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Abstract: Magnetically separable nanocatalysts were synthesized by incorporating iron nanoparticles
on a mesoporous aluminosilicate (Al-SBA-15) through a mechanochemical grinding pathway in
a single step. Noticeably, magnetic features were achieved by employing biomass waste as a
carbon source, which additionally may confer high oxygen functionalities to the resulting material.
The resulting catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy,
transmission electron microscopy, scanning electron microscopy, porosimetry, and magnetic
susceptibility. The magnetic nanocatalysts were tested in the selective oxidative cleavage reaction of
isoeugenol and vanillyl alcohol to vanillin. As a result, the magnetic nanocatalysts demonstrated
high catalytic activity, chemical stability, and enormous separation/reusability qualities. The origin
of catalytic properties and its relationship with the iron oxide precursor were analyzed in terms of
the chemical, morphological, and structural properties of the samples. Such analysis allows, thus,
to highlight the superficial concentration of the iron entities and the interaction with Al as key factors
to obtain a good catalytic response.
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1. Introduction

Currently, environmental issues related to global warming [1], which can have a negative
impact on human safety, together with the limited reserves of crude oil, motivated the scientific
community in the design of sustainable alternatives for materials, chemicals, energy, and fuel
production [2,3]. A change is required from the traditional concept of process efficiency focused
on chemical performance, considering the premises of sustainable development for the replacement
of fossil resources by renewable raw materials. In this regard, biomass valorization represents an
attractive option to supply the chemical demand by using an abundant and renewable source [4,5].
Lignocellulosic biomass, mainly composed of lignin, cellulose, and hemicellulose, can lead to terpenes,
carbohydrates, fatty esters, and aromatics. In this sense, biomass was recently subject of numerous
studies, attracting great interest as the most abundant renewable raw material of organic carbon
available on the planet and as a perfect substitute for oil in the production of fuels and chemical
products [6–8]. These facts represent at the same time an interesting and challenging topic for the
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chemical industry [9]. Therefore, the use of catalytic systems can pave the way for an optimum biomass
valorization [10,11].

In particular, the catalytic valorization of biomass-derived compounds such as eugenol,
isoeugenol, and ferulic acid was broadly studied through the past few years [12–15]. The molecules
may replace petrol-based intermediates, such as guaiacol and glyoxylic acid, for the synthesis of
vanillin [16]. The latter compound is a well-known flavoring agent, popular in the food, cosmetic,
and pharmaceutical industries. Several catalytic strategies, employing different transition metal oxides,
were explored for the conversion of isoeugenol and vanillyl alcohol to vanillin [17,18]. In particular,
supported and non-supported iron oxides were extensively applied to isoeugenol valorization [19–21].
However, much more effort should be devoted in order to optimize the catalytic systems and, in turn,
to enhance the catalytic performance in terms of conversion, selectivity, and stability.

Nanostructured heterogeneous catalysts possess advantages related to their recovery and reuse,
thus contributing to increasing the sustainable credentials of chemical processes [22,23]. In this regard,
the use of stable, active, and recyclable materials proved to be very useful for a wide range of chemical
processes [24–26]. The deposition of highly active nanoparticles on various organic or inorganic
supports is probably the most effective strategy for the reuse of nanocatalysts [27]. The design of
magnetic nanocatalyts facilitates a more efficient separation by using a magnetic field, compared to
conventional decanting and filtration techniques [28–34].

