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Abstract

We address the reduction to compact band forms, via unitary similarity transformations,
for the solution of symmetric eigenvalue problems and the computation of the singular value
decomposition (SVD). Concretely, in the first case we revisit the reduction to symmetric band
form while, for the second case, we propose a similar alternative, which transforms the original
matrix to (unsymmetric) band form, replacing the conventional reduction method that produces
a triangular–band output. In both cases, we describe algorithmic variants of the standard Level-
3 BLAS-based procedures, enhanced with look-ahead, to overcome the performance bottleneck
imposed by the panel factorization. Furthermore, our solutions employ an algorithmic block
size that differs from the target bandwidth, illustrating the important performance benefits of
this decision. Finally, we show that our alternative compact band form for the SVD is key to
introduce an effective look-ahead strategy into the corresponding reduction procedure.

1 Introduction

The reduction to tridiagonal form is a crucial operation for the computation of the eigenvalues of
a dense symmetric matrix when a significant part of the spectrum is required [15]. Similarly, the
reduction to bidiagonal form is the preferred option to obtain (all) the singular values of a dense
matrix via the singular value decomposition (SVD) [15]. The standard algorithms for these two
reductions in the legacy implementation of LAPACK (Linear Algebra PACKage) [2] compute these
reduced forms via two-sided, fine-grained unitary transformations. Unfortunately, these routines
are rich in Level-2 BLAS (Basic Linear Algebra Subroutines) [13], which are memory-bounded
kernels and, therefore, deliver only a small fraction of the peak (computational) performance of
recent computer architectures.

An alternative approach replaces these low-performance standard routines with two-sided re-
duction (TSR) algorithms that consist of two stages [5]. The idea is to initially transform the
dense matrix into a compact band form (first stage) to next operate on this by-product in order to
yield the desired tridiagonal/bidiagonal form (second stage). For symmetric eigenvalue problems
(SEVP), the compact by-product is a symmetric band matrix with upper and lower bandwidth
w. For the SVD, the compact representation corresponds, by convention, to an upper triangular–
band matrix with upper bandwidth w. The appealing property of the TSR algorithms is that
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the initial reduction mainly consists of high performance, compute-bounded Level-3 BLAS [12],
which explains the renewed interest in developing two-stage TSR algorithms for multicore proces-
sors as well as manycore accelerators [4, 9, 18, 19]. To conclude this brief review of two-stage
TSR algorithms, we note that in case w is small compared with the problem dimension, the com-
putational cost of performing the reduction of the band matrix to tridiagonal/bidiagonal form
is comparable with that of the initial reduction from the original dense matrix to the compact
representation [16, 10]. Furthermore, except for a few special problems, computing the eigenval-
ues/singular values of the tridiagonal/bidiagonal matrices contributes a minor factor to the global
cost of the procedure [11, 21, 14, 17]. In contrast, when the associated eigenvectors/singular vectors
are to be computed, the cost of accumulating the unitary transformations during the second stage
can be significant, even if the bandwidth is small compared with the problem dimension [4].

High-performance routines for the solution of linear systems (e.g., via the LU and QR factor-
izations [15]) as well as the initial stage of TSR algorithms usually implement a right-looking (RL)
procedure that, at each iteration, factorizes the current panel of the matrix, and then applies the
transformations that realized this reduction to update the trailing submatrix. On today’s multi-
core platforms, the factorization of the panel is a performance bottleneck because this operation
is mostly memory-bounded and, moreover, exhibits a complex set of fine-grain data dependen-
cies. Fortunately, there exist three (to a certain extent complementary) techniques to tackle the
constraint imposed by the panel factorization:

T1) exploit the fine-grain parallelism within the panel itself [7];

T2) divide the factorization of the current panel into multiple operations whose execution can
then be overlapped with certain parts of the trailing update, yielding the so-called algorithms-
by-blocks or tile algorithms [16, 6, 22]; and

T3) overlap the trailing update with the factorization of the “next” panel(s) [23].

Note the distinction between T2), which aims to exploit the parallelism among operations (tasks)
in the same iteration of the RL algorithm; and T3), which exploits the parallelism among oper-
ations belonging to two (or more) consecutive iterations of the RL algorithm. Here it is worth
pointing out that recent developments on the semi-automatic task-parallelization of dense linear
algebra operations with the support of a “runtime” (such as SuperMatrix, Quark, OmpSs, StarPU,
OpenMP, etc.) have partially blurred the frontier between T2) and T3). In particular, when this
type of task-parallelization is applied to an algorithm-by-blocks for the solution of linear systems
in order to realize T2), the result is that T3) is often obtained for free. For some TSR algorithms
though, as we will discuss in the paper, this may be more difficult or even impossible.

In this paper we focus on T3), which is usually known as look-ahead [23]. Here, as we do not rely
on a runtime to exploit “inter-iteration” parallelism, we can refer more precisely to this strategy
as “static” look-ahead. While this technique has been long known and exploited for the solution
of linear systems via the LU and QR factorizations1, its application to TSR algorithms has not
been fully discussed explicitly. In this paper we show that look-ahead can be introduced in the
sophisticated TSR algorithms for SEVP and the SVD, delivering remarkable performance benefits.
In particular, our paper makes the following contributions:

• We explore the integration of look-ahead into the reduction of symmetric matrices to band
form for SEVP via two-sided unitary transformations. In this line, we propose two variants

1Static look-ahead is for example the technique embedded in the implementation of these factorizations in Intel
MKL.
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of the reduction algorithm, enhanced with look-ahead, with distinct performance behaviour
depending on the ratio between the algorithmic block size b (which dictates the number of
columns in the panel,) and the target matrix bandwidth w. While LAPACK (version 3.7.1)
and MAGMA (version 2.1.0) both include routines for SEVP to reduce the symmetric input
matrix to band form, those implementations impose the restriction that the algorithmic block
size must equal the bandwidth, limiting performance. Furthermore, the LAPACK routine
for this reduction does not integrate look-ahead. The SBR (Successive Band Reduction)
package [5] was a pioneer work that decoupled the bandwidth from the algorithmic block size
in this type of reduction, but did not integrate look-ahead either.

