
1. All trees have 1 credit.
2. All special vertices have .5 credit.

3. All non-special contracted vertices have 1 credit.

3

4. All uncontracted vertices have 2

credit per adjacent unit edge.

32

5.2.CREATING F2

All vertices of D2 are given % credit per adjacent unit edge. This is a MAP6
instance, meaning there are no unit multi-edges, thus all blocks have at-least 2
unit edges, meaning they can claim 1.5 credit. Therefore, if a tree has at-least
2 contracted vertices, it can claim .5 credit from each to gain 1 credit while
leaving 1 credit for each contracted vertex. The only trees that don’t have 2
contracted vertices are those with 1 leaf. When this is the case, the tree claims 1
credit from that contracted vertex, leaving the leaf with 1 credit except when its
associated block has only 2 unit edges. These exceptions are all special vertices
by definition. They started with 1.5 credit and are left with the .5 credit needed.
Therefore with this assignment all credit invariants are satisfied.

33

Chapter 6

Bridge covering

At the start of this section, we have D2, a spanning subgraph of G with cost
< % opt (G) in which all vertices have degree > 2 and there are no bad-triangles,
and F2, a minor of G created by contracting the blocks of D2 (which makes it
a forest) and assigning its credit as follows: All trees of F2 have 1 credit, all
special vertices of F2 have .5 credit, all other contracted vertices have 1 credit,
all uncontracted vertices have % credit for each adjacent unit edge.

At the end of this section, we’ll have a new D2 that also has no bridges, and
thus a new F2 which also has no edges. One thing to note is that any time we
alter F2 by adding/removing any edges or credit, we do the same to D2. The
only differences between D2 and F2 is that blocks in F2 are contracted and we
assign its credit to vertices instead of the graph.

6.0.1 Lemma. If have a polytime algorithm to find an F2 which is a single
vertex given an F2 without edges, then we have a polytime algorithm to find an
F2 which is a single vertex.

Proof. If we repeatedly apply the lemma below at most n times to any given
F2, it will become an F2 without bridges. Then we can apply our polytime
algorithm to find an F2 which is a single vertex in polytime as desired. O

6.1 Bridge Covering Algorithm

6.1.1 Lemma. Given an F2 with b > 0 bridges, we can return an F2 with
at-most b — 1 bridges in polytime.

Proof. Select a tree of F2 with bridges T'. Select a leaf [in T'. For each vertex
vin T, let P, be the path from v to [in 7.
Next we need to select a vertex u € T such that:

1. There is a path from u to | in G’ — E(F2)

2. P, satisfies one of the following:

35

6.BRIDGE COVERING

(a) P, contains > 2 contracted vertices
(b) P, has > 3 edges

(c) P, has exactly 2 edges and P, contains a vertex, (possibly one of its
end vertices) which has > 2 adjacent unit edges in 7T'.

6.1.2 Claim. A vertex u with the above properties always exists for any choice
of leaf [.

Proof. Suppose not for the sake of contradiction. Ju # [€ S because G is
2-edge-connected. Therefore let u € S. By our assumption, the only contracted
vertex in P, is [. This means we can choose u so that |P,| > 2 because G has
no cut-nodes. By our assumption, |P,| = 2. Let v # u,l be the other vertex in
P,. By our assumption, P, has no vertex with 2 adjacent unit edges, therefore
P, contains a zero-edge and v has degree 2 in T. wvu cannot be a zero-edge
because it would be a split, thus vl is a zero-edge. wu is not a leaf because it is
not a contracted vertex by our assumption. u cannot be adjacent to another
unit-edge by our assumption. Therefore uv is a unit-edge with 2 adjacent zero-
edges whose contraction creates a cut-node. The zero-edges are in different
biconnected components of this cut-node, and two components contain a zero-
edge and a leaf, which means they’ll have opt > 3. Thus wv is a unit-split,
which is a contradiction. O

Therefore there is always a suitable u. The conditions for a suitable u can
be checked in polytime, therefore we need only check all vertices of T to find .
Once we have u, choose a path from u to I distinct from T that uses the fewest
edges of G\ F'2. We'll call this path @,. The shortest path algorithm can give
use a suitable @, in polytime.

