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Abstract

Computing polynomial greatest common divisors (GCD) plays an important role in Com-
puter Algebra systems because the GCD operation is the bottleneck of many basic ap-
plications. For example, to simplify a rational function one divides the numerator and
denominator by their GCD. In 1988 Ben-Or and Tiwari introduced the first deterministic
polynomial interpolation algorithm which accounts for sparsity. The number of evaluation
points needed by the Ben-Or/Tiwari algorithm is linear in the number of non-zero terms
in the target polynomial, and moreover, all variables can be interpolated simultaneously
hence parallelizing the algorithm is easier. In this thesis, we present modular multivariate
polynomial GCD algorithms based on Ben-Or/Tiwari sparse interpolation. They compute
the GCD modulo one or more primes. We apply a Kronecker substitution to reduce the
number of variables and we modify the Ben-Or/Tiwari evaluation point sequence so that
we can use primes of acceptable size (machine primes) as well as gain randomness on the
choice of evaluation points to avoid several known issues in polynomial GCD algorithms.
Based on several assumptions, we first present a simplified algorithm for GCD computation
in Z[x1, . . . , xn] from which we derive some theoretical bounds and convince the reader why
it works. Then we present a practical version of the algorithm where those assumptions are
dropped. This leads to a more complicated algorithm but it can be shown that it always
terminates and it computes the GCD efficiently. In the 1980s, subsequent research in poly-
nomial GCD algorithm mainly focused on polynomials over number fields. In this thesis,
we also present a GCD algorithm for multivariate polynomials in Q(α)[x1, . . . , xn] where α
is an algebraic number. With a prime modulus p, all operations are performed in the finite
ring Zp(α) where inversions may fail due to zero divisors. We manage to get all necessary
bounds to support the correctness of our algorithm.

Keywords: Sparse multivariate polynomial; Polynomial greatest common divisor; Ben-Or
and Tiwari interpolation algorithm; Discrete logarithm; Sparse interpolation.
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Chapter 1

Introduction

Let A and B be multivariate polynomials in Z[x0, x1, . . . , xn]. In this thesis we present
modular algorithms to compute G = gcd(A,B), the greatest common divisor (GCD) of A
and B over Z. With suitable modification our GCD algorithm is capable of computing GCD
over number fields as well. A simple extension case will be discussed.

Let f be a polynomial in variables x0, x1, . . . , xn and let t be the number of distinct
non-zero terms in f and degxi f denote the degree of f in xi. Let m be the number of
possible terms of f in variables x0, x1, . . . , xn with degxi ≤ d for 0 ≤ i ≤ n. The polynomial
f is called sparse if t is much less than m (denoted by t� m), e.g, t =

√
m. Our algorithm

is designed for sparse G and focus on parallelism.

Example 1.1. Let f = x4y3zu2+32x6u2+1 ∈ Z[x, y, z, u]. For polynomials with 4 variables
and total degree at most 10, there are

(10+4
10
)

= 1001 possible monomials. But f is a three
term polynomial hence it is sparse with the degree constraint.

Since the early age of symbolic computation, efficiently computing a polynomial GCD
has been an active research area. Every modern computer algebra system, such as Maple,
Mathematica and Magma, must have the capability to compute the GCD because it is the
key part in many applications. For example, when computing with fractions of polynomials,
GCD computation is the most important operation, which is usually much more expensive
than multiplication and division. The efficiency of GCD computation affects the performance
of those applications directly. Nowadays modular arithmetic, interpolation algorithms, p-
adic lifting, etc are favorite tools in developing multivariate polynomial GCD algorithms.

The most fundamental algorithm to compute the univariate polynomial GCD over Q
is the Euclidean Algorithm which dates back more than two thousand years. However the
exponential growth of the largest magnitude of coefficients in intermediate remainders is
its major drawback. The Euclidean algorithm generates a sequence of polynomials, each
of which is the remainder of the previous two. This is also called a Euclidean polynomial
remainder sequence (PRS) [Geddes et al., 1992, Section 7.2]. To get a fraction free PRS, we
mention the pseudo-division PRS [Geddes et al., 1992, Section 7.2]. But it does not remove
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contents at all hence produces the worst coefficient growth. The primitive PRS on the other
hand produces the least coefficient growth but the trade-off is to perform many integer
GCD computations to remove contents. There are some better variants such as the reduced
PRS [Collins, 1967] algorithm and the subresultant PRS algorithm [Brown and Traub, 1971]
[Geddes et al., 1992, Section 7.3]. The subresultant PRS is regarded as the best PRS-based
algorithm. Its coefficient growth is linear, no GCD computations are required and it can be
extended to compute multivariate polynomial GCD over a UFD. However the coefficients
in intermediate steps can still grow exponentially in n when being applied to multivariate
polynomials. For subresultant PRS, see Section 1.2 for more details. In general those PRS
algorithms are regarded as insufficient to compute the GCD of multivariate polynomials.

The most effective tool to solve the coefficient growth problem is modular arithmetic.
To be precise, we use a ring homomorphism to map polynomial coefficients from Z to a
simpler domain Zp where p is a prime hence all coefficients are contained in the finite field
Zp. Since some information is lost due to the mapping we could reconstruct coefficients in
Z by computing several GCD images over several different finite fields and then lift the
coefficients large enough by the Chinese remainder theorem. This method can be general-
ized to multivariate GCD case by recursively computing the GCD with one less variable
by evaluation and then recovering the target GCD by interpolation. Such an evaluation-
interpolation style modular GCD algorithm was first introduced by Brown [Brown, 1971].
See also [Geddes et al., 1992, Section 7.4].

Brown’s algorithm works effectively for dense multivariate polynomial GCD computa-
tion. His algorithm handles multivariate polynomials recursively by keeping x0 as the main
variable and evaluate xn in Zp[xn][x0, x1, . . . , xn−1]. So if d is an upper bound for the de-
gree of each variable, O(dn) points are needed to interpolate the desired GCD G. Brown’s
algorithm not only provides a way to compute polynomial GCD, but also introduces several
techniques which have been widely used subsequently in other applications. Subsequent im-
provements to Brown’s algorithm mainly focused on optimizing the complexity for sparse
multivariate polynomials.

A different approach to compute the polynomial GCD was introduced by Char, Geddes
and Gonnet. The heuristic algorithm GCDHEU [Char et al., 1989], see also [Geddes et al.,
1992, Section 7.7], evaluates input polynomials over Z rather than Zp. For the univariate
case, it evaluates variables of input polynomials at some carefully chosen integers and then
performs a single integer GCD computation. The true polynomial GCD is read from its
integer GCD image. The GCDHEU algorithm can be generalized to the multivariate case
but it is usually not effective for sparse polynomials.

Another efficient GCD algorithm which is better suited for the multivariate case is the
Extended Zassenhaus algorithm (EZ-GCD) [Moses and Yun, 1973]. See also [Geddes et al.,
1992, Section 7.6]. It was developed by Moses and Yun in 1973 and named after Zassen-
haus to honour his work in number theory. The EZ-GCD algorithm reduces multivariate
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polynomials to univariate polynomials by evaluations and modular homomorphisms. Once
the GCD is determined in the univariate case, Hensel’s lemma is used repeatedly to lift
the coefficients and the variables back to multivariate polynomial by generalized Newton
iteration. However, the EZ-GCD algorithm comes with several flaws. For example, the bad
zero problem which often leads to a large intermediate expression growth of terms, the lead-
ing coefficient problem and the non-unit common factor problem. Numerous improvements
to the EZ-GCD algorithm have been made. Among those variants, Wang’s [Wang, 1980]
EEZ-GCD algorithm makes a major improvement. It lifts one variable at a time and the
leading coefficient problem is overcome by Wang’s heuristic leading coefficient pre-determine
algorithm. Wang’s EEZ-GCD algorithm is the default polynomial GCD algorithm in many
computer algebra systems, such as Axiom, Macsyma, older version of Magma and Maple
(prior to version 11). Another notable variant called the sparse EZ-GCD algorithm was
developed by Kaltofen in 1985 [Kaltofen, 1985], which makes use of sparse Hensel lifting.
We review the EZ-GCD algorithm in Section 1.4.

A milestone probabilistic algorithm for sparse polynomial interpolation was presented
by Zippel in 1979 in his PhD thesis [Zippel, 1979a,b]. A direct application is to compute the
sparse polynomial GCD of two multivariate polynomials over Z. Zippel implemented his
GCD algorithm in Macsyma. Zippel’s algorithm is based on the observation that evaluating
a non-zero polynomial at a random point will almost never yield zero. It constructs alter-
nating sequences of dense and sparse interpolations by probabilistic techniques. A dense
interpolation assumes that all coefficients in a polynomial of degree d are unknowns, hence
d + 1 evaluation points are expected. On the other hand, a sparse interpolation assumes t
unknowns where t � d, so only t evaluation points are needed. The unknowns are deter-
mined by solving a t× t linear system. Zippel’s sparse GCD algorithm is similar to Brown’s
algorithm in structure. They both reduce multivariate polynomials to univariate polyno-
mials. But Zippel’s uses O(ndt) distinct evaluation points instead of O(dn) by Brown’s. A
deterministic version [Zippel, 1990] of Zippel’s algorithm was published in 1990. For the
non-monic leading coefficient GCD problem, Zippel’s algorithm could fail due to scaling
leading coefficient inconsistently. Wang’s heuristic leading coefficient algorithm is one avail-
able solution but multivariate factorization is required. Another efficient method LINZIP
[de Kleine et al., 2005, Wittkopf, 2004] was given by Kleine, Monagan and Wittkopf. It does
not require any polynomial factorization and is currently the default multivariate polyno-
mial GCD algorithm used in Maple.

The first deterministic interpolation algorithm which accounts for sparsity was intro-
duced by Ben-Or and Tiwari in 1988 [Ben-Or and Tiwari, 1988]. The algorithm is based on
decoding BCH codes. It evaluates f(2i, 3i, 5i, . . . , pin) for i = 0, 1, 2, . . . , 2t−1. The prime sub-
stitutions were motivated by Grigoriev and Karpinsk [Grigoriev and Karpinsk, 1987]. The
Ben-Or/Tiwari interpolation is very similar to Prony’s method [de Prony, 1795, Giesbrecht
et al., 2009] which was developed by Gaspard Riche de Prony in 1795 and used to interpo-
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late a univariate function as a sum of exponential functions. The algorithm first recovers
all monomials in f then determines all coefficients of f in Z. The Ben-Or/Tiwari algorithm
uses 2t evaluation points where t is the number of nonzero terms in the target polynomial.
However in most cases t is not known and a method to determine t may need more than
2t evaluation points. The modular version of the Ben-Or/Tiwari algorithm was first given
by Kaltofen, Lakshman and Wiley [Kaltofen et al., 1990]. Although modular arithmetic
solves the intermediate expression swell, using a small prime with lifting strategy may fail
to determine the correct feedback connect polynomials, which is the key step to recover all
monomials. See [Kaltofen et al., 1990, Lemma 1]. In 2000, Kaltofen, Lee and Loo [E Kaltofen
and Lobo, 2000] introduced a hybrid version of Zippel’s algorithm. Instead of interpolating
a variable densely, this algorithm uses the univariate Ben-Or/Tiwari algorithm to race with
Newton’s interpolation and stops as soon as one of these two algorithms determines the
result. The hybrid algorithm uses O(nt) points. However x1, x2, . . . , xn are still interpo-
lated sequentially due to the structure of Zippel’s algorithm. In 2006 Giesbrecht, Labahn
and Lee [Giesbrecht et al., 2009] presented a variation of the Ben-Or/Tiwari algorithm for
numerical coefficients. Instead of evaluating x1, . . . , xn at prime numbers 2i, 3i, . . . , pin they
used ωi1, ω

i
2, . . . , ω

i
n as evaluation points where ωk are roots of unity in C. The monomi-

als can be recovered by computing logarithms numerically.. In 2010 Monagan and Javadi
[Javadi and Monagan, 2010] modified the Ben-Or/Tiwari algorithm to interpolate variables
in monomials in parallel. Their method requires O(nt) points. In 2010 Kaltofen [Kaltofen,
2010] suggested reducing multivariate interpolation to univariate interpolation by the Kro-
necker substitution f(x1, . . . , xn)→ f(x, xd+1, x(d+1)2

, . . . , x(d+1)n−1) where d ≥ degxi f for
1 ≤ i ≤ n. Then the discrete logarithm can be made polynomial in n and log d. He also
suggested using a prime p = 2ks+1 > (d+1)n with s small hence an FFT in Zp can be used
when needed. As far as we know, no one has tried to use the Ben-Or/Tiwari interpolation
to compute the polynomial GCD before.

The polynomial GCD algorithm developed by Kaltofen and Trager [Kaltofen and Trager,
1988] should also be mentioned. They introduced the black box representation for symbolic
objects. One direct application is the black box GCD algorithm. The black box representa-
tion is efficient in space.

All sparse polynomial GCD algorithms mentioned above are difficult to parallelize. The
main tool Hensel lifting in EZ-GCD or EEZ-GCD sequentially recovers the GCD one vari-
able at a time, and for each variable, one degree at a time. Zippel’s algorithm recovers
one variable at a time from univariate GCD images, and each new variable is interpolated
densely. So significant speed-up by parallelization is not expected. Still, some parallel imple-
mentation work has been done. See Rayes, Wang and Weber [Rayes et al., 1994]. A parallel
implementation of the Ben-Or/Tiwari interpolation algorithm is given by Murao and Fujise
[Murao and Fujise, 1996].

4



Subsequent research in polynomial GCD computation mainly focused on number fields.
Computing the greatest common divisor over number fields by the Euclidean algorithm
tends to be slow since manipulating algebraic numbers directly causes a blowup like in
the integer case. In 1974, Rubald [Rubald, 1974] discussed computing GCDs in Q(α)[x]
in his PhD thesis. He also mentioned how to generalize the Brown and Collins’s modu-
lar GCD algorithm to number fields under certain assumptions. In 1987, Langemyr and
McCallum[Langemyr and McCallum, 1989] successfully adapted Brown and Collins’s mod-
ular algorithm to algebraic number fields. However only a simple extension Q(α), where
α is an algebraic integer, is considered. A probabilistic version was introduced by Lange-
myr[Langemyr, 1990]. Encarnacion[Encarnacion, 1995] improved Langemyr’s algorithm by
relaxing the restriction on α from algebraic integers to algebraic numbers. He also used
rational number reconstruction to recover the rational coefficients of the GCD instead of
scaling GCD images by a denominator bound. In 2002, van Hoeij and Monagan[van Hoeij
and Monagan, 2002] presented an algorithm to compute the polynomial GCD over number
fields with multiple extensions α1, . . . , αk over Q. Their work was integrated into Maple.

The algorithms above all have a significant impact on the problems of computing the
GCD of multivariate polynomials. We want to build a sparse polynomial GCD algorithm
which can be highly parallelized. The Ben-Or/Tiwari algorithm interpolates all variables
simultaneously which interests us most. In this thesis we present modular polynomial GCD
algorithms using Ben-Or/Tiwari interpolation, the discrete logarithm method, the Kro-
necker substitution and so on. Partial results have been published in [Hu and Monagan,
2016]. The timing results are very promising. Let #f denote the number of distinct terms
in polynomial f . For our benchmark problem where #G ≈ 104, #A ≈ 106 and #B ≈ 106,
Maple takes 22,111 seconds, Magma takes 1,611 seconds, and our new algorithm takes 4.67
seconds on 16 cores and 48.17 seconds on 1 core. See Table 7.2 for more timing results.

Before we present our new GCD algorithms it is necessary to reveal more details about
several algorithms mentioned above by examples so that readers would be more familiar
with various techniques introduced by those algorithms so that they may better understand
the evolution of multivariate polynomial GCD algorithms.

We first fix some notations which are used frequently. Let A,B ∈ Z[x0, x1, . . . , xn] and
G = gcd(A,B). Ā = A/G and B̄ = B/G are the cofactors of A and B respectively. For
f ∈ Z[x0, x1, . . . , xn], LC(f) denotes the leading coefficient of f taken in x0, #f denotes
the number of non-zero terms in f and Supp(f) denotes the support of f , which is the set
of all monomials appearing in f .

1.1 The Euclidean algorithm

The Euclidean algorithm is the foundation of GCD computation. All GCD algorithms men-
tioned above execute the Euclidean algorithm at some point. But the rapid growth of the size
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of coefficients in the Euclidean algorithm is a well-known problem. The following example
demonstrates this issue.

Example 1.2. Consider the GCD of the following two univariate polynomials:

A(x) = 6x4 + 9x3 + 5x2 + x+ 10 and B(x) = 3x3 + 5x2 + 4x+ 10.

Let r1 = A and r2 = B. The Euclidean algorithm executes as follows.

Dividend Divisor Quotient Remainder

r1 r2 q3 = 2x− 1
3 r3 = −4

3x
2 − 53

3 x+ 40
3

r2 r3 q4 = −9
4x+ 41

16 r4 = 7911
16 x− 675

2

r3 r4 q5 = − 64
23733x−

87088
2317923 r5 = 168160

257547

r4 r5 q6 = 2037454317
2690560 x− 34768845

67264 r6 = 0

Table 1.1: Euclidean algorithm

The example shows two problems: the magnitude of coefficients in the remainders grows
exponentially and the coefficients are fractions instead of integers. If each remainder is
made to be monic then the growth of the magnitude of coefficients will be linear in degree
of inputs but it requires many integer GCD computation at each step. In order to better
understand those problems, let us first review polynomial pseudo division [Geddes et al.,
1992, Section 2.7]. For the algorithm, see Figure 1.1. Let k = degxA − degxB + 1 and
LC(B) be the leading coefficient of B. Instead of computing the quotient q and remainder r
so that A = Bq+ r, we compute q̌, ř ∈ Z[x] so that LC(B)kA = Bq̌+ ř and q̌ = pquo(A,B)
and ř = prem(A,B) are called pseudo quotient and pseudo remainder respectively. We first
give the formal definition of a polynomial remainder sequence.

Definition 1.1. Let R be a UFD and A(x) and B(x) be polynomials in R[x]. Suppose
degxA ≥ degxB. A polynomial remainder sequence (PRS) for A and B is a sequence of
polynomials r1(x), r2(x), . . . , rk(x) in R[x] satisfying

1. r1(x) = A(x), r2(x) = B(x),

2. airi−1(x) = qi(x)ri(x) + biri+1(x) with ai, bi ∈ R and qi(x) ∈ R[x],

3. prem(rk−1, rk) = 0.

6



Pseudo-Division
Input: A =

∑m
i=0 aix

i and B =
∑n
j=0 bjx

j where ai, bi ∈ R where R is a commutative
ring with 1. We assume m ≥ n and bn 6= 0.
Output: q, r ∈ R[x] such that bm−n+1

n A = qB + r.

1 Set r = A, q = 0 and k = 0.
2 While r 6= 0 and degx r ≥ n do

3 Set dr = degx r and lr = LC(r).
4 Set r = bnr − lr · xdr−nB.
5 Set q = bnq + lr · xdr−n.
6 Set k = k + 1.

7 RETURN q = bm−n+1−k
n q and r = bm−n+1−k

n r.

Figure 1.1: Pseudo Division Algorithm

Let us focus on R = Z for now. In Definition 1.1 the larger the bi the smaller the
magnitude of the coefficients in ri+1 is and vice versa. If we use the pseudo-division to
replace the normal division in the Euclidean algorithm, we get the pseudo PRS algorithm
where ai = r

degx ri−1−degx ri+1
i and bi = 1. No fractions appear in the pseudo PRS, but since

bi = 1 the growth of the coefficients of remainders could be fast. Let us see the following
example.

Example 1.3. For polynomials A(x), B(x) ∈ Z[x] considered in Example 1.2, we use pseudo
remainder PRS to determine their polynomial GCD. Let r1 = LC(B)4−3+1A and r2 = B,
the PRS is showed in the following table.

Remainder Quotient
r1 = LC(B)4−3+1A

r2 = B

ř3 = −12x2 − 159x+ 120 q̌3 = 18x− 3
ř4 = 71199x− 48600 q̌4 = −36x+ 417
ř5 = 29789039520 q̌5 = −854388x− 11903841
ř6 = 0 q̌6 = 2120949824784480x− 1447747320672000

Table 1.2: Pseudo PRS

The severe coefficient growth issue shown in above example can be solved by the prim-
itive PRS.

Definition 1.2. Let f(x) =
∑d
i=0 aix

i ∈ Z[x] be a non-zero polynomial. The integer content
of f , denoted by icont(f), is defined icont(f) = gcd(a0, a1, · · · , ad). The primitive part of
f is denoted as pp(f) = f/icont(f).

In each pseudo division step, we replace the remainder by its primitive part. The fol-
lowing example demonstrates this method.
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Example 1.4. For polynomials A(x), B(x) ∈ Z[x] considered in Example 1.2 and Example
1.3, we use primitive PRS to determine their polynomial GCD. Let r1 = LC(B)4−3+1pp(A)
and r2 = pp(B), then we have

Dividend Divisor Pseudo remainder Primitive part
r1 r2 ř3 = −12x2 − 159x+ 120 pp(ř3) = −4x2 − 53x+ 40
LC(pp(ř3))3−2+1r2 pp(ř3) ř4 = 7911x− 5400 pp(ř4) = 293x− 200
LC(pp(ř4))2−1+1pp(ř3) pp(ř4) ř5 = 168160 pp(ř5) = 1
LC(pp(ř5))2−1+1pp(ř4) pp(ř3) ř6 = 0 pp(ř6) = 0

Table 1.3: Primitive PRS

The magnitude of coefficients of remainders in the primitive PRS is well controlled and
in fact it is the best possible. The trade-off is to perform many integer GCD computations
to remove the contents of remainders.

When we compare the original Euclidean algorithm with the pseudo PRS, it seems
nice to compute GCD in R[x] using only arithmetic from the domain R[x], rather than
working with the quotient field of R as we saw in Example 1.2. That is one advantage
of PRS algorithms using pseudo division. Moreover, PRS algorithms compute a univariate
polynomial over a UFD hence it could be generalized to the multivariate case to compute
GCD in Z[x0, x1, . . . , xn] as we treat polynomials to be in Z[x1, . . . , xn][x0], see Example
1.7. However the computational cost to remove the polynomial content could be high be-
cause it involves many recursive multivariate GCD computations which causes a growth in
intermediate degrees. Therefore a PRS algorithm with linear growth of coefficients and no
GCD calculation is preferred. The best option so far is the subresultant PRS which will be
discussed in the next section.

1.2 Subresultant PRS

We are interested in a PRS which keeps the coefficient growth under control and avoids GCD
computations to remove contents. The reduced PRS is such a method that was discovered
by Sylvester [Sylvester, 1853] and rediscovered by Collins [Collins, 1967]. It picks ai =
LC(ri)degx ri−1−degx ri+1 and bi = ai−1 where 3 ≤ i ≤ k. The reduced PRS is suitable
for the complete PRS which requires degx ri−1 − degx ri = 1. Otherwise the coefficient
growth can still be exponential in degrees of input polynomials. For an incomplete PRS
case, the subresultant PRS is recommended. Sylvester initiated subresultant PRS research
in [Sylvester, 1853]. Habicht in [Habicht, 1948] made continued efforts on this topic. In the
late sixties and early seventies, Brown [Brown and Traub, 1971] and Collins [Collins, 1967]
independently simplified the formation of the subresultant PRS. Brown observes that the
subresultant PRS requires exponential time to compute the GCD of sparse polynomials.
But it is still the best Euclidean based PRS algorithm we can get. We consider A,B ∈ Z[x]
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for now but the subresultant PRS works for A,B ∈ D[x] where D is an integral domain
which will be discussed in Section 8.5.

Definition 1.3. Suppose degxA ≥ degxB. Let r1 = A, r2 = B and δi = degx ri−1−degx ri.
A subresultant PRS [r1, r2, . . . , rk] satisfies airi−1(x) = qi(x)ri(x) + biri+1(x) where

ai = LC(ri)δi+1, b2 = −1δ2+1, ψ2 = −1,

ψi = −LC(ri−1)δi−1/ψ
δi−1−1
i−1 , bi = −LC(ri−1)ψδii for 3 ≤ i ≤ k.

The proof that the subresultant PRS is a valid PRS is difficult. See [Geddes et al., 1992,
Section 7.3]. First let us check the following example.

Example 1.5. Consider polynomials A(x), B(x) ∈ Z[x] in Example 1.2 where

A(x) = 6x4 + 9x3 + 5x2 + x+ 10 and B(x) = 3x3 + 5x2 + 4x+ 10.

Let r1 = A, r2 = B. The subresultant PRS is

i δi ψi remainder
1 r1 = A

2 1 −1 r2 = B

3 1 −3 r3 = −12x2 − 159x+ 120
4 1 12 r4 = 7911x− 5400
5 1 −7911 r5 = 2553930
6 r6 = 0

Table 1.4: Subresultant PRS

The magnitude of coefficients in remainders is considerably less than we have in the
pseudo-division PRS. In fact Brown [Brown and Traub, 1971] observed that the growth of
the coefficients was linear in the number of division steps. More importantly there is no
GCD computation. The subresultant PRS could also be computed by the definition of the
subresultant polynomial.

Let A =
∑n
i=1 aix

i ∈ Z[x] and B =
∑m
i=1 bix

i ∈ Z[x]. The Sylvester matrix of A and B
is

M =



an 0 0 bm 0 0
an−1 an 0 bm−1 bm 0
... an−1

. . . 0
... bm−1

. . . 0

a1
... an b1

... bm

a0 a1 an−1 b0 b1 bm−1

0 a0
... 0 b0

...

0 0 . . . a1 0 0 . . . b1

0 0 a0 0 0 b0



. (1.1)
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The resultant of A and B is resx(A,B) = detM ∈ Z. Let M(i, j) be the (m + n − 2j) ×
(m+ n− 2j) submatrix of M obtained by deleting

1. columns m− j + 1 to m;

2. columns n+m− j + 1 to n+m;

3. rows n+m− 2j to n+m except row n+m− i− j.

Definition 1.4. The j-th subresultant polynomial of A and B is the polynomial of degree
j defined as

S(j, A,B) = detM(0, j) + detM(1, j)x+ · · ·+ detM(j, j)xj .

It is clear that S(0, A,B) = detM(0, 0) = resx(A,B). In fact, for d ≥ 0, degx gcd(A,B) = d

if and only if S(k,A,B) = 0 for 0 ≤ k ≤ d− 1 and S(d,A,B) 6= 0. We use the subresultant
polynomial definition to redo Example 1.5.

Example 1.6. We compute the j-th subresultant polynomial of A and B in Example 1.5
according to Definition 1.4.

A(x) = 6x4 + 9x3 + 5x2 + x+ 10 and B(x) = 3x3 + 5x2 + 4x+ 10.

The Sylvester matrix of A and B is

6 0 0 3 0 0 0
9 6 0 5 3 0 0
5 9 6 4 5 3 0
1 5 9 10 4 5 3
10 1 5 0 10 4 5
0 10 1 0 0 10 4
0 0 10 10 0 0 10


.

Since degxB(x) = 3, we have

S(0, A,B) = 2553930;

S(1, A,B) = 7911x− 5400;

S(2, A,B) = −12x2 − 159x+ 120;

S(3, A,B) = 3x3 + 5x2 + 4x+ 10 = B.

We observe that the same result is obtained as we have in Example 1.5 with the order
reversed.
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Example 1.5 demonstrates a complete PRS case. If the PRS is incomplete, then the
the subresultant PRS [r3, r4, . . . , rk] computed according to Definition 1.3 is a subset of the
subresultant polynomials [S(j, f1, f2) : 0 ≤ j ≤ degx f2−1] computed according to Definition
1.4. See [Geddes et al., 1992, Example 7.6, Example 7.9]. For the relation between ri and
S(j, f1, f2), we refer to the Fundamental Theorem of PRS [Geddes et al., 1992, Section 7.3].

The subresultant PRS algorithm is regarded as the best PRS algorithm to control the
coefficient growth as well as being a fraction-free calculation. It can also be used to compute
GCD of multivariate polynomials over Z. Now let us consider the subresultant PRS in
Z[x1, . . . , xn] with respect to some monomial order. Let x1 be the main variable hence
the coefficient domain is Z[x2, . . . , xn]. The definition of the subresultant PRS is identical
to Definition 1.3 except we change the coefficient domain. We need to define the content
and the primitive part of a multivariate polynomial. If D is a UFD, then the polynomial
domain D[x1, . . . , xn] is also a UFD. Normally we want to impose an additional condition
on GCDs of polynomials in D[x1, . . . , xn] in order to make it unique. For example, for a, b ∈
D[x1, . . . , xn], a and b are associates if and only if a = ub for some unit u ∈ D[x1, . . . , xn].
Then a and b are in the same associate class. The element which is chosen to represent an
associate class is said to be unit normal. In Z, all non-negative integers are defined to be
unit normal. In any field, every pair of non-zero elements are associates hence we define 0
and 1 to be unit normal.

Definition 1.5. Let D be a UFD and D[x1, . . . , xn] be a polynomial domain with respect to
some monomial order. Assume x1 is the main variable. Let f ∈

∑m
k=0 akx

k
1 ∈ D[x1, . . . , xn].

Hence ak ∈ D[x2, . . . , xn]. The content of f in x1, denoted by cont(f(x1)), is the unique
unit normal gcd(a1, a2, . . . , am). The primitive part of f is f/cont(f(x1)) and we say f is
primitive if cont(f(x1)) = 1.

We note that the input polynomials should be primitive with respect to the main variable
because PRS algorithms always return the primitive part of the last non-zero remainder
with respect to the main variable as the GCD. If inputs are not primitive then we compute
the GCD of the primitive parts of inputs.

Example 1.7. Consider the GCD problem

A = 18x7y + 15x6 + 12x3y + 10x2, B = 15x6y2 + 27x4y4 + 10x2y2 + 18y4.

Let r1 = A and r2 = B. According to Definition 1.3, we have

r3 =− 7290x5y7 − 6075x4y6 − 4860xy7 − 4050y6.

r4 =6377292x4y14 + 2460375x4y10 + 4251528y14 + 1640250y10.

r5 =0.
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Since A is primitive with respect to x, the primitive part of r4 is 3x4 + 2 which is the GCD
of A and B.

Comparing r4 and gcd(A,B), r4 is more dense. The degree of y and the magnitude of
coefficients both significantly increase during the computation.

1.3 The GCDHEU algorithm

We want to mention this algorithm because it computes polynomial GCD from a different
perspective which first reduces the problem to GCD computation over Z and then recovers
the polynomial GCD from its integer GCD image. A brief review is given in this section.
See [Char et al., 1989] for more details.

Suppose A(x), B(x) ∈ Z[x] and g(x) = gcd(A(x), B(x)) =
∑d
i=0 cix

i. Let β ∈ Z be a
positive integer which bounds twice the magnitudes of all coefficients in A(x), B(x) and
in any of their factors. Hence β is twice larger than the magnitudes of the coefficients in
g(x). We first compute α = gcd(A(β), B(β)) and then convert α to g(x) by determining
its β-adic representation with the symmetric representation of coefficients, that is α =
c0 + c1β + c2β

2 + · · · + ckβ
d. Then g(x) is obtained by substituting β for x. We illustrate

this algorithm with the following example.

Example 1.8. Suppose we want to find the GCD of the following two univariate polynomials

A = 6x4 − 14x3 + 19x2 − 21x+ 15 and B = 9x3 − 15x2 + x+ 10.

β = 100 is assumed to be larger than twice the magnitudes of the coefficients in A, B and
G = gcd(A,B).

γ = gcd(f1(100), f2(100)) = gcd(586187915, 8850110) = 29305.

Now we compute the symmetric 100-adic representation of 29305.

c0 = γ mod 100 = 5, γ = γ − c0
100 = 293.

c1 = γ mod 100 = −7, γ = γ − c1
100 = 3.

c2 = γ mod 100 = 3, γ = γ − c2
100 = 0.

Therefore γ = 5 − 7 · 100 + 3 · 1002. Once we substitute the base 100 with x we have the
GCD G = 5− 7x+ 3x2.

One problem is that the magnitude of the coefficients in g(x) is not given hence some
estimation is required. Let h1 and h2 be the largest magnitudes of the coefficients in A and
B respectively. Algorithm GCDHEU picks β > 1 + 2 min(h1, h2). Suppose G is the result
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converted from α, Theorem 2 of [Char et al., 1989] shows that G = gcd(A,B) if and only
if G divides A and B. The GCDHEU algorithm can be generalized to multivariate GCD
computation by recursively evaluating each variable at an integer. Let us redo Example 1.7.
For the algorithm, see [Geddes et al., 1992, Section 7.7].

Example 1.9. Consider the GCD problem

A = 54x7y + 45x6 + 36x3y2 + 30x3y + 30x2y + 25x2,

B = 45x6 + 81x4y2 + 30x2y + 54y3 + 25x2 + 45y2.

Since the last term of B is 45y2, their GCD must be primitive in x. GCDHEU is integer
content sensitive because it performs calculation over Z and therefore integer contents need
to be removed in each recursive call. The integer contents of A and B are both 1. Therefore
no content needs to be removed. We set A1 = A and B1 = B. Since the heights of A1 and
B1 are ‖A1‖ = 54 and ‖B1‖ = 81 respectively, we pick β = 2 + 2 min(‖A1‖, ‖B1‖) = 110 as
the evaluation point for x. Let

A2 = A1(β, y) = 47916000y2 + 10523072380293000y + 79720245302500 and

B2 = B1(β, y) = 54y3 + 11859210045y2 + 363000y + 79720245302500.

The integer contents of A2 and B2 are 60500 and 1 respectively. Therefore we remove the
integer content of A2 to get A3 and set B2 = B3 and have

A3 = 792y2 + 173935080666y + 1317690005,

B3 = 54y3 + 11859210045y2 + 363000y + 79720245302500.

Since ‖A3‖ = 173935080666 and ‖B3‖ = 79720245302500, the evaluation point for y is
α = 2 + 2 min(‖A3‖, ‖B3‖) = 347870161334 and gcd(A3(α), B3(α)) = 2088538658009. The
α-adic expansion of 2088538658009 is 1317690005y0 +6y1. We multiply 1317690005y0 +6y1

by 1 which is the GCD of the integer contents of A2 and B2. The β-adic expansion of 6
is 6x0 hence the coefficient of y1 is 6. The β-adic expansion of 1317690005 is 5x0 + 0x1 +
0x2 + 0x3 + 9x4 hence the coefficient of y0 is 9x4 + 5 which divides A and B. Therefore
gcd(A,B) = 9x4 + 6y + 5.

For A,B ∈ Z[x1, x2, . . . , xn], let d > maxni=1(degxi A,degxi B) and let x1 = β. Then we
recursively call GCDHEU to compute gcd(A(β, x2, . . . , xn), B(β, x2, . . . , xn)) with one less
variable. The magnitude of coefficients in A(β, x2, . . . , xn) and B(β, x2, . . . , xn) increases by
a factor βd. Therefore the magnitude of integers at the base recursive case has size O(βdn).
Obviously the algorithm is not acceptable for sparse GCD problems. When this algorithm
was published approximately 30 years ago, the authors suggested that GCDHEU was often
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successful for GCD problems up to four variables. Prior to Maple 11, Maple used GCDHEU
for small and dense problems. For larger and sparse problems, the Maple implementation
used Wang’s EEZ-GCD algorithm which we discuss later.

1.4 The EZ-GCD algorithm

The EZ-GCD algorithm maps GCD problems in Z[x0, . . . , xn] to Zp[x0] by evaluation ho-
momorphism (modulo I = 〈p, x1 − α1, x2 − α2, . . . , xn − αn〉) and modular homomorphism
(modulo a prime p). It uses a technique called Hensel lifting [Geddes et al., 1992, Section
6.4] to rebuild the result. To be precise, it first performs a p-adic iteration to lift coefficients
of the univariate GCD image from Zp to Zpl for some positive integer l, and then lift the
univariate GCD image from Zpl [x0] back to Zpl [x0, . . . , xn] by I ideal-adic iteration. Both
lifting methods are derived from Hensel’s lemma. We first give an example to demonstrate
the idea.

Example 1.10. We want to determine the GCD of the following two polynomials

A = y2 + 2xy − 3y + x2 − 3x− 4 and B = y2 + 2xy − 4y + x2 − 4x− 5.

Using p = 17 and y = 0, we have

A(x, 0) mod p = x2 + 14x+ 13 and B(x, 0) mod p = x2 + 13x+ 12.

Next we compute
g = gcd(A(x, 0), B(x, 0)) = x+ 1 mod p.

The cofactor of g is f̄1(x, 0) = f1(x, 0)/G = x+ 13. Hence

A(x, y) ≡ (x+ 1)(x+ 13) mod 〈y, p〉.

We first use the p-adic iteration to lift the coefficients and obtain

A(x, y) ≡ (x+ 1)(x− 4) mod 〈y, p2〉.

Then we use the ideal-adic iteration to lift the variable y in both factors and obtain

A(x, y) ≡ (x+ 1 + y)(x− 4 + y) mod 〈y2, p2〉.

Since x+ y + 1 divides f1 and f2 over Z we have

gcd(A,B) = x+ y + 1.
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We briefly describe the p-adic univariate Hensel lifting here so that readers better under-
stand how to get to the key lifting step which is to solve a polynomial Diophantine equation.
For example, for given polynomials a, b, c we want to determine s and t so that sa+ tb = c

which is called the Diophantine equation. Suppose p is a prime, f(x) ∈ Z[x], f(x) = a(x)b(x)
and gcd(a(x), b(x)) = 1. Let a(x) mod pl = u(x) and b(x) mod pl = v(x). We also as-
sume f(x) = u0(x)v0(x) mod p and gcd(u0, v0) = 1 where u(x) mod p = u0(x), v(x)
mod p = v0(x). And we want to lift u0(x) to u(x) ∈ Zpl [x] and v0(x) to v(x) ∈ Zpl [x]. The
p-adic representations of u(x) and v(x) are

u(x) = u0 + u1p+ u2p
2 + · · ·+ ulp

l−1 and v(x) = v0 + v1p+ v2p
2 + · · ·+ vlp

l−1.

We also define u(i) = u(x) mod pi, v(i) = v(x) mod pi for 2 ≤ i ≤ l, u(1) = u0 and
v(1) = v0. Assume we have obtained the factorization f(x) = u(i)v(i) mod pi and want to
determine f(x) = u(i+1)v(i+1) mod pi+1 which can be expressed as

f − u(i+1)v(i+1) =f − (u(i) + ui+1p
i)(v(i) + vi+1p

i)

=f − u(i)v(i) − (u(i)vi+1p
i + v(i)ui+1p

i) mod pi+1

We want to determine u(i+1) and v(i+1) so that f − u(i+1)v(i+1) = 0 mod pi+1. From the
previous equation we have

f − u(i)v(i) − (u(i)vi+1p
i + v(i)ui+1p

i) = 0 mod pi+1

which is equivalent to

f − u(i)v(i)

pi
− (u(i)vi+1 + v(i)ui+1) = 0 mod p.

Since u(i) = u0 mod p and v(i) = v0 mod p, we have

u0vi+1 + v0ui+1 = C mod p, (1.2)

where C = f−u(i)v(i)

pi
mod p. In Equation (1.2), u0, v0 and C are known, ui+1 and vi+1 can

be determined by solving the Diophantine equation (1.2). Therefore u(i+1) and v(i+1) can
be determined. In order to get unique solutions we also impose degx vi+1 < degx v0 and
degx ui+1 < degx u0. Since gcd(u0, v0) = 1 mod p, by Theorem 2.6 of [Geddes et al., 1992],
u(i+1) and v(i+1) are unique.

The I ideal-adic iteration is a multivariate Hensel lifting. The moduli Ii contain finite
sums of polynomial l1l2 · · · li where lk ∈ {x1 − α1, x2 − α2, . . . , xn − αn} for 1 ≤ k ≤ i. For

15



example, if n = 3, then

I2 = 〈(x1−α1)2, (x2−α2)2, (x3−α3)2, (x1−α1)(x2−α2), (x1−α1)(x3−α3), (x2−α2)(x3−α3)〉.

Therefore I-adic representations of factors of a multivariate polynomial are complicated.
Besides, we have to solve a multivariate Diophantine equation. Since Hensel lifting is not
the tool we use in our new algorithm, we recommend readers to check [Geddes et al., 1992,
Wang, 1980, 1978, Monagan and Tuncer, 2016].

Let A,B ∈ Z[x0, x1, . . . , xn], G = gcd(A,B), a = A mod 〈I, p〉 and b = B mod 〈I, p〉
and g = gcd(a, b). Let ā and b̄ be the cofactors of a and b respectively hence a = āc and
b = b̄g. The EZ-GCD proceeds based on the assumption that gcd(g, ā) = 1 or gcd(g, b̄) = 1.
In particular if gcd(g, ā) = 1 then we construct A = GĀ from a = gā by Hensel lifting
where Ā is the cofactor of A.

There are several problems in the EZ-GCD algorithm. The algorithm tries to use as many
zero evaluation points for αk as possible. In some circumstances, zero evaluations cause the
leading term to vanish in which case a non-zero evaluation point must be used. For instance,
if all αk are zeros then we lift G(x0, 0, . . . , 0) back to G(x0, x1, . . . , xn) which is the case
we prefer. At the other extreme, if we cannot use zero as evaluation points, that is αk 6= 0
for 1 ≤ k ≤ n, then we have to lift G(x0, α1, . . . , αn) back to G(x0, x1 − α1, . . . , xn − αn).
In the intermediate steps we would have terms like (x1 − αn)e1 · · · (xn − αn)en instead of
xe1

1 · · ·xenn . Expanding that term could cause large intermediate expression growth. This is
regarded as the bad zero problem.

In the EZ-GCD algorithm the leading coefficient is only correct up to units. Hence it
cannot handle a non-monic GCD problem correctly. We can use the normalization technique
to scale GCD images by LC(A) but it could produce an expression swell. Wang [Wang, 1980]
solves this problem by his heuristic leading coefficient algorithm which the efficiency of the
EEZ-GCD algorithm depends mainly on. See Section 1.7 for details.

It is also possible that gcd(g, ā) 6= 1 and gcd(g, b̄) 6= 1 which is called the common divisor
problem. Wang overcomes this issue by diving out the offending common factor. Suppose
C ∈ Z[x0, . . . , xn] is the common factor so that gcd(g, ā) = C. Then we have ā ≡ ā0C

mod I and g ≡ g0C mod I where ā0 ≡ ā/C mod I and g0 ≡ g/C mod I. Instead of
lifting A ≡ gā mod I, Wang uses the parallel version of the Hensel’s lemma to lift

A ≡ g0ā0C
2 mod I.

1.5 Brown’s algorithm

Modular arithmetic is the best tool to control the integer coefficient growth because all
coefficients of polynomials sit in a finite field. Brown’s algorithm [Brown, 1971] is the first
efficient modular GCD algorithm designed to handle the multivariate case. Brown’s algo-
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rithm has made a profound impact on the design of modern polynomial GCD algorithms.
Several techniques it introduced have become standard in this subject. Let us consider the
following example.

Example 1.11. Consider the GCD of the following two polynomials in Z[x, y].

A = (5xy2 + x2 − 18)(x+ 3y + 11),

B = (5xy2 + x2 − 18)(x+ 3y).

Note A and B are primitive polynomials in x because they are monic in x. Let p = 11 be
the first prime. We evaluate A and B at y = 1 modulo 11 and obtain

A(x, 1) = x3 + 8x2 + 8x+ 1 mod 11, B(x, 1) = x3 + 8x2 + 8x+ 1 mod 11.

Now we compute

gcd(A(x, 1), B(x, 1)) = x3 + 8x2 + 8x+ 1 mod 11

where the GCD is computed in Zp[x] using the Euclidean algorithm. We run into a problem
because the degree of the GCD in x is 3 which is the same as degxA and degxB, but A
and B don’t divide each other. Hence either y = 1 or p = 11 caused a problem but we don’t
know. For convenience we pick a new prime p = 13, evaluation points y = 1 and y = 2 and
compute

g13,1 = gcd(A(x, 1), B(x, 1)) = 1 x2 +5 x +8 mod 13
g13,2 = gcd(A(x, 2), B(x, 2)) = 1 x2 +7 x +8 mod 13

(Interpolate y) ⇓ ⇓ ⇓
g13 = 1 x2 +2y + 3 x +8 mod 13

Since g13 does not divide A modulo 13, we need more points and we pick y = 3.

g13,1 = gcd(A(x, 1), B(x, 1)) = 1 x2 +5 x +8 mod 13
g13,2 = gcd(A(x, 2), B(x, 2)) = 1 x2 +7 x +8 mod 13
g13,3 = gcd(A(x, 3), B(x, 3)) = 1 x2 +6 x +8 mod 13

(Interpolate y) ⇓ ⇓ ⇓
g13 = 1 x2 +5y2 x +8 mod 13

g13,3 = gcd(A(x, 3), B(x, 3)) = x2 + 6x+ 8 mod 13.