• We extend our analysis of look-ahead to the reduction of general matrices to band form for the
SVD via two-sided unitary transformations. Here we depart from the conventional TSR to
band–triangular form, which imposes certain restrictions on the application of look-ahead, to
advocate for the reduction to band form with equal lower and upper bandwidths. This change,
in turn, yields two variants for the reduction algorithm for the SVD which are analogous to
those identified for SEVP.

• We demonstrate the performance benefits of static-look ahead, using the reduction to band
forms for SEVP and the SVD, on an Intel-based platform equipped with 8 Haswell cores. Our
experimental analysis of the optimal block size clearly shows the importance of decoupling
the algorithmic block size from the bandwidth, and the advantages of each variant.

The introduction of look-ahead paves the road to overlapping the panel factorization on a CPU
with the execution of the (rich in Level-3 BLAS) trailing update on an accelerator (e.g., a GPU).
Furthermore, on a multicore architecture, an algorithm that explicitly decomposes the TSR to
expose look-ahead can apply this technique with variable depth, using the support of a runtime
such as OpenMP, OmpSs or StarPU. In both cases, we can expect a notable increase of performance,
as i) the panel factorization is potentially removed from the critical path of the algorithm; and ii)
the algorithmic block size is decoupled from the bandwidth.

The rest of the paper is structured as follows. In Sections 2 and 3 we describe the introduction
of look-ahead in the first stage of the TSR algorithms for SEVP and the SVD, respectively. In
Section 4 we assess the benefits of a flexible implementation of this technique by experimentally
demonstrating its effects for the TSR of dense matrices to the selected band forms for SEVP and
the SVD. Finally, in Section 5 we close our paper with a few concluding remarks and a discussion
of future work.

To close this introduction, we note that the mathematical equations, algorithms, and the eval-
uation in the remainder of the paper are all formulated for problems with real data entries, using
orthogonal transformations, but their extension to the Hermitian case, involving unitary transfor-
mations, is straight-forward.

2 TSR for SEVP

2.1 Basic algorithm

Let us first describe the algorithm that reduces a dense symmetric matrix A ∈ Rn×n to symmet-
ric band form, with bandwidth w, via orthogonal similarity transformations. This procedure is
numerically stable and, moreover, preserves the eigenvalues of the matrix [15]. Suppose that the
first k − 1 rows/columns of A have been already reduced to band form; the algorithmic block size
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Figure 1: Partitioning of the matrix during one iteration of the reduction to symmetric band form
for the solution of SEVP.

satisfies b ≤ w; and assume for simplicity that k + w + b − 1 ≤ n; see Figure 1. At this point we
note the key roles of the bandwidth w and the block size b, and their interaction. The optimal
bandwidth itself depends on the efficiency of the second stage of the reduction and, therefore, it
cannot be chosen independently. To complicate things a bit further, the optimal bandwidth also
depends on the problem dimensions and the selected block size. The take-away lesson of this short
discussion is that the best combination of bandwidth and block size depends on several factors,
some of which are external to the implementation of the first stage.

During the current iteration of the reduction procedure, b new rows/columns of the band matrix
are computed as follows:

1. Panel Factorization. Compute the QR factorization

A0 = QR, (1)

where A0 ∈ Rj×b, with j = n− (k+w) + 1; R ∈ Rj×b is upper triangular; and the orthogonal
matrix Q is implicitly assembled using the WY representation [15] as Q = Ij + WY T , where
W, Y ∈ Rj×b and Ij denotes the square identity matrix of order j.

2. Trailing Update. Apply the orthogonal matrix Q to A1 ∈ Rj×w−b from the left:

A1 := QTA1 = (Ij + WY T )TA1 = A1 + Y (W TA1); (2)

and to A2 ∈ Rj×j from both left and right:

A2 := QTA2Q = (Ij + WY T )TA2(I + WY T )
= A2 + YW TA2 + A2WY T + YW TA2WY T .

(3)

During this last operation (only the lower or upper triangular part of) A2 is updated, via the
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following sequence of Level-3 BLAS operations:

X1 := A2W, (4)

X2 :=
1

2
XT

1 W, (5)

X3 := X1 + Y X2, (6)

A2 := A2 + X3Y
T + Y XT

3 . (7)

Provided b and w are both small compared with n, the global cost of the reduction of a full
matrix to band form is 4n3/3 floating-point arithmetic operations (flops).2 Furthermore, the bulk
of the computation is performed in terms of the Level-3 BLAS operations in (4) and (7).

The problem with this basic algorithm is that the panel factorization in (2) is mainly memory-
bounded (at least, for the usual values of b) as well as features some complex dependencies so
that, as the number of cores performing the factorization is increased, the panel operation rapidly
becomes a performance bottleneck. We next describe how to solve this problem via two algorithmic
variants that implement a static look-ahead in order to overlap in time (i.e., run concurrently) the
execution of the trailing update for the current iteration with the factorization of the next panel.

2.2 Introducing look-ahead

Consider the blocks A0, A1, A2 involved in iteration k of the basic algorithm (see Figure 1); and
let us refer to the panel that will be factorized in the subsequent iteration k̄ = k+ b− 1 as Ā0. The
key to formulate a variant of the basic algorithm enhanced with look-ahead lies in:

1. identifying the parts of the trailing submatrix [A1, A2] that will become Ā0 during the next
iteration;

2. isolating the updates corresponding to application of the orthogonal transformations in (3)
that affect Ā0 from those which modify those parts of [A1, A2] that do not overlap with Ā0;
and

3. during iteration k, overlapping the factorization of the subsequent panel Ā0 (look-ahead
factorization) with the updates corresponding to this iteration.

At this point we distinguish two cases, leading to two variants of the TSR algorithm with
look-ahead, depending on the relation between b and w:

• Variant V1: 2b ≤ w. In this case, Ā0 lies entirely within A1, as the number of columns in the
latter satisfies w− b ≥ b. We then define the following partitioning of the trailing submatrix:

[
A1 A2

]
=
[
AL

1 AR
1 A2

]
=

[
ATL

1

Ā0

AR
1 A2

]
, (8)

where AL
1 consists of b columns, ATL

1 is b× b, and we (use the red color to) distinguish those
blocks that overlap in the column range of Ā0.