Iron oxide-based nanomaterials may possess different magnetic features depending on their
crystalline phase (e.g., hematite, maghemite, and magnetite) [35]. Magnetic iron oxides are generally
obtained by liquid-phase methods, which involve additional solvents and reagents [36]. A novel
technique for the synthesis of magnetic nanocatalysts is mechanical grinding (mechanochemistry).
In general, this method can avoid the use of toxic organic solvents that could be released to the
environment and increase the effectiveness and reproducibility in the synthesis of the materials.
Mechanochemistry is a promising alternative for the synthesis of heterogeneous catalysts [37].
Regarding the synthesis of magnetic iron oxide, mechanochemical methods require the use of propionic
acid, as previously described by our research group [38,39]. Propionic acid, together with the iron
precursor, gives rise to an iron carboxylate compound, which can be further converted via calcination
into crystalline magnetic iron-oxide phases. Replacement of such a reagent by a lignocellulosic residue
not only results in the desired iron oxide phase, but could also represent a sustainable alternative for
these type of materials. Also, textural properties constitute a key factor for a good catalytic performance,
such as porosity. Therefore, employing silica mesoporous supports including MCM-41 (Hexagonal),
MCM-48 (Cubic pore morphology), SBA-15 (Hexagonal pore morphology), and Al-SBA-15 (Hexagonal
pore morphology) for transition-metal oxides can provide access to advanced systems with optimum
porosity for catalytic applications [40–42]. Through this work, two strategies are explored for biomass
valorization, namely chemical and materials, revealing the underexploited potential of such types of
residues to ameliorate the environmental impact of chemical processes.

2. Results and Discussion

The proposed methodology resulted to be effective for the preparation of such catalytic systems,
pointing out that mechanochemical protocols represent a green and remarkable pathway to synthesize
advanced nanomaterials. Table S1 (Supplementary Materials) summarizes the materials synthesized.
In particular, the employment of biomass residue as a carbon source presents outstanding advantages,
since it allows the formation of a magnetic phase without employing other chemicals, such as propionic
acid, commonly used for the synthesis of magnetic iron oxide [17]. Nanomaterials synthesized
employing iron perchlorate and iron chloride did not show magnetic susceptibility. On the other hand,
concentrations higher than 40% for iron citrate and higher than 30% for iron nitrate showed remarkable
magnetic features. Magnetic susceptibility values were found in the range of 70–210 × 10−6 m3·kg−1

(Table S1, Supplementary Materials). These values are consistent with the content of maghemite
in the support since the pure maghemite nanoparticles generally show magnetic susceptibilities of
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approximately 500 × 10−6 m3·kg−1 [43]. These susceptibility values allow the magnetic separation
from the reaction mixture.

After functionalization with iron oxide, X-ray diffraction (XRD) analysis of the samples prepared
with iron citrate (FeMagC) showed a typical diffraction pattern that could be correlated with a mixture
of hematite (as the major component) and maghemite phases (Figure 1). The diffraction peaks at
2θ = 30.2◦, 33.2◦, 35.7◦, 40.9◦, 49.5◦, 54.1◦, 57.3◦, 62.4◦, and 64.1◦ correspond to (200), (104), (110),
(113), (024), (116), (112), (214), and (300) crystallographic planes of hematite phase, respectively [41].
In addition, maghemite-related peaks were observed at 2θ = 24.2◦ and 43.3◦, suggesting the presence
of both crystalline phases with a marked hematite prominence. Remarkably, the employment of iron
nitrate (FeMagN) resulted in (a) formation of pure maghemite (2θ = 30.2◦, 35.5◦, 43.5◦, 57.5◦, and 63.0◦

associated with (200), (311), (400), (511) and (440)), and (b) loss of crystallinity [44,45]. The presence
of the maghemite phase in the samples facilitates further recovery and reuse of the synthesized
catalytic systems.
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Nitrogen adsorption–desorption analysis of selected materials displayed a mesoporous structure
in all cases, as can be observed in Figure 2A,B, corresponding to type IV isotherms, according to
the International Union of Pure and Applied Chemistry (IUPAC) classification, showing an acute
inflection in the P/P0 range of 0.5–0.8 [46]. A decrease of surface area was observed after incorporation
of iron oxide nanoparticles. Brunauer–Emmett–Teller (BET) surface areas around 240–340 m2·g−1

