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Abstract

Controlling the spread of HIV among hidden, high-risk populations such as sex workers and
their clients is becoming increasingly important in the fight to end AIDS. In this thesis,
we identify a number of sociological and structural factors which render general control
strategies ineffective among these key populations, and instead call for focused testing and
interventions. A bipartite network model of sexual contacts between female sex workers and
male clients is motivated using historical data from a South African mining community. HIV
transmission and progression is modelled as a stochastic process on the network, and the
effect of various intervention strategies on HIV prevalence in the population is determined
through numerical simulations. We find that preventative interventions are highly cost-
effective when targeted at female sex workers. For aggressive reduction in HIV prevalence,
however, the client population cannot be ignored and treatment of both populations is
necessary.

Keywords: bipartite networks; HIV; epidemiology; control strategies; sex workers

iii



Acknowledgements

The data from the Carletonville-Mosuthumpilo project was provided by Brian Williams. I
would further like to thank Brian for insightful comments regarding this data and on the
public health implications of this research.

The simulations performed in this thesis relied on the software NepidemiX developed by
Lukas Ahrenberg, who was extremely helpful with any technical issues which arose.

This research was enabled in part by computational facilities provided byWestGrid (www.westgrid.ca)
and Compute Canada Calcul Canada (www.computecanada.ca).

I am also grateful to Marni Mishna for insightful discussions and feedback, and to my
supervisors Ralf Wittenberg and Sandy Rutherford for their guidance and support.

iv



Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 HIV Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Complex Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Sexual Contact Networks . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The SIR Model 11
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Bond Percolation Approach . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Epidemic Percolation Networks . . . . . . . . . . . . . . . . . . . . . 17

2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Bipartite Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Bond Percolation Approach . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Data Analysis 27
3.1 The Carletonville-Mosuthumpilo Project . . . . . . . . . . . . . . . . . . . . 27
3.2 Population Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Population Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Model and Results 32

v



4.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 HIV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Simplifications and Assumptions . . . . . . . . . . . . . . . . . . . . 36

4.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Performing Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Treatment-Based Interventions . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 Combined Interventions . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Discussion and Conclusions 45
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 49

Appendix A Additional Data from Carletonville Questionnaire 54
A.1 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2 Sexual Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.3 Condom Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Appendix B Software 61

vi



List of Tables

Table 2.1 Results from bond percolation model. . . . . . . . . . . . . . . . . . . 16

Table 3.1 Summary of data from studies of FSWs and their clients. . . . . . . . 29

Table 4.1 Possible node states in the disease model. . . . . . . . . . . . . . . . . 35
Table 4.2 Model parameters and estimated values. . . . . . . . . . . . . . . . . . 36

vii



List of Figures

Figure 1.1 Stages of HIV infection. . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1 Basic schematic of the SIR process. . . . . . . . . . . . . . . . . . . 11
Figure 2.2 Bond percolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2.3 Site percolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2.4 Escaping infection in the epidemic percolation network. . . . . . . . 18
Figure 2.5 Comparison of simulation and theoretical results using a Poisson

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 2.6 Comparison of simulation and theoretical results using a power law

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 2.7 An example of a bipartite graph. . . . . . . . . . . . . . . . . . . . 23
Figure 2.8 Branching process describing transmission on a bipartite network. . 24
Figure 2.9 Mean epidemic size in a bipartite CMRG. . . . . . . . . . . . . . . 26

Figure 3.1 Number of different non-regular partners reported by FSWs in the
past year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.2 Client responses for the number of visits to a sex worker over the
past year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.1 Comparison of model degree distributions with reported number of
partners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 4.2 Model bipartite network. . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 4.3 Schematic of model progression. . . . . . . . . . . . . . . . . . . . . 35
Figure 4.4 Model calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 4.5 Comparison of three treatment strategies over a 20-yr period. . . . 39
Figure 4.6 Comparison of combined treatment and prevention strategies over a

20-yr period, when both treatment and PrEP are targeted towards
FSWs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.7 Comparison of combined treatment and prevention strategies over a
20-yr period, when PrEP and treatment are both targeted towards
clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



Figure 4.8 Comparison of combined treatment and prevention strategies over a
20-yr period, when PrEP is targeted towards clients and treatment
is targeted towards FSWs. . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.9 Comparison of combined treatment and prevention strategies over a
20-yr period, when PrEP is targeted towards FSWs and treatment
is targeted towards clients. . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.10 Comparison of combined treatment and prevention strategies over a
20-yr period, when PrEP is targeted towards FSWs and treatment
is provided equally to both clients and FSWs. . . . . . . . . . . . . 43

Figure 4.11 Sensitivity to degree distribution. . . . . . . . . . . . . . . . . . . . 43
Figure 4.12 Effect of the combined strategy on total HIV prevalence after 20 yrs,

when FSW migration rate is set to zero. . . . . . . . . . . . . . . . 44

Figure A.1 Current occupation of clients. . . . . . . . . . . . . . . . . . . . . . 55
Figure A.2 Distribution of ages among clients and sex workers. . . . . . . . . . 56
Figure A.3 Comparison of recorded birthplaces. . . . . . . . . . . . . . . . . . . 56
Figure A.4 Number of current regular partners. . . . . . . . . . . . . . . . . . . 57
Figure A.5 Number of sexual encounters with regular partners. . . . . . . . . . 57
Figure A.6 Number of different non-regular partners. . . . . . . . . . . . . . . . 58
Figure A.7 Number of sexual encounters with non-regular partners. . . . . . . 59
Figure A.8 Condom use with non-regular partners. . . . . . . . . . . . . . . . . 60
Figure A.9 Condom use with FSWs. . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



Chapter 1

Introduction

The global HIV burden is largely confined to key populations such as men who have
sex with men, injection drug users, and sex workers. Even in the generalized epidemic
in sub-Saharan Africa, female sex workers (FSWs) are disproportionately affected [32]. In
many communities—especially those in which sex work is criminalized—sex workers face
widespread human rights violations and high levels of sexual violence, which may lead to an
increase in HIV susceptibility [4]. This is coupled with potential barriers to access of treat-
ment and prevention options for HIV [16]. Further contributions to the wider HIV epidemic
come from the fact that clients of FSWs typically act as bridges to the larger community,
with many having one or more regular sexual partners outside of transactional sex [36].

HIV transmission is associated with complex social interactions such as sexual relation-
ships or needle sharing. Therefore, knowledge of the underlying social network is important
to understanding disease spread and for designing control strategies. The use of networks
to model epidemics is well-established [47]. Various authors have investigated immunization
strategies on networks [15, 46, 12, 52, 11]. These works investigate the most effective distri-
bution of vaccines within a single population. In particular, Chen and Lu [11] describe an
efficient and feasible immunization strategy for FSWs.

While a vaccine is not currently available, HIV can be controlled with both treatment
and preventative options. For infected (HIV-positive) individuals, antiretroviral therapy
(ART) increases life expectancy and has been shown to significantly reduce transmission.
ART is a combination antiretroviral drug which may lead to viral suppression with consis-
tent use. Pre-exposure prophylaxis (PrEP) is another combination antiretroviral drug, but
is taken by high-risk HIV-negative individuals to reduce the likelihood of infection. Con-
doms are an inexpensive prevention measure against HIV and other sexually transmitted
infections. Simulation studies have proposed that condom distribution programs alone can
significantly reduce HIV incidence among FSWs and clients [6]. However, FSWs frequently
cite instances of forced unprotected sex, and it has been proposed that PrEP may be par-
ticularly beneficial in the FSW community [20]. Additional control strategies targeted at
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commercial sex workers include creating safer work environments, improving access to care,
community empowerment and decriminalization [7].

Previous HIV models have considered the effect of ART and, more recently, PrEP on HIV
prevalence in sub-Saharan Africa and elsewhere. The review by Gomez et al. [23] explored
deterministic and stochastic compartmental models to evaluate the potential impact of a
large scale PrEP roll-out alongside existing HIV prevention programs, such as condoms and
ART. This review determined that targeting PrEP to key populations would be a cost-
effective strategy. Similarly, Pretorius et al. [49] concluded that PrEP targeted at 25–35
year old women would have a positive impact on the South African epidemic. Vissers et
al. [55] developed a compartmental model which captures the high-risk populations of sex
workers and their clients, as well as the low-risk general population in India and Africa.
They found that PrEP would have a substantial impact in many African settings when
targeted at both FSWs and clients, because condom use is frequently low in such settings.

Much of the sex work in sub-Saharan Africa is “informal”, and could be described as
transactional or survival sex work [53]. These terms encompass a variety of sex-for-goods or
-money exchanges, and typically exclude women working as escorts or in brothels. Survival
sex work is not unique to sub-Saharan Africa, and this term may encompass certain street-
based sex workers [54]. Women who engage in survival sex work are at particular risk of
exploitation and have limited ability to advocate for their health and welfare [61]. We will
consider the sexual contacts described in this work to be of this informal nature. In this
thesis, we consider the implications of the nature of survival sex work on the structure of
the sexual contact network and hence on our model.

Outline of Thesis

There are three main components of our model: the disease process, which describes how
HIV progresses in a host; the contact process, which models how HIV spreads through the
population; and our numerical simulations. In the remainder of this introductory chapter,
we discuss the relevant background information on HIV epidemiology and control. This
information will be important when we discuss the model disease process, and for identifying
the key assumptions made. This is followed by an introduction to social network analysis
which leads to our work in Chapter 3, in which key characteristics of sex worker–client
networks are identified that can be incorporated into our model of sexual contacts. In the last
part of Chapter 1, we review the mathematical study of random graphs, which provides an
analytical framework for describing and generating networks. This review directly leads to
the discussion regarding simple dynamics on networks in Chapter 2. That chapter provides
an example of analytical results for epidemics on networks, and furthermore allows us to
test our numerical method for performing large-scale simulations. Using all of the above
ideas and methodologies, we finally construct our model and evaluate various HIV control
strategies in Chapter 4.
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Original Contributions

The original contributions of this thesis are: (1) Our model for sex worker–client interac-
tions, and (2) our conclusions regarding HIV control among these high-risk individuals. Our
model for the sexual contact network is a bipartite network model. Such models have been
used in previous studies on disease spread; for example, Bisanzio et al. [8] use a bipartite
network to model vector-borne diseases, and Meyers et al. [39] use a directed bipartite net-
work to investigate the spread of pneumonia from patients to hospital workers. In Gomez
et al. [24], the spread of generic sexually transmitted infections—including HIV—on het-
erosexual contact networks is considered. The authors use mean-field methods to analyze
SIR dynamics on scale-free bipartite networks, which is not a focus of this work. In this
thesis, we use both sociological literature and our analysis of historical data to construct
a model for sex worker–client interactions. To our knowledge, this is the first work which
investigates the spread of a sexually transmitted disease specifically among sex workers and
clients using a bipartite network.