2Hereafter, lower order terms are neglected in the theoretical costs.
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During iteration k, we can then perform the following three groups of operations (left, middle
and right) concurrently:

Sequential panel factorization

AL
1 := QTAL

1

Ā0 = Q̄R̄

AR
1 := QTAR

1

Parallel remainder update

A2 := QTA2Q

Note that, with this partitioning, Ā0 is generally small compared with A2. Therefore, we can
expect that the factorization of the subsequent panel Ā0 can be overlapped with the update of
A2 on the right, eliminating the former from the critical path of the reduction. On a multicore
architecture, we can achieve this by dedicating a few threads/cores to the panel factorization
while the remaining ones compute the trailing update. On a CPU-GPU system, the CPU can
take care of the panel factorization while the GPU updates the trailing submatrix. Hereafter,
we will refer to these (two groups of) computational resources, few threads/CPU and many
threads/GPU, as TS (for sequential) and TP (for parallel) respectively.

There exists a direct dependency between the two operations on the left-hand side group,
that we can denote as AL

1 → Ā0. Here, the update of AL
1 is a Level-3 BLAS operation that

in general will offer low performance as the width of the panel is usually small. Due to the
dependency and this low performance, the update of AL

1 will be performed by TS. As for
the update of AR

1 , in the middle “group”, in case this is also a narrow column panel (i.e.,
w − 2b is small), we can expect low performance from it, so that it should join the group of
“sequential” operations on the left (red group), to be performed by TS. Otherwise, it can be
merged with the “parallel” group on the right, to be computed by TP.

• Variant V2: 2b > w. In this case, Ā0 expands beyond the columns of A1 to partially overlap
with A2. Let us consider the following partitioning:

[
A1 A2

]
=
[
A1 AL

2 AR
2

]
=

[
AT

1 ATL
2

Ā0

AR
2

]
, (9)

where
[
A1, AL

2

]
consists of b columns and

[
AT

1 , ATL
2

]
is b× b.

During iteration k, we initially compute the following operations:

A1 := QTA1, (10)

X1 := A2W, (11)

X2 :=
1

2
XT

1 W, (12)

X3 := X1 + Y X2, (13)

which correspond to the update of A1 and part of the computations necessary for the update
of A2; see (4)–(7). After this is completed, we can concurrently perform the following two
groups of operations:

Sequential panel factorization

AL
2 := AL

2 + X3(Y
L)T + Y (XL

3 )T

Ā0 = Q̄R̄

Parallel remainder update

AR
2 := AR

2 + X3(Y
R)T + Y (XR

3 )T

6
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Figure 2: Dependencies among operations appearing in Variant V2 of the initial TSR to symmetric
band form. For simplicity, each operation is identified by its output operand.

Here, Y =
[
Y L, Y R

]
and X3 =

[
XL

3 , XR
3

]
are partitionings conformal with A2 =

[
AL

2 , AR
2

]
.

As in the previous variant (case), this pursues the goal of overlapping the factorization of the
next panel Ā0 with a sufficiently-large Level-3 BLAS. In general, Ā0 is small compared with
the trailing submatrix AR

2 so that we can expect this is the case.

To close the discussion of Variant V2, we note the collection of dependencies appearing among
the operations identified in this case; see Figure 2. For these operations, the panel width
determines whether they involve narrow panels and, therefore, can be considered memory-
bounded low-performance kernels. Thus, together with the dependencies, this property will
ultimately decide whether they are moved to the groups of either sequential or parallel kernels,
to be tackled by TS or TP, respectively. For example, one possibility is to update A1 on TS,
while X1, X2, X3 are being computed by TP; when all these operations are completed, we
can continue with the update of AL

2 and the factorization of Ā0 on TS, while AR
2 is being

updated by TP.

At this point, it is fair to ask what is the value of explicitly exposing static look-ahead if the
same effect could be obtained, in principle, with the combination of an algorithm-by-blocks and
the support of a task-parallelizing runtime. Armed with the previous discussion of look-ahead, we
can now offer several arguments in response to this question:

1. Exposing the look-ahead variant provides a better understanding of the algorithms.

2. Static look-ahead can be as efficient as or even outperform a runtime-assisted dynamic so-
lution [8]. The reason is that, for regular dense linear algebra operations such as those in
the Level-3 BLAS, dividing these kernels into fine-grain operations incurs into some pack-
ing/unpacking overheads. In addition, the use of a runtime promotes the exploitation of
task-parallelism at the cost of a suboptimal use of the cache hierarchy.

3. As exposed in the next section, for the tile algorithm proposed for the reduction to triangular–
band form, the application of a runtime may not allow per se the exploitation of task-
parallelism among operations belonging to different iterations.

4. The look-ahead variants do not require the implementation of tuned kernels to factorize
blocks with special structures as those that appear in the algorithm-by-blocks, and apply
the corresponding transformations.3 Moreover, they do not incur the overhead due to the
operation with these kernels and do not have an internal block size that needs to be tuned [6,
22].

3We recognize that this problem can be overcome by a careful reconstruction of the orthogonal factor, but this
comes at the cost of an increase in the computational cost of the panel factorization [3].
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Figure 3: Partitioning of the matrix during one iteration of the reduction to triangular–band form
for the SVD (w = b).

5. For CPU-GPU platforms, static look-ahead can be the only practical means to eliminate the
panel factorization from the critical path of the algorithm.

3 TSR for the SVD

3.1 Triangular–band form

The conventional algorithm for the first stage of the TSR algorithm for the SVD computes an
upper triangular matrix with upper bandwidth w. To describe this procedure, consider a matrix
A ∈ Rm×n, where the first k rows/columns have already been reduced to the desired triangular–
band form; and assume that k+w+b−1 ≤ m,n, with m ≥ n. Furthermore, let us consider initially
the simpler case with w = b; see Figure 3. During the current iteration, the following computations
thus advance the reduction by w additional rows/columns:

1. Left Panel Factorization. Compute the QR factorization

B = UR, (14)

where B ∈ Ri×w, with i = m− k + 1; R ∈ Ri×w is upper triangular; and U = Ii + WUY
T
U is

orthogonal, with WU , YU ∈ Ri×w.

