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ABSTRACT 

Solar energy is one of the most important sources of renewable energy. The market of 

solar cells is growing quite fast but due to the intermittent nature of solar power, 

efficient storage is still needed to supply the current global energy demand and 

environmental sustainability. The production of solar fuels is a promising route and, in 

particular, hydrogen generated via photoelectrochemical (PEC) water splitting has been 

considered as a promising energy fuel in the near future. PEC cells integrate collection 

of sunlight and water electrolysis in a single device to further produce hydrogen and 

oxygen.  

PEC research efforts rely on the design of earth-abundant semiconductor materials 

that are both highly efficient and chemically stable; the target of 10 % solar-to-

hydrogen (STH) conversion efficiency is needed to enable commercialization. 

Materials commonly used in these devices are metal oxide semiconductors. This thesis 

concerns the study of three of these oxides, namely α-Fe2O3 (hematite), tungsten 

trioxide and cuprous oxide photoelectrodes.  

For scaling-up PEC water splitting technology, it is not only necessary to find new 

semiconductors and to use a versatile PEC reactor, but also to understand the behavior 

of this reactor under real outdoor conditions Herein, the influence of temperature and 

photoelectrode substrates were evaluated as well as the stability of the photoelectrodes 

under operation. Emphasis was put on the optimization of hematite photoelectrode and 

a record full stability of 1000 h was achieved. 

While much work is being devoted to identify the ideal semiconductor for solar-

driven water splitting, nowadays the focus is shifting towards using two or more 

photoactive materials. Therefore, tandem PEC arrangements based on metal oxides, 

e.g. by coupling n- and p-type photoelectrodes or a photoelectrode with a photovoltaic 

(PV) cell, offer a potentially inexpensive route for solar hydrogen generation. This 

configuration allows simultaneously achieving high efficiencies and maximizing the 

fraction of solar energy collected. Hematite photoanode is of great interest thanks to its 

suitable bandgap (thermodynamic STH of ca.  16.8 %) and excellent stability, but the 

highly anodic potential required to initiate the oxygen evolution reaction is a major 

challenge. The photocurrent onset potential of hematite photoanodes was decreased 
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through a synergetic combination of surface modification by high temperature 

annealing at 800 ºC and by coating with RuO2, a highly active water oxidation co-

catalyst. Both treatments change the water oxidation kinetics at semiconductor/ 

electrolyte interface, resulting in a turn-on potential closer to hematite flatband 

potential (0.52 VRHE) and a high photopotential of ca.  0.95 V. With the ongoing 

progress to reach maximum photocurrent at lower potentials (< 0.70 VRHE), RuO2-

coated hematite photoanodes can be integrated in efficient and stable tandem devices. 

Cuprous oxide photocathode is also a promising material with the capability for low 

cost and large-scale solar energy conversion. Recent successes on improving the 

quality of protective overlayers and the use of RuO2 as a co-catalyst greatly extended 

the stability of hydrogen evolving Cu2O-based photocathodes. Towards the 

development of a tandem arrangement, a stable and efficient semi-transparent Cu2O 

photocathode was optimized that enabled unassisted water splitting when coupled with 

the emerging and promising perovskite photovoltaic solar cells technology.  
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SUMÁRIO 

A energia solar é uma das mais importantes fontes de energia renovável. O mercado de 

células solares tem crescido rapidamente, mas devido à natureza intermitente da 

energia solar, é necessário o seu armazenamento eficiente para colmatar a atual procura 

energética e a sustentabilidade ambiental. A produção fotoeletroquímica de 

combustíveis solares é uma via promissora e, em particular, o hidrogénio produzido 

através da fotohidrólise da água é considerado um combustível muito promissor para 

um futuro próximo. As células fotoeletroquímicas PEC (do inglês 

photoelectrochemical) acoplam a recolha da luz solar e a eletrólise da água num único 

dispositivo capaz de produzir hidrogénio e oxigénio.  

Os esforços na área de investigação das células PEC têm vindo a focar-se no fabrico 

de materiais semicondutores abundantes, simultaneamente muito eficientes e 

quimicamente estáveis; atingir-se a meta de 10 % de eficiência de conversão da energia 

fotónica em hidrogénio é necessário para permitir a comercialização destas células. Os 

semicondutores de óxidos metálicos são os materiais mais comummente utilizados 

neste tipo de dispositivos. Nesta tese são estudados três destes óxidos: os fotoelétrodos 

de α-Fe2O3 (óxido de ferro (III) ou hematite), trióxido de tungstênio e óxido de cobre. 

Para a comercialização com sucesso desta tecnologia é não só necessário encontrar 

novos semicondutores e usar um reator PEC versátil, mas também compreender o seu 

comportamento em condições reais de operação. Neste sentido, foi avaliada a 

influência da temperatura e dos substratos dos fotoelétrodos, bem como a estabilidade 

dos fotoelétrodos no funcionamento de uma célula fotoeletroquímica. Foi dado maior 

ênfase à otimização dos fotoelétrodos de hematite, permitindo alcançar um recorde de 

estabilidade de 1000 horas. 

Mais recentemente os trabalhos de investigação nesta área têm-se dedicado, 

essencialmente, à identificação de um semicondutor ideal capaz de promover 

diretamente a autoclivagem da água através da radiação solar. Contudo, hoje em dia, os 

novos avanços prendem-se com a utilização de dois ou mais materiais fotoativos. 

Assim sendo, os dispositivos PEC tendo vindo a basear-se numa configuração conjunta 

de óxidos metálicos (do inglês configuração PEC tandem) permitem a geração de 

hidrogénio solar a baixos preços, por exemplo, através do acoplamento de 
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fotoelétrodos do tipo n e p ou de um fotoelétrodo e uma célula fotovoltaica. Esta 

configuração permite alcançar simultaneamente altas eficiências e maximizar a fração 

de energia solar absorvida. A hematite é um semicondutor de grande interesse para 

estas aplicações devido ao seu adequado hiato energético (eficiência termodinâmica de 

conversão da energia solar em hidrogénio de cerca de 16.8 %) e uma excelente 

estabilidade. No entanto, para a sua implementação o grande desafio passa por 

diminuir a elevada diferença de potencial que é necessário fornecer à célula para iniciar 

a reação de evolução de oxigénio. Este potencial nos fotoânodos de hematite foi 

reduzido através da combinação de dois tratamentos superficiais, nomeadamente o 

recozimento do filme de hematite a altas temperaturas (800 ºC) e a modificação da 

superfície com dióxido de ruténio, um co-catalisador altamente ativo para a oxidação 

da água. Ambos os tratamentos permitiram mudar a cinética da reação de oxidação da 

água na interface semicondutor/eletrólito, cujo resultado culminou com a diminuição 

deste potencial para um valor próximo do potencial de banda plana (do inglês flatband) 

da hematite (0.52 VRHE) e um potencial elétrico gerado pela luz de cerca de 0.95 V. Por 

outro lado, com os atuais progressos para atingir a máxima fotocorrente a potenciais 

mais baixos (< 0.7 VRHE), os fotoânodos de hematite com RuO2 podem ser integrados 

em dispositivos PEC tandem eficientes e estáveis. O óxido de cobre é também 

conhecido como um material promissor com a capacidade de ser fabricado a baixo 

custo e em larga escala para a conversão da energia solar. Os sucessos recentes na 

melhoria da qualidade de camadas protetoras, bem como, a utilização de um co-

catalisador de óxido de ruténio aumentou significativamente a estabilidade da evolução 

do hidrogénio nestes fotocátodos. Para o desenvolvimento de sistemas PEC tandem, os 

fotocátodos de óxido de cobre foram otimizados de modo a apresentarem semi-

transparência, serem eficientes e estáveis. Estes resultados alcançados permitiram a 

fotohidrólise direta da água através do acoplamento dos fotocátodos de óxido de cobre 

com as emergentes e promissoras células solares sensibilizadas por perovskita. 
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2nd period of stability. Right-side: Correspondent photocurrent history at a 

constant potential of ca. 1.23 VRHE and continuous 1-sun AM 1.5 G 

illumination at 25 ºC. 90 

Figure 2.11: SEM images of Si-doped α-Fe2O3 film before (a) and after 

performing the stability tests with a constant potential of ca. 1.23 VRHE and 
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continuous 1 sun illumination at three different temperatures: 25 ºC (b), 45 ºC 

(c) and 60 ºC (d). (Top: 50000×; bottom: 200000×). 
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Figure 2.12: Left-side: Photocurrent density-voltage (J-V) characteristics of the 

Si-doped α-Fe2O3 photoanode tested in the dark (dashed lines) and under 1-sun 

simulated light at 45 ºC (solid lines) before and after stability. (□) fresh cell, (○) 

aged cell after 72 h of stability. Right-side: Correspondent photocurrent history 

at a constant potential of ca. 1.23 VRHE and continuous 1-sun AM 1.5 G 

illumination at 45 ºC. 92 

Figure 2.13: Left-side: Photocurrent density-voltage (J-V) characteristics of the 

Si-doped α-Fe2O3 photoanode tested in the dark (dashed lines) and under 1-sun 

simulated light at 60 ºC (solid lines) before and after stability. (□) fresh cell, (○) 

aged cell after 72 h of stability. Right-side: Correspondent photocurrent history 

at a constant potential of ca. 1.23 VRHE and continuous 1-sun AM 1.5 G 

illumination at 60 ºC. 93 

Figure 2.13: Electrical circuit analogue used to fit the experimental impedance 

data. 94 

Figure 2.15: Nyquist diagrams for a Si-doped α-Fe2O3 photoanode obtained in 

the dark at different temperatures and forward biases: (a) 0.8 VRHE; (b) 

1.0 VRHE, (c) 1.2 VRHE; and (d) 1.4 VRHE. Z': real impedance, Z'': imaginary 

impedance; (□) T = 25 ºC, (○) T = 35 ºC, (Δ) T = 45 ºC, (◊) T = 55 ºC, 

(×) T = 65 ºC. On the right side is a zoom-out of the left side plots. 95 

Figure 2.16: Impedance results obtained by fitting the experimental data shown 

in Figure 2.15 for an applied potential of 1.2 VRHE as a function of the operating 

temperature. (□) Series Resistance – RSeries, (○) Bulk Semiconductor Resistance 

– RSC, (Δ) Charge Transfer Resistance – RCT, (◊) Space Charge Capacitance – 

CSC, (×) Helmholtz Capacitance – CH. 96 

Figure 2.17: Nyquist diagrams for a Si-doped α-Fe2O3 photoanode obtained in 

the dark with an applied potential of 1.2 VRHE at aged temperatures of 25 ºC (a), 

45 ºC (b) and 60 ºC (c). Z': real impedance; Z'': imaginary impedance. 98 

Figure 2.18: Impedance results obtained by fitting the experimental data shown  
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in Figure 2.17 for an applied potential of 1.2 VRHE before (filled symbols) and 

after (open symbols) performing the stability tests during 72 h at three different 

temperatures: 25 ºC, 45 ºC and 65 ºC. (□) Series Resistance – RSeries, (○) Bulk 

Semiconductor Resistance – RSC, (Δ) Charge Transfer Resistance – RCT, (◊) 

Space Charge Capacitance – CSC, (×) Helmholtz Capacitance – CH. 
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Figure 3.1: Test bench setup used to characterize the PEC cell at different 

temperatures. 114 

Figure 3.2: Temperature effect in the photocurrent density-voltage (J-V) 

characteristics of the WO3 photoanodes: (a) WO3/FTO sample and (b) 

WO3/metal sample; for a range of temperatures from 25 ºC to 65 ºC, in the dark 

(dashed lines) and under 1-sun AM 1.5 G illumination (solid lines) conditions. 

(□) T = 25 ºC, (○) T = 35 ºC, (△) T = 45 ºC, (◇) T = 55 ºC, (⤫) T = 65 ºC. 118 

Figure 3.3: Photocurrent density-voltage (J-V) characteristics of the WO3 

photoanodes: (a) WO3/FTO and (b) WO3/metal for reference tests performed at 

25 ºC between experiments and before increasing the temperature of the cell; 

obtained in the dark (dashed lines) and under 1-sun AM 1.5 G illumination 

(solid lines) conditions. (□) T = 25 ºC, (○) T = 35 ºC, (△) T = 45 ºC, 

(◇) T = 55 ºC, (⤫) T = 65 ºC. 119 

Figure 3.4: Temperature effect in the photocurrent density-voltage (J-V) 

characteristics of a bare FTO-glass substrate and a tungsten foil substrate for a 

range of temperatures from 25 ºC to 65 ºC in the dark conditions. (□) T = 25 ºC, 

(○) T = 35 ºC, (△) T = 45 ºC, (◇) T = 55 ºC, (⤫) T = 65 ºC. 120 

Figure 3.5: Electrical circuit analog used to fit the EIS data. 122 

Figure 3.6: Temperature effect in the Nyquist diagrams of the WO3/FTO 

sample [left-side plots] and WO3/metal sample [right-side plots] obtained for a 

range of temperatures from 25 ºC to 65 ºC, in dark and forward biases: (a) and 

(e) 0.7 VRHE; (b) and (f) 1.0 VRHE; (c) and (g) 1.3 VRHE; (d) and (h) 1.6 VRHE. Z ': 

real impedance, Z '': imaginary impedance; (□) T = 25 ºC, (○) T = 35 ºC, 

(△) T = 45 ºC, (◇) T = 55 ºC, (⤫) T = 65 ºC. On the right side of each plot is a 
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zoom-out of the left side plots. 123 

Figure 3.7: Temperature effect in the impedance parameters for WO3/FTO 

sample (empty symbols) and WO3/metal sample (filled symbols) obtained at 

1.6 VRHE: (a) series resistance – RS (□), (b) bulk semiconductor resistance – RSC 

(○), (c) charge transfer resistance – RCT (△), (d) space charge capacitance – CSC 

(◇), (e) Helmholtz capacitance – CH (⤫), (f) rate constant of the electron-hole 

recombination - kr (▽). 
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Figure 3.8: Temperature effect in the intrinsic power characteristics, i.e. the 

power (P) and intrinsic solar to chemical (ISTC) conversion efficiencies, of the 

WO3 photoanodes: a) and c) WO3/FTO sample; and b) and d) WO3/metal 

sample. (□) T = 25 ºC, (○) T = 35 ºC, (△) T = 45 ºC, (◇) T = 55 ºC, 

(⤫) T = 65 ºC. 127 

Figure 3.9: Photocurrent histories of the WO3 photoanodes tested over 72 h at 

a constant potential of ca. 1.23 VRHE, under continuous 1-sun AM 1.5 G 

illumination and at different temperatures: (a) WO3/FTO samples aged at 25 ºC 

(red line) and 45 ºC (blue line); and (b) WO3/metal sample aged at 55 ºC (green 

line). Inset plot for the first 4 hours of stability tests. 129 

Figure 3.10: Photocurrent density-voltage (J-V) characteristics of the WO3 

photoanodes tested in the dark (dashed lines) and under 1-sun AM 1.5 G 

illumination (solid lines) before and after stability test: (a) WO3/FTO samples: 

fresh cell at T = 25 ºC (△) and at T = 45 ºC (○), aged cell after 72 h of stability 

at T = 25 ºC (▲) and at T = 45 ºC (●); (b) WO3/metal sample: fresh cell at 

T = 25 ºC (□) and at T = 55 ºC (○), aged cell after 72 h of stability at T = 25 ºC 

(■) and at T = 55 ºC (●). 130 

Figure 3.11: SEM images of the WO3/FTO photoanodes. (a) Before testing: (1) 

surface top view; (2) cross sectional view; (3) EDS analysis of the surface with 

the identification of the tungsten and oxygen peaks; (b) After aging tests at 

25 ºC: (4) surface view; (5) surface with an intact area (Z1) and an area affected 

by film degradation (Z2); (6) EDS analysis on the two delimited areas with the 

identification of the tungsten, oxygen and tin peaks; (c) After aging tests at 
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45 ºC: (7) surface view; (8) surface with an intact area (Z1) and areas affected 

by film degradation (Z2 and Z3); (9) EDS analysis on the three delimited zones 

with the identification of the tungsten, oxygen and tin peaks. 
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Figure 3.12: SEM images of the WO3/metal photoanodes before testing (a) and 

after aging tests at 55 ºC (b), respectively: (1) and (4) surface top view; (2) and 

(5) cross sectional view; (3) and (6) EDS analysis with the identification of the 

tungsten and oxygen peaks. 
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Figure 3.13: XRD spectra of the WO3 photoanodes: (a) WO3/FTO sample aged 

at 45 ºC and (b) WO3/metal sample aged at 55 °C. Blue and red lines 

correspond to signs of the samples before testing and after aging tests, 

respectively. Main peaks from the FTO-glass and tungsten substrates are also 

labeled with “*”. 134 

Figure 4.1: Ideal hematite performance (black line) compared to the typical 

performance (red line) under 1-sun AM 1.5 G illumination (extracted from ref. 

[6]). 145 

Figure 4.2: Photograph and schematic representation of the spray pyrolysis 

setup for the deposition of hematite films. 

 

150 

Figure 4.3: Details of the test bench: (a) the cappuccino PEC cell in a three-

electrode configuration; and (b) the cappuccino PEC cell with a hematite 

photoelectrode placed on the sample holder. 152 

Figure 4.4: Parity plot of experimental vs. predicted photocurrent values for the 

prepared hematite samples. 157 

Figure 4.5: Predicted photocurrent density (Jphoto) as a function of: (a) sprayed 

solution volume (v) and temperature of the glass substrate during the deposition 

(T) for a time gap between sprays of 45 s (t); (b) v and t for T = 450 ºC; and (c) t 

and T for v = 45 mL. 158 

Figure 4.6: a) J-V characteristic curves obtained in the dark (dashed blue line) 

and under 1-sun AM 1.5 G illumination (100 mW∙cm−2, solid blue line) and the 

generated photocurrent, Jphoto (●). (b) Photocurrent (▼) as a function of the 
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photopotential. (c) Intrinsic photovoltaic power (▲) as a function of the 

photopotential. (d) ISTC efficiency (♦) as a function of the photocurrent 

density. The secondary y axis on the right of the plots (b), (c) and (d) shows the 

potential (Ulight) that was applied to the photoanode by the potentiostat under 

light. 
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Figure 4.7: (a) Energy diagram of the semiconductor/electrolyte interface and 

the electrical circuit analogue used to fit the impedance measurements in the 

dark of the optimised hematite sample. (b) Mott-Schottky analysis: the inverse 

of the square bulk capacitance (CBulk) is plotted vs. the potential bias applied. 162 

Figure 4.8: Polarization curve of the optimised hematite samples prepared by 

spray pyrolysis (solid blue line) obtained under a constant bias of 1.45 VRHE and 

simulated solar illumination (100 mW∙cm−2). 164 

Figure 4.9: J-V characteristics of the optimised hematite sample prepared by 

spray pyrolysis, before starting the stability test, 0 h (■), and after 500 h (●) and 

1000 h (▲), in the dark (dashed lines) and under 1-sun AM 1.5 G illumination 

(100 mW∙cm−2, solid lines) conditions. 165 

Figure 4.10: Top view SEM images and EDS analyses of the optimised 

hematite film before [left-side] and after [right-side] the stability test over 1000 

h. 166 

Figure 4.11: Top view SEM images of the aged hematite film produced under 

the following conditions: v = 70 mL, T = 450 ºC and t = 45 s; the stability test 

was performed for 168 h. (a) global view of the sample surface with the 

delimitation of an area affected by corrosion (1) and an unaffected area (2); (b) 

EDS analysis on the two delimited zones with the identification of the iron 

peaks; (c) closer view on the area affected by corrosion; and (d) closer view on 

the intact area. 167 

Figure 4.12: XRD spectra of iron oxide film on F:SnO2 conducting glass 

prepared by spray pyrolysis before (the so-called fresh sample – blue spectra) 

and after (the so-called aged sample – green spectra) performing the stability 

test for 1000 h. The FTO glass substrate (the so-called FTO + TEOS Substrate 
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– grey spectra) corresponds to the SnO2 signals. The signals of Fe2O3 phases of 

hematite, maghemite, magnetite and bixbyite correspond to red, blue, green and 

purple lines, respectively, from the International Centre for Diffraction Data 

(ICDD) database. Main peaks from the substrate are also labeled with “*” and 

from the hematite phase with “●”. On the right-side is a zoom-out of the left-

side from 33º to 37º. 
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Figure 5.1: (a) Schematic energetics and charge transfer processes under PEC 

water oxidation using hematite photoanodes. The water oxidation photocurrent 

is controlled by the efficiency of light harvesting (ɳlight), charge transport (ɳct), 

and holes collection (ɳhc). Red arrows indicate recombination pathways 

(adapted from ref. [6]). (b) PEC performance comparison between a state-of-

the-art (real) photoanode and an ideal photoanode. The arrows indicate the 

main performance limiting factors for increasing anodic potential: first, ɳhc at 

the hematite/electrolyte interface, then ɳct within hematite, and finally ɳlight in 

the semiconductor (adapted from ref. [5]). 
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Figure 5.2: (a) J-V characteristic curves measured in the dark and under 1-sun 

AM 1.5 G illumination conditions for a bare hematite (BH) photoanode (■) and 

RuO2-coated hematite (HRu) photoanodes prepared applying a charge density 

of ca. 9 (▼), 18 (), 36 (◄), 72 (▲) and 144 (●) mC·cm-2; (b) Butler plots in 

which the turn-on potential is defined as the value at which the extrapolation of 

the linear relationship between (Jphoto)2 and applied potential intercepts with 

(Jphoto)2 = 0. 188 

Figure 5.3: Potential shift of the photocurrent onset (■) and obtained 

photocurrent density at 1.23 VRHE (●) as a function of the RuO2 thickness 

deposited for the prepared hematite samples. 188 

Figure 5.4: (a) J-V characteristic curves measured in the dark and under 1-sun 

AM 1.5 G illumination conditions for the bare hematite (BH) photoanode (■) 

and optimized RuO2-coated hematite photoanodes (HRu#36- charge of 

36 mC·cm-2, ◄). HRu#36 films were annealed in air at 100 ºC (HRu100,▲), 

200 ºC (HRu200,●), 300 ºC (HRu300,) and 400 ºC (HRu400,▼); and (b) 
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correspondent Butler plots. 191 

Figure 5.5: SEM images of prepared hematite photoanodes: (a) surface top-

view and (b) cross-sectional view of bare hematite (BH) thin film (19 nm); (c) 

and (d) surface view of RuO2-coated hematite film (HRu#36), with 

magnifications of 100000× and 50000×, respectively; (d) and (f) surface view 

of the RuO2-coated hematite film after annealing at 200 ºC over 2 h (HRu200), 

with magnifications of 100000× and 200000×, respectively. 191 

Figure 5.6: Surface topography obtained using 3D [left-side] and 2D [right-

side] AFM scan images for: (a) and (b) bare hematite thin film (BH); (c) and (d) 

RuO2-coated hematite film (HRu#36); (e) and (f) RuO2-coated hematite film 

after the annealing treatment at 200 ºC over 2 h (HRu200). The image scale is 

1 × 1 µm2 and Rq is the root mean square roughness of the surface. 192 

Figure 5.7: Surface topography obtained using AFM scan images for the 

RuO2-coated hematite films: (a) profile height of both samples; 2D images of 

(b) as-prepared (HRu#36 sample) and (c) after annealing treatment at 200 ºC 

(HRu200 sample). The AFM image scale is 500 × 500 µm2. 193 

Figure 5.8: XRD spectra of the prepared photoanodes: bare hematite (BH, 

black line), RuO2-coated hematite (HRu#36, green line), RuO2-coated hematite 

sintered at 200 ºC (HRu200, purple line), hematite annealed at 800 ºC (H800, 

blue line), hematite annealed at 800 ºC and coated with RuO2 further sintered at 

200 ºC (H800Ru200, red line). The FTO glass substrate (grey line) corresponds 

to the SnO2 signals (ICDD reference pattern number: 96-100-0063). The signals 

of hematite (ICDD reference pattern number: 96-101-1241) and RuO2 (ICDD 

reference pattern number: 96-101-0059) phases correspond to red and blue 

column bars, respectively. Main peaks from the FTO substrate are labelled with 

“*”. On the right-side is a zoom-out of the left-side from 33º to 37º. 196 

Figure 5.9: (a) J-V characteristic curves measured in the dark and under 1-sun 

AM 1.5 G illumination conditions for the bare hematite (BH) photoanode 

sintered at 550 ºC (■) and hematite photoanodes and after annealing treatment 

at 800 ºC (H800) for different periods: 20 min (), 10 min (◄) and 5 min (▼); 
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and (b) correspondent Butler plots.  197 

Figure 5.10: Surface top-view SEM images of the hematite photoanodes 

annealed at 800 ºC over 10 min (H800), with magnifications of a) 100000× and 

b) 50000×. Surface topography obtained using: c) 3D AFM scan image 

(1 × 1 µm2 image scale) and d) 2D image. 199 

Figure 5.11: (a) Surface wide-scan XPS spectra for the bare hematite (BH), 

hematite annealed at 800 ºC (H800) and RuO2-coated hematite sintered at 

200 ºC (H800Ru200) photoanodes. Detailed regions for: (b) Fe 2p; (c) O 1s; d) 

Sn 3d and Ru 3p; and (e) C 1s and Ru 3d. 
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Figure 5.12: (a) J-V characteristics of the bare hematite (BH sample) 

photoanode (■) and the H800Ru200 sample, before starting the stability test 

(▼) and after 6 h of testing (◄), in the dark (dashed lines) and under 1-sun 

AM 1.5 G illumination (solid lines) conditions. (b) Polarization curve of the 

H800Ru200 photoanode obtained under a constant bias of 1.00 VRHE and 

simulated solar illumination (AM 1.5 G, 100 mW∙cm−2). 201 

Figure 5.13: Open circuit potential difference between dark (■) and light (◄) 

conditions for the photoanodes under study: (1) bare hematite (BH sample), (2) 

RuO2-coated hematite (HRu sample - 36 mC·cm-2), (3) hematite annealed at 

800 ºC over 10 min (H800 sample), and (4) optimised RuO2-coated hematite 

sintered at 200 ºC (H800Ru200 sample). 202 

Figure 5.14: Surface top-view SEM images of fresh H800Ru200 photoanode, 

with magnifications of (a) 100000× and (b) 50000×. EDS analyses H800Ru200 

sample: (c) before and d) after the stability test over 6 h. Surface topography of 

fresh H800Ru200 photoanode obtained using: (e) 3D AFM scan image 

(1 × 1 µm2 image scale) and (f) 2D image. 201 

Figure 5.15: (a) Nyquist plots obtained in the dark at 1.00 VRHE for bare 

hematite (BH, ■), hematite annealed at 800 ºC (H800, ▼) and optimised RuO2-

coated hematite (H800Ru200, ◄) photoanodes; and (b) electrical circuit 

analogue used to fit the impedance data under dark conditions. 203 
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Figure 5.16: Mott-Schottky analysis of bare hematite (BH, ■), hematite 

annealed at 800 ºC (H800, ▼) and optimised RuO2-coated hematite 

(H800Ru200, ◄) photoanodes. 204 

Figure 5.17: (a) Nyquist plots obtained under 1-sun AM 1.5 G illumination and 

at 1.00 VRHE for bare hematite (BH, ■), hematite annealed at 800 ºC (H800, ▼) 

and optimised RuO2-coated hematite (H800Ru200, ◄) photoanodes; electrical 

circuit analogue used to fit the impedance data under illumination for the 

photoelectrodes under study: (b) BH and H800 samples and (c) H800Ru200 

sample. 208 

Figure 5.18: Impedance parameters obtained from fitting the EIS data under 

illumination for bare hematite (BH, ■), hematite annealed at 800 ºC (H800, ▼) 

and optimised RuO2-coated hematite (H800Ru200, ◄) photoanodes. 
209 

Figure 5.19: (a) Charge transfer rate constants, kCT; (b) recombination rate 

constants, krec; and (c) water oxidation quantum efficiencies, ηOER, obtained 

from the EIS data under illumination for bare hematite (BH, ■), hematite 

annealed at 800 °C (H800, ▼) and optimized RuO2-coated hematite 

(H800Ru200, ◄) photoanodes. 
212 

Figure 6.1: Schematic representation of the prepared Cu2O photocathode 

structure. 