The symmetric representation of g13 modulo 13 is

g13 = x2 + 5xy2 − 5
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which divides A and B in Z13 but does not divide A or B over Z hence we need more
bivariate images. Let p = 17 be a new prime. Since degy g13 = 2 we compute 3 univariate
GCD images with evaluation points 1, 2, 3 and interpolate y in the coefficients. Then we
have

g17,1 = gcd(A(x, 1), B(x, 1)) = 1 x2 +5 x +16 mod 17
g17,2 = gcd(A(x, 2), B(x, 2)) = 1 x2 +3 x +16 mod 17
g17,3 = gcd(A(x, 3), B(x, 3)) = 1 x2 +11 x +16 mod 17

(Interpolate y) ⇓ ⇓ ⇓
g17 = 1 x2 +5y2 x +16 mod 17

Finally we apply the Chinese remaindering to g13, g17 and obtain the symmetric repre-
sentation

G = 5xy2 + x2 − 18 mod 13 · 17.

Since G|A and G|B over Z, we conclude that G = gcd(A,B).

As we saw in the above example, the modular algorithm reduces a complex problem
into a series of simpler problems which are easier to solve because the arithmetic is done
in a smaller domain. But the trade-off is the information loss which may cause unexpected
failure. Also, in Example 11, G is monic in x, the main variable. If not then one should also
carefully handle the leading coefficient in each recursive level.

Let d bound the degree of each variable in the target GCD G and n be the number
of variables. Brown’s algorithm uses O((d + 1)n−1) points to densely interpolate G, for
example, by Newton’s method which assumes none of the possible terms is absent. However
if the target GCD is sparse then Brown’s algorithm is not efficient.

Example 1.12. Suppose the GCD is G = x1000
0 + x1000

1 + · · · + x1000
4 + 1. G has only 6

terms but each variable has degree 1000. With Brown’s dense GCD algorithm we need at
least 10014 points to recover G from univariate images in Zp[x0].

In Example 1.12, G is a very sparse polynomial. Sparse polynomials, not typically this
sparse, occur in many practical applications. e.g. Lewis determinants. Hence we are espe-
cially interested in designing GCD algorithms focusing on sparsity. Zippel’s GCD algorithm
is such an example. We should also mention that the GCD of two sparse polynomials A and
B could be dense.

Example 1.13. The following GCD has more terms than either input polynomial hence
denser.

gcd(x18 − x14y4 − x12y6 + x6y12 + x4y14 − y18, x30 + y30)

= x16 + x14y2 − x10y6 − x8y8 − x6y10 + x2y14 + y16.
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1.6 Zippel’s algorithm

Zippel presented a sparse interpolation algorithm in 1979 [Zippel, 1979b]. It was devel-
oped to solve GCD problems. Nowadays Zippel’s GCD algorithm denominates the mod-
ern computer algebra systems for multivariate polynomial GCD computation. For A,B ∈
Z[x0, x1, . . . , xn], let G = gcd(A,B) and degG = d. Zippel’s GCD algorithm reduces the
number of evaluation points from Brown’s O((d + 1)n) to O(ndt) where t is the number
of non-zero terms in the target polynomial. The following example illustrates the sparse
interpolation step in Zippel’s GCD algorithm.

Example 1.14. Let us compute the GCD of the following two multivariate polynomials in
Z[x, y, z].

A = x3y + 6x3 + 11x2y3 + 5x2y2z + 66x2y2 + 30x2yz − 3y3z − 18y2z + 8y + 48,

B = x4 + 11x3y2 + 5x3yz − x3 − 11x2y2 − 5x2yz − 3xy2z + 8x+ 3y2z − 8.

Let p = 13 and assume we already have recursively computed

g13 = gcd(f1, f2) mod p = x3 + 11x2y2 + 5x2yz + 10y2z + 8.

Zippel’s algorithm makes the following key assumption:

Supp(g13) = Supp(g) = {x3, x2y2, x2yz, y2z, 1}.

That is if the prime is large enough, the set of monomials in modular images is equal to the
set of monomials in the true GCD. In this example for the demonstration purpose we only
use small primes. With Supp(g13) we set the assumed form to be

gform = ax3 + bx2y2 + cx2yz + dy2z + e.

We pick a new prime p = 17 and the first evaluation point β1 = (y = 1, z = 1) uniformly at
random then we evaluate

gform(x, β1) = ax3 + bx2 + cx2 + d+ e, (1.3)

and compute
g17,1 = gcd(A(x, β1), B(x, β1)) = x3 + 16x2 + 5 mod p (1.4)

using the Euclidean algorithm in Zp[x]. Let gform(x, β1) = g17,1. Equating the coefficients
of xi in Equation (1.3) and Equation (1.4) we have three linear systems

{a = 1}, {b+ c = 16}, {d+ e = 5}.
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We need one more point to solve the systems. We pick β2 = (y = 2, z = 2) uniformly at
random and compute

gform(x, β2) = ax3 + 4bx2 + 4cx2 + 8d+ e

and
g17,2 = gcd(A(x, β2), B(x, β2)) = x3 + 13x2 + 1 mod p.

Let gform(x, β2) = g17,2. Equating the coefficients of xi we have

{a = 1}, {4b+ 4c = 13}, {8d+ e = 1}.

We combine those six equations and obtain three linear systems

{a = 1}, {b+ c = 16, 4b+ 4c = 13}, {d+ e = 5, 8d+ e = 1}.

After solving the systems modulo p, we have

{a = 1}, {d = 14}, {e = 8},

but b and c remain undermined because β2 has y = z. In fact any point such that y = z

cannot be used because the coefficient of x2 is by2 +cyz and we always get the same equation
modulo 17. We choose another evaluation point β3 = (y = 1, z = 2) uniformly at random
and compute

gform(x, β3) = ax3 + bx2 + 2cx2 + 2d+ e,

and
g17,3 = gcd(A(x, β3), B(x, β3)) = x3 + 4x2 + 2 mod p.

Let gform(x, β3) = g17,3. Equating the coefficients of xi we have

{a = 1}, {b+ 2c = 4}, {2d+ e = 2}.

We combine those equations derived from points β1, β3 and obtain three linear systems

{a = 1}, {b+ c = 16, b+ 2c = 4}, {d+ e = 5, 2d+ e = 2}.

Solving the systems modulo p gives the solutions

{a = 1}, {b = 5, c = 1}, {d = 14, e = 8}.
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Evaluating gform at the above solutions gives

g17 = x3 + 5x2y2 + x2yz + 14y2z + 8.

Zippel observed that if the evaluation points are chosen uniformly at random from a large
set, then evaluating a non-zero polynomial at that point is rarely zero. Therefore if p is large
enough then the assumed form gform contains the complete support of the target GCD with
high probability, that is Supp(G) = Supp(gform). Zippel’s algorithm interpolates the target
polynomial by alternating from dense interpolation and sparse interpolation. Consequently
the number of evaluation points is reduced.

In Example 1.14, with the assumed form, we only used 3 points to determine a GCD
image with a new prime. In fact two points should be enough if we did not encounter
that unlucky case. But Brown’s algorithm requires at least (degy g13 + 1)(degz g13 + 1) = 6
points. The number of points required by Zippel’s interpolation algorithm can be derived
as follows. Let f ∈ Zp[x1, . . . , xn] where p is a large prime. Let di = degxi f and t1,...,i be
an upper bound of the number of non-zero terms in f(x1, . . . , xi, xi+1 = βi, . . . , xn = βn)
where βj ∈ Zp for i + 1 ≤ j ≤ n. To interpolate x1, we need d1 + 1 evaluation points for
dense interpolation. To interpolate x2, we need d2 evaluation points together with d1 + 1
points (used to interpolate x1) which setup the assumed form. For each of d2 points, only t1
evaluation points are required to interpolate a new image in x1 by Zippel’s sparse method.
We repeat the process to interpolate x3, x4, . . . and obtain the total number of evaluation
points:

(d1 + 1) + d2t1 + d3t1,2 + dnt1,2,...,n−1.

Let d ≥ di for 1 ≤ i ≤ n and t ≥ t1,2,...,i where 1 ≤ i ≤ n−1. The total number of evaluation
points in Zippel’s sparse interpolation is in O(ndt). For larger problems in many variables,
the gain by the sparse interpolation is huge when be compared to Brown’s dense method
which requires O(dn) evaluation points.

The GCD computed in Example 1.14 is monic hence Zippel’s GCD algorithm can be
applied directly. For the non-monic GCD problem Zippel’s GCD algorithm could run into
a problem because univariate GCD images are not able to be scaled consistently.

Example 1.15. Let us consider the GCD problem

g = (y − 14)x2 + (y2 + 20)x = gcd(A(x, y), B(x, y))

where A,B ∈ Z[x, y]. Suppose we have determined

g13 ≡ (y + 12)x2 + (y2 + 7)x mod 13.
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The assumed form is
gform = (ay + b)x2 + (cy2 + d)x.

Let us choose a new prime p = 17 with evaluation points y = 1, 2, then we have

ax2 + bx2 + cx+ dx mod 17 = gform(x, 1) = g17(x, 1) = x2 + x mod 17.

2ax2 + bx2 + 4cx+ dx mod 17 = gform(x, 2) = g17(x, 2) = x2 + 15x mod 17.

Note the Euclidean algorithm over Zp[x] always returns the monic GCD. We extract coeffi-
cients from above two equations to form two linear systems

{a+ b = 1, 2a+ b = 1}, {c+ d = 1, 4c+ d = 15}.

The solution to the systems modulo 17 is

{a = 0, b = 1}, {c = 16, d = 2},

which is wrong as the leading term in gform(a = 0, b = 1, c = 16, d = 2) vanishes.

The univariate GCD images computed by the Euclidean algorithm over a field are set
to be monic hence the information of the leading coefficient is lost if the target GCD is not
monic. The univariate GCD image must be scaled by the leading coefficient evaluated at
the same point in order to be usable. This is called the normalization problem which is to
be discussed in Section 1.9.

1.7 Encarnacion’s algorithm

Langemyr and McCallum successfully adapted Brown’s modular GCD algorithm to univari-
ate polynomial GCD computation over number fields. Their algorithm requires an algebraic
integer extension. Moreover the GCD usually has coefficients in Q(α) even though the in-
puts have coefficients in Z(α), hence a denominator bound would be necessary but such a
bound is generally too large. Encarnacion’s algorithm not only generalizes Langemyr and
McCallum’s algorithm to algebraic number extensions but also uses rational number re-
construction to recover the rational coefficients in the target GCD hence a denominator
bound is not required anymore. See Section 1.8 for more detail about rational number
reconstruction.

In this section, we give an example to briefly review univariate polynomial GCD com-
putation over Q(α) where α is an algebraic number. We focus on Encarnacion’s algorithm
because it is the fastest algorithm for a simple extension.
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Example 1.16. Suppose we want to find G = gcd(A,B) where

A = (8x4√2 + 9x
√

2 + 7x)(−6x3√2− 5x2) and B = (8x4√2 + 9x
√

2 + 7x)(−10x2− 36).

We first choose the prime p = 53. In order to compute gcd(A,B) mod p, we use the Eu-
clidean algorithm with coefficient over a ring as Q(

√
2) mod 53 which, although not a field,

is a finite ring. Let

r1 =A mod p = 10x7 + 13
√

2x6 + (11
√

2 + 51)x4 + (8
√

2 + 18)x3,

r2 =B mod p = 26
√

2x6 + 30
√

2x4 + (16
√

2 + 36)x3 + (47
√

2 + 13)x.

In order to proceed with the Euclidean algorithm we first make r2 monic which is

monic(r2) = x6 + 46x4 + (17
√

2 + 21)x3 + (40
√

2 + 12)x

where monic(r2) = LC(r2)−1r2. The remainder of r1 and monic(r2) is

r3 = 17x5 + 38
√

2x4 + (24
√

2 + 39)x2 + (3
√

2 + 20)x,

and
monic(r3) = x5 + 49

√
2x4 + (17

√
2 + 21)x2 + (22

√
2 + 23)x.

The remainder of monic(r2) and monic(r3) is

r4 = 25x4 + (
√

2 + 48)x and monic(r4) = x4 + (17
√

2 + 21)x.

The remainder ofmonic(r3) andmonic(r4) is 0 hence G53 = gcd(A,B) mod p = monic(r4).
Next we choose the prime p = 59 and obtain G59 = x4 + (41

√
2 + 38)x. Now we treat

√
2 as

a variable and apply the Chinese remaindering to coefficients of G53 and G59 with respect to
variables x and

√
2 and get g = x4 + 2932

√
2x+ 392x. We apply the rational number recon-

struction to the integer coefficients of g with moduli 53 ·59 and obtain G = x4 +( 7
16
√

2+ 9
8)x.

Since G divides A and B, G = gcd(A,B).

The new technical difficulty for the modular GCD algorithm over number fields is the
presence of zero divisors. As we saw in above example, in order to make divisors (remainders)
monic we have to calculate the inverse of the leading coefficient of the remainder over a
finite ring which could fail if the leading coefficient is a zero divisor. In fact any inversion
in a finite ring in this algorithm could fail due to zero divisors. For example, let α be an
algebraic number so that α3−2 = 0. If the leading coefficient of some remainder is α+2 and
we use the prime 5 then we encounter a zero divisor when inverting α + 2 mod 5 because
α3 − 2 mod 5 = (α + 2)(α2 + 3α + 4). We will return to the problem of zero divisors in
Section 8.5.
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1.8 Rational number reconstruction

In this section we review rational number reconstruction. One contribution by Encarnacion
[Encarnacion, 1995] is to use rational number reconstruction [Wang, 1981] to recover the
coefficients of GCD. Let a/b ∈ Q with gcd(a, b) = 1, m ∈ Z with gcd(b,m) = 1 and c ≡ a/b
mod m. The rational number reconstruction problem is to find a and b given c and m are
known. Recall that in the extended Euclidean algorithm, every remainder ri can be written
as the linear combination of m and c:

sim+ tic = ri

for some integers si and ti. Therefore tic ≡ ri mod m. If gcd(ti,m) = 1, then c ≡ ri
ti

mod m. Hence we have a set of possible solutions S = { riti }i.

Example 1.17. Let c = 11 and m = 19. We run the extended Euclidean algorithm on m

and c and track ri
ti
, then get the following sequence

S = {−8
1 ,

3
2 ,−

2
5 ,

1
7}.

Every number in S is equal to 11 modulo 19.

Wang [Wang, 1981, Section 4] shows that a
b can be uniquely determined from S if

|a| <
√
m/2 and |b| <

√
m/2, that is there exists a unique index i in the Euclidean

algorithm such that ri
ti

= a
b . In other words, m > 2|a||b| ensures a

b ∈ S. In fact the first
i such that ri ≤ |a| is the index. Wang’s algorithm assumes the sizes of numerator and
denominator have equal growth rate as m increases. Wang’s rational number reconstruction
algorithm outputs a

b for all m > 2 max(|a|, |b|)2. In practice, the denominator b may be
much smaller than the numerator a. For example, polynomial computations over a number
field Q(α). Hence |b| <

√
m/2 may force us to use a too large m.

In our problem, we compute a series of modular GCD images modulo p1, p2, . . . and use
the Chinese remaindering to combine the moduli so that p1 · p2 · · · pk ≥ m, then apply the
rational number reconstruction to recover the rational coefficients of the target GCD. If α is
an algebraic integer whose minimal polynomial is monic over Z, Wang’s algorithm may use
up to twice as many primes as are necessary hence requires us to compute more modular
GCD images which is the most expensive part in our algorithm. In order to overcome this
issue, Monagan [Monagan, 2004] presented the maximal quotient rational reconstruction or
MQRR. It is based on the observation that if qi+1 is the maximum quotient in the extended
Euclidean algorithm then ri

ti
is probably a

b .

Example 1.18. Consider ti and qi in the extended Euclidean algorithm with inputs c =
22234 and m = 99991.
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ti ri qi

1 0 m
2 1 c 0
3 -4 11055 4
4 9 124 2
5 -805 19 89
6 4839 10 6
7 -5644 9 1
8 10483 1 1
9 -99991 0 9

We observe that the row 5 in above table has the maximum quotient 89, therefore row 4
should correspond to the desired rational number which is r4

t4
= 124

9 = 22234 mod 99991.
See [Monagan, 2004] Lemma 1 for a good reason.

It can be shown that there is only one maximal quotient if m is large. For the worst
case MQRR yields no improvement over Wang’s algorithm. But in the average case MQRR
determines the result when m is a few bit longer than 2|ab| with high probability. There is
a new parameter T for the input so that MQRR returns ri

ti
and qi+1 is maximal, qi+1 > T .

For reasonable choices of T for real problems, see [Monagan, 2004, Section 2]. If we use
the classic Euclidean algorithm, the complexity of the rational number reconstruction is
O(log2m). Suppose f ∈ Q[x] and g = f mod m. If m is not large enough, there is a
significant probability that F 6= f where F is the result of successfully performing the
rational number reconstruction on all coefficients of g without failure. If this happens we
try a larger modulus m. For sufficiently large m, F = f .

1.9 The normalization problem

The normalization problem seems to be common in every major multivariate polynomial
GCD algorithm as we saw. Suppose now we have a modular algorithm to compute the
GCD of multivariate polynomials in Z[x0, x1, . . . , xn]. Let LC(G) be the leading coefficient
of G = gcd(A,B) with respect to the main variable x0. One solution to the normalization
problem is to multiply the monic GCD images by the image of a polynomial called the scaling
factor which is divisible by LC(G). Naively, LC(A), LC(B) and Γ = gcd(LC(A), LC(B))
all are eligible to be the scaling factor. Zippel implemented his GCD algorithm with Γ as
the scaling factor in Macsyma. Let ∆ ∈ Z[x1, . . . , xn] so that Γ = LC(G)∆. If Γ is the
scaling factor then the polynomial GCD we interpolate is H = ∆G. Therefore, in the last
step of the GCD algorithm the content of H with respect to x0 must be removed to get the
correct G. If ∆ consists of more than one term, the sparsity is changed and it may lead us
to interpolate a much larger polynomial and with a higher cost to remove the content.
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Example 1.19. Consider the GCD problem in Z[x, y]. Let

A = ((y3 + y2 + y + 1)x+ 1)(x+ y + 1) and B = ((y3 + y2 + y + 1)x+ 2)(x+ y + 1).

Then Γ = y3 + y2 + y+ 1. But gcd(A,B) = x+ y+ 1 hence its leading coefficient is 1. If we
use Γ as the scaling factor then we actually compute (y3 + y2 + y + 1)(x + y + 1) and the
polynomial content y3 + y2 + y + 1 must be removed at the end.

In the EEZ-GCD algorithm [Wang, 1980] Wang designs a clever leading coefficient pre-
determination algorithm GCDLC which heuristically removes ∆ from the scaling factor
and determines the leading coefficient of the target GCD up to a scalar multiple, hence it
does not change the sparsity of the polynomial to be interpolated. However multivariate
polynomial factorization is required in GCDLC and giant integer GCD calculation is often
seen in GCDLC if the total degree of Γ is high or n is large. We demonstrate Wang’s leading
coefficient algorithm with the following example.

Example 1.20. Let A = ĀG,B = B̄G ∈ Z[x, y, z, u, v] where G = gcd(A,B) and Ā, B̄ are
cofactors.

Ā = (4uy − v)(2z − 3v)x+ 2, B̄ = (2z − 3v)x+ 2,

G = 56(−5u2 + 11z)(3y − 7z)(7y + 4v)2x+ 1.

Let Γ = gcd(LC(A), LC(B)). We factor Γ to obtain

Γ = 56(3y − 7z)(3v − 2z)(7y + 4v)2(5u2 − 11z).

We construct a factor list

L = [56, 3v − 2z, 7y + 4v, 5u2 − 11z, 3y − 7z]

and pick a random evaluation point

E = [y = 7926, z = 8057, v = 5, u = 3002].

After evaluating the factor list at the point E, we have

LE = [56, −16099, 55502, 44971393, −32621.]

We compute the GCD of A and B evaluated at E and get

g(x,E) = gcd(A(x,E), B(x,E)) = 253068973555221838571872x+ 1.

The integer content of g(x,E) is 1 hence LE1 = 56 · 1 = 56. Now we call AlgorithmN (see
[Wang, 1980]) with input LE. AlgorithmN computes a list of divisors D so that the size of D
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is equal to the size of LE and Di divides LEi but Di does not divide LEj for 1 ≤ j ≤ i− 1.
If AlgorithmN fails to find such a divisor list, then the algorithm evaluates L at a new point
and calls AlgorithmN again until such a list is found. AlgorithmN rarely fails with a random
and large evaluation. In this example, AlgorithmN returns

D = [56, 16099, 27751, 44971393, 32621].

Let LG = LC(g(x,E)) = 253068973555221838571872. We use repeated trial division by Di

to determine factors in the leading coefficient and their multiplicities.

1. 326211 divides LG but 326212 does not, so the factor 3y−7z is in the leading coefficient
of g. Set LG = LG/32621.

2. 449713931 divides LG but 449713932 does not, so the factor 5u2−11z is in the leading
coefficient of g. Set LG = LG/44971393.

3. 277512 divides LG but 277513 does not, so the factor (7y + 4v)2 is in the leading
coefficient of g. Set LG = LG/277512.

4. 16099 does not divide LG, so 3v−2z must be factor of leading coefficients of cofactors.

5. 56 divides LG but 562 does not, so the factor 56 is in the leading coefficient of g. We
run out of D and stop.

Hence the leading coefficient of g is

56(3y − 7z)(5u2 − 11z)(7y + 4v)2.

In Example 1.20 we use a 4 digit evaluation point for 4 variables and the total degree in
the leading coefficient of the GCD is 5. The integers in the computation are already large
compared to the magnitude of the coefficients of input polynomials. For problems with more
variables in higher degree, the size of the integers could blow up easily.

In 2005 Kleine, Monagan and Wittkopf [de Kleine et al., 2005] presented a variant
of Zippel’s GCD algorithm called LINZIP which automatically handles the normalization
problem. The idea is to treat multipliers mi(scaling factors) for the monic univariate GCD
images as unknowns. The trade-off is that one needs to use more equations as needed to
account for the mi. Consequently more univariate GCD images are required to form a larger
linear system. It is the default multivariate GCD algorithm over Z currently used by Maple.

Let A,B ∈ Z[x0, x1, . . . , xn] and g = gcd(A,B). Suppose the assumed form is

gform = C1x
e1
0 + C2x

e2
0 + · · ·+ Csx

es
0 ,

where Ci ∈ Z[x1, . . . , xn], ei is non-negative integer for 1 ≤ i ≤ s and ei 6= ej if i 6= j. Let ti
denote the number of terms in Ci for 1 ≤ i ≤ s and tmax ≥ ti for 1 ≤ i ≤ s. In LINZIP one
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univariate GCD image introduces s new equations and one new unknown (the multiplier).
Hence the total number of univariate GCD images required to solve the linear system is

max(d
∑s
i=1 ti
s− 1 e, tmax).

The complexity of LINZIP is O(t31 + t32 + · · ·+ t3s). Javadi [Javadi, 2008] improved LINZIP
by carefully choosing where to scale and using specific evaluation points so that Zippel’s
quadratic Vandermonde linear system solving algorithm can be applied. Practically we set
the first multiplier m1 to be 1. We demonstrate this algorithm by redoing Example 1.15.

Example 1.21. Consider the GCD problem

G = (y − 14)x2 + (y2 + 20)x = gcd(A(x, y), B(x, y))

where A,B ∈ Z[x, y]. Suppose we already have

g13 = (y + 12)x2 + (y2 + 7)x mod 13.

Hence the assumed form for G is

gform = (ay + b)x2 + (cy2 + d)x.

Let us choose a new prime p = 17 with evaluation points y = 1, 2 and 3. We have equations

ax2 + bx2 + cx+ dx = m1(x2 + x) = 1(x2 + x),

2ax2 + bx2 + 4cx+ dx = m2(x2 + 15x),

3ax2 + bx2 + 9cx+ dx = m3(x2 + 2x).

We form a linear system by equating the coefficients and obtain

a+ b = m1, 2a+ b = m2, 3a+ b = m3, c+ d = 1, 4c+ d = 15m2, 9c+ d = 2m3.

By solving the system with m1 = 1, we have

a = 13, b = 5, c = 13, d = 5, m2 = 14, m3 = 10.

Hence g17 = 13x2y+5xy2+13x2+5x mod 17. If we make g17 monic, then g17 ≡ g mod 17.

LINZIP may encounter an unlucky content which results in an undetermined linear
system no matter how many univariate GCD images are computed. But the unlucky content
is rare and the solution is simply to use a new prime.
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Recently, Tang, Li and Zeng [Tang et al., 2018] presented a method to scale the univariate
GCD images correctly by homogenizing. For A,B ∈ K[x0, . . . , x1] where K is a field they
introduces the homogenizing variable z to A and B by computing

Ah = A(z · x0, z · x1, . . . , z · xn) =
∑

Ai(x0, . . . , xn)zi and

Bh = B(z · x0, z · x1, . . . , z · xn) =
∑

Bi(x0, . . . , xn)zi,

where Ai and Bi are homogeneous polynomials. Let z be the main variable. Then

gh = gcd(Ah, Bh) =
d+τ∑
i=k+τ

Gi−τ (x0, . . . , xn)zi.

But for an evaluation point α ∈ Kn+1, gcd(Ah(z, α), Bh(z, α)) is monic in z we need to
determine the correct scaling factor. Let (σ0, . . . , σn) ∈ Kn+1 be a random point. They
solved this issue by computing

Ahs = A(z · x0 + σ0, z · x1 + σ1, . . . , z · xn + σn) =
∑

Asi(x0, . . . , xn)zi and

Bhs = B(z · x0 + σ0, z · x1 + σ1, . . . , z · xn + σn) =
∑

Bsi(x0, . . . , xn)zi

Since Ahs and Bhs has non-zero constant terms with high probability we have ghs =
gcd(Ahs, Bhs) =

∑d
i=1Gsi(x0, . . . , xn)zi + 1. Since there is a constant term in ghs, we can

scale the images of gcd(Ahs(z, α), Bhs(z, α)) correctly to obtain ghs. Since Gsd(x0, . . . , xn) =
cGd(x0, . . . , xn) for c ∈ K\{0}, we can use the leading coefficient of gcd(Ahs(z, α), Bhs(z, α))
to scale the images of gcd(Ah(z, α), Bh(z, α)) to obtain gcd(Ah, Bh). The GCD of A and B
is G = gcd(A,B) =

∑d
i=kGi(x0, . . . , xn).

In our algorithm, we have the normalization problem too. However even the GCD of the
leading coefficients of the input polynomials could lead us to an infinite loop as we always
fail to meet some termination condition. This will be discussed in the next chapter.

1.10 Thesis outline

We first quickly review some standard definitions so that readers can understand the thesis
outline better. The formal definitions are given when needed in the analysis later. Suppose
A,B, f ∈ Z[x0, x1, . . . , xn] and G = gcd(A,B) =

∑dG
i=0 cix

i
0. Let LC(f) be the leading

coefficient of f with respect to main variable x0, d = max{maxni=1(degxi A,degxi B)}, #f
be the number of non-zero terms in f and t = maxdGi=0{#ci} be a term bound. Let p be a
prime and β ∈ Znp be an evaluation point. If LC(A(x0, β)) ≡ 0 mod p or LC(B(x0, β)) ≡ 0
mod p then β is called bad. If β is not bad and degx0 gcd(A(x0, β), B(x0, β)) > degx0 G

then β is called unlucky. Let Γ = gcd(LC(A), LC(B)). Then Γ = ∆LC(G), hence ∆ =
gcd(LC(Ā), LC(B̄)) is contributed by the cofactors of A and B. Let H = ∆G.
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In Chapter 2, we first give a review for Ben-Or/Tiwari sparse interpolation. The evalu-
ation points presented in Ben-Or/Tiwari interpolation are prime numbers. If we impose the
modular arithmetic naively on Ben-Or/Tiwari interpolation by choosing a prime so that
all monomials in the target polynomial can be recovered exactly then the prime could be
easily greater than 264 hence the algorithm would require multi-precision arithmetic instead
of machine arithmetic. Therefore we propose to use the Ben-Or/Tiwari algorithm with the
discrete logarithm method, which uses the powers of primitive elements in the cyclic group
Z∗p as evaluation points and computes discrete logarithms in Z∗p. The advantage over the
original Ben-Or/Tiwari algorithm is that the size of primes only depends on the degrees of
H in x1, . . . , xn hence is manageable. We also analyze the running time of this algorithm.
Then we provide an example of the new GCD algorithm to illustrate the computation pro-
cedure. Another problem in Ben-Or/Tiwari interpolation is that t, the number of terms
in the target GCD, is not given. Hence a termination mechanism to determine t must be
given. This has been discussed in [Ben-Or and Tiwari, 1988, E Kaltofen and Lobo, 2000]. We
fill in more details about this topic to convince reader why it works. To reduce the prob-
ability of encountering unlucky evaluation points, the prime may need to be larger than
the theoretical bound. Our modification for the discrete logarithm sequence increases the
size of p which negates much of its advantage. This leads us to consider using a Kronecker
substitution which is the main topic of Chapter 3.

In Chapter 3 we use a Kronecker substitution of the form

Kr(f(x0, x1, . . . , xn)) = f(x, y, yr1 , . . . , yr1···rn−1)

to map a multivariate computation to a bivariate computation, where ri are non-negative
integers for 1 ≤ i ≤ n − 1. Some Kronecker substitutions result in all evaluation points
being unlucky. Those substitutions are called unlucky and can not be used. We show that
there are only finitely many of them and how to detect them so that a larger Kronecker
substitution may be tried. If a Kronecker substitution is not unlucky there can still be many
unlucky evaluation points because the degree of Kr(A) and Kr(B) in y is exponential in
n and higher degree implies possibly unlucky evaluation points. In order to avoid unlucky
evaluation points one may simply choose the prime p � max(degy(Kr(A)),degy(Kr(B))),
which is the strategy of the "simplified" version of our GCD algorithm in chapter 4. But if p is
not a machine prime then we need to use multi-precision arithmetic which will significantly
increase the cost of all modular arithmetic in Zp. However, it is well known that unlucky
evaluation points are rare. In Theorem 3.3 we show that the expected number is 1 over all
inputs.

In Chapter 4 we assemble a "Simplified Algorithm" which is a Las-Vegas GCD algorithm.
It first applies a Kronecker substitution to map the GCD computation into Z[x, y]. Then it
chooses p uniformly at random from a large set of smooth primes and computes H = G∆
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mod p using the Ben-Or/Tiwari algorithm to interpolate y. The algorithm then uses further
primes and the Chinese remaindering to recover the integer coefficients in H and applies the
inverse Kronecker substitution to obtain the final result in Z[x0, x1, . . . , xn]. The algorithm
chooses a Kronecker substitution large enough to be a priori not unlucky and also assumes
a term bound for H is given. These assumptions lead to a much simpler algorithm.

In Chapter 5, we relax the term bound requirement and first try a Kronecker substitution
just large enough to recover H, that is with ri ≥ degxi H + 1. The Kronecker substitution
could be unlucky because the cofactors may contribute factors to H after substitution. We
also don’t have the term bound hence the Berlekamp-Massey algorithm may terminate early
and output a wrong feedback polynomial from which we could obtain a set of wrong mono-
mials. Those concerns complicate the GCD algorithm significantly. We present a heuristic
GCD algorithm which we can prove always terminates and outputs the correct GCD. The
heuristic algorithm will usually be much faster than the simplified algorithm but it can, in
theory, fail several times before it finds a good Kronecker substitution Kr, a correct t, a
sufficiently large prime p, and a sequence of evaluation points which are all good.

In Chapter 6, some implementation techniques and optimization options will be dis-
cussed. We notice that most of the time our algorithm is in evaluation. For larger GCD
problems, see the bottom of Table 7.2, almost 99% running time contributes to evaluation.
Therefore improving evaluations benefits the whole algorithm. Let s = #A + #B and T

be the number of evaluation points. We present two enhanced evaluation algorithms. One
is Tuncer and Monagan’s matrix evaluation method which costs O(nd + ns + sT ) multi-
plications to evaluate T points. Another one is Monagan and Wong [Monagan and Wong,
2017]’s fast parallel multi-point evaluation algorithm which further reduces the number of
multiplications to O(nd+ns+ s log2 T ) which effectively reduces the cost of evaluation in a
larger problem, see [Monagan and Wong, 2017, Figure 6]. Another approach is to reduce t
so fewer evaluation points are used. One way to reduce t is to evaluate the inputs A and B
to bivariate polynomials instead of univariate ones and then compute their bivariate GCD.
For example, let G = x2 + (z2y2 + z2y + z + y) = x2 + z2y2 + (z2 + 1)y + z. If we consider
coefficients with respect to x, then t = 4. If we consider coefficients with respect to x and
y, then t = 2. Another method is Homogenization. This is especially useful if A or B has
a constant term. The main purpose of homogenization is to eliminate the normalization
problem, which generally reduces t because ∆ = 1.

In Chapter 7, we compare our new algorithm with the C implementations of Zippel’s
GCD algorithm in Maple and Magma. The timing results are very promising. For our
benchmark problem, Maple takes 22,111 seconds, Magma takes 1,611 seconds. Our new
algorithm takes 48.17 seconds on 1 core and 4.67 seconds on 16 cores. If we compute bivariate
GCD images in the base case, then our new algorithm takes 7.614 seconds on 1 core and
0.685 seconds on 16 cores.
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In Chapter 8, we present a multivariate polynomial GCD algorithm over a number field
Q(α) where α is an algebraic number. The new algorithm is very similar to the "simplified"
version GCD algorithm presented in Chapter 4. But the coefficients sit in a finite ring
Q(α) mod p = Zp(α) which may have zero divisors. In this algorithm the term bound is
assumed to be given and the Kronecker substitution is chosen to be large enough so that
it is always good. See Section 4.1 for the definition of "good". The presence of zero divisors
and the operations in Zp(α) significantly complicate the analysis. For example, in order to
get a bound for the number of zero divisors in Zp(α) we have to use the subresultant PRS
method for GCD in Zp(α)[x]. This GCD algorithm can be modified to a faster version by
the identical approach presented in Chapter 5, which we don’t discuss in this thesis.

In Chapter 9, we discuss some possible improvements of our GCD algorithms.
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Chapter 2

Using Ben-Or Tiwari interpolation

In this chapter, we go through the detail of the Ben-Or/Tiwari interpolation and the discrete
logarithm method. We also discuss that how to apply them to polynomial GCD problem
and the difficulties we may encounter.

Let A = GĀ =
∑dA
i=0 aix

i
0, B = GB̄ =

∑dB
i=0 bix

i
0 and G = gcd(A,B) =

∑dG
i=0 cix

i
0

where ai, bi and ci are in Z[x1, . . . , xn]. Ā and B̄ are cofactors of A and B respectively. Our
GCD algorithm first computes and removes contents, that is to compute A and B such
that cont(A, x0) = gcd(ai) = 1 and cont(B, x0) = gcd(bi) = 1. These GCD computations
are in Z[x1, x2, . . . , xn] and may be computed recursively. We also assume that dA > 0 and
dB > 0. If dA = 0 we use gcd(A,B) = gcd(a0, B) = gcd(a0, cont(B, x0)) to perform a GCD
computation in one less variable.

Let #A denote the number of terms in A and let Supp(A) denote the support of A
which is the set of monomials appearing in A. Let LC(A) denote the leading coefficient
of A taken in x0. Let Γ = gcd(LC(A), LC(B)) = gcd(adA , bdB ). Since LC(G)|LC(A) and
LC(G)|LC(B), it must be that LC(G)|Γ. Therefore Γ = LC(G)∆ for some polynomial
∆ ∈ Z[x1, . . . , xn].

Example 2.1. If G = x1x
2
0 +x2x0 + 3, Ā = (x2−x1)x0 +x2 and B̄ = (x2−x1)x0 +x1 + 2,

then we have #G = 3, Supp(G) = {x1x
2
0, x2x0, 1}, LC(G) = x1, Γ = x1(x2 − x1), and

∆ = x2 − x1.

We provide an overview of the GCD algorithm. Let H = ∆ × G and hi = ∆ × ci so
that H =

∑dG
i=0 hix

i
0. Our algorithm will compute H not G. After computing H, it then

computes cont(H,x0) = gcd(hi) = ∆ and divides H by ∆ to obtain G. We compute H
modulo a sequence of primes p1, p2, . . . , and recover the integer coefficients of H using
Chinese remainder theorem. The use of Chinese remaindering is standard. Details may be
found in [Brown, 1971, Geddes et al., 1992]. Let H1 be the result of computing H mod p1.
For the remaining primes we use the sparse interpolation approach of Zippel [Zippel, 1979b]
which assumes Supp(H1) = Supp(H). Let us focus on the computation of H mod p1.
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Let p = p1. To compute H mod p the algorithm will pick a sequence of points β1, β2, . . .

from Znp , compute monic images

gj := gcd(A(x0, βj), B(x0, βj)) ∈ Zp[x0]

of G, in parallel, then multiply gj by the scalar Γ(βj) ∈ Zp. Because the scaled image
Γ(βj) × gj(x0) is an image of H, we can use polynomial interpolation to interpolate each
coefficient hi(x1, . . . , xn) of H from the coefficients of the scaled images.

Let t = maxdGi=0 #hi. The parameter tmeasures the sparsity ofH. Let d = maxni=1 degxi H
and D = maxdGi=0 deg hi. Note that deg hi is the total degree of hi. The cost of sparse poly-
nomial interpolation algorithms is determined mainly by the number of points β1, β2, . . .

needed and the size of the prime p needed. These depend on t, d,D and n. Table 1 below
presents data for several sparse interpolation algorithms.

To get a sense for how large the prime needs to be for the different algorithms in Table
2.1, we include data for the following benchmark problem: LetG, Ā, B̄ have nine variables
(n = 8), degree d = 20 in each variable, and total degree D = 60 (to better reflect real
problems). Let G have 10,000 terms with t = 1000. Let Ā and B̄ have 100 terms so that
A = GĀ and B = GB̄ have about one million terms.

#points size of p benchmark
Zippel [1979] O(ndt) p > 2nd2t2 = 6.4× 109

BenOr/Tiwari [1988] O(t) p > pDn = 5.3× 1077

Monagan/Javadi [2010] O(nt) p > nDt2 = 4.8× 108

Discrete Logs O(t) p > (d+ 1)n = 3.7× 1010

Table 2.1: Some sparse interpolation algorithms

Remark 2.1. Kaltofen and Lee showed in [E Kaltofen and Lobo, 2000] how to modify
Zippel’s algorithm so that it will work effectively for primes much smaller than 2nd2t2.

The Ben-Or/Tiwari algorithm [Ben-Or and Tiwari, 1988] is deterministic. The primary
disadvantage of the Ben-Or/Tiwari algorithm is the size of the prime. In [Javadi and Mona-
gan, 2010] Javadi and Monagan modified the Ben-Or/Tiwari algorithm to work for a prime
of size O(nDt2) bits but require O(nt) points. With experiments we find out that evalu-
ations dominate the computational cost of the algorithm. Therefore we try to use as few
evaluation points as possible. The Ben-Or/Tiwari algorithm with discrete logarithm method
using O(t) points achieves this goal best.

2.1 Some notations and results

The proofs in the thesis make use of properties of the Sylvester polynomial resultant, the
Schwartz-Zippel Lemma and require bounds for the size of the integer coefficients appearing
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in certain polynomials. We state these results in this section for later use. First we introduce
some notation.

Let f =
∑t
i=1 aiMi where ai ∈ Z, ai 6= 0, t ≥ 0 and Mi be a monomial in n variables

x1, x2, . . . , xn. We denote the total degree of f by deg f , the degree of f in xi by degxi f ,
and the number of terms of f by #f . We need to bound the size of the integer coefficients
of certain polynomials. For this purpose let ||f ||1 =

∑t
i=1 |ai| be the one-norm of f and

||f || = maxti=1 |ai| be the height of f . For a prime p, let φp denote the modular map given
by φp(f) = f mod p.

Lemma 2.1. (Schwartz-Zippel [Schwartz, 1980, Zippel, 1979b]). Let F be a field and f ∈
F [x1, x2, . . . , xn] be a non-zero polynomial with total degree d. Let S ⊂ F . If β is chosen
uniformly at random from Sn then Prob[f(β) = 0] ≤ d

|S| . Hence if R = {β|f(β) = 0} then
|R| ≤ d|S|n−1.

Lemma 2.2. (Gelfond [Gelfond, 1960, Lemma II page 135]) Let f be a polynomial in
Z[x1, x2, . . . , xn] and let di be the degree of f in xi. If g is any factor of f over Z then
||g|| ≤ ed1+d2+···+dn ||f || where e = 2.71828.

Let A be an m×m matrix with entries Ai,j ∈ Z. The Hadamard bound

H(A) =
m∏
i=1

√√√√ m∑
j=1

A2
i,j

satisfies |detA| ≤ H(A).

Lemma 2.3. (Goldstein and Graham [Goldstein and Graham, 1974]) Let A be an m×m
matrix with entries Ai,j ∈ Z[y]. Let B be an m×m integer matrix with entries Bi,j = ||Ai,j ||1.
Then || detA|| ≤ H(B).

For polynomials A =
∑s
i=0 aix

i
0 and B =

∑t
i=0 bix

i
0 where ai and bi are in a commutative

ring, Sylvester’s matrix is the following s+ t by s+ t matrix

S =



as 0 0 bt 0 0
as−1 as 0 bt−1 bt 0
... as−1

. . . 0
... bt−1

. . . 0

a1
... as b1

... bt

a0 a1 as−1 b0 b1 bt−1

0 a0
... 0 b0

...

0 0 . . . a1 0 0 . . . b1

0 0 a0 0 0 b0



(2.1)

where the coefficients of A are repeated in the first t columns and the coefficients of B are
repeated in the last s columns. The Sylvester resultant of the polynomials A and B in x,
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denoted by resx(A,B), is the determinant of the Sylvester’s matrix. We gather the following
facts about the Sylvester resultant into Lemma 2.4 below.

Lemma 2.4. Let D be any integral domain and let A,B be two polynomials in D[x0, . . . , xn]
with s = degx0 A > 0 and t = degx0 B > 0. Let as = LC(A), bt = LC(B), R = resx0(A,B),
α ∈ Dn and p be a prime. Then

(i) R is a polynomial in D[x1, . . . , xn],
(ii) degR ≤ degA degB (Bezout bound) and
(iii) degxi R ≤ t degxi A+ s degxi B for 1 ≤ i ≤ n.

If D is a field and as(α) 6= 0 and bt(α) 6= 0 then
(iv) resx0(A(x0, α), B(x0, α)) = R(α) and
(v) degx0 gcd(A(x0, α), B(x0, α)) > 0 ⇐⇒ resx0(A(x0, α), B(x0, α)) = 0.

If D = Z and φp(as) 6= 0 and φp(bt) 6= 0 then
(vi) resx0(φp(A), φp(B)) = φp(R) and
(vii) degx0 gcd(φp(A), φp(B)) > 0 ⇐⇒ resx0(φp(A), φp(B)) = 0.

Proofs of (i), (ii), (iv) and (v) may be found in Chapter 3 and Chapter 6 of [Cox et al., 1991].
In particular the proof in Chapter 6 of [Cox et al., 1991] for (ii) for bivariate polynomials
generalizes to the multivariate case. Note that the condition on α that the leading coefficients
as and bt do not vanish implies that the dimension of Sylvester’s matrix for A(x0, α) and
B(x0, α) is the same as that for A and B which proves (v). The same argument used to
prove (iv) and (v) works for (vi) and (vii). To prove (iii) we have

degxi detS ≤
∑

c∈columns(S)
max
f∈c

degxi f =
t∑

j=1
degxi A+

s∑
j=1

degxi B.

2.2 The Ben-Or/Tiwari interpolation

Let f(x1, . . . , xn) =
∑t
i=1 aiMi ∈ Z[x1, . . . , xn] be the target polynomial, where Mi =

x
ei,1
1 · · ·xei,nn , ei,j is the exponent of xj in Mi and ai is the nonzero integer coefficient of Mi.

Let t = #f and mi = Mi(2, 3, 5, . . . , pn), where pn is the nth prime. Let

vj = f(2j , 3j , 5j , . . . , pjn) = a1m
j
1 + · · ·+ atm

j
t , for j = 0, 1, 2, . . .

It is clear that mi 6= mj if i 6= j. The following observation, which is based on BCH
decoding, comprises the core part of the Ben-Or/Tiwari algorithm. We first define the
monic polynomial Λ as

Λ(z) =
t∏
i=1

(z −mi) = zt + λt−1z
t−1 + · · ·+ λ1z + λ0, where λn ∈ Z (2.2)
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We consider the sum

t∑
i=1

aim
k
i Λ(mi) =

t∑
i=1

aim
k
i (mt

i + λt−1m
t−1
i + · · ·+ λ1mi + λ0)

=
t∑
i=1

ai(mt+k
i + λt−1m

t−1+k
i + · · ·+ λ1m

k+1
i + λ0m

k
i )

= (
t−1∑
n=0

λn(a1m
n+k
1 + a2m

n+k
2 + · · ·+ atm

n+k
t ))

+ (a1m
t+k
1 + a2m

t+k
2 + · · ·+ atm

t+k
t )

= (
t−1∑
n=0

λnvn+k) + vt+k,

for k ≥ 0 and k ∈ Z. Since mi are roots of Λ(z), we have

t−1∑
n=0

λnvn+k + vt+k = λ0vk + λ1vk+1 + · · ·+ λt−1vk+t−1 + vt+k = 0. (2.3)

There are t unknowns λ0, . . . , λt−1. Therefore t equations are required to determine the
solution. The set of λi in Equation (2.3) behaves as a linear shifter in BCH decoding. If k
runs from 0 to t− 1, we obtain the linear system

v0 v1 v2 . . . vt−1

v1 v2 v3 . . . vt
... · · ·

...
vt−2 vt−1 vt . . . v2t−3

vt−1 vt vt+1 . . . v2t−2





λ0

λ1
...