2. Left Trailing Update. Apply U to E =

[
C
D

]
∈ Ri×j , with j = n − (k + w) + 1, from

the left:
E := UTE = (Ii + WUY

T
U )TE = E + YU (W T

U E). (15)

3. Right Panel Factorization. Compute the LQ factorization [15]

C = LV T , (16)

where C ∈ Rw×j ; L ∈ Rw×j is lower triangular; and V = Ij + WV Y
T
V is orthogonal, with

WV , YV ∈ Rj×w.

8



B
1

B
2

B
3

B
4

B
0

C
0

C
1

C
3

C
2

C
4

U
0

1
U

0

2
U

0

3
U

0

4
U

0

5
U

0

6

U
1

2
U

1

3
U

1

4
U

1

5
U

1

6

U
0
R

0

...

...

R
1

U
1

R
2

U
2

...

U
2

3
U

2

4
U

2

5
U

2

6

U
3
R

3

V
1

2
V

1

3
V

1

4
V

1

5
V

1

6

...

V
1

L
1

V
2

L
2

...

V
2

3
V

2

4
V

2

5
V

2

6

V
0

1
V

0

2
V

0

3
V

0

4
V

0

5
V

0

6

0
L

0
V

...

L
3
V

3

U
2

U
1

U
0

V
0

V
1

V
2

Figure 4: Matrix partitioning (left) and dependencies (right) for the reduction to triangular–band
form for the SVD (w = b).

4. Right Trailing Update. Apply V to D ∈ R(i−w)×j , from the right:

D := DV = D(Ij + WV Y
T
V ) = D + (DWV )Y T

V . (17)

Assuming w � m,n, this algorithm requires 4(mn2 − n3/3) flops and the major part of these
operations are concentrated in the trailing updates (15), (17), which correspond to high performance
Level-3 BLAS.

3.2 Triangular–band form and look-ahead

Unfortunately, the two panel factorizations in (14), (16) impose the same bottleneck as that dis-
cussed for the reduction to the symmetric band form. Furthermore, in the reduction to triangular–
band form overcoming this problem via a look-ahead strategy enforces certain constraints on the
relation between w and b that may impair performance. Let us explain this in detail via three
cases, where the first one corresponds to the simple scenario with w = b, and the remaining two
decouple the block size from the bandwidth so that b ≤ w.

First case: w = b. Consider the scenario illustrated in Figure 4 where the superindices (as, e.g.,
in the factorization B0 = U0R0) indicate the iteration count (starting at 0), and the subindices
specify the index of the block being updated by the corresponding transformations (either from
the left, as in U0

1 , or from the right, as in V 0
1 ). The arrows correspond to data dependencies and

thus define a partial ordering for the execution of the operations. For simplicity, let us aggregate
the updates Uk

k+1, U
k
k+2, U

k
k+3, . . . into a single macro-update Uk and, similarly, V k

k+1, V
k
k+2, V

k
k+3, . . .

into the macro-update V k. Then, it is easy to verify that the existing dependencies enforce the
strict ordering U0R0 → U0 → L0V 0 → V 0 → U1R1 → . . ., revealing that it is not possible to
exploit look-ahead in this case.

Second case: w = 2b. The new situation is displayed in Figure 5, which will be leveraged to
expose that the dependency problem identified in the previous case partially remains. In partic-
ular, let us now aggregate the updates Uk

k+2, U
k
k+3, U

k
k+4, . . . into a single macro-update Ūk and
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Figure 5: Matrix partitioning (left) and dependencies (right) for the reduction to triangular–band
form for the SVD (w = 2b).
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Figure 6: Matrix partitioning (left) and dependencies (right) for the reduction to triangular–band
form for the SVD (w = 3b).

V k
k+2, V

k
k+3, V

k
k+4, . . . into V̄ k. Moreover, for simplicity let us consider that the updates of the form

Uk
k+1 and V k

k+1 respectively occur inside the factorizations Uk+1Rk+1 and Lk+1V k+1. Then, we
can initially compute U0R0; followed by the overlapped execution of the factorization U1R1 with
the macro-update Ū0; and the factorization L1V 1 next. At this point, we would like to overlap
U2R2 with Ū1 and L1V 1 with V̄ 0. However, because of the dependencies, we can exploit one of the
overlappings, but not both. To see this, assume our goal is to encode the first overlapping. Then,
V̄ 0 must be available (green lines), but L1V 1 cannot be computed yet (black lines). Therefore,
the second overlapping is not possible. Conversely, assume that we intend to encode the second
overlapping. Then, Ū1 must be available (black lines), but L1V 1 cannot be computed yet (green
lines), and the first overlapping is not possible.
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Third case: w = 3b. Consider next the scenario in Figure 6. Let us use the macro-update ¯̄Uk

to stand now for Uk
k+3, U

k
k+4, U

k
k+5, . . .; and ¯̄V k for V k

k+3, V
k
k+4, V

k
k+5, . . .. Also, assume for simplicity

that the updates of the form Uk
k+1, Uk

k+2 and V k
k+1, V k

k+2 respectively occur as part of the fac-

torizations Uk+1Rk+1 and Lk+1V k+1. As in the previous case, we can initially compute U0R0;
followed by the overlapped execution of the factorization U1R1 with the macro-update Ū0; and the
factorization L1V 1 next. However, because of the distinct dependencies that are present in this
third case, nothing prevents us in the following steps from overlapping U2R2 with Ū1; L1V 1 with
V̄ 0; U3R3 with Ū2; and so on.

The conclusion from this study is that, in the reduction to triangular–band form, applying look-
ahead for both the left and right panel factorizations requires w ≥ 3b. While this is doable, it
has some practical implications on the relation between the practical values of w and b. On one
hand, w should be kept small to moderate because the selection of a large value delays much of
the computational cost into the second stage (reduction from triangular–band to bidiagonal form),
which is realized via slower Level-2 BLAS. On the other hand, b needs to be set to a large value as
otherwise the updates will not fully benefit from the performance of Level-3 BLAS. The practical
consequence is that the constraint that w ≥ 3b in this type of decomposition can exert a strong
negative impact on performance.