 

230 

Figure 6.2: Cross-section scanning electron microscopy image of a Cu2O 

photocathode device based on an FTO substrate treated with a 3 nm dose of Au. 

False-color was added to aid visualization of the layers. 

 

 

234 

Figure 6.3: J–V characteristics under 1-sun intesity chopped illumination for 

Cu2O photocathodes synthesized both with and without the presence of a 150 

nm thick Au substrate layer.  
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Figure 6.4: Nyquist plots of the Cu2O photocathodes in dark, biased at 0.5 

VRHE in pH 5 solution, measured at frequencies from 1 MHz to 0.1 Hz under an 

AC amplitude of 5 mV. The high-frequency regime is shown, in which an 

obvious resistive element appears for the device without Au; this element does 
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not appear when Au is present at the interface. 235 

Figure 6.5: Scanning electron micrographs of different substrates before (top 

row) and after (bottom row) device fabrication following identical treatments 

(50 min Cu2O electrodeposition followed by atomic layer deposition of AZO 

and TiO2 overlayers). The substrates examined were (a) bare FTO-glass, (b) 

FTO with a 150 nm thick Au film, and (c) FTO with a 3 nm dose of Au (scale 

bars: 100 nm). On bare FTO, the Cu2O nucleates and grows into large, distinct 

crystalline particles (d), whereas on both 150 nm (e) and 3 nm (f) Au-treated 

substrates the Cu2O growth is uniform, dense and continuous. 
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Figure 6.6: Optical and photoelectrochemical effects of Au and Cu2O thickness 

variation. (a) Transmittance spectra of FTO-glass substrates with the addition of 

various doses of sputtered Au. (b) J–V characteristics of photocathodes based 

on 105 m Cu2O electrodepositions onto substrates of various Au treatments, 

under 1-sun intensity chopped illumination. (c) J–V characteristics and (d) 

IPCE and transmittance spectra for devices of varied Cu2O thickness formed 

onto 3 nm Au treated substrates. The devices are labelled by approximate Cu2O 

thickness. The transmittance spectra were obtained on samples in air. The IPCE 

responses were measured while biased at +0.3 VRHE. All photocathodes in (b–d) 

were tested following 15 min of RuO2 catalyst deposition on their surfaces. 
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Figure 6.7: (a) Cross-section micrographs of Cu2O films electrodeposited for 

different durations onto 3 nm Au-treated FTO-glass substrates. (b) Photographs 

of Cu2O films of different depositin durations onto different Au-treated 

substrates. 239 

Figure 6.8: Schematic of the Cu2O–perovskite–IrO2 tandem cell during 

operation. An ammeter (A) is employed to monitor the short circuit current 

flowing through the unbiased tandem device, while a voltmeter (V) is used to 

periodically measure the potentials of the anode and cathode contacts against a 

reference electrode in the solution. 241 

Figure 6.9: PEC/PV tandem assembly and operation. (a) Plot of the spectral 

flux of photons in the AM 1.5 G spectrum and the expected electron current 

flux of photocathode and PV obtained from multiplication of their respective 
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IPCE responses by the photon flux (for IPCE acquisition, the photocathode was 

biased at +0.3 VRHE and the PV was measured at short circuit). Integration 

yields the expected current densities labeled for each component. (b) J–V plots 

of the photocathode and anode components with overlaid J–V response of the 

PV cell. The photocathode configuration was 3 nm Au + 260 nm Cu2O + ALD 

overlayers + 20 min RuO2 surface catalyst. The position of the PV curve was 

defined by actual potential measurements at the PV electrode contacts after 60 

min of tandem operation, as indicated by grey markers.  
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Figure 6.10: Photovoltaic cell characterization. (a) J–V curves of the 

(MA)x(FA)1−xPbI3 PV under various illumination conditions (0.98 sun and 

behind Cu2O in tandem configuration) scanned at 10 mV·s−1. (b) IPCE response 

of the PV cell as well as the product of the IPCE and the measured Cu2O 

transmittance to yield the expected IPCE of the PV when placed behind the 

photocathode. The photocathode IPCE is shown as well for reference. 243 

Figure 6.11: PEC/PV tandem assembly and operation. (a) Photocurrent density 

history over time in the AM 1.5 G spectrum, (b) Faradaic efficiency from in-

line gas measurements, and (c) potential measurements during operation of the 

complete assembled tandem in a sealed, stirred cell under continuous flow of 

He carrier gas, with a photocathode and photovoltaic illuminated area of ca. 

0.057 cm2. Approximately 30 min were required for the produced gases to 

reach equilibrium in the cell. 
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Figure 6.12: Representative photocathode stability study for a device based on 

3 nm Au + 50 min Cu2O. (a) Chronoamperometry under continuous 

illumination while biased at 0 VRHE for 24 h. (b) J–V response before and after 

the stability test. 246 
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INTRODUCTION 

 

 

 

The future prospect of the so-called Hydrogen Economy is attracting much interest and 

several recent efforts are underway to develop renewable and cost-effective 

technologies for the production, storage, transport and use of hydrogen [1]. 

Photoelectrochemical (PEC) production of hydrogen from sunlight is one of the most 

promising technologies, owing the direct conversion of solar energy to chemical fuels, 

ideal for storage [2]. PEC systems use solar photons collected by photoelectrodes to 

decompose directly water into hydrogen and oxygen gases without the assistance of 

electrolyzers.  

Numerous semiconductor materials, co-catalysts and cell configurations have been 

studied, as well as various research methodologies and characterization techniques 

have been applied to understand and optimize the behavior of these devices. Typical 

PEC devices use one photoactive semiconductor electrode coupled to a platinum 

counter electrode, both immersed in a water-based solution. However, in most cases, 

an external bias is necessary due to non-matching band edges or insufficient charge 

separation [3]. Nevertheless, the ideal PEC cell should work without any external bias; 

this can be accomplished by coupling n- and p-type photoelectrodes or a 

photoelectrode with a photovoltaic cell in a tandem system [4]. Though, the search for 

Earth-abundant and environmentally safe materials, able to fulfill the several 

requirements for solar water splitting applications, still a major challenge for solar 

hydrogen production.  

The present chapter introduces and reviews the state-of-the-art materials and 

technologies of PEC cells for solar water splitting; the PEC cell operating mechanisms 

are discussed in detail. Finally, the main goals of the present thesis are addressed. 
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1.1 MOTIVATION 

The most important challenge that humanity is nowadays facing is the development of 

a long-term and sustainable energy economy. Due to world population increasing and 

industrialization, the total energy consumption is expected to increase from the present 

15 TW to 30 TW by 2050 [5, 6]. Presently, fossil fuels provide almost 80 % of our 

energy needs, which will be unable to keep up the global energy demand [7]. 

Additionally, in the last few years, the consumption of fossil fuels never stopped 

growing and this behavior is projected for the next decades [8]. As side effects, global 

warming consequences, natural resources depletion and global health deterioration are 

expected to be gradually intensified. Thus, the exploitation of new and promising 

technologies based on alternative, non-polluting and clean energy sources becomes 

imperative [9]. 

Solar energy is the largest and most widespread source of renewable energy. The sun 

irradiance reaching the Earth is enough to fulfill the humankind energy consumption 

more than 10 thousand times over (120 PW strikes the surface of the Earth, out of 

which 36 PW is on land) [10]. The solar cell market is one of the fastest growing in the 

last decade (ca. 40 % per year) [11]; however, the photovoltaic (PV) technology only 

works in a daily basis and it largely depends on the amount of solar irradiation 

available. Thus, the intermittent nature of sunlight requires the development of 

efficient approaches to energy storage [3, 9]. The direct production of chemical fuels 

from sunlight is a promising route [3]. Solar hydrogen is an attractive and flexible 

energy carrier due to its potential applications across all energy sectors: it is storable, 

transportable, it can be efficiently converted into electricity when used as a feedstock 

of fuel cells and it can be used for carbon dioxide recycling, e.g. via Fisher-Tropsch 

reaction and methanol synthesis [12, 13]. This offers the prospect of a future energy 

infrastructure based on sunlight, hydrogen and electricity - Figure 1.1 [6].  
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Figure 1.1: A possible future energy triangle based on solar energy (adapted from ref. [6]). 

 

There are presently several approaches aiming solar-to-hydrogen (STH) conversion 

as illustrated in Figure 1.2 [14]. The two first processes are based on composed devices 

and consider solar-thermochemical cycles (STC). Process I comprehends two-step 

STH mechanisms, being the photon-to-thermal energy conversion followed by the 

thermal-to-chemical conversion. Process II involves the hydrogen generation through 

three steps, i.e. photon-to-heat, heat-to-electricity and electricity-to-chemical [15, 16]. 

Particularly, heat-to-electricity step uses concentrating solar thermal (CST) systems [14]. 

Process III considers the use of two devices, namely photovoltaic (PV) cells, 

responsible for the photon-to-electric conversion, associated with an electrolyzer or a 

PEC cell to convert electric energy into a chemical fuel [17]. Finally, process IV consists 

of a single PEC cell based on a semiconductor-liquid junction (SCLJ) that allows the 

direct photon-to-chemical energy conversion. The major advantage of PEC water 

splitting is that solar collection, conversion and storage are combined in a stand-alone 

system, promoting oxygen and hydrogen evolutions at separate electrodes [18, 19].  

From the different approaches to generate renewable hydrogen, PEC devices are 

among the most promising, yet probably also the most challenging. Since the first 

report of PEC water splitting by Fujishima and Honda in 1972, using a TiO2 

photoanode illuminated with UV light [20], fundamental and engineering research has 

been devoted to develop semiconductor materials and reactor designs with high STH 

conversion efficiency and durability. 
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Figure 1.2: Solar-to-hydrogen (STH) conversion pathways (adapted from ref. [14]). STC is the 

solar-thermochemical cycles; CST is the concentrating solar thermal systems; PV is the 

photovoltaic solar cells; and PEC is the photoelectrochemical cell based on a semiconductor/ 

liquid junction (SCLJ). 

 

1.2 PEC CELLS FOR WATER SPLITTING: WORKING PRINCIPLES  

The working principles of a PEC system based on a single photoelectrode and a metal 

counter electrode are illustrated in the energy diagram of Figure 1.3. This is the 

simplest possible configuration consisting of two electrodes: a photoactive 

semiconductor electrode and a metal counter-electrode, both immersed in an 

electrolyte solution that allows the transport of the ionic species. The photoactive 

material can be either an n-type or p-type semiconductor. A semiconductor having 

large number of electrons in the conduction band is an n-type semiconductor, whereas 

in a p-type semiconductor the holes are the majority carriers. Therefore, a photoanode 

is an n-type semiconductor in PEC water splitting cells and the oxidation of water to 

oxygen occurs at the semiconductor/electrolyte interface and the photocathode is a p-

type semiconductor evolving hydrogen. 
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Figure 1.3: Energetic diagram of a PEC cell in the dark [left-side] and under illumination 

[right-side] based on a photoanode and a metal cathode.  

 

When a semiconductor electrode is immersed in an electrolyte solution in dark, 

charge equilibration occurs at the interface forming a semiconductor/electrolyte 

junction (Figure 1.3 – left-side). For establishing the thermodynamic equilibrium, the 

majority charge carriers (electrons in an n-type semiconductor and holes in a p-type 

semiconductor) are transferred to the second phase upon contact to equalize the Fermi 

levels. The excess of charges positioned on the semiconductor side is not located at its 

surface, as it would be in the case of a metallic electrode, but instead it extends into the 

electrode for a deeper distance, i.e. the space charge layer [21]. For an n-type 

semiconductor electrode, the Fermi level is normally higher than the redox potential of 

the electrolyte and then electrons are transferred from the electrode into the solution. 

Therefore, a positive space charge layer is formed, also called depletion layer since the 

region is depleted of majority charge carriers. On the other hand, a p-type 

semiconductor has an initial Fermi level below that of the electrolyte; a negative space 

charge layer is then formed as holes are transferred into the electrolyte. A charged 

layer of opposite sign is induced in the electrolyte adjacent to the interface with the 

solid electrode – Helmholtz layer. This layer consists of charged ions from the 

adsorbed electrolyte on the solid electrode surface. The Helmholtz layer width (few 

angstroms) is usually smaller than the space charge layer width [22].  

Under illumination, a semiconductor absorbs photons with energies higher than its 

bandgap energy (Eg), injecting electrons from the valence band (VB) to the conduction 
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band (CB) and, consequently, creating electron-hole pairs – Equation (1.1). For an n-

type semiconductor photoanode, the case illustrated in Figure 1.3 (right-side), 

photogenerated electrons within the space charge region are driven by the electric field 

away from the semiconductor/electrolyte interface. Under illumination, the injected 

electrons raise the Fermi level decreasing the band bending and splitting into a quasi-

Fermi level for electrons and for holes close to the interface. The excited electrons flow 

from the back contact of the semiconductor, via the external circuit, to the counter-

electrode, where they reduce water to hydrogen – Equation (1.2) or Equation (1.4), 

depending of the electrolyte medium. Either water reacts with the semiconductor 

surface holes or OH¯ ions diffuse back to react with holes at the surface of the 

photoelectrode, oxidizing holes to oxygen – respectively Equations (1.3) or (1.5). 

A different design is also possible with a p-type semiconductor (photocathode) - 

Figure 1.4. In this case, the photocathode, converting incident photons to electron-hole 

pairs, reduces protons or water to hydrogen – Equations (1.2) or (1.4), depending on 

pH medium – at the interface, while oxygen is evolved at the metal anode.  

 

Figure 1.4: PEC cell under illumination based on a photocathode and a metal anode. 

 

In a PEC cell with an acidic electrolyte the oxygen evolution reaction (OER) and 

hydrogen evolution reaction (HER) are as follows: 

4 4 e 4 h  hv  (1.1) 
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2 NHEH /H
4H + 4 2 H ; 0 00 Ve E .     (1.2) 

2 2

+ + o

2 2 H O/O NHE2H O + 4h 4H + O ; 1 229 V E .  (1.3) 

For an alkaline medium, hydroxyl anions are formed from the dissociation reaction of 

water; the reduction and oxidation reactions can be written as [23]:  

2

- o

2 2 NHEH O/OH
4H O + 4e 2H +4OH ; 0 828 V

  E .  (1.4) 

2

o

2 2 NHEO /OH
4OH + 4h 2H O O ; 0 401 VE .

       (1.5) 

Therefore, the overall water splitting reaction is the following:  

2 2 22H O+ 4 2H + Ohv   (1.6) 

The number of absorbed photons is equal to the number of produced electron-hole 

pairs, which is twice that of produced H2 molecules and four times the produced O2 

molecules. 

The minimum thermodynamic potential needed for driving the water electrolysis is 

the electric reversible potential of ΔEº = -1.23 V, based on a Gibbs free energy change 

of ΔGº = 237 kJ·mol-1 (based on low heat of combustion, 298 K and 1 bar) [24]. 

 

1.3 PEC MATERIALS OVERVIEW 

The key component of a PEC water splitting cell is the semiconductor photoelectrode, 

which has to meet several requirements for efficient solar water splitting [25, 26]:  

i. Strong (visible) light absorption;  

ii. Long-term stability in an aqueous solution; 

iii. Suitable band edge positions to catalyze water reduction and oxidation; 

iv. Low kinetic overpotentials for the reduction/oxidation reaction; 

v. Efficient charge conduction; 

vi. Earth-abundant and cost-effective. 

The basic parameter that determines the spectral region in which the semiconductor 

absorbs light is its bandgap energy (Eg). Since only 1.23 V are needed for water 

splitting, a minimum bandgap of 1.23 eV could be sufficient. Based on the standard 

AM 1.5 G solar spectrum (ca. 100 mW∙cm-2), a semiconductor with such bandgap 

would give a maximum overall solar-to-hydrogen conversion efficiency of 47.4 %, 
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assuming no losses [27]. However, there are significant back processes involved during 

the water photosplitting, such as the thermodynamic losses (0.3 - 0.4 eV) and 

overpotentials required for ensuring sufficiently fast reaction kinetics (0.4 - 0.6 eV) [6]. 

As a result, the semiconductor needs to have a minimum bandgap of ca. 1.9 eV, 

corresponding to an absorption onset at ca. 650 nm [25]. To achieve the US Department 

of Energy (DOE) target of 10 % STH efficiency, a minimum photocurrent density of 

ca. 8 mA·cm-2 is necessary, which means a maximum bandgap of ca. 2.3 - 2.4 eV. 

Therefore, the optimum value of the bandgap should be between 1.9 and 2.4 eV. This 

is consistent with the study by Murphy et al. [28] that indicates an ideal bandgap of ca. 

2.03 eV. The semiconductor must have high chemical stability in the dark and under 

illumination. The stability against corrosion generally increases with semiconductor 

bandgap, but larger bandgaps limit the visible light absorption. 

The third requirement above mentioned implies that the conduction band has to be 

above water reduction potential, Eº(H+/H2), and the valence band has to be below the 

water oxidation potential, Eº(H2O/O2). Moreover, the charge transport in the 

semiconductor must be efficient and with minimal recombination losses [25].  

Only Earth-abundant materials and scalable thin film technology can meet the target 

cost of 5 €·kg-1 H2 set by the European Commission [29]  and the target cost of $2 to 

$4·kg-1 set by the DOE for future solar hydrogen production [30]. A recent techno-

economic analysis showed that a PEC panel needs to cost less than $160 per m2 to 

become commercially competitive [31].  

Due to the previously mentioned stringent requirements, it is very difficult to find an 

ideal semiconductor material for PEC water splitting. During the last decades, various 

metal oxides (TiO2, ZnO, α-Fe2O3, WO3, BiVO4, Cu2O, etc.) and non-oxides (silicon, 

GaAs, GaP, CdS, InP, TaON, Ta3N5, etc.) semiconductors have been extensively 

studied [32-34]. Metal oxides are often considered as the class of material suitable for 

water splitting, mainly due to their general stability in aqueous solution and relatively 

low-cost. However, they usually do not have very good semiconducting properties, 

such as carrier mobility, compared to III-V semiconductors or even Si. The challenge 

is then to overcome these limitations while taking advantage of the metal oxides 

properties. Figure 1.5 shows the relative band edge positions of several 

semiconductors.  
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Figure 1.5: Energy band edge positions for semiconductors at pH 0 (adapted from ref. [35]). 

 

1.3.1 PHOTOANODES FOR SOLAR WATER SPLITTING 

A photoanode material for solar water splitting is responsible for the oxygen evolution, 

such that the electric field generated by band bending drives holes toward the surface 

and electrons to the current collector. Most of the photoanodes that have been studied 

are metal oxides, bare or doped but always nanostructured [3, 36]. 

Since the pioneering work by Fujishima and Honda [20], PEC cells with titanium 

dioxide (TiO2) photoanodes of different types (single crystal, polycrystalline, thin 

films) have received special attention [37, 38]. TiO2 material presents an adequate 

stability but the overall PEC performance is low due to its large bandgap (Eg = 3.2 eV), 

which only absorbs in UV range of the solar spectrum; the maximum thermodynamic 

STH efficiency is then limited to 2.2 % [28]. Also, the conduction band edge of this 

semiconductor is slightly positive to the HER. This limitation can be overcome using 

titanates, such as SrTiO3 (Eg = 3.2 eV) and BaTiO3 (Eg = 3.2 eV); the addition of Sr2+ 

and Ba2+ cations moves the potential of the conduction band edge to more negative 

values [3]. Although these materials can accomplish the direct water splitting the energy 

efficiency is very small, e.g. less than 1 % STH efficiency was obtained for SrTiO3  [39]. 

Several other attempts have been made doping TiO2 with ions such as Fe [40], Cr [41], Ni 

[42] and C [3, 43] without noticeable energy efficiency increase. 
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Small bandgap metal oxides, such as α-Fe2O3, WO3 and BiVO4, exhibit conduction 

band potentials more positive than water reduction and so an external bias potential 

should be provided to promote complete water splitting. Hematite (α-Fe2O3) is one of 

the most abundant and inexpensive oxide semiconductor with suitable energy bandgap 

(Eg = 2.0 – 2.2 eV) [44]. The thermodynamic maximum STH conversion efficiency is 

ca. 14 % - 17 %, which corresponds to a photocurrent density of 11 – 14 mA·cm-2 

under AM 1.5 G illumination [28]. The first study on hematite ability for water 

photolysis was published in 1976 by Hardee and Bard [45]. These authors found 

hematite to be highly stable in neutral and alkaline electrolyte solutions that is of great 

importance for the commercial viability of the PEC systems [46]. As a drawback, in 

pure-phase α-Fe2O3 the photogenerated carriers show low mobility, which implies a 

short hole diffusion length (LD = 2 – 4 nm) [47]. These intrinsic disadvantages combined 

with the sluggish water oxidation reaction are bound to give rise to the recombination 

of photogenerated electron-hole pairs, thereby leading lower PEC performances [26, 48]. 

Therefore, the main ongoing studies on hematite concern: i) improvement of 

photogenerated current density by morphology optimization (e.g. using different 

deposition methods [26]) and doping (Si [49], Ti [50], Sn [51], Pt [52] or other atoms); ii) 

improvement of generated photopotential minimizing the electron-hole recombination, 

especially at the photoelectrode surface [53]; and iii) reduction of the electrochemical 

activation overpotential using co-catalysts (e.g. IrO2 
[54], Co-Pi [52], NiFeOx [55]). Kim et 

al. [52] used a solution-based colloidal method to prepare a photoelectrode of hematite 

nanowires (ca. 500  nm thick) doped with Pt and activated with Co-Pi co-catalyst; the 

prepared photoelectrode showed ca. 4.32 mA·cm-2 at a bias potential of 1.23  VRHE and 

remained stable over 180  minutes [52]. Recently, a new hematite record breaking of ca. 

5.7 mA·cm-2 at 1.23  VRHE was achieved by Guo et al. [56]. This highly photoactive 

material consists of a Ru-doped α-Fe2O3 nanorods film (Fe/Ru molar ratio of 100/5) 

prepared by deposition of the [Ru(acac)3]-treated ultrathin α-FeOOH nanorods 

precursors onto FTO substrates via a doctor blading process, followed by a thermal 

annealing at 700 ºC in air. Nevertheless, its performance is still considerably lower 

than the thermodynamic value and recent efforts are now focused on the reduction of 

the onset potential for OER [57, 58]. Through the combination of high temperature 

annealing and surface modifications with catalysts it is observed a cathodic shift on the 
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photocurrent onset potential (Eonset) [59]. The recent advances allowed to develop a PEC 

tandem device based on a hematite photoanode catalyzed with NiFeOx and an 

amorphous Si photocathode (with TiO2/Pt overlayers) able to split water at an overall 

efficiency of ca. 0.91 % [60]. Very recently it was reported a bare hematite thin film (ca. 

19 nm) photoelectrode that remained stable over 1000 h of PEC operation under 1-sun 

AM 1.5 G illumination, with no evidences of film degradation neither of photocurrent 

density losses [61]. 

Tungsten trioxide (WO3) is also an interesting semiconductor material due to its high 

stability against photocorrosion in acidic aqueous solutions (pH < 4). Moreover, it has 

an indirect bandgap (Eg = 2.6 – 2.8 eV), which absorbs not only the near-UV but also 

the visible blue portion of the solar electromagnetic spectrum. Unfortunately, the 

thermodynamic STH efficiency is only around 4.8 % [62]. Usually, WO3 crystalline and 

amorphous thin films can be used for water splitting, but a highly crystalline structure 

is desirable to reduce charge trapping and carrier recombination, therefore, improving 

its energy performance [63]. A photocurrent density of ca. 2.7 mA∙cm-2 at 1.0 VRHE was 

reported using a nanocrystalline WO3 thin film synthesized by an aqueous sol–gel 

method on a conducting glass electrode; it remained stable over 144 h under 1-sun 

AM 1.5 G illumination [64]. A methane sulfonic acid solution was used to avoid the 

deactivation of the photoanode due to the formation and accumulation of peroxo 

species on its surface. The formation of secondary species becomes kinetically 

competitive with O2 production; though, this aspect can be improved by placing a 

suitable O2 evolution catalyst to enhance the photostability and efficiency towards 

water splitting reaction, e.g. a low-cost cobalt-phosphate (Co-Pi) co-catalyst [65].  

Bismuth vanadate (BiVO4) semiconductor is other candidate material for efficient 

PEC systems with a bandgap energy of 2.4 – 2.5 eV and a reasonable band edge 

alignment with respect to water redox potentials; a thermodynamic STH efficiency of 

ca. 11 % (7.5 mA·cm-2) can be obtained [66]. Moreover, it has also been reported that 

BiVO4 shows both n- and p-type semiconducting properties and exhibit high photon-

to-current conversion efficiencies under visible light radiation (> 40 % at 420 nm) [67-

69]. Recently, a record photocurrent of 3.6 mA·cm-2 at 1.23 VRHE was reported for a 

tungsten-gradient-doped BiVO4 photoanode [70]. STH efficiency of 4.9 % was achieved 

for the device based on a double junction amorphous silicon solar cell [71].  
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More recently, tantalum (oxy)nitrides, such as TaON (Eg = 2.5 eV) and Ta3N5 

(Eg = 2.0 eV), have experienced a rapid development as high-performance photoanodes 

[72]. Tantalum (oxy)nitrides show narrow bandgaps for visible light absorption 

(λ < 600 nm) and suitable band edges positions straddling over water redox potentials 

[13]. A photocurrent density of ca. 6.7 mA·cm-2 at 1.23 VRHE was obtained for the Ba-

doped Ta3N5 nanorod array modified with Co-Pi in an electrolyte solution of 0.5 M 

K2HPO4 (pH 13) [73]. This photoanode material showed a maximum STH conversion 

efficiency of 1.56 % at 0.87 VRHE and remained stable over 100 min. Liu et al. [74] 

further modified Ta3N5 with the Ni(OH)x/MoO3 bilayer and improved its stability up to 

24 h in 1 M LiOH aqueous solution (pH 12). Continuous efforts in this field, as well as 

the fundamental knowledge about the factors that most influence the PEC efficiency, is 

though still needed. 

 

1.3.2 PHOTOCATHODES FOR SOLAR WATER SPLITTING 

Photocathodes used for water splitting need to supply sufficient cathodic current for 

reduction of protons to H2 and must be stable in aqueous environments. Single-crystal 

phosphides such as GaP (Eg = 2.3 eV) [75], InP (Eg = 1.4 eV) [76] and GaInP2 

(Eg = 1.8 eV) [77] have been studied as non-oxide photocathode semiconductors, but 

polycrystalline materials are desirable for large-scale applications of PEC systems due 

to their higher stability [4]. Polycrystalline-Si (Eg = 1.1 eV) decorated with a variety of 

catalysts can be used to reduce water [78]. The stability is higher in acids but it also 

suffers from limited durability due to surface oxidation. The formation of an oxide can 

be prevented by passivating the surface, e.g. with methyl groups [79]. Recently, an 

amorphous Si photocathode with TiO2/Pt protective overlayers was reported exhibiting 

an impressive photocurrent of ca. 6.1 mA·cm-2 and reasonable stability at a large 

positive bias of 0.8 VRHE; this is the highest photoelectrochemical performance of all 

reported Si photocathodes [80]. 

Cuprous oxide (Cu2O) has been used as both photoanode and photocathode [3], but it 

appears as an attractive p-type oxide for solar hydrogen production with a direct 

bandgap energy of 2.0 – 2.1 eV suitable for visible light harvesting [81]. 