Although some of the aforementioned modelling studies have examined the potential
impact of PrEP or immunization strategies in sex worker populations, in the present work
we study the distribution of combination HIV prevention between two distinct populations,
namely the FSWs and their clients. Using our model, calibrated against historical data from
a South African study, we investigate the potential effectiveness of both PrEP and ART
for HIV control and prevention in a population of sex workers and their clients. Unlike
previous simulation studies which only distinguish between “high-risk” individuals (both
sex workers and their clients) and “low-risk” individuals (the general population) we will
consider sex workers and clients separately and will not directly consider the impact on the
general population. While it is intuitive to imagine that the most cost-effective strategy
would be to target all resources towards the FSW population, our model shows that this is
only true up to a certain point. For aggressive reduction in HIV prevalence, targeting the
clients for treatment is also necessary.

1.1 HIV Epidemiology

The typical course of an HIV infection, as shown in Figure 1.1, consists of at least three
distinct stages. Flu-like symptoms may start to appear in patients 3–6 weeks following
infection. This acute stage is associated with a high viral load and high infectivity. This
period is followed by a long latent stage (typically asymptomatic); if left untreated, the
disease progresses to AIDS, on average, after 8–10 years.

Mathematical models of infectious diseases aim to describe the coupled dynamics of
the transmission of the disease from the infectious to the susceptible population and the
progression of the disease within the infected population. Deterministic compartmental
models are classical epidemiological tools; disease states are identified and flux laws are
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Figure 1.1. Change in viral load, which is proportional to the infectivity of the patient, over the course of
HIV infection. Adapted from [14].

used to describe the flow of the population between states. By contrast, in many stochastic
models, the movement of individuals between states is determined by constant probabilities
per unit time. Both deterministic and stochastic models can be analytically tractable—as
illustrated, for example, in Section 2.2.1—but realistic models often rely on either numerical
solutions in the deterministic case or simulation results in the stochastic case.

A fundamental epidemiological quantity is the basic reproduction number, R0. This quan-
tity is defined as the expected number of secondary infections resulting from an index case
in an otherwise susceptible population. If R0 > 1, the disease persists and may lead to an
epidemic. We can decompose the basic reproduction number into the following fundamental
components [34]:

R0 = cβD, (1.1)

where

c is the rate of infectious contacts;
β is the probability of transmission per infectious contact; and
D is the duration of infection.

An infectious contact is defined to be any contact which may result in infection. In the
context of sexually transmitted HIV, an infectious contact is any sexual contact between
an HIV-positive and an HIV-negative individual. Therefore, all of the above factors—rate
of contact, probability of transmission, and duration—contribute to disease spread and can
be targeted by control strategies.

Reducing the number of sexual contacts can clearly lower an individual’s risk of con-
tracting HIV; however, mathematical models have shown that the timing of partnerships
may be equally important [42]. Keeping the number of sexual contacts fixed, a population
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with more concurrent partnerships (as opposed to partnerships which are serially monoga-
mous) leads to an increased epidemic and an increased growth rate in the early stages of an
outbreak. To gain some intuition for this idea, consider an epidemic in its very early stages.
If a susceptible individual i is in a monogamous partnership with a second individual j, the
probability of j being already infected and subsequently transmitting to i is low. If j is in
concurrent relationships, then the probability of i becoming infected is now proportional to
both the probability that j is initially infected and the probability that j becomes infected
via other partnerships. Most importantly for HIV, concurrency increases the number of
partners exposed to the disease during the highly infectious acute stage (this is also when
infected individuals are least likely to be on treatment). Whether or not concurrency is a
driving factor in the generalized HIV epidemic in sub-Saharan Africa has been a subject of
debate; recently, the model of Leung and Kretzschmar [33] has supported this theory.

In an attempt to quantify the increase in infectivity accompanying the change in viral
load, Wawer et al. [59] study a cohort of serodiscordant (one HIV-negative and one HIV-
positive partner) heterosexual couples. They observed an average rate of transmission of
0.0015 per sexual act within 6–15 months of infection. During the acute stage of infection,
it is estimated that the probability of transmission per sexual contact is up to 26 times higher
than that during the latent stage [29]. The transmission probability per unprotected coital
act is considered to be a function of both the infectivity of the HIV-positive partner and the
susceptibility of the HIV-negative partner. In heterosexual couples, it is sometimes assumed
that women are more susceptible to sexually transmitted infections due to biological factors;
the study of Wawer et al. [59], however, does not reveal any of this asymmetry.

Studies have shown that consistent condom usage is up to 95% effective at preventing
HIV transmission [48]. It has been shown that a man’s risk of contracting HIV is reduced
by over 50% [26] if he is circumsised; however, unlike condoms, male circumcision has not
conclusively been shown to protect against transmitting HIV in the case where the circum-
cised partner is HIV-positive [27]. In this thesis, we are primarily interested in biomedical
control strategies. In particular, we will look at pre-exposure prophylaxis (PrEP) and an-
tiretroviral therapy (ART). PrEP is designed to be taken daily by HIV-negative individuals,
and can reduce the likelihood of infection through sexual contact by more than 70% [3].
ART increases the life expectancy of HIV-positive individuals and has been shown to re-
duce transmission by over 90% [2]. Therefore, ART also serves to prevent new infections
and reduce HIV incidence in the population [40]. Life-long ART is necessary for continued
suppression of viral load.

1.2 Complex Networks

In models of diseases which are primarily airborne and/or diffuse rapidly throughout a
population, a homogeneous mixing assumption, such as that required for compartmental
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models, may be suitable. However, it is inappropriate to assume that sexual transmission of
HIV is equally likely to occur between any two members of a population. Therefore, in our
model of disease transmission, transmission can only occur along a sexual contact network.

A network is a set of connections which represents some physical, technological or so-
cial system. Social networks in particular are used to understand the connections between
individuals, or perhaps groups of individuals. A network is described mathematically by a
graph, G = (V,E), with vertex set V and edge set E. Vertices (or nodes) typically represent
individuals or groups of individuals, and an edge between vertices indicates some sort of
relationship between them. The edges can be either directed or undirected, as appropriate.
The network imparts rules on the disease propagation; an infected vertex can transmit the
disease only to adjacent (neighbouring) vertices, and even then only if this neighbour is
susceptible to the disease. In this thesis, a network will refer to either an empirical or a
generated set of connections and a graph will refer to the mathematical objects which can
be used to describe networks. The sociological discipline of social network analysis is briefly
reviewed in Section 1.2.1 and the probabilistic study of random graphs is introduced in
Section 1.2.2.

1.2.1 Sexual Contact Networks

Social network analysis is the study of empirical networks, the goal being to characterize
and find patterns in the connections between people or groups. A classical example is the
friendship network, where a directed edge from ego to alter signifies that ego considers alter
to be a friend. A sexual contact network is a particular social network in which the edges
represent sexual contact (or the possibility of sexual contact). The study of a sexual contact
network can reveal more than just the average number of sexual partners. It may identify
key individuals with an unusually high number of partners, or subnetworks which are more
highly connected. One could also answer questions such as whether individuals of the same
race or age are more or less likely to be partners.

In [35], the authors find that the distributions of the number of sexual partners over
an 18-month period among adult heterosexual men and women approximately follow a
power law. In a more detailed study, Bearman et al. [5] investigate the nature of sexual
contacts in an American high school. They characterize this network as having one large
component—comprised of approximately half of all students—with a ring-like structure and
few short cycles. The remainder of the network is mostly comprised of dyads (pairs) and
triads (triangles). The authors note that the distribution of the data fits well to a power law,
but find it unlikely that this represents the actual distribution of partnerships. Both of the
above works discuss the implications of the observed network structure on disease spread
and control. To our knowledge, no detailed social network analysis has been published for
sex worker contact networks.
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While there are many techniques which sociologists use to uncover social networks [10],
much of the published data regarding sex worker relationships has relied heavily on question-
naire data. Unfortunately, such data suffer from biases and may potentially be unreliable.
Ferguson et al. [22] compared female sex worker (FSW) responses from standard recall ques-
tions to diary entries. They determined that FSWs consistently over-estimated the average
number of daily clients when asked on a questionnaire. When asked to estimate the number
of clients over a longer time period, the researchers discovered that the respondents had
difficulty separating the number of encounters from the number of different partners. This
poses a significant challenge in the interpretation of questionnaire data for the purposes of
constructing a sexual contact network.

1.2.2 Random Graphs

The mathematical description of a network uses the language of graph theory. Let G be
an undirected graph with n vertices and m edges. An edge between vertices i and j is
represented as the unordered pair (i, j), and the number of edges incident to a vertex is its
degree. The degree is thus a local measure of connectedness. An important global property
of a random graph is the degree distribution:

Definition 1. Degree Distribution
The degree distribution p(k) gives the probability that a randomly chosen vertex has degree
k.

The theory of random graphs originated with Erdős and Rényi in 1959 [21]. Their model
supposed that G is initialized with n vertices, and edges are subsequently added between
each pair of vertices with fixed probability q. The degree of each vertex is therefore a
binomial random variable, with

p(k) =
(
n− 1
k

)
qk(1− q)n−1−k.

Let λ = nq be constant. Then in the limit as n→∞,

p(k) = λke−λ

k! .

Therefore, an Erdős-Rényi random graph would be a suitable model for a real-world
network which exhibits a Poisson degree distribution, or in a case where the underlying
generative mechanism is applicable: that is, if connections between nodes are thought to
form randomly with some fixed probability.
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The Configuration Model

A random graph model which is more flexible with respect to the degree distribution is the
Configuration Model, which will be referred to often in this thesis. All of the networks in
Chapter 2 and Chapter 4 have been generated using this algorithm. Introduced by Newman
et al. [45], this algorithm generates a random graph which has a prescribed degree distri-
bution. This model is especially useful in cases where the only known network property is
its degree distribution.

The following algorithm generates a configuration model random graph (CMRG) of size
n:

Algorithm 1. Generating a CMRG

1. Initialize the graph with n vertices and no edges.

2. Given the desired degree distribution p(k), sample p(k) to construct a degree sequence
sj representing the degree of each vertex.

3. For j = 1, . . . , n, choose a random untouched vertex j and attach to it sj stubs (or
half-edges).

4. For each stub in the network, choose a partnering stub uniformly at random, and
combine them to form an edge. Repeat until no stubs are left unmatched1.

This process will generate a (not necessarily simple) random graph G having the desired
degree distribution p(k) in the limit as n→∞. More precisely, G is chosen uniformly from
the set of all possible graphs on n vertices with the specified degree distribution.

Now suppose G is a CMRG with n vertices and m edges. Then the probability that any
two vertices have an edge connecting them is simply

P (edge between i and j) = deg i deg j
2m− 1 ' deg ideg j

2m . (1.2)

Given this fact, many properties of the random graph are readily determined. For example,
we can determine the excess degree distribution of a CMRG:

Definition 2. The Excess Degree Distribution
The excess degree distribution q(k) gives the probability that a randomly chosen edge e
leads to a vertex which has k other edges (not counting e). Here, k is the excess degree of
this vertex.

1This is guaranteed if the number of stubs is even. In practice, a stub may need to be added at random.
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Choose a random stub in the configuration network. This stub attaches to any other
stub in the network with equal probability, 1

2m−1 ≈
1

2m . So the probability that the stub
attaches to a particular vertex of degree k is k

2m . Since there are np(k) such vertices, the
probability that any neighbour is of degree k is

k
np(k)
2m = k

p(k)
〈k〉

, (1.3)

where 〈k〉 = 2m/n is the mean degree. That is, we are k times more likely to arrive at
a vertex of degree k than a vertex of degree 1. Then the excess degree distribution q(k) is
given by

q(k) = (k + 1) · p(k + 1)
〈k〉

. (1.4)

Both self-loops and multi-edges are included in the generation process. However, the
following theorem states that the density of self-loops and multi-edges is ∼ O(1/n).