Pipelining the factorizations. Consider again the simple case w = b and the operations (14)–
(17) to be computed in a given iteration. A different (but related) possibility to attain an overlapped
execution is to decompose the left panel factorization in this iteration into several column micro-
panels, of width bl < w, and then overlap the factorization of the micro-panels with their application
to the remaining part(s) of the matrix (i.e., within the same micro-panel within B as well as to
E). When this is completed, the algorithm proceeds to the right panel factorization in the same
iteration, and basically applies the same idea using row micro-panels of height br. With this strategy
we can choose a value for the micro-panels that simply satisfies w = 2bl = 2br. However, note that
with this approach, the first micro-panel for both the left and right panel factorizations (at each
iteration) cannot be overlapped, with a strong negative impact on performance. This will enforce
us to select w ≥ 3bl, 3br, with the same consequences as those discussed in the previous paragraph.
Even worse, with this approach, the first left and right panel factorizations of each iteration cannot
be overlapped.

Other implementations. The discussion of the reduction to triangular–band reveals a strong
limitation when aiming to exploit task-parallelism among operations belonging to different itera-
tions. We note that this algorithm is precisely the selection that was made for the message-passing
implementation of TSR to triangular–band form in [16]. It is also the choice for the tile algorithms
in PLASMA that perform this reduction on multicore platforms in [18, 19]. In addition, all of
these implementations couple the algorithmic block size to the bandwidth, so that b = w, with a
potential negative effect on performance.

3.3 Band form and look-ahead

In [16] the authors explored the triangular–band reduction as well as an alternative algorithm that
reduces the dense matrix to a band form with the same upper and lower bandwidth. However,
the latter algorithm was abandoned in that work as it did not offer any special advantage. In
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Figure 7: Partitioning of the matrix during one iteration of the reduction to band form for the
SVD.

this subsection we show that this approach is actually the key to obtaining two variants for the
reduction to band form for the SVD, enhanced with look-ahead, which are analogous to those
already presented for SEVP in subsection 2.2. Importantly, this approach does not enforce that
w ≥ 3b, as was the case of the reduction to triangular–band form. Before we review this algorithm,
we note that the cost of applying this procedure to reduce a dense matrix to band form, with upper
and lower bandwidth w = w′/2, is about the same as that of reducing the matrix to triangular–band
form with bandwidth w′.

The basic algorithm (i.e., without look-ahead) is very similar to the reduction to symmetric band
form, with the differences stemming from the fact that A is now an unsymmetric matrix, which
requires separate left and right factorizations. As usual, consider that the first k− 1 rows/columns
of A have been already reduced to band form; select b ≤ w; and assume for simplicity that
k + w + b− 1 ≤ m,n; see Figure 7.

During the current iteration of the reduction procedure, b new rows/columns of the band matrix
are computed as follows (for brevity, we do not state explicitly the dimensions and properties of the
matrix blocks/factors in the following, as they can be easily derived from the context and Figure 7):

1. Left Panel Factorization. Compute the QR factorization

B0 = UR, with U = Ii + WUY
T
U . (18)

2. Left Trailing Update. Apply U to the trailing submatrix:

B1 := UTB1 = B1 + YU (W T
U B1); (19)

D := UTD = D + YU (W T
U D); (20)
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3. Right Panel Factorization. Compute the LQ factorization

C0 = LV T , with V = Ij + WV Y
T
V . (21)

4. Right Trailing Update. Apply V to the trailing submatrix:

C1 := C1V = A1 + (A1WV )Y T
V ; (22)

D := DV = D + (DWV )Y T
V . (23)

From these expressions, let us now re-consider the two cases leading to Variants V1 and V2 of
the look-ahead strategy:

• Variant V1: 2b ≤ w. The next panels B̄0 and C̄0 lie entirely within B1 and C1, respectively.
Therefore, the update and factorization of these panels can be overlapped with the updates
performed on D from the left and right, respectively.

• Variant V2: 2b > w. Now both B̄0 and C̄0 extend to overlap with D. The key to introduce
look-ahead is that the left and right updates of D can be performed “simultaneously” as
follows [16]:

ZL := DTWU , (24)

ZR := DWV , (25)

X := ZR + YU (ZT
LWV ), (26)

D := UTDV

= D + YUW
T
U D + DWV Y

T
V + YUW

T
U DWV Y

T
V

= D + [X, YU ][YV , ZL]T . (27)

Therefore, we can initially perform the updates of B1, C1 and compute ZL, ZR, X. Next, we
partition the update of D to expose those parts of the result that overlap with B̄0 and/or C̄0:

D =

[
D11 D12

D21 D22

]
, (28)

where D11 ∈ R(2b−w)×(2b−w). Finally, by partitioning the operands [X, YU ], [YV , ZL]T in (27)
conformally with D in (28), we can overlap the updates of D11, D21, D12, and the small left and
right panel factorizations in TS with the update of the larger D22 in TP.

4 Experimental Evaluation

In this section, we analyze in detail the performance benefits obtained by introducing the look-
ahead strategies formulated in this paper as well as the decoupling of the algorithmic block size
from the bandwidth in the TSR algorithms for SEVP and the SVD. All experiments were performed
using IEEE double-precision arithmetic on an Intel Xeon E5-2630 v3 processor (8 cores running at
a nominal frequency of 2.4 GHz). The implementations were linked with BLIS (version 0.1.8) [24].

In the experiments, we employed square symmetric matrices for SEVP, and both square and
rectangular matrices for the SVD, with random entries uniformly distributed in (0, 1), and dimen-
sions of up to 10000 in steps of 500. We reiterate that the optimal bandwidth w depends not only on
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the implementation of the first stage, but also on that of the second stage, for which there exist mul-
tiple algorithms and tuned implementations, depending on the target architecture [9, 18, 19, 10],
the problem size, etc. For this reason, we decided to test the algorithms using six bandwidths:
w = {32, 64, 96, 128, 192, 256}. For these cases, the block size b was then tuned using values rang-
ing from 16 up to w/2 for Variant V1 and up to w for V2, in steps of 16. We employed one thread
per core in all executions. For the look-ahead versions, we set TS with 1 core and TP with the
remaining 7 cores; for the reference implementations without look-ahead, there is no separation of
the threads into groups so that all of them participate in the execution of each BLAS.