6.1.3 Claim. Trading |Q,| credit to add the edges of Q, to F2 (and D2) and
contracting the resulting cycle maintains our credit invariants.

Proof. There are the same number of edges of G\ D2 in Q,, as there are trees of
F2 that intersect @,,. Therefore to add the edges of @,, we use the 1 credit of
each tree involved. After the contraction, these trees become 1 tree in F2. We
give the credit from [to this tree to ensure that it still has 1 credit. All that
remains is to show that the new contracted vertex has 1 credit.

In the case that P, has 2 contracted vertices, it has a contracted vertex
besides [, with gives > 1 credit to the new contracted vertex.

In the case that P, has > 2 edges, it has 3 vertices besides [, thus each gives
> % credit to the new contracted vertex.

In the case that P, has a vertex with 2 adjacent unit edges, it has 2 vertices
besides [, one gives > % credit and the other > g credit to the new contracted
vertex.

Therefore, in all cases the new contracted vertex has 1 credit, thereby pre-
serving the credit invariants.

O

36

6.1.BRIDGE COVERING ALGORITHM

Because we swapped credit for edges, we did not increase the cost of D2. We
didn’t delete any edges, therefore all vertices still have degree > 2. Finally, no
bad triangles are created because the only way to add a bad triangle to a D2
by adding edges is to add a zero-edge. This and the fact that credit invariants
are maintained mean that we have a new D2 and F2. All edges we added to F2
were contracted along with some bridges in the path P,, therefore our new F2

has at most b — 1 bridges, as desired
O

37

6.BRIDGE COVERING

™

) Select a vertex v (green) in a tree T with bridges.

AN

I

(b) Add a path Q (green) in G’ \ T from v to a suitable vertex u (orange)

%

) Contract the cycle created by adding Q to F2

AN

Figure 6.1: The above figure demonstrates a typical Bridge Covering Subroutine.
Edges of F2 are drawn in black. The green path is the path added to F2 to
"cover” the bridges between u (green) and v (orange).

38

Chapter 7
The gluing step

At the start of this section, we have D2, a spanning subgraph of G with cost
< % opt (G) in which all vertices have degree > 2 and there are no bridges or
bad-triangles, and F2, a minor of G created by contracting the blocks of D2
(which makes it a forest) and assigning its credit as follows: All trees of F2 have
1 credit, all special vertices of F2 have .5 credit, all other contracted vertices
have 1 credit, all uncontracted vertices have % credit for each adjacent unit edge.

At the end of this section, we’ll have an F2 which is a single vertex, and thus

our D2 will be a 2ECSS.

7.0.1 Lemma. Given an F2 without edges, we have a polytime algorithm to
find an F2 which is a single vertex.

Proof. By repeatedly applying lemma 7.1.4, we can find an F2 such that the
graph has no cycles of length > 2, which means F2 is a single vertex. O

7.1 Gluing Algorithm

7.1.1 Lemma. Given a bridgeless F2 in a graph with b > 0 cycles of length
> 4, we can alter bridgeless F2 so the graph has at most b — 1 cycles of length
> 4 in polytime.

Proof. We can find ¢ > 4 vertices which form a simple cycle C in polytime.
Then we can add the ¢ edges of C to F2 (and D2) by swapping 1 credit for each
of the ¢ trees of F2. We contract C' in F2 in polytime to get a new contracted
vertex which is its own tree. There were at-least 4 contracted vertices in C,
meaning their credit sums to > 2. We can give 1 credit to the tree, while
the contracted vertex retains > 1 credit, thereby maintaining credit invariants.
Therefore our new graph is a valid F2, and the graph has at most b — 1 cycles
of length > 4. O

7.1.2 Lemma. Given a bridgeless F2 in a graph with b > 0 cycles of length
> 3, we can alter bridgeless F2 so the graph has at most b — 1 cycles of length
> 3 in polytime.

39

7.THE GLUING STEP

F
A e
@
B
(4]
G
@
C
()
E
D
@
@
(a) Search for a suitable cycle in the graph
F
A e
@
B
G
C
D
@
(b) Add the edges of the cycle
F
A @

D
@

(¢) Contract the cycle created in F2

Figure 7.1: The above figure demonstidtes a typical Gluing Subroutine. The
green cycle is the cycle added to F2 to ”glue” the blocks B, G, F, C together.