Theorem 1. [19, Theorem 3.1.2]
Let 〈k〉 :=

∑
k kpk and 〈k2〉 :=

∑
k k

2pk both be finite. Then as n → ∞, the expected
number of self-loops is

〈k2〉 − 〈k〉
2〈k〉 ,

and the expected number of multi-edges is
(

1
2
〈k2〉 − 〈k〉
〈k〉

)2

.

Therefore, as n → ∞, the density of multi-edges and self-loops approaches zero. These
formulas are readily derived by noting that the probability of an edge between any two
vertices is given by Equation (1.2).

A component of a graph is a maximal subset of vertices for which every vertex is reachable
via some path from every other vertex in the subset. The following theorem describes the
components of a CMRG. In particular, we are interested in the emergence of a so-called
giant component, a component with O(n) vertices as n → ∞. All other components are
referred to as small components. If a random graph has only small components, it is said
to be sub-critical, otherwise it is said to be super-critical if there exists a giant component.

Theorem 2. [19, Theorem 3.2.2]
Suppose 1

〈k〉
∑
k k(k−1)p(k) > 1. Then there is a giant component of size O(n) and no other

clusters of size greater than β logn for some constant β.

The size of the giant component can be derived using branching process methods (see
Section 2.1 for a brief review). In [19], the size of the small components, and the proof of
the emergence of a giant component, are proved using an approximation to a random walk.

9



An important consequence of the above theorem is that, in the limit as n → ∞, the small
components of G are tree-like. In the giant component, however, there exist many cycles.
This will be important in the analysis of the SIR process on a CMRG in Chapter 2.
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Chapter 2

The SIR Model

The classical SIR model describes a disease process in which individuals cannot become rein-
fected. The population is divided into Susceptible (S), Infected (I) and Removed/Recovered
(R) states. Susceptibles either remain in that state for the entirety of the experiment, or
they become infected and then removed as illustrated in Figure 2.1. The disease dynamics
cease once every individual is in either the Susceptible or Recovered state, with the latter
representing the total number of individuals who were at any point infected.

Since HIV is a life-long disease, an SIR-type disease model may seem to be an appropriate
first choice. For reasons which are discussed in more detail in Section 4.1.2, in our simulations
we ultimately use a SIRS-type model, and so the analytical results presented in the following
sections cannot be directly applied. However, this Chapter is relevant to our discussion since
it provides examples of analytical approaches to the study of epidemics on networks, and
more importantly, allows us to test our numerical simulations against theoretical results.

Analytical results exist for SIR dynamics on networks generated by the Configuration
Model (described in Section 1.2.2) in the infinite size limit. Specifically, the studies presented
here aim to quantify:

i. The Epidemic Threshold. A critical graph parameter. Above this value, the prob-
ability of sparking an epidemic is nonzero. Below the threshold, the disease spread is
confined to a finite number of individuals.

ii. The Epidemic Size. The proportion of nodes which ever become infected in the
regime above the epidemic threshold.

iii. The Outbreak Size. The number of nodes which ever become infected in the regime
below the epidemic threshold.

Susceptible Infected Recoveredtransmission recovery

Figure 2.1. Basic schematic of the SIR process.
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iv. The Probability of an Epidemic. Below the epidemic threshold, the probability
of sparking an epidemic is, by definition, zero. Above the epidemic threshold, the
probability is nonzero but not necessarily one.

There has been additional research focused on time-dependent properties of SIR dynamics
on random graphs [57, 17, 30], but this subject is not covered here.

2.1 Background

In order to follow the analyses presented in [44] and [31] which are reviewed in Sections
2.2.1 and 2.2.2 respectively, we provide some necessary background information below. First,
we review probability generating functions, followed by a review of homogenous branching
processes using the generating function formalism. Finally, we will cover the basics of per-
colation theory before applying this concept to disease spread on networks.

Probability Generating Functions

A probability generating function (pgf) is a notational structure containing the information
of a distribution.

Definition 3. Probability Generating Function
Let Z be a discrete random variable with

p(k) := P (Z = k), k = 0, 1, 2, . . . .

Then
G(x) := E

(
xZ
)

=
∞∑
k=0

p(k)xk

is the probability generating function of Z.

In particular,
G(1) =

∑
k

p(k) = 1

for a properly normalized distribution, and the mean 〈k〉 can be recovered as

G′(1) =
∑
k

kp(k) = 〈k〉.

So if p(k) denotes the degree distribution of a random graph, we take G0(x) to be the
corresponding generating function. In the case of a CMRG, we can further determine the
generating function for the excess degree distribution q(k) (1.4):

G1(x) =
∑
k

q(k)xk =
∑
k(k + 1)p(k + 1)xk

〈k〉
= G′0(x)
G′0(1) .
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Branching Processes

A branching process is a probabilistic model of reproduction. At each generation, each
organism gives rise to a random number of offspring independently. The number of offspring
of each individual is distributed according to the offspring distribution,

p(k) := P (an organism has k offspring).

Consider a homogeneous branching process starting with a single organism:

Let Xi denote the number of offspring of the ith individual, and let the number of offspring
in the first generation be generated by G(z),

G(z) := E[zX0 ] =
∑
k

p(k)zk.

Since the process is homogeneous, by definition every subsequent generation will have the
same offspring distribution as the first. If there are k offspring in the first generation, then
the total number of offspring ever generated is

1 +X1 +X2 + · · ·+Xk.

So the probability generating function H(z) for the total number of offspring is

H(z) = E

z1+
k∑

i=1
Xi

 = zG (H(z)) . (2.1)

Percolation Theory

Percolation theory—in particular, discrete percolation theory—was developed to under-
stand the flow or spread of some medium on a random lattice. It is a model which exhibits
thresholding behaviour, as with our study of the structure of random graphs. There is a
parameter which takes on a critical value at which the general behaviour of the process
changes. For example, the thresholding parameter in the study of the generation of Erdős-
Rényi random graphs is the mean degree λ, with critical value 1. For λ < 1 the probability
of a giant component is zero, while if λ > 1, a giant component exists with high probability.
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Definition 4. Bond Percolation
In a bond percolation process, each edge—or bond—is occupied (kept) with probability p,
or not (removed) with probability 1− p. For an example, see Figure 2.2.

Figure 2.2. Example of bond percolation with p = 6
15 . The occupied edges are in blue, and the dashed

edges are edges from the original graph which were not occupied. Isolated vertices (in grey) are subsequently
removed.

Definition 5. Site Percolation
In a site percolation process, each vertex—or site—is occupied with probability p, or not with
probability 1− p. If the vertex is unoccupied, all adjacent edges are additionally removed.
For an example, see Figure 2.3.

Figure 2.3. Example of site percolation with p = 7
10 . Occupied vertices are in blue, and the grey vertices

are those from the original graph which were not occupied. All edges incident to the removed vertices are not
included.

Here, the critical parameter is the bond (or site) occupation probability p and the
critical phenomenon is the emergence of a giant component on the percolation network,
after occupying or not the vertices (or edges) of the underlying network.

2.2 Analytical Results

2.2.1 Bond Percolation Approach

In the context of the SIR disease process, the super-critical regime of the percolation process
is the epidemic regime, and in the sub-critical regime, the small components are outbreaks. It
may not seem obvious at first which process—site or bond—is appropriate to model disease
spread. Vertices either become infected and then removed or they remain susceptible, but
the disease itself propagates along edges. The first analysis of this problem, due to Newman
in 2002 [44], used a bond percolation model on an undirected CMRG; we describe his
approach below. In the following, we let G0 be the probability generating function (pgf) for
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the degree distribution of the underlying CMRG, and G1 be the pgf for the excess degree
distribution:

G0(x) =
∑
k

p(k)xk and G1(x) =
∑
k

q(k)xk = G′0(x)
G′0(1) .

Suppose i is an infected vertex, and j is a susceptible vertex which is adjacent to i in the
contact network. Let τi be the length of time vertex i remains in the infectious state, and
let rij be the infectious contact rate between adjacent vertices i and j. Then the probability
that i infects j over the time period τi is Tij = 1− e−rijτi .

If we suppose the rij and τi are independent and identically distributed (i.i.d.), then we
define the transmissibility T of the disease to be the average over the Tij :

T = 1−
∫ ∞

0

∫ ∞
0

e−rτP (τ)P (r) dr dτ. (2.2)

The connection between the percolation process and the disease process comes from
letting T be the bond occupation probability, where in this case, occupation of an edge
is synonymous with transmission of the disease along that edge. Starting from an initially
infected vertex i (the index case) of degree k, assume that the vertices adjacent to i either
become infected or not with probabilities T and 1 − T , respectively, independent of each
other1. Then the probability that j out of k incident edges become infected is(

k

j

)
T j(1− T )k−j .

Therefore, the pgf G0(x;T ) for the distribution of occupied edges of a randomly chosen
vertex is

G0(x;T ) =
∞∑
j=0

∞∑
k=j

p(k)
(
k

j

)
T j(1− T )k−jxj = G0(1− T + xT ). (2.3)

Similarly, the pgf for the distribution of occupied edges of a vertex arrived at by following
a randomly chosen edge is

G1(x;T ) = G1(1− T + xT ). (2.4)

To continue this analysis, it is assumed that the disease process can be mapped to a
branching process. A consequence of Theorem 2 is that the small components of a CMRG
are tree-like, conditioned on the network having a bounded second moment. So if the CMRG
is sub-critical, then equation (2.1) may be applied. The expected number of vertices which
will ever become infected is now approximated by the expected number of offspring in the
branching process. In the CMRG, the degree of a neighbour is distributed according to G1,

1This assumption of independence is incorrect, as explained in the discussion surrounding equation (2.9).
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and each subsequent neighbour is also distributed according to G1. So by equation (2.1),
the pgf H1 for the size of the cluster reachable from a randomly chosen edge is

H1(x;T ) = xG1(H1(x;T );T ). (2.5)

The pgf H0 for the size of the cluster reachable from a randomly chosen index case is
similarly derived. In this case, the degree of the index case is distributed according to G0;
however, the sizes of the clusters reachable from the neighbours of this index case will be
distributed according to H1. Thus,

H0(x;T ) = xG0(H1(x;T );T ). (2.6)

From here, the expected outbreak size is calculated directly from H0. The epidemic
threshold Tc is defined to be the value of T when the expected outbreak size ceases to be
finite, limT→Tc H0(x;T ) =∞. In the super-critical regime, although the tree-like assumption
is not valid in the giant component, H0 is again the distribution of the small components,
from which the size of the giant component can be inferred. Note that in this model, the
expected fraction of vertices in the epidemic and the probability of a randomly chosen index
case sparking an epidemic are the same: they are both the probability that the randomly
chosen index case is located in the giant component of the percolation network. A summary
of the results from [44] is shown in Table 2.1. As expected, the results depend only on the
parameter T and on the degree distribution of the CMRG.