In all cases, we use the nominal flop count to compute the GFLOPS (billions of flops/sec.).
For example, for the reduction in the SEVP, we employ 4n3/3 flops independently of the target
bandwidth w. Since the comparison between algorithms/variants is performed in an scenario with
fixed w, this is a reasonable approach to obtain a scaled version of the execution time, with the
differences being more visible for smaller problem sizes than those that could have been exposed
using the execution time itself.

4.1 Reference implementation

Our implementation of (the first stage of) the TSR algorithms for SEVP is based on the codes in the
SBR package [5]. On the original version of these codes, we performed two relevant optimizations:

• We replaced the routine for the panel factorization in the SBR package, based on Level-2
BLAS, for an alternative that factorizes this panel using a blocked left-looking (LL) algorith-
mic variant that, furthermore, relies on Level-3 BLAS. The inner block size for this routine
was set to 16, with this value being determined (i.e., tuned) in an independent experiment.
The LL variant was selected because it offered higher performance than its RL counterpart
in our experiments.

• The routine that builds the matrices W,Y in SBR, which define the orthogonal factors, was
modified to assemble W as the product of Y and the triangular b×b matrix T that is obtained
from the alternative compact WY representation [15]. This modification considerably reduced
the cost of building W as this can then be based entirely on Level-3 BLAS.

The implementations of the TSR algorithms for the SVD re-utilized as much as possible of these
building blocks, including the ideas underlying the previous two code optimizations. The legacy
LAPACK (version 3.7.1) comprises routine dsytrd sy2sb for the reduction of a symmetric matrix to
symmetric band form which also features these optimizations (except for the use of the left-looking
factorization). However, the LAPACK routine does not include look-ahead and, furthermore, it
imposes the restriction that b = w. As our experimental evaluation of the optimal block size will
show, this limitation severely impairs performance.

4.2 The role of the block size

In practice, the algorithmic block size b has an important impact on performance. For the particular
case (of the first stage) of both TSR algorithms, the block size should balance two criteria:

1. Deliver high performance for the BLAS-3 kernels that compose the trailing update. Small
values of b turn W,Y,WU , YU ,WV , YV into narrow column panels, affecting the performance
of the Level-3 BLAS, since the amount of data reuse is greatly reduced so that, eventually,
the kernels become memory-bounded.
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2. Reduce the amount of flops performed in the panel factorization. Small values of b reduce
the number of operations performed in these intrinsically-sequential operations.

Figure 8 illustrates the interplay between the block size and the bandwidth, using the reduction
of symmetric matrices to a banded form (first stage of SEVP). The figure includes the reference
implementation (hereafter, labeled as “Reference SEVP”) as well as the two look-ahead variants
introduced in this work.

This experiment reveals that, for the small problem (two top plots in Figure 8), the optimal
performance is attained for small values of the block size, since they balance the execution times of
the panel factorization and the trailing update. In rough detail, for the small problem dimensions,
if the block size is too large, the panel factorization will require more time to complete than the
trailing update. As a consequence, many computing resources (i.e., threads/cores) will become idle
during the iteration, degrading performance. At this point, we note that the degree of resource
concurrency also exerts its impact on the workload balance, as this factor can change the problem
size threshold from which the trailing update is more expensive than the panel factorization.

In addition, the plots show that, regardless of the implementation, the lowest performance for
the large problem (two bottom plots in Figure 8) is observed for the smallest and the largest block
sizes, with the optimal choice residing in the middle range. For the smallest block size, the BLAS-3
kernels invoked from the trailing update cannot efficiently utilize all the computational potential
of the platform. For largest block sizes too many flops are devoted to the panel factorization.

The previous experimental analysis conforms that in [8] for the LU factorization, and exposes
that choosing the optimal block size is a non-trivial task since this parameter depends on many
other factors such the problem dimension n, the bandwidth w, and the degree of parallelism.
To further complicate the selection of the optimal block size, as the reduction progresses, the
operation is decomposed into sub-problems of dimension n − b, n − 2b, . . .. This implies that the
optimal block size for the initial sub-problem(s) may not be the optimal for the subsequent ones.
To partially compensate for this, the computational cost of the sub-problems rapidly decreases with
their dimensions.

These experiments clearly show that coupling the block size to the bandwidth, so that b = w,
in general results in suboptimal performance. Taking into consideration the elaboration and results
in this subsection, in the remainder of this paper we will perform an extensive tuning of the block
size, for each problem dimension and bandwidth.

4.3 Performance of TSR to symmetric band form for SEVP

In this section, we analyze in detail the performance behavior of the multi-threaded variants with
look-ahead aimed to enhance the computational throughput of the algorithms for the first stage of
SEVP. Specifically, the following implementations are compared:

• Reference SEVP: Reference implementation from SBR with the optimizations described
in subsection 4.1.

• Variant V1: Look-ahead variant for problems with 2b ≤ w. Two different mappings of the
update of AR

1 to the threads/cores were considered, depending on whether this operation is
performed by either TS or TP. In both cases, the factorization of Ā0 and the update of AL

1 are
performed by TS; and the update of A2 is done by TP. Our experiments with these mappings
demonstrated that the first option, which updates the full A1 using TS, always delivers equal
or lower performance than the alternative mapping for this variant. (The reason is that, for
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Figure 8: Performance vs block size of the SEVP implementations; The bandwidth is set to w = 128
(left) and w = 256 (right), and the problem dimension to n = 2500 (top) and n = 10000 (bottom).

small bandwidths, AR
1 is consequently small, and its execution time does not affect the overall

execution time of the reduction; for large bandwidths, the multi-threaded execution of AR
1 is

the preferred choice.) Therefore, for clarity, we removed the first mapping from the following
plots.

• Variant V2: Look-ahead variant for problems with 2b > w. Two different mappings are
possible, depending on which threads update A1, X1, X2, X3.

– A1 on TS (while X1, X2, and X3 are computed concurrently on TP).