Thermodynamic calculations indicate that Cu2O can produce up to 14.7 mA·cm-2, 

corresponding to a STH conversion efficiency of 18 % based on the AM 1.5 G 
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spectrum [82]. It is abundant, cheap, environmentally friendly and has favorable energy 

band positions [83]. However, Cu2O is easily reduced to Cu when exposed to aqueous 

electrolytes. This instability can be addressed by depositing protective layers on the 

electrode surface. Paracchino et al. [82] showed a highly active photocathode for solar 

hydrogen production, consisting of electrodeposited cuprous oxide protected with 

nanolayers of Al-doped zinc oxide and titanium oxide, and activated for HER with 

nanoparticulated Pt co-catalyst. This material showed photocurrents up to 7.6 mA·cm-2 

at 0 VRHE 
[82]. Furthermore, RuOx top layer was investigated as a co-catalyst [84] and, 

together with a steam treatment of the multilayer structures, showed optimized 

electrodes with a stable photocurrent of ca. 5 mA·cm-2 during 50 h (photocurrent loss 

< 10 %) under 1-sun AM 1.5 G of light chopping (biased at 0 VRHE in pH 5 electrolyte) 

[83]. However, the photopotential produced by this photocathode alone is insufficient to 

drive the water splitting reaction, so it should ideally be incorporated as the top, wide-

bandgap component of a tandem arrangement. An innovative tandem device made of a 

transparent Cu2O photocathode atop a perovskite photovoltaic cell demonstrated 

unassisted sunlight-driven water splitting up to 2.5 % STH efficiency [85]. 

 

1.3.3 CHALLENGES FOR IMPROVING PHOTOELECTRODES PERFORMANCE 

Various strategies have been followed to improve the performances of the 

photoelectrodes for water splitting, including [86]: 

i. Doping the bare semiconductor; 

ii. Surface treatment of the semiconductor;  

iii. Use of co-catalysts;  

iv. Morphology control of the photoelectrode;  

v. Other methods, e.g. band structure engineering using heterojunction structures, 

passivating the surface states or reduce back-reactions using oxide layers, change the 

distribution of electromagnetic energy using plasmonic metal nanoparticles on the 

semiconductors.  

Doping a semiconductor material is used to simultaneously improve the visible light 

absorbance (decrease the bandgap) and the mobility of charge carriers. The band 

structural modification involves the introduction of foreign ions (cations or anions) into 

the semiconductor material to change its electronic and optical properties. Various 
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dopants including metal ions (e.g. Ti, Sn, Fe) and non-metal elements (e.g. N, Si, C) 

have been used to improve the PEC efficiency. A review of the doping effect on a 

number of promised semiconductors is reported elsewhere [35].  

The surface treatment is another method to improve the photoelectrode efficiency by 

protecting the surface against photocorrosion, surface states passivation, modifying the 

band edge positions or band bending and the selective extraction of carriers [87]. The 

photoelectrode stability can be enhanced by adding a protective overlayer, which 

should be sufficiently thick to act as a physical barrier between the semiconductor and 

the electrolyte but also semi-transparent and conductive to avoid the limiting of the 

light harvesting efficiency or charge transfer [82, 88]. The surface passivation can 

suppress the deleterious role of the surface states, which act as trapping sites and 

recombination centres of photoinduced carriers [86]. Therefore, the degree of band 

bending and band positions (surface energetics) may be changed by surface 

modifications for tuning of the driving force for the charge transfer processes [57]. 

The hydrogen and oxygen evolutions require an activation energy, overpotential, to 

run the electrolysis at the required rate. Co-catalysts can be divided into WOC (water 

oxidation catalyst) and WRC (water reduction catalyst), acting as activation sites for 

the evolution of O2 (photoanode) or H2 (photocathode), respectively. By improving the 

reaction kinetics, the potential bias is reduced and then the incident photon-to-current 

conversion efficiency (IPCE) is enhanced at lower bias. A good catalyst also increases 

plateau photocurrent and may contribute for the chemical and photochemical stability 

[89]. Among the WOCs employed so far, IrO2 [54], RuO2 [90], Co3O4
 [91]

 and Co-Pi [92] are 

the most used for a photoanode; whereas MoS2 [93] and Ni-Fe [94] or noble metals like Pt 

[82], Ru [84] and Pd are promising candidates for HER. The catalytic activity of the 

oxygen and hydrogen evolution reactions can be linked through volcano plots, as 

shown in Figure 1.6a and Figure 1.6b, respectively.  
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Figure 1.6: (a) Volcano plot of the overpotential of OER on various oxide surfaces vs. the free 

energy cost of the rate limiting step (adapted from ref. [95]); (b) Volcano plot of the exchange 

current density for the HER for several native metals as a function of the metal-hydrogen bond 

strength (adapted from ref. [96]). 

 

For improving the energy efficiency the photoelectrode film must be thick enough to 

absorb more light and the deep photogenerated carriers within the photoelectrode must 

be able to reach the surface and then be collected [3]. Therefore, the morphology control 

of the photoelectrodes allows enhancing the light absorption and shortening the 

diffusion length of minority carriers. Nanostructuring the photoelectrode is usually 

used to increase the relative volume of the space charge layer with respect to that of the 

bulk, thereby reducing recombination rate and increasing the plateau current [54].  

Although the impressive results achieved to date there is not a single semiconductor 

material able for direct PEC water splitting. Innovation and developments in new 

materials are needed, as well as innovative PEC cell designs are strongly required. 
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1.4 PEC DEVICES OVERVIEW 

The PEC research over the past years allowed to develop innovative material systems, 

functionalized interfaces and devices aiming at stable 10 % solar-to-hydrogen 

efficiency, the target that will make this technology to move to the industrialization 

level [19]. Furthermore, it is also important to split water without any external bias 

supply.  

Figure 1.7 summarizes the configurations of PEC devices for solar hydrogen 

production: i) two harvesting devices combining PV cells coupled to an electrolyzer 

system or to a PEC cell (Type I); ii) single harvesting PEC-based devices with at least 

one semiconductor-liquid junction (Type II); and iii) photocatalyst-based slurry 

devices (Type III). Type III consists of photoactive semiconductor particles 

(photocatalysts) free-floating as slurry in a solution bed [97]. This configuration still 

presents many drawbacks for solar water splitting and so it will not be considered in 

this chapter. 

 

Figure 1.7: Photoelectrochemical device configurations for solar hydrogen production. 

 

The success of PEC hydrogen production depends on the balance between device 

performance (STH efficiency and stability), complexity and cost; the simpler the 
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device, the better. Single-junction photoelectrode systems offer the greatest simplicity 

but their energy efficiencies are generally low. On the other hand, tandem PEC devices 

are more complex but also more efficient, emerging as the best approach for solar 

water splitting [98]. Table 1.1 presents the advantages and disadvantages of these PEC 

configurations. 

 

Table 1.1: Advantages and disadvantages of the PEC configurations for H2 production. 

Device 

configurations 
Advantages Disadvantages 

Type I 

Two Harvesting 

Devices 

 Nontransparent substrates can 

be used; 

 More efficient utilization of 

the solar spectrum; 

 No stability issues (PV 

contact with electrolyte 

solution is avoided). 

 Twice the collector area for the 

devices; 

 Need to balance the current flow of 

both devices; 

 Auxiliary system losses (e.g. collection 

of current from PV cell and 

transmission of electrons through 

external wiring); 

 Add complexity and cost for large-

scale deployment. 

Type II 

Single 

Photoelectrode  

 Only one substrate and one 

photoanode or photocathode 

is needed; 

 Cheap nontransparent 

substrate can be used. 

 Poor utilization of the solar spectrum 

since large bandgap (Eg > 1.7 eV) is 

needed. 

Type II 

Tandem 

Photoelectrodes 

 Needs only one substrate; 

 More efficient utilization of 

the solar spectrum; 

 Use of two smaller bandgap 

materials; 

 Enhanced photopotentials 

(the photopotentials of each 

cell are additive). 

 Need to identify suitable photoanode 

and photocathode or use a 

photoelectrode and PV solar cell; 

 Need a transparent conducting 

substrate; 

 Photocurrent limited by the component 

generating the smallest current value; 

 Optical coupling effects between cells 

(minimize reflection at front surface); 

 Adds complexity. 
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1.4.1 TYPE I: TWO HARVESTING DEVICES 

Type I combines two physically separated devices to directly drive electrolysis; the 

most developed approach is based on a PV cell integrated with an electrolyzer system 

(PV + electrolyzer). The PV cells usually generate photopotentials over 2 V, 

converting sunlight to electricity, whereas the electrolysis unit converts electricity to 

hydrogen at efficiencies near 65 % [97]. The typical photovoltaic cell types are 

monocrystalline silicon (c-Si) and polycrystalline silicon (p-Si) and thin-film 

technologies, namely amorphous silicon (a-Si), cadmium telluride (CdTe), copper 

indium gallium diselenide (CIGS) [99], dye sensitized solar cells (DSC) [100] and 

perovskite solar cells (PSC) [101]. The viability of this type of approaches is limited by 

the cost of both devices; using commercially available PV and electrolyzer 

technologies, the hydrogen production cost would be greater than $10·kg-1, far 

exceeding the US DOE targets of $2 - $4·kg-1 [97]. Table 1.2 shows the STH 

efficiencies of relevant PV + electrolyzer approaches. 

 

Table 1.2: Examples of two harvesting devices; photovoltaic efficiency (ηPV) and solar-to-

hydrogen efficiency (ηSTH), with an electrolyzer efficiency of 65 % (extracted from ref. [99]). 

PV+ Electrolyzer ηPV / % ηSTH / % 

a-Si multijunction 12.1 7.8 

III-V multijunction 32 20.8 

c-Si modules 13.5 8.8 

DSC 8.2 5.3 

 

Alternatively, the PV cell can be connected in series with a PEC cell based on a 

SCLJ, instead of an electrolyzer, resulting in a cheaper but not necessarily more 

efficient arrangement [19]. Figure 1.8 shows a non-tandem configuration consisting of a 

photoanode PEC cell coupled to a PV cell; the majority carriers generated in the PV 

cell reduce water on the metal cathode and the minority holes generated in the 

photoanode oxidize water at its surface [19]. In the PV + PEC configuration the 

available solar exposure area must be substantially larger since both PV and PEC cells 

have to be directly illuminated [99]. To avoid these drawbacks, a more effective 
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approach would incorporate PV cell and PEC photoelectrode into a single harvesting 

device, as described in the following section.  

 

Figure 1.8: PV solar cell connected in series with a PEC device (non-tandem arrangement). 

 

1.4.2 TYPE II: SINGLE HARVESTING PEC-BASED DEVICES 

Single harvesting PEC-based devices have been investigated as a promising alternative 

for large-scale solar hydrogen production. Type II devices are then divided into biased 

and non-biased systems - Figure 1.7. Concerning biased systems, the cells operate 

under illumination in combination with an appropriate bias source to directly promote 

hydrogen generation; there are chemically biased photo-assisted photoelectrolysis cells 

and internal biasing devices [17, 19]. Non-biased devices are based on single 

photoelectrodes or two photoelectrodes (photoanode and photocathode) in a tandem 

arrangement. 

 

BIASED DEVICES 

1) Chemically Biased 

A chemical bias is achieved using acidic and alkaline environments, placed in two half-

cells separated by an ion exchange membrane - Figure 1.9. The electrolyte solutions 

are chosen to reduce the potential required to induce the chemical splitting. The 
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photocurrent flowing between the electrodes lead to the consumption of ion species at 

the anodic and cathodic cell compartments, resulting in the electrolyte neutralization 

and the potential bias reduction. Therefore, this configuration is not self-sufficient, 

relying not only on sunlight but also on additional input of chemicals to maintain the 

pH gradient [19]. This approach is then unattractive for practical applications. Table 1.3 

shows two examples of chemically biased PEC cells. 

 

Figure 1.9:  PEC cell with chemical biasing. 

 

Table 1.3: Examples of chemically biased PEC cells, device conditions and correspondent 

performance: photocurrent-density (Jphoto), STH conversion efficiency (ηSTH) and stability. 

Device 

configurations 

Electrolyte and 

Illumination 

Conditions 

Performance Stability 
Ref./ 

Date 

TiO2 photoanode 

Pt cathode 

1 M HCl 

1 M KOH 

Chemical Bias = 0.84 V not reported [20]/ 

1972 

TiO2 photoanode 

Cu-Ti-O 

photocathode 

1 M KOH 

0.1 M Na2HPO4 

100 mW·cm-2 

Chemical Bias = 0.40 V 

Jphoto = 0.25 mA·cm-2; 

ηSTH = 0.30 % 

Photocathode 

corrosion 

after 4 h 

[102]/ 

2008 
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2) Internally Biased  

An internal bias with an appropriate match of current and potential will directly 

increase the STH conversion efficiency, since the PEC system and the bias element 

with different absorption spectra can address a broader fraction of the solar spectrum 

[19]. In this configuration, at least one of the substructures must work as a bias source; 

the total bandgap should be large enough to split water. These systems, also called 

tandem devices, are normally characterized by layered stacked or hybrid structures 

involving several different semiconductor films placed on top of each other. Figure 

1.10 shows a top PEC cell stacked to a PV cell in a two-junction (2J) tandem 

arrangement; the back contact of the PEC cell and the front contact of the PV cell are 

connected by a tunnel junction and the back contact of the PV cell is directly connected 

to the counter electrode. This approach eliminates the electron transmission through 

wires, reducing ohmic losses, but the process compatibility in fabricating the PEC cell 

directly onto the PV cell affects device quality and efficiency.  

 

Figure 1.10: PEC/PV monolithic system using a two-junction hybrid tandem device. 

 

The total photocurrent of a tandem arrangement is bound by the photocurrent limits 

of the highest bandgap material. Further optimization is achieved if a large bandgap 

material (LBG) is layered in front of a small bandgap material (SBG) [103]. Layering the 

photoabsorbers in this manner allows the short wavelength, greater energy photons, to 

be absorbed in the LBG and the long ones to be absorbed in the SBG. The top cell has 

to be semi-transparent to enable light transmission to the back photoelectrode, i.e. a 
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transparent conducting oxide (TCO) substrate must be used. However, if the two 

junctions are stacked onto the same substrate as a single monolithic structure, no 

transparent substrate is needed [97].  

The internally biased tandem structures can then be divided into: i) stacked 

monolithic devices (Figure 1.10); ii) PEC/PV tandem systems where the 

photoelectrode layer is semi-transparent, e.g. PEC/DSC (Figure 1.11) and PEC/PSC 

(Figure 1.12) devices; and iii) PEC/PV tandem systems where the PV layer is semi-

transparent. A further extension of the PV/PEC device is based on the use of a triple-

junction (3J) hybrid system (a PEC top cell and a double-junction PV cell) due to low 

photopotentials generated by the conventional PV materials (e.g. c-Si, p-Si, CIGS). 

This configuration develops higher photopotentials, but the photocurrent is limited by 

the component generating the smallest photocurrent value  [97]. 

The best performing PEC/PV tandem system consists of a two-junction monolithic 

hybrid device: a p-type GaInP2 (Eg = 1.8 eV) PEC electrode interconnected by a tunnel 

junction to a GaAs (Eg = 1.4 eV) PV cell grown on a GaAs wafer substrate [77]. 

Sunlight enters through the top GaInP2 photocathode and is then filtered down to the 

GaAs PV solar cell. While this system performs a champion ƞSTH = 12.4 % under 

concentrated 11-sun illumination, and in 3 M H2SO4 electrolyte, the high cost III-V 

materials and the corrosion of the GaInP2 limit its practical use. Therefore, finding 

semiconductor materials able to form stable junctions has been a major challenge in the 

field of PEC water splitting; stable metal oxides, e.g. WO3, Fe2O3 and BiVO4 are a 

promising option.  

Grätzel and co-workers [2] proposed the use of a semi-transparent dye-sensitized solar 

cell (DSC), instead of the conventional PV solar cell, in a dual-absorber tandem 

configuration – see Figure 1.11. The DSC cell is made of a cheap semiconductor 

material of TiO2, reducing the final costs [100]. In this system, the semi-transparent 

photoanode PEC cell (e.g. thin films of WO3 [104] or Fe2O3 [105]) absorbs the blue part of 

the solar spectrum to generate O2 from water, whereas the DSC cell captures the green 

and red lights to generate the external bias needed for H2 production at the counter 

electrode. The successful demonstration of the PEC/DSC tandem device is, therefore, 

restricted to the use of two DSCs connected in series due to the additional energy 

required to overcome non-idealities of the photoanodes in the OER [100]. 
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Figure 1.11: PEC/DSC tandem system using a semi-transparent hematite photoanode as PEC 

element and a DSC cell in series for overall water splitting. 

 

Recently, promising hybrid organic−inorganic lead halide perovskites (CH3NH3PbI3) 

have emerged as exceptional materials for the next-generation photovoltaic 

technologies [101, 106]. In a few short years of development, perovskite solar cell (PSC) 

efficiencies have already surpassed the mature DSC solar cells and organic 

photovoltaics [107, 108]. The lead iodide hybrid perovskites have a low bandgap and large 

absorption coefficient that facilitate light harvesting into the near-IR region of the solar 

spectrum. Moreover, PSCs exhibit extremely high photopotential in comparison to 

nearly all other single-junction PV technologies, fostering the exploration of this 

material in tandem water splitting architectures. Two series-connected PSC externally 

wired to NiFe electrocatalysts  submerged in a NaOH electrolyte solution can provide 

sufficient potential to drive water photolysis with STH efficiency of ca. 12.3 % [109]. 

Therefore, the design of low-cost tandem assemblies employing single-junction hybrid 

perovskite materials establishes a potentially promising new frontier for solar water 

splitting research. Figure 1.12 shows a PEC/PSC tandem arrangement, where a semi-

transparent CuO2 photocathode is used as the PEC element. 
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Figure 1.12: PEC/PSC tandem system using a semi-transparent Cu2O photocathode as PEC 

element and PSC cells in series for overall water splitting (adapted from ref. [85]). 

 

Table 1.5 summarizes relevant experimental reports of internally biased tandem 

devices for direct solar water slitting, including the performance and device 

configuration; Figure 1.13 depicts the configurations considered. 

 

Figure 1.13: Configurations of internally biased tandem devices for overall water splitting: (a) 

the semiconductor elements are monolithically integrated (without wire connections); and (b) 

the light-absorbing elements are electrically wired, where the top element (PEC or PV) with the 

larger bandgap has to be semi-transparent to transmit the non-absorbed sunlight spectrum to the 

bottom element (normally the PV cell). The photoelectrodes can be coated with co-catalysts, 

e.g. n-type PEC coated with an OER co-catalyst and p-type PEC coated with a HER co-catalyst.
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Table 1.4: Internally biased tandem devices for direct solar water splitting, including 

experimental conditions and corresponding performance (STH conversion efficiency - ηSTH - 

and stability); grouped by type of arrangement and ordered by reverse chronological 

publication. 

Device configurations 
Electrolyte and 

Illumination  

ηSTH / 

% 

Stability, 

notes 

Ref./ 

Date 

Monolithic PV (2J) 

Top PV: GaInP 

with AlInP/POx layers  

Bottom PV: GaInAs 

coated RuO2 OER co-catalyst 

1 M HClO4 

100 mW·cm-2 

 

14 % 40 h 

> 50 % drop 

in current 

[110]/ 

2015 

Monolithic PV (2J) 

Top PV: GaInP2 

Bottom PV: GaAs 

coated TiO2 overlayer and Ni-

based OER co-catalyst; 

wired Ni-Mo HER co-catalyst 

1 M KOH 

100 mW·cm-2 

 

10.5 % 80 h  

15 % drop in 

current 

[111]/ 

2015 

Monolithic PV (2J) 

Top PV: GaInP2  

Bottom PV: GaAs 

coated Pt OER co-catalyst; wired 

Pt HER co-catalyst 

2 M KOH 

100 mW·cm-2 

 

18.3 % 9 h 

stable 

current 

in outdoor 

test 

[112]/ 

2001 

Monolithic PV (3J) 

PV: 3 × [CuInxGa1-xSe (CIGS)] 

wired side-by-side; 

wired Pt HER and OER co-

catalysts 

3 M H2SO4 

100 mW·cm-2 

 

10 % 27 h 

stable H2 

production 

[113]/ 

2013 

Monolithic PV (3J) 

PV: 3 × (a-Si) 

coated FTO OER co-catalyst; 

wired Pt or Ni HER co-catalyst 

5 M KOH 

100 mW·cm-2 

 

6.2 % 31 days 

stable 

current 

[114]/ 

2006 
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Monolithic PEC/PV (2J) 

Top PEC: Fe2O3 core-shell NW 

coated Au OER co-catalyst  

Bottom PV: c-Si; 

wired Pt HER co-catalyst 

1 M Na3PO4 

60 mW·cm-2 

6.0 % 40 min 

measurement 

of O2 

[115]/ 

2014 

Monolithic PEC/PV (2J) 

Top PEC: WO3 core-shell NW  

Bottom PV: c-Si; 

wired Pt cathode 

1 M H2SO4 

1080 mW·cm-2 

(ca. 11-sun) 

< 0.01 

% 

10 min 

stable 

current 

[116]/ 

2014 

Monolithic PEC/PV (2J) 

Top PEC: TiO2 core-shell NW 

coated IrOx OER co-catalyst 

Bottom PV: c-Si 

coated Pt HER co-catalyst 

1 M H2SO4 

1080 mW·cm-2 

(ca. 11-sun) 

0.12 % 4.5 h 

measurement 

of O2 and H2  

[117]/ 

2014 

Monolithic PEC/PV (2J) 

Top PEC: TiO2 

Bottom PV: c-Si; 

wired Pt cathode 

0.1 M NaOH 

sunlight 

0.1 % Not reported [118]/ 

2014 

Monolithic PEC/PV (2J) 

Top PEC: BiVO4  

coated CoPi OER co-catalyst 

Bottom PV: a-Si:H; 

wired Pt HER co-catalyst 

0.1 M K3PO4 

(pH 7.3) 

100 mW·cm-2 

(1-sun) 

3.6 % 1 h  

stable 

current 

[70]/ 

2013 

Monolithic PEC/PV (2J) 

Top PEC: GaInP2 

Bottom PV: GaAs  

coated Pt HER co-catalyst; 

wired Pt OER co-catalyst 

3 M H2SO4 

11-sun 

12.4 % 20 h 

20 % drop in 

current 

[77]/  

1998 

Monolithic PEC/PV (2J) 

Top PEC: WO3, with TiO2 

passivation layer 

Bottom PV: 2 × (c-Si) 

coated Pt HER co-catalyst  

1 M HClO4 

Nafion membrane 

200 mW·cm-2 

0.2 % 20 h 

stable H2 

generation 

(over 48 h) 

[119]/ 

2015 
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Monolithic PEC/PV (3J) 

Top PEC: BiVO4 

coated CoPi OER co-catalyst 

Medium PV: a-Si:H 

Bottom PV: nc-Si:H; 

wired Pt HER co-catalyst 

0.1 M KPI 

(pH 7) 

100 mW·cm-2 

5.2 % 1 h  

5% drop in 

current 

[71]/ 

2014 

Monolithic PEC/PV (3J) 

Top PEC: BiVO4 

coated CoPi OER co-catalyst 

Bottom PV: 2 × (a-Si:H); 

wired Pt HER co-catalyst 

0.1 M K3PO4 

(pH 7.3) 

100 mW·cm-2 

 

4.9 % 1 h  

stable 

current 

[70]/ 

2013 

Monolithic PEC/PV (3J) 

Top PEC: WO3 

Bottom PV: 2 × (a-Si); 

wired Pt HER co-catalyst 

0.3 M H3PO4 

100 mW·cm-2 

3 % Not reported [120]/ 

2010 

Monolithic PEC/PV (3J) 

Top PEC: WO3 (PA) 

Bottom PV: 2 × (a-Si); 

wired Pt HER co-catalyst 

1.0 M H3PO4 

100 mW·cm-2 

0.7 % 10 h  

stable H2 

production 

[121]/ 

2010 

PEC/DSC tandem (2J) 

Top PEC: embedded structure of 

WO3/BiVO4 coated 

FeOOH/NiOOH OER co-catalyst;  

wired Pt cathode 

0.5 M Na2SO4 

100 mW·cm-2 

5.7 % 120 min 

stable 

current 

[122]/ 

2015 

PEC/DSC tandem (2J) 

1) Top PEC: WO3 

2) Top PEC: Fe2O3 coated AlO3 

underlayer and Co OER co-

catalyst; 

wired Pt HER catalyst 

1) 1 M HClO4  

 (pH 0) 

2) 1 M NaOH 

(pH 13.6) 

100 mW·cm-2 

 

1) 3.1 % 

 

2) 1.2 % 

8 h  

30 % current 

drop 

[123]/ 

2012 

PEC/DSC tandem (2J) 

Top PEC: WO3; 

wired Pt HER co-catalyst 

0.25 M Na2SO4  

(pH 4)  

200 mW·cm-2 

1.9 % 30 min 

measurement 

of H2 

[124]/ 

2006 
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PEC/DSC tandem (3J) 

Top PEC: Fe2O3 with AlO3 

underlayer and coated Co OER 

co-catalyst 

Bottom: 2 × (DSC); 

wired Pt HER co-catalyst 

1 M NaOH 

(pH 13.6) 

100 mW·cm-2 

 

1.4 % 

1.2 % 

Not reported [125]/ 

2010 

PEC/PSC tandem (2J) 

Top PEC: Cu2O coated 

Al:ZnO/TiO2 overlayer and 

coated RuOx HER co-catalyst; 

wired IrO2 OER catalyst 

0.5 M Na2SO4 

100 mW·cm-2 

2.5 % 2 h  

30 % current 

drop 

[85]/ 

2015 

PEC/PSC tandem (2J) 

Top PEC: embedded structure of 

TiO2/BiVO4 core-shell, coated 

CoPi OER co-catalyst;  

wired Pt HER catalyst 

0.1 M phosphate 

buffered saline  

(pH 7) 

100 mW·cm-2 

1.2 % 6 h 

measurement 

of H2 

[126]/ 

2015 

PEC/PSC tandem (2J) 

Top PEC: BiVO4 coated CoPi 

OER co-catalyst;  

wired Pt HER co-catalyst 

0.5 M Na2SO4 

+ 0.5 M Na2SO3 

(pH 9.3) 

100 mW·cm-2 

2.5 % 1 h  

stable 

current 

[127]/ 

2014 

PEC/PSC tandem (2J) 

Top PEC: Mn-doped Fe2O3 core-

shell NW coated CoPi OER co-

catalyst 

wired Pt HER co-catalyst 

1 M NaOH 

100 mW·cm-2 

2.4 % 8 h 

measurement 

of H2 with 

25 % loss 

[128] / 

2014 

 

 

NON-BIASED DEVICES 

Photoelectrochemical devices with no additional bias represent a prospective pathway 

to overcome the complexity of biased systems. Non-biased devices comprise two types 

of PEC systems: i) single photoelectrode system, which can be divided into a typical 

PEC cell (equipped with a large bandgap photoelectrode and a counter-electrode); and 

ii) a photoanode/photocathode PEC tandem cell.  
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1) Single Photoelectrode System 

The ideal PEC system for solar hydrogen production should aim at the use of a single-

junction photoelectrode without any bias, as shown in Figure 1.3 and Figure 1.4 

respectively for n-type and p-type semiconductor materials. Up to now, only materials 

with a very large bandgap, such as SrTiO3 [39] and KTaO4 [129], have demonstrated direct 

water splitting; however, they exhibit STH efficiencies below 1 % [14]. Therefore, 

improvements on semiconductor fundamental electronic structure and stability are 

needed for the viability of this approach. 

 

2) Photoanode/Photocathode PEC System 

The most direct and simple way to construct a dual photo-system for water splitting is 

using an n-type semiconductor (photoanode) connected in series with an appropriate p-

type semiconductor (photocathode) - Figure 1.14.  

 

Figure 1.14: PEC cell based on a photoanode and a photocathode in tandem. 