For example, consider a Markovian SIR process where β is the constant infection rate
and γ is the constant recovery rate. Then, combining equation (2.2) with the results in
Table 2.1, we find

Tc = βc
βc + γc

= 1
G′1(1) = 〈k〉

〈k2〉 − 〈k〉
,

and so
βc
γc

= 〈k〉
〈k2〉 − 2〈k〉 . (2.7)

Expected Outbreak Size 〈s〉 = H ′0(1;T ) = 1 + TG′0(1)
1− TG′1(1)

Epidemic Threshold Tc = 1
G′1(1)

Expected Epidemic Size (as fraction) S = 1−H0(1;T )
Probability of Epidemic E = 1−H0(1;T )

Table 2.1. Results from the bond percolation model derived in [44].

Unfortunately, as pointed out in [19] and [31], there is a fundamental error with this
model. The transmission events among neighbours are not independent. Consider the fol-

16



lowing counterexample from [19]: Let rij = β and let τi be exponentially distributed (with
mean 1). Then

1− T =
∫ ∞

0
e−βte−tdt = 1

β + 1 (2.8)

is the probability that a neighbour of an infected vertex is not itself infected along that
edge. However, the probability that two neighbours are not infected is

∫ ∞
0

e−2βte−tdt = 1
2β + 1 >

( 1
β + 1

)2
. (2.9)

Thus the Tij are non-negatively correlated between adjacent vertices. In fact, Tij are inde-
pendent only if the recovery time is constant. Therefore, the assumption that we can take
T to be a bond occupation probability is incorrect, and so the generating functions derived
above are incorrect. However, as is shown in the work of Kenah and Robins [31] discussed
in the following section, Newman’s formulas in [44] for the epidemic threshold, expected
outbreak size and expected epidemic size are correct. This is because only the first moment
of H0 is correct, as will be discussed at the end of the following section.

2.2.2 Epidemic Percolation Networks

Keeping with a percolation model approach, Kenah and Robins [31] developed a new frame-
work for understanding the SIR process on CMRGs which corrected the mistake in New-
man’s bond percolation approach. Using the same notation as in the previous section,
from the underlying CMRG, the authors generate a so-called Epidemic Percolation Net-
work (EPN) as follows: For each pair of adjacent vertices i, j, either delete the edge (i, j),
keep the undirected edge, or convert it to a directed edge with the following probabilities
(recall that e−rijτi is the probability that i does not infect j):

i. P (i→ j) = (1− e−rijτi)e−rjiτj

ii. P (i← j) = e−rijτi(1− e−rjiτj )

iii. P (i− j) = (1− e−rijτi)(1− e−rjiτj )

iv. P (i, j disconnected) = (e−rijτi)(e−rjiτj )

So the edge between i and j is left undirected with the probability that both transmission
events occur; that is, if either of i or j becomes infected, then the disease will spread to the
other. Otherwise, the disease will only spread according to the direction of the edge. This
algorithm therefore constructs a semi-directed network.

To illustrate how this construction leads to independent transmission events among
neighbours, consider the counterexample from the previous section. Assume a constant
contact rate β, and consider an infected node i with two neighbours j and j′. There are four
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Figure 2.4. Given an initially infected node i and two neighbours (in the underlying CMRG) j and j′,
these are the four possible configurations in the epidemic percolation network in which both j and j′ escape
infection.

possible configurations of the three nodes in which the disease will not spread to either j nor
j′, as shown in Figure 2.4. Hence the probability that two neighbours of i escape infection
in the EPN is

P (i← j)P (i← j′) + P (i, j disconnected)P (i, j′ disconnected)

+ P (i← j)P (i, j′ disconnected) + P (i, j disconnected)P (i← j′),

which gives a total probability of e−2βτi . Then if τ is exponentially distributed with mean
1, integrating over the distribution of τ gives∫ ∞

0
e−2βte−tdt = 1

2β + 1 ,

which is now the correct probability that both neighbours escape infection (2.9). A proof
that the Tij in the EPN are independent is given in [31].

Since the EPN is a semi-directed graph, the interpretation of an outbreak and an epi-
demic need to be redefined. In order to do so, we first introduce the following definitions
for the components of semi-directed graphs. A directed path is a path which obeys the
direction of the edges; in a semi-directed network, an undirected edge can be followed in
either direction.

Definition 6. Components of (Semi-) Directed Graphs

1. An in-component of a vertex i is the component which includes all vertices from which
i is reachable via some directed path.

2. An out-component of a vertex i is the component which includes all vertices which
are reachable from i via some directed path.

3. A strongly connected component of a vertex i is the component which includes all
vertices from which i is reachable and which can be reached from i following directed
paths. It is the intersection of the in- and out-components of i.

As with undirected graphs, there is a super-critical regime in which we expect to see
the emergence of a giant component. Now there is a giant strongly connected component
(GSCC), with unique giant in- and giant out-components (GIN andGOUT , respectively). The
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interpretation of Kenah and Robins [31] for the disease process on the EPN is summarized
below:

Theorem 3. Interpretation of EPNs

1. The epidemic threshold corresponds to the emergence of a giant strongly connected
component GSCC .

2. If the EPN contains a GSCC , then any index case in the giant in-component GIN will
lead to infection in the entire giant out-component (GOUT ).

3. The probability of an epidemic corresponds to the fraction of vertices in GIN .

4. The final size of the epidemic corresponds to the fraction of vertices in GOUT .

With these interpretations in mind, the authors now proceed in a similar manner to
Newman [44]. The probability generating functions for the distribution of occupied edges
of a given vertex are derived, and hence the expected size of the cluster reachable from a
randomly chosen initial vertex (for full details, refer to [31]). Kenah and Robins find that
their approach gives the same expected outbreak size, epidemic threshold and expected
epidemic size as Newman’s bond percolation model. However, they find that the bond
percolation model overestimates the probability of an epidemic. These results are not too
surprising. Even though Newman’s generating function H0 (2.6) is wrong, the first moment
of H0 is correct. The occupied edges are not independently binomially distributed, but the
expectation of a sum of i.i.d. random variables is the same as the expectation of a sum of
correlated i.d. random variables.

2.3 Simulation Results

We test the validity of our numerical approach described below by reproducing some of
the analytical results of Section 2.2.1. In particular, many of the results in Table 2.1 have
simple expressions which are readily evaluated. We perform discrete-time simulations with
infectious contact rate β (constant in time and independent of the vertex pairs) and constant
recovery rate γ. The simulations terminate if there are no longer any nodes in the infected
state. The simulations are performed as follows:

Algorithm 2. Discrete Time SIR Process
Take a network with n nodes and an initial state space {s0

1, s
0
2, . . . , s

0
i , . . . , s

0
n}, where s

j
i

denotes the state of node i at time tj = j∆t. Each sij is one of S, I or R for all i, j. Then:

For j = 0, 1, 2, . . . :

For i = 1, 2, . . . n:

1. Compute a pseudo-random number p.
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2. If sji = S , then compute N (I), the number of infectious neighbours of i. If
p < βN (I)∆t, set sj+1

i = I; else set sj+1
i = S.

3. If sji = I, then if p < γ∆t, set sj+1
i = R; else set sj+1

i = I.
4. If sji = R, set sj+1

i = R.

The random networks used for the following experiments were generated using the
python package NetworkX [28]. The disease processes on each network were simulated
using the python package NepidemiX [1]. Appendix B provides further details regarding
the software used.

Since the recovery rate γ is constant, the recovery time τ must be exponentially dis-
tributed and so the transmissibility T becomes

T = 1−
∫ ∞

0
γe−(β+γ)τdτ = 1− γ

β + γ
= β

β + γ
. (2.10)

We first consider SIR dynamics on a unipartite configuration model network with Poisson
degree distribution. To construct these networks, a Poisson degree sequence is randomly
generated such that

p(k) = e−λ
λk

k! , (2.11)

where the mean degree 〈k〉 = λ. It follows that the generating function for the degree
distribution is

G0(z) =
∑
k

p(k)zk = e−λ
∑
k

(λz)k

k! = eλ(z−1), (2.12)

and the generating function for the excess degree is

G1(z) = G′0(z)
G′0(1) = λeλ(z−1)

λ
= eλ(z−1). (2.13)

In this case, the theoretical expressions for the epidemic threshold, Tc, and expected
outbreak size, 〈s〉, are (using Table 2.1):

Tc = 1
λ

(2.14)

and

〈s〉 = 1 + λT

1− λT = 1 +
λ β
β+γ

1− λ β
β+γ

. (2.15)
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The expected epidemic size S is determined numerically2 by first finding u such that

u = eλT (u−1), (2.16)

and subsequently solving
S = 1− eλT (u−1). (2.17)

Figure 2.5 shows the agreement between these theoretical results and simulation results.
The clustering of data points around the predicted epidemic threshold shows that this corner
can be accurately resolved. Below the epidemic threshold, the fraction of nodes which are
infected is O(1/n), as expected, and the standard error is small. This is expected since
below the threshold, the probability of sparking an epidemic should be close to zero. For
T ∈ [0.6, 0.8], the average epidemic size of the simulated data is lower than the theoretical
predictions. We expect this is due to the “finite-network” effect: the theoretical results were
developed in the asymptotic size limit, while the simulated networks were taken with n =
40, 000. The network size was chosen by considering the trade-off between computational
time and accuracy.

The curves obtained from varying only the infectious contact rate β, and from only
varying the recovery rate γ, are more or less identical. This confirms that only the ratio
given in equation (2.10) need be considered. For all further simulations, only γ is varied
with β fixed.

A second test was performed on CMRGs having a power-law distribution:

p(k) ∝ k−α, α > 0, k ≥ 1.

However, since the second moment

〈k2〉 =
∞∑
k=1

k2−α

diverges for α ≤ 3, we instead used a power-law distribution with an exponential cutoff in
order to obtain a degree distribution with a finite second moment for all values of α. This
distribution has the form

p(k) = e−k/κk−α

Liα(1/κ) , (2.18)

where the normalization constant is given in terms of the polylogarithm function,

Liα(z) =
∞∑
k=1

zk

kα
.

2To solve equation (2.16), a root-finding algorithm based on the Powell hybrid method is used, called
from python’s scipy optimization library.
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Figure 2.5. Comparison of simulation and theoretical results for the expected epidemic size. The theoretical
values S are found by solving equation (2.17) and equation (2.16). The epidemic threshold Tc is determined
by equation (2.14). Each data point is an average of 20 runs repeated over 40 random CMRGs. Both γ and
β are varied. Each network has Poisson degree distribution with mean λ = 2 (2.11) and is generated using
the Configuration Model. Each network has 40,000 vertices, and simulations used a time step of ∆t = 0.1.
Standard error bars are included.

The expected epidemic threshold, mean outbreak size and mean epidemic size do not
have closed form solutions, and are thus calculated numerically. The results are shown in
Figure 2.6, and show similar agreement as before.

2.4 Bipartite Networks

A bipartite network is one in which the nodes can be partitioned into two distinct sets,
with edges running only from nodes of one type to nodes of the other type as shown in
Figure 2.7. Such a network is an appropriate choice to model heterosexual contacts. To
generate a bipartite network having prescribed degree distributions for each node set, a
slight modification of the configuration model from Section 1.2.2 is necessary.