λt−2

λt−1


=



−vt
−vt+1

...
−v2t−2

−v2t−1


.

The r × r matrix 

v0 v1 v2 . . . vr−1

v1 v2 v3 . . . vr
... · · ·

...
vr−2 vr−1 vr . . . v2r−3

vr−1 vr vr+1 . . . v2r−2


is called the square Hankel matrix of size r and denoted by Hr. If r = t and Ht is invertible,
then the linear system has a unique solution. But in most applications t is an unknown.
Kaltofen [E Kaltofen and Lobo, 2000] showed that detHr is generically nonzero when r ≤ t
and zero when r > t. Once variables are evaluated at integers, this property gives us a
method to determine t as follows:

1. If r = t, then Hr is invertible with rank t, so the linear system has an unique solution;
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2. If r > t, then Hr is singular and the rank is t;

3. If r < t, then Hr is invertible if detHr(2, 3, . . . , pn) 6= 0. See Section 2.5 for more
detail.

Gaussian elimination costs O(t3) arithmetic operations to invert Ht. But the linear
shifter can be solved by the Berlekamp-Massey algorithm with O(t2) arithmetic opera-
tions. Therefore the practical version of the Ben-Or/Tiwari interpolation usually applies
the Berlekamp-Massey algorithm [Massey, 1969] to determine Λ(z).

Once Λ(z) is determined, we factor Λ to obtain roots m0, . . . ,mt−1. For each mi, we
use repeated trial division by p1 = 2, p2 = 3, . . . , pn to get the correct exponent for each
variable in Mi. For example, assume n = 3. If Mi = 45000 = 233254, then Mi = x3

1x
2
2x

4
3.

The final step is to determine the coefficients ci. Since mi and vj are known now, we
simply construct a linear system based on equations

{a1m
j
1 + · · ·+ atm

j
t = vj , for 0 ≤ j ≤ t− 1.} (2.4)

Or explicitly we have

1 1 1 . . . 1
m1 m2 m3 . . . mt

m2
1 m2

2 m2
3 . . . m2

t
...

...
...

...
...

mt−1
1 mt−1

2 mt−1
3 . . . mt−1

t





a1

a2

a3
...
at


=



v0

v1

v2
...

vt−1


The matrix above is a transposed Vandermonde matrix and we name it V . Recall that

detV = detV T =
∏

1≤j<k≤t
(mj −mk).

Since mi = Mi(2, 3, 5, . . . , pn) 6= Mj(2, 3, 5, . . . , pn) = mj for i 6= j, it follows that the
linear system (2.4) has a unique solution and can be solved by O(t3) arithmetic operations
naively. However Zippel’s Vandermonde system solving algorithm can reduce the cost to
O(t2) arithmetic operations and O(t) space. We will discuss this in Section 2.7. The Ben-
Or/Tiwari sparse interpolation algorithm is presented in Figure 2.1

The Ben-Or/Tiwari algorithm has the intermediate expression swell problem. For exam-
ple, the constant term

∏t
i=1mi of Λ(z) is of size tn log(deg f) bits. It is worth mentioning

that Λ(z) can also be computed by Sugiyama algorithm [Sugiyama et al., 1975] (the Eu-
clidean algorithm). However a severe expression swell may occur when we run either the
Berlekamp-Massey algorithm [Massey, 1969] or the Sugiyama algorithm to compute Λ(z)
over Q. For our purposes, since we want to design a modular algorithm, steps 2, 3 and 5 run
modulo a prime p. If p > pDn ≥ maxti=1mi, the integers mi mod p remain unique. For step
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Ben-Or/Tiwari interpolation algorithm
Inputs: A function f(x1, . . . , xn) which computes the polynomial
f(x1, . . . , xn) =

∑t
i=1 aiMi where ai ∈ Z and Mi are monomials in Z[x1, . . . , xn].

Output: The terms aiMi for 1 ≤ i ≤ t.

1. Compute vi = f(2i, 3i, . . . , pin) for 0 ≤ i ≤ 2t− 1.

2. Compute Λ(z) from vi by using the Berlekamp-Massey algorithm.

3. Compute the roots m1, . . . ,mt of Λ(z).

4. Factor each root mi by trial division by 2, 3, . . . , pn, recover ei,j where 1 ≤ j ≤ n.

5. Solve the linear system {a1m
j
1 + · · ·+ atm

j
t = vj}0≤j≤t−1 and determine the unknown

coefficients ai.

6. Output aiMi for 1 ≤ i ≤ t.

Figure 2.1: The Ben-Or/Tiwari interpolation algorithm

4, the roots of Λ(z) ∈ Zp[z] can be found by Berlekamp’s algorithm which has the classical
complexity O(t2 log p). See [Berlekamp, 1970, Rabin, 1979].

The Ben-Or/Tiwari algorithm assumes that a sparse term bound τ ≥ t is known. There-
fore in step 1 we may compute 2τ evaluations in parallel. In practice such a bound on t

may not be given in advance so the algorithm needs to be modified to also determine
t. For p sufficiently large, if we compute Λ(z) after j = 2, 4, 6, . . . points, we will see
deg Λ(z) = 1, 2, 3, . . . , t− 1, t, t, t, . . . with high probability. Thus we may simply wait until
the degree of Λ(z) does not change. This approach was first discussed by Kaltofen, Lee and
Lobo in [E Kaltofen and Lobo, 2000]. We will return to this in Section 2.5.

Steps 2, 3, and 5 may be accelerated with fast multiplication. Let M(t) denote the
cost of multiplying two polynomials of degree t in Zp[t]. The fast Euclidean algorithm can
be used to accelerate step 2 if we use the Sugiyama algorithm which applies the Euclidean
algorithm to determine Λ(z). Therefore it has complexity O(M(t) log t). See [von zur Gathen
and Gerhard, 1999, Chapter 11]. Computing the roots of Λ(z) in step 3 can be done in
O(M(t) log t log pt). See [von zur Gathen and Gerhard, 1999, Chapter 14]. Step 5 can be
done in O(M(t) log t) using fast interpolation. See [von zur Gathen and Gerhard, 1999,
Chapter 10]. We summarize these complexity results in Table 2.2 below.

Step Classical Fast
2 O(t2) O(M(t) log t)
3 O(t2 log p) O(M(t) log t log pt)
5 O(t2) O(M(t) log t)

Table 2.2: Number of arithmetic operations in Zp for t monomials.
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2.3 Ben-Or/Tiwari algorithm with discrete logarithm

We first introduce the discrete logarithm method we propose to use. Let f(x1, . . . , xn) =∑t
i=1 aiMi ∈ Z[x1, . . . , xn] and di = degxi f . We choose a prime p which has the form

p = q1× q2× · · · qn + 1 where qi > di and gcd(qi, qj) = 1 for i 6= j. If qi ≤ y are small then p

is called y-smooth. We randomly pick a generator ω of Z∗p and set wj = ω
p−1
qj for 1 ≤ j ≤ n.

Therefore all wjs have relatively prime orders. We run the Berlekamp-Massey algorithm on
the sequence [f(wk1 , . . . , wkn) : 0 ≤ k ≤ 2t−1] to get a feedback polynomial c(z). Let Λ(z) be
the reciprocal of c(z). Next we factor Λ(z) to obtain roots vk for 1 ≤ k ≤ t. The exponent
of each variable in each monomial is recovered as follows:

mk = Mk(w1, w2, . . . , wn) = wek1
1 × wek2

2 × · · · × weknn

= ω
p−1
q1

ek1 × ω
p−1
q2

ek2 × · · · × ω
p−1
qn

ekn = ω
p−1
q1

ek1+···+ p−1
qn

ekn ,

⇒ logωmk = p− 1
q1

ek1 + · · ·+ p− 1
qi

eki + · · ·+ p− 1
qn

ekn mod p− 1, (2.5)

⇒ logωmk = 0 + · · ·+ p− 1
qi

eki + · · ·+ 0 mod qi,

⇒ eki = logωmk ×
qi

p− 1 mod qi.

Note that the condition gcd(qi, qj) = 1 ensures that p−1
qk

is invertible modulo qk. The
original Ben-Or/Tiwari algorithm evaluates inputs at primes, mi = Mi(2, 3, . . . , pn) 6=
Mj(2, 3, . . . , pn) = mj for i 6= j because mi and mj have different prime factorizations.
But it is not obvious that i 6= j implies mi 6= mj if we choose to evaluate at w1, . . . , wn. The
following proposition guarantees that this key feature is preserved in the discrete logarithm
method.

Proposition 2.1. In the discrete logarithm method, let qi > di. If i 6= j then

mi = Mi(w1, . . . , wn) 6= Mj(w1, . . . , wn) = mj .

Proof. First we recall that i 6= j implies Mi 6= Mj . We work toward a contradiction by
assuming that mi = Mi(w1, . . . , wn) = Mj(w1, . . . , wn) = mj and i 6= j. Then we have

ω
ei,1(p−1)

q1 · · ·ω
ei,n(p−1)

qn ≡ ω
ej,1(p−1)

q1 · · ·ω
ej,n(p−1)

qn mod p

m

ω
ei,1(p−1)

q1
+···+

ei,n(p−1)
qn ≡ ω

ej,1(p−1)
q1

+···+
ej,n(p−1)

qn mod p

m
ei,1(p− 1)

q1
+ · · ·+ ei,n(p− 1)

qn
≡ ej,1(p− 1)

q1
+ · · ·+ ej,n(p− 1)

qn
mod p− 1
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The above equation is equivalent to

ei,1(p− 1)
q1

+ · · ·+ ei,n(p− 1)
qn

= ej,1(p− 1)
q1

+ · · ·+ ej,n(p− 1)
qn

+ (p− 1)t

for some t ∈ Z. Since gcd(qi, qj) = 1 for 1 ≤ i 6= j ≤ n and p − 1 = q1 · · · qn, the above
equation becomes

ei,k(p− 1)
qk

≡ ej,k(p− 1)
qk

mod qk

for 1 ≤ k ≤ n. Since gcd(p−1
qk
, qk) = 1, by the cancellation law we have

ei,k ≡ ej,k mod qk.

Since ei,k ≤ dk < qk and ej,k ≤ dk < qk, we have ei,k = ej,k for 1 ≤ k ≤ n. Therefore
Mi = Mj , which contradicts our assumption Mi 6= Mj .

The discrete logarithm method modifies the Ben-Or/Tiwari interpolation algorithm so
that the prime needed is a little larger than (d+ 1)n bits. As a result the size of the prime
is O(n log d) bits instead of O(D logn log logn) bits where D = deg f .

Example 2.2. Let f(x1, . . . , x10) be a multivariate polynomial in 10 variables and each
variable has degree at most 5. In order to satisfy the condition that mi 6= mj for i 6= j, the
Ben-Or/Tiwari’s algorithm must pick a prime p so that

p ≥ (26 × 36 × 56 × · · · × 296) + 1

= 73333452305695815724404549546147875387640315141005289000001.

For the discrete logarithm method with qi > di, the prime p ≥ 610 + 1. A prime satisfying
the condition for the discrete logarithms method is

p = 6 · 7 · 11 · 13 · 17 · 19 · 23 · 25 · 29 · 31 + 1 = 1002802450651.

In the discrete logarithm method a prime should be y−smooth. For example, y = 100
or y = 1000 should be fine. Then the Pohlig-Hellman algorithm [Pohlig and Hellman, 1978]
is able to compute the discrete logarithm efficiently. Suppose i 6= j. To get such a smooth
prime, we first compute a list of integers s = [s1, s2, . . . , sn] so that si > degxi f and
gcd(si, sj) = 1, then apply the prime number test to k × s1s2 · · · sn + 1 for k = 1, 2, 3, . . . .
Suppose K × s1s2 · · · sn + 1 is a prime, then we loop i from 1 to n by updating si with
si gcd(K, si) and setting K = K/ gcd(K, si). At last, if K 6= 1, we set sj = Ksj where sj is
the smallest number in the updated list s. By setting qi = si we obtain a prime with the
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form p = q1q2 · · · qn + 1 and gcd(qi, qj) = 1. The next example illustrates the process to get
a smooth prime.

Example 2.3. Suppose s = [12, 13, 17, 19, 23]. We set p = K×12 ·13 ·17 ·19 ·23+1. We first
find out p is a prime when K = 20. Since gcd(20, s1) = 4, we update s1 = 4 ·12 = 48 and set
K = K/4 = 5. Since 5 is coprime with si for 2 ≤ i ≤ 5 and s2 = 13 is the smallest in the
updated s, we set s2 = 13 · 5 = 65. Therefore the smooth prime is p = 48 · 65 · 17 · 19 · 23 + 1.

Theorem 2.1 (Dirichlet,1837). If a and d are coprime integers and d > 0, then the arith-
metic progression {a, a+ d, a+ 2d, . . . } contains infinitely many primes.

If we set a = s1s2 · · · sn + 1 and d = s1s2 · · · sn, then there are infinitely many primes
having the form k×s1s2 · · · sn+1. Suppose p is a prime and the prime factorization of p−1
is

p− 1 = pc1
1 p

c2
2 · · · p

ck
k .

The total cost to solve a discrete logarithm by the Pohlig-Hellman algorithm is

O(
k∑
i=1

ci(log2 p+√pi)) +O(k log2 p) ∈ O(
k∑
i=1

ci(log2 p+√pi))

where O(k log2 p) is contributed by the Chinese remainder theorem. See [Pohlig and Hell-
man, 1978, Section 4]. In our problem, the prime has the form p − 1 = q1q2 · · · qn and
gcd(qi, qj) = 1 if i 6= j. We decompose qk = qek,1k,1 q

ek,2
k,2 · · · q

ek,m
k,m hence m ≤ dlog2 qke. To

compute logω β mod qk, Pohlig-Hellman costs O(
∑m
i=1 ek,i(log2 p + √qk,i)). We note that

qk,i ≤ qk. For some k if qk,i ≈ qk, then ek,i and m are negligible hence O(
∑m
i=1 ek,i(log2 p+

√
qk,i)) ∈ O(log2 p + √qk). If qk,j � qk (qk can not be too large because p is assumed to

be y-smooth hence qk,j is small), then √qk,i ≈ log2 qk,i hence O(
∑m
i=1 ek,i(log2 p+√qk,i)) ≈

O(
∑m
i=1 ek,i log2 p+

∑m
i=1 ek,i log2 qk,i) = O(

∑m
i=1 ek,i log2 p+ log2 qk) ∈ O(

∑m
i=1 ek,i log2 p+

√
qk). Since

∑n
j=1

∑m
i=1 ej,i ≤ log2 p which is the upper bound for the number of prime

factors of p− 1, by combining both cases above, the total cost to compute logω β mod p is

O(
n∑
j=1

m∑
i=1

ej,i log2 p+
n∑
j=1

√
qj) ∈ O((log2 p)2 +

n∑
j=1

√
qj).

Let d ≥ maxni=1(degxi f). Kaltofen showed in [Kaltofen, 2010] that computing discrete
logarithm can be made polynomial in log d and n if one uses a Kronecker substitution to
reduce a multivariate interpolation to a univariate interpolation and uses a prime p > (d+1)n

of the form p = 2ks+ 1 with s small.
Once Λ(z) is determined by the Berlekamp-Massey algorithm, we need to compute its

roots m1,m2, . . .mt. This can be done efficiently by the Berlekamp’s root finding algorithm
[Berlekamp, 1970, Rabin, 1979]. It has the classical complexity O(t2 log p) which can be
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reduced to O(M(t) log pt log t) if fast multiplication is applied where M(t) is the cost of
multiplication. See [von zur Gathen and Gerhard, 1999, Chapter 14].

At the end of this section, we discuss the complexity of the modular Ben-Or/Tiwari
interpolation algorithm with discrete logarithm method. We count the number of arith-
metic operations in Zp. Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be the target polynomial to be
interpolated. Let di = degxi f and d = maxmi=1{di}. A prime p of size p > (d+ 1)n is large
enough to recover all exponents of monomials appearing in f . We assume the term bound
τ ≥ t = #f and a generator ω of Z∗p are given. See [Geddes et al., 1992, Theorem 4.5] for
how to compute a generator. Let P (n, d, t) be the cost of one evaluation of f(β1, . . . , βn)
mod p. The computation of ωj for 0 ≤ j < 2τ takes O(2τn) operations. Hence the total
cost to evaluate f 2τ times is O(τn + τP (n, d, t)). The Berlekamp-Massey algorithm on
an input sequence of length 2τ has complexity O(τ2). See [van Tilborg and Jajodia, 2011,
Page 80]. The Berlekamp-Massey algorithm also determines t. Therefore we use t instead
of τ now. The root finding can be done in O(t2 log p). The discrete logarithm solving costs
O((log2 p)2 +

∑n
i=1
√
qi). To recover exponents, we compute

eki = logω vk ×
qi

p− 1 mod qi.

There are one inversion for (p − 1)−1 and n multiplications for qi(p − 1)−1 where 1 ≤
i ≤ n. Since there are t monomials to recover, the total cost to compute exponents is
O(t(n + (log2 p)2 +

∑n
i=1
√
qi)). Zippel solves the Vandermonde linear system in O(t2).

Therefore we have the following theorem.

Theorem 2.2. The expected number of arithmetic operations in the modular Ben-Or/Tiwari
interpolation with discrete logarithms method over Zp is

O(τn+ τP (n, d, t) + τ2 + t2 log p+ t(n+ (log2 p)2 +
n∑
i=1

√
qi)).

2.4 A first example

We have reviewed the modular Ben-Or/Tiwari interpolation algorithm with the discrete
logarithm method. Now we need to apply it to the polynomial GCD problem. We use
the following example to demonstrate the design of our new GCD algorithm. Recall that
H =

∑dG
i=0 hix

i
0 = ∆G where degx0 G = dG. In our algorithm there are two ways to obtain

the modular image H mod p. The first method using the Ben-Or/Tiwari interpolation
with the discrete logarithm method is the core of our new algorithm. In this method primes
are smooth and the size of primes depends on degrees of variables. t = maxdGi=0{#hi} is an
unknown and needs to be determined. Several algorithms are called to serve the intermediate
steps. Hence a lot of things can go wrong. The main purpose of the first method is to
determine the support of the target GCD. The second method is the second part of Zippel’s
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sparse interpolation. That is to solve linear systems to obtain more images, provided that
the support obtained by the first method is correct. Then we apply the Chinese remainder
theorem to all modular images obtained by the first and the second methods to recover the
integer coefficients. In our implementation with 63 bits or 127 bits primes, one run of the
first method would determine all monomials in Supp(H) with high probability.

We mention again that we require inputs A and B to be primitive with respect to the
main variable we choose. In this thesis, x or x0 are assumed to be the main variable. If A
or B is not primitive in x then we could use our GCD algorithm to compute the content of
all coefficients of A or B and divide out the content to pre-process inputs A and B.

Example 2.4. Consider the GCD problem A = ĀG and B = B̄G, where

G = (92y2 − 513z)x2 + (212y2 + yz2 + 125z)x+ (251y2z2 − 43z3 + 5y2 + 318),

Ā = y2x+ z and B̄ = y3x2 + z.

Let x be the main variable and Γ = gcd(LC(A), LC(B)) = y2(92y2 − 513z). It is easy to
check that A and B are primitive with respect to x. In order to pick a smooth prime, we
first compute the degree bounds of y and z in the target GCD. We randomly pick a prime
p = 53 and choose 3 evaluation points 28, 46, 44 uniformly at random from Z53 for x, y, z,
respectively. We compute

gcd(A(x = 28, y, z = 44), B(x = 28, y, z = 44)) mod 53 = y2 + 51y + 18,

gcd(A(x = 28, y = 46, z), B(x = 28, y = 46, z)) mod 53 = z3 + 39z2 + 8z.

Since LC(A)(x = 28, y, z = 44) and LC(A)(x = 28, y = 46, z) do not vanish modulo p,
degy G ≤ 2 and degz G ≤ 3. Since degy ΓG = degy Γ + degy G and degz ΓG = degz Γ +
degz G, the smooth prime should have the form p = q1q2 + 1 where q1 > 2 + degy Γ = 6
and q2 > 3 + degz Γ = 4. It is not hard to find out that we can use q1 = 14 and q2 = 15 so
that p = 14× 15 + 1 = 211 is a prime and gcd(14, 15) = 1. We randomly pick the generator
ω = 2 in Z∗p and set up the evaluation points for y and z as

ω1 = ω
p−1
q1 ≡ 63 mod p and ω2 = ω

p−1
q2 ≡ 137 mod p.

We compute the first 2 scaled GCD images and get

g0 = Γ(ω0
1, ω

0
2) · gcd(A(x, 630, 1370), B(x, 630, 1370)) = x2 + 127x+ 109.

g1 = Γ(ω1
1, ω

1
2) · gcd(A(x, 631, 1371), B(x, 631, 1371)) = 9x2 + 120x+ 144.
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We extract the coefficients of x in g0, g1 to form a sequence [127, 120] and do the same for
the constant term and get [109, 144]. We run the Berlekamp-Massey algorithm (BMA) on
[127, 120] and [109, 144] and obtain c1(z) = 122z + 1 and c2(z) = 200z + 1 respectively. We
compute the next two scaled GCD images and get

g2 = Γ(ω2
1, ω

2
2) · gcd(A(x, 632, 1372), B(x, 632, 1372)) = x2 + 58x+ 194.

g3 = Γ(ω3
1, ω

3
2) · gcd(A(x, 633, 1373), B(x, 633, 1373)) = 28x2 + 140x+ 20.

We extract the coefficient of x in g1, g2, g2, g3 to form the sequence [127, 120, 58, 140] and
the coefficient of the constant term to form the sequence [109, 104, 194, 20]. We run BMA
on both sequences and get c1(z) = 102z2 + 194z+ 1 and c2(z) = 83z2 + 34z+ 1. The degrees
of both feedback polynomials increased by 1 hence neither ci has stabilized and we compute
the next two scaled GCD images

g4 = Γ(ω4
1, ω

4
2) · gcd(A(x, 634, 1374), B(x, 634, 1374)) = 131x2 + 84x+ 59

g5 = Γ(ω5
1, ω

5
2) · gcd(A(x, 635, 1375), B(x, 635, 1375)) = 33x2 + 105x+ 201.

The coefficient sequences are updated to

[127, 120, 58, 140, 84, 105] and [109, 104, 194, 20, 59, 201].

The feedback polynomials returned by the BMA are c1(z) = 151z3 + 28z2 + 202z + 1 and
c2(z) = 195z3 + 187z2 + 18z + 1 which have not stabilized hence we compute the next two
scaled GCD images

g6 = Γ(ω6
1, ω

6
2) · gcd(A(x, 636, 1376), B(x, 636, 1376)) = 208x2 + 30x+ 186

g7 = Γ(ω7
1, ω

7
2) · gcd(A(x, 637, 1377), B(x, 637, 1377)) = 157x2 + 49x+ 153.

The coefficient sequences are updated to

[127, 120, 58, 140, 84, 105, 30, 49] and [109, 104, 194, 20, 59, 201, 186, 153].

The feedback polynomials returned by the BMA are c1(z) = 151z3 + 28z2 + 202z + 1 and
c2(z) = 185z4 + 10z3 + z2 + 152z + 11. c1(z) did not change. But c2(z) is still not stable,
we compute two more scaled GCD images

g8 = Γ(ω8
1, ω

8
2) · gcd(A(x, 638, 1378), B(x, 638, 1378)) = 101x2 + 204x+ 136

g9 = Γ(ω9
1, ω

9
2) · gcd(A(x, 639, 1379), B(x, 639, 1379)) = 131x2 + 154x+ 54.
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The sequence corresponding to the constant term is updated to

[109, 104, 194, 20, 59, 201, 186, 153, 136, 54]

on which we run the BMA and get c2(z) = 185z4 + 10z3 + z2 + 152z + 11. c2(z) has now
stabilized and we terminate the looping. It is likely that there are 3 non-zero terms in the
coefficient of x and 4 non-zero terms in the constant term. We compute the reciprocals (the
reason is given in the next section) of both stable feedback polynomials which are 28z3 +
54z2 + 38z + 1 and 8z4 + 53z3 + 6z2 + 59z + 1 to get

Λ1 = z3 + 202z2 + 28z + 151 and Λ2 = z4 + 152z3 + z2 + 10z + 185.

The roots of Λ1 are [6, 91, 123] in Zp and the roots of Λ2 are [151, 36, 171, 123] in Zp. We con-
vert the roots to monomials by the discrete logarithm method. For instance, the conversion
of the root 6 of Λ1 is

logω 6 · q1
p− 1 = 44 · 14

210 = 2 mod 14 and logω 6 · q2
p− 1 = 44 · 15

210 = 1 mod 15.

Hence the root 6 corresponds to the monomial y2z. Similar arguments show

[6, 91, 123] =⇒ [y2z, y3z2, y4] and [151, 36, 171, 123] =⇒ [y2z3, y4z2, y2, y4].

The final step is to determine the integer coefficient of each monomial modulo p. That is to
solve the following two Vandermonde linear systems

60 910 1230

61 911 1231

62 912 1232



C1,1

C1,2

C1,3

 =


127
120
58

 ,


1510 360 1710 1230

1511 361 1711 1231

1512 362 1712 1232

1513 363 1713 1233




C2,1

C2,2

C2,3

C2,4

 =


109
144
194
20

 .

The solutions to the linear systems are C1,1 = 125, C1,2 = 1, C1,3 = 1, C2,1 = 168, C2,2 =
40, C2,3 = 107, C2,4 = 5. Hence we have the first GCD image H1 = H mod p with
coefficients in the symmetric representation for Zp

H1 = (92y4 + 120y2z)x2 + (y3z2 + y4 + 125y2z)x+ 40y4z2 + 168y2z3 + 5y4 + 107y2.
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Note that the coefficient of x2 is the scale factor Γ. Hence no calculation is required. Now
let us assume Supp(H1) = Supp(H) and the assumed form is

Hform = (T1,1y
4 +T1,2y

2z)x2 +(T2,1y
3z2 +T2,2y

4 +T2,3y
2z)x+T3,1y

4z2 +T3,2y
2z3 +T3,3y

4 +T3,4y
2.

With the assumed form, we use Zippel’s sparse interpolation to compute the next mul-
tivariate GCD image modulo a new prime. The maximum number of non-zero terms in
coefficients with respect to x is 4, in the constant term. Hence we need to choose 4 eval-
uation points. We pick the prime p = 101 at random which does not divide the leading
coefficient of A or B and compute H ′(x, α, β) = Γ(x, α, β) gcd(A(x, α, β), B(x, α, β)) with
4 uniformly and randomly chosen evaluation points from Z101.

α β

16 100 H ′(x, 16, 100) = 44x2 + 44x+ 6
89 33 H ′(x, 89, 33) = 85x2 + 66x+ 89
17 51 H ′(x, 17, 51) = 9x2 + 66x+ 90
55 42 H ′(x, 55, 42) = 41x2 + 61x+ 63

By equating the coefficients of Hform(x, α, β) with the coefficients of H ′(x, α, β), we
obtain following linear systems. For the coefficient of x2 we have

25T1,1 + 93T1,2 = 41, 31T1,1 + 5T1,2 = 85,

88T1,1 + 47T1,2 = 44, 95T1,1 + 94T1,2 = 9,

which has a solution T1,1 = 92 and T1,2 = 93. For the coefficient of x1 we have

3T2,1 + 25T2,2 + 93T2,3 = 61, 40T2,1 + 31T2,2 + 5T2,3 = 66,

56T2,1 + 88T2,2 + 47T2,3 = 44, 92T2,1 + 95T2,2 + 94T2,3 = 66,

which has a solution T2,1 = 1, T2,2 = 10, T2,3 = 24. For the constant term we have

25T3,1 + 92T3,2 + 31T3,3 + 43T3,4 = 89, 49T3,1 + 74T3,2 + 95T3,3 + 87T3,4 = 90,

64T3,1 + 28T3,2 + 25T3,3 + 96T3,4 = 63, 88T3,1 + 47T3,2 + 88T3,3 + 54T3,4 = 6,

which has a solution T3,1 = 49, T3,2 = 58, T3,3 = 5, T3,4 = 15. Hence the second image
H2 = H mod 101 is

H2 = (92y4 + 93y2z)x2 + (y3z2 + 10y4 + 24y2z)x+ 49y4z2 + 58y2z3 + 5y4 + 15y2 mod 101.
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We apply the Chinese remaindering to H1 mod 211 and H2 mod 101 with the symmetric
coefficient representation modulo 211× 101 and obtain

Ĥ1 = (92y4 − 513y2z)x2 + (y3z2 + 212y4 + 125y2z)x+ 251y4z2 − 43y2z3 + 5y4 + 318y2.

Since H1 6= Ĥ1 or H2 6= Ĥ1, we compute the next image and choose the prime p = 103 at
random. With the identical steps we had to determine H2 modulo 103, we get

H3 = (92y4 + 2y2z)x2 + (y3z2 + 6y4 + 22y2z)x+ 45y4z2 + 60y2z3 + 5y4 + 9y2 mod 103.

We apply the Chinese remaindering to Ĥ1 and H3 and get

Ĥ2 = (92y4 − 513y2z)x2 + (y3z2 + 212y4 + 125y2z)x+ 251y4z2 − 43y2z3 + 5y4 + 318y2.

Since Ĥ1 = Ĥ2, the Chinese remaindering has stabilized. So we remove the content of Ĥ2

with respect to x and get

Ĝ = (92y2 − 513z)x2 + (212y2 + yz2 + 125z)x+ (251y2z2 − 43z3 + 5y2 + 318).

We test Ĝ|A and Ĝ|B. Since this is the case, we stop and conclude Ĝ = G.

Remark 2.2. Since the leading term of A or B and the evaluated scaling factor modulo
primes never vanish in the computation, the degrees of the univariate GCD images in x

must be greater than or equal to the degree of G in x. Since A and B are assumed to be
primitive in x, Ĝ|A or Ĝ|B implies that Ĝ is not only a divisor of A or B but also the one
with the highest degree in x. Hence Ĝ is the GCD.

Remark 2.3. We name the loop to compute univariate GCD images as the GCD iteration
in the thesis. In this example each GCD iteration computes two univariate GCD images.
It is possible that the stable feedback polynomial is not the correct one we need because it
could stabilize too early. This uncertainty complicates the algorithm. We discuss it in the
next section.

2.5 Determining t

The original Ben-Or/Tiwari interpolation solves a Hankel linear system to determine Λ(z).
See Equation (2.2). But the Ben-Or/Tiwari interpolation itself was derived from the BCH
decoding, and therefore the Berlekamp Massey algorithm [Massey, 1969] which was designed
to decode BCH codes should be considered.

Berlekamp [Berlekamp, 1968] first developed an algorithm for decoding binary BCH
codes in 1968 by solving the key equation. See [Berlekamp, 1968] for the definition of the
key equation. In 1969, Massey simplified the key equation and provided a variation of
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Berlekamp’s algorithm, which is called the Berlekamp-Massey algorithm or BMA. This al-
gorithm is widely used as a very efficient method to compute the inverse of a matrix with
constant diagonals. The Hankel matrix is such an example. But the Berlekamp-Massey algo-
rithm is regarded as very difficult to understand. Several attempts to make the Berlekamp-
Massey algorithm more readable include Imamura and Yoshida [Imamura and Yoshida,
1987], Henkel [Henkel, 1992], Jonckheere and Ma [Jonckheere and Ma, 1989]. In 1975,
Sugiyama, et al, designed a new algorithm [Sugiyama et al., 1975] to compute the key equa-
tion for decoding Goppa codes by using the Euclidean algorithm. Based on the equivalence
of the Berlekamp-Massey algorithm and the Euclidean algorithm, Dornstetter [Dornstetter,
1987] designed an algorithm to decode a BCH code based on the Sugiyama method. For
the Sugiyama algorithm, we recommend readers to check [Sala, 2009, Pages 62-65]. Some-
times people call the Sugiyama algorithm as the Euclidean Berlekamp-Massey algorithm.
Although in most cases the Berlekamp-Massey algorithm is faster than the Sugiyama algo-
rithm, the latter is preferred in coding theory textbooks due to its simpler structure. The
Berlekamp-Massey algorithm is presented in Figure 2.2.

Berlekamp-Massey (BMA)

Input: a sequence [m0,m2, . . . ,mk] where mi ∈ Zp for 0 ≤ i ≤ k.

Output: c(z) = cLz
L + · · · + c1z + 1 (0 ≤ L ≤ k) so that mj +

∑L
n=1 cnmj−n = 0 for

L ≤ j ≤ k.

1 c(z)← 1, B(z)← 1, x← 1, L← 0 and b← 1.

2 for N from 0 to k do

3 Compute the discrepancy

δ ← mN +
L∑
i=1

cimN−i.

4 Case 1: If δ = 0 then x← x+ 1 and go to step 5.
5 Case 2: If δ 6= 0 and 2L > N then
c(z)← c(z)− δ · b−1zxB(z), x← x+ 1.

6 Case 3: If δ 6= 0 and 2L ≤ N then
T (z)← c(z), c(z)← c(z)− δ · b−1zxB(z),
L← N + 1− L, B(z)← T (z), b← δ, x← 1.

7 Return c(z).

Figure 2.2: Berlekamp Massey algorithm

As we saw in Example 2.4, we run the BMA with a longer input sequence in every GCD
iteration until the feedback polynomials c(z) do not change. For two consecutive GCD
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iterations, the calculations performed in both BMA calls are identical until the second
call encounters those two newly added points. Therefore we can save the final states of
all parameters in the first call and just run the BMA for those two new points with the
parameters from the first call to avoid re-calculation. We call this version the incremental
Berlekamp-Massey algorithm. The Sugiyama algorithm runs the Euclidean algorithm on
inputs S(z) and z2k where S(z) = v0 + v1z + · · · + v2k−1z

2k−1 for k = 1, 2, . . . , t, t + 1.
There is no obvious incremental implementation because it builds the feedback polynomial
from higher degree to lower degree as more points are appended to the end of the input
sequence. On the other hand the BMA builds the result from lower to higher degree. Our
GCD algorithm calls BMA at least t times. The incremental version reduces total cost of
BMA from O(t3) to O(t2) arithmetic operations in the coefficient field Zp.

In most articles, when using Ben-Or/Tiwari interpolation, authors usually use the
Berlekamp-Massey algorithm to solve the Hankel matrix without explanation. In this section
we first explore why can the Berlekamp-Massery algorithm determine the unique solution
of a Hankel matrix.

We follow the definition of LFSR in [Berlekamp, 1968]. The linear feedback shift register
(LFSR) is represented by the pair (L, c(z)) where

c(z) = 1 + c1x+ c2x
2 + · · ·+ cLx

L

is the feedback polynomial and L is the length of the LFSR. A LFSR is said to generate a
finite sequence b = [b0, b1, . . . , bN−1] when this sequence coincides with the first N outputs of
the LFSR for some initial loading. If L ≥ N , then the LFSR always generates the sequence.
If L < N , the LFSR generates the sequence if and only if

bk + bk−1c1 + bk−2c2 + · · ·+ bk−LcL = 0,

for all L ≤ k ≤ N − 1.
In BCH decoding theory, c(z) is also called the classical error locator polynomial. In

our algorithm Λ(z) is defined to be the reciprocal of c(z). In some articles Λ(z) is called
the plain error locator polynomial. The Berlekamp-Massey algorithm computes the classical
one. Hence we need to convert it to the plain version. We mention that the degree of c(z)
could be lower than L.
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Example 2.5. Consider the sequence a = [17, 10, 55, 64, 2, 50, 43, 29, 69, 72] and p = 73. Its
corresponding Hankel matrix is

H =



17 10 55 64 2
10 55 64 2 50
55 64 2 50 43
64 2 50 43 29
2 50 43 29 69


Note H is anti-symmetric. The rank of H modulo p is 5, so H is non-singular. If we run
the Berlekamp Massey algorithm on a, we find L = 5 and

c(z) = 52z4 + 68z3 + 15z2 + 66z + 1

in which the leading coefficient vanishes modulo p, therefore we have degz c(z) = 4 < 5 = L.

Therefore the rank of the Hankel matrix is equal to the length L, not the degree of c(z).
Let (L(n), cn(z)) denote a shortest LFSR that generates the sequence b. BMA computes a
shortest LFSR for a given sequence b. If the Hankel matrix generated by b is non-singular
then the following lemma guarantees L(r) = r/2.

Lemma 2.5. [Imamura and Yoshida, 1987] Let r be a positive even integer, b = [b0, . . . , br−1]
be a sequence and L(r) be the shortest length among all LFSR generating b. Then L(r) = r/2
if and only if the Hankel matrix generated by [b0, . . . , br−1] is non-singular.

Massey [Massey, 1969] observed that if the BMA terminates with 2L(r) > r then the
LFSR with the shortest length is not unique. However if the resulting LFSR satisfies 2L(r) ≤
r then uniqueness is guaranteed.

Theorem 2.3. [Massey, 1969, Theorem 3] Let (L(r), cr(z)) be the output of the Berlekamp-
Massey algorithm on input v = [v0, v1, . . . , vr−1]. If 2L(r) ≤ r, then the (L(r), cr(z)) is the
unique shortest LFSR.

Now we explain how does the BMA solve a Hankel system in our case. For example, the
case shown in Example 2.5 is never going to happen. Let f =

∑t
i=1 aiMi ∈ Zp[x1, . . . , xn]

where p is a prime. We also assume Supp(f) = Supp(f mod p). Suppose we evaluate f at 2t
consecutive points required by the discrete logarithm method and get vi = f(wi1, wi2, . . . , win)
for 0 ≤ i ≤ 2t − 1. Let mi = Mi(wi1, wi2, . . . , win) for 1 ≤ i ≤ t. Let us decompose the t × t
Hankel matrix Ht generated by the sequence [v0, . . . , v2t−1]. The following decomposition
can be found in [Ben-Or and Tiwari, 1988] and [E Kaltofen and Lobo, 2000].
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Ht =



v0 v1 · · · vt−2 vt−1

v1 v2 · · · vt−1 vt

v2 v3 · · · vt vt+1
...

...
...

...
...

vt−1 vt · · · v2t−3 v2t−2


= V ×Q× V T where

V =



1 1 · · · 1 1
m1 m2 · · · mt−1 mt

m2
1 m2

2 · · · m2
t−1 m2

t
...

...
...

...
...

mt−1
1 mt−1

2 · · · mt−1
t−1 mt−1

t


and Q =


a1 0 · · · 0 0
0 a2 · · · 0 0
...

...
...

...
...

0 0 · · · 0 at

 .

Now Supp(f) = Supp(f mod p) implies that the determinant of Q is non-zero. The
determinant of V is

∏
0≤i<j≤t−1(mi − mj) which is non-zero since mi 6= mj if i 6= j by

our choice of p and Proposition 2.1. Therefore the determinant of Ht is non-zero and Ht is
non-singular. If we run the BMA on [v0, . . . , v2t−1] then L(2t) = t by Lemma 2.5. Next we
want to show that the leading coefficient of c(z) returned by BMA cannot vanish modulo
p. The polynomial Λ(z) has degree t with the constant term

∏t
i=1mi which is not zero

modulo p. Hence the reciprocal of Λ, which is c(z), has degree t with the leading coefficient∏t
i=1mi mod p which is non-zero and L(2t) = degz c(z). Therefore if we run the BMA

on 2t consecutive evaluation points, then degz c(z) = t and its reciprocal must factor to t
distinct linear factors. L(2t) = t also ensures the uniqueness of c(z) by Theorem 2.3.

Ben-Or and Tiwari observed that the Hankel matrix H(k, k) must be singular if k > t.
Unfortunately, this can be true for k < t too. We constructed the following example by
forcing some discrepancies to be zero so that the feedback polynomial does not change.

Example 2.6. Consider the polynomial

f(y) = y7 + 60y6 + 40y5 + 48y4 + 23y3 + 45y2 + 75y + 55

with coefficients in the finite field Z101. Let ω = 93 be a generator of Z∗101. Since f has 8
terms, 16 points are required to determine the correct Λ(z) and two more are needed for
confirmation. We compute

(f(ωj))0≤j≤17 = v = [44, 95, 5, 51, 2, 72, 47, 44, 21, 59, 53, 29, 71, 39, 2, 27, 100, 20].

We run the Berlekamp-Massey algorithm on input vr = [v0, . . . v2r−1] for 1 ≤ r ≤ 9 and
obtain feedback polynomials in the following table.
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r Output c(z)
1 69z + 1
2 24z2 + 59z + 1
3 24z2 + 59z + 1
4 24z2 + 59z + 1
5 70z7 + 42z6 + 6z3 + 64z2 + 34z + 1
6 70z7 + 42z6 + 25z5 + 87z4 + 16z3 + 20z2 + 34z + 1
7 z7 + 67z6 + 95z5 + 2z4 + 16z3 + 20z2 + 34z + 1
8 31z8 + 61z7 + 91z6 + 84z5 + 15z4 + 7z3 + 35z2 + 79z + 1
9 31z8 + 61z7 + 91z6 + 84z5 + 15z4 + 7z3 + 35z2 + 79z + 1

The ninth call of the BMA confirms that the feedback polynomial returned by the eighth call
is the desired one. But, by our design, the algorithm terminates at the third call because the
feedback polynomial remains unchanged from the second call. In this case, λ(z) = z2c(1/z) =
z2 + 59z + 24 has roots 56 and 87 which correspond to monomials y4 and y20 respectively.

The feedback polynomial shown in the above example stabilizes too early and wrong
monomials are introduced to the support. For instance, y20 in the above example is not a
monomial in Supp(f).

In the above example, for 1 ≤ k ≤ 9, the k-th call to the BMA performs two more
iterations than the (k − 1)-th call to the BMA because two more points are added. The
connection polynomial in the k-th call to the BMA showed in the table of Example 2.6 is
the result of the 2k-th (the last) iteration in each BMA call, and therefore we do not know
what happened to each iteration inside the BMA. As shown in Figure 2.2, with a non-zero
discrepancy (δ 6= 0), the BMA uses case 3 to increase the degree of the feedback polynomial
(the length of LFSR) and case 2 to adjust the coefficients of the feedback polynomial. Hence
the BMA iterates between: case 3, case 2, case 3, case 2, . . . , etc.

Example 2.7. Consider f = 23x2 +11x+6 and p = 101. We pick ω = 2 as the generator of
Z∗p. [f(wi) mod p : 0 ≤ i ≤ 7] = [40, 19, 14, 51, 10, 74, 79, 1]. We run BMA on this sequence
and output every intermediate c(z) and its corresponding case number in each iteration.

i δ Case c(z)
0 40 3 1 + 61z
1 35 2 1 + 98z
2 58 3 44z2 + 98z + 1
3 37 2 79z2 + 19z + 1
4 65 3 26z3 + 3z2 + 19z + 1
5 74 2 93z3 + 14z2 + 94z + 1
6 0 1 93z3 + 14z2 + 94z + 1
7 0 1 93z3 + 14z2 + 94z + 1

53



Since δ = 0 at iteration 6 and iteration 7, we are in case 1 and c(z) does not change. For
non-zero δ, the degree of c(z) increases at iteration 2k. The coefficients of c(z) are corrected
at iteration 2k + 1. This is the general pattern for one call to the BMA.

Now we discuss the termination condition we propose to use in our GCD algorithm.
Suppose Hj =

∑
hj,ix

i where hj,i ∈ Zp is the j-th scaled univariate GCD image in a
GCD iteration. As we saw in Example 2.4, the GCD iteration continues if any feedback
polynomial is not stable. Every iteration computes two more univariate GCD images, say
Hk and Hk+1. Hence we can extract two new integer coefficients hk,i and hk+1,i for xi and
append them to the input sequence for the BMA. If all feedback polynomials c(z) stabilize
then we terminate the GCD iteration. Kaltofen [E Kaltofen and Lobo, 2000] pointed out
that if δ = 0 and 2L ≤ N , it is likely #f has been obtained and therefore the GCD iteration
can be terminated. Note that Kaltofen’s iteration starts from N = 1 instead N = 0 because
he wants to avoid the case f(β0

1 , . . . , β
0
n) = 0 mod p where βi ∈ Zp. In this case, δ = 0 at

the 0-th iteration which leads to an immediate termination. But for now, we still start the
iteration from N = 0 and assume that the first discrepancy is non-zero.

In our algorithm we propose to use a double discrepancy test instead of Kaltofen’s single
test. Suppose there is no zero discrepancy in one call to the BMA on input [v0, . . . , v2k−1].
After adding two new points v2k, v2k+1 to the input sequence, we run the BMA on the
new sequence [v0, . . . , v2k+1]. If both discrepancies δ are zero at iteration 2k and 2k + 1,
which leads us to case 1 two consecutive times, then the length L does not increase and the
coefficients of c(z) are not updated. Hence we conclude that the number of non-zero terms
is likely determined. It can be shown that this test is equivalent to comparing feedback
polynomials in two consecutive iterations. But checking δ = 0 is cheaper than doing the
feedback polynomial coefficients comparison. In our GCD algorithm, each GCD iteration
computes two univariate GCD images and therefore two new points are available before
we call the BMA. Most importantly, it is possible that δ = 0 at iteration 2k but δ 6= 0 at
iteration 2k + 1. And doing the double discrepancies test would catch such cases. It is also
possible that δ 6= 0 at iteration 2k, δ = 0 at iteration 2k+ 1 but δ 6= 0 at iteration 2k+ 2 in
the next call of the BMA. In this case, the GCD iteration should not be terminated either.