7.1.GLUING ALGORITHM

Proof. If there are any cycles if length > 4, the result follows from the above
lemma. Therefore assume the graph has no cycles of length > 4. We can find 3
vertices which form a simple cycle C' = zyz in polytime.

7.1.3 Claim. This cycle must contain a non-special vertex

Proof. First note that one vertex z in C' has a neighbour w outside C, as
otherwise the graph is just 3 special vertices, which would mean G has < 20
vertices, a contradiction. Next note that there exists a path P from w to another
vertex of C' which does not contain x, since otherwise x would be a split cycle
in G. Without loss of generality let P be from w to y. But then Pzx is a cycle
of length > 4, a contradiction. O

Then we can add the 3 edges of C' to F2 (and D2) by swapping 1 credit
for each of the 3 trees of F2. We contract C in F2 in polytime to get a new
contracted vertex which is its own tree. There was a non-special contracted
vertex in C' so we give its 1 credit to the tree, leaving 1 credit from the two
other contracted vertices for the new contracted vertex, thereby maintaining
credit invariants. Therefore our new graph is a valid F2, and the graph has at
most b — 1 cycles of length > 3.

O

7.1.4 Lemma. Given a bridgeless F2 in a graph with b > 0 cycles of length
> 2, we can alter bridgeless F2 so the graph has at most b — 1 cycles of length
> 2 in polytime.

Proof. If there are any cycles if length > 3, the result follows from the above
lemma. Therefore assume the graph has no cycles of length > 3. If there are
two adjacent non-special vertices, there are two edges between them because the
graph is 2-edge connected. We add those two edges to F2 (and D2) by swapping
1 credit for each of the 2 trees of F2. We contract the 2-cycle in F2 in polytime
to get a new contracted vertex which is its own tree. Both vertices had 1 credit,
therefore we give 1 credit to the tree and 1 to the vertex, thereby maintaining
credit invariants. Therefore our new graph is a valid F2, and the graph has at
most b — 1 cycles of length > 2. We can therefore assume there are no adjacent
non-special vertices.

Note that graphs without cycles of length > 2 have a tree-like structure.
A special vertex cannot be an internal node of this tree, as that would mean
there was a split cycle in G. Therefore, because there are no adjacent non-
special vertices, this tree consists of special vertices which are all adjacent to
one non-special vertex r and nothing else.

Select special vertex v. If we uncontract v, we get a block B which is a
triangle zyz with a zero-edge, or a square wxyz with two zero-edges. In both
cases, there are no cut-nodes in G, therefore two vertices of B are adjacent to
r. In both cases, let yz be a zero-edge and let z be adjacent to r without loss of
generality. Suppose B = zyz. There are no splits, so z is adjacent to r. Swap
xz for xr and use the credit from v to buy edgezr. This creates the block rzyz,
which we contract. We have not used any credit from r, therefore the credit

41

7. THE GLUING STEP

invariants remain intact. Now suppose B = wzyz. If 3 vertices are adjacent to
r, swap a unit-edge and 1 credit for 2 unit-edges adjacent to r in the same way
as before. B is not a redundant-cycle, therefore if only two vertices are adjacent
to r, then the other two are adjacent. Also, there are no splits, therefore one
of w, z is adjacent to r. Therefore, without loss of generality, we can assume w
is adjacent to r, because otherwise xwyz is also a square. Swap wz for xr and
use the credit from v to buy edgezr. This creates the block rwzyz, which we
contract. We have not used any credit from r, therefore the credit invariants
remain intact. Therefore our new graph is a valid F2, and the graph has at
most b — 1 cycles of length > 2.

O

42

Chapter 8

Conclusion

In this final chapter, we use the results of previous chapters to give a quick proof
of the main result in this paper.