were obtained (Table 1). Such values are in good agreement with those previously reported for
functionalized Al-SBA-15 samples [47]. In addition, pore diameters and pore volume also showed
a decrease of around 50% after functionalization (Table 1). These results can be understood from a
partial occlusion of Al-SBA-15 pores in presence of the Fe-oxide co-catalyst. Elemental information
about the components of samples was obtained with the help of SEM and energy-dispersive X-ray
spectroscopy (EDX). EDX analysis (Table 1) corroborated the presence of the expected elements Al, Si,
and Fe, and no significant differences were observed among the studied samples, as may be envisaged
by their similar chemical composition (for same iron salt concentration) when different precursors were
used. EDX analysis also allowed the identification of bulk N concentration in the samples; however,
very low concentrations (in comparison to superficial concentration obtained by X-ray photoelectron
spectroscopy (XPS)) and, consequently, high standard errors prevented the analysis of this data. This is
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an expected result considering that a sacrificial template mechanochemical-based method was used,
in which the waste feedstock is almost completely removed during the calcination process.
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Figure 2. N2 adsorption–desorption isotherms of (A) FeMagC at 400 ◦C, and (B) FeMagN at 400 ◦C.

Table 1. Textural properties of the obtained materials. BET—Brunauer–Emmett–Teller; EDX—energy-
dispersive X-ray spectroscopy.

Catalyst S BET
(m2·g−1)

Average Pore Diameter
(nm)

Average Pore Volume
(mL·g−1)

SEM–EDX
%Al %Si %Fe

Al-SBA-15 736 8.5 0.8 - - -
40% FeMagC-400 297 7.5 0.4 3.0 76.1 20.9
50% FeMagC-400 242 7.6 0.3 2.5 70.7 26.8
30% FeMagN-400 339 6.3 0.2 2.6 72.3 25.1
40% FeMagN-400 300 6.4 0.2 2.3 70.6 27.1

Morphological differences between the samples obtained using iron citrate and iron nitrate
were further investigated through a TEM study, using 40% FeMagC at 400 ◦C and 30% FeMagN at
400 ◦C as representative samples. TEM images of 40% FeMagC at 400 ◦C and 30% FeMagN at 400 ◦C
(Figure 3A,B) depicted that iron-oxide nanoparticles were successfully incorporated on the Al-SBA-15
surface. In both cases, the Al-SBA-15 support displays its characteristic well-crystallized and porous
structure [48]. Also, in both examples, several darker areas, which can be clearly associated with
the iron-oxide counterpart, were observed. EDX and TEM analyses support the idea that very close
contact between the Al-SBA-15 support and iron-oxide component both at the surface and trapped in
the porous structure was generated; however, a heterogeneous distribution of iron-oxide agglomerates
also seemed to be present.

Catalysts 2019, 9, 290 4 of 13 

 

mechanochemical-based method was used, in which the waste feedstock is almost completely 
removed during the calcination process. 

 
Figure 2. N2 adsorption–desorption isotherms of (A) FeMagC at 400 °C, and (B) FeMagN at 400 °C. 

Table 1. Textural properties of the obtained materials. BET—Brunauer–Emmett–Teller; EDX—
energy-dispersive X-ray spectroscopy. 

Catalyst S BET 

(m2∙g−1) 

Average Pore 
diameter 

(nm)* 

Average pore 
volume 
(mL∙g−1) 

SEM–EDX 

%Al %Si %Fe 

Al-SBA-15 736 8.5 0.8 - - - 
40% FeMagC-400 297 7.5 0.4 3.0 76.1 20.9 
50% FeMagC-400 242 7.6 0.3 2.5 70.7 26.8 
30% FeMagN-400 339 6.3 0.2 2.6 72.3 25.1 
40% FeMagN-400 300 6.4 0.2 2.3 70.6 27.1 