Example 2.8. Consider the GCD problem f1, f2 ∈ Z101[x, y] and g = gcd(f1, f2) where

g = x+ (14y5 + 60y4 + 72y3 + 42y2 + 6y + 52).

We want to determine the number of non-zero terms in the constant term of g. Let ω = 2
be a generator of Z∗101. Since the coefficient of x0 has 6 terms, we need 12 points get the
desired c(z). At the first GCD iteration, we compute gcd(f1(x, ωi), f2(x, ωi)) for 0 ≤ i ≤ 1
and extract the coefficients of the constant terms to form the sequence [44, 95]. We run BMA
on the sequence and obtain c(z) = 69z+1. We compute the next two univariate GCD images
and extract the constant terms to form the sequence [44, 95, 5, 97]. Its corresponding feedback
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polynomial is c(z) = 73z2 + 48z + 1. No δ = 0 appears in this run of BMA. In the next
GCD iteration, we compute two more GCD images for i = 4, 5 and extract the coefficients
of constant terms to form the sequence [44, 95, 5, 97, 29, 43]. At iteration 4, the discrepancy
is

δ = 29 · 1 + 97 · 43 + 5 · 73 = 0 mod 101.

and 2L = 2 · 2 = 4 ≤ 4 = N . Since δ = 0, c(z) is unchanged. If we don’t stop and go to the
iteration 5, the discrepancy is

δ = 43 · 1 + 29 · 43 + 97 · 73 ≡ 32 6= 0 mod 101.

In this example, the double discrepancies test would lead us all the way to the 13-th iteration
which confirms that c(z) returned at 11-th iteration is the one we need.

Instead of using the first n primes as evaluation points, Kaltofen used random points
from a subset S of a given domain as evaluation points to derive the following bound. See
[E Kaltofen and Lobo, 2000] for details.

Theorem 2.4 (KL 2000). Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a polynomial of t non-zero
terms. Let β1, . . . , βn be chosen uniformly at random from a subset S of Z. If we run the
Berlekamp-Massey algorithm on the sequence [f(βi1, . . . , βin) : i ≥ 0], then we encounter
δ = 0 the first time at iteration 2t with probability greater than or equal to

1− t(t+ 1)(2t+ 1) deg(f)
6|S| .

Our current evaluation points are (ω
p−1
qi )j for j = 0, 1, 2, . . . and they are not random

once ω is chosen. In our GCD algorithm we always want random evaluation points to reduce
the probability to encounter bad and unlucky evaluations, and therefore we introduce a shift
value s. We pick s ∈ Zp uniformly at random and use (ω

p−1
qi )s+j as evaluation points for

j = 0, 1, 2, . . . . Since s is random, the starting evaluation point (ω
p−1
qi )s+0 is random in a

subgroup of Z∗p of order qi.
A Kronecker substitution, see Chapter 3 for detail, converts multivariate polynomials

in x0, x1, . . . , xn to bivariate polynomials in x, y where x = x0 and y = x1. That is

f(x0, x1, . . . , xn)→ f(x, y, yd+1, y(d+1)2
, . . . , y(d+1)n−1)

where d bounds the degree of each variable in the target GCD. If we apply this Kronecker
substitution to our inputs, then we only need to interpolate the variable y. This strategy
also simplifies the evaluation point from (ω

p−1
qi )s to (ω

p−1
p−1 )s = ωs. Hence if s is random then

ωs is random in Z∗p. But with the shift s, one needs to solve a shifted Vandermonde linear
system which is to be discussed in Section 2.7.
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In Theorem 2.4, S is a subset of Z and f is a multivariate polynomial. In our case,
S = Z∗p and a Kronecker substitution leads us to interpolate univariate polynomials of high
degree. Therefore we should derive a bound for our case. We first introduce the following
popular lemma.

Proposition 2.2 (Cauchy-Binet formula). Let A be a m × n matrix and B be a n × m
matrix. Let [n] denote the set {1, 2, . . . , n} and let

([n]
m

)
be the set of all m-combinations of

[n]. For S ∈
([n]
m

)
, let A[m],S be the sub-matrix of A whose columns are the columns of A at

indices from S and BS,[m] be the sub-matrix of B whose rows are the rows of B at indices
from S. Then we have

det(AB) =
∑

S∈([n]
m)

det(A[m],S) det(BS,[m]).

See [Broida and Williamson, 1989, Section 4.6] for a proof. We notice thatm > n implies
det(AB) = 0 since rank(AB) ≤ min{rank(A), rank(B)} ≤ n and AB is a m×m matrix.

Example 2.9. In this example, we compute detAB where

A =
[

5 2 1
3 3 9

]
and B =


2 5
8 3
9 3

 .
It is easy to check that

detAB = det
[

35 34
111 51

]
= −1989.

Since [n] = {1, 2, 3} and m = 2 ,
([n]
m

)
= {{1, 2}, {1, 3}, {2, 3}}. According to Cauchy-Binet

formula, we have

detAB = det
[

5 2
3 3

]
det

[
2 5
8 3

]
+ det

[
5 1
3 9

]
det

[
2 5
9 3

]
+ det

[
2 1
3 9

]
det

[
8 3
9 3

]
= −306− 1638− 45 = −1989.

With a Kronecker substitution, our GCD algorithm interpolates univariate polynomials,
and therefore we only consider the univariate interpolation case. Let

f(y) =
t∑
i=1

aiMi ∈ Z[y] where Mi = yei and ei ∈ N ∪ {0}

be the target polynomial to be interpolated. Let p be a prime so that p � degy f and ω

be a generator of Z∗p. Our algorithm picks a random s ∈ Zp \ {p − 1} as a shift and eval-
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uates the inputs at ωs, ωs+1, . . . . Now we fix ω and the map ω : s −→ ωs is a bijection.
If s is chosen uniformly at random then ωs is uniformly random in Z∗p. Let β = ωs. Then
the evaluation points sequence becomes β, βω, βω2, βω3, . . . . We derive an upper bound
for the number of evaluation points so that the Berlekamp-Massey algorithm on input se-
quence [f(β), f(βω), . . . , f(βω2t−1)] encounters a zero discrepancy before we get the correct
feedback polynomial.

We define Fi = f(xωi) where x is a variable and Mi(ω) = mi. For example, if f =
35y10−20y5 +5 then F4 = f(xω4) = 35x10(ω10)4−20x5(ω5)4 +5. Let Ai be an i× i Hankel
matrix

Ai =



F0 F1 · · · Fi−2 Fi−1

F1 F2 · · · Fi−1 Fi

F2 F3 · · · Fi Fi+1
...

...
...

...
...

Fi−1 Fi · · · F2i−3 F2i−2


.

The Hankel matrix Ai can be decomposed as Ai = Bi × Ct ×BT
i where

Bi =



1 1 · · · 1 1
m1 m2 · · · mt−1 mt

m2
1 m2

2 · · · m2
t−1 m2

t
...

...
...

...
...

mi−1
1 mi−1

2 · · · mi−1
t−1 mi−1

t


, Ct =


a1M1(x) 0 · · · 0

0 a2M2(x) · · · 0
...

...
...

...
0 0 · · · atMt(x)

 .

Note that Bi is a standard Vandermonde matrix. We first prove the following theorem.

Theorem 2.5. Symbolically detAi 6= 0 ∈ Zp[x] for 1 ≤ i ≤ t− 1.

Proof. By the Cauchy-Binet formula we have

det(Ai) =
∑

J∈([t]
i )

det((Bi)[i],J) det(CtBT
i )J,[i], (2.6)

where J is a i-combination of {1, 2, . . . , t}. For each J , we have

det(CtBT
i )J,[i] =

∑
K∈([t]

i )
det((Ct)J,K) det((BT

i )K,[i]), (2.7)

where K is a i-combination of {1, 2, . . . , t}. Combining equations (2.6) and (2.7), we have

det(Ai) =
∑

J∈([t]
i )

∑
K∈([t]

i )
det((Bi)[i],J) det((Ct)J,K) det((BT

i )K,[i]).
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Since Ct is a diagonal matrix, det((Ct)J,K) = 0 if J 6= K. Therefore the above equation can
be simplified to

det(Ai) =
∑

J∈([t]
i )

det((Bi)[i],J) det((Ct)J,K) det((BT
i )K,[i]).

Without loss of generality we assume that monomials are ordered in degree by M1 > M2 >

· · · > Mt. Let J = {1, 2, . . . , i}. Then by the property of the Vandermonde matrix we have

det((Bi)[i],J) det((Ct)J,K) det((BT
i )K,[i]) = a1 · · · aiM1(x) · · ·Mi(x)(

∏
1≤v<u≤i

(mv −mu))2.

Since ak 6= 0 for 1 ≤ k ≤ t and mi 6= mj mod p if i 6= j,

a1 · · · ai(
∏

1≤v<u≤i
(mv −mu))2 mod p 6= 0.

The leading monomial of detAi is M1(x) · · ·Mi(x) and it has a non-zero coefficient in Zp.
Therefore detAi 6= 0.

If we use β = ωs as an evaluation point, then the condition that the Berlekamp-Massey
algorithm does not encounter a zero discrepancy is equivalent to

∏t
i=1 detAi(β) 6= 0 mod p.

Therefore if β is not a root of
∏t
i=1 detAi(x) then we must obtain the correct feedback

polynomial. We can now bound the probability that we don’t obtain a correct feedback
polynomial.

Theorem 2.6. Let f be a univariate polynomial to be interpolated, #f = t, p be a prime and
p� degy f . Let ω be a generator of Z∗p. Then the number of shift values s which make the
Berlekamp-Massey algorithm encounter a zero discrepancy on [f(β), f(βω), . . . , f(βω2t−1)]
is at most t(t+1)degyf

2 =
(t+1

2
)

degy f where β = ωs. Therefore if s is chosen uniformly at
random from [0, p−2], then the probability that the Berlekamp-Massey algorithm encounters
a zero discrepancy for the first time at iteration 2t is greater than or equal to 1− t(t+1) degy f

2(p−1) =

1− (t+1
2 ) degy f
p−1 .

Proof. Since degy detAi ≤ idegy f , we have

degy
t∏
i=1

detAi =
t∑
i=1

degy detAi ≤
t∑
i=1

i degy f

= degy f
t∑
i=1

i =
t(t+ 1) degy f

2 =
(
t+ 1

2

)
degy f.

Therefore the number of roots of
∏t
i=1 detAi is bounded by

(t+1
2
)

degy f .
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The bound we derived is the worst case. To get a sense of the average number of
encountering δ = 0 in the first 2t iterations, we wrote a C program to generate all univariate
polynomials f(x) ∈ Zp where #f = t, degx f ≤ d. For each f , we ran the BMA on
[f(ω0), f(ω1), . . . , f(ω2t−1)] to check whether δ = 0 in any iteration in BMA. The last
column of Table 2.5 shows the percentage of encountering δ = 0 among all f generated. As

d t ω prime total cases early termination ·%δ = 0
4 3 3 17 40960 10614 25.9131
4 3 5 17 40960 10855 26.5015
4 3 10 17 40960 10855 26.5014
4 3 5 47 973360 97690 10.0364
5 3 5 47 1946720 197495 10.1450
6 3 5 47 3406760 346189 10.1618
5 3 2 101 20000000 964340 4.8217
6 3 2 101 35000000 1687595 4.8217
4 3 2 211 92610000 2167370 2.3403

Table 2.3: Early termination test

we see in the table, the probability that the BMA encounters δ = 0 drops dramatically as
the size of p increases. From Table 2.5, we observe that the percentage of cases which result
in early termination is asymptotically equal to C/p where C is some non-zero constant. The
size of p or |S| in Theorem 2.6 is a parameter that we can change. We mostly use 63 bits
prime or 127 bits prime in our implementation, and therefore the probability to encounter
δ = 0 is very low.

For example, one of our second benchmark problems has a target GCD in 9 variables,
each variable has degree at most 20 and t = 105. If we use the Kronecker substitution
Kr(G(x0, x1, . . . , x8)) = G(x, y, y21, y212

, . . . , y217), then degyKr(G) ≤ 20+20·21+20·212+
· · ·+20 ·217 = 20

∑8
k=1 21k−1 = 37822859360. According to Theorem 2.6, if we use a 127bits

prime, then the probability that the BMA encounters a zero discrepancy the first time at
2t-th evaluation point is greater than or equal to 1− 37822859360·105·(105+1)

2(2127−1) = 1−1.11×10−18.

Hence it is very rare to obtain an incorrect feedback polynomial in our GCD algorithm.

2.6 Bad and unlucky evaluation points

Let A and B be non-constant polynomials in Z[x0, . . . , xn], G = gcd(A,B) and Ā = A/G

and B̄ = B/G. Let p be a prime such that LC(A)LC(B) mod p 6= 0.

Definition 2.1. Let α ∈ Znp and let ḡα(x) = gcd(Ā(x, α), B̄(x, α)). We say α is bad if
LC(A)(α) = 0 or LC(B)(α) = 0 and α is unlucky if deg ḡα(x) > 0. If α is not bad and not
unlucky, we call it good.
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Example 2.10. Consider the GCD problem of A = GĀ and B = GB̄ where

G = (x1 − 16)x0 + 1, Ā = x2
0 + 1 and B̄ = x2

0 + (x1 − 1)(x2 − 9)x0 + 1.

Then LC(A) = LC(B) = x1 − 16. So {(16, β) : β ∈ Zp} are bad. {(1, β) : β ∈ Zp} and
{(β, 9) : β ∈ Zp} are unlucky.

Our GCD algorithm can not reconstruct G using the image g(x, α) = gcd(A(x, α),
B(x, α)) if α is unlucky due to the wrong degree of x in g. Brown’s idea in [Brown, 1971]
to detect unlucky α is based on the following Lemma.

Lemma 2.6. Let α and gα be as above and hα = G(x, α) mod p. If α is not bad then hα|gα
and degx gα ≥ degxG.

See [Geddes et al., 1992, Lemma 7.3 ] for a proof of Lemma 2.6. Brown only uses α
which are not bad and the images gα(x) of least degree to interpolate G. The following
Lemma implies if the prime p is large then unlucky evaluation points are rare.

Lemma 2.7. If α is chosen uniformly at random from Znp then

Prob[ α is bad or unlucky ] ≤ degAB + degA degB
p

.

Proof. Let b be the number of bad evaluation points and let r be the number of unlucky
evaluation points that are not bad. Let B denote the event that α is bad and G denote the
event that α is not bad and U denote the event α is unlucky. Then

Prob[B or U ] = Prob[B] + Prob[G and U ]

= Prob[B] + Prob[G]× Prob[U |G]

= b

pn
+
(

1− b

pn

)
r

pn − b
= b

pn
+ r

pn
.

Now α is bad =⇒ LC(A)(α)LC(B)(α) = 0 =⇒ LC(AB)(α) = 0. Applying Lemma 2.1
with f = LC(AB) we have b ≤ degLC(AB)pn−1. Let R = resx0(Ā, B̄) ∈ Zp[x1, . . . , xn].
Now α is unlucky and not bad =⇒ deg gcd(Ā(x, α), B̄(x, α)) > 0 and LC(Ā)(α) 6= 0 and
LC(B̄)(α) 6= 0 =⇒ R(α) = 0 by Lemma 2.4 (iv) and (v). Applying Lemma 2.1 we have
r ≤ deg(R)pn−1. Substituting into the above we have

Prob[B or U ] ≤ deg LC(AB)
p

+ degR
p
≤ degAB

p
+ degA degB

p
.

The algorithm shown in Figure 2.3 applies Lemma 2.7 to compute an upper bound d

for degxi G. If DegreeBound hits an unlucky evaluation and returns d > degxi G, it won’t
affect the correctness of our algorithm, only the efficiency.
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Algorithm DegreeBound(A,B,i)

Input: Non-zero A,B ∈ Z[x0, x1, . . . , xn] and i satisfying 0 ≤ i ≤ n.

Output: d ≥ degxi(G) where G = gcd(A,B).

1 Set LA = LC(A, xi) and LB = LC(B, xi).
So LA,LB ∈ Z[x0, . . . , xi−1, xi+1, . . . , xn].

2 Pick a prime p� degA degB such that LA mod p 6= 0 and LB mod p 6= 0.
3 Pick α = (α0, . . . , αi−1, αi+1, . . . , αn) ∈ Znp uniformly at random until LA(α)LB(α) 6=

0.
4 Compute a = A(α0, . . . , αi−1, xi, αi+1, . . . , αn) and
b = B(α0, . . . , αi−1, xi, αi+1, . . . , αn).

5 Compute g = gcd(a, b) in Zp[xi] using the Euclidean algorithm and output d = degxi g.

Figure 2.3: Degree bound algorithm

2.7 Solving shifted Vandermonde system

The first time we considered to shift the evaluation sequence was motivated by the following
example.

Example 2.11. Let A = (x+1)(2x+y) and B = (x+1)(2x+2y−1). G = gcd(A,B) = x+1.
If we evaluate A and B at y = β0 = 1, no matter what β we pick, we always get an unlucky
result gcd(A(x, β0), B(x, β0)) = (x + 1)(2x + 1). We cannot use the GCD image evaluated
at β0 = 1 in this example.

In Example 2.11, all β ∈ Zp are unlucky. Shifting the starting point to β1 could solve this
particular problem. But what if β1 is still unlucky ? In modular polynomial GCD algorithms
we prefer random evaluation points to avoid bad and unlucky points. Therefore instead of
shifting only by 1 to get β1, we shift a random value s where 0 ≤ s < p − 1 so that the
starting evaluation point is βs. But shifting the starting point increases the power of each
entry in the standard Vandermonde matrix. Hence Zippel’s quadratic Vandermonde system
solving algorithm needs to be modified. Now suppose we have a shifted Vandermonde system
Wc = u where W and u are given and we solve for c over Zp. Explicitly, we have the linear
system

Wc =



ms
1 ms

2 ms
3 . . . ms

t

ms+1
1 ms+1

2 ms+1
3 . . . ms+1

t

ms+2
1 ms+2

2 ms+2
3 . . . ms+2

t
...

...
...

...
...

mk+t−1
1 ms+t−1

2 ms+t−1
3 . . . ms+t−1

t





c1

c2

c3
...
ct


=



vs

vs+1

vs+2
...

vs+t−1


= u.
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We define a polynomial Pi(z) and expand it

Pi(z) = zs ·
∏

1≤j≤t
j 6=i

z −mj

mi −mj
(2.8)

= ai,1z
s + ai,2z

s+1 + ai,3z
k+2 + · · ·+ ai,tz

s+t−1 (2.9)

where ai,k ∈ Zp for 1 ≤ k ≤ t. It is clear that

Pi(mj) =

m
s
i if i = j,

0 otherwise.

Let A be a t× t matrix formed by ai,k

A =



a1,1 a1,2 a1,3 . . . a1,t

a2,1 a2,2 a2,3 . . . a2,t

a3,1 a3,2 a3,3 . . . a3,t
...

...
...

...
...

at,1 at,2 at,3 . . . at,t


.

The (i, j)-th element of A ·W is

ai,1m
s
j + ai,2m

s+1
j + ai,3m

s+2
j + · · ·+ ai,tm

s+t−1
j .

Therefore we have

A ·W =



ms
1 0 0 . . . 0

0 ms
2 0 . . . 0

0 0 ms
3 . . . 0

...
...

...
...

...
0 0 0 . . . ms

t


and W−1 = W−1 ·A−1 ·A = (A ·W )−1 ·A. Explicitly we have

W−1 =



1
ms1

0 0 · · · 0
0 1

ms2
0 · · · 0

0 0 1
ms3

· · · 0
...

...
...

...
...

0 0 0 · · · 1
mst


·A =



a1,1
ms1

a1,2
ms1

a1,3
ms1

. . .
a1,t
ms1

a2,1
ms2

a2,2
ms2

a2,3
ms2

. . .
a2,t
ms2

a3,1
ms3

a3,2
ms3

a3,3
ms3

. . .
a3,t
ms3...

...
...

...
...

at,1
mst

at,2
mst

at,3
mst

. . .
at,t
mst


.
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The solution to the shifted Vandermonde system is

c =



c1

c2

c3
...
ct


=



a1,1
ms1

vs + a1,2
ms1

vs+1 + a1,3
ms1

vs+2 + · · ·+ a1,t
ms1
vs+t−1

a2,1
ms2

vs + a2,2
ms2

vs+1 + a2,3
ms2

vs+2 + · · ·+ a2,t
ms2
vs+t−1

a3,1
ms3

vs + a3,2
ms3

vs+1 + a3,3
ms3

vs+2 + · · ·+ a3,t
ms3
vs+t−1

...
at,1
msn

vs + at,2
mst
vs+1 + at,3

mst
vs+2 + · · ·+ at,t

msn
vs+t−1


,

or

ci =
s+t−1∑
j=s

coeff(Pi(z), zj)
vj
ms
i

for 1 ≤ i ≤ t,

where coeff(Pi(z), zj) denotes the coefficient of zj in Pi(z). Recall that Λ(z) =
∏t
j=1(z −

mj). We observe that Λ(z)
z−mi =

∏
1≤j≤t
j 6=i

(z − mj) is the numerator of Pi(z) and Λ(z)
z−mi

∣∣∣
z=mi

=∏
1≤j≤t
j 6=i

(mi − mj) is the denominator of Pi(z). Therefore each Pi(z) can be derived from
Λ(z) using O(t) arithmetic operations in Zp. For 1 ≤ i ≤ t, computing ms

i costs O(log s)
operations and the computational cost to determine the inverse of ms

i is linear. Therefore
Wc = u can be solved in O(t2 + t log s) arithmetic operations.

2.8 The normalization problem

In Section 1.9 we reviewed the normalization problem and discussed several possible solu-
tions. Unfortunately none of them work for our case. Consider the following example.

Example 2.12. Let A = ĀG and B = B̄G where

G = x+ 2y2 + 3y + 1,

Ā = ((y2 + 104)x+ 1)(x+ 1),

B̄ = ((y2 + 3)x+ 1)(x+ 53y + 1).

We use the DegreeBound algorithm in Section 2.6 to compute the degree of G in x. Suppose
DegreeBound picks the prime 53 and the evaluation point 10 for y , then

gcd(Ā(x, 10), B̄(x, 10)) = x2 + 20x+ 19.

Hence we can assume degxG = 2. Note that DegreeBound only computes an upper bound
for the degree of G in x. In this example, it picks p = 53 and hits an unlucky prime. The
actual degree of G in x is 1. But we don’t know this so we assume that degxG = 2 is correct.
Since Γ = 1, no scaling is required for univariate GCD images. For GCD computation,
suppose we choose p = 101 and the generator ω = 2. For convenience, let us compute the
first 10 univariate GCD images in a row without GCD iterations. Let gi = gcd(A(x, y =
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ωi), B(x, y = ωi)) mod p and we have

g0 = x2 + 82x+ 52, g1 = x2 + 44x+ 31, g2 = x2 + 61x+ 13

g3 = x2 + 49x+ 46, g4 = x2 + 95x+ 63, g5 = x2 + 30x+ 43

g6 = x2 + 14x+ 24, g7 = x2 + 21x+ 1, g8 = x2 + 46x+ 57

g9 = x2 + 87x+ 80.

The GCD algorithm always assumes the least degree of univariate GCD images is the correct
one. In this example, it is always 2 but degxG = 1. This is caused by the unlucky prime 101.
But our GCD algorithm did not detect it, and therefore we assume 2 is the least degree. Since
the degree returned by the DegreeBound is also 2, the algorithm assumes that degx gi = 2
is correct. Let us recover the constant term. We set

m = [52, 31, 13, 46, 63, 43, 24, 1, 57, 80]

and let mi denote the sub-sequence of m consisting of the first 2i elements. We run the
BMA on mi for i = 1, 2, 3, 4, 5 and obtain

i Output c(z)
1 85z + 1
2 11z2 + 66z + 1
3 31z3 + 65z2 + 25z + 1
4 49z4 + 30z3 + 11z2 + 65z + 1
5 63z5 + 13z4 + 18z3 + 46z2 + 76z + 1

The constant term of G has 3 terms. Hence c(z) should remain the same for i = 3, 4, 5 but it
does not. If we continue to compute more univariate GCD images, extract the constant terms
and append them to m. It is likely that running the BMA on input mi for i = 1, 2, 3, . . .
always returns c(z) with degree i. Therefore the algorithm would always try to compute the
next c(z), and therefore probably never terminate.

In the above example we note that LC(Ā) mod 101 = LC(B̄) mod 101 = y2 + 3.
The looping does not terminate because the Berlekamp-Massey algorithm always tries to
determine a stable feedback polynomial for the constant term of

(x+ 2y2 + 3y + 1)(x− 1
y2 + 3) mod 101,

namely 1
y2+3 which is not even a polynomial. This happens because the Degreebound algo-

rithm outputs degxG ≤ 2, so either degxG = 1 or degxG = 2 could be correct. At the same
time the unlucky primes 53 and 101 make us believe that degxG = 2 is correct. Therefore
the non-monic factor (y2 + 3)x+ 1 which contributes to the monic univariate GCD images
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can not be detected and the scaling factor Γ = 1 makes us recover a polynomial fraction
which can not be done with the BMA. We note that the same problem may be caused by
an unlucky Kronecker substitution. In practice with a large prime (63 bits) it is likely that
DegreeBound always returns the accurate degree of x. Hence an unlucky prime can be
detected immediately. But theoretically we still need to consider this bad case.

Let Γ = LC(A) or LC(B), whichever has fewer terms. Our solution is to use Γ as the
scaling factor. Then assuming p is not bad, LC(gcd(A mod p,B mod p)) must divide both
LC(A) mod p and LC(B) mod p. Thus scaling gi(x) by LC(A)(ωi) mod p or LC(B)(ωi)
mod p will always give an image of a polynomial. The downside of this solution is that it
likely changes the sparsity of H, increases t and increases the cost to remove the content of
H.
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Chapter 3

Kronecker substitution

The Kronecker substitution converts inputs from multivariate polynomials in Z[x0, . . . , xn]
to bivariate polynomials Z[x, y]. This conversion may introduce bad or unlucky cases as we
see in the modulo operations. It also makes the degree in y exponential in n. We discuss
these issues in this chapter.

In Example 2.10, by using the evaluation sequence αj = (wj1, w
j
2) for 0 ≤ j ≤ 2t −

1, we found that α0 = (1, 1) is unlucky. In fact, since wq1
1 = (ω

p−1
q1 )q1 ≡ 1 mod p, all

αq1 , α2q1 , α3q1 , . . . are unlucky. Shifting the sequence may solve this problem. But if qi < 2t,
we simply don’t have enough evaluation points. Recall that for a polynomial f , #f denotes
the number of terms in f . For the GCD problem, t may be even larger than max{#ai,#bi}.
See Example 1.13.

We can increase qi by using a larger prime, but it is still a problematic approach be-
cause there is no way to know t in advance. This difficulty leads us to consider using a
Kronecker substitution. In our case, a Kronecker substitution maps multivariate polyno-
mials in Z[x0, x1, . . . , xn] to bivariate polynomials in Z[x, y]. After making the Kronecker
substitution, we need to interpolate H(x, y) = ∆(x, y)G(x, y) where degyH(x, y) will be
exponential in n. The evaluation points for y become the powers of ω

p−1
p−1 = ω. The order

of ω is p− 1 and normally p− 1 > 2t is not a problem. The starting evaluation point ωs+0

is random if s is chosen uniformly at random from Zp. To make discrete logarithms in Zp
feasible, we follow Kaltofen [Kaltofen, 2010] and pick p = 2ku + 1 > degyH(x, y) with u

small.

Definition 3.1. Let D be an integral domain and let f be a polynomial in D[x0, x1, . . . , xn].
Let r ∈ Zn−1 with ri > 0. LetKr : D[x0, x1, . . . , xn]→ D[x, y] be the Kronecker substitution
Kr(f) = f(x, y, yr1 , yr1r2 , . . . , yr1r2...rn−1).

First we note that Kronecker substitution is a ring homomorphism. Let di = degxi f be the
partial degrees of f for 1 ≤ i ≤ n. Observe that Kr is invertible if ri > di for 1 ≤ i ≤ n− 1.
As we mentioned in Section 2.8, not all such Kronecker substitutions can be used. We
consider an example.
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Example 3.1. Consider the following GCD problem in Z[x, y, z].

G = x+ y + z, Ā = x3 − yz, B̄ = x2 − y2.

Since degy G = 1 the Kronecker substitution Kr(G) = G(x, y, y2) is invertible. However
gcd(Kr(Ā),Kr(B̄)) = gcd(Ā(x, y, y2), B̄(x, y, y2)) = gcd(x3 − y3, x2 − y2) = x − y. If we
proceed to interpolate the gcd(Kr(A),Kr(B)) we will obtain (x−y)Kr(G) in expanded form
from which we can not recover G.

We call such a Kronecker substitution unlucky. Theorem 3.1 below tells us that the
number of unlucky Kronecker substitutions is finite. To detect them we will also avoid bad
Kronecker substitutions in an analogous way Brown did to detect unlucky evaluation points.

Definition 3.2. Let Kr be a Kronecker substitution.
We say Kr is bad if degxKr(A) < degx0 A or degxKr(B) < degx0 B

and Kr is unlucky if degx gcd(Kr(Ā),Kr(B̄)) > 0. If Kr is not bad and not unlucky, we call
it good.

Proposition 3.1. Let f ∈ Z[x1, . . . , xn] be non-zero and di ≥ 0 for 1 ≤ i ≤ n. Let X be
the number of Kronecker substitutions Kr taken from the sequence

[d1 + k, d2 + k, . . . , dn−1 + k] for k = 1, 2, 3, . . .

for which Kr(f) = 0. Then X ≤ (n− 1)
√

2 deg f .

Proof. Kr(f) = 0 ⇐⇒ f(y, yr1 , yr1r2 , . . . , yr1r2...rn−1) = 0
⇐⇒ f mod 〈x1 − y, x2 − yr1 , . . . , xn − yr1r2...rn−1〉 = 0
⇐⇒ f mod 〈x2 − xr1

1 , x3 − xr2
2 , . . . , xn − x

rn−1
n−1 〉 = 0.

Thus X is the number of ideals I = 〈x2 − xr1
1 , . . . , xn − x

rn−1
n−1 〉 for which f mod I = 0 with

ri = di + 1, di + 2, . . . . We prove that X ≤ (n− 1)
√

2 deg f by induction on n.
If n = 1 then I is empty so f mod I = f and hence X = 0 and the proposition holds.

For n = 2 we have f(x1, x2) mod 〈x2 − xr1
1 〉 = 0 =⇒ x2 − xr1

1 |f. Now X is maximal when
d1 = 0 and r1 = 1, 2, 3, . . . . We have

∑X
r1=1 r1 ≤ deg f =⇒ X(X + 1)/2 ≤ deg f =⇒ X <

√
2 deg f.

For n > 2 we proceed as follows. Either xn−xrn−1
n−1 |f or it doesn’t. If not then the polynomial

S = f(x1, . . . , xn−1, x
rn−1
n−1 ) is non-zero. For the sub-case xn − xrn−1

n−1 |f we obtain at most
√

2 deg f such factors of f using the previous argument. For the case S 6= 0 we have

S mod I = 0 ⇐⇒ S mod 〈x2 − xr1
1 , . . . , xn−2 − xrn−2

n−1 〉 = 0
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Notice that degxi S = degxi f for 1 ≤ i ≤ n − 2. Hence, by induction on n, X < (n −
2)
√

2 deg f for this case. Adding the number of unlucky Kronecker substitutions for both
cases yields X ≤ (n− 1)

√
2 deg f .

Theorem 3.1. Let A,B ∈ Z[x0, x1, . . . , xn] be non-zero, G = gcd(A,B), Ā = A/G and
B = B̄/G. Let di ≥ degxi G. Let X be the number of bad and unlucky Kronecker substitutions
Krk from the sequence rk = [d1 + k, d2 + k, . . . , dn−1 + k] where di is a non-negative integer
and k = 1, 2, 3, . . . Then

X ≤
√

2(n− 1)
[√

degA+
√

degB +
√

degA degB
]
.

Proof. Let LA = LC(A) and LB = LC(B) be the leading coefficients of A and B in x0.
Then Kr is bad ⇐⇒ Kr(LA) = 0 or Kr(LB) = 0. Applying Proposition 3.1, the number
of bad Kronecker substitutions is at most

(n− 1)(
√

2 degLA+
√

2 degLB) ≤ (n− 1)(
√

2 degA+
√

2 degB).

Now let R = resx0(Ā, B̄). We will assume Kr is not bad.

Kr is unlucky ⇐⇒ degx(gcd(Kr(Ā),Kr(B̄)) > 0

⇐⇒ resx(Kr(Ā),Kr(B̄)) = 0

⇐⇒ Kr(resx(Ā, B̄)) = 0

⇐⇒ Kr(R) = 0 (Kr is not bad).

By Proposition 3.1, the number of unlucky Kronecker substitutions ≤ (n − 1)
√

2 degR ≤
(n−1)

√
2 degA degB by Lemma 2.4. Adding the two contributions proves the theorem.

Theorem 3.1 tells us that the number of unlucky Kronecker substitutions is finite.
In our GCD algorithm we can easily identify one of them as follows. After computing
gi(x) = gcd(Kr(A)(x, αs+i),Kr(B)(x, αs+i)) and if degx gi > d0 then Kr is unlucky or αs+i

is unlucky so we try the next Kronecker substitution r = [r1 + 1, r2 + 1, . . . , rn−1 + 1] and
increase the size of prime by 1 bit.

It is still not obvious that a Kronecker substitution that is not unlucky can be used
because it can create a content in y of exponential degree. The following example shows
this problem.

Example 3.2. Consider the following GCD problem in Z[x, y, z, w].

G = wx2 + zy, Ā = ywx+ z, B̄ = yzx+ w.
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We have Γ = wy and ∆ = y. For Kr(f) = f(x, y, y3, y9) we have

gcd(Kr(A),Kr(B)) = Kr(G) gcd(y10x+ y3, y4x+ y9)

= (y9x2 + y4)y3 = y7(y5x2 + 1)

One must not try to compute the bivariate polynomial GCD gcd(Kr(A),Kr(B)) di-
rectly because the degree of the content of gcd(K(A),K(B)) (y7 in our example) can
be exponential in the number of variables and we cannot compute this efficiently using
the Euclidean algorithm. The crucial observation is that if we compute monic images
gj = gcd(K(A)(x, αj),K(B)(x, αj)) over a finite field, any content is divided out. When
we scale by Kr(Γ)(αj) and interpolate y in Kr(H) using sparse interpolation, we recover
any content. We obtain Kr(H) = Kr(∆)Kr(G) = y10x2 + y5, then invert Kr to obtain
H = (yw)x2 + (y2z). Now we can remove the content y from H to obtain G.

3.1 Unlucky primes

Let A,B be polynomials in Z[x0, x1, . . . , xn], G = gcd(A,B), Ā = A/G and B̄ = B/G. In
the introduction we defined the polynomials Γ = gcd(LC(A), LC(B)), ∆ = Γ/LC(G) and
H = ∆G where LC(A), LC(B) and LC(G) are the leading coefficients of A, B and G in x0

respectively. Our GCD algorithm will compute H modulo a sequence of primes p1, p2, . . . .
Let Kr : Z[x0, x1, . . . , xn]→ Z[x, y] be a Kronecker substitution

Kr(f) = f(x, y, yr1 , yr1r2 , . . . , yr1r2...rn−1) for some ri > 0.

Let p be a prime and let φp : Z[x, y] → Zp[x, y] denote the modular mapping φ(A) = A

mod p. Our GCD algorithm will compute gcd(Kr(A),Kr(B)) modulo a prime p. Some
primes must be avoided.

Example 3.3. Consider the following GCD problem in Z[x0, x1] where a and b are positive
integers.

G = x0 + b x1 + 1, Ā = x0 + x1 + a, B̄ = x0 + x1

In this example, Γ = 1 so H = G. Since there are only two variables the Kronecker
substitution is Kr(f) = f(x, y) hence Kr(Ā) = x + y + a, Kr(B̄) = x + y. Notice that
gcd(Kr(Ā),Kr(B̄)) = 1 in Z[x, y], but gcd(φp(Kr(Ā)), φp(Kr(B̄))) = x + y for any prime
p|a. Like Brown’s modular GCD algorithm in [Brown, 1971], our GCD algorithm must avoid
these primes. Notice also that Supp(φp(Kr(G))) 6= Supp(Kr(G)) = {x, y, 1} for any prime
p|b. Like Zippel’s sparse modular GCD algorithm in [Zippel, 1979b], we must avoid these
primes too.

If our GCD algorithm were to choose primes from a pre-computed set of primes S =
{p1, p2, . . . , pN} then notice that if we replace a in Example 3.3 with a = ΠN

i=1pi then every
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prime would be unlucky. To guarantee that our GCD algorithm will succeed on all inputs
we need to bound the number of primes that cannot be used and pick our prime from a
sufficiently large set uniformly at random.

Because our algorithm will always choose ri > degxi H, the Kronecker substitution Kr

leaves the coefficients of H unchanged. Let pmin be the smallest prime in S. Recall that
H =

∑dG
i=0 hix

i
0 with t = max(#hi), so we have #H ≤ (d+1)t hence if p is chosen uniformly

at random from S then

Prob[Supp(φp(H)) 6= Supp(H)] ≤
(d+ 1)t logpmin ||H||

N
.

Theorem 3.2 below bounds ||H|| from the inputs A and B.

Definition 3.3. Let p be a prime and let Kr be a Kronecker substitution. We say p is
bad if degx φp(Kr(A)) < degxKr(A) or degx φp(Kr(B)) < degxKr(B) and p is unlucky if
degx gcd(φp(K̄r(A)), φp(K̄r(B))) > 0. If p is not bad and not unlucky, we call it good.

Let R = resx(Ā, B̄) ∈ Z[x1, . . . , xn] be the Sylvester resultant of Ā and B̄. Unlucky
primes are characterized as follows; if p is not bad then Lemma 2.4(vii) implies p is unlucky
⇐⇒ φp(Kr(R)) = 0. Unlucky primes are detected using the same approach as described
for unlucky evaluations in section 2.6 which requires that we also avoid bad primes. If p is
bad or unlucky then p must divide the integer M = ||Kr(LC(A))|| · ||Kr(LC(B))|| · ||Kr(R)||.
Let pmin = minNi=1 pi. Thus if p is chosen uniformly at random from S then

Prob[ p is bad or unlucky ] ≤
logpminM

N
.

Theorem 3.2 below bounds also M for given inputs A and B.

Proposition 3.2. Let A be an m × m matrix with entries Ai,j ∈ Z[x1, x2, . . . , xn] sat-
isfying the term bound #Ai,j ≤ t, the degree bound degxk Ai,j ≤ d and the coefficient
bound ||Ai,j || < h ( for 1 ≤ i, j ≤ m ). Note if a term bound for #Ai,j is not known we
may use t = (1 + d)n. Let Kr : Z[x1, x2, . . . , xn] → Z[y] be the Kronecker map Kr(f) =
f(y, yr1 , yr1r2 , . . . , yr1r2...rn−1) for rk > 0 and let B = Kr(A) be the m×m matrix of poly-
nomials in Z[y] with Bi,j = Kr(Ai,j) for 1 ≤ i, j ≤ m. Then

(i) || detA|| < mm/2tmhm and
(ii) || detB|| < mm/2tmhm.

Proof. To prove (i), let S be the m × m matrices of integers given by Si,j = ||Ai,j ||1. We
claim || detA|| ≤ H(S) where H(S) is Hadamard’s bound on | detS|. After applying the
Hadamard’s bound to S we have

H(S) =
m∏
i=1

√√√√ m∑
j=1

S2
i,j =

m∏
i=1

√√√√ m∑
j=1
||Ai,j ||21 <

m∏
i=1

√
m(th)2 = mm/2tmhm
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which establishes (i). To prove the claim, let Ks be a Kronecker substitution with si > md

and let C be the m ×m matrix with Ci,j = Kr(Ai,j). We note that degxk Ai,j ≤ d implies
that degxk A ≤ md for 1 ≤ k ≤ n. Hence Ks is a bijective map on the monomials of
detA thus Ks(detA) = detC since the Kronecker substitution is a homomorphism. Hence
‖ detA‖ = ‖ detC‖. Now let W be the m ×m matrix with Wi,j = ‖Ci,j‖1 and let H(W )
be the Hadamard’s bound on | detW |. Then ‖detC‖ ≤ H(W ) and since Kr is bijective
S = W hence H(S) = H(W ). Therefore we have ‖ detA‖ = ‖detC‖ ≤ H(W ) = H(S)
which proves the claim.

To prove (ii), Let S and T be the m × m matrices of integers given by Si,j = ||Ai,j ||1
and Ti,j = ||Bi,j ||1 for 1 ≤ i, j ≤ m. From the claim in part (i) if rk > md we have
‖ detA‖ = ‖ detB‖ ≤ H(T ) = H(S). Now if rk ≤ md for any 1 ≤ k ≤ n− 1 then Kr(detA)
is not necessarily one-to-one on the monomials in detA. However, for all rk > 0 and the
definition of one-norm we still have

||Kr(Ai,j)||1 ≤ ||Ai,j ||1 for 1 ≤ i, j ≤ m

so that Ti,j ≤ Si,j hence H(T ) ≤ H(S). We have || detB|| ≤ H(T ) ≤ H(S) and (ii)
follows.

Theorem 3.2. Let A,B,G, Ā, B̄,∆, H be as given at the beginning of this section and let
R = resx0(Ā, B̄). Suppose A =

∑dA
i=0 ai(x1, . . . , xn)xi0 and B =

∑dB
i=0 bi(x1, . . . , xn)xi0 satisfy

degA ≤ d, degB ≤ d, dA > 0, dB > 0, ||ai|| < h and ||bi|| < h. Let Kr : Z[x0, x1, . . . , xn]→
Z[x, y] be the Kronecker map Kr(f) = f(x, y, yr1 , yr1r2 , . . . , yr1r2...rn−1). If Kr is not bad,
that is, Kr(adA) 6= 0 and Kr(adB) 6= 0, then

(i) ||Kr(LC(A))|| ≤ (1 + d)nh and ||Kr(LC(B))|| ≤ (1 + d)nh,
(ii) ||Kr(R)|| ≤ mm/2(1 + d)nmEm and
(iii) if ri > degxi H for 1 ≤ i ≤ n− 1 then ||H|| ≤ (1 + d)nE2

where m = dA + dB and E = e(n+1)dh.

Proof. Since LC(A) ∈ Z[x1, . . . , xn] we have #LC(A) ≤ (1 + d)n thus ||Kr(LC(A))|| ≤
(1 + d)n||LC(A)|| ≤ (1 + d)nh. Using the same argument we have ||Kr(LC(B))|| ≤ (1 + d)nh
which proves (i).

Let Ā =
∑dĀ
i=0 āix

i
0 and B̄ =

∑dB̄
i=0 b̄ix

i
0. Because A = GĀ and B = GB̄, Lemma 2.2

implies ||Ā|| < E and ||B̄|| < E. Let S be Sylvester’s matrix formed from Kr(āi) and Kr(b̄i).
Now Kr(R) = detS and S has dimension dĀ+ dB̄ ≤ dA+ dB = m. Applying Proposition
3.2 to S we have

||Kr(R)|| = || detS|| ≤ tmEmmm/2

where t = maxi,j #Si,j . Since Ā|A and B̄|B, we have

degxj āi(x1, . . . , xn) ≤ d and degxj b̄i(x1, . . . , xn) ≤ d
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thus #Si,j ≤ (1 + d)n and (ii) follows.
For (iii) since G|A and ∆|LC(A), Lemma 2.2 implies ||G|| < E and ||∆|| < E. Thus

||H|| = ||∆G|| ≤ #∆ · ||∆|| · ||G|| ≤ (1 + d)nE2.

Our definition for unlucky primes differs from Brown [Brown, 1971]. Brown’s definition
depends on the vector degree whereas ours depends only on the degree in x0 the main
variable. The following example illustrates the difference.

Example 3.4. Consider the following GCD problem

G = x+ y + 1, Ā = (y + p)x2 + y2, B̄ = yx3 + y + p,

where p is a prime. We have H = gcd(φp(Ā), φp(B̄)) = gcd(yx+ y2, yx2 + y) = y. Thus by
Definition 3.3, p is not unlucky but by Brown’s definition, p is unlucky.

Our GCD algorithm in Z[x0, x1, . . . , xn] only needs monic images in Zp[x0] to recover
H whereas Brown needs monic images in Zp[x0, x1, . . . , xn] to recover G. A consequence
of this is that our bound on the number of unlucky primes is much smaller than Brown’s
[Brown, 1971, Theorems 1 and 2].

3.2 The number of unlucky evaluation points

Even if the Kronecker substitution is not unlucky, after applying it to input polynomials A
and B, because the degree in y may be very large, the number of bad and unlucky evaluation
points may be very large.

Example 3.5. Consider the following GCD problem

G = x0 + xd1 + xd2 + · · ·+ xdn,

Ā = x0 + x1 + · · ·+ xn−1 + xd+1
n , and

B̄ = x0 + x1 + · · ·+ xn−1 + 1.

To recover G, if we use r = [d+1, d+1, . . . , d+1] for x1, x2, . . . , xn−1 we need p > (d+1)n.
But R = resx0(Ā, B̄) = 1 − xd+1

n and Kr(R) = 1 − (yr1r2...rn−1)d+1 = 1 − y(d+1)n which
means there could be as many as (d+ 1)n unlucky evaluation points. If p = (d+ 1)n + 1, all
evaluation points would be unlucky.