Suppose we have a bipartite network with m male and n female nodes. Let p(k) be
the degree distribution for the male nodes with mean degree λ, and let f(k) be the degree
distribution for the female nodes with mean degree µ. Similar to before, a degree sequence
is generated from each distribution and the stubs are attached correspondingly. The total
number of male stubs and the total number of female stubs must be equal, requiring

λm = µn.
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Figure 2.6. Comparison of simulation and theoretical results for the expected epidemic size. Each data
point is an average of 10 runs repeated over 40 random CMRGs. The degree distribution of each network
follows a power law with exponential cutoff with exponent α = 2 and exponential cutoff κ = 10 (2.18) and
is generated using the Configuration Model. Each network has 60,000 vertices, and simulations used a time
step of ∆t = 0.1. Standard error bars are included.

Figure 2.7. An example of a bipartite graph.

Under this constraint, the stubs can be matched uniformly at random as before. Of course,
since the generation of both degree sequences is pseudo-random, the actual numbers of
stubs for each population are frequently unequal. Therefore, after generating the degree
sequences, the number of stubs are counted and if there is a mismatch, a node is chosen at
random from the set which has excess stubs and its degree is reduced by one. This process
continues until a matching can occur.

2.4.1 Bond Percolation Approach

In Newman’s 2002 paper [44], he argues that SIR dynamics on bipartite networks can be
described by a three-stage branching process. Let
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Figure 2.8. Branching process describing transmission on a bipartite network. G0 is the generating function
for the male degrees; F1 is the generating function for the female excess degrees.

G0 be the generating function for the degree of male nodes,

F0 be the generating function for the degree of female nodes,

G1 be the generating function for the excess degree of male nodes, and

F1 be the generating function for the excess degree of female nodes.

The transmissibility T is defined as in equation (2.2), except that we now distinguish
between male-to-female transmission Tmf and female-to-male transmission Tfm. Similar to
Section 2.2.1, G0(x;Tmf ) generates the number of occupied edges of a randomly chosen
male node, and G1(x;Tmf ) generates the number of occupied edges of a male node arrived
at by following a randomly chosen edge. This approximating branching process is shown in
Figure 2.8.

Starting at a randomly chosen male node, the generating function Ĝ0 for the number of
infected males after two steps is generated by

Ĝ0(x;Tmf , Tfm) = G0(F1(x;Tfm);Tmf ).

The generating function Ĝ1 for the number of infected males starting at a randomly chosen
edge after two steps is similarly

Ĝ1(x;Tmf , Tfm) = G1(F1(x;Tfm);Tmf ).

So, as a function of both transmissibilities, the generating function H1 for the size of the
cluster of infected males reachable from a randomly chosen edge is

H1(x;Tmf , Tfm) = xĜ1(H1(x;Tmf , Tfm);Tmf , Tfm).

The generating function H0 for the size of the cluster of infected males reachable from a
randomly chosen male node is then

H0(x;Tmf , Tfm) = xĜ1(H0(x;Tmf , Tfm);Tmf , Tfm).
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The average outbreak size for males starting at a randomly chosen male node is thus

〈s〉M = H ′0(1),

as before. The average outbreak size for females is similarly derived and not necessarily
equal to the average male outbreak size. The epidemic threshold turns out to be symmetric
in F and G:

TmfTfm = 1
F̂ ′1(1)Ĝ′1(1)

= 〈k〉〈j〉(
〈k2〉 − 〈k〉

)(
〈j2〉 − 〈j〉

)
.

(2.19)

As with the unipartite case, while the calculation of the epidemic threshold is correct,
this bond percolation approach cannot accurately describe the full disease dynamics. The
reasoning for this is the same as before: while the generating function H0 is wrong, the
first moment of H0 is correct. This is because the occupied edges are not independently
binomially distributed, but the expectation of a sum of i.i.d. random variables is the same
as the expectation of a sum of correlated i.d. random variables.

Intuitively, disease transmission on a bipartite network can be eliminated by preventing
transmission in one direction only (either male to female or female to male). Therefore,
in the context of immunization strategies, one might expect that only one subpopulation
of the bipartite network needs to be targeted in order to prevent an epidemic. This idea
is supported analytically by equation (2.19) which is symmetric in both female and male
degree distributions. As we will see in Chapter 4, the ability of such an immunization
strategy to suppress an epidemic is reduced when a more realistic model is considered.

2.4.2 Simulation Results

The analytical predictions from Section 2.4.1 are tested via stochastic simulations on large
networks using the same methods as described in Section 2.3. We wish to generate a bipartite
network on m male nodes and n female nodes are such that both populations have Poisson
degree distributions. We first generate a Poisson degree sequence of size m with some input
mean λ̂. We subsequently generate a Poisson degree sequence of size n with mean µ̂ = λ̂m

n .
The trial networks are then generated using the bipartite CMRG algorithm; as noted above,
since in practice the number of stubs may not match exactly, the actual mean degrees λ
and µ may change slightly after matching. The resulting bipartite networks are such that

p(k) ∼ Poisson(λ) and f(k) ∼ Poisson(µ),

where p(k) is the male degree distribution, f(k) is the female degree distribution, and
µn = λm.
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Following equation (2.19), the expected critical threshold is then

TmfTfm = 1
F ′1(1)G′1(1) = 1

µλ
.

If there is a constant rate βmf at which males infect neighbouring females, a constant rate
βfm that females infect neighbouring males, and every node recovers at a constant rate γ,
then

Tmf = βmf
βmf + γ

and Tfm = βfm
βfm + γ

.

Above the epidemic threshold, the expected size of the epidemic in females is calculated by
first finding u such that

u = F1(G1(u;Tmf );Tfm) = exp [µTfm (exp (λTmf (u− 1))− 1)] ,

and subsequently solving

S = 1− F0(G1(u;Tmf );Tfm) = 1− exp [µTfm (exp (λTmf (u− 1))− 1)] = 1− u.

The expected size of the epidemic in males is similarly calculated.
These results are compared to simulations in Figure 2.9. In these simulations, we observe

that that the size of the smaller population—as opposed to the total size of the network—
impacts the quality of the simulation results.
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Figure 2.9. Mean epidemic size in a bipartite CMRG with λ ≈ 2 and m=90,000, µ ≈ 6 and n=30,000.
Standard error bars are included. Tmf is fixed at 0.2 and Tfm is varied. Sample means (squares) compared
to theoretical results (curve). Each data point is the mean of 1200 runs distributed over 80 different random
networks.
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Chapter 3

Data Analysis

The characterization of sex worker–client interactions is a major consideration in this work.
Previous research has largely focused on female sex worker (FSW) communities [36], since
clients typically do not form an identifiable group (particularly in large urban settings)
and complete social network data appears to be scarce. We analyze historical data col-
lected on sex worker–client interactions in a South African mining community as part of
the Carletonville-Mosuthumpilo Project [60] which took part from 1998–2000, and com-
pare statistics of these interactions to those reported in other studies conducted in similar
populations.

3.1 The Carletonville-Mosuthumpilo Project

The town of Carletonville, in Gauteng, South Africa, was the location of the largest gold
mining complex in world around the year 2000, when this data was collected. The region
was home to approximately 75,000 miners, most of whom were migrant workers from rural
South Africa. Commercial sex work was prevalent in the community, and particularly in
squatter settlements—so-called “hotspots”—surrounding the mine complexes, which housed
an estimated 400–500 women [9]. Much of this sex work was survival sex work. HIV preva-
lence in 2000 was found to be 29% among miners, and almost 70% among FSWs in hotspots
[60], while systematic treatment programs had yet to be introduced.

The Carletonville-Mosuthumpilo Project [60] was a community-led intervention pro-
gram aimed at spreading awareness of and limiting the HIV epidemic in Carletonville and
in its neighbouring township, Khutsong. The study interviewed approximately 800 miners,
1500 residents of Khutsong and 100 women living in hotspots, and we compiled the ques-
tionnaire data into summary data. In our analysis of the data, we take the FSWs to be those
women who responded in the questionnaire that their usual occupation was sex work1. Ap-
proximately 7% of the women surveyed identified as FSWs, for a total sample size of 71.

1No men surveyed identified as sex workers.
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About 8% of the men surveyed indicated that they had ever visited a FSW, giving a total
client sample size of 109. This proportion was slightly higher among miners at roughly 9%,
and miners constitute about 64% of the clients. We then estimate that there are roughly
6000–7000 clients, and in her book, Campbell estimates that there are 400–500 FSWs living
in hotspots. These numbers suggest a client to FSW ratio of at least 10:1. Further data
from the Carletonville study is shown in Appendix A.

The subtleties regarding the nature of the sex work in this region, and possible issues
regarding the interpretation of what is and is not considered to be sex work, are described
in detail in Campbell’s book [9]. In particular, due to the nature of transactional sex work,
the line between a “boyfriend” and a “client” may become blurred. When analyzing sex
worker responses from the questionnaire data, we consider any non-regular partner to be a
client since this is the only data which is available. The men surveyed were asked specifically
about visits to sex workers, and so these responses are used. It is not always clear that our
interpretation of this data matches the intended meaning.

3.2 Population Characteristics

The Carletonville-Mosuthumpilo Project questionnaire data provides insight into the de-
mographics and behaviour of both clients and FSWs. Table 3.1 compares some summary
metrics from this project with studies of similar communities. The statistics reported in
this table indicate strong similarities between the Carletonville-Mosuthumpilo data and
other studies of sex work in rural communities [56] and along commercial trucking routes
[22, 38, 50].

We observe that the FSWs have a much higher migration rate than their clients, shown
by the data from the Carletonville-Mosuthumpilo project on the mean time spent in the
Carletonville area by FSWs and clients, respectively. This is consistent with the Ramjee
and Gouws [50] study (in which the truckers were asked how long they had been at their
current job). Although the specific factors contributing to the migration rate of FSWs are
uncertain, it is plausible that the challenges faced by survival sex workers would motivate
their departure once circumstances permit. We hypothesize that a significantly higher mi-
gration rate among FSWs compared with the client subpopulation is a typical characteristic
of many survival sex worker–client sexual networks [53].

Table 3.1 further gives us information on HIV prevalence among FSWs and their clients.
We are especially interested in the relative difference in disease prevalence between the two
populations. Since the 29% prevalence from Carletonville is for all miners, one might expect
the client-only prevalence to be higher than this. The studies from KwaZulu-Natal [50] and
Uganda [38] show client prevalence of up to 54–100% of the FSW prevalence.
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3.3 Population Structure

Perhaps the most significant yet unsurprising feature of such populations is that the FSWs
on average have a greater number of different sex partners than do clients. The ratio of
the number of different partners varies significantly, with FSWs reporting between roughly
double to almost fifty times the number of different partners than do the clients. In the
Carletonville-Mosuthumpilo data, FSWs report on average approximately ten times as many
different sexual partners over the past year than clients report. The data from Ferguson et
al. [22] suggest that the majority of clients are likely strangers. This is echoed in interviews
with FSWs in Campbell [9].