 

For this arrangement, the materials should be carefully selected since the following 

requirements have to be fulfilled: the energy level of the photocathode conduction band 

(ECB, PC) has to be above the water reduction energy – Eº(H+/H2) – and the photoanode 

valence band energy (EVB, PA) has to be below the water oxidation energy – 

Eº(H2O/O2). Moreover, the photocathode valence band energy level (EVB, PC) should be 

higher than Eº(H2O/O2), whereas the photoanode conduction band energy level 
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(ECB, PA) should be lower than Eº(H+/H2). Briefly, ECB, PC > Eº(H+/H2) > ECB, PA > EVB, PC 

> Eº(H2O/O2) > EVB, PA. Only few works have considered this approach due to the lack 

of suitable photocathode materials for HER; the performance and the stability in 

aqueous solutions of these p-type materials (e.g. GaInP2, Si, SiC, WS2, Cu(In,Ga)Se2, 

Cu2O, CuYO2, CaFeO4 and p-type Mg doped Fe2O3) are actually a limiting factor [17]. 

Relevant works on photoanode (PA)/photocathode (PC) PEC tandem devices are 

presented in Table 1.5. 

 

Table 1.5: Photoanode/Photocathode PEC tandem devices for direct solar water splitting, 

including experimental conditions and corresponding performance (STH conversion efficiency 

- ηSTH - and stability); ordered by reverse chronological publication. 

Device configurations 
Electrolyte and 

Illumination  

ηSTH / 

 % 

Stability, 

notes 

Ref./ 

Date 

PA/PC PEC (2J tandem) 

Top PEC: Fe2O3 coated NiFex 

OER co-catalyst 

Bottom PEC: a-Si with 

TiO2/Pt overlayers HER 

phosphate buffered 

(pH 11.8) 

100 mW·cm-2 

0.91 % 10 h  

stable current 

[60]/ 

2015 

PA/PC PEC (2J tandem) 

Top PEC: Fe2O3 coated IrOx 

OER co-catalyst 

Bottom PC: a-Si (PV) with 

TiO2/Pt overlayers HER 

0.1 M KNO3 

(pH 1.01) 

100 mW·cm-2 

0.44 % 5 h  

5 % drop in 

current 

[130]/ 

2015 

PA/PC PEC (2J tandem) 

Top PEC: BiVO4 coated CoPi 

OER co-catalyst  

Bottom PEC: Cu2O coated 

RuOx HER co-catalyst  

K3-XHxPO4 buffer 

(pH 6) 

100 mW·cm-2 

 

0.5 % 2 min 

20 % drop in 

current 

[131]/ 

2014 

PA/PC PEC (2J tandem) 

Top PEC: WO3 coated NiOx 

OER co-catalyst 

Bottom PEC: Cu2O 

0.1 M Na2SO4  

(pH 6)  

100 mW·cm-2 

 

0.04 % Not reported [132]/ 

2012 
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PA/PC PEC (2J tandem) 

Top PEC: TiO2 

Bottom PEC: CaFe2O4 

0.1 M NaOH 

100 mW·cm-2 

< 0.01 % Not reported [133]/ 

2011 

PA/PC PEC (2J tandem) 

Top PEC: Fe2O3 

Bottom PEC: Zn-doped Fe2O3 

0.1 M H2SO4 

100 mW·cm-2 

0.11 % Not reported [134]/ 

2006 

PA/PC PEC (2J tandem) 

Top PEC: GaAs coated MnO 

OER co-catalyst 

Bottom PEC: InP coated Pt 

HER co-catalyst 

6 M KOH 

 

8.2 % 10 h 

10 % drop in 

current 

[135]/ 

1987 

PA/PC PEC (2J tandem) 

Top PEC: Si-doped Fe2O3 

Bottom PEC: SiC 

0.01 M NaOH 

100 mW·cm-2 

5 × 10-4 

% 

320 h  

stable current 

[136]/ 

1984 

PA/PC PEC (2J tandem) 

Top PEC: Fe2O3 coated RuO2 

OER co-catalyst 

Bottom PEC: GaP coated Pt 

HER co-catalyst 

1 M Na2SO4  

fritted 

compartments 

sunlight 

 

0.02 – 

0.1 % 

Not reported [137]/ 

1981 

PA/PC PEC (2J tandem) 

Top PEC: SrTiO3 

Bottom PEC: GaP 

1 M NaOH 

100 mW·cm-2 

10.7 % 6 h 

measurement 

of H2 

[138]/ 

1977 

PA/PC PEC (2J tandem) 

Top PEC: TiO2 

Bottom PEC: GaP  

0.2 M H2SO4  

85 mW·cm-2 

0.3 % Not reported 

GaP 

photocorrosion 

[139]/ 

1976 
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1.5  EFFICIENCY OF SOLAR WATER SPLITTING IN A PEC CELL 

The energy conversion efficiency is one of the key performance indicators of the PEC 

cell. The four fundamental processes involved in solar water splitting are: light 

harvesting (ratio of the electron-hole pairs created to the amount of incident photons), 

separation of the photogenerated electrons and holes, transport of photoinjected electric 

charges and transfer of charge carrier at the electrolyte interface. These photogenerated 

electrons and holes are then separated by two possible transport mechanisms such as 

drift and diffusion. Drift is the motion of these charged-particles in response to the 

electric field inside the semiconductor, while diffusion is associated with a gradient in 

the local concentration of the charged particles. Therefore, the external quantum 

efficiency of the PEC water splitting reaction, EQE (also called solar-to-hydrogen 

efficiency, ƞSTH), can be defined as [140]:  

     light ct catEQE          (1.7) 

where λ is the wavelength, ƞlight is the light absorption efficiency (ratio of the electron-

hole pairs created to the amount of incident photons), ƞct is the charge separation/ 

transport efficiency (ratio between the amount of electrons and holes reaching the 

interfaces to the photogenerated electron-hole pairs), ƞcat is the quantum efficiency of 

the catalytic charge transfer to the redox species in the electrolyte.  

An alternative definition for the STH efficiency is based on the ratio of the chemical 

energy produced by the solar energy input, as described in Equation (1.8) [10]. The 

chemical energy produced is the rate of hydrogen production (
2H , in mmol H2·s-1) 

multiplied by the change in Gibbs free energy per mol of H2 (ΔGº = 237 kJ·mol-1).  

2H

STH

light

G

P A

 




 
   (1.8) 

The solar energy input is the incident illumination power density, Plight, and A is the 

illuminated area. This equation involves the measurement of the H2 production rate, 

which may be difficult when very small devices are used. However, assuming a 

faradaic efficiency of 100 %, the STH efficiency can be determined simply from 

Equation (1.9): 
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redox photo

STH

light AM 1.5 G

E J

P


  (1.9) 

where Jphoto is the photocurrent density responsible for H2 generation (mA·cm-2) 

obtained from the photocurrent-voltage (J-V) characteristics; Eredox is the potential 

corresponding to the Gibbs energy and corresponds to the thermodynamic potential 

needed to drive the water electrolysis, ΔEº = ΔGº/nF = -1.23 V (n is the number of 

moles of electrons used to produce one mole of H2 – in this case n = 2). Assuming 1-

sun AM 1.5 G incident sunlight (Plight = 100 mW·cm-2) under zero bias conditions, 

which means that no external potential is applied between the working and the counter 

electrodes,  Equation (1.9) can be related directly to the photocurrent density of a PEC 

cell [14]:   

 STH photoAM 1.5 G
% 1.23 J    (1.10) 

It is then clear that the PEC photocurrent density is the main determining factor for 

STH efficiency. When an external potential bias is applied to the PEC system, a new 

efficiency is defined, named as “applied bias photon-to-current efficiency” - APCE 

[141]: 

 out in
redox bias photoelectrical electrical

APCE

light light

E E JP P
η

P P

 
    (1.11) 

where 
out

electricalP  is the electric power output, 
in

electricalP is the electric power input, Ebias is the 

potential applied to the system to obtain the Jphoto. To separately assess the properties of 

individual photoelectrodes, a three-electrode configuration should be employed. This 

configuration is advantageous because when a reference electrode is present, the 

potential of the working photoelectrode can be accurately determined, which provides 

an estimate of how much electrical energy is put into the electrode. This allows 

obtaining power conversion efficiency of photoelectrodes based on the half reaction of 

water splitting. The efficiency of a photoanode (ηPA) should translate its ability to 

convert photonic energy into chemical energy used for oxidizing water [142]: 

 
 

2 2

o

O /H O bias photo
MPP

PA

light

E E J
η

P

 
  (1.12) 

For a photocathode, the efficiency becomes as follows: 
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 +
2

o

bias photoH /H
MPP

PC

light

E E J
η

P

 
   (1.13) 

where the Jphoto is the photocurrent-density obtained at the maximum power point 

(MPP) and the Eº(O2/H2O) and Eº(H+/H2O) are the thermodynamic potential of water 

splitting half reactions [142]. These two equations are meaningful when no additional 

energy is supplied to the counter electrode for the other half reaction; therefore, they 

should be used mainly for comparing the performance of various photoelectrodes.  

The parameter that determines the light harvesting ability of the photoelectrode is its 

bandgap Eg. Radiation of energy lower than Eg is not absorbed, while energy higher 

than the bandgap, E ≥ Eg, is partly lost as heat by intraband thermalization processes 

[14]. Additional losses may occur as: i) thermodynamic losses related to the water 

splitting process and ii) bulk and interfacial transport losses related to recombination, 

interfacial kinetics (overpotentials) and band bending in the semiconducting electrodes. 

Then, it is difficult to achieve high STH conversion efficiencies in a single-junction 

PEC photoelectrode system. Large bandgap semiconductors with adequate band edge 

positions would be needed to generate sufficient usable photopotential to drive the 

redox reactions for water splitting; this limits photon absorption and, therefore, reduces 

the photocurrent. Thus, the bandgap tradeoff between photopotential and photocurrent 

is detrimental for single junctions. Taking this into account, for semiconductor 

materials exhibiting bandgaps greater than 3.2 eV, the photocurrent is limited to less 

than 1 mA∙cm-2, which corresponds to a maximum STH efficiency of < 1.23 %, 

according to Equation (1.10). Under ideal conditions, i.e. including thermalization 

losses but with no overpotential losses, a bandgap of Eg = 1.6 eV should be sufficient 

and the thermodynamic maximum efficiency of a device involving a single 

semiconductor photoelectrode is 30.7 % – Equation (1.10) [143]. Figure 1.15 plots the 

maximum attainable photocurrent densities and STH efficiencies as a function of the 

bandgap energy for standard AM 1.5 G illumination.  
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Figure 1.15: Spectral irradiance at AM 1.5 G and maximum thermodynamic photocurrent 

densities for a single system (adapted from ref. [14]). 

 

While a multijunction device (tandem arrangement) is more complicated, some recent 

calculations have shown that this approach has the potential to yield photocatalytic 

water splitting efficiencies up to 29 % [103]. The tandem strategy allows the use of two 

smaller bandgap materials, which in turn absorb a much larger fraction of the solar 

spectrum. Many researchers have investigated the optimal bandgaps for two-junction 

systems taking energy losses into account; the general conclusion is that the LBG 

should have a bandgap of 1.7 eV while the SBG's bandgap should be 1.0 eV [103].  

In the case of PEC tandem devices for unassisted water splitting, the maximum 

thermodynamic photocurrent density and corresponding ƞSTH are predicted from the 

interception point of the J-V characteristic curves of the photoanode and photocathode 

(when each photoelectrode is operating in a single PEC configuration), as shown in 

Figure 1.16. It is, therefore, important to shift the two curves so that the operation point 

is close to the MPP of each individual J-V curve. This means that the combined onset 

potential (Eonset) values, i.e. the potential at which a photocurrent is first measured, or 

the sum of the photopotentials (Ephoto), should be greater than 1.23 V. For a photoanode 

Ephoto = 1.23 V - Eonset; whereas Ephoto = Eonset for the photocathode [142]. Currently, the 

practical STH efficiencies are much lower than the thermodynamic values, due to the 

mismatch of their J-V curves.  
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Figure 1.16: Photocurrent density-voltage curves for a photoanode and photocathode with 

external bias potential vs. reversible hydrogen electrode (RHE). The blue shadow is the 

maximum power conversion efficiency of a photoanode, while the red shadow is for the 

photocathode (adapted from ref. [142]). 

 

According to Figure 1.17, a photoanode/photocathode system composed by a 

photoanode with a bandgap of Eg, PA = 2.0 eV and a photocathode with a bandgap of 

Eg, PC = 1.0 eV, has a thermodynamic STH efficiency of ca. 19 %; this corresponds to a 

modest increase over the approximately 16 % predicted with a single semiconductor 

configuration with Eg = 2.0 eV.  

 

Figure 1.17: Maximum attainable AM 1.5 G photocurrent densities for dual bandgap devices, 

as a function of top cell and bottom cell bandgaps, corresponding to the higher and lower 

bandgap materials, respectively. Included in brackets are the corresponding PEC STH 

efficiencies in tandem devices determined by Equation (1.10) (adapted from ref. [14]). 
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1.6 STABILITY – PHOTOCORROSION 

In solar water splitting, the stability/long-term performance of the photoelectrodes is 

one of the present critical research topics [25]. The electrolytic photoreduction of a 

semiconductor is often associated with the electrons in the valence band, while the 

electrolytic photooxidation reaction is related to holes in the conduction band as 

electronic reactants [144]. The Pourbaix diagram is used to analyze the thermodynamic 

potential for corrosion of the photoelectrodes, since it maps the possible stable phases 

in an aqueous electrochemical system. Photochemical corrosion can be described by 

the Gerischer and Bard model [145, 146]. The photochemical corrosion of a binary 

semiconductor MX and the solvation (complexing) of the elements (labeled hereafter 

as “solv”), which leads to the anodic and cathodic decomposition, may be represented 

by the following reaction, respectively [147]:  

z

solvMX e solv M Xz
     (1.14) 

z

solvMX h solv M Xz
     (1.15) 

where z is the number of holes or electrons. Using H+/H2 standard potentials as 

reference, the corresponding reaction for hydrogen may be written as [8]:  

2 solv1 2 H solv H ez z z     (1.16) 

The addition of Equation (1.16) to Equation (1.14) or to Equation (1.15) yields the 

corresponding equations for the free energy values, nΔGsH and pΔGsH, respectively. The 

equations for determining the decomposition potentials for the oxidation and reduction 

of the semiconductor are, respectively: 

p d p sH zE G   (1.17) 

n d n sH zE G    (1.18) 

The energy positions of the electron-induced potential nEd and the hole-induced 

corrosion value pEd can be plotted with respect to the band edges ECB and EVB – Figure 

1.18. In fact, the criterion for thermodynamic stability of the semiconductor is: 

pEd > Eredox > nEd (1.19) 
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Figure 1.18: Relative positions of decomposition Fermi Levels of a semiconductor with respect 

to its band edges: (a) stable; (b) unstable; (c) cathodically stable but anodically unstable; and (d) 

anodically stable but cathodically unstable (adapted from ref. [8]). 

 

Figure 1.19 shows the decomposition potentials for different oxide and non-oxide 

semiconductors. Actually, none of the semiconductors presented in Figure 1.19 show 

their Fermi levels edges positioned as in Figure 1.18a, meaning that they are 

cathodically and/or anodically unstable. Therefore, the stability of a semiconductor in 

contact with an electrolyte solution strongly depends on the competition between 

anodic dissolution and redox reaction, which are controlled by thermodynamic and 

kinetic parameters, respectively [147]. Thus, even if the semiconductor oxides are not 

thermodynamically stable, following the calculations of Gerischer [148], they can be 

kinetically stabilized in the presence of a suitable redox system. For instance, even if 

the metal oxide semiconductors are thermodynamically stable towards cathodic 

photocorrosion, most of them are unstable towards anodic photocorrosion. 

Accelerating the kinetics of water oxidation prevents the oxidation of the 

photoelectrode, e.g. the slow kinetics of water oxidation at hematite photoelectrode 

often leads to hole accumulation [86]. The instability can also be prevented by 

passivating the surface via applying an optically transparent metal and/or metal-oxide 

coatings by atomic layer deposition (ALD) or physical vapor deposition (PVD) or by 

adding a suitable co-catalyst to favor the water splitting reaction. However, the 

corrosion of the electrocatalysts should also be considered. For example, RuO2 and 
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IrO2 are more stable in acidic media, while anodic dissolution occurs in alkaline 

conditions, Co3O4 and Co-Pi are more stable in alkaline than in acidic media. 

 

Figure 1.19: Positions of band edges and decomposition Fermi levels for different oxide and 

non-oxide semiconductors at pH 7 (adapted from ref. [147]).  

 

Extensive overview of existing PEC systems and their performance (photocurrent-

density and stability) can be found in the literature [24]. However, hard technological 

and economic targets have to be met for bringing solar water splitting commercial. As 

outlined in the European topic SP1-JTI-FCH.2013.2.5 “Validation of 

photoelectrochemical hydrogen production processes” through H2020, lifetimes of 

more than 1000 h have to be demonstrated up to 2017 [29]. Most reports assess lifetime 

of semiconductors during less than 24 h. Only few semiconductor-liquid junction 

(SCLJ) devices demonstrated to display stabilities of more than 1 day [24]. Recently, a 

record-breaking was obtained for bare hematite photoanode: 1000 h of PEC operation 

under AM 1.5 G illumination. These results opened one more door in the endeavor to 

make PEC cells into a competitive technology for solar hydrogen production [61]. 
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1.7 PEC REACTORS 

One of the key components of a photoelectrochemical setup is the PEC cell in which 

the photoelectrode is assembled [149]. A PEC cell consists basically of a reservoir that 

contains the electrolyte, where the two electrodes are immersed: the photoactive 

material (working electrode – WE) and the counter electrode (CE); however, both 

electrodes can be photoactive. When a three-electrode configuration is used, mainly in 

a laboratory setup, there is also the reference electrode (RE) – Figure 1.20.  

 

Figure 1.20: Scheme of a PEC cell for water splitting in a three-electrode configuration: WE – 

working electrode; CE – counter electrode; and RE – reference electrode. 

 

The main aspect that distinguishes the PEC cell design from a standard 

electrochemical cell is the presence of an optically transparent window through which 

the sample is illuminated. For instance, a normal soda lime glass cut-off the 

transmission for wavelengths lower than 350 nm, while a quartz window have normally 

a transmittance higher than 90 % from 250 nm [150]. Nevertheless, a cheaper material 

should be used and fused silica (amorphous silica) also allows transmission values 

higher than 90 % and shows an excellent stability in both alkaline and acid solutions 

(except for fluoridric acid) [149]. Presently there are some PEC cell devices available 

commercially; the best performing PEC cell should be PortoCell –Figure 1.21 [151]. 

PortoCell complies with several requirements for lab applications [152]: 
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i. Maximizes the light penetration through the cell to reach the photoelectrodes; 

ii. The illuminated photoelectrode area is completely immersed in the electrolyte; 

iii. Allows different photoelectrodes configurations; 

iv. The cell is resistant to corrosive electrolytes; 

v. Provides a continuously electrolyte feeding; 

vi. Allows the use of a membrane to maintain the evolved gases separated; 

vii. Has facilities to electrically connect the electrodes to the external bias source. 

 

Figure 1.21: PortoCell assembled (a) and disassembled (b): 1 - acrylic cap (gas collection 

chamber); 2 - teflon membrane; 3 - acrylic cap (electrode contacts); 4 - photoelectrodes; 5 -

 diaphragm to separate both electrodes; 6 - Pt-counter-electrode; 7 - black acrylic for light 

blocking; 8 - transparent window; 9 - transparent PEC cell body (adapted from [152]). 

 

1.7.1 THE WORKING ELECTRODE 

In PEC devices the photoelectrode materials (WE) are mostly deposited onto glasses 

previously covered with a transparent conductive oxide (TCO) thin layer to ensure a 

transparent photoelectrode. The substrate should then form an ohmic contact with the 

photoactive material to ensure current flow. For n-type photoanodes, this requires 

conducting materials with a work function that is lower than that of the photoanode 

itself; while for p-type photocathodes, high-work function back-contacts such as gold 

and platinum should be used [149]. Fluorine doped tin oxide (FTO) is currently the 
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conducting substrate of choice due to its commercial availability, high carrier 

concentration and mobility, acceptable electric conductivities at higher temperatures 

and an optical transparency higher than 80 % [149]. The development of a transparent 

semiconductor will allow to transmit the fraction of solar radiation not absorbed by the 

material and to convert it by other photosystems, improving their overall energy 

performance. On the other hand, when the transparency is not important, a metal 

substrate can be a potential alternative.  

 

1.7.2 THE ELECTROLYTE 

The electrolyte in an electrochemical cell consists of a polar solvent with active species 

to be reduced or oxidized, depending on if it is an alkaline medium or an acidic 

medium; the electrolyte should not conduct electrons. Photoactive semiconductor 

materials immersed in a redox electrolyte are greatly affected by the electrolyte 

solution properties; therefore, the choice of a suitable solution is very important, 

mainly in what concerns the redox couple selection and the pH compatibility with the 

photoelectrode [150]. It should contribute to improve charge-transfer kinetics, stability, 

as well as assist in preventing undesirable phenomena, such as surface recombination 

and trapping. Also, the electrolyte concentration should be sufficiently high to 

minimize the ohmic potential losses (concentrations of at least 0.5 M are 

recommended) and should display a high conductivity [149]. 

 

1.7.3 THE COUNTER ELECTRODE 

The reaction at the counter electrode (CE) should be as fast as possible and have high 

catalytic activity. In a single photon-system PEC cell, platinum is usually used as 

counter electrode for hydrogen evolution; this material presents good stability over a 

wide range of electrolytes and pH, as well as it shows low overpotentials for hydrogen 

evolution (ca. 0.1 V) [149]. In a PEC/PV tandem configuration, the surface area of a CE 

should be several times larger than the illuminated photoelectrode area as a tactic 

toward reducing the overpotential required for supporting tandem photocurrent in a 

tandem device [85]. In PEC devices a compromise must be maintained between the WE, 
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the CE and the electrolyte solution in order to ensure low overpotentials, fast charge 

transport and efficient light absorption. 

 

1.7.4 THE REFERENCE ELECTRODE 

Two-electrode and three-electrode systems are used to measure the efficiency of a 

whole PEC cell and the performance of a working electrode as a half cell, respectively. 

In a two-electrode configuration, the dark- and photocurrents are recorded as a function 

of potential against a counter electrode. The three-electrode configuration allows 

measuring the applied potential with respect to a fixed reference electrode, which 

allows to turn visible the independent response of the working electrode to any change 

in the applied potential. In water splitting studies the applied potential is normally 

reported against RHE (Reversible Hydrogen Electrode), thus the potential measured 

with the Ag/AgCl electrode must be converted into RHE scale as follows [149]: 

 o o o

RHE Ag/AgCl Ag/AgCl SHE Ag/AgCl SHE0.059 pH 0.1976 V at 25 Cvs. vs.E E E E     (1.20) 

where Eº(Ag/AgCl vs. SHE) is the potential of the Ag/AgCl reference electrode with 

respect to the SHE (Standard Hydrogen Electrode). All the reference electrodes are 

very sensitive and so their maintenance is crucial. 

 

1.8 ELECTROCHEMICAL CHARACTERIZATION 

Characterization and modeling are essential to the development of PEC cell 

technology. The characterization techniques used are the flowing: UV-vis 

spectroscopy, electrochemical methods (I-V, CV and EIS), incident monochromatic 

photon-to-current conversion efficiency (IPCE) and faradaic efficiency determination. 

The UV-vis spectroscopic measurement is used to assess the optical bandgap 

properties of the bulk semiconductor, e.g. the absorption data allows to estimate the 

film thickness, assuming a Lambertian absorption behavior [22]: 

 ln 1 abs α      (1.21) 

where abs is the absorbance, α is the semiconductor absorbance coefficient at a 

specific wavelength and 𝓁 is the thickness of the film. 
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Current-voltage (I-V) measurement is the most important technique to evaluate the 

performance of a photoelectrode for water splitting; it consists of applying an external 

potential bias to the cell and measuring the generated photocurrent. These 

measurements are recorded using a potentiostat, which has at least two leads: one 

connects to the CE, while the other connects to the WE. Often a standard three-

electrode configuration is used, a third lead is provided for the RE and, then, the 

current is passed between the WE and CE – Figure 1.22. 

 

Figure 1.22: Experimental arrangement for a potentiostatic measuring system: WE – working 

electrode; RE – reference electrode; and CE – counter electrode.  

 

This steady-state technique allows obtaining the current-voltage response in dark and 

under different light conditions, the photocurrent onset potential and, therefore, 

understanding the electron vs. hole transport limitations and transient effects that 

indicate recombination [149]. The photocurrent density tends to saturate at a certain 

applied bias, establishing the upper limit for the rate of PEC hydrogen production on a 

semiconductor and then the STH conversion efficiency - Equations (1.8) to (1.13). 

Figure 1.23 shows the ideal behavior of the I-V curves for an n-type semiconductor in 

the dark and under illumination conditions (conventionally, 1-sun AM 1.5 G 

illumination [153]).  
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Figure 1.23: Ideal behavior for an n-type semiconductor: (a) in the dark and (b) under 

illumination conditions (adapted from [154]). 

 

In cyclic voltammetry (CV) test the potential of a system is swept between two 

voltage limits while the current response is measured. The CV curves are used for 

acquiring information about electrochemical reactions, similar to J-V characteristics, 

and mainly for analyzing photocorrosion activity in a PEC cell [10]. 

Once it is considered that the photoelectrode is a promising material for solar water 

splitting, its durability is clearly desired. Stability tests consist in applying a constant 

potential on a PEC cell system over several hours and measure the resulting time-

dependent photocurrent response, under 1-sun AM 1.5 G illumination. The overall 

stability is controlled by physical and chemical factors; physical stability is related to 

electrolyte evaporation, which heats up under the solar simulator illumination; the 

chemical stability is associated to irreversible electrochemical and thermal degradation 

of the semiconductor and electrolyte [155].  

The electrochemical impedance spectroscopy (EIS) is a powerful characterization 

technique used to distinguish the different pathway losses (ohmic, activation and 

concentration) that limit the efficiency of the photoelectrochemical cells [156]. EIS 

analysis allows to perform a complete diagnostic of the PEC [157]:  

i. external and shunt resistances;  

ii. electron injection and its lifetime;  

iii. recombination of the electron-hole pairs;  

iv. charge transport resistance in the electrolyte; 

v. reduction reaction at the counter electrode (Pt wire); 
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vi. diffusivity of the ionic species in the electrolyte.  

Despite being a relatively easy method to apply, the correct interpretation of the 

results requires the use of suitable theoretical methods. Equivalent electric analogues 

are used to fit the experimental EIS data; their construction are therefore an important 

tool to identify and interpret the charge transfer phenomena occurring in the PEC cell 

under operating conditions. A small sinusoidal voltage perturbation V(t) is applied to 

the system and the amplitude and phase shift of the resulting current response I(t) are 

monitored, at the corresponding frequency – Figure 1.24. The response in current has 

the same period as the voltage perturbation but is phase-shifted by φ [156].  

 

Figure 1.24: Sinusoidal voltage perturbation and resulting sinusoidal current response, phase-

shifted by an amount φ. V0 - amplitude of the voltage signal; I0 - amplitude of the current signal; 

V – work voltage; I – generated current (adapted from [158]). 

 

The impedance technique is a measure of the ability of a system to impede the flow 

of electrical current and is given by the ratio of a time-dependent voltage and a time-

dependent current as defined by [156]:  

0

0

0

cos( ) cos( )

cos( ) cos( )

( )

( )

V ωt ωt
Z Z

I ωt φ ωt φ

V t

I t
 

 
   (1.22) 

where V0 and I0 are the amplitudes of voltage and current signals, respectively, and 

2ω πν  is the angular frequency in radians per second. Alternatively, the impedance 

response can be expressed in terms of a magnitude, Z0, and a phase shift, φ, or in terms 

of real and imaginary components, as follows [159]:  
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where j is the imaginary number ( 1j   ). After knowing the impedance values of 

real (
0' cosZ Z  ) and imaginary (

0'' sinZ Z j  ) parts and the phase angle φ, the 

Nyquist and Bode diagrams can be plotted. The former is the representation of  -Z  '' vs. 