Morphological differences between the samples obtained using iron citrate and iron nitrate were 
further investigated through a TEM study, using 40% FeMagC at 400 °C and 30% FeMagN at 400 °C 
as representative samples. TEM images of 40% FeMagC at 400 °C and 30% FeMagN at 400 °C (Figures 
3A,B) depicted that iron-oxide nanoparticles were successfully incorporated on the Al-SBA-15 
surface. In both cases, the Al-SBA-15 support displays its characteristic well-crystallized and porous 
structure [48]. Also, in both examples, several darker areas, which can be clearly associated with the 
iron-oxide counterpart, were observed. EDX and TEM analyses support the idea that very close 
contact between the Al-SBA-15 support and iron-oxide component both at the surface and trapped 
in the porous structure was generated; however, a heterogeneous distribution of iron-oxide 
agglomerates also seemed to be present. 

 

Al-SBA-15

Relative Presure (P/P0)

0.0 0.2 0.4 0.6 0.8 1.0

V
a 

(m
L 

g-1
, S

TP
)

0

100

200

300

400

500

600

700

50% FeMagC-400

40% FeMagC-400

0.0 0.2 0.4 0.6 0.8 1.0

30% FeMagN-400

Relative Presure (P/P0)

0.0 0.2 0.4 0.6 0.8 1.0

Al-SBA-15

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

700

40% FeMagN-400

0.0 0.2 0.4 0.6 0.8 1.0

A B

Figure 3. TEM images of (A) 40% FeMagC at 400 ◦C, and (B) 40% FeMagN at 400 ◦C.
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In order to provide insight into species at the surface of the material and elucidate their relationship
with the precursor used, as well as their influence on the reactions, XPS analysis of the same
representative samples (40% FeMagC at 400 ◦C and 40% FeMagN at 400 ◦C) was performed. Curve
fitting was carried out using the carbon C 1s peak (284.6 eV) as a reference for binding energy calibration.
The deconvoluted C 1s XPS spectra of the obtained materials exhibited three different contributions
associated to the presence of C–C/C=C, C–N, and C–O bonds. In particular, the C–N signal detected
can be understood most likely due to the presence of nitrogen-containing compounds in the utilized
biomass source. In both samples, the presence of Fe3+ species could be also inferred from the Fe 2p3/2
and Fe 2p1/2 peaks around 710 eV and 725 eV, respectively (Figure 4A,D). XPS spectra did not show
the characteristic peaks associated with Fe(II), 709.6 eV or Fe(0), 706.7 eV species [49]. The absence of
Fe(II) in the samples, especially, confirmed the formation of maghemite as a magnetic phase instead of
magnetite, where both Fe(III) and Fe(II) species are presented [50,51]. Additionally, O 1s XPS spectra
displayed three different peaks attributed to O–C, O–Fe, and O–Si. In addition, the typical signals of Si
2p in SiO2 were observed at 103.0 eV for both materials. Calculation of Fe/Si ratio was carried out
using XPS (Table 2). Interestingly, a comparison with the Fe/Si ratio obtained by EDX (bulk) provides
evidence that remarkable superficial differences were obtained using nitrate and citrate precursors.
While Fe/Si ratios of the bulk obtained by EDX were essentially unchanged (enhancement factor
of 1.4: (Fe/Si)EDX 40% FeMagN at 400 ◦C/(Fe/Si)EDX 40% FeMagC at 400 ◦C), the superficial ratio
calculated by XPS shows an enhancement factor of 6.2 (Fe/Si)XPS 40% FeMagN at 400 ◦C/(Fe/Si)XPS

40% FeMagC at 400 ◦C).
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Figure 4. Deconvoluted X-ray photoelectron spectroscopy (XPS) spectra of 40% FeMagC at 400 ◦C and
40% FeMagN at 400 ◦C for (A,E) C 1s, (B,F) Fe 2p, (C,G) O 1s, and (D,H) Si 2p.