In our network model, the degree of a node is interpreted to be the number of distinct
sexual partners; the above observation thus implies that the FSWs have a greater mean
degree. While it is widely accepted that the distribution of sexual contacts approximately
follows a power law [35, 51], one cannot assume that the characteristics of sexual interactions
between sex workers and clients is the same as that modeled by typical sexual networks. We
find that the degree distribution for clients from the Carletonville data is well-characterized
by a power law distribution with an exponent of almost 2 as shown in Figure 3.2. The degree
distribution of the FSWs, however, is quite different: we see a peak near degree 4 as shown
in Figure 3.1, and the data is fitted well by a Poisson distribution for degrees less than about
10. However, there are a number of women reporting high numbers of sexual partners who
are not captured by this distribution. These responses, which are grouped at round numbers,
are indicative of recall bias, making the FSW responses difficult to interpret. Therefore, we
do not propose that Figure 3.1 is a fit to the Carletonville-Mosuthumpilo data; we simply
observe that, unlike the client responses (and the other men and women responses shown in
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Figure 3.1. (Left) Histogram of the number of different non-regular partners reported by FSWs in the past
year where responses with more than 8 partners are omitted. A Poisson distribution fit to the data is shown
in red. (Right) Full distribution of responses excluding one response of 300 partners.
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Figure A.2) there is a peak away from zero and that a Poisson distribution is a reasonable
fit for this truncated data set.
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Figure 3.2. Client responses for the number of visits to a sex worker over the past year. To the right, a power
law fit with exponent α and error σ excluding the zero-th bin. Based on a Maximum Likelihood Estimation
as implemented by [13]. The MLE method has been demonstrated to be superior than graphical methods (e.g.
fitting a line in log-space).
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Chapter 4

Model and Results

4.1 Mathematical Model

There are two main components of our model; the disease process which describes how the
disease progresses within an individual, and the contact process which defines how the dis-
ease spreads among the population. The bipartite network on which HIV transmission takes
place is described in Section 4.1.1. Following transmission, the disease progresses indepen-
dently and stochastically within each node according to the model specified in Section 4.1.2.
The resulting model is calibrated as described in Section 4.2.

4.1.1 Network Model

To construct the contact network, the data from the Carletonville-Mosuthumpilo project
are used to infer degree distributions for each population. We first perform a fit to the
client distribution as follows. We assume that the distribution follows a power law, and
take the exponent to be approximately 2 as suggested in Figure 3.2. Then, an exponential
cutoff is chosen so that the maximum degree does not exceed k = 30. This gives the client
distribution

pc(k) = e−k/6k−2

Li2(e−1/6)
(4.1)

with mean degree λ, where the normalization constant Li2(e−1/6) is given in the form of
the polylogarithm function. If we infer the FSW distribution by looking at the responses
for the number on non-regular partners over the past year, however, the result is harder
to characterize (Figure 4.1b). Instead, if we assume that each sex worker is equally likely
to be chosen as a partner, then the corresponding degree distribution must be a Poisson
distribution. Let

µ = m

n
λ.

Then
pf (k) =

(
m

k

)(
µ

n

)k (
1− λ

n

)m−k
.
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Figure 4.1

If we further take the limit as m → ∞ with m
n constant, the female degree distribution

becomes
pf (k) = µke−µ

k! . (4.2)

After generating each degree sequence, stochastic bipartite networks of m clients and n

FSWs can then be generated using the Configuration Model [44], as described in Section 2.4.

As can be seen in Figure 4.1b, our model female degree distribution is not a good fit to
the data from the Carletonville-Mosuthumpilo project. Our goal is not to fit the data or to
use the empirical degree sequences. Instead, our model distribution is primarily justified by
qualitative research on survival sex worker–client interactions, which suggests that random
selection is a significant underlying social dynamic. As described in [61], survival sex workers
often face situations where their safety or welfare is at risk, and may show a lack of agency
in choosing their sexual partners. These ideas are further echoed in Campbell [9].

We did choose fit the client distribution to the data (Figure 4.1a) since the clients are
less prone to recall biases, and to fix the client-to-FSW population ratios at 10:1. Then,
since we require

µ

λ
= m

n
,

the mean degree for the FSW distribution must be 10λ. We further noted in Section 3.3
that a Poisson distribution with a mean of approximately 3 was a reasonable fit for the
truncated data set shown in Figure 3.1. Since we expect the mean degree to be much higher
considering the data summarized in Table 3.1, what we have done here in our network model
is shifted the distribution from Figure 3.1 to match the reported mean degree of about 20.
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Figure 4.2. An example of a model bipartite network with input degree distributions pc(k) (4.1) and
pf (k) (4.2). Client nodes are in blue and FSW nodes are in red, with a client population size of 100 and a
FSW population size of 10. Isolate client nodes are not visualized.

4.1.2 HIV Model

In Chapter 2, we discussed the toy SIR model on configuration model random graphs, and
the corresponding derivation of analytical results such as the expected number of individuals
who will become infected over time. It was further noted that HIV could be modelled as
an SIR-type disease. However, in Section 3.2 we identified migration as being an important
characteristic of our population. Therefore, in our model we will allow a node to become
reinfected and interpret this as a migration event. The full disease dynamics are described
below.

Each node of the bipartite random network is in one of five states: immune to HIV,
susceptible to HIV infection, acute stage HIV infection, latent stage HIV infection, or on
treatment with ART. These states are summarised in Table 4.1. Nodes in the susceptible
state may become infected through a contact process on edges which connect to a nearest
neighbour in either the acute state or the latent state. The contact process is Markovian,
with a fixed probability β of disease transmission per unit time on each edge. Neighbours
in the acute state are weighted more heavily due to the higher infectivity of this state.

Upon initial infection, nodes are in the acute state. Nodes transition from the acute
state to the latent state with a fixed probability per unit time. Nodes in the latent state
are randomly placed on treatment with a fixed probability per unit time. We make the
simplifying assumption that nodes in the acute state cannot transition directly to the treated
state. This is because the window period for HIV testing, combined with the time to achieve
viral suppression after ART initiation, means a direct transition from the acute state to viral
suppression under ART would be rare. The transition to the treated state in the model
combines a positive HIV test, engagement in care, initiation of ART, and viral suppression.
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Therefore, we will consider the treatment rate in the model to be a combination of the rates
for each of these processes.

State Interpretation

V Vaccinated, or an immune state (cannot become infected)
S Susceptible (may become infected)
A Acute (highly infectious, short duration)
L Latent (moderately infectious, long duration)
T on Treatment (cannot become reinfected, noninfectious)

Table 4.1. Possible node states in the disease model.

Each node may be “removed” from the population with a probability per unit time that
depends on the state of the node. This captures migration, natural death and death due to
AIDS in the model. Under the static network assumption, the removed node is then replaced
with an equivalent node (all edges remaining intact), which has a given probability α of
being initialised in the latent stage, and probability 1−α of being initialised as susceptible.
The value of α is given by the background HIV prevalence in the general population, which is
assumed to be fixed. For simplicity, we assume that nodes are not initialised in the relatively
short acute stage. The state diagram for the client nodes is shown in Figure 4.3. The state
diagram for FSWs is analogous, except that certain parameters governing state transitions
take different values.

In our analysis, we interpret the “immune” state V as being a node which is currently
taking PrEP. However, from an epidemiological standpoint it could equally well represent
a vaccinated state. The primary difference lies in cost, because PrEP requires ongoing
treatment to maintain immunity. We assume, for simplicity, that both PrEP and ART are
100% effective in preventing infection and transmission of HIV.

SV A L T
β

N (cA+L)

η γc

µc + δµc + δ µc + δ + τ µc + δ

1− α α

νc

µc + δ

Figure 4.3. Schematic of model progression in client nodes. The model structure for FSW nodes is identical,
but the values of some parameters differ between client and FSW nodes (indicated by subscripts c and f ,
respectively). Parameters are explained and estimated in Table 4.2. The notation N (cA + L) refers to the
total number of infectious nearest neighbours, combining those in the acute state (weighted by parameter c)
and in the latent state.
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Parameter Interpretation Estimated Value

c Relative infectivity of acute to latent individuals c = 10 [59]
β Infectious contact rate 0.06 (Section 4.2)
η−1 Expected time spent in acute stage 10.5 weeks [14]
γc Client treatment rate Variable (Section 4.3.2)
γf FSW treatment rate Variable (Section 4.3.2)
µc Client migration rate 0.077 (Table 3.1)
µf FSW migration rate 0.25 (Table 3.1)
δ Natural death rate 0.016 [18]
τ−1 Expected time in latent stage if left untreated 10 yrs [14]
α Background HIV prevalence 0.2 [60]
νc Client “immunization” rate Variable (Section 4.3.3)
νf FSW “immunization” rate Variable (Section 4.3.3)

Table 4.2. Model parameters and estimated values. Rates are given per year.

4.1.3 Simplifications and Assumptions

Both the network model and the disease model contain a number of assumptions. Trans-
mission occurs with probability proportional to the number of a susceptible node’s nearest
neighbours in the acute and latent stages. The underlying assumption here is that patients
who progress to the AIDS stage are not sexually active, and thus do not contribute to
transmission events. The increase in viral load during the onset of AIDS is significant (Fig-
ure 1.1), however, and transmission events during this stage may contribute to the overall
epidemic. Nodes are not moved onto treatment from the acute state. The length of time
required to achieve complete (or near-complete) viral suppression on anti-retroviral therapy
(ART) may be up to 6 months [43]. This far exceeds the expected time spent in the acute
state. Nodes return to the model with intact edges (i.e. the static network assumption).
This assumption is made for computational simplicity, and because there are no data which
tracks the evolution of the social network over time. All partnerships are treated as concur-
rent; this is another consequence of having static degree distributions. Unfortunately, the
data from the Carletonville-Mosuthumpilo project provide no indication on the timing of
the reported sexual encounters. We can therefore interpret the infectious contact parameter
β as both a function of the probability of transmission per sex act, and on the probability
of there having been a sexual encounter during the time step.

4.2 Calibration

Most of the parameters in Table 4.2 have been estimated using public health sources or
the data from the Carletonville-Mosuthumpilo project. It remains to estimate the infectious
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contact parameter, β. To do this, we first assume that there is no asymmetry between the
male-to-female and female-to-male contact rates. This assumption has been shown to be
acceptable in sub-Saharan African populations [59]. Next, we calibrate the model under
zero treatment rates as shown in Figure 4.4. A value of β = 0.06 results in an equilibrium
disease prevalence which closely matches the recorded epidemic among the FSW population
(see Table 3.1).

When β = 0.06, the corresponding client prevalence is 44% at equilibrium, which is
more than 60% of the FSW prevalence, which appears reasonable given the discussion
in Section 3.2. Unfortunately, if only 9% of miners are clients and the remaining miners
have a 20% HIV prevalence, then these parameters would underestimate the total miner
prevalence which was recorded to be 29% (Table 3.1). It is possible that the Carletonville-
Mosuthumpilo study under-reported the number of miners who were clients, or perhaps
that our background HIV prevalence α is too small.
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Figure 4.4. Equilibrium HIV prevalence among each subpopulation under zero treatment. The dashed line
marks the recorded FSW prevalence.