To guarantee that we avoid unlucky evaluation points with high probability we would
need to pick p� degKr(R) which could be much larger than what is needed to interpolate
Kr(H). But this upper bound based on the resultant is a worst case. This leads us to
investigate what the expected number of unlucky evaluation points is. We ran an experiment.
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We computed all monic quadratic and cubic bivariate polynomials over small finite fields
Fq of size q = 2, 3, 4, 5, 7, 8, 11 and counted the number of unlucky evaluation points. We
generalized our observation to the following result.

Theorem 3.3. Let Fq be a finite field with q elements and f = xl +
∑l−1
i=0(

∑di
j=0 aijy

j)xi

and g = xm +
∑m−1
i=0 (

∑ei
j=0 bijy

j)xi with l ≥ 1, m ≥ 1, and aij , bij ∈ Fq. Let X = |{α ∈ Fq :
gcd(f(x, α), g(x, α)) 6= 1}| be a random variable over all choices aij , bij ∈ Fq. So 0 ≤ X ≤ q
and for f and g not coprime in Fq[x, y] we have X = q. If di ≥ 0 and ei ≥ 0 then E[X] = 1.

Proof. Let C(y) =
∑d
i=0 ciy

i with d ≥ 0 and ci ∈ Fq and fix β ∈ Fq. Consider the evaluation
map Cβ : Fd+1

q → Fq given by Cβ(c0, . . . , cd) =
∑d
i=0 ciβ

i. We claim that C is balanced, that
is, C maps qd inputs to each element of Fq. It follows that f(x, β) is also balanced, that
is, over all choices for ai,j each monic polynomial in Fq[x] of degree n is obtained equally
often. Similarly for g(x, β).

Recall that two univariate polynomials a, b in Fq[x] with degree deg a > 0 and deg b > 0
are coprime with probability 1 − 1/q. See Mullen and Panario [Mullen and Panario, 2013,
Chapter 11]). This is also true under the restriction that they are monic. Therefore f(x, β)
and g(x, β) are coprime with probability 1− 1/q. Since we have q choices for β we obtain

E[X] =
∑
β∈Fq

Prob[gcd(A(x, β), B(x, β)) 6= 1] = q(1− (1− 1
q

)) = 1.

Proof of claim. Since B = {1, y − β, (y − β)2, . . . , (y − β)d} is a basis for polynomials of
degree d we can write each C(y) =

∑d
i=0 ciy

i as C(y) = u0 +
∑d
i=1 ui(y − β)i for a unique

choice of u0, u1, . . . , ud ∈ Fq. Since C(β) = u0 it follows that all qd choices for u1, . . . , ud

result in C(β) = u0 hence C is balanced.

That E[X] = 1 was a surprise to us. We thought E[X] would have a logarithmic depen-
dence on deg f and deg g. In light of Theorem 3.3, when picking p > degy(Kr(H)) we will
ignore the unlucky evaluation points. If the algorithm encounters unlucky evaluations, then
we restart the algorithm with a larger prime.

3.3 The first example revisit

In our GCD algorithm with a Kronecker substitution we only need to interpolate one vari-
able, say y in our case. The smooth primes of the form 2k · s+ 1 are easy to find. Therefore
it somehow simplifies our algorithm. In this section we redo the first example in Section 2.4
with a Kronecker substitution.

Example 3.6. Consider the GCD problem A = ĀG and B = B̄G, where

G = (92y2 − 513z)x2 + (212y2 + yz2 + 125z)x+ (251y2z2 − 43z3 + 5y2 + 318),
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Ā = y2x+ z and B̄ = y3x2 + z.

Let x be the main variable and Γ = gcd(LC(A), LC(B)) = y2(92y2 − 513z). We first
need to determine the degree of the target GCD in y to set up the Kronecker substitution.
We pick a random evaluation point for x and z and use DegreeBound algorithm in Figure
2.3 to obtain degy G ≤ 2. We have to consider the contribution of degree of Γ in y which is
degy Γ = 4 because G could be monic. Hence the degree of the scaled GCD in y is at most
4 + 2 = 6. But degy A = 4,degy B = 5, the degree of the scaled GCD in y cannot be larger
than min{degy A,degy B} = 4, and therefore we pick r = degy A+ 1 = 5 for the Kronecker
substitution for the first try.

Since degyKr(A) = degyKr(B) = 20, we first use the prime p = 26 · 3 + 1 = 193 which
is larger than 20. We pick ω = 5 as a generator of Z∗193.

The purpose of this example is to demonstrate the role of Kronecker substitution in this
new GCD algorithm. We also note that LC(gcd(Ā, b̄) = y2 is a monomial and therefore the
sparsity is preserved after the scaling. We skip the GCD iteration steps and assume we know
t = 4 and compute 8 univariate GCD images in a row with the random shift s = 5.

Kr(Γ)(ωs+0) gcd(Kr(A)(x, ωs+0),Kr(B)(x, ωs+0)) = 167 x2 +106 x +147
Kr(Γ)(ωs+1) gcd(Kr(A)(x, ωs+1),Kr(B)(x, ωs+1)) = 137 x2 +104 x +132
Kr(Γ)(ωs+2) gcd(Kr(A)(x, ωs+2),Kr(B)(x, ωs+2)) = 74 x2 +154 x +61
Kr(Γ)(ωs+3) gcd(Kr(A)(x, ωs+3),Kr(B)(x, ωs+3)) = 80 x2 +122 x +125
Kr(Γ)(ωs+4) gcd(Kr(A)(x, ωs+4),Kr(B)(x, ωs+4)) = 189 x2 +79 x +135
Kr(Γ)(ωs+5) gcd(Kr(A)(x, ωs+5),Kr(B)(x, ωs+5)) = 110 x2 +35 x +93
Kr(Γ)(ωs+6) gcd(Kr(A)(x, ωs+6),Kr(B)(x, ωs+6)) = 55 x2 +107 x +90
Kr(Γ)(ωs+7) gcd(Kr(A)(x, ωs+7),Kr(B)(x, ωs+7)) = 80 x2 +160 x +38

We mention that the coefficient of x2 is the scaling factor Γ which is known. We extract
the coefficients of x1 and x0 from univariate GCD images to form two sequences

[106, 104, 154, 122, 79, 35, 107, 160] and [147, 132, 61, 125, 135, 93, 90, 38]

on which we apply the Berlekamp-Massey algorithm and obtain the feedback polynomials

c1(z) = 150z3 + 80z2 + 60z + 1 and c2(z) = 57z4 + 43z3 + 150z2 + 14z + 1.

The reciprocals of both polynomials are Λ1 = z3 + 60z2 + 80z + 150 and Λ2 = z4 + 14z3 +
150z2 +43z+57. The root finding algorithm returns roots {153, 46, 127} and {25, 46, 52, 56}
and the corresponding monomials are {y7, y4, y13} and {y2, y4, y17, y14}. By the shifted Van-
dermonde system solving algorithm with s = 5 we obtain the first modular scaled GCD image

H1 = (66y7 + 92y4)x2 + (y13 + 125y7 + 19y4)x+ 150y17 + 58y14 + 5y4 + 125y2.

74



Then we assume the complete support supp(H1) is obtained and set a form by supp(H1).
By Zippel’s sparse interpolation with a new random prime, say p = 101, we obtain

H2 = (93y7 + 92y4)x2 + (y13 + 24y7 + 10y4)x+ 58y17 + 49y14 + 5y4 + 15y2.

For an example of using Zippel’s sparse interpolation to compute GCD, see Example 2.4.
The Chinese remaindering with symmetric representation modulo 193 · 101 on inputs H1

and H2 gives us

Ĥ1 = (−513y7 + 92y4)x2 + (y13 + 125y7 + 212y4)x− 43y17 + 251y14 + 5y4 + 318y2.

We need one more image to check whether Ĥ1 is stable. By Zippel’s sparse interpolation
again with the new prime 103, we have

H3 = (2y7 + 92y4)x2 + (y13 + 22y7 + 6y4)x+ 60y17 + 45y14 + 5y4 + 9y2.

By applying the Chinese remaindering to Ĥ1 and H3 we have

Ĥ2 = (−513y7 + 92y4)x2 + (y13 + 125y7 + 212y4)x− 43y17 + 251y14 + 5y4 + 318y2.

Since Ĥ1 = Ĥ2, Ĥ2 is likely to be the correct result. We apply the inverse Kronecker substi-
tution to Ĥ2 and obtain

K−1
r (Ĥ2) = (92y4−513y2z)x2 +(y3z2 +212y4 +125y2z)x+251y4z2−43y2z3 +5y4 +318y2.

Since y2 is the content of K−1
r (Ĥ2) with respect to x, we divide it out and get

Ĝ = (92y2 − 513z)x2 + (yz2 + 212y2 + 125z)x+ 251y2z2 − 43z3 + 5y2 + 318.

We test Ĝ|A and Ĝ|B and conclude that Ĝ = G.

Remark 3.1. So far we use random evaluation points to construct linear systems in Zip-
pel’s sparse interpolation to solve the coefficients of the assumed form. Classically each
linear system costs O(t3) operations to get a solution. This could be a bottleneck of our
GCD algorithm if t is large. If we use the evaluation sequence described in Ben-Or/Tiwari
interpolation with discrete logarithm method, that is {ωi | i = 0, 1, 2, , . . . }, then each linear
system is a Vandermonde system which can be solved efficiently by Zippel’s method with
O(t2) operations. See Section 2.7. With fast interpolating, the cost can be accelerated to
O(M(t) log t). See Table 2.2. This will be discussed in our faster GCD algorithm.
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Chapter 4

Simplified Algorithm

In this chapter we assemble a "Simplified Algorithm" which is a Las-Vegas GCD algorithm.
This algorithm consists of two parts: the main routine MGCD and the subroutine PGCD.
PGCD computes the GCD modulo a prime and MGCD calls PGCD several times to obtain
enough images to reconstruct the coefficients of the target polynomialH by Chinese Remain-
dering. In this section, we assume that we are given a term bound τ on the number of terms
in the coefficients of target polynomial H with respect to x0, that is τ ≥ #hi(x1, x2, . . . , xn).
This implies that the Berlekamp-Massey algorithm will always terminate. In this simplified
algorithm, we use Γ = gcd(LC(A), LC(B)) rather than LC(A) or LC(B) to scale the uni-
variate images because the Berlekamp-Massey algorithm always terminates and therefore
the algorithm will not run into an infinite loop. We will also choose a Kronecker substitution
that is a priori not bad and not unlucky. These assumptions will enable us to choose a prime
p so that PGCD computes G with high probability.

4.1 Bad and unlucky Kronecker substitutions

Lemma 4.1. Let Kr : Z[x0, x1, . . . , xn] → Z[x, y] be the Kronecker substitution Kr(f) :=
f(x, y, yr1 , yr1r2 , . . . , yr1r2···rn−1). If f 6= 0 and ri > degxi(f) for 1 ≤ i ≤ n − 1 then Kr(f)
sends monomials in f to unique monomials and therefore Kr is one-to-one and Kr(f) 6= 0.

Proof. Suppose two monomials xd0
0 x

d1
1 · · ·xdnn and xe0

0 e
e1
1 · · ·xenn in f are mapped to the same

monomial in Z[x, y] so that

xd0yd1yr1d2 · · · yr1r2···rn−1dn = xe0ye1yr1e2 · · · yr1r2···rn−1en

Clearly d0 = e0 and

d1 + r1d2 + · · ·+ r1r2 · · · rn−1dn = e1 + r1e2 + · · ·+ r1r2 · · · rn−1en (4.1)

Reducing (4.1) modulo r1 we have d1 ≡ e1 (mod r1). Now r1 > degx1 f implies r1 > d1 and
r1 > e1 implies d1 = e1. Subtracting d1 = e1 from this equation and dividing through by r1
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we have
d2 + r2d3 + . . . r2r3 · · · rn−1dn = e2 + r2e3 + . . . r2r3 · · · rn−1en

Repeating the argument we obtain di = ei for 1 ≤ i ≤ n.

In our case, we are considering the polynomials A,B ∈ Z[x0, x1, . . . , xn] with degx0 A > 0
and degx0 B > 0. Let G = gcd(A,B) and Ā = A/G and B̄ = B/G be cofactors of A and B
and let LC(A) and LC(B) the the leading coefficients of A and B with respect to x0. Lemma
4.1 implies that if we pick ri > max(degxi LC(A),degxi LC(B)) then Kr(LC(A)) 6= 0 and
Kr(LC(B)) 6= 0 thus Kr is not bad. Let R = resx0(Ā, B̄). By Lemma 2.4 (iii), we have

degxi R ≤ deg x0B̄ degxi Ā+ deg x0Ā degxi B̄.

Since degxi Ā ≤ degxi A and degxi B̄ ≤ degxi B for 0 ≤ i ≤ n we have

degxi R ≤ degx0 B degxi A+ degx0 A degxi B.

So if we pick ri = (degx0 B degxi A+degx0 A degxi B)+1, then Kr is not unlucky by Lemma
4.1. The assumption that degx0 A > 0 and degx0 B > 0 gives

degx0 B degxi A+ degx0 A degxi B ≥ max{degxi LC(A),degxi LC(B))}

hence the Kronecker substitution Kr with the sequence

[ri = (degxi A degx0 B + degxi B degx0 A) + 1 : 1 ≤ i ≤ n] (4.2)

is not bad and not unlucky.

Remark 4.1. Since degx0 A > 0 and degx0 B > 0, Equation (4.2) implies ri > degxi A
and ri > degxi B. Therefore the map Kr is invertible for A and B and #Kr(A) = #A and
#Kr(B) = #B.

4.2 Bad and unlucky evaluations

In this section, the Kronecker substitution Kr is assumed to be good. We also assume that
the prime p is good.

Proposition 4.1. Let ri = (degxi A degx0 B + degxi B degx0 A) + 1 for 1 ≤ i ≤ n, and
d = max{max{degxi A,degxi B}0≤i≤n}. Then we have

(1) degyKr(A) ≤ (2d2 + 1)n and degyKr(B) ≤ (2d2 + 1)n,
(2) degy LC(Kr(A))(y) ≤ (2d2 + 1)n and degy LC(Kr(B))(y) ≤ (2d2 + 1)n,
(3) degyKr(H) ≤ (2d2 + 1)n, and
(4) degyKr(R) ≤ 2d(2d2 + 1)n, where Kr(R) = resx(Kr(Ā),Kr(B̄)).
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Proof. For (1), after the Kronecker substitution, the exponent of y ≤ e1 + e2(2d2 + 1) +
· · ·+ en(2d2 + 1)n−1, where ei is the exponent of xi and ei ≤ d for all i. So degyKr(A) and
degyKr(B) are bounded by

d+ d(2d2 + 1) + · · ·+ d(2d2 + 1)n−1 = d(1 + (2d2 + 1) + · · ·+ (2d2 + 1)n−1)

= d(1 + (2d2 + 1)n − (2d2 + 1)
(2d2 + 1)− 1 )

= 2d3

2d2 + d(2d2 + 1)n − d(2d2 + 1)
2d2 )

= d(2d2 + 1)n − d
2d2

< (2d2 + 1)n.

Property (2) follows from (1). For (3), recall that degyKr(H) = degyKr(∆G). Since ∆ =
gcd(LC(Ā), LC(B̄)), we have

degyKr(∆G) = degyKr(∆) + degyKr(G)

≤min(degyKr(LC(Ā)), degyKr(LC(B̄))) + degrKr(G)

≤min(degyKr(Ā),degyKr(B̄)) + degrKr(G)

= min(degyKr(A),degyKr(B)) ≤ (2d2 + 1)n.

For (4),
degyKr(R) ≤ degyKr(Ā) degxKr(B̄) + degyKr(B̄) degxKr(Ā),

where degxKr(Ā) = degx0 Ā ≤ degx0 A ≤ d, degxKr(B̄) = degx0 B̄ ≤ degx0 B,≤ d, and
degyKr(Ā) ≤ degyKr(A) and degyKr(B̄) ≤ degyKr(B). So we have

degyKr(R) < d(2d2 + 1)n + d(2d2 + 1)n = 2d(2d2 + 1)n.

By Proposition 4.1(1), a prime p > (2d2 + 1)n is sufficient to recover the exponents for
the Kronecker substitution. With the assumption that p is not bad and not unlucky, we
have the following two lemmas.

Lemma 4.2. Let p be a good prime. If α is chosen uniformly at random from [0, p − 1],
then

Prob(α is bad) = Prob(LC(Kr(A))(α)LC(Kr(B))(α) = 0) (4.3)

≤ degLC(Kr(A))(y) + degLC(Kr(B))(y)
p

<
2(2d2 + 1)n

p
. (4.4)
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Lemma 4.3. Let p be a good prime. If α is chosen uniformly at random from [0, p − 1],
then

Prob(α is bad or unlucky) < 2(2d2 + 1)n + 2d(2d2 + 1)n

p
.

Proof. This result follows from Proposition 4.1(4), Lemma 4.2 and Lemma 2.7.

The probability that our algorithm does not encounter a bad or unlucky evaluation
can be estimated as follows. Let U denote the bound of the number of bad and unlucky
evaluation points and τ ≥ maxi{#hi}. We need 2τ good consecutive evaluation points (a
segment of length 2τ in the sequence (1, .., p− 1)) to compute the feedback polynomial for
hi. Suppose αk is a bad or unlucky evaluation point where s ≤ k < 2τ for any positive
integer s ∈ (0, p − 1]. Then every segment of length 2τ starting at αi where k − 2τ + 1 ≤
i ≤ k includes the point αk so that our algorithm fails to determine the correct feedback
polynomial due to bad or unlucky evaluation. The union of all segments including αk has
length 4τ − 1. We can not use every segment of length 2τ from k − 2τ + 1 to k + 2τ − 1
to construct the correct feedback polynomial. The worst case occurs when for all bad and
unlucky evaluation points, their corresponding segments of length 4τ − 1 do not overlap.
Since there are at most U of them, we can not determine the correct feedback polynomials
for at most U(4τ − 1) points. Note, this does not mean that all those points are bad or
unlucky, there is only one bad or unlucky point in each segment of length 2τ . U is bounded
by 2(2d2 + 1)n + 2d(2d2 + 1)n = (2d+ 2)(2d2 + 1)n.

Lemma 4.4. Suppose p is good.

Prob(2τ evaluation points fail to determine the feedback polynomial)

≤ 4τU − U
p− 1 <

4τU
p− 1 ≤

4τ(2d+ 2)(2d2 + 1)n

p− 1 ≤ 1
X
,

for some positive number X. So if we choose a prime p > 4Xτ(2d+ 2)(2d2 + 1)n, then the
probability that PGCD fails is at most 1

X .

Remark 4.2. The choice of p in previous lemma implies p > (2d2 + 1)n ≥ degy(Kr(H)).
So we can recover the exponents of y in H.

4.3 Bad and unlucky primes

Our goal here is to construct a set S of smooth primes, with |S| large enough so if we choose
a prime p ∈ S uniformly at random, the probability that p is good is at least 1

2 .
A bad prime must divide ‖LC(Kr(A))‖ or ‖LC(Kr(B))‖ and an unlucky prime must

divide ‖Kr(R)‖. Recall that in section 2.1,

M = ‖LC(Kr(A))‖‖LC(Kr(B))‖‖Kr(R)‖.
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We want to construct a set S = {p1, p2, . . . , pN} of N smooth primes with each pi >

4τ(2d+4)(2d2 +1)nX. If p > 4τ(2d+4)(2d2 +1)nX, then the probability that our algorithm
fails to determine the feedback polynomial is < 1

X . The size N of S can be estimated as
follows. If

N = Y dlog4Xτ(2d+4)(2d2+1)nMe > Y logpminM,

where a bound for M is given by Theorem 3.2 (ii), pmin = minpi∈S pi and Y > 0, then

Prob( p is bad or unlucky) ≤
logpminM

N
<

1
Y
.

We construct a set S which consists of N y-smooth primes where y ∈ N so that
minpi∈S pi > 4τX(2d+4)(2d2+1)n which is the constraint for the bad or unlucky evaluation
case. The size of y affects the efficiency of the discrete logarithm computation. We conclude
with the following result.

Theorem 4.1. Let S be constructed as just described. Let p be chosen uniformly at random
from S, s be chosen uniformly at random from 0 < s ≤ p− 1 and αp be a random generator
of Z∗p. Let E = {αs+jp : 0 ≤ j < 2τ} be 2τ consecutive evaluation points. For given X > 0
and Y > 0, we have

Prob(p is good and E are all good) > (1− 1
X

)(1− 1
Y

).

4.4 Algorithm

Let S = {p1, p2, . . . , pN} be the set of N primes constructed in the previous section. We’ve
split our GCD algorithm into two subroutines, subroutine MGCD and PGCD. The main
routine MGCD chooses a Kronecker substitution Kr and then chooses a prime p from S

uniformly at random and calls PGCD to compute Kr(H) mod p.
Algorithm MGCD is a Las Vegas algorithm. Let H =

∑d0
i=0 hix

i
0. The choice of S means

that algorithm PGCD will compute Kr(H) mod p with probability at least (1− 1
X )(1− 1

Y ).
By taking X = 4 and Y = 4 this probability is at least 1

2 . The design of MGCD means that
even with probability 1

2 , the expected number of calls to algorithm PGCD is linear in the
minimum number of primes needed to recover H using Chinese remaindering, that is, we
do not need to make the probability that algorithm PGCD computes H mod p high for
algorithm MGCD to be efficient.

Algorithm MGCD( A, B, τ )

Inputs A,B ∈ Z[x0, x1, . . . , xn] and a term bound τ satisfying n > 0, A and B are primitive
in x0, degx0 A > 0, degx0 B ≥ 0 and τ ≥ max #hi.

Output G = gcd(A,B).
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1 Compute Γ = gcd(LC(A), LC(B)) in Z[x1, . . . , xn].

2 Set ri = 1 + (degxi A degx0 B + degxi B degx0 A) for 1 ≤ i < n.

3 Let Y = (y, yr1 , yr1r2 , . . . , yr1r2...rn−1).
Set Kr(A) = A(x, Y ), Kr(B) = B(x, Y ) and Kr(Γ) = Γ(Y ).

4 Construct the set S of smooth primes according to Theorem 4.1 with X = 4 and
Y = 4.

5 Set Ĥ = 0,M = 1, d0 = min(degx0 A,degx0 B).

LOOP: // Invariant: d0 ≥ degx0 H = degx0 G.

6 Call PGCD( Kr(A), Kr(B), Kr(Γ), S, τ , M ).
If PGCD outputs FAIL then goto LOOP.
Let p and Ĥp =

∑dx
i=0 ĥi(y)xi be the output of PGCD.

7 If dx > d0 then either p is unlucky or all evaluation points were unlucky so goto
LOOP.

8 If dx < d0 then either this is the first image or all previous images in Ĥ were unlucky
so set d0 = dx, Ĥ = Hp, M = p and goto LOOP.

Chinese-Remaindering

9 Set Hold = Ĥ. Solve {Ĥ ≡ Hold mod M and Ĥ ≡ Ĥp mod p} for Ĥ. Set M =
M × p. If Ĥ 6= Hold then goto LOOP.

Termination.

10 Set H̃ = K−1
r Ĥ(x, y) and let H̃ =

∑d0
i=0 C̃ix

i
0 where C̃i ∈ Z[x1, x2, . . . , xn].

11 Set Ĝ = H̃/ gcd(C̃0, C̃1, . . . , C̃d0) (Ĝ is the primitive part of H̃).

12 If Ĝ|A and Ĝ|B then output Ĝ.

13 goto LOOP.

Algorithm PGCD( K(A), K(B), K(Γ), S, τ , M )

Inputs K(A),K(B) ∈ Z[x, y], K(Γ) ∈ Z[y], S a set of smooth primes, a term bound
τ ≥ max #hi and M a positive integer.

Output With probability ≥ 1
2 a prime p and polynomial Hp ∈ Zp[x, y] satisfying Hp =

K(H) mod p and p does not divide M , otherwise FAIL.

1 Pick a prime p uniformly at random from S that is not bad and does not divide M .
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2 Pick a shift s ∈ Z∗p uniformly at random and any generator α for Z∗p.

Compute-and-scale-images:

3 For j from 0 to 2τ − 1 do

4 Compute aj = K(A)(x, αs+j) mod p and bj = K(B)(x, αs+j) mod p.
5 If degx aj < degxK(A) or degx bj < degxK(B) then output FAIL (αs+j is a

bad evaluation point.)
6 Compute gj = gcd(aj , bj) ∈ Zp[x] using the Euclidean algorithm and set gj =
K(Γ)(αs+j)× gj mod p.

End for loop.

7 Set d0 = deg g0(x). If deg gj(x) 6= d0 for any 1 ≤ j ≤ 2τ − 1 output FAIL (unlucky
evaluations).

Interpolate-coefficients:

8 For i = 0 to d0 − 1 do

9 Run the Berlekamp-Massey algorithm on the coefficients of xi in the images
g0, g1, . . . , g2τ−1 to obtain the feedback polynomial ci(z) and set τi = deg ci(z).

10 Compute the reciprocal of ci(z) to get Λi(z) and then compute the roots mj of
each Λi(z) in Zp. If the number of distinct roots of Λi(z) is not equal τi then
output FAIL (the feedback polynomial is wrong due to undetected unlucky
evaluations.)

11 Set ek = logαmk for 1 ≤ k ≤ τi and let σi = {ye1 , ye2 , . . . yeτi}.

12 Solve the τi by τi shifted transposed Vandermonde system{
τi∑
k=1

(αs+j)ekuk = coefficient of xi in gj(x) for 0 ≤ j < τi

}

modulo p for u and set hi(y) =
∑τi
k=1 uky

ek . Note: (αs+j)ek = ms+j
k

End for loop.

13 Set Hp := K(Γ)xd0 +
∑d0−1
i=0 hi(y)xi and output (p,Hp).

Theorem 4.2. Let pmin = minS and let N = logpmin ||2H||. So N primes in S are
sufficient to recover the integer coefficients of H using Chinese remaindering. Let Z be the
number of calls that Algorithm MGCD makes to Algorithm PGCD. Then E[Z] ≤ 2(N + 1).

Proof. Because the Kronecker substitution Kr is not bad, and the primes p used in PGCD
are not bad and the evaluations points {αs+j : 0 ≤ j ≤ 2τ − 1} used in PGCD are not
bad, in Step 6 of Algorithm PGCD, deg gj(x) ≥ degx0 G by 2.6. Therefore d0 ≥ degx0 H =
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degx0 G throughout Algorithm MGCD and degx Ĥ = degx0 Ĝ ≥ degx0 G. Since A and B

are primitive in x0, if Ĝ|A and Ĝ|B then it follows that Ĝ = G, so if algorithm MGCD
terminates, it outputs G.

To prove termination observe that Algorithm MGCD proceeds in two phases. In the
first phase MGCD loops while d0 > degx0 H. In this phase no useful work is accomplished.
Observe that the loops in PGCD are of fixed length 2τ and d0+1 so PGCD always terminates
and algorithm MGCD tries another prime. Because at least 3/4 of the primes in S are
good, and, for each prime, at least 3/4 of the possible evaluation point sequences are good,
eventually algorithm PGCD will choose a good prime and a good evaluation point sequence
after which d0 = degx0 H.

In the second phase MGCD loops using images Hp with degxHp = d0 to construct
Ĥ. Because the images gj(x) used satisfy degx gj(x) = d0 = degx0 H and we scale them
with Γ(αs+j), PGCD interpolates Hp = H mod p thus we have modular images of H.
Eventually Ĥ = H and the algorithm terminates.

Because the probability that the prime chosen from S is good is at least 3/4 and the
evaluation points αs+j are all good is at least 3/4, the probability that PGCD outputs a
good image of H is at least 1/2. Since N images of H are sufficient to recover 2H and we
meed one more to stabilize, E[Z] ≤ 2(N + 1) as claimed.

Remark 4.3. Note, we do not check for termination after each prime because computing
the primitive part of H̃ or doing the trial divisions Ĝ|A and Ĝ|B in step 12 could be
more expensive than algorithm PGCD. Instead algorithm MGCD waits until the Chinese
remaindering stabilizes in Step 9 before proceeding to test for termination.
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Chapter 5

Faster Algorithm

In this chapter, we consider the practical improvement of our simplified algorithm. The
new algorithm consists of three algorithms: MGCD1, PGCD1 and SGCD1. In practice,
because the term bound τ ≥ t is usually unknown, the method discussed in Section 2.5
will be used. The Kronecker substitution used in the simplified algorithm is always not
bad and not unlucky which leads to use larger primes. In order to handle GCD problems
as large as possible with 63 bit primes or 127 bit primes as we have implemented, we
use smaller Kronecker substitution which guarantees the invertibility of Kr(H) but may
encounter unlucky Kronecker substitutions. We make three improvements, one necessary,
the other two efficiency improvements. Unfortunately, each improvement leads to a major
complication which we solve probabilistically.

5.1 Term Bounds

Recall that H = ∆G =
∑dG
i=0 hi(x1, . . . , xn)xi0. Algorithms MGCD and PGCD assume a

term bound τ on #hi(y). In practice, good term bounds are usually not available. For the
GCD problem, one cannot even assume that #G ≤ min(#A,#B). So we must modify the
algorithm to compute ti = #hi(y).

We have provided details to determine ti in chapter 2. To be precise, we will loop calling
the Berlekamp-Massey algorithm after 2, 4, 6, 8, . . . , evaluation points and wait until we get
two consecutive zero discrepancies. This means c(z) is correct with high probability when p
is sufficiently large, see Theorem 2.6. This loop will terminate. However, the support σi of
Kr(hi) computed in step 11 of PGCD1 may still be wrong due to early stabilization of the
feedback polynomial. Note that even if the feedback polynomial stabilizes at degree d, the
algorithm continues to loop unless the reciprocal of the feedback polynomial has exactly d
distinct roots. We consider an example.

Example 5.1. Consider the following GCD problem in Z[x, y]. Let p and q be prime and
let

G = x+ py + qy2 + py4, Ā = 1, B̄ = 1.
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Suppose MGCD chooses p first and suppose PGCD returns x + qy2 mod p so that
σ0 = {y2}. Suppose MGCD chooses q next and suppose c0(z) stabilizes too early and
σ0 = {y3} which is wrong. This could also be due to missing terms, for example, if G = x+
pqy+qy2 +py3. If we combine these two images modulo p and q using Chinese remaindering
to obtain Ĥ of the form x+ ·y2 + ·y3 we have a bad image in Ĥ and we need somehow to
detect it. Once detected, we do not want to restart the entire algorithm because we might be
throwing away a lot of good images in Ĥ. Our solution in Steps 8–11 of algorithm MGCD1
is probabilistic.

5.2 Using smaller primes

Another consideration is to reduce ri in the Kronecker substitution hence reduce the size
of the primes. The Kronecker substitution is required to be invertible for H but may be
unlucky. We have implemented our GCD algorithm for 63 bit primes and 127 bit primes.
With smaller ri, we can solve GCD problems of higher degree or more variables with 63 bit
or 127 bit primes. By choosing a Kronecker substitution that is a priori good, and requiring
that the 2τ evaluation points are good, the primes in S constructed for the simplified
algorithm must be greater than 4τ(2d+ 2)(2d2 + 1)n where d bounds the degree of A and
B in all variables. Instead if we choose ri > degxi H then we will still be able to recover H
from Kr(H) by inverse map of the Kronecker substitution.

Since degxi H ≤ min(degxi A,degxi B) ≤ d, using ri = d + 1 we replace the factor
(2d2 + 1)n with (d+ 1)n. The unlucky Kr can be detected when deg gj(x) > d0 in step 6 of
PGCD1 by computing d0 = DegreeBound(A,B, 0) periodically so that eventually we obtain
d0 = degx0 G. Once detected we increase ri by 1 to try a larger Kronecker substitution.

Recall that p is an unlucky prime if p|R where R = resx0(Ā, B̄). Because the inputs A
and B are primitive in x0 it follows that the integer coefficients of A and B and hence also Ā
and B̄ are relatively prime. Therefore, the integer coefficients of R are also likely relatively
prime, and if not, the common factor is likely small e.g., 2. Thus the expected number of
unlucky primes is very close to 0. Theorem 3.3 showed that the expected number of unlucky
evaluations is also very low and hence instead of using p > 4τ(2d+ 2)(d+ 1)n we first try a
prime p > 4(d+ 1)n. This reduces the length of the primes from size 4τ(2d+ 2)(2d2 + 1)n

to size 4(d + 1)n for most inputs by at least a factor of 2, equivalently, it allows us to
handle twice as many variables or to square the degree of y for a fixed prime size. Once we
encounter bad or unlucky evaluation points we increase the length of p.

Example 5.2. For our benchmark problem where n = 8, d = 20 and τ = 1000 we have
log2[4τ(2d+ 2)(2d2 + 1)n] = 94.5 bits which precludes our using 63 bit primes. On the other
hand log2[4(d+ 1)n] = 37.1 bits, meaning a 63 bit prime is more than sufficient.
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5.3 Using fewer evaluation points

Let Kr(hi) =
∑ti
j=1Cijy

eij for some coefficients Cij ∈ Z so that Supp(Kr(hi)) = {yeij :
1 ≤ j ≤ ti}. Because of the size of the primes chosen by algorithm MGCD, it is likely
that the first good image Hp computed by PGCD has the entire support of Kr(H), that
is, Supp(ĥi) = Supp(Kr(hi)). Assuming this to be so, we can compute the next image of
Kr(H) modulo p using only t evaluations instead of 2t+O(1) as follows. We choose a prime
p and compute gj(x) for 0 ≤ j < t as before in PGCD. Suppose these t images are all good,
α is a generator of Z∗p and s is the shift value chosen uniformly at random from Zp. One
may solve the the ti by ti shifted transposed Vandermonde systems

ti∑
j=1

(αs+j)eijuij = coefficient of xi in gj(x) for 0 ≤ j ≤ τi


for the unknown coefficients uij and obtain Hp =

∑d0
i=0

∑ti
j=0 uijy

eij . This method, named
as SGCD1, chooses the evaluations points for Zippel’s sparse interpolation such that the
system of linear equations is a transposed Vandermonde system. Therefore fewer evaluation
points are used and all linear systems can be solved efficiently in quadratic time, see Section
2.7.

It is possible that the prime p used in PGCD may divide a coefficient Cij in Kr(H) in
which case we will need to call PGCD again with a different prime to compute more of the
support of Kr(H).

Definition 5.1. Let f =
∑d
i=0Ciy

ei be a polynomial in Z[y]. We say a prime p causes
missing terms in f if p divides any coefficient Ci in f .

Our strategy to detect when Supp(ĥi) 6⊂ Supp(Kr(hi)) is probabilistic. We use one extra
equation and solve (ti + 1) by ti systems thus requiring t+ 1 evaluations instead of 2t+ 2.
Once detected, we will call PGCD again to determine Supp(Kr(hi)).

5.4 Algorithm MGCD1

We now present our algorithm as algorithm MGCD1 which calls subroutines PGCD1 and
SGCD1. Like MGCD, MGCD1 loops calling PGCD1 to determine theHp = Kr(H) mod p.
Instead of calling PGCD1 for each prime, MGCD1 after PGCD1 returns an image Hp,
MGCD1 assumes the support of Kr(H) is now known and uses SGCD1 for the remaining
images.

Algorithm MGCD1( A, B )

Inputs A,B ∈ Z[x0, x1, . . . , xn] satisfying n > 0, A and B are primitive in x0, and degx0 A >

0, degx0 B > 0.
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Output G = gcd(A,B).

1 If #LC(A) < #LC(B) set Γ = LC(B) else set Γ = LC(A).

2 Call Algorithm DegreeBound(A,B,i) to get di ≥ degxi G for 0 ≤ i ≤ n.
If d0 = 0 return 1.

3 Set ri = min( degxi A, degxi B, di + degxi(Γ) ) for 1 ≤ i < n.
Set δ = 1.

Kronecker-Prime

4 Set ri = ri + 1 for 1 ≤ i < n. Let Y = (y, yr1 , yr1r2 , . . . , yr1r2...rn−1).
Set Kr(A) = A(x, Y ), Kr(B) = B(x, Y ) and Kr(Γ) = Γ(Y ).
If Kr is bad goto Kronecker-Prime otherwise set δ = δ + 1.

RESTART

5 Set Ĥ = 0,M = 1 and MissingTerms = true.
Set σi = φ and τi = 0 for 0 ≤ i ≤ d0. // τi = |σi|.

LOOP: // Invariant: d0 ≥ degx0 H.

6 Compute dx = DegreeBound(A,B, 0).
If dx < d0 set d0 = dx and goto RESTART.

7 For each prime p|M do // Delete bad image.

8 Set a = Kr(A) mod p, b = Kr(B) mod p and h = Ĥ mod p.
9 Pick β from [0, p− 1] uniformly at random.

10 If Kr(Γ)(β) 6= 0 and either h(x, β) 6 | a(x, β) or h(x, β) 6 | b(x, β) then h is wrong
so set M = M/p and Ĥ = Ĥ mod M to remove it.

End for loop.

If MissingTerms then

11 Pick a new smooth prime p > 2δ
∏n
i=1 ri that is not bad.

12 Call PGCD1( Kr(A), Kr(B), Kr(Γ), d0, τ , r, p ).

13 If PGCD1 returned UNLUCKY(dmin) set d0 = dmin and goto RESTART.
If PGCD1 returned FAIL goto Kronecker-Prime.

14 Let Ĥp =
∑dx
i=0 ĥi(y)xi be the output of PGCD1.

Set MissingTerms = false, σi := σi ∪ Supp(ĥi) and τi = |σi| for 0 ≤ i ≤ d0.

else

15 Pick a new prime p > 2δ
∏n
i=1 ri that is not bad.
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16 Call SGCD1( Kr(A), Kr(B), Kr(Γ), d0, σ, τ , p ).

17 If SGCD1 returned UNLUCKY(dmin) set d0 = dmin and goto RESTART.
If SGCD1 returned FAIL goto Kronecker-Prime.
If SGCD1 returned MISSINGTERMS set δ = δ + 1, Missingterms = true and goto
LOOP.

18 Let Ĥp =
∑d0
i=0 ĥi(y)xi be the output of SGCD1.

End If

Chinese-Remaindering

19 Set Hold = Ĥ. Solve {Ĥ ≡ Hold mod M and Ĥ ≡ Ĥp mod p} for Ĥ. Set M =
M × p. If Ĥ 6= Hold then goto LOOP.

Termination.

20 Set H̃ = K−1
r Ĥ(x, y). Let H̃ =

∑d0
i=0 C̃ix

i
0 where C̃i ∈ Z[x1, . . . , xn].

21 Set Ĝ = H̃/ gcd(C̃0, C̃1, . . . , C̃d0) (Ĝ is the primitive part of H̃.

22 If deg Ĝ ≤ degA and deg Ĝ ≤ degB and Ĝ|A and Ĝ|B then return Ĝ.

23 goto LOOP.

Algorithm PGCD1( K(A), K(B), K(Γ), d0, τ , r, p )

Inputs K(A),K(B) ∈ Z[x, y] and K(Γ) ∈ Z[y], d0 ≥ degx0 G where G = gcd(A,B), term
bound estimates τ ∈ Zd0+1, r ∈ Zn, and a smooth prime p.

Output Hp ∈ Zp[x, y] satisfying Hp = K(H) mod p or FAIL or UNLUCKY(dmin).

1 Pick a shift s ∈ Z∗p uniformly at random and any generator α for Z∗p.

2 Set T = 0.

LOOP

3 For j from 2T to 2T + 1 do

4 Compute aj = K(A)(x, αs+j) mod p and bj = K(B)(x, αs+j) mod p.
5 If degx aj < degxK(A) or degx bj < degx0 K(B) then return FAIL (αs+j is a bad

evaluation point.)
6 Compute gj = gcd(ai, bi) ∈ Zp[x] using the Euclidean algorithm.
Make gj monic and set gj = K(Γ)(αs+j)× gj mod p.

End for loop.
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7 Set dmin = min deg gj(x) and dmax = max deg gj for 2T ≤ j ≤ 2T + 1.
If dmin < d0 output UNLUCKY(dmin).
If dmax > d0 output FAIL (unlucky evaluations).

8 Set T = T + 1.
If T < #K(Γ) or T < maxd0

i=0 τi goto LOOP.

9 For i from 0 to d0 do

10 Run the Berlekamp-Massey algorithm on the coefficients of xi in the images
g0, g1, . . . , g2T−1 to obtain ci(z) and set τi = deg ci(z). If either of the last two
discrepancies were non-zero goto LOOP.

End for loop.

11 For i from 0 to d0 do

12 Compute the reciprocal of ci(z) to get Λi(z) then compute the roots of Λi(z).
If Λi(0) = 0 or the number of distinct roots of Λi(z) is not equal τi then goto
LOOP (ci(z) stabilized too early)

13 Set ek = logαmk for 1 ≤ k ≤ τi and let σi = {ye1 , ye2 , . . . yeτi}.
If ek ≥

∏n
i=1 ri then ek > degKr(H) so output FAIL (either the ci(z) stabilized

too early or Kr or p or all evaluations are unlucky).
14 Solve the τi by τi shifted transposed Vandermonde system{

τi∑
k=1

(αs+j)ekuk = coefficient of xi in gj(x) for 0 ≤ j < τi

}

modulo p for u and set ĥi(y) =
∑τi
k=1 uky

ek . Note: (αs+j)ek = ms+j
k .

End for loop.

15 Set Hp =
∑d0
i=0 ĥi(y)xi and output Hp.

Algorithm SGCD1( K(A), K(B), K(Γ), d0, σ, τ , p )

Inputs K(A),K(B) ∈ Z[x, y], K(Γ) ∈ Z[y], d0 ≥ degx0 G where G = gcd(A,B), supports
σi for Kr(hi) and τi = |σi|, a smooth prime p.

Output FAIL or UNLUCKY(dmin) or MISSINGTERMS or Hp ∈ Zp[x, y] satisfying if
d0 = degx0 G and σi = Supp(Kr(hi)) then Hp = Kr(H) mod p.

1 Pick a shift s ∈ Z∗p uniformly at random and any generator α for Z∗p.

2 Set T = maxd0
i=1 τi.

3 For j from 0 to T do // includes 1 check point

4 Compute aj = K(A)(x, αs+j) mod p and bj = K(B)(x, αs+j) mod p.
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5 If degx aj < degxK(A) or degx bj < degx0 K(B) then output FAIL (αs+j is a
bad evaluation point.)

6 Compute gj = gcd(ai, bi) ∈ Zp[x] using the Euclidean algorithm.
Make gj monic and set gj = K(Γ)(αs+j)× gj mod p.

End for loop.

6 Set dmin = min deg gj(x) and dmax = max deg gj for 0 ≤ j ≤ T.
If dmin < d0 output UNLUCKY(dmin).
If dmax > d0 output FAIL (unlucky evaluations).

7 For i from 0 to d0 do

8 Let σi = {ye1 , ye2 , . . . , yeτi}. Solve the (τi + 1) by τi shifted transposed Vander-
monde system{

τi∑
k=1

(αs+j)ekuk = coefficient of xi in gj(x) for 0 ≤ j ≤ τi

}

modulo p for u.

9 If the linear system is inconsistent then output MISSINGTERMS, otherwise set
ĥi(y) =

∑τi
k=1 uky

ek .

End for loop.

10 Set Hp =
∑d0
i=0 ĥi(y)xi and output Hp.

Theorem 5.1. MGCD1 terminates and outputs G = gcd(A,B).

Proof. Since MGCD1 avoids bad Kronecker substitutions and bad primes, PGCD1 and
SGCD1 also avoid bad evaluation points αs+j , we have Kr(Γ)(αs+j) 6= 0 and deg gj(x) ≥
degx0 G by Lemma 2.6. Hence degx Ĥ = degx0 Ĝ ≥ degx0 G. Therefore, if algorithm MGCD1
terminates, the conditions A and B are primitive and Ĝ|A and Ĝ|B imply Ĝ = G. To prove
the termination we observe that Algorithm MGCD1 proceeds in four phases.

In the first phase MGCD1 loops while d0 > degxKr(H) = degx0 G. Because Γ is either
LC(A) or LC(B), even if Kr or p or all evaluation points are unlucky, the scaled images in
Step 6 of algorithm PGCD1 are images of a polynomial in Z[x, y] hence the ci(z) polynomials
stabilize with high probability, see Theorem 2.6, and algorithm PGCD1 always terminates.

Now if PGCD1 or SGCD1 output UNLUCKY(dmin) then d0 is decreased, otherwise,
they output FAIL or MISSINGTERMS or an image Hp and MGCD1 executes Step 7 at
the beginning of the main loop. Eventually the call to DegreeBound in Step 7 will set
d0 = degx0 G after which unlucky Kronecker substitutions, unlucky primes and unlucky
evaluation points can be detected. Hence d0 is the key parameter in MGCD1. In practice,
DegreeBound determines the correct d0 in one run if the prime used is large enough.
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Suppose d0 = degx0 G for the first time. In the second phase MGCD1 loops while
PGCD1 outputs FAIL due to an unlucky Kronecker substitution or an unlucky prime or
bad or unlucky evaluation points or the Berlekamp-Massey algorithm stabilized too early. If
PGCD1 outputs FAIL, since we don’t know if this is due to unlucky Kronecker substitution
or an unlucky prime p, MGCD1 increases ri by 1 and the size of p by 1 bit. Since there
are only finitely many unlucky Kr, eventually Kr will be lucky. And since there are only
finitely many unlucky primes, eventually p be lucky. Finally, since we keep increasing the
length of p, eventually p will be sufficiently large so that no bad or unlucky evaluations are
encountered in PGCD1 and the Berlekamp-Massey algorithm does not stabilize too early.
Then PGCD1 succeeds and outputs an image Hp with degxHp = d0 = degx0 G.