Z ', while the Bode diagram is the representation in a semi-logarithmic plot of the 

symmetric of the phase angle φ vs. the frequency [158].  

EIS technique is also used to determine the flatband potential (Efb) and the donor 

density of the semiconductor (ND) applying the well-known Mott-Schottky relation [22]. 

Moreover, a deeper understanding of the complex impedance spectra allows a detailed 

characterization of electronic features, e.g. the determination of resistances and 

capacitances related to charge transport in the semiconductor layer, charge diffusion in 

the space charge region, surface trap charging by electrons and holes and phenomena 

occurring in the semiconductor-electrolyte interface [160]. 

The incident monochromatic photon-to-current conversion efficiency (IPCE) is also 

an advantageous parameter to evaluate the PEC performance, since it quantifies the 

effectiveness in converting photons from monochromatic light incident to photocurrent 

flowing between the working and counter electrodes. Thus, the IPCE is defined as the 

ratio of the number of electrons generated by light that follows in the external circuit 

(Nelectrons) to the number of incident photons as a function of wavelength (Nphotons) [41]:  

electrons

photons

IPCE( )
N

λ
N

  (1.24) 

Substituting the current definition (Isc = qNelectrons/t) in the previous equation, the 

IPCE is therefore defined as:  

electrons electrons sc

photons photons photons

/
IPCE( )

/ /

N qN t I
λ

N qN t qN t
    (1.25) 

where q is the elementary charge and t is the time [158]. The number of incident photons 

with a given wavelength relates to the power of the incident light (Plight) by: 

photons photons

light

N N c
P hυ h

t t λ

0   (1.26) 



CHAPTER 1 

 

50 

where h is the Planck constant, ν is the frequency, c0 is the speed of light and λ is the 

wavelength. Manipulating Equation (1.26) in order to obtain Nphotons and after 

introducing it into Equation (1.25), the IPCE value can be rewritten as [158]: 

  sc sc 0 sc

light 0 light light

1240
IPCE 100%

I I hc I

q P hc P q P
   

  
 (1.27) 

Finally, the IPCE is calculated measuring the current in a cell when a particular 

wavelength range with known irradiance Plight focus on the photoelectrode. The IPCE 

is normally determined at the bias potentials corresponding to the maximum power 

point. Efficient cells display very high IPCE values over a broad range of visible 

spectrum. Nevertheless, efficiencies lower than 100 % are expected due namely to 

reflection losses of incident photons and recombination of charge carriers [17].  

Figure 1.25 shows the usual setup of an IPCE apparatus. A high-pressure xenon lamp 

with an AM 1.5 G filter deliveries the standard solar spectrum [153]. The incident 

wavelength is selected by a grating monochromator, and appropriate filters are used. 

The incident light intensity is generally low, so that photodecomposition reactions and 

thermal effects are minimized. The mechanical chopper interrupts the light periodically 

in order to allow a lock-in amplifier to be used to distinguish small photocurrents from 

dark currents [154].  

 

Figure 1.25: Experimental arrangement for an IPCE measuring system: WE – working 

electrode; RE – reference electrode; and CE – counter electrode (adapted from [154]).  

 

Although initial measurements are often made assuming a faradaic efficiency for 

water splitting of 100 %, this assumption is not always valid, i.e. when there are 

parasite reactions [10]. The direct detection of evolved H2 and O2 gases, typically by 
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mass spectroscopy or gas chromatography, is used to obtain the faradaic and then the 

STH efficiencies [10]. The quantitative detection of H2 and O2 evolved flowrates require 

perfect sealing of the PEC cell reactor. 

 

1.9 STRUCTURAL AND MORPHOLOGICAL CHARACTERIZATION 

The electrochemical methods previously mentioned can provide great information on 

the photoelectrode, the electrode/electrolyte interface and the corresponding processes, 

as an effort to identify which elements significantly influence the PEC cell 

performance. However, these methods are typically macroscopic; they are based on 

measurements over large areas compared to the pore structure and electrode/electrolyte 

chemistry. Ex situ characterization techniques allow to evaluate in detail the physical 

or chemical structures and properties of the individual components comprising the PEC 

cell [156, 161]. This way, to provide structural and morphological information about the 

photoelectrode, surface microscopic methods are needed, such as: Scanning Electron 

Microscopy (SEM) and Atomic Force Microscopy (AFM); X-ray diffraction (XRD); 

and X-ray photoelectron spectroscopy (XPS).  

SEM analyses allow to obtain information about the morphology and chemical 

composition of the semiconductor film, by offering elemental identification when 

coupled to an auxiliary Energy Dispersive X-Ray Spectroscopy (EDS) detector [162, 163]. 

Moreover, this technique is also crucial to identify the modifications on the 

photoelectrodes surfaces induced by the stability tests. The surface topography can be 

assessed by AFM technique, which provides three-dimensional images and powerful 

information about surface measurements, e.g. surface roughness. XPS technique also 

allows surface analysis, providing information about both chemical composition and 

structure of the semiconductor materials [164]. In XPS measurements the atomic layers 

under study are located at the surface (1 nm depth) and near surface region (up to 10 

nm depth); on these regions some important electrochemical phenomena can occur, 

such as water oxidation or reduction reactions, photocorrosion or passivation effects 

[165]. XRD technique can provide structural information about preferential crystal 

orientations, average grain size, film crystallinity and crystal defects [156]. Better 
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photoelectrode performances are expected for improved crystallinity materials, 

ascribed to the decreased number of recombination sites [166].  

On the other hand, the analyses of the electrolyte composition are performed using 

the inductively coupled plasma (ICP) technique. The main goals are the identification 

and quantification of all elements (with the exception of argon) available in solutions 

by plasma mass spectroscopy (ICP-MS) and atomic emission spectroscopy (ICP-AES), 

respectively [167]. These techniques are also relevant to identify the modifications on 

the elemental composition of the electrolytes after performing the stability tests related 

to the degradation of the photoelectrodes surfaces. 

 

1.10 OBJECTIVES AND OUTLINE OF THIS WORK 

In the last few years, research on PEC technology has been growing quite fast and 

remarkable developments on various aspects have been achieved, mainly in finding 

new semiconductors materials capable of better stabilities, photocurrents and 

photopotentials. Nevertheless, the primary goal of PEC research is to develop a system 

that balances complexity, cost and performance in a stand-alone device. Hard 

technological and economic targets have to be met for bringing solar water splitting 

commercial: a minimum STH efficiency of ca. 10 % and 5-year lifetime [168].  

This thesis aims to contribute to the insightful study and characterization of PEC cells 

for solar hydrogen generation. 

Chapter 1 introduces the different routes for solar hydrogen generation giving 

emphasis to photoelectrochemical water splitting. It discusses important aspects of the 

working principles of PECs and provides an overview of the most promising materials 

and systems used up to date. The device efficiency and stability are considered the two 

major challenges for future development. An overview of the applied characterization 

techniques is also given.  

Chapter 2 focuses on the temperature effect on Si-doped hematite photoanodes for 

water splitting. Temperature influences the photoelectrochemical kinetics, charge 

transfer, electrode stability, ionic conductivity of the electrolyte, and therefore the 

device efficiency. An experimental test bench was built and a PEC cell setup was 

designed with a temperature controlling system. This work provides crucial insights on 
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the photoelectrochemical systems operating under real outdoor conditions, strongly 

contributing for the development of commercial devices. 

Chapter 3 studies the role of photoelectrode substrate on PEC performance using 

WO3 photoanodes as a function of temperature. Two types of samples were studied: 

WO3 deposited on a FTO glass and WO3 anodized on a tungsten foil. The optimal 

operating temperatures were assessed; for temperatures higher than 45 ºC, the bulk 

electron-hole recombination phenomenon greatly affects the overall performance of 

WO3 photoanodes. These findings showed that substrate and application method have a 

significant role on the photoelectrode energy performance and stability. 

Chapter 4 concerns the development and optimization of a very stable bare hematite 

photoanode prepared by spray pyrolysis, following a design of experiments approach. 

A record-breaking stable result of 1000 h was obtained with no evidences of hematite 

film degradation neither of current density loss. These results open the door to turn 

PEC cells into a competitive technology in the solar fuel economy. 

The most pronounced disadvantage of using hematite photoanodes is their low 

photopotential, characterized by the late onset potentials in its photoelectrochemical 

behaviors (typically 0.8 – 1.0 VRHE). The structural disorders on or near the surfaces 

are the main causes. Chapter 5 optimizes the energy performance of a hematite 

photoanode by surface modification combining two strategies: annealing at 800 ºC and 

coating with RuO2 co-catalyst. The annealing treatment allowed the Sn doping from 

the FTO layer and the RuO2 coating improved the water oxidation kinetics. A turn-on 

potential of 0.52 VRHE and a high photopotential of ca. 0.95 V were achieved, which is 

the highest reported for hematite-based photoanodes.  

In Chapter 6 a new high-performance transparent photocathode based on 

electrodeposited cuprous oxide is developed, which drives efficiently the hydrogen 

evolution. A tandem arrangement with a hybrid perovskite photovoltaic cell (PEC/ 

PSC device) is capable of performing complete sunlight-driven water splitting with a 

solar to hydrogen efficiency of 2.5 %. 

Finally, in Chapter 7 the main conclusions and future work suggestions are 

presented.  
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ABSTRACT 

The influence of temperature on the performance of a photoelectrochemical (PEC) cell 

using a Si-doped hematite photoanode was studied for water splitting. The cell 

performance was characterized by photocurrent-voltage (J-V) characteristic curves and 

electrochemical impedance spectroscopy at different cell operating temperatures, from 

25 ºC to 65 ºC. A standard three-electrode configuration comprehending the 

photoelectrode of hematite, the counter electrode of pure platinum wire (99.9 %) and 

the reference electrode of Ag/AgCl/Sat. KCl was used. The identification of possible 

degradation pathways was addressed. It was observed that the generated photocurrent 

density increases with temperature. However, the photoelectrode became unstable 

above 50 ºC. The experiments performed concerning the study of the temperature 

effect and the aging showed that the optimal operation temperature of the PEC cell is 

ca. 45 ºC; this temperature ensures simultaneously the highest photocurrent density and 

stability. This study is particularly important for understanding the behavior of 

hematite photoelectrodes operating under real outdoor conditions. 

 

 

Keywords: Photoelectrochemical Cell; Solar Water Splitting; Hematite Photoanodes; 

Temperature Effect; Aging Effect.  
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2.1 INTRODUCTION 

Photoelectrochemical (PEC) cells for water splitting, as all other solar devices, are very 

sensitive to temperature. Two important works reporting the effect of temperature on 

photovoltaic parameters of solar cells were developed by Gupta et al. [1] and Sarswat et 

al. [2]. On Si-based solar cells, the temperature variations were intensively studied [3-6] 

and it was observed a decrease in the efficiency of the cell with temperature, mainly 

due to the decrease of the open-circuit voltage. According to the experimental 

investigations on several silicon cells, the output power decreases ca. 0.65 % per 1 K 

of temperature increase and the conversion efficiency decreases ca. 0.08 %·K-1 [7]. For 

the organic solar cells, containing organic semiconductors such as polymer-fullerene 

[8], polyphenylene vinylene and copper phthalocyanine, the increase of temperature 

causes a monotonic increase of the short-circuit current (Isc) and fill-factor (FF) and a 

linear decrease of the open-circuit voltage (Voc) [9]. The overall result is an increase of 

the energy conversion efficiency at higher temperatures, reaching a maximum 

efficiency in the range of 47 ºC – 60 ºC [10]. Similar studies were developed for dye-

sensitized solar cells (DSC) [11-13]. Up to normal operation temperatures (45 ºC – 50 ºC) 

it is observed a slight gain in Isc due to more efficient electron diffusion on the TiO2 

film; on the other hand, at higher temperatures, the Isc decreases due to an increased 

recombination rate [14]. The Voc linearly decreases with temperature and, therefore, the 

energy efficiency dependence of the temperature is basically dominated by the Isc and a 

maximum efficiency is reached for the normal operation temperatures [15-17].  

In what concerns the study of the temperature effect on PEC cells for water splitting, 

there are only few works. Recently, Andrade et al. [18] simulated the effect of outdoor 

conditions (temperature and solar radiation variations) on the energy performance of 

the PEC cells. A linear increase of the current-density with temperature was observed 

for undoped hematite photoanodes. Lopes et al. [19] studied the energy performance at 

25 ºC and 35 ºC of a PEC cell using a Si-doped hematite photoanode and an 8 % 

increase on the photocurrent density at 1.45 VRHE was observed. 

Knowing the output performance of PEC cells as a function of temperature is 

especially important since electrode kinetics, catalytic activity, charge transfer, 

photoelectrode quantum efficiency, electrode stability, ionic mobility, diffusion and 

conductivity in the electrolyte significantly vary with temperature [20]. Understanding 
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the behavior of these parameters gain special interest for outdoor applications since the 

cells are subjected to severe changes in temperature. The aging tests can also give 

essential information concerning the stability over time of the overall PEC system and, 

in particular, the durability of the photoelectrodes. In PEC cells, stability issues is one 

of the major problem to be solved [21]. The stability of a semiconductor in contact with 

an electrolyte solution strongly depends on the competition between anodic dissolution 

and redox reaction, which are controlled by thermodynamic and kinetic parameters, 

respectively [22]. Indeed, predicting the PEC cells performance as a function of the 

temperature and corresponding photoelectrode stability are crucial for the development 

of commercial devices.  

Among the stable and low-cost PEC systems under investigation, hematite (α-Fe2O3) 

photoanodes have been shown great potential for practical applications due to its good 

light absorption, abundance and photochemical stability. Hematite photoanodes were 

then selected to evaluate the influence of temperature on the performance of PEC cells. 

In the present work, the PEC cell was operated from 25 ºC to 65 ºC with steps of ca. 

10 ºC. J-V characteristics were obtained in the dark and under 1-sun AM 1.5 G 

illumination conditions and electrochemical impedance spectroscopy tests were 

performed in the dark. Aging tests were also conducted at three different temperatures, 

25 ºC, 45 ºC and 60 ºC, during 72 hours to analyze the stability of the PEC cell. 

 

2.2 THEORY 

Two temperature effects on photoelectrochemical cells can be anticipated: thermal 

bandgap narrowing of the photoanode and decrease of potential required for 

electrolysis of water. Semiconductors are materials in which the range of excitation 

energies is interrupted by an energy bandgap of width Eg. In the case of n-type 

semiconductors (photoanodes), the valence band (VB) is nearly completely occupied 

with electrons and the conduction band (CB) is nearly empty. In order to excite an 

electron from the VB to the CB by the absorption of a photon, it must equal at least the 

energy of the bandgap. As temperature increases the energy bandgap of a 

semiconductor reduces and the generated photocurrent tends to slightly increase since 



CHAPTER 2 

 

76 

lower energy photons are absorbed [23]. The dependence of the bandgap energy with 

temperature (T) is given by the Varshni model [1]:  
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where Eg (0) is the bandgap of the semiconductor at 0 K, α’ is the limit of the gap 

entropy when T→∞ and β’ is expected to be comparable with the Debye temperature 

θD for a given material. A combination of a quadratic behavior, dominant in the low 

temperature range, with a linear behavior, dominant in the high temperature region, is 

expected [1].  

A semiconductor operating at lower temperatures will have fewer available free 

electrons and holes for charge transport. At the same time, heating exponentially 

increases the intrinsic carrier population, nint, given by [18]:  
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where kB is the Boltzman constant. This effect is enhanced by the decrease of the 

bandgap at higher temperatures – Equation (2.1). Mass transport is also favored by an 

increased temperature as stated by the Einstein relation [18]:  
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where q is the elementary charge and µi is the mobility of species i. 

However, increasing the temperature will also increase the current density produced 

by the PEC cell, as described by the Butler-Volmer equation [18]:  
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where j0 is the exchange current density at the Pt counter electrode, ni is the density of 

the species i in the reaction, nref is the reference particle density, n is the number of 

electrons transferred in the reaction, q is the elementary charge and ηPt is the 

overpotential at the platinum counter electrode. The Butler-Volmer kinetics defines an 

exponential relation between the electric current crossing the electrolyte/platinum 

interface and the activation overpotential at the platinum cathode, where water is 

reduced to H2 gas with the consumption of two electrons, n = 2 in Equation (2.4). 
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The temperature also influences the thermodynamics of a photoelectrochemical cell. 

The Nernst equation outlines how reversible electrochemical cell potential, E, varies as 

a function of species concentration and gas pressure [24]:  
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where Eº is the standard reversible potential, R is the ideal gas constant, F is the 

Faraday constant, ai are the activities (concentrations or gas pressures) of the reactant 

and product species and νi are the stoichiometric coefficients. For accounting the 

temperature dependence, the Nernst equation should be modified [24]:  
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where ΔS is the standard entropy of the reaction (assumed to be temperature 

independent), T is the actual temperature of the system and T0 is the ambient 

temperature. For the water splitting Equation (2.6) becomes: 
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Since the entropy variation is negative, the electrolysis potential decreases with 

temperature. 

The overall solar-to-hydrogen (STH) conversion efficiency, ƞSTH, is a critical 

property of a PEC cell. However, there is no agreement on the equation that should be 

used to obtain the PEC cell efficiency. According to the US Department of Energy 

(DOE), the photoelectrochemical efficiency, ƞSTH, is defined as [25]:  
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where Jphoto is the generated photocurrent, Eredox is usually taken to be 1.23 V, based on 

a Gibbs free energy change for water splitting of 237 kJ·mol-1, ηF is the faradaic 

efficiency for hydrogen evolution and Plight is the incident sunlight illumination 

(usually 100 mW·cm-2 with 1-sun AM 1.5 G). The faradaic efficiency for the hydrogen 

evolution and oxygen evolution reactions is normally assumed to be unit, since the 

measured photocurrent corresponds to the molar generation of H2, i.e. there are no 

parasite reactions [25]. Equation (2.8) describes the overall efficiency under zero bias 
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conditions, which means that no external potential is applied between the working 

electrode (WE) and counter electrode (CE). When a bias is applied between the photo- 

and counter electrodes, a new efficiency definition is needed, named applied bias 

photon-to-current efficiency (ABPE) [25]:  

 photo redox bias

ABPE

light

J E E

P

 
  (2.9) 

where Ebias is the potential applied to obtain the Jphoto 
[26]. This definition, however, is 

meaningless since it does not tell the efficiency that should be assigned to the photonic 

conversion nor to the electrical conversion; aberrations such as obtaining null 

efficiency for a bias of 1.23 V, where the photoelectrochemical contribution is to 

overcome the overpotentials, are then possible. To overcome this limitation, the 

authors propose a set of new definitions for the efficiency to be used in PEC devices. 

The first definition concerns the overall PEC device efficiency (ηdevice), given by the 

ratio between the energy of the produced hydrogen and the total energy spent to 

accomplish the water splitting reaction, namely solar energy and external bias: 
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Equation (2.10) says nothing concerning the efficiency of the photoelectrodes. The 

efficiency of a photoanode should translate its ability to convert photonic energy into 

chemical energy used for oxidizing water. The energy needed to promote electrons 

coming from the anode to actually reduce water at the counter electrode - the external 

bias - must not enter into this definition. The proposed definition for the photoactive 

electrode efficiency is then: 
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where Efb is the flatband potential (note that this equation is valid either for 

photoanodes or photocathodes). The photoelectrode efficiency is then the energy of the 

produced hydrogen divided by the photonic energy supplied, assuming an external bias 

to provide the energy needed to bring the electron from the conduction band to the 

potential observed at the counter electrode. 
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2.3 EXPERIMENTAL 

In the present work, temperature influence on solar-to-hydrogen efficiency and 

stability of the PEC cells for water splitting was analyzed. Five temperatures were 

studied (25 ºC, 35 ºC, 45 ºC, 55 ºC and 65 ºC); a reference experiment at 25 ºC was 

performed between experiments in order to check the Si-doped hematite photoanode 

stability. The preparation of photoanode materials, the experimental test bench and the 

PEC cell setup used to control the temperature, as well as the electrochemical 

measurements and the structural and morphological characterization of the PEC cells, 

are described in the following sections. 

 

2.3.1 PREPARATION OF Si-DOPED α-Fe2O3 PHOTOANODES 

The mesoporous films of silicon-doped hematite were deposited on conducting 

fluorine-doped tin oxide (F:SnO2) glass substrates by ultrasonic spray pyrolysis (USP) 

as described elsewhere [27, 28]. The substrates were first pretreated with a diluted TEOS, 

tetraethyl orthosilicate, solution (10 % volume in ethanol) at ca. 400 ºC by hand-

spraying ca. 3 mL per substrate of the diluted TEOS solution with a glass atomizer. 

These samples were cooled down to the room temperature before being heated up 

again at 400 ºC to deposit the hematite film. To prepare the hematite films, a solution 

containing 20 mM iron(III) acetylacetonate (Fe(acac)3) in EtOH with 1 wt% TEOS as 

dopant was sprayed onto a temperature controlled substrate surface heated at 400 ºC 

with an ultrasonic spray nozzle from a distance of ca. 30 cm. A total of 60 sprays (one 

every 30 s) at a flowrate of 12 mL·min-1 (spray length of 5 s) were performed, 

corresponding to a final film thickness of ca. 50 nm. A carrier gas flow (compressed 

air flow set to 15 L·min-1) directed the spray towards the substrates. After the spray, the 

samples were annealed for 30 min at ca. 500 ºC before cooling to room temperature 

[27].  

 

2.3.2 PREPARATION OF ELECTRIC CONTACT ON PHOTOANODES 

To prevent the contact of the electrolyte solution with the electric current collector of 

the photoanode and thus inducing corrosion, the current collector at the glass substrate 
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of the photoanode was protected with an epoxy resin resistant to high temperatures. A 

conductive insulated wire was glued to the current collector using the epoxy resin.  

 

2.3.3 EXPERIMENTAL TEST BENCH 

When a photoelectrochemical cell is exposed to real atmospheric conditions, solar 

radiation and temperature are the two main factors that affect its performance. Thus, it 

is of great importance to know how a PEC cell behaves at different temperatures. An 

experimental test bench with a temperature controlling system was designed and built –

Figure 2.1.  

 

Figure 2.1: Test bench for PEC cell characterization at different temperatures: (a) photo of the 

actual setup; and (b) the corresponding scheme. 



TEMPERATURE EFFECT ON WATER SPLITTING USING A SI-DOPED HEMATITE PHOTOANODE  

 

81 

The electrolyte temperature was controlled using a water bath (Julabo, Germany) and 

the electrolyte was continuously pumped in and out of the PEC cell by a recirculation 

system, as sketched in Figure 2.1. The pH of the electrolyte was controlled using a 

compact pH meter (WTW, Deutschland). For a more precise temperature control, a 

rubber heater (Omega Engineering Inc., US & Canada) was stuck to a stainless steel 

window, which was fixed against a window made of Teflon. These three new parts 

were screwed to a transparent acrylic part and screwed to the cell – Figure 2.2. A 

Teflon coated thermocouple was placed inside the PEC cell contacting the electrolyte 

for reading the actual temperature; this temperature was used to control the rubber 

heater. The PEC cell configuration used is described elsewhere [29, 30].  

A standard three-electrode configuration was used with the Si-doped α-Fe2O3 as 

photoanode, a 99.9 % pure platinum wire (Alfa Aesar, Germany) as counter electrode 

and an Ag/AgCl/Sat. KCl (Metrohm, Switzerland) as a reference electrode. Thus, two 

sample holders are used: one keeps the semiconductor vertically aligned and facing 

perpendicularly the light beam and the second one keeps the platinum wire aligned at 

the back of the sample. The distance between the holders is ca. 1 cm. The cell was 

filled with an electrolyte aqueous solution of 1 M NaOH (25 ºC, pH 14), being its 

maximum volume of ca. 125 mL. The total immersed photoanode area was 4 cm2. 

 

Figure 2.2: Detail of the PEC cell equipped with a rubber heater for temperature controlled 

measurements. 
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2.3.4 ELECTROCHEMICAL CHARACTERIZATION 

J-V MEASUREMENTS 

The photocurrent-voltage (J-V) characteristic curves were recorded applying an 

external potential bias to the cell and measuring the generated photocurrent using a 

ZENNIUM (Zahner Elektrik, Germany) workstation controlled by the Thales software 

package (Thales Z 1.0). The measurements were performed in the dark and under 

simulated sunlight (Oriel class B solar simulator equipped with a 150 W Xe lamp, 

Newport, USA), using an AM 1.5 G filter (Newport, USA), at a scan rate of 10 mV·s-1 

for the potential range between 0.6 VRHE and 1.8 VRHE. The light beam was calibrated 

with a c-Si photodiode. The potential was reported against the reversible hydrogen 

electrode (RHE). 

EIS MEASUREMENTS 

Electrochemical impedance spectroscopy (EIS) is a dynamic technique where a small 

potential sinusoidal perturbation is applied to the system and the amplitude and phase 

shift of the resulting current response are recorded. EIS spectra were obtained also with 

the ZENNIUM workstation in dark conditions. The frequency range used was 0.1 Hz – 

100 kHz and the magnitude of the modulation signal was 10 mV [31]. The 

measurements were performed at 0.8 VRHE, 1.0 VRHE, 1.2 VRHE and 1.4 VRHE. A ZView 

software (Scribner Associates Inc., USA) was used to fit an appropriate electrical 

analog to the EIS spectra.  

AGING TESTS 

Aging tests consisted in applying a constant potential to the PEC cell over several 

hours and measure the resulting time-dependent photocurrent response. The 

photocurrent history of the selected semiconductors provides important information 

about the stability/corrosion of the semiconductor. The measurements were performed 

at a constant applied potential of ca. 1.23 VRHE during several hours and under constant 

irradiation conditions (1-sun AM 1.5 G, ca. 100 mW·cm-2).  
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2.3.5 SEM CHARACTERIZATION 

Scanning electron microscope (SEM) was used to obtain information about 

morphology and surface topography of the photoelectrode materials. The morphology 

of the Si-doped hematite films was characterized using a high-resolution (50000× and 

200000×) scanning electron microscope (Quanta 400 FEG, FEI Company, USA). The 

acceleration voltage was 15 keV while an in-lens detector was employed with a 

working distance of about 10 mm. The surface of the samples was investigated before 

and after performing the photoelectrochemical measurements and after performing the 

aging tests to assess modifications in the surface morphology. These analyses were 

made at CEMUP (Centro de Materiais da Universidade do Porto). 

 

2.3.6 ICP ANALYSIS 

The inductively coupled plasma (ICP) technique is based on atomic spectrometry and 

offers extremely high accuracy and precision. In the present work, ICP-MS (Mass 

Spectroscopy) was used to quantify all elements with masses between 5 and 250 au 

present in the electrolyte solutions. ICP-AES (Atomic Emission Spectroscopy) was 

also used to determine more accurately the concentration of iron in the 1 M NaOH 

electrolyte solutions. The electrolyte volume tested was ca. 50 cm3. 

 

2.4 RESULTS AND DISCUSSION 

2.4.1 J-V MEASUREMENTS 

Figure 2.3 shows the photocurrent density-voltage characteristic curves (J-V) of α-

Fe2O3 photoanode doped with 5 % of silicon at five different temperatures, in the dark 

and under 1-sun AM 1.5 G illumination conditions. Before performing each J-V curve, 

the cell was left to stabilize for ca. 5 min. The performance of the cell increases with 

temperature – Figure 2.3.  
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Figure 2.3: Photocurrent density-voltage (J-V) characteristics of Si-doped α-Fe2O3 photoanode 

at different temperatures, in the dark (dashed lines) and under 1-sun AM 1.5 G illumination 

(solid lines). (□) T = 25 ºC, (○) T = 35 ºC, (Δ) T = 45 ºC, (◊) T = 55 ºC, (×) T = 65 ºC.  