4.3 Simulation Results

The model developed in the previous section is used to investigate possible control strategies.
Each simulation is initialized with the equilibrium HIV prevalences found for zero treatment
(see Figure 4.4), namely 69% and 44% for the FSW and client populations, respectively. We
evaluate our interventions in two ways. First, we consider the total untreated HIV prevalence
after 20 years, where total untreated HIV prevalence is defined to be the proportion of the
total population (both clients and FSWs) in the acute stage HIV and latent stage HIV
states at t = 20. HIV-positive individuals in the treated state are not included in our
computation of HIV prevalence, because that would mask the impact of treatment scale-up
on the epidemic.
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Additionally, we look at the relative cost for each PrEP and treatment strategy to
achieve a given HIV prevalence after 20 years. To compare the cost of PrEP and ART, we
assume that the cost of ART is double that of PrEP. This is a conservative estimate, as
the cost of ART may be up to 4 times that of PrEP [49]. The cost of PrEP is taken to be
one unit per individual on PrEP per simulation time step, and so the cost of ART is two
units per individual on ART per simulation time step. We do not consider targeted PrEP
or ART strategies within each subpopulation. That is, when applying such strategies to
FSWs and/or clients, nodes are placed uniformly at random on PrEP or ART according to
a stationary Poisson process at the relevant rate.

For each experiment, we produce two graphs: one showing the effectiveness of each
strategy as a function of either treatment rate or PrEP coverage (after 20 years), and a
second showing the cost to achieve this prevalence after 20 years. Therefore, each point on
the second graph can be mapped back to the first, and vice versa. For all graphs shown in
this chapter, each marker denotes a simulated result (averaged over many random networks
and multiple runs per network). The lines are included for visualization purposes, and are
piecewise linear interpolants of the simulation data. These lines do not indicate a theoretical
result.

4.3.1 Performing Simulations

As before, the random networks were generated using the software NetworkX [28] and our
simulations were performed using NepidemiX [1], a software package for simulating stochas-
tic processes on networks. Some minor modifications to NepidemiX were needed in order to
initialize prevalence in each node set separately (more details are given in Appendix B).

We average over many trials (at least 10) on many random networks (at least 40) for a
range of parameter values (for a total of at least 400 samples for each parameter). In order to
obtain relatively stable network statistics, our model population needs to be appropriately
large (following the discussion in Section 2.4). In considering the accuracy of our numerical
results in Section 2.4.2, we use node sets of sizes 90,000 and 9,000 for clients and FSWs,
respectively, and a time step of ∆t = 0.1/yr. A simulation of an HIV epidemic on a network
of this size for 200 time steps currently requires about 10 minutes on a standard machine.
Each experiment was carried out on the Compute Canada cluster Cedar and typically
took about three days to run. This runtime depends strongly on the degree to which the
computations can be parallelized, which is dictated by the resources available.

4.3.2 Treatment-Based Interventions

We first investigate the effect of treatment-only interventions, without implementing PrEP
(νf = νc = 0). Clients and FSWs with latent stage HIV are placed on ART at rates γc and
γf , respectively. Three treatment-based intervention strategies are evaluated: (1) Treat both
populations with an equal treatment rate; (2) Target treatment to the FSW population;
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(3) Target treatment to the client population. A comparison of these three interventions is
shown in Figure 4.5.

The impact of scaling up treatment rates from 0 to 5/yr is shown in Figure 4.5a. A treat-
ment rate of 5/yr corresponds to an expected time to treatment of approximately two and
a half months. The graph in Figure 4.5a shows that the most significant reductions in total
prevalence occur when the treatment rate is increased from 0 to 1/yr, which corresponds to
a mean time to treatment of one year after infection. Further increasing the treatment rate
only has a minimal impact on reducing prevalence. The persistence of HIV in the model,
even for high treatment rates, occurs because of new infections from individuals in the
acute stage HIV state and through migration into the model of HIV-positive individuals.
The latter effect also explains why treatment of only FSWs results in the highest prevalence:
the migration rate for FSWs is approximately 3.3 times greater than the migration rate for
clients in this model.
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Figure 4.5. Comparison of three treatment strategies over a 20-yr period.

Figure 4.5b shows the total cost over 20 years required to achieve a given HIV prevalence.
The lowest-cost strategy is to target treatment to only the FSW subpopulation. This is
primarily due to the FSW population size being one-tenth of the client population size.
However, this strategy can only reduce total prevalence down to approximately 23%. To
reduce the total prevalence below this threshold, the lowest-cost strategy is to treat both
subpopulations.

4.3.3 Combined Interventions

We now consider interventions which combine both PrEP and ART. Susceptible nodes
transition to the PrEP state V at the constant rates νc for clients and νf for FSWs. Nodes
in the latent stage HIV state transition to the treated state at the constant treatment rates
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Figure 4.6. Comparison of combined treatment and prevention strategies over a 20-yr period, when both
treatment and PrEP are targeted towards FSWs.

γc for clients and γf for FSWs. PrEP coverage is defined to be the proportion of HIV-
negative individuals on PrEP after 20 yrs. The following combined strategies are evaluated:
(1) treat and administer PrEP to FSWs only; (2) treat FSWs and administer PrEP to
clients; (3) treat clients and administer PrEP to FSWs; and (4) treat and administer PrEP
to clients only. We additionally investigate the effect of treating both populations while
administering PrEP to FSWs only.

When both ART and PrEP are targeted at the FSW population, as shown in Figure 4.6,
there is a threshold PrEP coverage of approximately 80%, beyond which there is not a
significant additional decrease in HIV prevalence. Figure 4.6b shows that focusing only on
PrEP is the lowest-cost option for reducing total prevalence to approximately 20%. PrEP
should be combined with treatment to reduce prevalence to below 20% in this population.

Figure 4.7 shows the impact of targeting both treatment and PrEP to the client sub-
population alone. The response of the total prevalence to increasing PrEP coverage in the
client subpopulation is more gradual than for the FSW subpopulation so that higher cover-
age is required to realise the lowest prevalence. Figure 4.7b shows a larger window in which
combining treatment with PrEP is the lowest-cost solution.

The next two interventions considered target both populations. Figure 4.8 shows that if
we consider treating only the FSW population, it is never cost-effective to prioritize PrEP
to clients. Figure 4.9 shows the opposite case where we treat only clients and provide PrEP
to FSWs. Here, we see that for any given total prevalence target, it is cost-beneficial to re-
allocate testing and treatment resources from the clients toward increasing PrEP coverage
in the FSWs. However, if the targeted total prevalence is below approximately 20%, then a
testing and treatment programme for the clients is necessary.
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Figure 4.7. Comparison of combined treatment and prevention strategies over a 20-yr period, when PrEP
and treatment are both targeted towards clients.
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Figure 4.8. Comparison of combined treatment and prevention strategies over a 20-yr period, when PrEP
is targeted towards clients and treatment is targeted towards FSWs.
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Figure 4.9. Comparison of combined treatment and prevention strategies over a 20-yr period, when PrEP
is targeted towards FSWs and treatment is targeted towards clients.

The final intervention considered is arguably the most realistic from a public health
policy perspective. In this case, testing and treatment programmes are implemented for both
FSWs and clients; however, PrEP is targeted to only FSWs. The results for this scenario are
shown in Figure 4.10. As with the scenario in which treatment is only targeted to clients,
we find that for a given prevalence target it remains cost-advantageous to prioritize PrEP
for FSWs. Figure 4.10b shows that the cost advantage of prioritizing PrEP is even slightly
greater when treatment is applied to both subpopulations. However, it remains the case that
a treatment programme is required to achieve total HIV prevalence below approximately
20%.

4.3.4 Sensitivity Analysis

In our discussion in the previous section, we hypothesize that the most significant reason
that a PrEP program would not be a cost-effective strategy when targeted at the clients
is due to the power-law degree distribution, not just the relative difference in the mean
degrees between clients and FSWs. A power-law distribution exhibits high density around
low degrees, which means that a randomized strategy would be unlikely to reach all of
the high degree nodes. It would be much more efficient to target the FSW population, who
exhibit a Poisson degree distribution in which nodes are densely distributed about the mean
degree. However, it is unclear how much of this effect is due to the degree distribution and
how much is due to the mean degrees.

Therefore, we wish to repeat some of the experiments of the previous section using a
Poisson distribution for the clients and a truncated power-law distribution for the FSWs,
while keeping the mean degrees the same (on average) as those of the previous section.
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Figure 4.10. Comparison of combined treatment and prevention strategies over a 20-yr period, when PrEP
is targeted towards FSWs and treatment is provided equally to both clients and FSWs.

When we calibrate the model to determine the appropriate value of β, we find very different
behaviour than that shown in Figure 4.4. In particular, for β > 0, we see that the client
HIV prevalence is greater than the FSW prevalence. Therefore, this does not appear to be
a reasonable model. In order to compare our results, therefore, we need to look at different
combinations of degree distributions; this is an area for future work.
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Figure 4.11. Equilibrium HIV prevalence among each subpopulation under zero treatment in the modified
model where clients have a Poisson distribution and FSWs have a power-law distribution. The dashed line
marks the recorded FSW prevalence.

We also wish to investigate the effect of lowering the migration rate on our results
from Section 4.3.3. In Figure 4.12, the minimum achievable HIV prevalence is only slightly
reduced from that shown in Figure 4.6. Therefore, a change in migration rate would not
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Figure 4.12. Effect of the combined strategy on total HIV prevalence after 20 yrs, when FSW migration
rate is set to zero.

qualitatively affect our results. This furthermore illustrates that the importance in this
population of acute stage transmissions.

Of course, a full sensitivity analysis of all parameters in the model would be required
in order to determine the confidence of our qualitative results. Due to the computationally
intensive nature of these simulations, we need to prioritize those parameters which we
believe may impact our results the most. Foremost, as mentioned above, we wish to conduct
a thorough sensitivity analysis on the two degree distributions. Secondly, the impact of
network size on our results may be significant; however, if it does not, it may be possible to
decrease simulation time. Lastly, we could investigate the impact of changing the infectious
contact parameter β, perhaps allowing for asymmetric transmission.
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Chapter 5

Discussion and Conclusions

The sexual network structure of survival female sex worker–client populations has several
features which distinguish it from other sexual networks. We have examined the potential
importance of these features in designing control strategies for an HIV epidemic. The sexual
network is modelled as a bipartite random network in which the FSW subpopulation is
significantly smaller than the client subpopulation. Other key features of our model are
the higher migration rate for female sex workers and the nature of the degree distribution
for the sex workers, arising from their limited agency in sexual negotiations. Each of these
characteristics affect the impact of the control strategies which were tested.

Intuitively, one would expect that the most effective strategy for control of an HIV
epidemic on a bipartite random network would be to target both treatment and prevention
strategies to the smaller subpopulation—in our case the FSWs. Certainly for an SIR-type
disease process, there would exist a threshold vaccine coverage above which the epidemic
would be suppressed (as we discussed in Section 2.4).

This intuition is only partially supported by our model. We find that, up to a certain
point, the lowest-cost strategy for achieving a given prevalence at any treatment rate is
to prioritise PrEP in the FSW population. The caveat is that targeting only the FSW
subpopulation cannot reduce the overall HIV prevalence to near-zero levels. The lowest-cost
strategy for further reductions in prevalence is to combine PrEP in the FSW subpopulation
with expansion of testing and treatment in both the FSW and client subpopulations.