– A1 on TS + TP (after which, X1, X2, X3 are updated by the same TS + TP threads).

The plots in the left-hand side of Figure 9 and Figure 10 report the GFLOPS rates attained
by the configurations (namely algorithms/variants/mappings) for several bandwidths in the range
32–256. The right-hand side plots in both figures illustrate the optimal block size for each problem
dimension and configuration, showing the crucial role of this parameter.

The first conclusion that can be extracted from the plots is that the performance of the two
Variants V1 and V2 enhanced with look-ahead depends on the ratio between the algorithmic block
size b (equivalent to the number of columns in the panel), the target matrix bandwidth w, and the
problem dimension n.
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Figure 9: Performance vs problem dimension (left) of the SEVP implementations with w = 32, 64
and 96; and optimal block size vs problem dimension (right).

Focusing on Variant V1, we identify a drawback due to the limitation imposed on the block size
by the condition 2b ≤ w. This implies that, for small bandwidths, Variant V1 can only employ very
reduced block sizes. In consequence, the invocation to the Level-3 BLAS to perform the trailing
update cannot efficiently exploit all resources of the processor. To illustrate this behavior, let us
focus on the experiments with w = 64 in Figure 9. The right-hand side plot there shows that, for
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Figure 10: Performance vs problem dimension (left) of the SEVP implementations with w =
128, 192 and 256; and optimal block size vs problem dimension (right).

Variant V1, the block size is always 32, which is smaller than those selected for Variant V2 and
the reference implementation. In addition, the left-hand side plot shows that, despite Variant V1
integrates look-ahead, its performance is inferior to that of the reference implementation for large
problem dimensions as the overall execution time in those cases is dominated by the trailing update.
In contrast, in the plots using larger bandwidths (i. e. w = 128 and 256) we observe that this fact
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enables the selection of larger block sizes, considerably improving the throughput of Variant V1,
which now outperforms all other configurations.

Our implementations of Variant V2 always improve the performance of the reference routine;
and also that of Variant V1 for small bandwidths, and for medium-size bandwidths combined with
small problem dimensions. Indeed, as there are no strict restrictions on the block size for Variant V2
(other than b ≤ w), large values can be selected for b, and the Level-3 BLAS for the trailing update
tend to deliver a good fraction of the peak performance even for small bandwidths. However, the
drawback of Variant V2 lies in the parts of the algorithm that may be overlapped as part of the
look-ahead strategy. In particular, as 2b can be larger than w, the factorization of Ā0 cannot start
till the updates of A1 and X3 are completed (requiring a synchronization point after them). This
implies that only the factorization of Ā0 and the update of AL

2 can be overlapped with the update
of AR

2 . In contrast, for Variant V1, the factorization of Ā0 only requires that the update of AL
1 is

completed, therefore removing this synchronization point; in consequence, the update of AL
1 and

the factorization of Ā0 can be overlapped with the update of A2.
To close the experiments in this subsection, we evaluate the impact that the TSR algorithms for

SEVP make on the overall computation of the eigenvalue decomposition. We remind that, in the
two-stage reduction to tridiagonal form, the matrix is reduced to a symmetric band form employing
one of the TSR algorithms presented earlier in this subsection (the SBR-based Reference, Variant
V1 or Variant V2) and this banded matrix is next reduced to tridiagonal form. For the second
stage, in our evaluation we will employ routine SBRDT from the SBR package. After that, the
eigenvalues are obtained using routine DSTERF from LAPACK. Alternatively, when using the the
traditional solver for SEVP in LAPACK, the input matrix is directly reduced to tridiagonal form,
using routine DSYTRD routine from LAPACK, after which routine DSTERF is applied to obtain
the eigenvalues. Routines SBRDT, DSTERF and DSYTRD are mostly composed of calls to kernels
in the Level-1 and Level-2 of BLAS. Due to the sequential implementation and lack of optimization
of these kernels in BLIS, in our experiments we linked these routines to Intel MKL. (The initial
reduction to band form via the TSR algorithms was still performed using the kernels from BLIS.)

Table 1 reports the execution time of the different stages that are present in the solution of
SEVP as well as the acceleration with respect to the single-stage reduction approach to tridiagonal
form for three problem sizes and several bandwidth dimensions. These results show that, for the
smallest problem, as the symmetric matrix fits in the L3 cache on chip, the best option is to employ
the conventional solver in LAPACK, based on routines DSYTRD+DSTERF. On the other hand,
for the larger two problems, the best option corresponds to the two-stage reduction to tridiagonal
form, using Variant V2 with a narrow bandwidth w = 64 in both cases. In particular, the speed-
ups with respect to LAPACK’s solver with a single-stage reduction are 1.96 and 2.78 when the
complete process is considered. Focussing on the two-stage approach, the results also expose the
need to limit the bandwidth of the compact form as the cost of routine SBRDT rapidly grows
with w. Finally, the table reveals that the speed-ups observed for Variant V2 with respect to
the reference implementation vary between 1.16 and 1.19 for the two largest problem sizes and
w = 64. At this point, we note that the contribution of the new TSR to band form to the total
cost of the eigenvalue computation is largely dependent on the implementation and efficiency of the
subsequent stages. (Thus, for example, the results can be significantly different if one employs a
solver that directly obtains the eigenvalues from the band form, without requiring the reduction to
tridiagonal form [20], or just applies an iterative solver on the band matrix to obtain a few selected
eigenvalues [1].) However, the acceleration factors observed for Variants V1 and V2 with respect
to the reference implementation in the first stage will remain constant.
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Variants Speed-up vs
TSR to band form DSYTRD + DSTERF

n w Ref V1 V2 SBRDT DSTERF Ref V1 V2

2000 32 0.25 0.30 0.22 0.20 0.09 0.44 0.41 0.47
64 0.24 0.16 0.19 0.33 0.09 0.36 0.41 0.39
96 0.24 0.14 0.19 0.43 0.09 0.32 0.36 0.34

128 0.23 0.14 0.18 0.93 0.11 0.19 0.20 0.20
192 0.22 0.13 0.17 1.21 0.11 0.15 0.16 0.16
256 0.20 0.12 0.16 1.27 0.11 0.15 0.16 0.16