Table 2. Fe/Si atomic ratio obtained by chemical analysis and X-ray photoelectron spectroscopy (XPS).

Sample (Fe/Si)XPS (Fe/Si)EDX (Fe/Si)XPS/(Fe/Si)EDX

40% FeMagC at 400 ◦C 0.03 0.3 0.1
40% FeMagN at 400 ◦C 0.19 0.4 0.5
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The catalytic properties of the samples were investigated during the oxidation of isoeugenol and
vanillyl alcohol toward the selective production of vanillin (Scheme 1).
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Firstly, control experiments were performed in the absence of the catalysts (blank) and employing
Al-SBA-15 as a reference. These control reactions showed negligible activity in the absence of an
effective catalytic system (see blank vs. Al-SBA-15 in Figure 5A) for isoeugenol oxidation, obtaining
diphenyl structures as the main product. In addition, the vanillyl alcohol oxidation reaction to vanillin
showed fair conversions after 2 h of reaction without catalyst and relatively low values when the
reference support Al-SBA-15 was used (Figure 5B). The Al-SBA-15 reference is active in the vanillyl
alcohol oxidation reaction under used experimental conditions but displays a rather modest activity in
comparison with samples containing iron oxide. Under optimized reaction conditions for isoeugenol
oxidation [17], prepared nanomaterials showed remarkable differences as a function of the iron
precursor. A similar situation was acquired using vanillyl alcohol as a reagent, for which 20 min was
settled on as the final reaction time. In both reactions, samples obtained using iron nitrate provided
significantly improved conversions in comparison to the series of samples synthesized from iron
citrate. In the case of isoeugenol oxidation, the addition of the iron oxide obtained from iron(III)
nitrate drove to the highest positive impact in the conversion (more than 80%) regardless of the
calcination temperature. As can be seen in Figure 5A, the optimum value of activity was reached using
the 40% FeMagN at 400 ◦C sample. On the other hand, significantly lower conversion values were
obtained using ammonium iron(III) citrate as an iron source (~40%). Focusing on selectivity, higher
selectivity toward the desired vanillin product was detected for the series FeMagN which confirms the
advantages of the use of nitrate instead of the other inorganic salt (Figure 5A). Note that selectivity to
vanillin is higher than 70% for the catalyst 30$ MagN at 300 ◦C and higher than 50% for all samples
prepared from nitrate, being higher than previously reported for Fe-containing samples and similar
SBA-15-based samples (see Table S2, Supplementary Materials) [19,20]. Diphenylether was the other
dominant product of this reaction from which a carbon balance above 95% was obtained for all runs.
As presented in Figure 5B, rather similar behavior in terms of activity as a function of the iron precursor
was obtained during the vanillyl alcohol oxidation. In this case, full selectivity to vanillin was achieved.
Catalysts obtained from nitrate salt showed conversions greater than 99% in the reaction while a
worsening of activity was detected using citrate. In addition, calcination temperature modulated the
catalytic response of the solid, causing more activity at higher calcination temperature, which does not
seem related to the crystallinity of samples (Figure 1). No easy comparison between sample obtained
using nitrate or citrate was possible. We, however, previously demonstrated by 27Al NMR that
Al-SBA-15 suffers a considerable transformation in contact with Fe2O3 entities, which clearly indicates
a strong interaction between Fe and Al elements [52]. In fact, the enhancement of surface acidities
presented in Table 3 for Fe-containing samples, measured using pyridine and 2,6-dimethylpyridine,
could be associated with Al–Fe interaction. Note that a siliceous sample (Si-SBA-15) did not show
measurable acidity properties. Just as important, higher Lewis acidity was obtained when iron nitrate
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was used as an iron source (while both catalysts synthesized, 40% FeMagN at 400 ◦C and 40% FeMagN
at 400 ◦C, presented similar Brønsted acid sites), which would favor an enhanced activity.Catalysts 2019, 9, 290 8 of 13 
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The blank was measured after 2 h of reaction.