In the third phase MGCD1 loops while σi 6⊇ Kr(hi), that is, we don’t yet have the
support for all Kr(hi) ∈ Z[y] either because of missing terms or because a ci(z) polynomial
stabilized too early in PGCD1, and went undetected.

We now prove that SGCD1 detects that σi 6⊇ Supp(Kr(hi)) with probability at least
3/4 in Step 22 so that PGCD1 is called again in MGCD1.

Suppose σi 6⊇ Supp(Kr(hi)) for some i. Consider the first τi equations in Step 8 of
SGCD1. We first argue that this linear system has a unique solution. Let mk = αek so that
(αs+j)ek = ms+j

k . The coefficient matrix W of the linear system has entries

Wjk = ms+j−1
k for 1 ≤ j ≤ τi and 1 ≤ k ≤ τi.

W is a shifted transposed Vandermonde matrix with determinant

detW =
∏

1≤k≤τi
ms
k

∏
1≤j<k≤τi

(mj −mk).

Since mk = αek we have mk 6= 0. Since p > degyKr(H) and the number of distinct roots
of Λi(z) equals τi (no multiple roots) in Step 9 of PGCD1, the mk are distinct. Hence
detW 6= 0 and the linear system has a unique solution for u.

Let h̄i(y) =
∑τi
k=1 uky

ek and let E(y) = Kr(hi)(y)−h̄i(y). If the τi+1 by τi linear system
in Step 8 of SGCD1 is inconsistent then E(αs+j) = 0 for 0 ≤ j < τi but E(αs+τi) 6= 0 and
algorithm SGCD1 detects the inconsistency. It is possible, however, that E(αs+τi) = 0 and
algorithm SGCD1 fails to detect the inconsistency. But the probability that this can happen
is at most 1/4, see Lemma 5.1 below.

Thus eventually the wrong support is detected in Step 8 of algorithm SGCD1. Because
we cannot tell whether this is caused by missing terms or ci(z) stabilizing too early and
going undetected in Steps 12 and 13 of PGCD1, we increase the size of p by 1 bit in Step
17 so that with repeated calls to PGCD1, ci(z) will eventually not stabilize early and we
obtain σi ⊇ Supp(Kr(hi)).
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How many good images are needed before σi ⊇ Supp(Kr(hi)) for all 0 ≤ i ≤ d0 ? Let
pmin be the smallest prime used by algorithm PGCD1. Let N = blogpmin ||Kr(H)||c. Since
at most N primes ≥ pmin can divide any integer coefficient in Kr(H) then N + 1 good
images from PGCD1 are sufficient to recover the support of Kr(H).

In the fourth and final phase MGCD1 loops calling SGCD1 while Ĥ 6= Kr(H). If SGCD1
outputs an image Hp then Hp = H mod p because d0 = degx0 H and σi ⊇ Kr(hi). The
image is combined with previously computed images in Ĥ using Chinese remaindering. But
as noted in Example 5.1, Ĥ may contain a bad image. A bad image arises because either
PGCD1 returns a bad image Hp due to early stabilization of ci(z) or because SGCD1 uses
a support with missing terms and fails to detect it.

Consider the prime p and polynomial h(x, y) in step 8 of MGCD1. Suppose h(x, y) is a
bad image, that is, h 6= Kr(H) mod p. We claim steps 7 − 10 of MGCD1 detect this bad
image with probability at least 1/2. Since the test for a bad image is executed repeatedly
in the main loop, algorithm MGCD1 eventually detects it and removes it hence eventually
MGCD1 computes Kr(H) and terminates with output G.

To prove the claim we recall that H = ∆G and LC(H) = Γ. Because step 8 of PGCD1
requires T ≥ #Kr(Γ) this ensures algorithm PGCD1 always outputs Hp with LC(Hp) =
Kr(Γ) mod p, hence LC(h) = Kr(Γ) mod p.

If h = Kr(H) mod p and Kr(Γ)(β) 6= 0 then in step 10 of MGCD1 h(x, β) must
divide Kr(A)(x, β) and divide Kr(B)(x, β). Now suppose h 6= Kr(H) mod p. Then step
10 of MGCD1 fails to detect this bad image if Kr(Γ)(β) 6= 0 and h(x, β)|Kr(A)(x, β) and
h(x, β)|Kr(B)(x, β) in Zp[x]. Since degx h = d0 = degxKr(H) it must be that h(x, β) is
an associate of Kr(H)(x, β). But since LC(h) = Kr(Γ) mod p = LC(Kr(H)) mod p we
have h(x, β) = Kr(H)(x, β) mod p. Let E = h −Kr(H) mod p. Therefore the test for a
bad image h succeeds if Kr(Γ)(β) 6= 0 and E(x, β) 6= 0. Lemma 5.2 below implies the test
succeeds with probability at least 1/2.

Lemma 5.1. We use the notations defined in the proof of Theorem 5.1. If s is chosen
uniformly at random from [1, p− 1] then

Prob[E(αs+τi) = 0] <
1
4 .

Proof. The condition in Step 13 of algorithm PGCD1 means deg h̄i(y) <
∏n
j=1 rj hence

degy(E) <
∏n
j=1 rj . Now s is chosen uniformly at random so αs+τi is random on [1, p − 1]

therefore
Prob[E(αs+τi) = 0] ≤

degy(E)
p− 1 <

∏n
j=1 rj

p− 1 .

Since the primes in SGCD1 satisfy p > 4
∏n
j=1 rj the result follows.
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Lemma 5.2. We use the notations defined in the proof of Theorem 5.1. If β is chosen
uniformly at random from [0, p− 1] then

Prob[Kr(Γ)(β) 6= 0] ≥ 3
4 and Prob[E(x, β) 6= 0] ≥ 3

4 .

Proof. The primes p chosen in step 15 of MGCD1 satisfy p > 2δ
∏n
i=1 ri with δ ≥ 2. Since

degyKr(Γ) <
∏n
i=1 ri by step 3 of MGCD1, Prob[Kr(Γ)(β) mod p = 0] ≤ degy(Γ)

p < 1
4 .

Since degy h <
∏n
i=1 ri by step 13 of PGCD1 and since ri is chosen in step 3 of MGCD1

so that ri ≥ degxi H, we have degyKr(H) <
∏n
i=1 ri. Hence degy E <

∏n
i=1 ri. Therefore

Prob[E(x, β) = 0] ≤ degy E
p < 1

4 .

Please note that we only require to have σi ⊇ Supp(Kr(hi)) eventually instead of σi =
Supp(Kr(hi)). Hence there may be wrong monomials in σi. However, this does not affect
the correctness of our algorithm. Now suppose σi ⊇ Supp(Kr(hi)). Step 7 - 10 in MGCD1
detects bad images and remove them, but we don’t have to remove the wrong monomials
the bad images introduced in step 14 of MGCD1 because the coefficients of those wrong
monomials must be zero in the output of SGCD1 if the linear system is consistent. Let’s
consider the following example:

Example 5.3. Consider the GCD problem G = H = x3 + (C1y
3 + C2y)x + (C3y

4 +
C4y

2) ∈ Z[x, y] where C1, C2, C3, C4 are constants and Ā = 1, B̄ = 1. Suppose the first
call of PGCD1 with prime p1 returns Ĥp1 = x3 + (·y2)x + (·y4 + ·y2) where · denotes
non-zero constant hence σ1 = {y2} and σ0 = {y2, y4}. Obviously σ1 = {y2} is wrong
due to the feedback polynomial c1(z) stabilizing too early. Ĥp1 should be removed by the
checking step 7-10 in MGCD1. But we don’t reset σ1 and σ0 to be empty. Then suppose
the call of SGCD1 with prime p2 detects the inconsistency and returns MISSINGTERMS.
We have to call PGCD1 again with prime p3 and suppose the feedback polynomial stabilizes
too early again and we get Ĥp3 = x3 + (·y3 + ·y)x + ·y3. It is clear that the support of
the coefficient of x0 is wrong. The Step 14 in MGCD1 combines the results from those 2
calls of PGCD1 and get σ1 = {y, y2, y3} and σ0 = {y2, y3, y4}. Ĥp3 should be removed by
the checking step 7-10 in MGCD1. The next call of SGCD1 with prime p4 should return
Ĥp4 = x3 + (·y3 + 0y2 + ·y)x+ (·y4 + 0y3 + ·y2) = x3 + (·y3 + ·y)x+ (·y4 + ·y2) which is a
good image modulo p4. Then we just use σ1 and σ0 to compute good images as many as we
need to successfully lift the coefficients of Ĥ to a desired size so that Ĥ = Kr(H). In this
example, all images computed by PGCD1 are partially correct (some monomials are correct
and some are not) and σ1, σ0 are confirmed by SGCD1 with p4. In Hp4, we can only say
that y2 and y3 with zero coefficients may not be in σ1 and σ0 respectively because p1 and
p3 may just be unlucky primes and divide their coefficients. In this case if we remove y2, y3

from σ1 and σ0, we might never get the correct support. That’s the reason we only remove
bad images but keep possibly wrong monomials in the support.
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Chapter 6

Implementation

We observed that most of time in our GCD algorithm was in evaluation so here we con-
sider how to improve the evaluation algorithm and also how to reduce t the number of
evaluation points needed to interpolate H. We also present some timing results comparing
our new algorithm which we have implemented in Cilk C with the Maple and Magma C
implementations of Zippel’s GCD algorithm.

6.1 Evaluation

Let A,B ∈ Zp[x0, . . . , xn], d = maxni=1 di where di = max(degxi A,degxi B). If we use a
Kronecker substitution

K(A) = A(x, y, yr1 , . . . , yr1r2...rn−1) with ri = di + 1,

then degyK(A) < (d+1)n. Let s = #A+#B, we can evaluate the smonomials inK(A)(x, y)
and K(B)(x, y) at y = αk in O(sn log d) multiplications. Instead we first compute β1 = αk

and βi+1 = βrii for i = 1, 2, . . . , n − 1 then precompute n tables of powers 1, βi, β2
i , . . . , β

di
i

for 1 ≤ i ≤ n using at most nd multiplications. Now, for each term in A and B of the form
cxe0

0 x
e1
1 . . . xenn we compute c× βe1

1 × · · · × βenn using the tables in n multiplications. Hence
we can evaluate K(A)(x, αk) and K(B)(x, αk) in at most nd+ns multiplications. Thus for
T evaluation points α, α2, . . . , αT , the evaluation cost is O(ndT + nsT ) multiplications.

When we first implemented the algorithm PGCD, we noticed that often well over 95%
of the time was spent to evaluate the input polynomials A and B at the points αk. This
happens when #G� #A+ #B. The following method in Table 6.1 uses the fact that for
a monomial Mi(x1, x2, . . . , xn)

Mi(βk1 , βk2 , . . . , βkn) = Mi(β1, β2, . . . , βn)k
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to reduce the total evaluation cost from O(ndT +nsT ) multiplications to O(nd+ns+ sT ).
Note that no sorting on x0 is needed in step 4b if the monomials in the input A are sorted
on x0.

Algorithm Evaluate.
Input A =

∑m
i=1 cix

ei
0 Mi(x1, . . . , xn) ∈ Zp[x0, . . . , xn], T > 0, β1, β2, . . . , βn ∈ Zp, and

integers d1, d2, . . . , dn with di ≥ degxi A .
Output yk = A(x0, β

k
1 , . . . , β

k
n) for 1 ≤ k ≤ T .

1 Create the vector C = [c1, c2, . . . , cm] ∈ Zmp .
2 Compute [βji : j = 0, 1, . . . , di] for 1 ≤ i ≤ n.
3 Compute Γ = [Mi(β1, β2, . . . , βn) : 1 ≤ i ≤ m].
4 For k = 1, 2, . . . , T do

4a Compute the vector C := [Ci × Γi for 1 ≤ i ≤ m].
4b Assemble yk =

∑m
i=1Cix

ei
0 = A(x0, β

k
1 , . . . , β

k
n).

Figure 6.1: Matrix evaluation algorithm

The algorithm in Figure 6.1 computes yk as the matrix vector product.


Γ1 Γ2 . . . Γm
Γ1

2 Γ2
2 . . . Γm2

...
...

...
...

Γ1
T Γ2

T . . . ΓmT





c1x
e1
0

c2x
e2
0

c3x
e3
0
...

cmx
em
0


=


y1

y2
...
yT

 .

Even with this improvement evaluation still takes most of the time so we must parallelize
it. Each evaluation of A could be parallelized in blocks of size m/N for N cores. In Cilk
C, this is only effective, however, if the blocks are large enough (at least 50,000) so that
the time for each block is much larger than the time it takes Cilk to create a task. For this
reason, it is necessary to also parallelize on k. To parallelize on k for N cores, we multiply
the previous N values of C in parallel by the vector

ΓN = [Mi(β1, β2, . . . , βn)N : 1 ≤ i ≤ m].

Because most of the time is still in evaluation, Monagan and Wong [Monagan and
Wong, 2017] developed a fast parallel multi-point evaluation algorithm, which is based on
the fast multi-point evaluation technique described by van der Hoven and Lecerf [van der
Hoven and Lecerf, 2013], for our fast parallel GCD algorithm. This new algorithm has
complexity O(nd + ns + s log2 T ) which is better than O(nd + ns + sT ) if T is large. Let
C = [c1x

e1
0 , c2x

e2
0 , . . . , cmx

em
0 ]. We consider to evaluate A. The fast multi-point evaluation
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algorithm is based on the observation

(1− Γiu)−1 = 1 + Γiu+ Γ2
iu

2 + Γ3
iu

3 · · · .

We define the function f(u) and expand it.

f(u) = C1
1− Γ1u

+ C2
1− Γ2u

+ · · ·+ Cm
1− Γmu

= C1(1 + Γ1u+ Γ2
1u

2 + · · · ) + · · ·+ Cm(1 + Γmu+ Γ2
mu

2 + · · · )

= (C1 + · · ·+ Cm) + (C1Γ1 + · · ·+ CmΓm)u+ (C1Γ2
1 + · · ·+ CmΓ2

m)u2 + · · ·

= y0 + y1u+ y2u
2 + · · ·+ yTu

T + · · · .

Now we can split the sum f into s = dm/T e blocks, then we have f = B1(u) + B2(u) +
· · · + Bs(u). For each Bk(u), we use the divide-and-conquer strategy to put terms in each
block over a common denominator, then expand Bk(u) up to O(uT ) to get the coefficients
by using the fast series inversion. The total number of multiplications to compute f is
O(dm/T eM(T ) log T ) where M(T ) denotes the cost of dense univariate polynomial multi-
plications of degree T . With Fast Fourier transform, M(T ) = O(T log T ). Since m < s, the
total cost to obtain f is O(s log2 T ) which replaces O(sT ) in the matrix evaluation algo-
rithm. The divide-and-conquer method computes f recursively from top to bottom with T
provided. But in our application we don’t know T in advance. Hence we first pick a rela-
tively small T and compute f from bottom to top. See [Monagan and Wong, 2017, Figure
1], they pick T = 2k for k = 0, 1, 2, . . . .

6.2 The non-monic case and homogenization

Algorithm PGCD interpolates H = ∆G from scaled monic images K(Γ)(αj)gj(x) which
are computed in Steps 9 and 12a. If the number of terms of ∆ is m and m > 1 then it is
likely that #H is greater than #G, which means we need more evaluation points for sparse
interpolation. For sparse inputs, this may increase t by a factor of m.

One such example occurs in multivariate polynomial factorization. Given a polynomial
f in Z[x0, x1, . . . , xn], factorization algorithms first identify and remove repeated factors by
doing a square-free factorization. See Section 8.1 of [Geddes et al., 1992]. The first step of
square-free factorization computes

g = gcd(f, h = ∂f

∂x0
).

Then we have

Γ = gcd(LC(f), LC(h)) = gcd(LC(f), dLC(f)) = LC(f) and ∆ = LC(f)/LC(g)
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which can be a large polynomial.
Obviously, if either A or B is monic in xi for some i > 0 then we may simply use xi as

the main variable in our GCD algorithm instead of x0 so that #Γ = #∆ = 1. Similarly, if
either A or B have a constant term in any xi, that is, A =

∑
j=0 ajx

j
i and B =

∑
j=0 bjx

j
i

and either a0 or b0 are integers, then we can reverse the coefficients of both A and B in
xi so that again #Γ = #∆ = 1. But many multivariate GCD problems in practice do not
satisfy any of these conditions.

Suppose A or B has a constant term. We propose to exploit this by homogenizing A
and B. Let f be a non-zero polynomial in Z[x1, x2, . . . , xn] and

Hz(f) = f(x1
z
,
x2
z
, . . . ,

xn
z

)zdeg f

denote the homogenization of f in z. We have the following properties of Hz(f).

Lemma 6.1. Let a and b be in Z[x1, x2, ..., xn]. For non-zero a and b

(i) Hz(a) is homogeneous in z, x1, . . . , xn of degree deg a,
(ii) Hz(a) is invertible: if f(z) = Hz(a) then H−1

z (f) = f(1) = a,
(iii) Hz(ab) = Hz(a)Hz(b), and
(iv) Hz(gcd(a, b)) = gcd(Hz(a), Hz(b)).

Proof: To prove (i) let M = xd1
1 x

d2
2 . . . xdnn be a monomial in a and let d = deg a. Then

Hz(M) = zd
xd1

1
zd1

. . .
xdnn
zdn

.

Observe that since d ≥ d1 + d2 + · · · + dn then degz(Hz(M)) ≥ 0 and degHz(M) = d.

Properties (ii) and (iii) follow easily from the definition ofHz. To prove (iv) let g = gcd(a, b).
Then a = gā and b = gb̄ for some ā, b̄ with gcd(ā, b̄) = 1. Now

gcd(Hz(a), Hz(b)) = gcd(Hz(gā), Hz(gb̄))

= gcd(Hz(g)Hz(ā), Hz(g)Hz(b̄)) by (iii)

= Hz(g)× gcd(Hz(ā), Hz(b̄)) up to units.

Let c(z) = gcd(Hz(ā), Hz(b̄)) in Z[z, x1, . . . , xn]. It suffices to prove that gcd(ā, b̄) = 1
implies c(z) is a unit. Now c(z) = gcd(Hz(ā), Hz(b̄)) ⇒ c(z)|Hz(ā) and c(z)|Hz(b̄) which
implies

Hz(ā) = c(z)q(z) and Hz(b̄) = c(z)r(z)

for some q, r ∈ Z[z, x1, . . . , xn]. ApplyingH−1 to these relations we get ā = c(1)q(1) and b̄ =
c(1)r(1). Now gcd(ā, b̄) = 1 implies c(1) is a unit and thus q(1) = ±ā and r(1) = ±b̄. We
need to show that c(z) is a unit. Let d = degHz(ā). Since degHz(ā) = deg ā by (i) and
q(1) = ±ā then deg q(1) = d and hence deg q(z) ≥ d. Now since Hz(ā) = c(z)q(z) it
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must be that deg c(z) = 0 and deg q(z) = d. Since c(1) = ±1 then deg c(z) = 0 implies
c(z) = ±1. 2.

Properties (iii) and (iv) mean we can compute G = gcd(A,B) using

G = H−1
z gcd(Hz(A), Hz(B)).

Notice also that homogenization preserves sparsity. To see why homogenization may help
we consider an example.

Example 6.1. Let G = x2 +y+1, Ā = xy+x+y+1 = (y+1)x+(y+1) = (x+1)y+(x+1)
and B̄ = x2y + xy2 + x2 + y2 = (y + 1)x2 + y2(x + 1). Then Hz(G) = z2 + yz + x2,
Hz(Ā) = z2 + (x+ y)z + xy, and Hz(B̄) = (x2 + y2)z + (x2y + xy2).

Notice in Example 6.1 that A and B are neither monic in x nor monic in y but since
A has a constant term 1, Hz(A) is monic in z. If we use x as x0 in Algorithm PGCD then
Γ = gcd(y + 1, y + 1) = y + 1 = ∆ and we interpolate H = ∆G = (y + 1)x2 + (y2 + 2y + 1)
and t = 3. If we use y as x0 in Algorithm PGCD then Γ = gcd(x + 1, x + 1) = x + 1 = ∆
and we interpolate H = ∆G = (x + 1)y + (x3 + x2 + x + 1) and t = 4. But if we use use
z as x0 in Algorithm PGCD then Γ = gcd(1, x2 + y2) = 1 hence ∆ = 1 and we interpolate
Hz(G) = z2 + yz + x2 and t = 1.

If A or B has a constant term then because homogenizing A and B means Γ = ∆ = c

where c is a constant we always do this unless #Γ > 1. There is, however, a cost to homog-
enizing for the GCD problem, namely, we increase the number of variables to interpolate
by 1 and we increase the cost of the univariate images in Zp[z] if the degree increases. The
degree may increase by up to a factor of n as we see in the following example.

Example 6.2. Let G = 1+
∏n
i=0 x

d−1
i , Ā = 1+

∏n
i=0 xi and B̄ = 1−

∏n
i=0 xi then degxi A =

d = degxi B but degzHz(A) = nd = degzHz(B).

Homogenizing can also increase t when G has many terms of the same total degree. The
following example demonstrates this case.

Example 6.3. Let G = x5 + (v + y)x2 + (u2 + uy)x + vu2 + 1, Ā = (y + 1)x + 1 and
B̄ = (y+1)x+2. Let x be the main variable and if we use LC(A) = LC(B) = y+1 to scale
G, then H = (y+ 1)x5 + (vy+y2 + v+y)x2 + (u2y+uy2 +u2 +uy)x+ (u2vy+ vu2 +y+ 1).
Hence t = 4. The homogenizing of G is Hz(G) = z5 + (u2v+u2x+uxy+vx2 +x2y)z2 +x5,
Hz(Ā) = z2 + xz+ xy and Hz(B̄) = 2z2 + xz+ xy. We use LC(Hz(A)) = 1 to scale Hz(G)
and find t = 5. Hence homogenizing in this example increases the number of variables and
t.

For our benchmark problem where ∆ = 1, we did, however, observe a 10% speedup.
The reason is that the value for t decreased from 1198 to 1094.
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6.3 Bivariate images

In my thesis proposal, I implemented our algorithm in Maple by mapping the inputs to
bivariate polynomials then compute bivariate GCD images. For simplicity, our simplified
and faster algorithms compute univariate GCD images in PGCD. With some minor modi-
fications, our algorithm works with bivariate GCD images.

Recall that we interpolate H =
∑dG
i=0 hi(x1, . . . , xn)xi0 where H = ∆G. The number

of evaluation points used by algorithm PGCD is 2t + O(1) where t = maxdGi=0 #hi. Since
our implementation suggests that the evaluation dominates the cost of PGCD which is
multiplied by the number of evaluation points needed, the cost of algorithm should be
reduced if we can use smaller t.

Algorithm PGCD interpolates H from univariate images in Zp[x0]. If instead we inter-
polate H from bivariate images in Zp[x0, x1], this will likely reduce t when #∆ = 1 and
when #∆ > 1. For our benchmark problem, where ∆ = 1, doing this reduces t from 1198
to 130 saving a factor of 9.2. On the other hand, we must now compute bivariate GCDs in
Zp[x0, x1]. To decide whether this will lead to an overall gain, we need to know the cost of
computing bivariate images and the likely reduction in t.

To compute a bivariate GCD in Zp[x0, x1] we have implemented Brown’s dense modular
GCD algorithm from [Brown, 1971]. If G is sparse, then for sufficiently large t and n, G is
likely dense in x0 and x1, so using a dense GCD algorithm is efficient. The complexity of
Brown’s algorithm is O(d3) arithmetic operations in Zp where d = max1

i=0(degxi A,degxi B).
Thus if this cost is less than the cost of evaluating the inputs, which using our evaluation
algorithm from 3.2 is s multiplications in Zp where s = #A + #B, then the cost of the
bivariate images does not increase the overall cost of the algorithm significantly. For our
benchmark problem, s = 2× 106 and d3 = 403 = 64, 000 so the cost of a bivariate image is
negligible compared with the cost of an evaluation.

Obviously, if interpolating H from bivariate images reduces t then interpolating H from
trivariate images in Zp[x0, x1, x2] will likely reduce t further. The cost of Brown’s GCD
algorithm becomes O(d4) with d = max2

i=0(degxi A,degxi B). For our benchmark problem
d4 = 404 = 2, 560, 000 which exceeds the cost of evaluation so there would need to be a
significant reduction in t to see an overall gain.

Let us write

H =
d0∑
i=0

hi(x1, . . . , xn)xi0 =
d0∑
i=0

d1∑
j=0

hij(x2, . . . xn)xi0x
j
1

and define t1 = max #hi and t2 = max #hij . The ratio t1/t2 is reduction of the number
of evaluation points needed by our algorithm. The maximum reduction in t occurs when
the terms in H are distributed evenly over the coefficients of H in x1, that is, then t1/t2 =
1 + d1 = 1 + degx1 ∆ + degx1 G. For some very sparse inputs, there is no gain. For example,
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for
H = xd0 + xd1 + xd2 + · · ·+ xdn + 1

we have t1 = n and t2 = n− 1 and the gain is negligible.
If H has total degree D and H is dense then the number of terms in hi(x1, . . . , xn) is(D−i+n
n

)
which is a maximum for h0 where #h0 =

(D+n
n

)
. A conservative assumption is that

#hi is proportional to
(n+D−i

n

)
and similarly #hij is proportional to

(n−1+D−(i+j)
n−1

)
. In this

case, the reduction is a factor of

#h0
#h00

=
(
n+D

n

)
/

(
n− 1 +D

n− 1

)
= n+D

n
.

For our benchmark problem where n = 8 and D = 60 this is 8.5 = 68
8 .
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Chapter 7

Benchmarks

We have implemented the GCD algorithm in Maple without any parallelism and have
compared it with Maple’s default algorithm, an implementation of a Zippel based algorithm.
For most medium and large problems, our algorithm outperforms Maple’s. For example, for
input polynomials having 40 variables and 4000 terms, our algorithm is almost 20 times
faster. We also attempted a parallel implementation (Threads package) of this algorithm in
Maple but it was a flop. With parallelization in Maple, the GCD algorithm is even slower. I
am told that this is because the prime is too large and the memory management in Maple
has to create, simplify and garbage collect millions of multi-precision integers. Since the
Maple’s default algorithm is almost entirely coded in C and we coded our algorithm in
Maple, it is an unfair comparison.

We have implemented algorithm PGCD for 31, 63 and 127 bit primes in Cilk C. For
127 bit primes we use the 128 bit signed integer type __int128_t supported by the gcc
compiler. We parallelized evaluation (see Section 3.2) and we interpolate the coefficients
hi(y) in parallel in step 12e.

The new algorithm requires 2t + δ images (evaluation points) for the first prime and
t + 1 images for the remaining primes. The additional image (t + 1 images instead of t) is
used to check that the support of H obtained from the first prime is correct.

To assess how good our new algorithm is, we have compared it with the serial imple-
mentations of Zippel’s algorithm in Maple 2016 and Magma V2.22. For Maple we are able
to determine the time spent computing G modulo the first prime in Zippel’s algorithm. It
is typically over 99% of the total GCD time. The reason for this is that Zippel’s algorithm
requires O(ndt) images for the first prime but only t+ 1 images for the remaining primes.

We also timed Maple’s implementation of Wang’s EEZ-GCD algorithm from [Wang,
1980, 1978]. It was much slower than Zippel’s algorithm on these inputs so we have not
included timings for it. Note, older versions of Maple and Magma both used the EEZ-GCD
algorithm for multivariate polynomial GCD computation.
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All timings were made on the gaby server in the CECM at Simon Fraser University.
This machine has two Intel Xeon E-2660 8 core CPUs running at 3.0 GHz on one core and
2.2 GHz on 8 cores. Thus the maximum parallel speedup is a factor of 16× 2.2/3.0 = 11.7.

7.1 Benchmark 1

For our first benchmark (see Table 7.1) we created polynomials G, Ā and B̄ in 6 variables
(n = 5) and 9 variables (n = 8) of degree at most d in each variable. We generated 100d
terms for G and 100 terms for Ā and B̄. That is, we hold t approximately fixed to test the
dependence of the algorithms on d.

The integer coefficients of G, Ā, B̄ were generated at random from [0, 231 − 1]. The
monomials in G, Ā and B̄ were generated using random exponents from [0, d − 1] for each
variable. For G we included monomials 1, xd0, xd1, . . . , xdn so that G is monic in all variables
and Γ = 1. Maple and Magma code for generating the input polynomials is given in the
Appendix.

Our new algorithm used the 62 bit prime p = 29× 257 + 1. Maple used the 32 bit prime
232 − 5 for the first image in Zippel’s algorithm.

New GCD algorithm Zippel’s algorithm
n d t 1 core (eval) 16 cores Maple Magma
5 5 110 0.29s (64%) 0.074s (3.9x) 3.57s 0.60s
5 10 114 0.62s (68%) 0.091s (6.8x) 48.04s 6.92s
5 20 122 1.32s (69%) 0.155s (8.5x) 185.70s 296.06s
5 50 121 3.48s (69%) 0.326s (10.7x) 1525.80s > 105s
5 100 123 7.08s (69%) 0.657s (10.8x) 6018.23s NA
5 200 125 14.64s (71%) 1.287s (11.4x) NA NA
5 500 135 38.79s (71%) 3.397s (11.4x) NA NA
8 5 89 0.27s (61%) 0.065s (4.2x) 32.47s 2.28s
8 10 110 0.63s (65%) 0.098s (6.4x) 138.41s 7.33s
8 20 114 1.35s (66%) 0.163s (8.3x) 664.33s 78.77s
8 50 113 3.52s (66%) 0.336s (10.5x) 6390.22s 800.15s
8 100 121 7.43s (68%) 0.645s (11.5x) NA 9124.73s

Table 7.1: Real times (seconds) for GCD problems.

In Table 7.1 column d is the maximum degree of the terms of G, Ā, B̄ in each variable,
column t is the maximum number of terms of the coefficients of G. Timings are shown in
seconds for the new algorithm for 1 core and 16 cores. For 1 core we show the %age of
the time spent evaluating the inputs, that is computing K(A)(x0, α

j) and K(B)(x0, α
j) for

j = 1, 2, . . . , T . The parallel speedup on 16 cores is shown in parentheses.
Table 7.1 shows that most of the time in the new algorithm is in evaluation. It shows a

parallel speedup approaching the maximum of 11.5 on this machine. There was a parallel
bottleneck in how we computed the c(z) polynomials that limited parallel speedup to 10 on
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these benchmarks (not shown in Table 7.1). For N cores, after generating a new batch of
N images we used the Euclidean algorithm for Step 12b which is quadratic in the number
of images j computed so far. To address this we now use an incremental version of the
Berlekamp-Massey algorithm which is O(Nj).

7.2 Benchmark 2

Our second benchmark (see Table 7.2) is for 9 variables where the degree of G, Ā, B̄ is at
most 20 in each variable. The terms are generated at random as before but restricted to
have total degree at most 60. The row with #G = 104 and #A = 106 is our benchmark
problem mentioned in Chapter 1. We show two sets of timings for our new algorithm. The
first set is for projecting down to univariate image GCDs in Zp[x0] and the second set it for
bivariate GCDs and consequently the values of t are different.

The timings for the new algorithm are for the first prime only. Although one prime is
sufficient for these problems to recover H, that is, no Chinese remaindering is needed, our
algorithm uses an additional 63 bit prime to verify H mod p1 = H. The time for the second
prime is always less than 50% of the time for the first prime because it needs only t + 1
points instead of 2t+ δ points and it does not need to compute degree bounds.

For #G = 103, #A = 105, the time of 497.2s breaks down as follows. 38.2s was spent
in computing degree bounds for G, 451.2s was spent in evaluation, of which 43.2s was
spent computing the powers. Using the support of H from this first prime it took 220.9s to
compute H modulo a second prime.

Table 7.2 shows again that most of the time in the new algorithm is in evaluation. This
is also true of Zippel’s algorithm and hence of Maple and Magma too. Because Maple uses
random evaluation points, and not a power sequence, the cost of each evaluation in Maple
is O(n(#A+ #B)) multiplications instead of #A+ #B evaluations for the new algorithm.
Also, Maple is using % p to divide in C which generates a hardware division instruction
which is much more expensive than a hardware multiplication instruction. For the new
algorithm, we are using Roman Pearce’s implementation of Möller and Granlund [Möller
and Granlund, 2011] which reduces division by p to two multiplications plus other cheap
operations. Magma is doing something similar. It is using floating point primes (25 bits) so
that it can multiply modulo p using floating point multiplications. This is one reason why
Maple is slower than Magma.

In comparing the new algorithm with Maple’s implementation of Zippel’s algorithm, for
n = 8, d = 50 in Table 7.1 we achieve a speedup of a factor of 1815 = 6390.22/3.52 on
1 core. Since Zippel’s algorithm uses O(dt) points and our Ben-Or/Tiwari algorithm uses
2t+O(1) points, we get a factor of O(d) speedup because of this.
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Chapter 8

Computing polynomial GCD over
number fields

In this chapter we present a "simplified" modular GCD algorithm which computes multi-
variate polynomial GCDs over an algebraic number field. This modular algorithm is similar
to the simplified algorithm in Chapter 4 but has the capacity to handle zero divisors and
reconstruct rational coefficients of the target GCD. The presence of zero divisors in the
coefficient ring significantly complicates the analysis because a finite ring has less structure
than a finite field and we lose many useful properties. Also we are forced to use the monic
subresultant GCD algorithm (see Figure 8.2) instead of the monic Euclidean algorithm (see
Figure 8.1) at the base case (univariate case) in Zp(α)[x] to simplify the analysis of zero
divisors. We first review some results and define some notation for later use.

8.1 Some results and notation

We follow the definitions in van Hoeij and Monagan [van Hoeij and Monagan, 2002] but
focus on the simple extension Q(α) where m(z) ∈ Q[z] is the monic minimal polynomial of
the algebraic number α. Q(α) can also be expressed as Q[z]/〈m(z)〉 hence in this chapter
α and z are interchangeable. Let dm = degzm(z) where dm ≥ 2. If we consider Q(α)
as a vector space over Q, then Q(α) has dimension dm over Q and a basis for Q(α) is
M = {αi | 0 ≤ i < d}.

Definition 8.1. Let R be the set of all Z-linear combinations of elements in M and f ∈
Q(α)[x0, x1, . . . , xn]. The denominator den(f) of f is the smallest positive integer such that
den(f)f ∈ R[x0, x1, . . . , xn].

If f ∈ Q[x0, x1, . . . , xn], den(f) is the least common multiple of denominators of coefficients
of monomials in f .

Example 8.1. Let f = 2
3x + 1

4 . Then den(f) = 12. Let f = (2
3α

2 + 2α)x2 + 4
5αx. Then

den(f) = 15.
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Definition 8.2. Let R be a ring and f ∈ R[x0, x1, . . . , xn]. The leading coefficient of f with
respect to x0, x1, . . . , xn in some monomial order is denoted by lc(f). If lc(f) = 1 then f is
monic. Let x0 be the main variable. Then the leading coefficient of f with respect to x0 is
denoted by LC(f).

Example 8.2. Let f =
√

2z2y2x3 +z3y4x+1 and we consider the pure lexicographical order
with x > y > z. Then lc(f) =

√
2. If x is taken as the main variable, then LC(f) =

√
2z2y2.

In this chapter we use the pure lexicographical order with x0 > x1 > · · · > xn on
monomials in Q(α)[x0, x1, . . . , xn]. Suppose f ∈ Q(α)[x0, x1, . . . , xn]. With a Kronecker
substitution Kr : Q(α)[x0, x1, . . . , xn] → Q(α)[x, y] where x0 → x, LC(Kr(f)) denotes the
leading coefficient of Kr(f) with respect to the main variable x.

Definition 8.3. The primitive associate of f is f̃ = den(g)g where g = monic(f) =
lc(f)−1f . The semi-associate of f is cf where c is the smallest positive rational number to
make den(cf) = 1.

Remark 8.1. r can be determined as follows. We compute the denominator of f , that is
to compute the integer least common multiple (LCM) rd of the denominators of coefficients
in f . Then we compute the integer GCD rn of the numerators of coefficients in f and set
r = rd

rn
. We also note that gcd(rd, rn) = 1. If not, suppose gcd(rd, rn) = rc and rcf is a prime

factor of rc. Since rd is the LCM, rcf must divide the denominator of some coefficient, say
C. Since rn is the GCD, rn must divide the numerator of every coefficient hence divides the
numerator of C. Therefore the rational number C is not in the reduced form and the GCD
of the numerator and the denominator in C is not 1. But we assume that input polynomials
have reduced coefficients.

In practice if lc(f) is a large element of Q(α), then the rational coefficient of lc(f)−1 can be
about dm times larger than the coefficients of lc(f) and therefore lc(f)−1 could be expensive
to get. Therefore we preprocess all input polynomials by computing their semi-associate
representations.

Example 8.3. If f = 4x− 2
3 then c = 3

2 and f̃ = f̌ = 6x−1. If α is the root of the minimal
polynomial m = z4 + z3 + 2 and f = −αx+ 1, then f̌ = f but monic(f) = x+ α3+α2

2 and
f̃ = 2x+ α3 + α2.

Any β ∈ Q(α) can be expressed as the polynomial β =
∑dm−1
i=0 ciα

i ∈ Q(α) where ci ∈ Q.
In actual computations β is regarded as the polynomial β =

∑dm−1
i=0 ciz

i ∈ Q[z]/〈m(z)〉. In
our modular algorithm, the prime p used must be coprime to the denominators den(A),
den(B), den(m(z)) of the inputs since otherwise the inputs modulo p do not exist. In
general Q(α) mod p = Zp(α) ∼= Zp[z]/〈m(z)〉 is a finite ring instead of a finite field because
m(z) mod p could be reducible and therefore every non-zero element in Zp(α) is either a
unit or a zero divisor.
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In this chapter, let A,B ∈ Q(α)[x0, x1, . . . , xn] and m(z) be input polynomials and
d = max{max{degxi A, degxi B}} for 0 ≤ i ≤ n. d bounds the degree of every variable in A
and B. We also assume that A and B are primitive polynomials with respect to the main
variable x0. Otherwise we remove the contents by recursively calling our polynomial GCD
algorithm. Let Ǎ, B̌ and m̌(z) be the semi-associates of A, B and m(z) respectively. We
mention that our GCD algorithm always computes the monic GCD. Let G be the monic
GCD of Ǎ and B̌. Then G = gcd(Ǎ, B̌) because G is monic (lc(G) = 1). Let Ā = G/A, B̄ =
G/B be the cofactors of A,B respectively. Let Dm = den(m(z)) which is also the leading
coefficient of m̌(z). We note that Ǎ, B̌,∈ Z(α)[x0, x1, . . . , xn], G ∈ Q(α)[x0, x1, . . . , xn] and
dm = degzm(z) = degz m̌(z). Let ¯̌

A = Ǎ/G and ¯̌
B = B̌/G. We want to mention that

¯̌
A 6= ˇ̄A and ¯̌

B 6= ˇ̄B in general.

Example 8.4. Let m = z2 + 2 be the minimal polynomial for α. A = (x+ 1
5α)(2

3αx
2 + 1)

and B = (x + 1
5α)(1

5αx + 3
2). G = gcd(A,B) = x + 1

5α. Ā = 2
3αx

2 + 1 and B̄ = 1
5αx + 3

2 .
Hence ˇ̄A = 2αx2 + 3 and ˇ̄B = 2αx+ 15. On the other hand, Ǎ = 10αx3 − 4x2 + 15x+ 3α
and B̌ = 10αx2 + 71x+ 15α. ¯̌

A = 10αx2 + 15 and ¯̌
B = 10αx2 + 75.

Let Γ = gcd(LC(Ǎ), LC(B̌)), ∆ = Γ/LC(G) and H = ∆G. Recall that LC(Ǎ) and
LC(B̌) are the leading coefficients of Ǎ and B̌ respectively and Γ ∈ Q(α)[x1, . . . , xn]. Our
algorithm computes H modulo a sequence of primes p1, p2, . . . As usual, not all primes can
be used. It is clear that we can not use any prime p for which a denominator of inputs A or B
vanishes modulo p orDm mod p = 0. If m̌(z) mod p is irreducible, then Zp/〈m̌(z)〉 is still a
field. All results for the GCD algorithm over finite fields (PGCD) hold here. Unfortunately
it is possible that m̌(z) mod p is reducible for all primes. For example, m̌(z) = z4 + 1.
In general Zp[z]/〈m̌(z)〉 is a finite ring with zero divisors. Let f ∈ Q(α)[x0, x1, . . . , xn].
We apply a Kronecker substitution Kr to reduce the number of variables where Kr :
Q(α)[x0, x1, . . . , xn] → Q(α)[x, y] and Kr(f) = f(x, y, yr1 , yr1r2 , . . . , yr1r2...,rn−1) for some
ri > 0. Kr can be bad or unlucky depending on the choice of ri. After the Kronecker
substitution, x is taken as the main variable. Our GCD algorithm may fail to determine
gcd(Kr(Ǎ),Kr(B̌)) mod p even when if gcd(Kr(Ǎ),Kr(B̌)) mod p exists because the use
of some evaluation points or primes could lead us to invert a zero divisor. Handling these
bad cases is the new challenge in our GCD algorithm in this chapter.

Lemma 8.1 (Generalized Schwarz-Zippel Lemma). Let R be a commutative ring containing
an integral domain D and let f ∈ R[x1, . . . , xn] be a nonzero polynomial with total degree
d ≥ 0. Let S be a finite subset of D. If β is chosen uniformly at random from Sn then
Prob[f(β) = 0] ≤ d

|S| . Hence if E = {β|f(β) = 0} then |E| ≤ d|S|n−1.

See [Arvind and Mukhopadhyay, 2007, Proposition 2, Lemma 10] for a proof.
In field theory, the norm maps elements of a larger field to a subfield. For example,

we can map an element of Q(α1, . . . , αn) to Q which is particularly useful in algebraic
factorization.
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Definition 8.4. Let K be a field and L be a finite extension of K. For any α ∈ L with
minimal polynomial m over K, let α1 = α, α2, · · · , αk be the conjugates of α. The norm of
α

Norm(α) = (
n∏
i=1

αi)[L:K(α)].

For the simple extension Q(α) from Q, Norm(α) =
∏n
i=1 αi because [Q(α) : Q(α)] = 1.

Similarly, for a polynomial f(x1, . . . , xk, α) ∈ Q(α)[x1, . . . , xk] where α is algebraic over Q
with the minimal polynomial m(z) ∈ Q[z], we define

Norm(f) =
n∏
i=1

f(x1, . . . , xk, αi).

Example 8.5. Let m(z) = z2− 2 and f = x+
√

2 + 1. Since the roots of m(z) are
√

2 and
−
√

2, Norm(f) = (x+
√

2 + 1)(x−
√

2 + 1) = x2 + 2x− 1.

We recall that the resultant resz(m(z), r(z)) is the determinant of the Sylvester’s matrix
of m(z) and r(z), see Equation (2.1). The following useful lemma can be found in [Geddes
et al., 1992, Section 8.8].

Lemma 8.2. Let β ∈ Q(α) and m(z) ∈ Q[z] be the minimal polynomial of α over Q.
Suppose β = r(α) where r ∈ Q[z]. Then Norm(β) = resz(m(z), r(z)).

Proof. Let α1 = α, α2, . . . , αk be conjugates of α. By definitions of the norm of a polynomial
and the polynomial resultant, we have

Norm(β) = Norm(r(α)) =
k∏
i=1

r(αi) = resz(m(z), r(z)).

Corollary 8.1. Let f ∈ Q(α)[x1, . . . , xk] and m(z) ∈ Q[z] be the minimal polynomial of α.
Then Norm(f) = resz(m(z), f(x1, x2, . . . , xn, z)).

Proof. The proof is similar to the proof of the previous lemma.

Lemma 8.3. Let α be algebraic over Q, p be a prime and m(z) be the minimal polynomial
of α over Q. Assume β ∈ Q(α), β mod p exists, β mod p 6= 0 and m(z) mod p exists. If
p divides Norm(β), then β mod p is a zero divisor.

Proof. Let β = r(α) =
∑n
i=0 biα

i where bi ∈ Q. By Lemma 8.2 we have Norm(β) =
resz(m(z), r(z)). Let φp be the modular homomorphism. Since m(z) is monic and r(z) 6= 0
mod p, by Lemma 2.4 we have

0 = φp(resz(m(z), r(z)))⇐⇒ degz gcd(φp(m(z)), φp(r(z))) > 0.
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Hence r(z) is not invertible in Zp[z]/〈m(z)〉. So β is a zero divisor.

Example 8.6. Let m(z) = z3 − 2 be the minimal polynomial of α and β = α + 2. Since
Norm(α + 2) = resz(m(z), z + 2) = 10, β mod p is a zero divisor if p = 2 or p = 5. If
p = 2, then gcd(z + 2, z3 − 2) mod 2 = z. If p = 5, gcd(z + 2, z3 − 2) mod 5 = z + 2. In
both cases, α+ 2 is not invertible.