 

At 25 ºC and under dark conditions, the current density rises steeply for a potential 

higher than 1.60 VRHE – the so-called dark current corresponding to the electrocatalytic 

water oxidation onset potential. Under sunlight conditions at 25 ºC, the photocurrent 

density is 0.40 mA·cm-2 at the potential of reversible oxygen electrode (1.23 VRHE), but 

it reaches a plateau only at ca. 1.45 VRHE with a current of ca. 0.60 mA·cm-2. When the 

temperature of the electrolyte is increased to 35 ºC the dark current starts at ca. 

1.55 VRHE; the dark current starts earlier than for the experiment performed at 25 ºC. 

Under sunlight conditions the photocurrent density reaches 0.43 mA·cm-2 at 1.23 VRHE, 

corresponding to an increase of almost 8 %. Following the same analysis, a 

temperature increase of 40 ºC (sample characterized at 65 ºC) originates an 83 % 

enhancement of the photocurrent density at 1.23 VRHE, but the dark current onset 

happens at ca. 1.17 VRHE.  

Indeed, the photocurrent density of the PEC cell increases with temperature because 

the photoelectrode energy bandgap decreases and the charge transfer rate increases, cf. 

Equations (2.1) - (2.5). Moreover, the onset potential is shifted to lower potentials as 

the cell temperature increases, reducing the applied potential needed to initiate the 

water splitting reaction (bias). The influence of temperature on the energy conversion 

efficiency of the PEC cells is presented in Figure 2.4. 
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Figure 2.4: Efficiency results obtained for Si-doped α-Fe2O3 photoanode as a function of the 

operating temperature: (□) solar-to-hydrogen, ηSTH, (○) applied bias photon-to-current”, ηABPE, 

(Δ) PEC device, ηdevice, (◊) photoanode, ηphotoelectrode. 

 

The efficiencies ηSTH, ηABPE, ηdevice and ηphotoelectrode were calculated using Equations 

(2.8), (2.9), (2.10) and (2.11), respectively. The faradaic efficiency in Equation (2.8) 

was assumed to be unit, since the measured photocurrent corresponds to the molar 

generation of H2 without parasite reactions. For Equations (2.9), (2.10) and (2.11), the 

efficiencies were calculated for an external bias of 1.23 VRHE. The incoming light 

considered was ca. 100 mW·cm-2 and the flatband potential for the Si-doped α-Fe2O3 

photoelectrode was 0.40 VRHE. The efficiency of the cell increases with temperature – 

cf. Figure 2.4. However, the maximum current density is limited also by the onset 

potential of the dark current, which decreases with temperature. This effect should be 

also taken into account, since it has a strong contribution on the generated 

photopotential. Considering that the photopotential is given by the potential shift 

between the light current and the dark current, when the internal resistance of the 

photoanode is small, the photopotential decreases with temperature and the highest 

decrease was observed for temperatures above 45 ºC. Moreover, reference tests at 

25 ºC performed between runs revealed possible degradation of the photoanode after 

running the PEC cell at 55 ºC and 65 ºC, since it resulted in changes in the J-V curves 

at 25 ºC - see Figure 2.5. Therefore, the best operating temperature of the PEC cell 

should be ca. 45 ºC, where the performance is the highest, acceptable photopotential 

and dark current onset potential and no degradation were observed.  
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Figure 2.5: Reference tests performed at 25 ºC between experiments and before increasing the 

temperature of the cell in the dark (dashed lines) and under 1-sun AM 1.5 G illumination (solid 

lines). (□) T = 25 ºC, (○) T = 25 ºC after T = 35 ºC, (Δ) T = 25 ºC after T = 45 ºC, (◊) T = 25 ºC 

after T = 55 ºC, (×) T = 25 ºC after T = 65 ºC. 

 

Figure 2.6 shows SEM images of the Si-doped α-Fe2O3 photoanode film, before and 

after performing the high-temperature tests. The sample area analyzed by SEM was 

made to coincide with the illuminated area during the different experiments. Actually, 

it was not noticed significant differences before and after running tests at 65 ºC. Thus, 

the shift on the dark current onset was not due to modifications on the hematite 

structure. The electrolyte solution used in these experiments was analyzed by ICP-AES 

and only trace amounts of Fe were found: 0.113 mg·L-1, 0.130 mg·L-1, 0.202 mg·L-1 

and 0.323 mg·L-1 for fresh solution and for tests performed at 25 ºC, 45 ºC and 65 ºC, 

respectively. The iron concentration slightly increased, but the hematite sample did not 

suffer noticeable corrosion with the temperature tests as observed in Figure 2.6, which 

may induce that this modification cannot be responsible for such significant cathodic 

shift of the dark current onset potential with temperature. In order to pursue the 

comprehension of the such strong effect of temperature in the onset potential of the 

dark current, J-V curves of a bare transparent conductive oxide (TCO) glass substrate 

up to 65 ºC were obtained – Figure 2.7.  
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Figure 2.6: SEM images of Si-doped α-Fe2O3 film: (a) before and (b) after performing the 

temperature tests until ca. 65 ºC with different resolution (top: 50000×; bottom: 200000×). 

 

 

Figure 2.7: Temperature effect in the photocurrent density-voltage (J-V) characteristics of bare 

TCO substrate at a range of temperatures from 25 ºC to 65 ºC under dark conditions. 

(□) T = 25 ºC, (○) T = 35 ºC, (Δ) T = 45 ºC, (◊) T = 55 ºC, (×) T = 65 ºC. 
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The dark current of the bare TCO substrate starts at lower onset potentials values as 

temperature increases, behavior similar to the one obtained for the hematite 

photoanodes (Figure 2.3). The reference J-V curves at 25 ºC performed after each run 

shows that the TCO substrate is being progressively damaged, which is more 

noticeable after tests at 55 ºC and at 65 ºC (Figure 2.8). This effect was also observed 

with the hematite photoanodes. So, the shift on the dark current onset should be 

assigned to the temperature effect on the TCO-glass substrate and not due to changes in 

the photoanode material [32].  

 

Figure 2.8: Reference tests performed at 25 ºC with the bare TCO substrate between 

experiments and before increasing the temperature of the cell under dark conditions. 

(□) T = 25 ºC, (○) T = 25 ºC after T = 35 ºC, (Δ) T = 25 ºC after T = 45 ºC, (◊) T = 25 ºC after T 

= 55 ºC, (×) T = 25 ºC after T = 65 ºC. 

 

The morphology of the TCO substrates was studied using SEM – Figure 2.9. The 

surface of TCO exhibits sharp, well-defined blocky crystal grains of F:SnO2 30-300 

nm in size; however, after being tested at high temperatures (65 ºC), the surface crystal 

edges appear softer, i.e. without the same sharpness. Again the concentration of metals 

in the NaOH electrolyte solution that contacted with the bare TCO substrates was 

analyzed by ICP-MS. The concentration of fluorine in the electrolyte used at 65 ºC 

doubled, showing the possible degradation of the bare TCO made of fluorine doped tin 

oxide (FTO). 



TEMPERATURE EFFECT ON WATER SPLITTING USING A SI-DOPED HEMATITE PHOTOANODE  

 

89 

 

Figure 2.9: SEM images of TCO films before (a) and after performing the temperature tests at 

25 ºC (b), 45 ºC (c) and 65 ºC (d). 

 

Table 2.1 presents the concentrations of all elements detected in the solutions (25 ºC, 

45 ºC and 65 ºC); these values are lower than 100 mg·L-1, with the exception of sodium 

that exhibits values around 200 mg·L-1.  

 

Table 2.1: Metals concentration present in the electrolyte solution (1 M NaOH – pH 14) used 

for characterizing the TCO glass substrates at 25 ºC, 45 ºC and 65 ºC. 

 

 

 

 

 

 

 

  Concentration of metals, mg·L-1 

Tests F Sn Al Si Na Zn Cu 

TCO sample at 25 ºC 0.20 0.01 0.10 0.03 210 0.07 0.02 

TCO sample at 45 ºC 0.20 0.01 0.10 0.04 210 0.08 0.03 

TCO sample at 65 ºC 0.40 0.06 0.20 0.04 212 0.10 0.04 
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2.4.2 AGING TESTS 

The stability of a PEC cell for water splitting is controlled by two factors: physical and 

chemical factors. Physical stability is related to electrolyte evaporation, which heats up 

under illumination. The chemical stability is associated to irreversible electrochemical 

and thermal degradation of the semiconductor and electrolyte [33]. The corrosion 

phenomena were investigated analyzing the content of iron in the electrolyte by ICP 

and the surface morphology of the photoelectrode by SEM. The measurements were 

performed at different temperatures (25 ºC, 45 ºC and 60 ºC) under constant 1-sun 

AM 1.5 G illumination, using an electrolyte solution of 1 M NaOH and applying a 

constant bias potential of 1.23 VRHE. The photocurrent-density history was performed 

only up to 60 ºC, since a significant negative shift on dark current onset was observed 

at 55 ºC and higher temperatures; this shift compromises the maximum current density. 

Moreover, for higher temperatures the samples have no practical application for water 

splitting. Fresh photoelectrodes of Si-doped hematite with similar performances were 

used for each run, in a standard three-electrode configuration. The setup used is 

presented in Figure 2.1. 

 

STABILITY AT 25 ºC 

First, the stability performance was studied at 25 ºC during two periods of 72 h. 

Between the two testing periods, the photoelectrode was submitted to a heating 

treatment in an oven (1.5 ºC·min-1 to 400 ºC) [34] and the cell was filled with fresh 

electrolyte solution. Moreover, the hematite photoanode was analyzed in terms of 

photoelectrochemical performance by sweeping J-V scans in the dark and under 

simulated solar illumination. The corresponding J-V curves before and after running 

the two periods of stability tests are shown in Figure 2.10 (left-side).  

The dark current density of the fresh hematite sample rises steeply for a potential 

higher than 1.55 VRHE. Under simulated light conditions, the current density reaches a 

photocurrent value of ca. 0.22 mA·cm-2 at 1.23 VRHE. Photocurrent density-time 

dependent experiments are plotted in Figure 2.10 (right-side) showing that the 

photocurrent density is acceptably stable over the time, with a performance decrease of 

ca. 9 % after 72 h and ca. 22 % after 144 h. This may indicate that some irreversible 

degradation occurs; however, the photoanode did not exhibit signs of visual 
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degradation. SEM characterization revealed that the grain size of the hematite film 

becomes smaller due to chemical etching during the two periods of stability tests, 

Figure 2.11b vs. Figure 2.11a. Moreover, the iron concentration in the electrolyte 

solution was determined by ICP and it increased from 0.113 mg·L-1 to 0.416 mg·L-1. 

Photocurrent values of 0.21 mA·cm-2 and 0.19 mA·cm-2 are obtained for aged cell after 

72 h and 144 h under irradiated sunlight, respectively – Figure 2.10. Moreover, the 

dark current rose for negative potentials, from 1.55 VRHE to 1.45 VRHE for the aged 

sample. 

 

Figure 2.10: Left-side: Photocurrent density-voltage (J-V) characteristic curves of the Si-doped 

α-Fe2O3 photoanode tested in the dark (dashed lines) and under 1-sun simulated light at 25 ºC 

(solid lines) before and after the stability test. (□) fresh cell before stability, (○) aged cell after 

1st period of stability, (Δ) aged cell after 2nd period of stability. Right-side: Correspondent 

photocurrent history at a constant potential of ca. 1.23 VRHE and continuous 1-sun AM 1.5 G 

illumination at 25 ºC. 
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Figure 2.11: SEM images of Si-doped α-Fe2O3 film before (a) and after performing the stability 

tests with a constant potential of 1.23 VRHE and continuous 1-sun AM 1.5 G illumination at 

three different temperatures: 25 ºC (b), 45 ºC (c) and 60 ºC (d). (Top: 50000×; bottom: 

200000×).  

 

STABILITY AT 45 ºC 

Figure 2.12 (left-side) shows the J-V characteristics obtained before and after 

performing 72 h single period stability test at 45 ºC. The photocurrent density for the 

fresh sample increases from of 0.20 mA·cm-2 to 0.27 mA·cm-2 at 1.23 VRHE, 

respectively from 25 ºC to 45 ºC. After, the photocurrent density history was obtained 

for the temperature of 45 ºC – Figure 2.12 (right-side). The photocurrent density is 

mostly stable over the first 60 hours with an average photocurrent value of 0.26 mA 

cm-2. However, after 72 h of stability test, a decay of ca. 9 % in photocurrent was 

observed. No significant changes in the surface morphology of the sample were 

observed by SEM – Figure 2.11c. The iron concentration in the electrolyte increased 

from ca. 0.113 mg·L-1 to 0.150 mg·L-1 after the stability test. 
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Figure 2.12: Left-side: Photocurrent density-voltage (J-V) characteristic curves of the Si-doped 

α-Fe2O3 photoanode tested in the dark (dashed lines) and under 1-sun simulated light at 45 ºC 

(solid lines) before and after stability. (□) fresh cell, (○) aged cell after 72 h of stability. Right-

side: Correspondent photocurrent history at a constant potential of ca. 1.23 VRHE and continuous 

1-sun AM 1.5 G illumination at 45 ºC. 

 

STABILITY AT 60 ºC 

Figure 2.13 (left-side) shows the J-V curves at 25 ºC and 60 ºC, in the dark and under 

simulated solar illumination, before and after performing the 72 h stability test at 

60 ºC. The fresh sample exhibited a photocurrent density of 0.18 mA·cm-2 at 25 ºC and 

increased to 0.35 mA·cm-2 at 60 ºC, for an external bias of 1.23 VRHE. The photocurrent 

density of the photoelectrode at 60 ºC was mostly stable up to 30 h, decreasing 

afterwards to 0.19 mA·cm-2 –  Figure 2.13 (right-side). 

After the aging tests, the photoanode sample exhibited some visual signs of 

degradation in the illuminated area, suggesting that corrosion phenomena took place. 

SEM images of the fresh and aged hematite sample are shown in Figure 2.10d. The 

aged sample exhibits a corroded surface with not well-defined grains and an 

overlapping structure of particles with smaller sizes. The electrolyte solution contained 
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1.130 mg·L-1 of iron (electrolyte initial iron concentration was 0.113 mg·L-1), the 

highest value obtained for the studied electrodes. 

 

Figure 2.13: Left-side: Photocurrent density-voltage (J-V) characteristic curves of the Si-doped 

α-Fe2O3 photoanode tested in the dark (dashed lines) and under 1-sun simulated light at 60 ºC 

(solid lines) before and after stability. (□) fresh cell, (○) aged cell after 72 h of stability. Right-

side: Correspondent photocurrent history at a constant potential of ca. 1.23 VRHE and continuous 

1-sun AM 1.5 G illumination at 60 ºC. 

 

2.4.3 EIS MEASUREMENTS 

A three-electrode configuration was used to obtain information about the charge 

transfer kinetics at the semiconductor/electrolyte interface since the potential was 

measured with respect to a fixed reference potential, short-circuited with the counter 

electrode [29]. The impedance spectra were obtained after performing the J-V 

characteristics of the hematite photoelectrode at the selected temperatures, i.e. from 

25 ºC to 65 ºC with steps of 10 ºC. For each operating temperature, the charge transport 

resistances and the charge transfer at the interface of the photoelectrode/electrolyte of 

the PEC cell were obtained by fitting the EIS data to an electrical analogue – Figure 

2.14.  
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Figure 2.14: Electrical circuit analogue used to fit the experimental impedance data. 

 

Under dark conditions, the proposed electrical analogue considers a series resistance 

element, RSeries, and two RC elements in series: the first RC element models the 

electron transport in the semiconductor bulk, where RSC is the semiconductor charge 

resistance and CSC is the capacitance at the space charge layer on the semiconductor 

side; the second RC element represents the charge transfer resistance at 

semiconductor/electrolyte interface, where RCT is the charge transfer resistance and CH 

is the capacitance at the Helmholtz layer on the electrolyte side. The low-frequency 

response was assigned to the phenomena occurring in the semiconductor/electrolyte 

interface, whereas the high-frequency range was assigned to the faster electronic 

processes occurring in the semiconductor bulk. Moreover, in photoelectrodes formed 

by nanostructured semiconductors, the capacitance element is not ideal, showing a 

constant phase element (CPE) behavior [35]. Figure 2.15 shows the Nyquist plots 

obtained at an applied potential of 0.8, 1.0, 1.2  and 1.4 VRHE under dark conditions.  
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Figure 2.15: Nyquist diagrams for a Si-doped α-Fe2O3 photoanode obtained in the dark at 

different temperatures and forward biases: (a) 0.8 VRHE; (b) 1.0 VRHE; (c) 1.2 VRHE; and (d) 1.4 

VRHE. Z ': real impedance, Z '': imaginary impedance; (□) T = 25 ºC, (○) T = 35 ºC, 

(Δ) T = 45 ºC, (◊) T = 55 ºC, (×) T = 65 ºC. On the right-side is a zoom-out of the left-side plots. 

 

The overall charge transfer resistance of the PEC system (RSeries + RSC + RCT) 

decreases with temperature for all applied potentials, explaining the overall increase of 

the photocurrent density with temperature. Two semicircles can be clearly 

distinguished (see inset of Figure 2.15): one responding in the high frequencies range 

and the larger one responding in the low frequencies range. In fact, the low frequencies 

range semicircle decreases considerably with the temperature, being this decrease more 
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obvious at higher temperatures (55 ºC and 65 ºC). Thus, the temperature increase 

strongly influences the phenomena occurring at the semiconductor/electrolyte 

interface. 

Figure 2.16 shows the impedance parameters for an applied potential of 1.2 VRHE as a 

function of the operating temperature. The potential of 1.2 VRHE was selected since it is 

the closest potential to the reversible oxygen electrode potential (1.23 VRHE). 

 

Figure 2.16: Impedance results obtained by fitting the experimental data shown in Figure 2.15 

for an applied potential of 1.2 VRHE as a function of the operating temperature. (□) Series 

Resistance – RSeries, (○) Bulk Semiconductor Resistance – RSC, (Δ) Charge Transfer Resistance – 

RCT, (◊) Space Charge Capacitance – CSC, (×) Helmholtz Capacitance – CH. 

 

From Figure 2.16 the series resistance, RSeries, decreases from 10.7 Ω to 6.2 Ω when 

temperature increases from 25 ºC to 65 ºC; this decrease is more pronounced at 55 ºC 

and at 65 ºC. RSeries comprises the TCO layer resistance and the external contacts 

resistance (e.g. wire connections); since the environment temperature around the 

external contacts did not change, the main contributor to RSeries is the TCO resistance.  

The electrical resistance of the bulk semiconductor, RSC, should decrease with 

temperature since faster electron transport is noticed [36, 37]; however, the highest 

decrease was observed at 45 ºC with RSC presenting 7.0 × 102 Ω - see Figure 2.16. In 

fact, at ca. 60 ºC the photoelectrode degrades with time, as observed from stability 
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tests at 60 ºC – Figure 2.13. Thus, for temperatures above or equal to 55 ºC the 

semiconductor matrix starts degrading, which should lead to stabilize the bulk 

resistance. Indeed, the behavior of the charge transport resistance in the bulk 

semiconductor with the temperature is the result of a balance between the photocurrent 

and the stability. Concerning the charge transfer resistance, RCT, it decreases from 

5.1 × 105 Ω to 2.7 × 103 Ω for the temperature range, also leveling out above 45 ºC. 

The level out of the charge transfer resistance should be related to the degradation of 

the semiconductor that may be losing electrocatalytic activity. Indeed, it was found 

fluorine and tin in the electrolyte, probably resulting from the degradation of the TCO 

made of fluorine doped tin oxide (FTO). 

The capacitances values were also plotted as a function of the operating temperatures 

in Figure 2.16. The Helmholtz capacitance (CH) remains almost temperature 

independent (values in the order of magnitude of 10-4 F) and the space charge 

capacitance (CSC) decreases with temperature. Though, a slightly increase for both 

capacitances is observed at 45 ºC with 8.0 × 10-5 F and 2.6 × 10-4 F for CSC and CH, 

respectively. As RSC decreases, the charge flow increases and, therefore, the thickness 

of the space charge layer decreases thereby justifying the CSC increase at around 45 ºC, 

since the capacitance is inversely proportional to the thickness of the layer. The CH 

values are higher than the CSC values, since the Helmholtz double layer width is 

generally smaller than the width of the depletion layer [38, 39]. This is the typical 

behavior of these capacitances for photo-assisted water splitting systems. Moreover, 

since the hematite semiconductor is doped with silicon, Si4+ acts as an electron donor 

improving its electrical conductivity and, at the same time, reducing the width of the 

space charge layer that contributes to an increase of the CSC 
[40]. In the case of heavily 

doped semiconductors, CSC will be of the same order as CH [41].  

Figure 2.17 shows the Nyquist diagrams of three hematite photoanodes aged at 

different temperatures: 25 ºC (a), 45 ºC (b) and 60 ºC (c) and for an applied potential of 

1.2 VRHE.  
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Figure 2.17: Nyquist diagrams for a Si-doped α-Fe2O3 photoanode obtained in the dark with an 

applied potential of 1.2 VRHE at aged temperatures of 25 ºC (a), 45 ºC (b) and 60 ºC (c). Z ': real 

impedance; Z '': imaginary impedance. 

 

The first semicircle in the high frequency range, which is ascribed to the electron 

transfer process in the bulk semiconductor, is not clearly visible in the inset of Figure 

2.17. Though, the overall resistances tend to be smaller with time, being this behavior 

more evident as the temperature of stability test increases. After performing the 

stability test at 25 ºC, the sample did not reveal significant differences for the 

frequency range studied, even after 144 h of testing - Figure 2.17a. For the sample 

tested at 45 ºC during 72 h, the low-frequencies arc, assigned to the charge transfer in 

the semiconductor/electrolyte interface, becomes larger with the aging time, as shown 

in Figure 2.17b. From Figure 2.17c is visible different behaviors at the two frequency 

regions, which proves that a higher temperature (60 ºC) influences the stability of the 
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electrode. Then, the electrical analog presented in Figure 2.14 was used to fit the 

impedance data and the corresponding resistance and capacitance parameters were 

determined – Figure 2.18.  

 

Figure 2.18: Impedance results obtained by fitting the experimental data shown in Figure 2.17 

for an applied potential of 1.2 VRHE before (filled symbols) and after (open symbols) performing 

the stability tests during 72 h at three different temperatures: 25 ºC, 45 ºC and 65 ºC. (□) Series 

Resistance – RSeries, (○) Bulk Semiconductor Resistance – RSC, (Δ) Charge Transfer Resistance – 

RCT, (◊) Space Charge Capacitance – CSC, (×) Helmholtz Capacitance – CH. 

 

Figure 2.18 shows the resistances and capacitances obtained for fresh and aged 

hematite photoanodes. The series resistance slightly increases from 5.4 Ω to 6.0 Ω after 

72 h of stability test, being the highest increase observed at 60 ºC. This series 

resistance change was assigned to the decrease of the TCO conductivity. Concerning 

the bulk semiconductor resistance, a significant variation from 4.2 × 102 Ω to 

1.0 × 103 Ω was verified for the experiment performed at 60 ºC. This behavior is due to 

degradation of hematite photoanode with time – cf. Figure 2.13. Similarly, the charge 
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transfer resistance at the semiconductor/electrolyte interface increased with time and 

the major change was observed again at 60 ºC, since the deterioration of the 

semiconductor limits the charge transfer at the semiconductor/electrolyte interface. RCT 

increased from ca. 3.0 × 103 Ω to 1.6 × 104 Ω after running 72 h of stability test at 

60 ºC. 

Finally, both CSC and CH are mostly constant during the stability tests at 25 ºC and 

45 ºC. At 60 ºC the capacitances tend to decrease with aging time: CSC decreased from 

8.4 × 10-5 Ω to 4.3 × 10-5 Ω and CH decreased from 1.9 × 10-5 Ω to 4.7 × 10-5 Ω, 

respectively. The hematite photoelectrode at 60 ºC showed surface corrosion, which 

should be related to the decrease of generated charges and further decrease of 

accumulated charges. These results confirm that 45 ºC is the highest temperature 

before the hematite photoelectrode start to corrode, simultaneously producing the 

highest photocurrent density.  

 

2.5 CONCLUSIONS 

A study of the temperature effect on the performance of a photoelectrochemical cell for 

water splitting with hematite photoelectrodes was reported. J-V characteristic curves 

and EIS measurements were used to investigate the temperature- and time-induced 

changes in the PEC cells behavior. Understanding this behavior is especially important 

for the development of commercial devices, since the cells are subjected to severe 

changes in temperature under outdoor applications. The PEC device composed by Si-

doped α-Fe2O3 photoanodes in a standard three-electrode configuration was tested from 

25 ºC to 65 ºC with steps of 10 ºC. The results showed that the global performance of 

the PEC cell increases with temperature. A 33 % increase on the photocurrent density 

at 1.23 VRHE was observed when the temperature was increased from 25 ºC to 45 ºC. 

On the other hand, an 83 % increase was obtained for the test temperature of 65 ºC, but 

here the dark current onset starts at ca. 1.17 VRHE, before the potential of reversible 

oxygen electrode (1.23 VRHE). 

The effect of temperature on the dark current can be explained by the effect of 

temperature on TCO substrate, i.e. as temperature increases the onset potential tends to 

occur at negative potentials. Indeed, the very thin hematite layer employed allows the 
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electrolyte to access to the TCO layer and this phenomenon increases with the 

operating temperature. The photocurrent density history (stability tests) at different 

temperatures (25 ºC, 45 ºC and 60 ºC) was obtained for fresh photoelectrodes during 

72 h. Photoelectrode corrosion was observed at 60 ºC and, as a consequence, the 

current density decreased ca. 46 % after the aging period. The best operation 

conditions were obtained for 45 ºC with improved energy performance and sufficient 

stability. The impedance analysis also indicates that increasing the temperature makes 

the overall charge transfer resistance in the semiconductor/electrolyte interface of the 

cell to decrease. Additionally, the EIS spectra at 60 ºC for fresh and 72 h aged sample 

evidenced significant loss of activity. 
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ABSTRACT 

The influence of the substrate on the performance of WO3 photoanodes is assessed as a 

function of the temperature. Two samples were studied: WO3 deposited on a FTO glass 

and anodized on a tungsten foil. Photocurrent-voltage curves and electrochemical 

impedance spectroscopy measurements were used to characterize these samples 

between 25 ºC and 65 ºC. The photocurrent density increased with temperature for 

both samples and the onset potential shifted to lower potentials. However, for 

WO3/FTO, a negative shift of the dark current onset was also observed. The intrinsic 

resistivity of this substrate limits the photocurrent plateau potential range. On the other 

hand, this behavior was not observed for WO3/metal. Therefore, the earlier dark 

current onset observed for WO3/FTO was assigned to the FTO layer. The optimal 

operating temperatures observed were 45 ºC and 55 ºC for WO3/FTO and WO3/metal, 

respectively. For higher temperatures, the bulk electron-hole recombination 

phenomenon greatly affects the overall performance of WO3 photoanodes. The 

stability behavior was then studied at these temperatures over 72 h. For WO3/FTO, a 

crystalline-to-amorphous phase transformation occurred during the stability test, which 

may justify the current decrease observed after the aging period. The WO3/metal 

remained stable, maintaining its morphology and good crystallinity. Interestingly, the 

preferential orientation of the aged crystals was shifted to the (-222) and (222) planes, 

suggesting that this was responsible for its better and more stable performance. These 
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findings provide crucial information for allowing further developments on the 

preparation of WO3 photoanodes, envisaging their commercial application in PEC 

water splitting cells. 