In fact, Al/Fe reduces the binding energy of the Fe–O bond, which, as demonstrated [53], generates
more flexible lattice oxygen and reactivity during oxidation reactions [52]. To further analyze the
activity of the samples and its relationship with the iron precursor, differences of Fe/Si bulk and
superficial ratios can be compared. Data presented in Table 2 clearly describe a correlation in the
behavior of the activity (see activity data for 40% FeMagC at 400 ◦C and 40% FeMagN at 400 ◦C in
Figure 5A,B) and superficial iron entities exposed (measured as Fe/Si ratio obtained by XPS) for the
catalytic process using the 40% FeMagC at 400 ◦C and 40% FeMagN at 400 ◦C samples. This means
that, although the use of nitrate instead of citrate seems to produce slightly better interaction with
the porous structure of the Al-SBA-15, these differences cannot be considered significant (see Tables 1
and 2). On the other hand, the Fe/Si ratio obtained by XPS indicates a significant increase of the
superficial concentration of iron oxide of the nitrate series in comparison with samples obtained from
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citrate, which, according to activity data of Figure 4, would define the differences between both groups
of catalysts (FeMagN vs. FeMagC).

Table 3. Surface acidity measured at 300 ◦C as µmol adsorbed of pyridine (PY) or 2,6-dimethylpyridine
(DMPY) per gram of sample.

Sample

Surface Acidity
at 300 ◦C/µmol·g−1

PY
(Total Acidity)

DMPY
(Brønsted Acidity)

Si-SBA-15 - -

Al-SBA-15 82 61

40% FeMagN at 400 ◦C 290 143

40% FeMagC at 400 ◦C 155 164

A reusability study of representative samples suggested a relatively high stability of the
synthesized catalysts obtained by mechanochemistry. These measurements were performed employing
one of the most active catalytic systems, namely 30% FeMagN at 400 ◦C (Figure 6A,B) and cycles of
24 h and 20 min for isoeugenol and vanillyl alcohol, respectively. For the isoeugenol oxidation reaction
(Figure 6A), after a decrease of the activity (from 77% to 53% conversion), the catalytic properties
remained essentially unchanged. As shown in Figure 6A, after the first cycle (24 h of reaction),
approximately 25% conversion was lost. However, a reactivation of the activity can be easily obtained
by calcinating the catalyst at 400 ◦C. A very similar conversion and selectivity, in comparison with
the first use of the catalyst, was obtained after the calcination treatment (80% and 60% conversion
and selectivity to vanillin, respectively), suggesting that deactivation of the sample was not due to
potential iron-oxide leaching, but to the presence of poisoning surface compounds, which is a common
phenomenon under batch conditions and long reaction times. Furthermore, much less catalytic
deactivation was observed during the oxidation of vanillyl alcohol under the used experimental
conditions (Figure 6B, see caption for details), which can also be understood taking into account that
significantly shorter reaction times were used. Similarly, a simple calcination post-treatment (400 ◦C)
was demonstrated to be an effective process to reactivate the catalyst (Figure 6B).
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Figure 6. Reuses of the 30% FeMagN at 400 ◦C for both oxidation reactions at 25 ◦C, 1 atm.
(A) Oxidation of isoeugenol; each cycle was 24 h of reaction; (B) oxidation of vanillyl alcohol; each
cycle was 20 min of reaction. A.C.: reused catalyst after calcination.
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3. Materials and Methods

3.1. Synthesis of Al-SBA-15

The preparation of the mesoporous aluminosilicate (Al-SBA-15, molar ratio Si/Al = 20) was
carried out according to a procedure reported by Stucky et al. [42]. In particular, Pluronic, P123
triblock copolymer, Sigma-Aldrich, Madrid, Spain (20.6 g) was dissolved in 750 mL of HCl (Panreac,
Barcelona, Spain) solution (0.2 M, pH = 1.5), by stirring at 40 ◦C for 2 h. Tetraethyl orthosilicate
(TEOS), Sigma-Aldrich, Madrid, Spain (25 mmol) and aluminum isopropoxide, Sigma-Aldrich, Madrid,
Spain (10 mmol) were then added to the mixture and further stirred for 24 h at 40 ◦C. Subsequently,
the solution was transferred to a 100-mL autoclave at 100 ◦C for 24 h. The obtained material was
filtered, dried at 60 ◦C, and finally calcined at 600 ◦C for 2 h.