Definition 8.5. Let f =
∑t
i=1

ai
bi
Mi where ai, bi ∈ Z\{0}, t ≥ 1 and theMi are monomials

in x1, x2, . . . , xn. If bi = 1 for 1 ≤ i ≤ t, then f is a polynomial with integer coefficients
and we define ‖f‖ = max1≤i≤t{|ai|} as the height of f . If bi 6= 1 for some i then we define
|f |max = max1≤i≤t{|aibi |} and |f |nmax = max1≤i≤t{|ai|}. We call |f |nmax as the numerator
magnitude of f .

In the above definition, we note that if bi = 1 for 1 ≤ i ≤ t, then |f |max = |f |nmax = ‖f‖.
We also observe that |f |nmax ≤ ‖den(f)f‖ which will be used several times in our analysis.

Lemma 8.4. Let A =
∑tA
i=1 aiui and B =

∑tB
j=1 bjvj where tA, tB ≥ 1, ai, bj ∈ Z, ui, vj are

monomials in variables x1, x2, . . . , xn and ui1 6= ui2 for i1 6= i2, vj1 6= vj2 for j1 6= j2. Then
‖AB‖ ≤ min(tA, tB)‖A‖‖B‖.

Proof. First we note that the largest magnitude of the coefficients in the expanded form of
AB is ‖A‖‖B‖ if we don’t add terms with identical monomials. Then we have to show if we
expand AB term by term without adding coefficients, AB has at most min(tA, tB) terms
with identical monomials. We assume that tA = tB, that is tA = tB = min(tA, tB). Since
all vj are distinct, all monomials in the polynomial uiB are distinct. Therefore there are at
most tA terms with identical monomials in the expansion of

∑tA
i=1 uiB. Now we assume that

tA > tB, that is tB = min(tA, tB). Since all ui are distinct, all monomials in the polynomial
vjA are distinct hence there are at most tB terms with identical monomials in

∑tB
j=1 vjA.

We can also count the number of terms with identical monomials by considering uiB. Since
all vj are distinct, all monomials in the polynomial uiB are distinct, but we cannot conclude
that the polynomial

∑tA
i=1 uiB has at most tA terms with identical monomials. If we suppose

there are tB + 1 terms with identical monomials in
∑tA
i=1 uiB then there exists ui1vj = ui2vj

for i1 6= i2. This implies ui1 = ui2 for i1 6= i2 which is a contradiction since all ui are distinct.
Therefore there are still at most tB terms with identical monomials. If tA < tB, a similar
argument shows tA = min(tA, tB). The result follows.

Lemma 8.5. Let a(x) and b(x) ∈ Z[x] with degx a = n,degx b = m,LC(a) = an and
LC(b) = bm. Suppose n ≥ m, q0 and r0 are the quotient and remainder of a(x)÷b(x). Then
we have

|q0|max ≤ ‖a‖(1 + ‖b‖/|bm|)n−m/|bm|

|r0|max ≤ ‖a‖(1 + ‖b‖/|bm|)n−m+1.
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Proof. The proof follows the classic polynomial division algorithm.

Classic division algorithm
Input: a(x), b(x) ∈ Z[x] with degx a = n ≥ 0 ≥ degx b = m ≥ 0. LC(a) = an and
LC(b) = bm. a(x) is dividend and b(x) is divisor.
Output: the quotient q and remainder r in Q[x].
r = a

for i from n−m to 0 by −1 do
if degxr = m+ i then
qi = LC(r)/bm
r = r − qixib

else
qi = 0

end if
return r and q =

∑n−m
i=0 qix

i.

We bound the magnitudes of q and r at each iteration. For the first iteration, we have

|qn−m|max ≤ ‖a‖/|bm|

|rn−m|max ≤ ‖a‖+ |qn−m|max‖b‖ ≤ ‖a‖+ ‖a‖‖b‖/|bm| = ‖a‖(1 + ‖b‖/|bm|).

For the second iteration, we have

|qn−m−1|max ≤ ‖a‖(1 + ‖b‖/|bm|)/|bm|

|rn−m−1|max ≤ ‖rn−m‖+ |qn−m−1|max‖b‖

≤ ‖a‖(1 + ‖b‖/|bm|) + ‖a‖(1 + ‖b‖/|bm|)‖b‖/|bm|

= ‖a‖(1 + ‖b‖/|bm|)2

We repeat this process and obtain

|q0|max ≤ ‖a‖(1 + ‖b‖/|bm|)n−m/bm and |r0|max ≤ ‖a‖(1 + ‖b‖/|bm|)n−m+1.

The bound derived in Lemma 8.5 for |r0|max ∈ Q is an upper bound for the absolute
value of every coefficient in r0. But in most of our applications we want |r0|nmax ∈ Z. For
example, logpmin |r0|nmax is the maximum number of primes such that r0 mod p = 0 where
p is a prime and p ≥ pmin. The fact is that it is not easy to get |r0|nmax and therefore we try
to compute an upper bound of |r0|nmax instead. If we scale a(x) by LC(b(x))n−m+1 which
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is the strategy used by pseudo polynomial division, then r0 ∈ Z hence |r0|max = |r0|nmax
which is an upper bound for the |r0|nmax without scaling.

Example 8.7. Let a = 3x4 + 2x3 + 9x2 + 8x + 9 and b = 10x3 + 3x2 + 8x + 6. The
remainder of a divided by b is r0 = 627

100x
2 + 133

25 x+ 417
50 and the bound 9(1 + 10

10)4−3+1 = 36
derived in Lemma 8.5 bounds |r0|max = 417

50 = 8.34 but not |r0|nmax = 627. If we scale a by
LC(b)4−3+1 = 102 then r0 = 627x2 + 532x+ 834 and the bound 900(1 + 10

10)4−3+1 = 3600 >
834 = |r0|nmax = |r0|max > 627.

Lemma 8.6. [Lenstra, 1987] Let f ∈ Q(α)[x1, . . . , xn] and m(z) ∈ Z[z] be the monic
minimal polynomial of the algebraic integer α. Let di = degxi f where 1 ≤ i ≤ n and
dm = degzm(z). For any monic factor g of f , the rational coefficients of g are bounded by

|g|max ≤ eDdm(dm − 1)
dm−1

2 ‖m‖dm−1
2 |discr(m)|−

1
2

dm−1∑
i=0
‖m‖i2|f |max,

where ‖m‖2 is the 2-norm of m(z), D =
∑n
i=1 di and e = 2.78

Lemma 8.6 only applies to algebraic integers. In our case we deal with algebraic numbers
and therefore a proper conversion is required if we want to use it. The factors described in
Lemma 8.6 are monic. Hence in our application we may also need a proper scaling. We also
note here that if f(x) ∈ Z(α)[x1, . . . , xn], the factors of f(x) are in Q(α)[x1, . . . , xn] instead
of Z(α)[x1, . . . , xn]. For example Weinberger and Rothschild [Weinberger and Rothschild,
1976] constructed the following example.

Example 8.8. For f(x) = x3−3 ∈ Q(α)[x] where m(z) = z6+3z5+6z4+z3−3z2+12z+16.
The factorization of f(x) over Q(α) is

f(x) =(− 1
12z

5 − 1
12z

4 − 1
6z

3 + 7
12z

2 − 11
12z + x− 4

3)

× (x+ 1
6z

5 + 1
3z

4 + 2
3z

3 − 1
6z

2 + 2
3z + 7

3)

× (− 1
12z

5 − 1
4

4
− 1

2z
3 − 5

12z
2 + 1

4z + x− 1).

Remark 8.2. For the simple extension of Q by an algebraic integer, the denominator of any
factor of f(x0, . . . , xn) ∈ Q(α)[x0, . . . , xn] is well studied, see [Lenstra, 1987, Encarnacion,
1995, Langemyr and McCallum, 1989]. Let α be an algebraic number and m(z) be its
minimal polynomial. Let D be a positive integer such that f ∈ 1

DZ(α)[x0, . . . , xn] and
discr(m(z)) be the discriminant of m(z). Then all monic factors of f are in

1
discr(m)DZ(α)[x0, . . . , xn].

In our case, our inputs are pre-processed to be semi-associates hence D = 1. In fact, let
d be the largest integer such that d2 divides discr(m), then all monic factors of f are in
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1
dDZ(α)[x0, . . . , xn]. See [Encarnacion, 1995] for more details. Obviously d is better than
discr(m), but d could be too difficult to compute. In our analysis we use discr(m), not d,
to scale factors of a polynomial to clear fractions because several lemmas we want to apply
require fraction free polynomial inputs.

Next we review the radical prime which will be used later.

Definition 8.6. Let f(x) ∈ Q[x]. f(x) is squarefree if there is no polynomial u(x) ∈ Q[x]
where degx u(x) > 0 such that u2|f .

Theorem 8.1. [Geddes et al., 1992, Theorem 8.1] Let f(x) ∈ Q[x], f(x) is squarefree if
and only if gcd(f, f ′) = 1 where f ′ denotes the derivative of f .

Definition 8.7. Let R be a commutative ring and I be an ideal of R. Then
√
I = {a ∈

R|an ∈ I} is called the radical of I.

Definition 8.8. Let R be a commutative ring and I be an ideal of R. For any a ∈ R and
any positive integer n, if an ∈ I implies a ∈ I then I is a radical ideal hence

√
I = I.

Example 8.9. Let m(z) ∈ Q[z]. If m(z) is not squarefree, then 〈m(z)〉 is not radical. This
is because m(z) = g(z)2h(z) for some h(z), g(z) ∈ Q[z] and degz g > 0. (g(z)h(z))2 =
(g(z)2h(z))h(z) = m(z)h(z) ∈ 〈m(z)〉 but g(z)h(z) 6∈ 〈m(z)〉.

Lemma 8.7. Let R be a commutative ring and I be an ideal of R.
√
I is the intersection

of prime ideals of R containing I. Hence
√
I is an ideal.

This is a popular result in algebra. See [Tauvel and Yu, 2005, Proposition 2.5.5] for a proof.

Lemma 8.8. Let F be a field, m(z) ∈ F [z] and m(z) 6= 0. m(z) is squarefree if and only if
the ideal 〈m(z)〉 is a radical ideal.

Proof. We first assume that m(z) is squarefree. Let m1 ·m2 ·mk be the monic irreducible
factorization of m(z). Then gcd(mi,mj) = 1 if i 6= j. By the property of ideals, we have

〈m(z)〉 = 〈m1(z) · · ·mk(z)〉 = 〈m1(z)〉 ∩ · · · ∩ 〈mk(z)〉.

〈m(z)〉 is the intersection of prime ideals of F [z] and each 〈mi(z)〉 contains 〈m(z)〉 for
1 ≤ i ≤ k. Hence by Lemma 8.7 〈m(z)〉 is radical.

For the other direction we assume m(z) is not squarefree. Then m(z) = ACk for some
A,C ∈ F [z], C is irreducible and k > 1. Since (AC)k = Ak−1(ACk), (AC)k ∈ 〈m(z)〉. But
AC 6∈ 〈ACk〉 = 〈m(z)〉. According to Definition 8.8, 〈m(z)〉 is not radical and therefore
〈m(z)〉 is not a radical ideal.

Definition 8.9. Let 〈m(z)〉 be a radical ideal where m(z) ∈ Q[z]. A prime p for 〈m(z)〉
is called a radical prime if p does not divide the denominator of m(z) and 〈m(z) mod p〉
remains radical.
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Lemma 8.9. Let m(z) ∈ Q[z] and m(z) 6= 0. Suppose 〈m(z)〉 =
√
〈m(z)〉. Then all but

finite many primes are radical for 〈m(z)〉.

Proof. By Lemma 8.8, m(z) is squarefree hence gcd(m(z),m′(z)) = 1 over Q. By the Eu-
clidean algorithm there exist polynomials s(z), t(z) ∈ Q[z] such that s(z)m(z)+t(z)m′(z) =
1. We use any prime p which does not divide the denominators of m(z),m′(z), s(z), t(z) so
that s(z)m(z) + t(z)m′(z) ≡ 1 mod p holds. This implies gcd(m(z),m′(z)) = 1 ∈ Zp[x]
hence m(z) mod p is squarefree. Lemma 8.8 implies that 〈m(z) mod p〉 remains radical.
Since there are only finitely many primes dividing the denominators ofm(z),m′(z), s(z), t(z),
the result follows.

Lemma 8.10. Let m(z) ∈ Q[z] and m(z) 6= 0. Suppose 〈m(z)〉 =
√
〈m(z)〉. There are at

most logpmind(|m|
degzm
nmax +(degzm|m|nmax)degzm)e primes p with p > pmin which divide the

denominator of m(z) and are not radical.

Proof. Suppose p does not divide the denominator of m(z). If p is not a radical prime,
then 〈m(z)〉 mod p is not radical. Therefore according to Lemma 8.8 gcd(m(z),m′(z)) 6= 1
mod p which implies res(m(z),m′(z)) = 0 mod p by Lemma 2.4. Let h = |m|nmax, then
|m′|nmax ≤ degzmh. res(m(z),m′(z)) is the determinant of the Sylvester’s matrix of m(z)
and m′(z) and therefore the first degzm′ columns consist of 0 and the coefficients of m(z)
and the last degzm columns consist of 0 and the coefficients of m′(z). Hence the magnitude
of the numerator of res(m(z),m′(z)) is bounded by

|res(m(z),m′(z))|nmax ≤ hdegzm′ + (degzmh)degzm.

8.2 An example

In this section, we demonstrate our algorithm by an example. Since any non-zero element
in a field is a unit, every non-zero pair of elements in Q(α) are associates. Traditionally
the polynomial GCD over a number field is defined to be the monic one. This simplified
algorithm assumes that the number of non-zero terms in the target GCD is given, and
therefore we cannot run into an infinite loop when we try to determine stable feedback
polynomials by the Berlekamp-Massey algorithm. So we use Γ = gcd(LC(A), LC(B)) as
the scaling factor. Recall that this scaling method may introduce polynomial fractions. See
Section 2.8.

Example 8.10. Consider the GCD problem G =
√
−1x+y, A = G(x+1) and B = G(x+2).

Since the GCD algorithm always computes the monic GCD over number fields, we have
g = gcd(A,B) = x −

√
−1y. We notice that g and G divide each other but g is the GCD

because lc(g) = 1.

113



We present an example to compute the bivariate polynomial GCD over a number field
and therefore no Kronecker substitution is required. In fact, a Kronecker substitution works
over any integral domain, and therefore all results about it in the GCD algorithm over
integers also apply to the GCD algorithm over number fields in this chapter.

Example 8.11. Consider the following GCD problem. Let α be an algebraic number with
the minimal polynomial m(z) = z3 + 1

3 ,

G = yx2 + (−4y3 − 83)α
2

6 x+ (3y3 + 54y)α7 x,

Ā = x+ y + z and B̄ = x+ y + 2z.

Let x be the main variable, y be the variable to be interpolated, A = GĀ and B = GB̄. We
want to compute the GCD of A and B.

We note that A and B are primitive with respect to x, this can be checked if we expand
GĀ and GB̄.

We first convert A and B to Ǎ and B̌ to eliminate the denominators and remove integer
contents. The leading coefficients of Ǎ and B̌ are both 126y with respect to x hence the
scaling factor is Γ = gcd(LC(Ǎ), LC(B̌)) = y. Note that Γ = y is monic, and therefore the
scaled univariate images are monic too. We mention that it looks like the leading coefficients
of Ǎ and B̌ are 42y because the denominator of G is 42. But the true leading coefficients
are 126y. The extra factor 3 comes from the reduction of GĀ and GB̄ by m(z).

We use the prime p = 101 and pick the generator ω = 2. The shift s = 92 is chosen
uniformly at random from Zp. Therefore the evaluation points for y are ωs, ωs+1, ωs+2, . . . .
We run the first iteration to compute the first two univariate GCD images over Zp(α) by
the monic Euclidean algorithm over Zp(α) then scale the results and obtain

g0 =ωs+0 gcd(Ǎ(x, ωs+0), B̌(x, ωs+0)) = 58x2 + 50α2x+ 43αx,

g1 =ωs+1 gcd(Ǎ(x, ωs+1), B̌(x, ωs+1)) = 15x2 + 76α2x+ 80αx.

The coefficient of x2 is known to be y, the scaling factor, hence we only need to recover the
coefficients of α2x and αx. Running the Berlekamp-Massey algorithm on inputs [50, 76] and
[43, 80] we obtain the feedback polynomials 1 + 51v and 1 + 78v respectively. We run a new
iteration to compute the next two scaled univariate GCD images and obtain

g2 =ωs+2 gcd(Ǎ(x, ωs+2), B̌(x, ωs+2)) = 30x2 + 82α2x+ 89αx,

g3 =ωs+3 gcd(Ǎ(x, ωs+3), B̌(x, ωs+3)) = 60x2 + 29α2x+ 23αx.

Running the Berlekamp-Massey algorithm on inputs [50, 76, 82, 29] and [43, 80, 89, 23] we
obtain the feedback polynomials 8v2 + 92v + 1 and 32v2 + 89v + 1 respectively. The degrees
of both feedback polynomials increased so we run the next iteration to compute the next two
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scaled univariate GCD images.

g4 =ωs+4 gcd(Ǎ(x, ωs+4), B̌(x, ωs+4)) = 19x2 + 9α2x+ 54αx,

g5 =ωs+5 gcd(Ǎ(x, ωs+5), B̌(x, ωs+5)) = 38x2 + 51α2x+ 13αx.

Running the Berlekamp-Massey algorithm on [50, 76, 82, 29, 9, 51] and [43, 80, 89, 23, 54, 13]
we obtain the feedback polynomials 8v2 + 92v + 1 and 32v2 + 89v + 1 respectively. Both
feedback polynomials are unchanged from the previous iteration. Hence we terminate the
iteration and compute the roots of the reciprocals of both polynomials which are {8, 1} and
{8, 4}. Since logω 8 = 3, logω 4 = 2 and logω 1 = 0, the support for the coefficient of α2x

is {y3, y0} and the support for the coefficient of αx is {y3, y2}. With the roots we set two
Vandermonde systems. For the coefficient of α2x, we have[

892 192

893 193

] [
c1,1

c1,2

]
=
[
50
76

]
.

The solution to this system is {c1,1 = 33, c1,2 = 3}. For the coefficient of αx, we have

[
892 492

893 493

] [
c2,1

c2,2

]
=
[
43
80

]
.

The solution to this system is {c2,1 = 87, c2,2 = 51}. By solving the shifted Vandermonde
system we obtain the coefficients of all elements in both supports and get the GCD of Ǎ and
B̌ modulo 101:

G101 = x2y + (33y3 + 3)α2x+ (87y3 + 51y2)αx.

Now we run the rational number reconstruction on all coefficients of G101 and obtain

K101 = yx2 + (−2
3y

3 + 3)α2x+ (3
7y

3 + 1
2y

2)αx.

However K101 does not divide A or B in Q(α)[x, y]. Hence it’s not the correct GCD and we
need more modular images. Note that p could be an unlucky prime which can be detected if
more images are computed. For now, we assume the support of K101 is correct and we set
up the assumed form

gform = ax2y + (by3 + c)α2x+ (dy3 + ey2)αx,

where a, b, c, d, e are unknown constants. Since Γ = y, a = 1. We choose the prime p = 103
for the new image and pick the generator ω = 5. The shift s = 5 is uniformly and randomly
chosen from Z103. In gform the number of terms in α2x and αx are both 2 hence we compute
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two scaled univariate GCD images

g0 =ωs+0 gcd(Ǎ(x, ωs+0), B̌(x, ωs+0)) = 35x2 + 54α2x+ 15αx,

g1 =ωs+1 gcd(Ǎ(x, ωs+1), B̌(x, ωs+1)) = 72x2 + 88α2x+ 46αx.

At the same time we evaluate gform and obtain

gform(x, ωs+0) = 35x2 + (27b+ c)α2x+ (27d+ 92e)αx,

gform(x, ωs+1) = 72x2 + (79b+ c)α2x+ (79d+ 34e)αx.

We set two linear systems to solve b, c, d, e by extracting the coefficients of equations g0 =
gform(x, ωs+0) and g1 = gform(x, ωs+1) and obtain

[
27 1
79 1

] [
b

c

]
=
[

54
88

]
and

[
27 92
79 34

] [
d

e

]
=
[

15
46

]
.

Both linear systems can be solved efficiently by the shifted Vandermonde system solving
algorithm and the solutions are {b = 68, c = 72}, {d = 74, e = 96}. Evaluating the assumed
form at the solutions, we have

G103 = yx2 + (68y3 + 72)α2x+ (74y3 + 96y2)αx.

We note that both linear systems have solutions hence p = 101 is likely not an unlucky prime.
We can also use the technique used in our faster GCD algorithm over Z by evaluating y in
A,B,G at random point e modulo 103 and checking if G103(x, e)| gcd(A(x, e), B(x, e)). Now
we apply the Chinese remaindering to G101 and G103 and obtain

K2 = yx2 + (3467y3 + 1720)α2x+ (5945y3 + 2980y2)αx mod 101 · 103.

We apply the rational reconstruction algorithm to all coefficients of K2. If we use Wang’s
rational reconstruction algorithm (use command iratrecon(1720,101*103) in Maple) as
mentioned in Section 1.8, then the reconstruction is unable to determine the rational coeffi-
cient a

b of α2x so that a
b = 1720 mod 101 · 103. This is because

√
101·103

2 ≈ 72 < 83 = a. If

we compute one more GCD image with the prime 107 then
√

101·103·107
2 ≈ 746 > 83 = a and

therefore Wang’s algorithm can determine a
b uniquely. If we use Monagan’s maximal quotient

rational reconstruction algorithm (use command iratrecon(1720,101*103,maxquo,1) in
Maple), then a

b = 83
6 = 1720 mod 101 · 103 can be determined immediately. We run Mona-

gan’s algorithm to all coefficients and get

G = yx2 + (−2
3y

3 − 83
6 )α2x+ (3

7y
3 + 54

7 y
2)αx.
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Since the content of G is cont(G) = gcd(y, (−2
3y

3− 83
6 )α2, (3

7y
3 + 54

7 y
2)α) = 1, the primitive

part of G is G. Now we test if G|A and G|B in Q(α)[x, y]. Since this is the case, we conclude
G = gcd(A,B).

The new challenge compared to the polynomial GCD algorithm over integers is the
possible presence of zero divisors which is not demonstrated in Example 8.2. Any calculation
involving the algebraic number inversion modulo a prime may fail due to zero divisors.
Fortunately the number of zero divisors is finite as we will show later. If we can also detect
and avoid bad and unlucky primes and bad and unlucky evaluation points, then rational
number reconstruction will stabilize once the modulus m = p1p2 · · · is large enough , and
therefore the algorithm will eventually terminate and output the correct polynomial GCD.

8.3 Bad and unlucky Kronecker substitutions

In our new algorithm, we perform the Kronecker substitution over Q(α) which is a field. The
bad or unlucky Kronecker substitutions only depend on degxi A and degxi B for 0 ≤ i ≤ n.
Therefore the result for the simplified GCD algorithms over Z hold for Q(α). Equation 4.2
in Chapter 4 states that if we use Kr with the sequence

[ri = 2d2 + 1 ≥ (degxi A degx0 B + degxi A degx0 B) + 1 : 1 ≤ i ≤ n]

then the Kronecker substitution is always not bad and not unlucky. If a Kronecker sub-
stitution is not bad and not unlucky we call it good. From now on Kr is assumed to be
the Kronecker substitution with the sequence [ri = 2d2 + 1 : 1 ≤ i ≤ n]. Hence Kr is
always good in this chapter. By the choice of ri we have degyKr(A) < (2d2 + 1)n and
degyKr(B) < (2d2 + 1)n. See Proposition 4.1 for a proof.

We mention again that the choice of ri guarantees the map Kr is invertible for A
and B, therefore #A = #Kr(A) and #B = #Kr(B). See Remark 4.1. In our simpli-
fied algorithm we use Γ = gcd(LC(A), LC(B)) = ∆LC(G) as the scaling factor. Since
∆ = gcd(LC(Ā), LC(B̄)), degxi LC(Ā) ≤ degxi Ā for 1 ≤ i ≤ n which implies degxi H =
degxi ∆G ≤ degxi A. Similarly we have degxi H = degxi ∆G ≤ degxi B. Therefore Kr is also
invertible for H and G. Please note that our algorithm first computes H then determines
G by removing the content of H with respect to the main variable x0.

Remark 8.3. Converting the inputs A and B to Ǎ and B̌ does not affect the Kronecker
substitution which only depends on the degrees of variables in inputs.

8.4 Bad and unlucky primes

In this section, the Kronecker substitution is good and invertible for A,B,∆G and G. Recall
that Ǎ, B̌ and m̌(z) are the semi-associates of A, B and m(z) respectively.
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Definition 8.10. Suppose Kr is a good Kronecker substitution, g = gcd(Kr(Ǎ),Kr(B̌)),
Kr( ¯̌

A) = Kr(Ǎ)/g and Kr( ¯̌
B) = Kr(B̌)/g. For a prime p, if any of LC(Kr(Ǎ)), LC(Kr(B̌))

or the leading coefficient of m̌(z) vanish modulo p, then p is a bad prime. Suppose p is not
bad and the Euclidean algorithm successfully determines ḡ = gcd(φp(Kr( ¯̌

A), φp(Kr( ¯̌
B))).

Then p is unlucky if degx ḡ > 0. If p is not bad and not unlucky, we call it good.

Example 8.12. Consider the following GCD problem.

Kr(A) = 7
6x

3 + 145
234αx

2y + 1
39xy

2,

Kr(B) = 7
6x

3 + 145
234αx

2y + 77
18x

2 + 1
39xy

2 + 11
13αxy,

where α is an algebraic number with minimal polynomial m(z) = z2 − 1/3. We have g =
gcd(Kr(A),Kr(B)) = x2+ 18

91αxy, Kr(Ā) = Kr(A)/g = 7
6x+ 7

18αy and Kr(B̄) = Kr(B)/g =
7
6x+ 7

18αy + 77
18 . The semi-associatives of Kr(A) and Kr(B) are

Kr(Ǎ) = 273x3 + 145αx2y + 6xy2 and

Kr(B̌) = 273x3 + 145αx2y + 1001x2 + 6xy2 + 198αxy.

Since m̌(z) = 3z2 − 1, 3 is a bad prime. LC(Kr(Ǎ)) = LC(Kr(B̌)) = 273 = 3 · 7 · 13 hence
7 and 13 are bad primes too. gcd(Kr(Ǎ),Kr(B̌)) mod 11 = x3 + 4x2yα + 7xy2 hence 11
is an unlucky prime. Since resz(Kr(Ā),Kr(B̄)) = 539

324y where 539 = 72 · 11, 11 is the only
unlucky prime because 7 has already been ruled out as a bad prime.

Let Ǎ =
∑dA
i=0 ai(α, x1, . . . , xn)xi0, B̌ =

∑dB
i=0 bi(α, x1, . . . , xn)xi0, h > max{‖Ǎ‖, ‖B̌‖}

for some constant h ∈ Z and d ≥ maxni=0{max{degxi Ǎ, degxi B̌}}. Note, dA, dB ≤ d. Let
m(z) be the minimal polynomial of the algebraic number α, dm = degzm(z) and Dm =
den(m(z)). In order to apply Lemma 8.6, we need to convert the algebraic number α to an
algebraic integer Cα for some constant C. Let m(z) = zdm + cdm−1z

dm−1 + cdm−2z
dm−2 +

· · ·+ c0 where ci ∈ Q for 1 ≤ i ≤ dm−1. We define

s(v) = vdm +Dmcdm−1v
dm−1 + · · ·+Ddm

m c0 = 0.

The polynomial s(v) is monic, irreducible over Q, and has integer coefficients. s(v) has the
root Dmα since s(Dmα) = Ddm

m m(α) = 0. Therefore Dmα is an algebraic integer with
minimal polynomial s(v). Also degv s(v) = dm and C = Dm. Since Dmα ∈ Q(α) and
α = 1

Dm
Dmα ∈ Q(Dmα), under the mapping α 7→ Dmα we have

Q[z]/〈m(z)〉 ∼= Q(α) ∼= Q(Dmα) ∼= Q[v]/〈s(v)〉,
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We extend this isomorphism to polynomial rings so that

Q(α)[x0, . . . , xn] ∼= Q(Dmα)[x0, . . . , xn].

As the consequence of the conversion, we also need to represent the coefficients of Ǎ and
B̌ in terms of Dmα, that is we have to replace α by 1

Dm
Dmα in Ǎ and B̌. The highest

degree of z (representing α) in Ǎ or B̌ is dm−1. Therefore, after the conversion, the largest
possible denominator in Ǎ and B̌ is Ddm−1

m . Let Ac and Bc denote the converted Ǎ and
B̌ respectively, that is Ac, Bc ∈ 1

Ddm−1
m

Z(Dmα)[x0, x1, . . . , xn]. Then we use Ǎc and B̌c to
denote the semi-associatives of Ac and Bc respectively and Ǎc, B̌c ∈ Z(Dmα)[x0, x1, . . . , xn].
Let lc(Ǎc) and lc(B̌c) denote the leading coefficient of Ǎc and B̌c with respect to all variables
in lexicographic order x0 > x1 > · · · > xn. Since ‖Ǎ‖ < h and ‖B̌‖ < h, ‖Ǎc‖ < Ddm−1

m h

and ‖B̌c‖ < Ddm−1
m h. Let discr(s) = (−1)(

dm
2 )resv(s(v), s′(v)) ∈ Z be the discriminant of

s(v). By Remark 8.2, any monic factor of Ǎc or B̌c is in 1
discr(s)Z(Dmα)[x0, x1, . . . , xn]. We

note that discr(s)monic( ¯̌
Ac) and discr(s)monic( ¯̌

Bc) have integer coefficients.
Let hc = max(|Ac|nmax, |Bc|nmax) and dc = max(den(Ac), den(Bc)). Then we have

max(‖Ǎc‖, ‖B̌c‖) ≤ dchc. We first determine the maximum number of bad primes.

Theorem 8.2. Let Bbp = d2
ch

2
c . There are at most dlogpminBbpe bad primes p with p ≥

pmin for the inputs Ǎc and B̌c.

Proof. After the algebraic integer conversion the minimal polynomial s(v) is monic and it
does not contribute to the number of bad primes. A bad prime p divides all coefficients
of numerators of LC(Kr(Ǎc)) or LC(Kr(B̌c)). Since Kr is assumed to be invertible for
Ac and Bc, #Kr(Ǎc) = #Ǎc and #Kr(B̌c) = #B̌c. Therefore no monomials are identical
after the Kronecker substitution and therefore all coefficients remain the same. We have
‖LC(Kr(Ǎc))‖ ≤ ‖Kr(Ǎc)‖ = ‖Ǎc‖ ≤ dchc or ‖LC(Kr(B̌c))‖ ≤ ‖Kr(B̌c)‖ = ‖B̌c‖ ≤ dchc.
Let Bbp = d2

ch
2
c , the result follows.

Theorem 8.3. Let

Bup = (2d)d((dm)(dm − 1)(2d2 + 1)nE|discr(s)|dchc)2d(1 + ‖s(v)‖)(4d−1)(dm−1)

where E = e(n+1)ddm(dm−1)
dm−1

2 ‖s(v)‖dm−1
2 |discr(s)|−

1
2
∑dm−1
i=0 ‖s(v)‖i2, e = 2.78 and ‖·‖2

denotes the 2-norm. Then there are at most dlogpminBupe unlucky primes p with p ≥ pmin
for the inputs Ac and Bc, provided that all those primes are not bad.

Remark 8.4. The length of Bup is polynomial in dm, n, d, logpmin hc.

Proof. We want to show that Bup is an upper bound for |resx(Kr( ¯̌
Ac),Kr( ¯̌

Bc))|nmax. We
first scale monic( ¯̌

Ac) and monic( ¯̌
Bc) by discr(s) to get integer coefficients. By Lemma 8.6
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we have

‖discr(s)monic( ¯̌
Ac)‖ ≤ E|discr(s)|‖Ǎc‖ and ‖discr(s)monic( ¯̌

Bc)‖ ≤ E|discr(s)|‖B̌c‖,

where E = enddm(dm− 1)
dm−1

2 ‖s(v)‖dm−1
2 |discr(s)|−

1
2
∑dm−1
i=0 ‖s(v)‖i2 and ‖ · ‖2 denotes the

2-norm.
In the above two equations we have ‖discr(s)monic( ¯̌

Ac)‖ and ‖discr(s)monic( ¯̌
Ac)‖. But

we really want ‖discr(s) ¯̌
Ac‖ and ‖discr(s) ¯̌

Ac‖. Besides, our GCD algorithm computes the
monic GCD, lc(Ǎc) ∈ Q(Dmα) and lc(B̌c) ∈ Q(Dmα) both belong to the cofactors ¯̌

Ac and
¯̌
Bc. Therefore we scale monic( ¯̌

Ac) and monic( ¯̌
Bc) by lc(Ǎc) and lc(B̌c) respectively. The

scaling operation will not introduce fractions because Dmα is an algebraic integer. lc(Ǎc)
and lc(B̌c) both have degree at most dm−1 in v and ‖lc(Ǎc)‖ ≤ ‖Ǎc‖ and ‖lc(B̌c)‖ ≤ ‖B̌c‖.
We also notice that if #monic( ¯̌

Ac) ≥ dm − 1 then min(#monic( ¯̌
Ac), dm − 1) = dm − 1. If

#monic( ¯̌
Ac) < dm − 1 then min(#monic( ¯̌

Ac), dm − 1) = #monic( ¯̌
Ac) < dm − 1. Without

reducing the coefficient by s(v), by Lemma 8.4 we have

‖discr(s) ¯̌
Ac‖ = ‖(lc(Ǎc))(discr(s)monic( ¯̌

Ac))‖ < (dm − 1)E|discr(s)|‖Ǎc‖2.

The degree of v in every coefficient is now at most 2dm−2 after scaling because the reduction
by s(v) has not been performed yet. Now we reduce discr(s) ¯̌

Ac by s(v). By Lemma 8.5 we
have

‖discr(s) ¯̌
Ac mod s(v)‖ < (dm − 1)E|discr(s)|‖Ǎc‖2(1 + ‖s(v)‖)2dm−2−dm+1

= (dm − 1)E|discr(s)|‖Ǎc‖2(1 + ‖s(v)‖)dm−1.

Similarly,

‖discr(s) ¯̌
Bc mod s(v)‖ < (dm − 1)E|discr(s)|‖Ǎc‖2(1 + ‖s(v)‖)dm−1.

Note that ‖discr(s) ¯̌
Bc mod s(v)‖ = Kr(‖discr(s) ¯̌

Bc mod s(v)‖) because Kr is as-
sumed to be good and invertible. Let S be the Sylvester matrix formed by the coef-
ficients of Kr(discr(s) ¯̌

Ac) in x and the coefficients of Kr(discr(s) ¯̌
Bc) in x. S has size

degx0
¯̌
Ac + degx0

¯̌
Bc which is at most degx0 Ǎc + degx0 B̌c ≤ dA + dB. Let us regard the

algebraic integer Dmα as the variable v. Since v has degree at most dm − 1 in ¯̌
Ac and ¯̌

Bc

and by Proposition 4.1, we have degy(Kr(Ǎc)) < (2d2 +1)n and degy(Kr(B̌c)) < (2d2 +1)n.
discr(s) ∈ Z which does not contribute to the number of terms in Si,j . Therefore #Si,j ≤
(dm − 1 + 1)(2d2 + 1)n = dm(2d2 + 1)n. Since max(‖Ǎc‖, ‖B̌c‖) ≤ dchc, by Proposition 3.2
we have

‖ detS‖ < (dA + dB)
dA+dB

2 ((dm)(2d2 + 1)n)dA+dB ((dm − 1)E|discr(s)|d2
ch

2
c(1 + ‖s(v)‖)dm−1)dA+dB .
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Finally we compute detS mod s(v), that is we reduce the degree of coefficients of detS
in v. Let detS =

∑
riy

i ∈ Z[v][y]. Then ‖ri‖ ≤ ‖detS‖. Since degv Si,j ≤ dm − 1 and
S is a square matrix with the maximum possible size (dA + dB) × (dA + dB), degv ri ≤
(dA + dB)(dm − 1). For each i, we apply Lemma 8.5 to ri and s(v) and get

‖ri mod s(v)‖ < ‖ri‖(1 + ‖s(v)‖)(dA+dB)(dm−1)−dm+1.

Since dA ≤ d and dB ≤ d, we have

‖resx(discr(s)Kr( ¯̌
Ac), discr(s)Kr( ¯̌

Bc))‖

≤(2d)d((dm)(2d2 + 1)n)2d((dm − 1)E|discr(s)|d2
ch

2
c(1 + ‖s(v)‖)dm−1)2d(1 + ‖s(v)‖)(2d)(dm−1)−(dm−1)

≤(2d)d((dm)(dm − 1)(2d2 + 1)nE|discr(s)|d2
ch

2
c)2d(1 + ‖s(v)‖)(4d−1)(dm−1) = Bup.

Therefore

|resx(Kr( ¯̌
Ac),Kr( ¯̌

Bc))|nmax ≤ ‖resx(discr(s)Kr( ¯̌
Ac), discr(s)Kr( ¯̌

Bc))‖ < Bup.

Remark 8.5. The bound Bup seems to be too large. We will see more bounds like this
in the coming sections. We are going to develop a prime lower bound pmin as we did in
Chapter 4. Once pmin is determined, logpmin Bup is reasonably small. See Section 8.7 for
examples.

Remark 8.6. For algorithm MGCDα in Section 8.7, we don’t do the algebraic integer
conversion because the bounds for the number of bad and unlucky primes are not required.

8.5 Zero divisors

The reason we introduce modular arithmetic to polynomial GCD algorithms over number
fields is to avoid the expression swell in Q caused by inverting algebraic numbers in Q(α).
We reduce the inputs modulo a series of primes then the coefficients of the inputs sit in
a finite ring Zp[z]/〈m(z), p〉. The trade off is the presence of zero divisors which creates
a new problem. If there were infinitely many zero divisors for given inputs, the Euclidean
algorithm over rings may still determine the correct GCD if it does not encounter zero
divisors. But the good news is that the number of zero divisors is finite for a given problem.
We first present the monic Euclidean algorithm over rings in Figure 8.1.

Step 2 and 4 in the Euclidean algorithm over rings compute an inverse to make a
divisor monic. If the leading coefficient of the divisor is a zero divisor then Fail is returned.
To overcome this we simply pick a new prime. The following example shows the possible
causes to encounter zero divisors. We still use gcd(A,B) to denote the result of the Euclidean
algorithm over rings with inputs A and B. In the monic Euclidean algorithm over rings,
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Monic Euclidean algorithm over rings
Input: Two univariate polynomials A and B with coefficients in R where R is a
commutative ring with identity 1
Output: Either Fail or the monic gcd(A,B).

1 Set r1 = A, r2 = B and i = 2.
2 If r2 = 0 and lc(r1)−1 exists then return lc(r1)−1r1. If r2 = 0 and lc(r1)−1 does

not exist then return Fail.
3 While ri 6= 0 do

4 If lc(ri)−1 does not exist then return Fail. Otherwise Set ri = (lc(ri)−1(ri).
5 Set ri+1 to be the remainder of ri−1 ÷ ri.
6 Set i = i+ 1.

7 End while loop.
8 return ri−1.

Figure 8.1: Euclidean algorithm over rings

see Figure 8.1, LC(ri) and lc(ri) are interchangeable because the inputs are assumed to be
univariate.

Example 8.13. Let α be an algebraic number with the minimal polynomial m(z) = z2 + 1
2 .

Suppose we randomly pick the prime p = 857 and Kr(B) = (525αy2 − 2205y)x2 + 1. Let
β ∈ Z857 be an evaluation point chosen uniformly at random for y. When we run the monic
Euclidean algorithm over rings on Kr(A)(x, β) and Kr(B)(x, β), Kr(B)(x, β) is made to
be monic first (Step 4 of the monic Euclidean algorithm), that is to compute 1

525αβ2−2205β
mod 〈m(z), 857〉. Since Z857[z]/〈m(z)〉 is a finite ring, 525αβ2−2205β could be a zero divisor
in this ring. Recall that 525αβ2 − 2205β is a zero divisor if Norm(525αβ2 − 2205β) ≡ 0
mod 857. Therefore the prime and the evaluation point both play roles in making the leading
coefficient to be a zero divisor. Let us consider Norm(LC(Kr(B)). By Corollary 8.1 we have

Norm(LC(Kr(B))) = Norm(525αy2 − 2205y) = 275625
2 y4 + 4862025y2.

When p = 3, 5 or 7, Norm(LC(Kr(B))) mod p = 0. If we use those primes, zero divisors
are produced directly even without evaluations. On the other hand, Norm(LC(Kr(B))) 6= 0
mod 857. However the roots of Norm(LC(Kr(B))) mod 857 are 0, 207 and 605. Since
LC(Kr(B))(y = 0) = 0 mod p, 0 is a bad evaluation point. Hence the leading coefficient
525αy2−2205y when evaluated at either 207 or 605 is a zero divisor. But the number of roots
of Norm(LC(Kr(B)) still bounds the number of evaluation points causing zero divisors.

The zero divisors shown in Example 8.13 can be divided into two families. Let n be the
number of division steps in the Euclidean algorithm. So n ≤ degx(Kr(B)). The first kind
is the prime which divides the norm of the leading coefficients of remainders. If a prime
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p is not bad and divides all rational coefficients of Norm(lc(ri)) for some i, then lc(ri) is
not invertible modulo p no matter what evaluation points we use. An upper bound for the
number of zero divisors contributed by primes (zero divisor primes) can be derived from∏n
i=1 |Norm(lc(ri))|nmax which also bounds all bad primes defined in the previous section.

But for the purpose to find a bound we can still use
∏n
i=1 |Norm(lc(ri))|nmax. Now let p be

a prime which does not cause zero divisors for a given input. The second kind is the roots
of Norm(lc(ri)) ∈ Zp[y]. The number of zero divisors contributed by the roots (zero divisor
evaluation points) and the number of bad evaluation points (defined in the next section) is
bounded by

∏n
i=1 degyNorm(lc(ri)).

Definition 8.11. Suppose the Kronecker substitution is not bad and not unlucky and p is
not a bad prime. Let A,B ∈ Q(α)[x0, . . . , xn] where degx0 A ≥ degx0 B and [r3, r4, . . . , rk]
be the polynomial remainder sequence of r1 = Kr(Ǎ)(x, y) and r2 = Kr(B̌)(x, y). Then p is
not a zero divisor prime if p does not divide the denominator of lc(ri) and lc(ri) is invertible
in Zp(α) for 1 ≤ i ≤ k.

Theorem 8.4. With notations used in Definition 8.11. For 1 ≤ i ≤ k, if Norm(lc(ri)) 6= 0
mod p, then lc(ri) is invertible in Zp(α).

Proof. By Corollary 8.1, Norm(lc(ri)) = resz(m(z), lc(ri)) where m(z) is the minimal poly-
nomial for α. We extend m(z) from Q[z] to Q[y][z]. Note that lc(ri) ∈ Q[y][z]. Since m(z)
is the minimal polynomial, gcd(m(z), lc(ri)) = 1. By the generalization of Bezout’s identity
to polynomials over an arbitrary commutative ring (with identity in our case), there exist
polynomials S, T ∈ Q[y][z] such that

S · lc(ri) + T ·m(z) = resz(m(z), lc(ri)).

Since Norm(lc(ri)) 6= 0 mod p, resz(m, lc(ri)) 6= 0 mod p. We have the equation

S

resz(m(z), lc(ri))
· lc(ri) + T

resz(m(z), lc(ri))
·m(z) = 1 mod p.

Hence S
Norm(lc(ri)) is the inverse of lc(ri) modulo p.

Definition 8.12. Suppose p is not a bad prime and not a zero divisor prime. With same
notations used in Definition 8.11 let β ∈ Zp be an evaluation point for y. β is not a zero
divisor evaluation point if lc(ri)(β) ∈ Q[z] is invertible modulo p for 1 ≤ i ≤ n.

If we apply the monic Euclidean algorithm over rings onKr(Ǎ)(x, y),Kr(B̌)(x, y) ∈ R[x]
(R is the coefficients ring) to derive bounds for the number of zero divisors primes and the
number of zero divisor evaluation points then the leading coefficient in every remainder
is a fraction in Z[y, z]/Z[y, z] which is difficult to handle. This caused us much grief so
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Monic subresultant PRS
Input: Two univariate polynomials A and B in x with coefficients in R where R is a
commutative ring with identity 1 and degxA ≥ degxB.
Output: Either Fail or the monic gcd(A,B).

1 Set r1 = A, r2 = B, i = 2 and c1 = lc(r1).
2 If c1 is not invertible, then return Fail. If r2 = 0 then return c−1

1 r1.
3 While ri 6= 0 do

4 Let di = degx ri−1 − degx ri and ci = lc(ri).
5 If inverting ci fails, then return Fail.
6 If i = 2 then hi = −1 else hi = −cdi−1

i−1 (hdi−1−1
i−1 )−1.

7 If i = 2 then bi = (−1)di+1 else bi = −ci−1h
di
i .

8 Let r̄ = prem(ri−1, ri) where prem denotes the pseudo division.
Note: No inverse computation is performed in prem. See Figure 1.1.