 

 

Keywords: Photoelectrochemical Cells; Water Splitting; Temperature Effect; Aging 

Tests; Tungsten Trioxide Photoanodes; FTO Layer; Tungsten Foil. 
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3.1 INTRODUCTION 

For scaling up the photoelectrochemical (PEC) hydrogen generation technology it is 

not only necessary to find efficient and stable semiconductor materials and to use a 

versatile PEC cell reactor, but also to understand the behavior of the cell under real 

outdoor conditions [1, 2]. The performance of the PEC cells for water splitting should 

vary essentially as a function of solar irradiance and temperature. Depending on the 

operating environment (indoor/outdoor applications, geographical location and specific 

time of the year), temperatures ranging between subzero to near 70 ºC can be expected 

[3]. Despite, only few works have reported the temperature dependence on the PEC 

cells performance. Mendes et al. [4] simulated the effect of outdoor conditions 

(temperature and solar radiation variations) on the energy performance of PEC cells. A 

linear increase of the photocurrent density with the temperature was observed and the 

maximum production of hydrogen occurred between 11:00 AM and 1:00 PM (solar 

time) for undoped hematite photoanodes. Recently, the same group studied the 

combined effect of temperature variations (from 25 ºC to 65 ºC) and the aging behavior 

of a PEC system using Si-doped hematite photoanodes. The results showed a 

photocurrent density increase with temperature; however, taking into account 

performance and stability the optimal operation temperature of the PEC cell was ca. 

45 ºC. This study also evidenced that the temperature influences the behavior of the 

bare transparent conducting oxide (TCO) layer, which exhibits an earlier dark current 

onset potential for higher temperatures [5].  

TCO films have been extensively used as a transparent electrode for optoelectronic 

device applications, e.g. for solar cells [6, 7]. Besides the conductivity and transparency, 

the main requirements of TCO coatings are the electronic compatibility with adjacent 

layers in the electrodes and the stability under operating conditions. From the common 

TCO materials, fluorine doped tin oxide (FTO), indium tin oxide (ITO) and aluminum 

doped zinc oxide (AZO), only FTO is stable in acidic/alkaline environments [8]. In PEC 

devices, the photoelectrode materials are mostly deposited onto glasses previously 

covered with a TCO thin layer to assure a transparent photoelectrode. The development 

of a transparent semiconductor will allow to transmit the fraction of solar radiation not 

absorbed by the material and to convert it by other photosystems, improving their 

overall energy performance. On the other hand, when the transparency is not 
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important, the metal substrate can be a potential alternative for TCO glass substrates. 

Metal has the advantages of cost-effectiveness, excellent mechanical flexibility and 

thermal stability in the industrial fabrication processes. Furthermore, metal has high 

conductivity and good dimensional stability during the processing at elevated 

temperature [9].   

The present study aims to evaluate the effect of temperature on the performance of 

PEC water splitting cells equipped with tungsten trioxide (WO3) n-type 

semiconductors. In particular, the main goal of this work is to understand if the 

photoelectrode substrate plays a critical role on the PEC devices behavior with 

temperature. Nanostructured WO3 semiconductor was selected due to its close to 

optimal bandgap (Eg = 2.5 - 2.7 eV) able to capture ca. 12 % of the solar spectrum, 

moderate hole diffusion length (ca. 150 nm) and good chemical stability in acidic 

aqueous solutions under solar illumination, as well as easy and cheap preparation 

procedures [10, 11]. The morphology (e.g. shape, size and porosity) and crystallinity of 

WO3 nanoparticles depend critically on preparation parameters and annealing 

temperatures, being also limiting factors for PEC cell performance [12-14]. Herein, the 

WO3 photoanodes were prepared using two types of substrates: glass covered with a 

FTO layer and tungsten metal substrate, i.e. WO3 were deposited by doctor blade on 

the FTO glass substrate and anodized on a tungsten metal foil. 

An experimental setup was developed to control the temperature inside the PEC 

device, allowing its characterization as a function of the temperature. Five 

temperatures were considered, equally spaced from 25 ºC to 65 ºC, and the 

correspondent current-voltage (J-V) characteristic curves were obtained in dark and 

under 1-sun AM 1.5 G illumination (100 mW·cm-2) conditions. Electrochemical 

impedance spectroscopy (EIS) measurements were also performed in dark to extract 

detailed information concerning the charge transfer and accumulation processes 

occurring in the PEC cell and how they are related to its performance at different 

temperatures. Aging tests were then conducted for both samples at their best operating 

temperature during several hours for assessing their stability. Scanning electron 

microscopy (SEM) and X-ray diffraction (XRD) analysis were carried out to compare 

the morphology and crystallinity of the WO3 films under study with the performance of 

the PEC cell. 
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3.2 EXPERIMENTAL 

The temperature effect on the performance of water splitting cells using tungsten 

trioxide photoanodes was studied. The PEC cell was operated from 25 ºC to 65 ºC with 

steps of 10 ºC. A reference test at 25 ºC was always performed between experiments in 

order to check the photoanode behavior under reference operating conditions. The 

WO3 photoanodes were prepared using two types of substrates, FTO glass and tungsten 

foil; their deposition techniques are described in detail hereafter. The experimental test 

bench with the PEC cell setup used to control the temperature and the 

photoelectrochemical measurements are described. Moreover, the stability of these 

photoanodes was assessed at their best operating temperature (45 ºC for WO3/FTO and 

55 ºC for WO3/metal) and their structural and morphological characterization before 

and after aging tests were also studied. 

 

3.2.1 PHOTOANODE MATERIALS PREPARATION 

WO3 PHOTOELECTRODE ON FTO GLASS SUBSTRATE (coded hereafter as WO3/FTO)  

The WO3 photoelectrodes were deposited onto FTO (TEC 8, 8 Ω·square-1) glass 

substrate by the blade-spreading method at Institute ENI Donegani (Novara, Italy), 

following the procedure named Synt-1, as described elsewhere [15]. Briefly, tungstic 

acid was obtained by passing 5 mL of an aqueous Na2WO4 solution (10 wt%, Carlo–

Erba) through a proton exchange resin (Amberlite IR120H) and the eluted solution was 

collected in 5 mL of ethanol to slow down the tungstic acid condensation. To the 

resulting colloidal dispersion, 0.5 g of organic dispersing agent was added and stirred 

until complete dissolution. WO3 photoanodes were prepared by blade-spreading the 

resulting H2WO4 colloidal precursor on FTO glass substrates. The resulting films were 

annealed at 550 ºC in air for 2 h [15].  

 

WO3 PHOTOELECTRODE ON W METAL SUBSTRATE (coded hereafter as WO3/METAL) 

The WO3 photoelectrode on a tungsten foil substrate was prepared by the anodization 

method at Institute ENI Donegani (Novara, Italy), as described elsewhere [16]. The 

tungsten foil, prior to anodization, was carefully cleaned with acetone and ethanol and 

sonicated in an Alconox/water solution to remove surface contaminants and oily or 
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greasy impurities. Then, the WO3 photoanodes were prepared by applying a potential 

difference of 40 V (Aim-TTi EX752M DC power supply) across the two tungsten foils, 

which were kept at a distance of about 3 mm. To avoid electrode corrosion, care was 

taken to reach the final 40 V in about 1 min. This way, a passivation compact oxide 

was formed during the initial stages of anodization. The total duration of anodization 

was 5 h in a thermostatic bath at 40 ºC [17]. At the end it was made a sintering at 500 ºC 

in air for 1 h to ensure the formation of a nanocrystalline layer (monoclinic phase). 

  

3.2.2 EXPERIMENTAL SETUP 

To study the temperature effect on the PEC cell performance, an experimental test 

bench with a temperature controlling system was designed and built, as previously 

reported by the same group [5]. Briefly, the electrolyte temperature was controlled using 

a thermostatic water bath (Julabo model ME, Germany) and the electrolyte pH was 

monitored using a pH meter (Inolab pH/Cond 740, WTW GmbH, Germany). The PEC 

cell used has a continuous electrolyte feeding system, described in detail elsewhere [2]. 

Moreover, a thermocouple was placed inside the cell and a rubber heater was stuck to 

its back to ensure the desired temperature. Figure 3.1 shows the experimental setup 

used to analyze the behavior of the PEC cell at different temperatures.  

 

Figure 3.1: Test bench setup used to characterize the PEC cell at different temperatures. 
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A standard three-electrode configuration was used with the tungsten trioxide as 

photoanode, a 99.9 % pure platinum wire (Alfa Aesar, Germany) as counter electrode 

and an Ag/AgCl/Sat. KCl (Metrohm, Switzerland) as reference electrode. The cell was 

filled with an electrolyte aqueous solution of 3 M methanesulfonic acid (25 ºC, 

pH 0.42) in which the photoanode was immersed. The total immersed area of the 

photoanode was 4 cm2. 

 

3.2.3 PHOTOELECTROCHEMICAL CHARACTERIZATION 

J-V MEASUREMENTS 

The photocurrent density-voltage (J-V) characteristic curves were recorded applying an 

external potential bias to the cell and measuring the generated photocurrent using a 

ZENNIUM (Zahner Elektrik, Germany) workstation controlled by the Thales software 

package (Thales Z 1.0) - Figure 3.1. The potential was reported against the reversible 

hydrogen electrode (RHE). The measurements were performed in the dark and under 

simulated sunlight (Oriel class B solar simulator equipped with a 150 W Xe lamp, 

Newport, USA), using an AM 1.5 G filter (Newport, USA), at a scan rate of 10 mV·s-1 

for the potential range between 0.3 VRHE and 2.5 VRHE. The light beam was calibrated 

with a single crystal Si photodiode (Newport, USA), resulting in a lamp spectrum that 

is adjusted to best match the 1-sun spectrum (ca. 100 mW·cm-2). 

EIS MEASUREMENTS  

Electrochemical impedance spectroscopy (EIS) was performed applying a small 

potential sinusoidal perturbation to the system and recording the amplitude and the 

phase shift of the resulting current response using also the ZENNIUM workstation - 

Figure 3.1. The frequency range used was 0.1 Hz – 100 kHz and the magnitude of the 

modulation signal was 10 mV. The measurements were carried out in dark conditions 

and at 0.7 VRHE, 1.0 VRHE, 1.3 VRHE and 1.6 VRHE. An appropriate electrical analog was 

then fitted to the obtained EIS spectra using the ZView software (Scribner Associates 

Inc., USA). 
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AGING TESTS 

A constant potential was applied to the PEC cell over several hours and the resulting 

time-dependent photocurrent response was then measured in order to obtain crucial 

information about the stability/corrosion of the semiconductor. In this work, the WO3 

photoanodes were continuously exposed to 1-sun AM 1.5 G illumination 

(100 mW·cm−2) over 72 h and at a constant bias potential of 1.23 VRHE. The stability 

was evaluated at their best operating temperature, i.e. WO3/FTO was tested at 45 ºC 

and WO3/metal was tested at 55 ºC. 

 

3.2.4 STRUCTURAL CHARACTERIZATION 

SEM ANALYSIS  

Scanning electron microscopy (SEM) was performed to obtain information about 

morphology, surface topography and thickness of the WO3 films in the WO3/FTO and 

WO3/metal samples. The SEM and EDS analyses were made at CEMUP (Centro de 

Materiais da Universidade do Porto) using a high-resolution scanning electron 

microscope (Quanta 400 FEG, FEI Company, USA). The acceleration voltage used 

was 15 keV while an in-lens detector was employed with a working distance of ca. 

10 mm. The high resolution images were collected from 2500× up to 200000×. The 

surface of the samples was investigated for fresh and aged samples to assess 

modifications in their morphology. 

XRD ANALYSIS  

X-ray diffraction (XRD) analysis was carried out in a PANalytical X’Pert MPD 

(Spectris plc, England) equipped with an X’Celerator detector and secondary 

monochromator (Cu K α λ = 0.154 nm, 40 kV and 30 mA). The spectra were collected 

in the range 15º - 95º (2 theta) with step size 0.017º and the time acquisition was set to 

100 s·step-1. Rietveld refinement with Powder-Cell software was used to identify the 

crystallographic phases from the XRD diffraction patterns. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 TEMPERATURE EFFECT IN PEC CELL PERFORMANCE 

J-V and EIS measurements were conducted for the two types of WO3 photoanodes 

under study, i.e. for WO3 photoanode deposited on FTO glass substrate (WO3/FTO) 

and for WO3 photoanode anodized on a tungsten foil substrate (WO3/metal). Five 

different temperatures (25 ºC, 35 ºC, 45 ºC, 55 ºC and 65 ºC) were considered in dark 

and under 1-sun AM 1.5 G illumination conditions. Before performing the analysis at 

each temperature, the cell was left to stabilize for ca. 5 minutes. Figure 3.2 a) and b) 

show the J-V responses for WO3/FTO and WO3/metal samples, respectively.  

From Figure 3.2 is clear that the generated photocurrent density of the PEC cell using 

WO3 photoanodes increases with temperature; a similar behavior was also observed 

with Si-doped hematite photoanodes [5]. Moreover, the photocurrent density values 

obtained for WO3/metal sample is significantly higher than the values obtained for 

WO3/FTO sample, being these differences not only due to the preparation methods, but 

also due to the higher charge transport resistance of the FTO layer in the glass substrate 

[2]. Actually, the photocurrent values obtained are in straight agreement with the ones 

reported in literature [11, 17].  

For WO3/FTO sample, at 25 ºC and under dark conditions, the current onset is 

observed for a potential higher than 2.1 VRHE (the electrolysis threshold for water 

oxidation with WO3/FTO photoanodes) – cf. Figure 3.2a [15]. Under sunlight 

conditions, the photocurrent onset potential begins for 0.5 VRHE and rises steeply up to 

1.2 VRHE, reaching a plateau for 1.2 – 2.0 VRHE potential range; a photocurrent density 

of ca. 0.38 mA·cm-2 was observed at 1.7 VRHE. After increasing the temperature of the 

system to 35 ºC, a photocurrent density increase of 5 % was achieved at 1.7 VRHE and 

no significant differences exist between the dark current onset potential at 25 ºC and 

35 ºC. Experiments at higher temperatures were then performed (45 ºC, 55 ºC and 

65 ºC) and the same behavior was observed: an improvement of the photocurrent with 

temperature. In particular, the experiment at 65 ºC originated a 64 % photocurrent 

enhancement at 1.7 VRHE (Jphoto = 0.60 mA·cm-2) compared with the experiment 

performed at 25 ºC. However, at this high temperature the dark current onset started at 

an earlier potential (ca. 1.8 VRHE).  
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Figure 3.2: Temperature effect in the photocurrent density-voltage (J-V) characteristics of the 

WO3 photoanodes: (a) WO3/FTO and (b) WO3/metal; for a range of temperatures from 25 ºC to 

65 ºC, in the dark (dashed lines) and under 1-sun AM 1.5 G illumination (solid lines) 

conditions. (□) T = 25 ºC, (○) T = 35 ºC, (△) T = 45 ºC, (◇) T = 55 ºC, (⤫) T = 65 ºC. 

 

Reference tests at 25 ºC performed among runs showed only changes in the J-V 

curves after running the PEC cell at 55 ºC and 65 ºC; the dark current onset potential 

was at lower potentials, i.e. at 1.9 VRHE and 1.8 VRHE, respectively - see Figure 3.3a. 

Regarding the WO3/metal sample, the highest photocurrent density was also achieved 

at 65 ºC, reaching ca. 2.01 mA·cm-2 at 1.23 VRHE and 2.31 mA·cm-2 at 1.7 VRHE, as 

shown in Figure 3.2b. Considering 25 ºC as the reference temperature, improvements 

of ca. 114 % and 81 %, respectively at 1.23 VRHE and at 1.7 VRHE, were observed. As 

temperature increases, the onset potential is also shifted to lower potentials, i.e. it 

passed from 0.52 VRHE to 0.40 VRHE, respectively at 25 ºC and 65 ºC. However, at 
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65 ºC a small current under dark conditions is observed, a behavior that was not 

observed for temperatures up to 55 ºC. Herein, reference tests performed at 25 ºC 

between experiments were also performed and no major changes were observed - 

Figure 3.3b. 

 

Figure 3.3: Photocurrent density-voltage (J-V) characteristics of the WO3 photoanodes: (a) 

WO3/FTO and (b) WO3/metal for reference tests performed at 25 ºC between experiments and 

before increasing the temperature of the cell; obtained in the dark (dashed lines) and under 1-

sun AM 1.5 G illumination (solid lines) conditions. (□) T = 25 ºC, (○) T = 35 ºC, (△) T = 45 ºC, 

(◇) T = 55 ºC, (⤫) T = 65 ºC. 

 

Analyzing the results presented in Figure 3.2, it can be concluded that the 

photocurrent density increases with temperature and the onset potential shifts to lower 

potentials, allowing to improve the efficiency of the cell and to reduce the external 

potential needed to promote the water splitting reaction (bias). Thus, improvements in 
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the PEC cell performance are observed at higher temperatures since temperature 

contributes to thermal bandgap narrowing of the photoanode (broadening the spectrum 

range absorption) and also decrease the potential required for the water electrolysis 

(described by the Nernst equation). Then, a semiconductor operating at higher 

temperatures will have more available free electrons and holes for charge transport, an 

increased intrinsic carrier population and electrolyte conductivity. Finally, mass 

transport and electroreaction kinetics are also favored by temperature increase, as 

stated by the Einstein relation and by the Butler-Volmer equation, respectively, 

outlining a photocurrent improvement with temperature [4, 5].  

To assess the substrate contribution for the dark current onset potential, J-V 

characteristic curves for the water hydrolysis were obtained for naked substrates of 

FTO glass and tungsten foil, as shown in Figure 3.4. The hydrogen evolution reaction 

(HER) is made at a platinum wire cathode and the oxygen evolution reaction (OER) 

takes place at a FTO glass electrode and at a tungsten foil electrode. For the bare FTO 

substrate, the dark current onset begins at lower potential values as temperature 

increases, e.g. it begins at 1.9 VRHE and 1.4 VRHE for temperatures of 25 ºC and 65 ºC, 

respectively. This behavior is similar to the one obtained for the WO3/FTO photoanode 

(Figure 3.2).  

 

Figure 3.4: Temperature effect in the photocurrent density-voltage (J-V) characteristics of a 

bare FTO-glass substrate and a tungsten foil substrate for a range of temperatures from 25 ºC to 

65 ºC in the dark conditions. (□) T = 25 ºC, (○) T = 35 ºC, (△) T = 45 ºC, (◇) T = 55 ºC, 

(⤫) T = 65 ºC. 
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In typical photoelectrochemical systems the dark current appears at the potential bias 

when the oxidation/reduction of water occurs. When in contact with an electrolyte in 

the dark, charge equilibration occurs at the interface, favoring electron-hole 

recombination. Increasing the temperature, the kinetics is favored due to an increased 

concentration of free holes in the valence band and so the oxidation of water starts at 

lower potentials (as outlined by the Nernst equation). For the tungsten foil (metal) 

substrate this phenomenon is not observed and only a very small anodic dark current 

density (< 0.02 mA·cm-2) was observed as a response to the applied potential bias –

Figure 3.4 [5].  

The inset plot of Figure 3.4 shows a detail of the J-V curves for the water hydrolysis 

at 25 ºC. It is clearly apparent the difference in the electrochemical activity of both 

electrodes, being tungsten electrode much less active for OER. For FTO glass substrate 

the electrocatalytic oxygen evolution starts at ca. 1.9 VRHE, when the dark current 

sharply increased; for the tungsten substrate a small anodic current density of ca. 

0.01 mA·cm-2 is measured up to ca. 4.0 VRHE, when the dark current started to slowly 

increase. So, the negative shift on the dark current onset as a function of the 

temperature should be related to the FTO layer and not to the photoanode material. 

EIS technique was used to extract detailed information about the group of resistances 

and capacitances that describe the behavior of the electrochemical reaction kinetics, 

ohmic conduction processes and mass transport limitations on the PEC cell 

performance. After obtaining the J-V characteristic curves at the selected temperatures 

(25 ºC, 35 ºC, 45 ºC, 55 ºC and 65 ºC), EIS measurements were conducted under dark 

conditions in a three-electrode configuration. This configuration allows understanding 

the phenomena occurring at the semiconductor/electrolyte interface, since the potential 

is measured with respect to a fixed reference potential, short-circuited with the counter 

electrode [18]. For each operating temperature, a suitable electrical analogue was fitted 

to the EIS data, as described elsewhere [5]. The proposed electrical analogue comprises 

a series resistance (RSeries) and two RC elements in series representing the 

semiconductor bulk (RSC and CSC) and the semiconductor/electrolyte interface (RCT and 

CH) – Figure 3.5. The double layer capacitor does not behave ideally, since the 

semiconductors are nanostructured and so a constant phase element (CPE) was used 

instead [18]. The impedance tests of the two samples were carried out in the potential 

range of 0.7 VRHE to 1.6 VRHE, with steps of 0.3 VRHE and the correspondent Nyquist 
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plots are shown Figure 3.6 [left plots] and [right plots] for WO3/FTO and WO3/metal 

samples, respectively.  

 

Figure 3.5: Electrical circuit analog used to fit the EIS data for the WO3 photoanodes. 

 

The overall resistance (RSeries + RSC + RCT) decreases with temperature for both WO3 

samples, in line with the photocurrent density increase; however, the overall PEC cell 

resistance is higher for the WO3/FTO sample. Zooming the Nyquist diagram at the 

high frequency range, it is observed that a temperature independent small semicircle 

appears for the WO3/FTO sample [inset plots in Figure 3.6 (left-side)], which is 

imperceptible in the WO3/metal sample [inset plots in Figure 3.6 (right-side)]. The 

latter is assigned to FTO exposure to the electrolyte; this new interface 

(FTO/electrolyte interface) imposes an extra resistance to the system (not considered in 

the proposed model).  

The EIS spectra obtained at the high frequency range, assigned to the faster electronic 

processes occurring in the semiconductor bulk, was fitted to the RC element composed 

of RSC and CSC, whereas the low frequency range spectra, assigned to the phenomena 

occurring at the semiconductor/electrolyte interface, was fitted to RCT and CH. In fact, 

the temperature increase strongly affects the phenomena occurring at the 

semiconductor/electrolyte interface, since the low frequencies range semicircle 
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decreases considerably with temperature, being this decrease even more obvious at 

higher temperatures (65 ºC).  

 

Figure 3.6: Temperature effect in the Nyquist diagrams of the WO3/FTO sample [left-side 

plots] and WO3/metal sample [right-side plots] obtained for a range of temperatures from 25 ºC 

to 65 ºC, in dark and forward biases: (a) and (e) 0.7 VRHE; (b) and (f) 1.0 VRHE; (c) and (g) 1.3 

VRHE; (d) and (h) 1.6 VRHE. Z ': real impedance, Z '': imaginary impedance; (□) T = 25 ºC, (○) T 

= 35 ºC, (△) T = 45 ºC, (◇) T = 55 ºC, (⤫) T = 65 ºC. On the right-side of each plot is a zoom-

out of the left-side plots. 
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Fitting the electrical circuit analogue shown in Figure 3.5 to experimental EIS data, 

the impedance parameters such as RSeries, RSC, CSC, RCT, CH and kr were then obtained. 

The obtained values are plotted in Figure 3.7 as a function of the operating temperature 

for the applied potential of 1.6 VRHE; both WO3 samples exhibit a current plateau at this 

potential.  

 

Figure 3.7: Temperature effect in the impedance parameters of the WO3/FTO sample (empty 

symbols) and WO3/metal sample (filled symbols) obtained at 1.6 VRHE: (a) series resistance – 

RSeries (□); (b) bulk semiconductor resistance – RSC (○); (c) charge transfer resistance – RCT (△); 

(d) space charge capacitance – CSC (◇); (e) Helmholtz capacitance – CH (⤫); (f) rate constant of 

the electron-hole recombination – kr (▽). 

 

Figure 3.7 shows the differences between the impedance parameter values for the two 

photoanodes under study. The series resistances, RSeries, for the WO3/FTO sample are 

considerable higher than the ones obtained for the WO3/metal sample, as shown in 

Figure 3.7a. Additionally, RSeries for WO3/FTO sample decreases from 8.0 Ω to 5.1 Ω 

when the temperature increases from 25 ºC to 65 ºC. This behavior is not observed for 

the WO3/metal sample, remaining the RSeries values almost constant (ca. 0.4 Ω) for the 

studied temperatures. The series resistance comprehends the substrate resistance, the 

resistance related to the electrolyte ion conductivity and the resistance of the external 
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contacts (e.g. wire connections) [19]. It can then be concluded that the main contribution 

to the RSeries is the substrate resistance to the transport of charges, since the other series 

resistances are equal for both electrodes. FTO layer imposes a higher resistance and, 

consequently, decreases the charge collection efficiency in the external circuit. 

The electrical resistance related to the bulk semiconductor, RSC, should decrease with 

temperature, associated to a faster electron transport through the WO3 photoactive 

material [5]. For the WO3/metal sample, RSC decreases from 6.9 × 102 Ω to 1.3 × 102 Ω 

when temperature increases from 25 ºC to 65 ºC and a more pronounced decrease is 

observed at 55 ºC (Figure 3.7c) shows the behavior of the charge transfer resistance, 

RCT, and a decrease with temperature is observed for both samples; so no differences 

related to the temperature effect in the resistance contribution on the substrate material 

are noticed. The major differences are related to the electrocatalytic activity of the 

WO3 semiconductor material [20]; in the temperature range studied, RCT decreased from 

3.4 × 103 Ω to 3.9 × 102 Ω and 7.5 × 104 Ω to 1.2 × 104 Ω for the WO3/metal and 

WO3/FTO samples, respectively. Moreover, the RCT decrease with temperature is 

responsible by an enhanced charge transfer phenomena. If the overall resistance in the 

system favors the photocurrent increase with temperature, this means that the RCT 

decrease has a more pronounced effect than the RSC decrease. 

On the other hand, the space charge capacitance (CSC) and the Helmholtz capacitance 

(CH) are almost temperature independent – cf. Figure 3.7d and Figure 3.7e, 

respectively. The CH values are higher than the CSC values, since the Helmholtz double 

layer width is generally smaller than the width of the depletion layer in photo-assisted 

water splitting systems [5].  

Figure 3.7f shows the evolution of the rate constant (kr) of the bulk electrons 

recombination with holes in the space charge layer as a function of the operating 

temperature. It corresponds to the inverse of the time constant of the bulk 

semiconductor RC element (obtained by multiplying the semiconductor resistance, RSC, 

with the correspondent capacitance, CSC). The recombination rate constant is in the 

range of 100 – 1 s-1 and a faster electron-hole recombination (higher kr) is observed 

with temperature for both samples. This process is ascribed to an increased back 

electron reaction promoted by accumulated charges on the surface of the photoanode, 

resulting in higher electron-hole recombination. The recombination loss pathway has to 

be taken into account for the performance of PEC cells, since it is potentially in direct 
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kinetic competition with water oxidation by accumulated holes. In particular, the 

recombination rate constant strongly increases at 55 ºC and 65 ºC for WO3/FTO 

sample and at 65 ºC for WO3/metal sample. 

The intrinsic power characteristics of the WO3 photoelectrodes were obtained from 

the J-V curves (Figure 3.2) as a function of the temperature: power conversion (P) 

efficiency, fill factor (FF), intrinsic solar to chemical (ISTC) conversion efficiency of 

the photoanode, photocurrent density (Jphoto) and correspondent photopotential (Ephoto). 

These parameters were determined following the work reported by Dotan et al. [21]. The 

intrinsic photovoltaic power of the photoanodes is the product of photocurrent by 

photopotential; by plotting it vs. photopotential, the maximum power point (MMP) can 

be obtained and the respective potential (EMPP) and current (JMPP). The ISTC efficiency 

was determined from the following equation: 

 
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 photo photophoto photo RHE
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





  
  

    

 (3.1) 

where ηel is the electrolysis efficiency and Udark is the potential that must be applied to 

the photoanode in order to reach the correspondent current in the dark. The temperature 

effect in the intrinsic power characteristics of the WO3/FTO and WO3/metal samples is 

shown in Figure 3.8; the summary of the parameters at the maximum power point is 

also presented in Table 3.1.  
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Figure 3.8: Temperature effect in the intrinsic power characteristics, i.e. the power (P) and 

intrinsic solar to chemical (ISTC) conversion efficiencies, of the WO3 photoanodes: (a) and (c) 

WO3/FTO sample; and (b) and (d) WO3/metal sample. (□) T = 25 ºC, (○) T = 35 ºC, (△) T = 45 

ºC, (◇) T = 55 ºC, (⤫) T = 65 ºC. 