3.2. Synthesis of Catalysts

The synthesis of the nanocatalysts was carried out by means of a mechanochemical milling process
using Al-SBA-15 as the support, biomass (a lignocellulosic-derived residue) as the carbon source,
and different iron precursors (ammonium iron(III) citrate (Sigma-Aldrich, Madrid, Spain), iron(III)
nitrate (Sigma-Aldrich, Madrid, Spain), iron(III) perchlorate hydrate (Panreac, Barcelona, Spain),
and iron(III) chloride, (Sigma-Aldrich, Madrid, Spain). For the catalyst preparation, Al-SBA-15 support
(2 g) and organic waste (1 g) were introduced into the planetary ball mill jar, where the different iron
salts used in percentages by weight of 10, 20, 30, 40, and 50 were introduced. The synthesis mixture
was ground for 10 min at 350 rpm using 18 stainless-steel balls of 10 mm × 1 cm. The material obtained
after the grinding process was calcined at three different temperatures, namely 300, 400, and 500 ◦C.
The nanomaterials obtained were denoted as X-FeMagY-Z, where X = theoretical content by weight of
iron present, Y = iron precursor salt (C = ammonium iron(III) citrate, N = iron(III) nitrate, P = iron(III)
perchlorate hydrate, and Cl = iron(III) chloride), and Z = calcination temperature.

3.3. Characterization Techniques

Nanocatalysts were characterized by several techniques, including X-ray diffraction (XRD),
X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy-dispersive
X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), and N2 physisorption.
Additionally, magnetic susceptibility values were additionally determined, in order to confirm the
magnetic properties of the prepared materials. X-ray diffraction analysis was carried out on a Bruker
D8-Advanced Diffractometer (40 kV, 40 mA) with a Cu X-ray tube (λ = 0.15406) and a goniometer
Bragg Bretano θ/θ (Bruker AXS, Karlsruhe, Germany). XRD patterns were acquired in a 10–80◦ range,
at a step size of 0.02◦ with a counting time per step of 20 s. XPS experiments were carried out
in an ultra-high vacuum (UHV) multipurpose surface analysis system Specs™, equipped with
the Phoibos 150-MCD energy detector (Berlin, Germany). The sample was previously evacuated
overnight under vacuum (<10−6 torr). The measurement was accomplished at pressures <10−10 mbar,
employing a conventional X-ray source (XR-50, Specs (Berlin, Germany), Mg-Kα, hv = 1253.6 eV,
1 eV = 1.603 × 10−19 J) in a “stop and go” mode. The XPS CASA program (Casa Software Ltd.,
Cheshire, UK) was used to obtain the deconvolution of the curves and the element quantification. TEM
micrographs were acquired in a FEI Tecnai G2 system, equipped with a charge-coupled device (CCD)
camera. Samples were previously suspended in ethanol and subsequently deposited on a copper grid.
Element quantification of the catalysts was obtained using a JEOL JSM 7800F (JEOL Ltd., Akishima,
Tokyo, Japan) scanning electron microscope equipped with an Inca Energy 250 microanalysis system,
Si/Li type window detector (ATW2), detection range from boron to uranium, and resolution of 137 eV
to 5.9 keV. The adsorption/desorption isotherms of N2 were determined in the Micromeritics automatic
analyzer ASAP 2000 (Micromeritics Instrument Corp., Norcross, GA, USA). at −196 ◦C. Samples were
previously degassed overnight at 130 ◦C under vacuum (P < 10−2 Pa). The linear determination of
the BET equation was carried out to obtain specific surface areas. Magnetic susceptibility of samples
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was determined by using a MS2 magnetic susceptibiliser, (Bartington Instruments Ltd., Witney, UK),
at room temperature using the dual frequency MS2B (Bartington Instruments Ltd., Witney, UK)
laboratory sensor (470 and 4700 Hz). Surface acidity of the samples was measured using pyridine (PY)
and 2,6-dimethylpyridine (DMPY) as titrant bases, since they are essentially adsorbed on both types
of acidic sites, Brønsted and Lewis and Brønsted acid sites, respectively, at 250 ◦C (50 ◦C below the
calcination temperature during the synthesis of the samples). The pulses were carried out by means of
a microinjector, in the catalytic bed, from a cyclohexane solution of the titrant (0.989 M PY and 0.956 M
DMPY). The catalyst was standardized at each titration in a dehydrated and deoxygenated nitrogen
flow (50 mL·min−1) (99.999% purity) at 250 ◦C. The catalyst used (~0.03 g) was fixed by means of
Pyrex glass wool stoppers, inside a stainless-steel tubular microreactor of 4 mm internal diameter.
The injected base was analyzed by gas chromatography with a flame ionization detector (FID), using
an analytical column 0.5 m in length, containing 5% by weight of polyphenylether in Chromosorb
AW-MCS 80/100 (Supelco Analytical, Bellefonte, PA, USA).