6000 32 5.55 9.50 4.76 1.51 0.74 1.69 1.12 1.89
64 3.97 4.62 3.42 2.58 0.74 1.81 1.66 1.96
96 3.54 3.57 3.18 3.71 0.74 1.64 1.65 1.73

128 3.55 2.78 3.05 8.98 0.78 0.99 1.05 1.03
192 3.48 2.34 2.82 12.08 0.78 0.81 0.87 0.84
256 3.41 2.23 2.77 14.40 0.78 0.71 0.76 0.74

10000 32 24.15 43.85 21.52 4.18 2.02 2.13 1.29 2.33
64 16.11 21.26 13.50 7.78 2.02 2.50 2.08 2.78
96 13.14 16.41 12.01 10.68 2.02 2.50 2.22 2.62

128 13.15 12.59 11.70 25.72 2.05 1.58 1.60 1.64
192 12.99 10.15 11.09 35.14 2.05 1.29 1.37 1.34
256 12.86 9.28 10.65 41.88 2.06 1.14 1.22 1.19

Table 1: Execution time (in sec.) of the different stages for the solution of the SEVP (computation
of the eigenvalues only) via the TSR algorithms and speed-up with respect to the conventional
approach in LAPACK (DSYTRD+DSTERF).

4.4 Performance of TSR to band form for the SVD.

We next analyze the performance behavior of the multi-threaded variants with look-ahead aimed
to enhance the computational throughput of the TSR algorithms for the first stage of the SVD.
Specifically, the following implementations are compared:

• Reference implementations: These routines depart from the one presented for SEVP in
that the matrix is not symmetric and, therefore, distinct left and right panel factorizations
are required. In addition, two different implementations are possible for the SVD, depending
on how the trailing update is performed:

– Reference SVD. This case adheres to the formulation in equations (18)–(23). At each
iteration this implementation first computes the QR factorization; then applies the re-
sulting orthogonal matrix U to the trailing submatrix; next computes the subsequent
LQ factorization; and finally applies the resulting V to the trailing submatrix.

– Reference SVD Simultaneous. This implementation performs the update of the trailing
submatrix as in (27). That is, at each iteration of the algorithm, the QR and LQ
factorizations are performed first; and then the updates of the trailing submatrix with
U and V are fused into a single “step”.

• Variant V1: Look-ahead variant of the “Reference SVD” implementation for problems with
2b ≤ w. Similarly to Variant V1 for SEVP, two different mappings of the updates of B1 and
C1 are possible, where these two blocks are split into two independent sub-blocks (BL

1 and
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Figure 11: Performance vs problem dimension of the SVD implementations with w = 32, 64, 128,
and 256.

BR
1 ; CT

1 and BB
1 ). However, for similar reasons, in the experiments we only consider the case

with BR
1 and CB

1 updated by TP.

• Variant V2: Look-ahead variant of the “Reference SVD Simultaneous” implementation for
problems with 2b > w. Two different mappings are possible, depending on which threads
update B1, C1, ZL, ZR, X.

– B1 and C1 on TS (while ZL, ZR, and X are computed concurrently on TP).

– B1 and C1 on TS + TP (after which, ZL, ZR, and X are updated by the same TS + TP

threads).

Following the optimizations presented earlier for the SBR routine, all routines for the SVD perform
the factorization of the panels via Level-3 BLAS procedures, and compute the matrices WU ,WV

from the product of the corresponding compact WY factors TU , TV and YU , YV .
Figure 11 reports the GFLOPS rates attained by the configurations for bandwidths ranging from

32 to 256 and square matrices. For brevity, the analysis of the optimal block size is not presented
as it revealed a similar behavior as that observed for SEVP. Let us focus first on the implemen-
tations without look-ahead. From the plots, it is clear that the “Reference SVD” implementation
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outperforms its “Reference SVD Simultaneous” counterpart. At this point we would remark that
the second implementation underlies variant V2 of the SVD algorithm with look-ahead.

Focusing on Variant V1, we detect the same drawback as that identified in Variant V1 for
SEVP in that, for small bandwidths, the block size is strongly constrained. In contrast, large
performance improvements are reported, compared with all other implementations, for medium
and large bandwidths.

A less pleasant case is encountered for Variant V2, which is not able to improve significantly
the performance results of the “Reference SVD” implementation for any bandwidth nor problem
dimension though it outperforms its baseline “Reference SVD Simultaneous” implementation. The
reason for this result is that, for this implementation, the update of D22 cannot be fully overlapped
with the execution time of the next panel factorizations (both left and right). For Variant V1, the
execution of the panel factorizations is overlapped with the updates of BR

1 , CB
1 , and D; but due to

the data dependencies in Variant V2, we can only overlap the execution of the panel factorizations
with the update of D22, which exhibits a considerably more reduced number of flops.

Figure 12 displays the GFLOPS rates observed for bandwidths ranging from 32 to 256 and
non-square matrices. In the plots, the m-dimension on the matrices is fixed to 10000, while the
n-dimension is varied in the range 500–10000 in steps of 500. The plots reveal performance numbers
that are very close to those observed for the reductions of square matrices, showing that the new
variants for TSR are not sensitive to the matrices shape.

5 Concluding Remarks

We have analyzed in detail the impact that static look-ahead exerts on the performance of two-sided
routines that perform the reduction to compact band forms for SEVP and the SVD. Our study
shows that a correct selection of the look-ahead variant as well as an appropriate mapping of tasks
to cores are key to optimize performance. Even more importantly, the block size plays a crucial
role in the computational throughput of these reduction routines. Decoupling this parameter from
the target bandwidth is a must, and therefore we have to depart from the solution adopted in
the corresponding routines included in the current versions of LAPACK, PLASMA and MAGMA,
which simply set the block size to equal the bandwidth.

For the SVD, our analysis also advocates for an alternative option that reduces the original
dense matrix to a band form with the same upper and lower bandwidths, allowing an efficient
exploitation of the look-ahead strategy. This choice thus overcomes some of the difficulties of the
traditional reduction to band–triangular from that is adopted in LAPACK and MAGMA.
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