8.0.1 Theorem. There is a % polytime approximation algorithm for MAP

Proof. Either a MAP instance is small enough to solved optimally, or large
enough to be reduced to a set of MAPG6 instances in polytime via lemmas 4.1.5,
4.2.5, 4.3.5, 4.4.5, 455 and 4.6.5. The 2ECSSs we return for each MAP6
instance, along with any edges contracted when we separate the instances, will
form a 2ECSS for the original instance. Lemmas 5.01, 6.0.1, and 7.0.1 show that
there is a % polytime approximation algorithm for MAP6, and thus for MAP.
O

43

Bibliography

[1]

[10]

D. Adjiashvili. Beating approximation factor two for weighted tree aug-
mentation with bounded costs. In: P. N. Klein (ed.) Proceedings of the
Twenty-FEighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, pages 2384-2399. STAM, 2017.

R. Diestel. Graph Theory (4th ed.). Graduate Texts in Mathematics, Vol-
ume 173. Springer-Verlag, Heidelberg, 2010.

G. Even, J. Feldman, G. Kortsarz, and Z. Nutov. A 1.8 approximation
algorithm for augmenting edge-connectivity of a graph from 1 to 2. ACM
Trans. Algorithms, 5(2):21:1-17, 2009.

S. Fiorini, M. Grof}, J. Kénemann, and L. Sanita. Approximating weighted
tree augmentation via Chvatal-Gomory cuts, In: A. Czumaj (ed.) Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, pages 817-831. STAM, 2018.

G. N. Frederickson and J. JaJa. Approximation algorithms for several
graph augmentation problems. SIAM J. Comput., 10(2):270-283, 1981.

G. N. Frederickson and J. JaJa. On the relationship between the bicon-
nectivity augmentation and traveling salesman problems. Theor. Comput.
Sci., 19:189-201, 1982.

H. N. Gabow, M. X. Goemans, E. Tardos, and D. P. Williamson. Approx-
imating the smallestk-edge connected spanning subgraph by LP-rounding.
Networks, 53(4):345-357, 2009.

M. X. Goemans and D. P. Williamson. A general approximation technique
for constrained forest problems. SIAM J. Comput., 24(2):296-317, 1995.

F. Grandoni, C. Kalaitzis, and R. Zenklusen. Improved approximation for
tree augmentation: saving by rewiring. Proc. 50th ACM Symposium on
Theory of Computing, STOC, pages 632645, 2018.

K. Jain. A factor 2 approximation algorithm for the generalized Steiner
network problem. Combinatorica, 21(1):39-60, 2001.

45

[11]

[12]

[20]

[21]

BIBLIOGRAPHY

M. Karpinski, M. Lampis, and R. Schmied. New inapproximability bounds
for TSP. J. Comput. Syst. Sci., 81(8):1665-1677, 2015.

G. Kortsarz and Z. Nutov. A simplified 1.5-approximation algorithm for
augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algo-
rithms, 12(2):23:1-20, 2016.

L. C. Lau, R. Ravi, and M. Singh. Iterative Methods in Combinatorial Op-
timization. Cambridge Texts in Applied Mathematics (No. 46). Cambridge
University Press, 2011.

L. Lovasz and M. D. Plummer. Matching Theory, volume 367 of
AMS/Chelsea Publishing. American Mathematical Society, 2009.

H. Nagamochi. An approximation for finding a smallest 2-edge connected
subgraph containing a specified spanning tree. Discrete Applied Mathemat-
ics, 126:83-113, 2003.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algo-
rithms and Combinatorics, Volume 24. Springer-Verlag, Berlin Heidelberg,
2003.

A. Sebé and J. Vygen. Shorter tours by nicer ears: 7/5-approximation for
the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected
subgraphs. Combinatorica, 34(5):597-629, 2014.

S. Vempala and A. Vetta. Factor 4/3 approximations for minimum 2-
connected subgraphs. In K. Jansen and S. Khuller, (eds.) Approzimation
Algorithms for Combinatorial Optimization, Third International Work-
shop, APPROX 2000, Proceedings, LNCS 1913, pages 262-273. Springer,
2000.

H. Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc.,
34:339-362, 1932.

D. P. Williamson and D. B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, 2011.

J. Cheriyan, J. Dippel, F. Grandoni, A. Khan, and V. V. Narayan
The Matching Augmentation Problem: A %-Approximation Algorithm.
arXiv:1810.07816 [cs.DS]

46