3.4. Catalytic Activity

The production of vanillin was carried out by conventional heating using isoeugenol and vanillyl
alcohol as reagents. The selective oxidative cleavage of isoeugenol to vanillin was carried out using a
multiple parallel reaction system (Carrusel Reaction Station™, Radleys Discovery Technologies Ltd.,
Saffron Walden, United Kingdom) at 25 ◦C, employing isoeugenol (0.8 g, 5 mmol), 33% hydrogen
peroxide (1.2 mL, 11.7 mmol) as an oxidant agent, acetonitrile as a solvent (8 mL, 153 mmol),
and 10 mol.% catalyst. In addition, oxidation of vanillyl alcohol to vanillin was carried out, using
vanillyl alcohol (0.8 g, 5 mmol), hydrogen peroxide, 30 wt.% in water (1.2 mL, 11.7 mmol), acetonitrile
(8 mL, 153 mmol), and 10 mol.% catalyst.

The progress of the reaction was evaluated by gas chromatography (GC) employing an
Agilent Technologies 7890 A GC System (Madrid, Spain) equipped with a Petrocol™ DH column
(100 m × 0.25 mm × 0.50 µm) and a flame ionization detector (FID).

4. Conclusions

A simple and reproducible process for the synthesis of iron nanoparticles deposited on Al-SBA-15
using biomass waste was developed. The nanomaterials possess suitable structural and textural
properties for their subsequent use as catalysts, as well as magnetic properties that allow easy
separation from the reaction media. The catalytic performance of such noncatalytic systems shows
promising results for the selective production of vanillin toward isoeugenol and vanillyl alcohol
oxidation at room temperature in conventional liquid phase. Conversions in the range of 80% to 90%
molar, with selectivities ≥50% molar were achieved. Results suggested that the Al–Fe interaction
and the subsequent enhancement of Lewis acid sites, as well as more iron-oxide species superficially
available for the oxidation process, are the most important factors to obtain high activity and vanillin
selectivity using the nitrate salt.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/3/290/s1,
Figure S1: Magnetic separation of synthesized samples dispersed in the reaction media, Table S1: Sumary
of sinthesized samples and magnetic susceptibility measurments, Table S2: Catalytic properties and reaction
temperature of Fe-containing catalysts during isoeugenol and vanillin alchool oxidation reactions.
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