9 Let ri+1 = r̄b−1
i and i = i+ 1.

10 Return ri−1 = c−1
i−1ri−1.

Note: ri−1 is the last non-zero remainder and ci−1 is invertible by step 5.

Figure 8.2: Monic subresultant PRS algorithm

we decided to use the monic subresultant PRS algorithm instead to compute the GCD in
Z(α)[x]. See Figure 8.2.

For the monic subresultant PRS algorithm on inputs Kr(Ǎ)(x, y) and Kr(B̌)(x, y) we
treat inputs as univariate polynomials in x. In step 2 we invert the leading coefficient of
Kr(Ǎ)(x, y). Inverting is also required in step 5. In step 6 and step 9 we compute (hdi−1−1

i−1 )−1

and b−1
i which involve inverse computations. But it is obvious that the denominator and the

numerator of hi is the product of leading coefficients of remainders in previous iterations if
we don’t do cancellation. And bi depends on hi and ci. For example, h2 = −1, h3 = −lc(r2)d2

(−1)d2−1 ,

h4 = lc(r3)d3 (−1)(d2−1)(d3−1)

lc(r2)(d2)(d3−1) ,. . . ,etc. Therefore if step 5 does not fail, step 6 and step 9 cannot
fail and the pseudo remainder in step 8 does not have zero divisor problem. If p|Norm(lc(ri))
for some i < k, provided that p is not bad, then p is a zero divisor prime. If the numerator
or the denominator of hi evaluated at β is zero modulo p, then Norm(lc(ri))(β) mod p = 0
for some i < k. Hence if we avoid zero divisor primes and for each prime, which is not a
zero divisor prime, we avoid to use zero divisor evaluation points for the leading coefficient
of each remainder in the subresultant PRS, then the monic subresultant PRS algorithm
outputs the monic remainder rk.

In the remaining part of this section, we derive upper bounds for the number of zero divi-
sor evaluation points and the number of zero divisor primes by the definition of subresultant
polynomial. First we review the subresultant PRS defined by the subresultant polynomial.
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Let Kr(Ǎ) =
∑dA
i=0 aix

i and Kr(B̌) =
∑dB
i=0 bix

i where dA ≥ dB ≥ 1 and ai, bi ∈ Z[z][y].
The Sylvester matrix of Kr(Ǎ) and Kr(B̌) is

S =



adA 0 0 bdB 0 0
adA−1 adA 0 bdB−1 bdB 0
... adA−1

. . . 0
... bdB−1

. . . 0

a1
... adA b1

... bdB
a0 a1 adA−1 b0 b1 bdB−1

0 a0
... 0 b0

...

0 0 . . . a1 0 0 . . . b1

0 0 a0 0 0 b0



. (8.1)

By the definition of polynomial resultant resx(Kr(Ǎ),Kr(B̌)) = detS. Let S(i, j) be the
(dA + dB − 2j)× (dA + dB − 2j) submatrix of S obtained by deleting

1. columns dB − j + 1 to dB;

2. columns dA + dB − j + 1 to dA + dB;

3. row dA + dB − 2j to dA + dB except the row dA + dB − i− j.

Definition 8.13. The j-th subresultant of Kr(Ǎ) and Kr(B̌) is the polynomial

S(j,Kr(Ǎ),Kr(B̌)) = detS(0, j) + detS(1, j)x+ · · ·+ detS(j, j)xj ∈ Z[y, z][x].

Note that detS(i, j) is not reduced by m̌(z) and detS(i, j) ∈ Z[y, z]. If detS(j, j) ≡ 0
mod m(z), degx S(j,Kr(Ǎ),Kr(B̌)) < j. But it does not affect the calculation of the upper
bounds. Hence we assume detS(j, j) 6≡ 0 mod m(z). It is clear that the size of S(j, j)
increases as j decreases and detS(0, 0) = detS. We claim that the upper bound of the
number of zero divisor evaluation points and the upper bound of the number of zero divisor
primes for Norm(detS) also bound the number of zero divisor evaluation points and the
number of zero divisor primes for Norm(detS(i, j)) respectively for 0 ≤ i ≤ j and 0 ≤ j ≤
dB. Recall that

Norm(detS) = resz(m̌(z), resx(Kr(Ǎ),Kr(B̌)) mod m̌(z)).

Theorem 8.5. Let Kr(Ǎ),Kr(B̌) ∈ Zp[z]/〈m(z)〉[y][x] and p be a prime which is not bad
and not a zero divisor prime. Then there are at most 2d(d + 1)(2d2 + 1)ndm + ddm zero
divisor evaluation points.

Proof. We first determine an upper bound for the number of zero divisor evaluation points
for detS(0, 0) = detS. Note that detS(0, 0) is the leading coefficient of S(0,Kr(Ǎ),Kr(B̌)).
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Suppose p is not bad and not a zero divisor prime. The first step is to compute degy detS =
degy resx(Kr(Ǎ),Kr(B̌)) where S is a (dA + dB) × (dA + dB) Sylvester matrix. In the
first dB rows, degy Si,j ≤ degyKr(Ǎ). In the last dA rows, degy Si,j ≤ degyKr(B̌). Hence
degy detS ≤ dB degyKr(Ǎ) + dA degyKr(B̌).

The second step is to compute resz(m̌(z), resx(Kr(Ǎ),Kr(B̌)) mod m̌(z)). The first
degz resx(Kr(Ǎ),Kr(B̌)) mod m̌(z) rows contain only rationals from the coefficients of
m̌(z). In the last degz m̌(z) rows, the degree of y in every entry is bounded by

degy resx(Kr(Ǎ),Kr(B̌)) mod m̌(z) ≤ dB degyKr(Ǎ) + dA degyKr(B̌).

Therefore,

degyNorm(detS) ≤ degz m̌(z)(dB degyKr(Ǎ) + dA degyKr(B̌)).

Since dA ≤ d, dB ≤ d, degyKr(Ǎ) ≤ (2d2 + 1)n and degyKr(B̌) ≤ (2d2 + 1)n, we have

degyNorm(detS) ≤ 2d(2d2 + 1)ndm.

In other words, there are at most 2d(2d2 + 1)ndm zero divisor evaluation points for the
norm of the leading coefficient of S(0,Kr(Ǎ),Kr(B̌)). For the leading coefficients detS(j, j)
where 0 < j ≤ dB, the size of the matrix S(j, j) is (dA + dB − 2j)× (dA + dB − 2j) which
is less than the size of S and the degree in each entry of S(j, j) is bounded by the same
quantity and therefore degyNorm(detS(j, j)) ≤ degyNorm(detS) for 0 < j ≤ dB. Since
there are at most dB + 1 division steps, the total number of zero divisor evaluation points
contributed by the while loop in the monic subresultant PRS algorithm is bounded by
(2d(2d2 + 1)ndm)(dB + 1) ≤ 2d(d+ 1)(2d2 + 1)ndm.

Finally we bound the number of roots for y in Norm(lc(r1)). Since Norm(lc(r1)) =
resz(m̌(z), lc(r1)), the number of roots is bounded by the degree of the determinant of the
Sylvester matrix of m̌(z) and lc(r1) in y. Since degz lc(r1) < dm, the size of this Sylvester
matrix is less than dm+dm. But the entries in the first degz lc(r1) columns are integers. The
degree of each entry in y in this Sylvester matrix is bounded by degy lc(r1) ≤ d. Therefore
degy resz(m̌(z), lc(r1)) ≤ dmd and the total number of zero divisor evaluation points is
bounded by

(2d(2d2 + 1)ndm)(dB + 1) + ddm ≤ 2d(d+ 1)(2d2 + 1)ndm + ddm.

Recall that h > max(‖Ǎ‖, ‖B̌‖). We have the following theorem.
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Theorem 8.6. Let Bzdp = ((2dm)dm(dm(d+1))2dmh2dm)((2dm)dm(2d(2d2+1)n)2dmW 2dm)d+1

where

W = (2d)d((2d2 + 1)ndm)2dh2d(|Dm|+ ‖m̌(z)‖)γ+1 and γ = (dA + dB)(dm − 1) + 1.

There are at most logpmin Bzdp zero divisor primes p with p ≥ pmin.

Proof. LetDm = lc(m̌(z)). Recall that h > max(‖Ǎ‖, ‖B̌‖). By the choice ofKr, see Remark
4.1, we have h > ‖Kr(Ǎ)‖ and h > ‖Kr(B̌)‖. We first compute ‖Norm(lc(r1))‖, that is
to compute the height of resz(m̌(z), lc(r1)). Let S′ be the Sylvester matrix formed by the
coefficients of m̌(z) and lc(r1). Then detS′ = resz(m̌(z), lc(r1)). Since degz m̌(z) = dm and
degz lc(r1) < dm, the dimension of S′ is bounded by 2dm. We also have # det(S′) ≤ (dm −
1+1)(degy lc(r1)+1) ≤ dm(d+1). By Proposition 3.2, we have ‖ detS′‖ ≤ (2dm)dm(dm(d+
1))2dmh2dm . Therefore

‖Norm(lc(r1))‖ ≤ (2dm)dm(dm(d+ 1))2dmh2dm .

Recall that the Sylvester matrix S contains elements in Z[z][y]. Since degyKr(Ǎ) ≤
(2d2 + 1)n, degyKr(B̌) ≤ (2d2 + 1)n, degzKr(Ǎ) < dm and degzKr(B̌) < dm, #Si,j <
(2d2 + 1)n(dm − 1 + 1). Therefore by 3.2, we have

‖ detS‖ ≤ (dA + dB)
dA+dB

2 ((2d2 + 1)ndm)dA+dBhdA+dB .

Since degz Sij ≤ degzm(z)−1, degz detS ≤ (dA+dB)(dm−1). Let γ = (dA+dB)(dm−
1) + 1. By the pseudo division and Lemma 8.5, we have

‖Dγ
m detS mod m̌(z)‖ ≤ ‖Dγ

m detS‖(1 + ‖m̌(z)‖/|Dm|)γ

= |Dγ
m|‖detS‖(1 + ‖m̌(z)‖/|Dm|)γ

= ‖ detS‖(|Dm|+ ‖m̌(z)‖)γ .

Hence by Proposition 3.2 we have

‖Dγ
m detS mod m̌(z)‖

≤ (dA + dB)
dA+dB

2 ((2d2 + 1)ndm)dA+dBhdA+dB (|Dm|+ ‖m̌(z)‖)γ .

The final step is to derive an upper bound for the numerator magnitude of

Norm(Dγ
m detS mod m̌(z)) = resz(m̌(z), Dγ

m detS mod m̌(z)).

Let V be the Sylvester matrix of m̌(z) and Dγ
m detS mod m̌(z). Let dS = degz(Dγ

m detS
mod m̌(z)). By the property of determinant, V is a (dS + dm) × (dS + dm) matrix in Z[y]
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and

‖Vij‖ ≤ max{‖Dγ
m detS mod m̌(z)‖, ‖m̌(z)‖}

≤ (dA + dB)
dA+dB

2 ((2d2 + 1)ndm)dA+dBhdA+dB (|Dm|+ ‖m̌(z)‖)γ .

Since degy detS ≤ dB degyKr(Ǎ) + dA degyKr(B̌) ≤ 2d(2d2 + 1)n we have

degyDγ
m detS mod m̌(z) ≤ 2d(2d2 + 1)n

which is the term bound. Therefore by Proposition 3.2 again with dA, dB ≤ d and dS ≤
dm − 1 we have

‖detV ′‖ < (2dm)dm(2d(2d2 + 1)n)2dmW 2dm ,

where W = (2d)d((2d2 + 1)ndm)2dh2d(|Dm| + ‖m̌(z)‖)γ . Let Bprs be the quantity on the
right hand side of the above inequality. We also notice that S(i, j) is a submatrix of S by
deleting rows and columns. The height of each entry in S(i, j) is bounded by h and the
size of S(i, j) is bounded by dA + dB. Hence the numerator magnitude of Norm(detS(i, j)
mod m̌(z)) is also bounded by Bprs. In the monic subresultant algorithm on inputs Kr(Ǎ)
and Kr(B̌), there are at most dB + 1 ≤ d+ 1 division steps. Let pmin be a positive integer.
If we consider primes p > pmin then there are at most logpmin Bzdp zero divisor primes
with input Kr(Ǎ) and Kr(B̌), where

Bzdp =((2dm)dm(dm(d+ 1))2dmh2dm)Bd+1
prs

=((2dm)dm(dm(d+ 1))2dmh2dm)((2dm)dm(2d(2d2 + 1)n)2dmW 2dm)d+1.

and W = (2d)d((2d2 + 1)ndm)2dh2d(|Dm|+ ‖m̌(z)‖)γ .

Remark 8.7. We mention again that the bound Bzdp seems large but logpmin Bzdp is small
once pmin is determined. See Section 8.7 for more details.

8.6 Bad and unlucky evaluation points

In this section we derive the upper bounds for the number of bad evaluation points and the
number of unlucky evaluation points.

Definition 8.14. Suppose the prime p is not bad and not unlucky. Let β ∈ Zp be an eval-
uation point chosen uniformly at random. If LC(Kr(Ǎ))(x, β) = 0 or LC(Kr(B̌))(x, β) = 0
then β is a bad evaluation point. If the Euclidean algorithm successfully determines Ḡ =
gcd(Kr( ¯̌

A)(x, β),Kr( ¯̌
B)(x, β)) without failure and degx Ḡ > 0, then β is an unlucky evalu-

ation point. If β is not bad and not unlucky, we call it good.
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Theorem 8.7. Let p be a radical prime which is not bad and not unlucky. If β is chosen
uniformly at random from Zp, then

(i) Prob[β is bad] < 2(2d2+1)n
p and

(ii) Prob[β is bad or unlucky] < 2(2d2+1)n+2d(2d2+1)n
p .

Proof. By Lemma 8.1 we have

Prob[β is bad] = Prob(LC(Kr(Ǎ))(x, β)LC(Kr(B̌))(x, β) = 0)

≤
degy(LC(Kr(Ǎ)) + degy(LC(Kr(B̌))

p

≤
degyKr(Ǎ) + degyKr(B̌)

p
<

2(2d2 + 1)n

p
.

(i) is proved. For (ii), from the proof of Lemma 2.7 we have

Prob[β is bad or unlucky] ≤
degyKr(LC(Ǎ))Kr(LC(B̌))

p
+ # unlucky evaluation points

p
.

Therefore we need to determine an upper bound for the number of unlucky evaluation
points. Since m̌(z) is the semi-associate of the minimal polynomial it is irreducible and
therefore squarefree over Q. By Lemma 8.8 〈m̌(z)〉 is a radical ideal. The prime p we pick
is assumed to be a radical prime, and therefore 〈m̌(z) mod p〉 is still a radical ideal. By
Lemma 8.8 again we have m̌(z) mod p = m1(z) · · ·mk(z) mod p where mi(z) 6= m(z)j if
i 6= j and mi(z) is irreducible over Zp for 1 ≤ i ≤ k. By the Chinese remainder theorem we
have the decomposition

Zp[z]/〈m̌(z)〉 ∼= Zp[z]/〈m1(z)〉 × · · · × Zp[z]/〈mk(z)〉.

We extend this isomorphism to a bivariate polynomial ring and get

Zp[z]/〈m̌(z)〉[x, y] ∼= Zp[z]/〈m1(z)〉[x, y]× · · · × Zp[z]/〈mk(z)〉[x, y].

We note that each component on the right hand side of above equation is a polynomial ring
over the field Zp[z]/〈mi(z)〉 because mi is irreducible modulo p for 1 ≤ i ≤ k. Suppose β is
an unlucky evaluation point and the monic subresultant PRS algorithm successfully outputs
ḡ = gcd(Kr( ¯̌

A)(x, β),Kr( ¯̌
B)(x, β)) ∈ Zp[z]/〈m̌(z)〉[x]. Since β is unlucky and ḡ is monic,

degx ḡ = degx ḡ mod mi(z) ≥ 1 for 1 ≤ i ≤ k. By Lemma 2.4 degx ḡ mod mi(z) ≥ 1 is
equivalent to Ri(β) = resx(Kr( ¯̌

A)(x, β),Kr( ¯̌
B)(x, β)) ≡ 0 mod mi(z). Hence β is a root of

Ri(y). This is true for 1 ≤ i ≤ k. By our choice of Kronecker substitution, degy Ri(y) <
2d(2d2 + 1)n. Note that the bound for degy Ri(y) can be obtained by the same way as we
did in Proposition 4.1. Hence there are at most 2d(2d2 + 1)n roots for each Ri(y). Now
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we apply the Chinese remaindering theorem to {Ri : 1 ≤ i ≤ k} with moduli {mi}1≤i≤k
and obtain a polynomial r ∈ Zp[z]/〈m̌(z)〉[y] and degy r(y) ≤ 2d(2d2 + 1)n. Therefore
degx gcd( ¯̌

A(x, β), ¯̌
B(x, β)) ≥ 1 implies r(β) = 0 and the number of unlucky evaluation

points is bounded by the number of roots of r(y). But we only choose evaluation points
from Zp and thus r(y) has at most 2d(2d2 + 1)n roots in Zp. So we have

Prob[β is bad or unlucky] < 2(2d2 + 1)n + 2d(2d2 + 1)n

p
.

Remark 8.8. In the proof of above theorem, the polynomial r(y) has coefficients in a finite
ring with zero divisors and therefore it may have more than 2d(2d2 + 1)n roots. But the
number of roots of r(y) in Zp is still bounded by 2d(2d2 + 1)n.

Example 8.14. Let m(z) = z2 +13z+6 be the minimal polynomial of the algebraic number
α. Consider the polynomial r(y) = y3 + αy2 + 3y2 + 3αy + 11y + 11α ∈ Q(α)[y]. If we pick
the prime p = 17, then m(z) ≡ (z + 8)(z + 5) mod p. r(y) has two roots in Zp[z]/〈z + 5〉
which are 5, 9 and three roots in Zp[z]/〈z+ 8〉 which are 5, 8, 9. The number of roots cannot
be greater than 3 since Zp[z]/〈z+5〉 and Zp[z]/〈z+8〉 are both fields and degy r(y) = 3. But
r(y) has six roots in Zp[z]/〈m(z)〉 which are 5, 9, 16α, 10α+4, 7α+10, 6α+5. By the extended
Euclidean algorithm we have (z+ 8)S + (z+ 5)T = 1 mod p for some S, T ∈ Zp[z]. By the
Chinese remainder theorem, all those six roots can be obtained from E1(z+8)S+E2(z+5)T
mod p where E1 ∈ {5, 9} and E2 ∈ {5, 8, 9}. However if we restrict the roots to be in Zp
then there are only two roots {5, 9}.

8.7 Simplified algorithm

We present the simplified algorithm MGCDα in this section. The algorithm contains two
parts. MGCDα is the main routine which calls PGCDα several times to compute enough
modular GCD images then it performs the Chinese remaindering and rational number
reconstruction to get the GCD. PGCDα uses Ben-Or/Tiwari interpolation to compute one
modular image modulo a prime p.

The probability that our algorithm does not encounter bad, unlucky or zero divisor
evaluation points can be estimated as follows. Let U be the bound on the number of bad,
unlucky and zero divisor evaluation points and τ be an upper bound for the number of
univariate GCD images. We need 2τ consecutive points which are not bad, not unlucky
and not zero divisor evaluation points. Let ω be a generator of Z∗p. Suppose ωk is a bad
or unlucky or zero divisor evaluation point where s ≤ k < s + 2τ where 1 ≤ s ≤ p − 1.
The union of all segments of length 2τ contains the point ωk has length 4τ − 1. We can
not use any point in this union to determine the correct feedback polynomial. The worst
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case is that for all bad, unlucky and zero divisor evaluation points, their corresponding
segments of length 4τ − 1 do not overlap. Hence there are at most U(4τ − 1) points in p− 1
points we cannot use. The number of bad and unlucky evaluation points is bounded by
2(2d2 + 1)n + 2d(2d2 + 1)n and the number of zero divisor evaluation points is bounded by
2d(d+ 1)(2d2 + 1)ndm + ddm. Let

Be = 2d(d+ 1)(2d2 + 1)ndm + ddm + 2(2d2 + 1)n + 2d(2d2 + 1)n.

Then we have U ≤ Be.

Theorem 8.8. Suppose p is a radical, not bad, not unlucky and not zero divisor prime. Let
X ≥ 4τBe

p . Then

Prob[2τ consecutive points fail to determine the feedback polynomial] < 4τBe
p
≤ 1
X
,

for some positive number X. So if we choose p ≥ 4XτBe, then probability that PGCDα fails
is at most 1

X .

Now we construct a set S = {p1, p2, . . . , pN} which consists of smooth primes pi such
that pi > 4τBe for 1 ≤ i ≤ N . The number of primes which are not radical was derived in
Lemma 8.10. We set Bnr = (1+ddmm )|m|dmnmax which bounds the number of primes which are
not radical. This quantity only depends on the degree and the coefficients of the minimal
polynomial m(z) and is generally negligible, but we still include it here. The number of
primes in S can be obtained by computing

N = Y dlog4XτBe Be > Y logpmin B

where pmin = minS, B = Bbp ·Bup ·Bzdp ·Bnr and Y is some positive number.

Theorem 8.9. Let S be the set of primes constructed above and Y be a positive number.
Let p be chosen uniformly at random from S. Then

Prob[p is bad or unlucky or a zero divisor prime or a non-radical prime] ≤
logpminB

N
<

1
Y
.

Theorem 8.10. For given X > 0 and Y > 0, we construct a set S of smooth primes
as described above. Let p be chosen uniformly at random from S, s be chosen uniformly at
random from 0 < s ≤ p−1 and ω be a random generator of Z∗p. Let E = {ωs+j : 0 ≤ j < 2τ}
be 2τ consecutive evaluation points. Then the probability that p is a radical, not bad, not
unlucky and not zero divisor prime and all points in E are not bad, not unlucky and not
zero divisor evaluation points is greater than (1− 1

X )(1− 1
Y ). In particularly if X = Y = 4

then the probability is at least 1/2.
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This simplified algorithm may requires primes larger than 127 bits even for small inputs.
In this case it requires the multi-precision arithmetic hence is less effective. But it is still
worthwhile to get a sense for how large S might be because those bounds seem to be
extremely large. We first review all bounds.
Bad primes:

Bbp = d2
ch

2
c

where hc = max(|Ac|nmax, |Bc|nmax) and dc = max(den(Ac), den(Bc)).
Unlucky primes:

Bup = (2d)d((dm)(dm − 1)(2d2 + 1)nE|discr(s)|d2
ch

2
c)2d(1 + ‖s(v)‖)(4d−1)(dm−1)

where E = e(n+1)ddm(dm− 1)
dm−1

2 ‖s(v)‖dm−1
2 |discr(s)|−

1
2
∑dm−1
i=0 ‖s(v)‖i2 and ‖ · ‖2 denotes

the 2-norm.
Zero divisor primes:

Bzdp = ((2dm)dm(dm(d+ 1))2dmh2dm)((2dm)dm(2d(2d2 + 1)n)2dmW 2dm)d+1

where

W = (2d)d((2d2 + 1)ndm)2dh2d(|Dm|+ ‖m̌(z)‖)γ+1 and γ = (dA + dB)(dm − 1) + 1.

Non-radical primes:

Bnr = |m|dmnmax + (dm|m|nmax)dm = (1 + ddmm )|m|dmnmax.

The following example shows logpmin B is reasonably small.

Example 8.15. Let m(z) = z4 − 7
3z

3 + 11
2 z

2 − 14
5 z + 1 be the minimal polynomial of the

algebraic number α. Hence Dm = 30 and dm = 4. The semi-associate of m(z) is m̌(z) =
30z4−70z3+165z2−84z+30 and ‖m̌(z)‖ = 165. Let Ǎ, B̌ ∈ Z(α)[x0, . . . , x4], then n = 4. We
also assume that ‖Ǎ‖ = ‖B̌‖ = 10000, τ = 100 and degxi A = degxi B = 5 for 0 ≤ i ≤ 4,
hence d = 5. Let Ac and Bc be the converted Ǎ and B̌ respectively. s(v) = v4 − 70v3 +
4950v2−75600v+810000 is the minimal polynomial of the algebraic integer Dmα. Let hc =
max(|Ac|nmax, |Bc|nmax) ≤ max(‖Ǎ‖, ‖B̌‖) = 10000 and dc = max(den(Ac), den(Bc)) ≤
Ddm−1
m = 27000. We pick X = 4 and Y = 4 so that PGCDα computes the correct modular

image with probability at least 1/2. Now we have all parameters we need. We first compute
Be = 1704830672. So the lower bound for primes is 4 · 4 · τ ·Be = 2727729075200 which is
a 42 bits integer.

Bzdp ≈ 1.89× 109579, Bup ≈ 4.46× 101170,Bbp = 7.29× 1016,Bnr = 190488560625.

132



We pick B = Bbp · Bup · Bzdp · Bnr = 1.17 × 1010778. Therefore log4·4·τ ·Be B ≈ 866.70 and
|S| = Y · d866.70e = 4 · d867e = 3468.

We square the degree of each variable in inputs to get d = 25, then the lower bound
for primes is 4 · 4 · τ · Be = 20581353822024563200 which is a 65 bits integer. |S| = 55708
and 55708/3468 ≈ 16. Let d = 5 again. If we double the length of the height then we get
‖Ǎ‖ = ‖B̌‖ = 108, then the lower bound for primes is 4 · 4 · τ · Be = 2727729075200 which
is a 42 bits integer and |S| = 4124.

We assume that monomials are in pure lexicographical order x0 > x1 > · · · > xn, x0 is
the main variable and F ∈ Q(α)[x0, . . . , xn]. Let LC(F ) denote the leading coefficient of F
with respect to x0 hence LC(F ) ∈ Q(α)[x1, . . . , xn]. Let lc(F ) denote the leading coefficient
of F with respect to x0, x1, . . . , xn hence lc(F ) ∈ Q(α). Suppose A,B ∈ Q(α)[x0, . . . , xn] and
Γ = gcd(LC(A), LC(B)) ∈ Q(α)[x1, . . . , xn], H =

∑
hiHi = ∆G where Hi is a monomial

in x0, α and ∆ = Γ/LC(G). Γ has one less variable than A and B and we recursively use
MGCDα to compute Γ.

Algorithm MGCDα( A, B, τ , m(z) )

Inputs A,B ∈ Q(α)[x0, x1, . . . , xn] where n > 0, α is an algebraic number with monic
minimal polynomial m(z) ∈ Q[z], A and B are primitive in x0, degx0 A > 0, degx0 B > 0.
The monic minimal polynomial m(z) ∈ Q[z] for α. A term bound τ satisfying τ ≥ max #hi.

Output G = gcd(A,B).

1 Let Ǎ, B̌ and m̌(z) be the semi-associates of A, B and m(z) respectively.

2 Compute Γ = gcd(LC(Ǎ), LC(B̌)) in Q(α)[x1, . . . , xn] by MGCDα recursively. Note
lc(Γ) = 1.

3 Set ri = 1 + (degxi Ǎ degx0 B̌ + degxi B̌ degx0 Ǎ) for 1 ≤ i < n.

4 Let Y = (y, yr1 , yr1r2 , . . . , yr1r2...rn−1).
Set Kr(Ǎ) = Ǎ(x, Y ), Kr(B̌) = B̌(x, Y ) and Kr(Γ) = Γ(Y ).
Set dy = min(degyKr(Ǎ),degyKr(B̌)) + degyKr(Γ).

5 Construct the set S of smooth primes according to Theorem 8.10 with X = 4, Y = 4.
Therefore Prob[p is good and E are all good ] ≥ (1− 1

4)2 = 9
16 >

1
2 .

6 Set Ĥ = 0,Md = 1, R = Fail, d0 = min(degx0 Ǎ,degx0 B̌).

LOOP: // Invariant: d0 ≥ degx0 H = degx0 G.

7 Call PGCD( Kr(Ǎ), Kr(B̌), Kr(Γ), S, τ , Md ).
If PGCD outputs Fail then goto LOOP.
Let p and Ĥp =

∑dx
i=0 ĥi(y)xi be the output of PGCD where ĥi(y) ∈ Q(α)[y].
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8 If dx > d0 then either p is unlucky or all evaluation points were unlucky so goto
LOOP.

9 If dx < d0 then either this is the first image or all previous images in Ĥ were unlucky
so set d0 = dx, Ĥ = Ĥp, Md = p and goto LOOP.

Chinese Remaindering and Rational Reconstruction:

10 If R =Fail then Set Hold = Ĥ. Solve {Ĥ ≡ Hold mod Md and Ĥ ≡ Ĥp mod p} for
Ĥ. Set Md = Md × p. Apply rational reconstruction to obtain R̂ ∈ Q(α)[x, y] from Ĥ

mod Md. If rational reconstruction fails then goto LOOP else R = R̂.

11 If Ĥp 6= R mod p then goto LOOP.

Termination.

12 Set R̃ = K−1
r R(x, y) and let R̃ =

∑d0
i=0 c̃ix

i
0 where c̃i ∈ Q(α)[x1, x2, . . . , xn].

13 Set Ĝ = R̃/ gcd(c̃0, c̃1, . . . , c̃d0) (Ĝ is the primitive part of R̃ and lc(Ĝ) = 1).

14 If Ĝ|A and Ĝ|B then output Ĝ.

15 Set R = Fail and goto LOOP.

Algorithm PGCDα( Kr(Ǎ), Kr(B̌), m̌(z), Kr(Γ), S, τ , M )

Inputs Kr(Ǎ),Kr(B̌) ∈ Q(α)[x, y], Kr(Γ) ∈ Q(α)[y], m̌(z) ∈ Z[z]. S a set of smooth
primes, a term bound τ ≥ max #hi and M a positive integer.

Output With probability ≥ 1
2 a prime p and polynomial Hp ∈ Zp[x, y] satisfying Hp =

K(H) mod p and p does not divide M . Or Fail.

1 Pick a prime p uniformly at random from S that is not bad and does not divide M .

2 Pick a shift s ∈ Z∗p uniformly at random and any generator ω for Z∗p.

Compute-and-scale-images:

3 For j from 0 to 2τ − 1 do

4 Compute aj = Kr(Ǎ)(x, ωs+j) mod p and bj = Kr(B̌)(x, ωs+j) mod p.
5 If degx aj < degxKr(Ǎ) or degx bj < degxKr(B̌) then output Fail (ωs+j is a

bad evaluation point.)
6 Compute gj = gcd(aj , bj) ∈ Zp(α)[x] using the monic subresultant PRS algo-
rithm, see Figure 8.2. If gj = Fail then output Fail else set gj = K(Γ)(ωs+j)×gj
mod p.

End for loop.
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7 Set d0 = deg g0(x). If deg gj(x) 6= d0 for any 1 ≤ j ≤ 2τ − 1 output Fail (unlucky
evaluations).

8 Regard α as a variable hence gi ∈ Zp[x, α]. Let S = ∪2τ−1
i=0 {Support(gi)}.

Interpolate-coefficients:

9 For i = 1 to |S| do

10 Run the Berlekamp-Massey algorithm on the coefficients of S[i] in the images
g0, g1, . . . , g2τ−1 to obtain λi(z) and set τi = deg λi(z).

11 Compute the roots mj of each λi(z) in Zp. If the number of distinct roots of
λi(z) is not equal τi then output Fail (the feedback polynomial is wrong due to
undetected unlucky evaluations.)

12 Set ek = logαmk for 1 ≤ k ≤ τi. If ek > dy for some k then output Fail else set
σi = {ye1 , ye2 , . . . yeτi}.

13 Solve the τi by τi shifted transposed Vandermonde system{
τi∑
k=1

(ωs+j)ekuk = coefficient of S[i] in gj(x, α) for 0 ≤ j < τi

}

modulo p for u and set hi(y) =
∑τi
k=1 uky

ek . Note: (ωs+j)ek = ms+j
k

End for loop.

14 Set Hp :=
∑|S|
i=1 hi(y)S[i] and output (p,Hp).

MGCDα is a Las-Vegas algorithm. It always returns the correct result. Step 13 in PGCDα

must have a unique solution due to the choice of the prime. We note that d0 ≥ degx0 Ĥ =
degx0 Ĝ throughout MGCDα. If we choose X = 4 and Y = 4, then at least 3

4 primes in
S are good and at least 3

4 of the possible evaluation sequences are good. Hence PGCDα

outputs a good image of Ĥ with probability at least 1
2 . Eventually, d0 = degx0 Ĥ = degx0 Ĝ.

Once d0 is correct, all unlucky images can detected. With enough images Ĥ of degree d0,
rational number reconstruction determines the correct R. We have implemented MGCDα

in Maple by using the package Algebraic[RecursiveDensePolynomials]. But the package in
Maple has a bug which leads to a crash if the prime is large. So we use Michael Monagan’s
code instead which can be downloaded at

http://www.cecm.sfu.ca/CAG/code/lucas/recden

The Maple file of MGCDα can be downloaded at

http://www.cecm.sfu.ca/CAG/code/lucas/MGCD.pdf

You need both files to run the examples.
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8.8 Rational number reconstruction

Suppose G is the final correct GCD and R is the result from the rational number recon-
struction corresponding to G in step 10 of MGCDα. Let R =

∑d0
i=0

ni
bi
mi where ni, bi ∈ Z

and mi is the monomial in α, x, y. Let N > maxi{|ni|} and D > maxi{|bi|}. If Md > 2ND,
then we can use the extended Euclidean algorithm to determine all coefficients ni

bi
uniquely,

see [Wang, 1981] and [Monagan, 2004]. But we don’t know R hence we want to express
ND in terms of the inputs A,B,m(z). G is a monic factor of A and B, this leads us to
use Lemma 8.6. Since Lemma 8.6 only applies to algebraic integers, we have to convert the
inputs as we did in Section 8.4. Recall that the main loop in algorithm MGCDα computes
R = Kr(H) = Kr(∆)Kr(G) where Γ = gcd(LC(A), LC(B)) and ∆ = Γ/LC(G).

We follow the notations used in Section 8.4. Let Dm = den(m(z)) and degzm(z) = dm.
Let Ac, Bc ∈ Q(Dmα)[x0, . . . , xn] be the converted inputs and Ǎc, B̌c ∈ Z(Dmα)[x0, . . . , xn]
be the semi-associates of Ac, Bc. Let Gc = gcd(Ac, Bc) = gcd(Ǎc, B̌c) ∈ Q(Dmα)[x0, . . . , xn].
Let s(v) denote the minimal polynomial of Dmα which is an algebraic integer. In Section
8.4 we also defined hc = max(|Ac|nmax, |Bc|nmax) and dc = max(den(Ac), den(Bc)), then
max(‖Ǎc‖, ‖B̌c‖) ≤ dchc. Since Kr is invertible for Ǎc, B̌c,

dchc ≥ max(‖Kr(Ǎc)‖, ‖Kr(B̌c)‖).

Recall that discr(s(v))Gc ∈ Z(α)[x0, . . . , xn] where discr(s(v)) denotes the discriminant of
s(v). By Lemma 8.6 we have

‖discr(s(v))Kr(Gc)‖ ≤ Ecdchc|discr(s)|

where Ec = e(n+1)ddm(dm − 1)
dm−1

2 ‖s(v)‖dm−1
2 |discr(s)|−

1
2
∑dm−1
i=0 ‖s(v)‖i2. Now let Γc =

gcd(LC(Ǎc), LC(B̌c)) and ∆c = Γc/LC(Gc). Kr(∆c) is a monic factor of Kr(LC(Ǎc)) and
Kr(LC(B̌c)). Since ‖Kr(LC(Ǎc))‖ ≤ ‖Kr(Ǎc)‖ and ‖Kr(LC(B̌c))‖ ≤ ‖Kr(B̌c)‖, by Lemma
8.6 again we have

‖discr(s(v))Kr(∆c)‖ ≤ Eldchc|discr(s)|

where El = enddm(dm − 1)
dm−1

2 ‖s(v)‖dm−1
2 |discr(s)|−

1
2
∑dm−1
i=0 ‖s(v)‖i2.

The rational number reconstruction in MGCDα computesR = Kr(H) = Kr(∆c)Kr(Gc).
First we note that ‖den(Kr(H))Kr(H)‖ ≥ ND. If we can find Br so that Br ≥ 2ND
then Md > Br guarantees that the rational number reconstruction finds the unique result,
provided that all modular images are correct. It is obvious that

‖den(Kr(H))Kr(H)‖ ≤ ‖discr(s(v))Kr(Gc) · discr(s(v))Kr(∆c) mod s(v)‖

because den(Kr(H)) computes the integer LCM of the denominators of all coefficients in
Kr(H) and it is the smallest positive integer which can clear the denominator of Kr(H).
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Note that reducing s(v) does not produce fractions because it is a minimal polynomial of
an algebraic integer. Since the degvKr(∆c) ≤ dm − 1 and degyKr(∆c) ≤ (2d2 + 1)n, we
have #Kr(∆c) ≤ (dm)(2d2 + 1)n. By Lemma 8.4,

‖discr(s)Kr(Gc) · discr(s)Kr(∆c)‖

≤dm(2d2 + 1)n max(‖discr(s)Kr(Gc)‖, ‖discr(s)Kr(∆c)‖).

Since Ec > El, we have

‖discr(s)Kr(Gc) · discr(s)Kr(∆c)‖ ≤ dm(2d2 + 1)n(Ecdchc|discr(s)|)2.

Since degvKr(Gc)Kr(∆c) ≤ dm − 1 + dm − 1 = 2dm − 2, by Lemma 8.5, we have

‖discr(s)Kr(Gc) · discr(s)Kr(∆c) mod s(v)‖

≤dm(2d2 + 1)n(Ecdchc|discr(s)|)2(1 + ‖s(v)‖)2dm−2−dm+1.

Therefore ‖den(Kr(H))Kr(H)‖ ≤ dm(2d2 + 1)n(Ecdchc|discr(s)|)2(1 + ‖s(v)‖)dm−1. Let

Br = 2dm(2d2 + 1)n(Ecdchc|discr(s)|)2(1 + ‖s(v)‖)dm−1.

Since ‖den(Kr(H))Kr(H)‖ ≥ ND, Br ≥ 2ND. IfMd > Br then the rational reconstruction
algorithm can determine the result, provided that all modular images are correct. If we
compare Br with Bup in Section 8.4, we found that logpmin Br is smaller than logpmin Bup.
Therefore the set S constructed in the previous section has enough number of primes for
the rational number reconstruction.

Let Np = dlogpmin Bre where pmin = minS. The rational number reconstruction needs
at most Np primes to terminate. We also notice that at most logpminND good primes in S
can determine the complete support of R.

Theorem 8.11. Np = dlogpmin Bre where pmin = minS and let Z be the number of calls
that Algorithm MGCDα makes to PGCDα. Then E[Z] ≤ 2(Np + 1).

Proof. Since we choose X = 4 and Y = 4 in MGCDα to construct the set S according to
Theorem 8.10, the probability that PGCDα outputs a good image of Kr(H) is at least 1

2 .
Since we need Np images of Kr(H) to reconstruct the coefficients and one more to stabilize,
E[Z] ≤ 2(Np + 1).
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Chapter 9

Conclusion

In this thesis, we have developed efficient modular polynomial GCD algorithms for multivari-
ate polynomials over Z. They are based on Ben-Or/Tiwari sparse interpolation. Compared
with Zippel’s GCD algorithm which uses O(ndt) evaluation points, our GCD algorithms use
O(t) evaluation points. The discrete logarithm method helps us to reduce the size of primes
from about O(n log d) to O(D logn log logn) where d bounds the degree of each variable
in the target GCD and D is the total degree of the target GCD. See Table 2.1. Since t is
unknown, for a given prime, we may run out of evaluation points. This leads us to consider
Kronecker substitution. A Kronecker substitution reduces a multivariate GCD problem to
a bivariate problem, and therefore we just need to interpolate one variable and p − 1 > 2t
is normally not a problem. Besides, the evaluation points can be chosen randomly in Zp.
Generally, the Ben-Or/Tiwari sparse interpolation with the discrete logarithm method de-
veloped in this thesis can be applied to any application of sparse multivariate polynomial
interpolation.

The timing results are very good. See Table 7.1 and Table 7.2. For our benchmark
problem where #G ≈ 104, #A ≈ 106, #B ≈ 106 and t = 1198. Maple takes 22,111 seconds,
Magma takes 1,611 seconds. Our new algorithm takes 48.17 seconds on 1 core and 4.67
seconds on 16 cores. If we compute bivariate GCD images in the base case, then our new
algorithm takes 7.614 seconds on 1 core and 0.685 seconds on 16 cores.

For polynomial inputs with more variables and higher degrees, algorithm PGCD prob-
ably requires primes p larger than 127 bits. In this case our GCD algorithm still works
but requires multi-precision arithmetic. In order to use machine arithmetic to solve a larger
GCD problem, our first thought is to further reduce the size of primes for a given problem.
In other words, we try to use 127 bits primes to solve GCD problems with inputs as large
as possible.

One possible approach is Murao and Fujise’s method [Murao and Fujise, 1996] which
uses primes smaller than degyKr(G)(x, y). But Chinese remaindering is required to recover
the exponents of the monomials in Kr(G). Their method requires k small primes to get one
modular image (one call to our PGCD), so 2tk evaluation points are needed. But if all small
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primes are 63 bits, then using k 63 bits primes might be better than using one giant prime k
times longer. However, with small primes we have to use Chinese remaindering to combine
the exponent images converted from the roots of the feedback polynomials combinatorially.
Murao and Fujise figured out a way to determine the correct combinations but it is still
possible that matches are not unique. Therefore further examination is required.

Another possible approach is to compress Kronecker substitution. See the coefficient
ratio method in van der Hoven in [van der Hoven and Lecerf, 2015]. The direct consequence
of using a "smaller" Kronecker substitution is to reduce the size of primes.

Experiments showed that evaluations dominate the cost of our GCD algorithm, and
therefore reducing t is another way to speed up our algorithm. As we saw in Section 6.3,
computing bivariate GCD images in the base case effectively reduces t. Hence t can be
further reduced by computing the GCD images in three variables in the base case, provided
there is a fast modular GCD algorithm for three variables.

Our polynomial GCD algorithm over Q(α) can be modified to a practical version by
the same approach used in Chapter 5. Let Q(α1, . . . , αk) be a number field with multiple
extensions α1, . . . , αk overQ. ForA,B ∈ Q(α1, . . . , αk)[x0, x1, . . . , xn], we can also generalize
our algorithm to compute G = gcd(A,B). The only modification needed is to make the
univariate GCD computation in the base case have the capacity to handle coefficients in
a multiple extension of Q. This has been done by van Hoeij and Monagan [van Hoeij and
Monagan, 2002]. Since every algebraic extension of Q is separable, a primitive element β
in Q(α1, α2, . . . , αk) can be computed so that Q(β) = Q(α1, α2, . . . , αk). Therefore those
bounds derived in Chapter 8 should be valid if a proper conversion is made. But, computing
a primitive element in Q(α1, α2, . . . , αk) might be extremely expensive. See [Abbott et al.,
1986].

We encountered several difficulties when we designed those algorithms. For example, the
original design did not include Kronecker substitution. We found out that if the factors of
p−1 are small then we may run out of evaluation points. One easy fix is to increase the size of
primes once this problem is detected but we still want to use machine arithmetic. Kronecker
substitution solves this problem. At the beginning we did not know whether the Berlekamp-
Massey algorithm would work well enough over Zp to give us correct feedback polynomials.
It took a while to derive Theorem 2.6. The result turns out to be very good. Especially with
63 bit or 127 bit primes, it is very rare to get wrong feedback polynomials. In the number
field case, we had no idea how to derive the bound for the number of zero divisors because
the monic Euclidean algorithm produces fractions. Fortunately the monic subresultant GCD
algorithm over rings saved the day. Although those bounds are very complicated, they work.
Our algorithms seem to be less complicated and easier to understand than Zippel based
GCD algorithms, but they require many more sub-algorithms. Integrating them together
took much effort.
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Appendix A

Code

Maple code for the 6 variable gcd benchmark.

r := rand(2^31);
X := [u,v,w,x,y,z];
getpoly := proc(X,t,d) local i,e;

e := rand(d+1);
add( r()*mul(x^e(),x=X), i=1..t );

end:

infolevel[gcd] := 3; # to see output from Zippel’s algorithm

for d in [5,10,20,50,100] do
s := 100; t := 100*d;
g := add(x^d,x=X) + r() + getpoly(X,t-7,d-1);
abar := getpoly(X,s-1,d) + r(); a := expand(g*abar);
bbar := getpoly(X,s-1,d) + r(); b := expand(g*bbar);
st := time(); h := gcd(a,b); gcdtime := time()-st;
printf("d=%d time=%8.3f\n",d,gcdtime);

end do:

Magma code for the 6 variable gcd benchmark.

p := 2^31;
Z := IntegerRing();
P<u,v,w,x,y,z> := PolynomialRing(Z,6);

randpoly := function(d,t)
M := [ u^Random(0,d)*v^Random(0,d)*w^Random(0,d)

*x^Random(0,d)*y^Random(0,d)*z^Random(0,d) : i in [1..t] ];
C := [ Random(p) : i in [1..t] ];
g := Polynomial(C,M);
return g;
end function;
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for d in [5,10,20,50] do
s := 100; t := 100*d;
g := u^d+v^d+w^d+x^d+y^d+z^d + randpoly(d-1,t-7) + Random(p);
abar := randpoly(d,s-1) + Random(p); a := g*abar;
bbar := randpoly(d,s-1) + Random(p); b := g*bbar;
d; time h := Gcd(a,b);

end for;
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