Our observation that targeting interventions towards FSWs can not completely suppress
disease dynamics appears to be primarily driven by acute infection events. The high mean
degree of our model FSWs relative to their clients means that once a given female node is
infected, she is expected to have many concurrent contacts with clients. Since the probability
of transmission is much higher during this initial (untreated) stage, this may lead to a large
number of infected clients. Therefore, when these clients are not moved onto treatment, a
significant proportion of the total population remains HIV-positive.

Both the mean degree and the distribution of the number of sexual partners in the FSW
subpopulation play a role in the effectiveness of PrEP. In the model, we assumed that this
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degree distribution is a Poisson distribution and that this subpopulation has a significantly
larger mean degree than the clients. Hence, there is a large clustering of FSW nodes around
the mean degree: almost 90% of the female nodes in our generated networks have degree
between 15 and 30. Since individuals are drawn randomly from each subpopulation for
immunization, the likelihood is high that a female node chosen to be put onto PrEP has
high degree, and therefore has a large influence in the network.

We also find that PrEP strategies which include or target the client population are
generally not cost-effective strategies. In some cases, they may be significantly less so than
treatment alone. The argument for why this is the case follows from the discussion above:
under random selection, the likelihood is low that a chosen client node would have a high
influence in the network. This is not only due to the low mean degree of client nodes relative
to the FSWs, but also due to the large variance in degrees. In this model, we have included
only clients who were active in the network. In reality, a client-based PrEP strategy would
likely be even less cost-effective, because of the difficulty in identifying individuals who are
actively involved with female sex workers.

5.1 Summary

We have presented a stochastic model which describes sex worker–client interactions in a
high HIV prevalence setting. Using a random bipartite network model, we have investigated
the relative cost-effectiveness of different HIV control strategies involving the administration
of pre-exposure prophylaxis (PrEP, for prevention) and/or antiretroviral therapy (ART, for
treatment). These resources are targeted to either clients or survival female sex workers
(FSWs) variably, although within each subpopulation, we only assume that individuals are
chosen randomly for either PrEP or ART.

The most effective strategy for reducing HIV prevalence in a survival female sex worker–
client population is a PrEP program targeted at FSWs. As PrEP coverage of the FSWs
is scaled up, the projected HIV prevalence after 20 years decreases dramatically until a
threshold coverage is reached. Further expansion of PrEP coverage above the threshold
level does not lead to significant further reduction in HIV prevalence. We find that a PrEP
program targeted at the clients is not a cost-effective approach for reducing HIV prevalence.

A PrEP program alone for the female sex workers cannot effectively eliminate HIV as
a public health threat in the sex worker–client population. The high number of concurrent
partnerships typically associated with survival sex workers, combined with a high migration
rate, limits the ability of a PrEP strategy to drive HIV prevalence close to zero. An aggressive
reduction in prevalence requires a combination strategy of PrEP for the female sex workers
and expanded testing and treatment for both the sex workers and the clients. In general,
intervention strategies should be prioritized to the sex workers, but testing and treatment
of the client population should not be neglected.
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Our model is motivated by and calibrated to data from the Carletonville-Mosuthumpilo
project—a South African study from 2000. However, we believe that our results are appli-
cable to general survival sex worker populations. Key characteristics of our models include
the relative differences in migration rates and mean number of partnerships (a consequence
of the ratio of population sizes) and on the degree distributions of both populations. Here,
the clients on average have a lower migration rate and have significantly fewer partners than
the female sex workers; we find evidence from different data sources to support these ideas.
We then assume that clients choose their partners randomly. While this generative mecha-
nism seems plausible for a survival sex worker network, we acknowledge that the evidence
to support the female degree distribution is lacking. The remaining parameters which were
estimated from or calibrated to the Carletonville data are not expected to qualitatively
affect our conclusions.

5.2 Future Work

Further improvements upon our model may include distinguishing between casual and reg-
ular contacts, and taking into account risk compensation or adherence. Whether or not risk
compensation would be an issue in the context of PrEP is a subject of debate. In Eakle et al.
[20], the female sex workers interviewed acknowledge the continued importance of condoms
as a preventative measure, and that PrEP should be used as a back-up measure. A previous
study on post-exposure prophylaxis (PEP) showed no increase in high-risk behaviour [37].

The conclusion that a prevention-based strategy would be ineffective when targeted at
the client population is likely sensitive to the client degree distribution. The power-law de-
gree distribution was inferred using questionnaire data from the Carletonville-Mosuthumpilo
Project. Furthermore, as discussed above, while random selection seems like a good starting
point to model the degree distribution of survival female sex workers, we do not currently
have the data to support this distribution. Self-reported questionnaire data has been shown
to be an unreliable indication of sexual contacts [25] and so we suggest the following areas of
future work: the first is to collect and analyze reliable social network data among sex work-
ers and their clients. Secondly, one could expand upon our sensitivity analysis with regards
to the model network structure. Finally, the Poisson distribution considered for the female
degree distribution assumed that clients chose sex workers randomly. We acknowledge that
this is a simplistic generative mechanism, and that more complex social dynamics could be
explored by using alternative models for random graph generation.

One could furthermore address the issue of concurrency. In our static network model,
all possible partnerships of a given node are considered to be concurrent, which is not
always a realistic assumption. We attempt to skirt this issue by lowering our transmission
probability per sexual act, β. However, by using a dynamic network—one in which edges can
be broken and/or rearranged—one would be able to consider serial partnerships. Analytical
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results, similar to our discussion in Chapter 2, exist for simple disease processes on dynamic
networks [58], however additional model complexity such as migration would likely prohibit
the derivation of analytical results. Additionally, a mixture of static and dynamic edges
could be used to model regular and non-regular partnerships, respectively. Unfortunately,
such a model would be difficult to calibrate and validate, since, to our knowledge, research
and published data showing the temporal evolution of social networks is scarce.
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Appendix A

Additional Data from Carletonville
Questionnaire

The Carletonville-Mosuthumpilo project [60] collected questionnaire data from approxi-
mately 800 miners living and working in Carletonville, 1500 residents of the neighbouring
township of Khutsong and 100 women living in hotspots surrounding the mine complexes
was collected. Along with standard demographic questions, all respondents were asked a
number of questions regarding their sexual relationships.

Q214. What is you usual occupation?

� Work for a mining company
� Domestic work outside your home
� Selling things
� Unemployed
� Manual labour
� Professional
� Sex work
� Other

Q242. Did you ever have sexual intercourse with a sex worker?

� Yes
� No

Q243. How many times did you have sex with a sex worker in the last 12 months?

Q244. Last time (having intercourse with a sex worker) did you use a condom?

� Yes
� No

Q310. How many current regular partners do you have?
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Q315. How many times did you have sex with your regular partner in the last week?
(Recorded for up to two regular partners).

Q401. How many different people have you had sexual intercourse with in the last 12 months
(other than a regular partner)? This includes mistresses, girlfriends, casual partners,
prostitutes, or somebody you met in a bar or at a special occasion and partners you
are committed to but don’t live with.

Q403. How many times did you have sex with these partners (non-regular) in the last
MONTH?

Q404. Thinking about the times that you had sex in the last MONTH, with these partners
(non-regular) how many times did you use a condom?

Q414. Think of the last non-regular partners that you had sex with in the last 12 months.
How many times in the last month did you have sex with this person?

The clients are taken to be those who responded “Yes” to Q242. This gives a total of
109. We have identified the female sex workers to be those who responded “Sex work”
to Q214, regarding current occupation. In total, this gives 71 female sex workers. We are
also interested in how the distribution of the number of non-regular partners is different
between men and women engaged in sex work and all other men and women respondents.
Other men refers to all men who indicated “No” to Q242. Other women refers to all women
who indicated an occupation other than sex work in Q214.

A.1 Demographics

Some basic information regarding age and birthplaces of both clients and female sex workers
is shown below.
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Figure A.1. Responses to Q214, regarding current occupation, among men who self-identified as clients.
Men who work for a mining company constitute 64% of all clients.
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(a) Recorded ages of men who self-identified as
clients. The mean recorded age is 35 years old,
with range 17–55 years old.
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(b) Recorded ages of women who self-identified
as sex workers. The mean recorded age is 30 years
old, with range 21–51 years old.

Figure A.2. Distribution of ages among clients and sex workers.
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(a) Birthplaces among men who self-identified as
clients.
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(b) Birthplaces among women who self-identified
as sex workers.

Figure A.3. Comparison of recorded birthplaces.

A.2 Sexual Behaviour

A major focus of Chapter 3 was on the nature of the distribution of non-regular partners
among both clients and sex workers. How do these distributions compare to other men
and women in the Carletonville area? How frequent is sexual contact among non-regular
partners? Do those who engage in sex work have frequent contact with regular (spouse-like)
partners?
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(a) Among men who self-identified as clients.
There were 44 non-responses, corresponding to
about 40% of all clients.
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(b) Among women who self-identified as sex workers.
There were 40 non-responses, corresponding to about
56% of all female sex workers.

Figure A.4. Responses to Q310, regarding the number of current regular partners. Participants who had
never been married did not respond.
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(b) Among women who self-identified as sex workers.

Figure A.5. Responses to Q315, regarding the number of sexual encounters with one regular partner over
the past week. Those who had indicated that they had never had a regular partner did not respond.
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(a) Among men who self-identified as clients.
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(b) Among women who self-identified as sex
workers.
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(c) Among all other men.
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(d) Among all other women.

Figure A.6. Responses to Q401, regarding the number of different non-regular partners in the last 12
months. Note that Figure 3.1 gives a higher resolution of the responses to Q401 among female sex workers,
in which we can clearly see a peak away from zero.
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(a) Among men who self-identified as clients.
There were no respondents who indicated that
they did not know.
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(b) Among women who self-identified as sex
workers. We exclude respondents who indicated
that they did not know, corresponding to about
10% of all responses.
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(c) Among all other men. We exclude respon-
dents who indicated that they did not know, cor-
responding to about half of all responses.
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(d) Among all other women. We exclude respon-
dents who indicated that they did not know, cor-
responding to about 60% of all responses.

Figure A.7. Responses to Q403, regarding the total number of sexual encounters with all non-regular partner
over the past year.
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A.3 Condom Usage

One might also be interested in condom usage among those who participate in sex work.
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(a) Among men who self-identified as clients.
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(b) Among women who self-identified as sex
workers. Excluding all responses indicating “do
not know”, corresponding to 5 responses.

Figure A.8. Responses to Q404, regarding condom use with non-regular partners over the past month.
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Figure A.9. Responses to Q244, regarding condom use with sex workers, among men who self-identified as
clients.
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Appendix B

Software

The simulated disease processes on each network were performed using the python package
NepidemiX [1], the latest version of which can be found here:

https://github.com/impact-hiv/NepidemiX

and more information on the project can be found here:

http://nepidemix.irmacs.sfu.ca/

The version that was used for this thesis was forked in July 2017. The modifications made
include: adding bipartite network functionality, adding unipartite and bipartite network
generators (using NetworkX [28]) and adding optional stopping criteria. This version can
be found here:

https://github.com/nmulberry/NepidemiX

Dependencies: Python 2.7, NetworkX 1.11 (this version of NepidemiX is incompatible with
Python 3.x and NetworkX 2.x).
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