 

Figure 3.8 shows that maximum power and intrinsic solar to chemical conversion 

efficiencies increase with temperature for both types of WO3 photoanodes, being the 

obtained values higher for the WO3/metal sample, as expected from the J-V 

characteristics. However, the fill factor parameter for the WO3/FTO sample increases 

only until 45 ºC (see Table 3.1). This can be explained by the enhanced charge 

recombination loss for temperatures higher than 45 ºC, since a reduction of FF is 

normally reached when the recombination rate is significantly higher than the 

extraction rate [22]. Actually this was validated by EIS measurements (Figure 3.7), 
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where the recombination rate constant of the bulk electrons with holes strongly 

increases for the two higher temperatures. The results indicated that the trend of each 

intrinsic power parameters depends on the recombination rate constant, which is also 

affected by the temperature and the semiconductor interfaces present in the solar cell 

[23]. Therefore, a PEC device equipped with the WO3/FTO photoanode showed the 

optimal performance conditions when operating at 45 ºC, ensuring simultaneously the 

highest fill factor, FF = 72.69 %, a power conversion, P, value of ca. 0.57 mW·cm-2 

and an intrinsic solar to chemical conversion, ISTC, efficiency value of ca. 0.28 %. 

Regarding the cell using the WO3/metal sample, even if the best performance was 

observed at 65 ºC (FF = 50.84 %, P = 2.20 mW·cm-2 and ISTC = 2.38 %) the 

improvement in terms of FF is only ca. 0.55 % due to a noticeable increase of the kr 

value – see Figure 3.7f. Balancing this behavior with an increased dark current at 65 ºC 

(Figure 3.2), the best operating temperature should be considered at 55 ºC. 

 

Table 3.1: Intrinsic power characteristics of the WO3/FTO and WO3/metal samples; Jphoto, 

Vphoto, P, FF and ISTC efficiency obtained at MPP. 

Samples 
T / 

ºC 

Jphoto / 

mA·cm-2 

Ephoto / 

VRHE 

P / 

mW·cm-2 

FF / 

% 

ISTC / 

% 

WO3/FTO 

25 0.34 1.30 0.44 63.54 0.23 

35 0.35 1.37 0.48 66.24 0.23 

45 0.42 1.36 0.57 72.69 0.28 

55 0.46 1.35 0.62 70.88 0.31 

65 0.59 1.09 0.64 65.24 0.36 

WO3/metal 

25 1.05 0.99 1.04 46.98 1.06 

35 1.09 1.11 1.21 48.08 1.11 

45 1.28 1.12 1.43 49.57 1.31 

55 1.51 1.14 1.52 50.56 1.54 

65 1.95 1.13 2.20 50.84 2.38 
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3.3.2 STABILITY BEHAVIOR OF THE PEC CELL AT HIGH TEMPERATURES 

The performance histories of the WO3/FTO and WO3/metal samples were evaluated at 

the best operating temperature abovementioned, 45 ºC for WO3/FTO and 55 ºC for 

WO3/metal samples. A reference stability test was also performed at room temperature 

(25 ºC) with a fresh WO3/FTO sample.  Figure 3.9 plots the photocurrent histories over 

72 hours under continuous 1-sun AM 1.5 G illumination for both samples.  

 

Figure 3.9: Photocurrent histories of the WO3 photoanodes tested over 72 h at a constant 

potential of ca. 1.23 VRHE, under continuous 1-sun AM 1.5 G illumination and at different 

temperatures: (a) WO3/FTO samples aged at 25 ºC (red line) and 45 ºC (blue line); and (b) 

WO3/metal sample aged at 55 ºC (green line). Inset plot for the first 4 h of stability tests. 

 

From Figure 3.9  significant photocurrent density decrease is observed during the 

initial period of 4 h for both samples, which is typical for the WO3 photoanodes, as 

reported elsewhere [10, 11]. Photocurrent density of the WO3/FTO photoanode remains 

mostly stable over 60 h (after the initial period) with an average value of 0.51 mA·cm-2 
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and 0.57 mA·cm-2 for samples aged at 25 ºC and 45 ºC, respectively. The test was 

stopped after 72 h, when the photocurrent of both samples lost ca. 10 %. Since the 

reference stability test at 25 ºC and the test at 45 ºC showed similar behaviors, it can be 

concluded that temperature increase up to 45 ºC allows to improve the efficiency of the 

PEC cell with no significant influence on the stability performance. The J-V 

characteristics of both samples before and after running the stability tests at 25 ºC and 

45 ºC are shown in Figure 3.10.  

 

Figure 3.10: Photocurrent density-voltage (J-V) characteristics of the WO3 photoanodes tested 

in the dark (dashed lines) and under 1-sun AM 1.5 G illumination (solid lines) before and after 

stability test: (a) WO3/FTO samples: fresh cell at T = 25 ºC (△) and at T = 45 ºC (○), aged cell 

after 72 h of stability at T = 25 ºC (▲) and at T = 45 ºC (●); (b) WO3/metal sample: fresh cell at 

T = 25 ºC (□) and at T = 55 ºC (○), aged cell after 72 h of stability at T = 25 ºC (■) and at 

T = 55 ºC (●). 
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Under simulated sunlight conditions and at 25 ºC, the photocurrent of the WO3/FTO 

sample at 1.23 VRHE decreased after the stability test from ca. 0.56 mA·cm-2 to 0.47 

mA·cm-2; likewise, at 45 ºC it decreased from ca. 0.66 mA·cm-2 to 0.53 mA·cm-2. In 

dark conditions, the onset potential for both samples tends to appear at lower potentials 

after aging, i.e. moved from 2.1 VRHE to 2.0 VRHE. The dark current onset at lower 

potentials may be related to semiconductor detachment from the substrate, allowing 

FTO areas to contact directly with the electrolyte.  

The morphology of the WO3/FTO film was then investigated by SEM and EDS 

before and after performing the stability tests to assess the surface integrity of the 

samples – Figure 3.11. Before the aging test, SEM images of the WO3/FTO sample 

show a network of plate-like particles with diameters of a few tens of nanometers 

(ranging from 20 to 50 nm) partly fused together, forming a WO3 nanocrystalline film 

of ca. 1.1 μm thick – cf. Figure 3.11a [12]. The EDS analysis of area Z1 in Figure 3.11a 

(3) displays just the presence of tungsten (W) and oxygen (O) elements. Figure 3.11b 

(4) and Figure 3.11c (7) show similar film morphology for WO3/FTO samples after 

performing the stability tests at 25 ºC and 45 ºC, respectively. The aged WO3 surfaces 

seem to present higher porosity assigned to material detachment from the FTO glass 

substrate. Figure 3.11b (5) shows two distinct areas in the sample aged at 25 ºC: area 

Z1 that apparently was unaffected by corrosion and area Z2 affected by film 

degradation. In the sample aged at 45 ºC it can be detected three different areas: an 

intact area (Z1) and two degraded areas (Z2 and Z3) – cf. Figure 3.11c (8). For both 

aged samples, the EDS analysis confirmed the presence of tin (Sn) in the areas 

potentially affected by corrosion; these results are in agreement with other studies [5, 19]. 

Since the samples aged at 25 ºC and 45 ºC show similar morphologic degradation, it 

can be concluded that the photocurrent loss should not be ascribed to the temperature 

effect.  
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Figure 3.11: SEM images of the WO3/FTO photoanodes. (a) Before testing: (1) surface top 

view; (2) cross sectional view; (3) EDS analysis of the surface with the identification of the 

tungsten and oxygen peaks. (b) After aging tests at 25 °C: (4) surface view; (5) surface with an 

intact area (Z1) and an area affected by film degradation (Z2); (6) EDS analysis on the two 

delimited areas with the identification of the tungsten, oxygen and tin peaks. (c) After aging 

tests at 45 °C: (7) surface view; (8) surface with an intact area (Z1) and areas affected by film 

degradation (Z2 and Z3); (9) EDS analysis on the three delimited zones with the identification 

of the tungsten, oxygen and tin peaks. 

 

Concerning the stability performance of the WO3/metal sample evaluated at 55 °C, 

after a photocurrent decrease of ca. 9 % during the initial 4 h, the generated 

photocurrent density remained almost stable for whole period of 72 h – see Figure 
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3.9b. Thus, a photocurrent value of ca. 1.47 mA·cm-2 was reached at the end, 

corresponding to ca. 2 % decrease after the initial period. From the J-V characteristics, 

no significant differences in the dark current were observed before and after running 

the aged tests, as shown in Figure 3.10. 

Figure 3.12 shows SEM images of the fresh and aged WO3/metal sample. The fresh 

sample presents the typical “crispy” surface composed of nanoparticles (ca. 50 - 

100 nm) interconnected by a nanoscopic structure with an average layer thickness of 

ca. 3.5 μm [17]. This consists of a two-layers nanostructure: a compact oxide layer of 

ca. 1.3 μm originated by the first anodization of the starting tungsten foil, followed by 

a porous nanoparticle oxide layer of ca. 2.2 μm – cf. Figure 3.12a (2). No morphologic 

changes were observed on the aged sample. Moreover, EDS analysis of both samples 

only detected W and O elements – cf. Figure 3.12  (3) and (6).  

 

Figure 3.12: SEM images of the WO3/metal photoanodes (a) before testing and (b) after aging 

tests at 55 ºC, respectively: (1) and (4) surface top view; (2) and (5) cross sectional view; (3) 

and (6) EDS analysis with the identification of the tungsten and oxygen peaks. 
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The crystallinity of the WO3 films also influences the efficiency and stability of the 

PEC water splitting cells, since the number of grain boundaries and recombination 

centers associated with the degree of photoelectrode crystallinity control the 

photoelectrochemical properties of the films [12, 24]. In this regard, XRD patterns of the 

WO3 films before and after aging tests were obtained and are presented in Figure 3.13.  

 

Figure 3.13: XRD spectra of the WO3 photoanodes: (a) WO3/FTO sample aged at 45 ºC and (b) 

WO3/metal sample aged at 55 ºC. Blue and red lines correspond to signs of the WO3 samples 

before testing and after aging tests, respectively. Main peaks from the FTO-glass and tungsten 

substrates are also labeled with “*”. 

 

For WO3/FTO samples the reflection peaks of the fresh sample (blue line) completely 

matches with WO3 monoclinic phase (JCPDS 01-083-0950) - Figure 3.13a; a series of 

peaks (labeled with asterisk “*”) originated from the dense F:SnO2 layer (FTO) 

(cassiterite), underneath the semiconductor layer, are also detected. The XRD spectrum 

of a preferentially orientated monoclinic WO3 film exhibits the characteristic triplet for 

peaks at 23.1º, 23.6º and 24.4º, corresponding to (002), (020) and (200) planes; peaks 

at range 33º – 35º and 41º – 42º are also presented but with less intensity. This sample 
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shows a high intensity peak at 24.4º, indicating a (200) preferential orientation of the 

WO3 crystallites parallel to the FTO glass substrate. However, the aged WO3/FTO 

sample (red line) showed an amorphous structure. This should contribute to the 

photocurrent decrease after 60 h, since it is known that improved crystallinity is 

advantageous to the photoelectrode performance, ascribed to the decreased number of 

recombination sites [24].  

On the other hand, for fresh and aged WO3/metal sample, the diffraction patterns 

indicate the presence of a crystalline monoclinic phase – cf. Figure 3.13b. Again, the 

WO3 patterns are superimposed on the metallic tungsten substrate pattern. Before 

testing (blue line), the WO3/metal film presented a (020) preferential orientation, 

although the double peak around 41.6º, representing the (-222) and (222) planes, is also 

strong. Despite the WO3 films for WO3/FTO and WO3/metal samples were both 

monoclinic phase, they had different preferential orientation of crystal faces. This can 

be related to different fabrication methods as well as different film adhesion to the 

substrate that should be accounted for the photocurrent and stability performance of the 

semiconductor materials. After aging tests (red line), the double peak at 41.6º was the 

mainly detected, indicating the preferential orientation of the aged WO3 crystal faces to 

the (-222) and (222) planes. Interestingly, the presence of this double peak with an 

intensity order similar to the fresh sample can justify the high stability performance of 

the WO3 photoanodes anodized on tungsten foil substrates. Hence, the relatively good 

crystallinity of this sample and the preservation of morphology contributed to its 

highest PEC performance for oxygen evolution reaction. The optimal operation 

temperature for WO3/metal photoanode is then 55 ºC, since it ensures simultaneously 

the highest photocurrent density and stable performance. 
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3.4 CONCLUSIONS 

The temperature influence on the PEC cell performance using WO3 photoanodes for 

water splitting was studied. The WO3 photoanodes were prepared on different 

substrates by using two techniques: deposition by blade spreading method on a FTO 

glass substrate and anodization of a tungsten foil substrate. Herein, the main goal was 

the assessment of the substrate type role on the photoelectrode performance as a 

function of the temperature. J-V characteristic curves, EIS measurements and aging 

tests were used, as well as SEM and XRD analysis, to assess the morphology and 

crystallography of the prepared WO3 samples.  

The PEC device was characterized from 25 ºC to 65 ºC, with steps of 10 ºC. At 25 ºC, 

the highest photocurrent density was reached for the WO3/metal photoanode, ca. 

0.94 mA·cm-2 at 1.23 VRHE, whereas a photocurrent of ca. 0.36 mA·cm-2 was obtained 

for the WO3/FTO sample. These differences are not only due to the semiconductor 

preparation method but also to the much higher charge transport resistance imposed by 

the FTO substrate. When the temperature is further increased to 45 ºC, the generated 

photocurrent increased ca. 20 % in the case of the WO3/FTO sample and ca. 29 % for 

the WO3/metal sample, both at 1.23 VRHE. At the maximum tested temperature (65 ºC) 

both samples generated higher photocurrents at 1.23 VRHE, i.e. 2.02 mA·cm-2 and 

0.62 mA·cm-2 for the WO3 photoanodes on FTO and metal substrates, respectively. 

However, the WO3/metal showed a small current under dark conditions, while the 

WO3/FTO exhibited already a quite high dark current onset potential at ca. 1.80 VRHE. 

The negative shift on the dark current onset potential of the WO3/FTO was mainly 

attributed to temperature effect on FTO glass substrate and not to the photoanode 

material. 

The J-V and impedance measurements allowed concluding about the optimal 

operating temperature for each type of tungsten trioxide photoelectrodes under study: 

45 ºC for the WO3/FTO sample and 55 ºC and the WO3/metal sample. For higher 

temperatures, an increased recombination rate of the bulk electrons with holes was 

observed, which is in direct kinetic competition with water oxidation and, 

consequently, should affect the overall performance of the photoanodes. The aging 

tests performed at these temperatures showed that WO3/metal has simultaneously the 

best stability and performance for the oxygen evolution reaction. No degradation was 
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observed for aged WO3/metal film; this behavior might be related to the preferential 

orientation of the crystal faces – cf. (-222) and (222) planes. WO3/FTO photoanode 

exhibited a slight photocurrent decrease after aging for both temperatures tested (25 ºC 

and 45 ºC). The performance loss was attributed to changes in the monoclinic 

crystalline structure of the WO3/FTO film, i.e. the semiconductor layer became 

amorphous. Therefore, the substrate and application method have a significant role on 

the photoelectrode energy performance and stability. 
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ABSTRACT 

Photoelectrodes that are efficient, highly stable, made from low cost materials and 

easily prepared using inexpensive techniques are required for commercially viable 

photoelectrochemical (PEC) water splitting technology. Hematite is one of few 

materials that is being considered for this application. In this work, bare hematite thin 

films prepared by spray pyrolysis were systematically optimized following a design of 

experiments approach. A response surface methodology was applied to factors: i) 

sprayed volume of solution; ii) temperature of the glass substrate during the deposition; 

and iii) time gap between sprays and the optimized operating conditions obtained were 

v = 42 mL, T = 425 ºC and t = 35 s. The optimized hematite photoelectrode showed a 

photocurrent density of ca. 0.94 mA·cm-2 at 1.45 VRHE, without dopants or co-catalysts, 

which is remarkable for a thin film of ca. 19 nm. The stability of this photoelectrode 

was assessed over 1000 h of PEC operation under 1-sun of simulated sunlight. A 

record-breaking result was obtained with no evidences of hematite film degradation 

neither of current density loss. These results open the door to turn PEC cells into a 

competitive technology in the solar fuel economy. 

 

 

Keywords: Hematite Photoanodes, Photoelectrochemical Water Splitting, Spray 

Pyrolysis, Design of Experiments, Thin Films, Long-term Stability. 
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4.1 INTRODUCTION 

Numerous metal oxide semiconductors have been tested for photoelectrochemical 

(PEC) water splitting and hematite (α-Fe2O3) photoanode is emerging as one of the 

most promising materials [1, 2]. Hematite offers a favorable combination of good visible 

light absorption (up to 590 nm), excellent chemical stability, non-toxicity, abundance 

and low price [3, 4]. Additionally, with a bandgap of 2.1 eV, α-Fe2O3 has a potential to 

convert ca. 16.8 % of the solar energy into hydrogen (STH), corresponding to a 

maximum thermodynamic STH efficiency of 12.6 mA∙cm-2  [1, 5]. Recent works 

reviewing the progress of hematite photoanode identified many challenges to be 

overcome for an efficient performance in a PEC water splitting system [6, 7]: 

i. Band edges not being properly aligned to the redox levels, i.e. flatband 

potential too low in energy for water reduction;  

ii. Large overpotential for water oxidation, which can be addressed through the 

combination of two or more semiconductors in a tandem arrangement, e.g. a 

photocathode [8] or a photovoltaic (PV) cell [9, 10];  

iii. Low absorption coefficient, requiring a long photon penetration depth with 

thicker films of 400 – 500 nm for complete light absorption [6]; 

iv. Poor majority carrier conductivity, demanding for high doping levels that will 

increase the ionized donor concentration and thus electrical conduction; 

v. Short holes diffusion length (LD = 2 – 4 nm), due to the ultrafast recombination 

of photogenerated minority carriers [11]. 

Research efforts along these drawbacks and further fundamental studies of PEC 

properties of hematite have shown: i) improvement of generated photocurrent density 

by morphology optimization (e.g. using different deposition methods [6]) and doping 

(e.g. with Si [12], Ti [13], Sn [14], Pt [15]); ii) improvement of generated photopotential 

minimizing the electron-hole recombination, especially at the photoelectrode surface 

[16]; and iii) reduction of the electrochemical activation overpotential using co-catalysts 

(e.g. IrO2 
[17], Co-Pi [15], NiFeOx [18]). Figure 4.1 shows the performance of an ideal 

hematite photoanode [6].  
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Figure 4.1: Ideal hematite performance (black line) compared to the typical performance (red 

line) under 1-sun AM 1.5 G illumination (adapted from ref. [6]).  

 

The performance of hematite photoanodes is, therefore, very sensitive to the 

deposition method, either in terms of efficiency and stability. Innovative ways to 

control the morphology should be developed to optimize the hematite feature size/film 

thickness and crystals structure at nanometer length scale [19]. There are many 

deposition methods reported to deposit hematite: i) solution-based colloidal [15]; ii) 

electrochemical iron oxide nanostructuring; iii) spray pyrolysis (SP) and ultrasonic 

spray pyrolysis (USP) [20]; iv) atmospheric pressure chemical vapor deposition 

(APCVD) [17]; v) physical vapor deposition (PVD) [21]; and vi) atomic layer deposition 

(ALD) [11]. Table 4.1 reviews the hematite photoanodes literature, indicating the 

preparation techniques and the obtained photoresponse and stability.  

Recently, Guo et al. [22] achieved a new record-breaking of ca. 5.70 mA·cm-2 at 

1.23 VRHE with Ru-doped α-Fe2O3 nanorods films. This highly photoactive material 

was prepared by doctor blading process and followed by an annealing treatment at 

700 ºC in air, showing a film thickness of 500 nm. However, the preparation of 

hematite thin films is desirable considering their charge transport limitation, i.e. thin 

films should minimize the recombination losses while light absorption is adaptable by 

the nanostructure thickness. Indeed, spray pyrolysis and ALD are the techniques that 

allow to deposit thinner films with good uniformity and photocurrent performance. 



CHAPTER 4 

 

146 

In the present study, hematite thin films were prepared by spray pyrolysis exhibiting 

high performance and great reproducibility, which is crucial for future industrial 

applications. The prepared hematite thin films revealed to be highly stable producing 

ca. 0.94 mA·cm-2 at 1.45 VRHE over 1000 h of sunlight exposure (AM 1.5 G, 

100 mW∙cm−2) in a 1 M NaOH electrolyte solution.  

 

Table 4.1: Overview of the reported results for hematite photoanodes performance; grouped by 

technique and ordered by photoresponse, Jphoto. 

Technique Feature 

size/ 

Thickness 

Dopant/ 

Treatment 

PEC 

conditions 

Jphoto     

(1.23 VRHE) 

Stability Ref./ 

Date 

SP 50 – 100 nm None/ 

None 

1 M NaOH;  

130 mW∙cm-2 

0.2 mA∙cm-2   [23]/ 

2005 

SP 200 nm 

thick 

Si/  

SnO2 

underlayer 

1 M NaOH;  

80 mW∙cm-2 

0.4 mA∙cm-2   [24]/ 

2008 

SP 23.3 nm 

thick 

None/ 

TEOS 

underlayer 

1 M NaOH;  

100 mW∙cm-2 

(AM 1.5 G)  

0.4 mA∙cm-2   [25]/ 

2010 

SP 30 nm  

thick 

None/ 

Ga2O3 

overlayer + 

Co2+ co-

catalyst 

1 M NaOH;  

100 mW∙cm-2 

0.4 mA∙cm-2  Stable over  

4 h 

[26]/ 

2011 

SP 30 nm  

thick 

None/ 

Ga2O3 

underlayer 

1 M NaOH;  

100 mW∙cm-2 

0.4 mA∙cm-2   [27]/ 

2011 

SP 30 nm  

thick 

None/ 

None 

0.2 M 

Na2SO4;  

100 mW∙cm-2 

0.4 mA∙cm-2   [28]/ 

2015 

SP 800 nm 

thick 

Al + Ti/ 

None 

0.1 M NaOH; 

150 W Xe 

lamp 

1.1 mA∙cm-2   [29]/ 

2005 

SP 20 nm  

thick 

Ti/ 

None 

1 M NaOH;  

150 mW∙cm-2 

1.2 mA∙cm-2   [30]/ 

2010 

USP 50 nm  

thick 

Si/ 

TEOS 

1 M NaOH;  

100 mW∙cm-2 

0.3 mA∙cm-2  10 % decay 

after 144 h 

[31] / 

2014 

USP 30 nm  

thick 

Nb/ Ga2O3 

overlayer + 

Co-Pi co-

catalyst 

1 M NaOH;  

100 mW∙cm-2 

0.5 mA∙cm-2   [11]/ 

2014 
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USP 145 nm 

thick 

Si (TEOS)/ 

None 

1 M NaOH;  

100 mW∙cm-2 

0.9 mA∙cm-2 

and IPCE 16 

% at 375 nm  

 [32]/ 

2006 

USP 100 nm None/ 

None 

1 M NaOH;  

130 mW∙cm-2 

1.1 mA∙cm-2 

and IPCE 16 

% at 375 nm  

 [23]/ 

2005 

ALD 25 nm  

thick 

None/ 

None 

1 M NaOH;  

100 mW∙cm-2 

0.3 mA∙cm-2  [33]/ 

2010 

ALD 12 nm  

thick 

TiO2 

underlayer + 

Ni(OH)2 co-

catalyst 

1 M NaOH;  

100 mW∙cm-2 

0.3 mA∙cm-2  [34]/ 

2015 

ALD 22 nm  

thick 

None/ 

Ga2O3 

underlayer + 

Co-Pi co-

catalyst 

1 M NaOH;  

100 mW∙cm-2 

0.7 mA∙cm-2 Stable over 

1 h 

[35]/ 

2014 

ALD 32 nm  

thick 

None/ 

Ga2O3 

underlayer + 

Ni(OH)2 co-

catalyst 

1 M NaOH;  

100 mW∙cm-2 

0.7 mA∙cm-2 Stable over 

100 s 

[36]/ 

2014 

APCVD 100 – 150 

nm 

None/ 

CoFPc co-

catalyst 

0.1 M NaOH;  

100 mW∙cm-2 

0.9 mA∙cm-2 

(bare:  

0.3 mA∙cm-2)  

Stable over  

1 h 

[37]/ 

2015 

APCVD 500 nm 

thick 

Si (TEOS)/ 

TEOS 

underlayer + 

Co(NO3)2 

co-catalyst 

1 M NaOH;  

100 mW∙cm-2 

2.7 mA∙cm-2 

and IPCE 36 

% at 400 nm  

 [38]/ 

2006 

APCVD 700 nm 

thick 

Si (TEOS)/ 

Al2O3 

overlayer 

and Co2+ co-

catalyst 

1 M NaOH;  

100 mW∙cm-2 

2.7 mA∙cm-2 Unstable 

over 1 h 

[39]/ 

2011 

APCVD 700 nm 

thick 

Si (TEOS)/ 

IrO2 co-

catalyst 

1 M NaOH;  

100 mW∙cm-2 

3.0 mA∙cm-2 

and IPCE 50 

% at 320 nm  

Slight decay 

over 200 s 

[17]/ 

2010 

EDa 23 nm/ 

920 nm 

thick 

Zr/ 

None 

1 M NaOH,  

150 mW∙cm-2 

0.1 mA·cm-2 Stable over  

1 h 

[40]/ 

2010 

ED 70 – 100 

nm/ 1.3 – 

1.8 μm thick 

Cd/ 

None 

1 M NaOH,  

410 mW∙cm-2 

1.4 mA∙cm-2   [41]/ 

2011 
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ED 20 – 50 nm Mo/ 

None 

1 M NaOH,  

410 mW∙cm-2 

1.5 mA∙cm-2 

and IPCE 8 % 

at 400 nm 

 [42]/ 

2008 

ED 100 – 200 

nm/ 200 – 

300 nm 

thick 

Ti + Zn/ 

None 

1 M NaOH;  

100 mW∙cm-2 

1.5 mA∙cm-2   [43]/ 

2014 

PVD  

(PLDb) 

70 nm 

thick 

None/ 

TEOS 

underlayer 

1 M NaOH; 

100 mW∙cm-2 

0.3 mA∙cm-2  [44]/ 

2010 

PVD 

(HiPMSc) 

45 nm 

thick 

None/ 

None 

1 M NaOH; 

100 mW∙cm-2 

0.3 mA∙cm-2 

and IPCE 11 

% at 350 nm 

Stable over  

3 h 

[45]/ 

2015 

PVD  

(PLD) 

70 nm 

thick 

None/ 

FeOOH co-

catalyst 

1 M NaOH;  

100 mW∙cm-2 

0.9 mA∙cm-2 

IPCE 20 % at 

400 nm (bare: 

0.2 mA∙cm-2) 

4.4 % decay 

over 70 h 

[21]/ 

2015 

Single 

crystal 

μm Nb/ 

None 

1 M NaOH; 

100 W/Hg 

lamp  

(20 mW∙cm-2) 

135 μA∙cm-2 

and IPCE 37 

% at 370 nm 

 [46]/ 

1988 

Sintered p-

crystalline 

disk 

μm Si/ 

None 

1 M NaOH;  

100 mW∙cm-2 

125 μA∙cm-2 

and IPCE 34 

% at 400 nm 

 [47]/ 

1982 

Solution-

based 

colloidal  

30 – 40 nm/ 

300 nm 

thick 

Ti/ 

SiO2 

1 M NaOH,  

100 mW∙cm-2 

0.8 mA∙cm-2 

IPCE 47 % at 

350 nm 

 [48]/ 

2010 

Solution-

based 

colloidal 

500 nm 

thick 

None/ 

Pi coating 

0.1 M K-Pi;  

100 mW∙cm-2 

1.3 mA∙cm-2 

(bare: 0.3 

mA∙cm-2) 

Stable over  

3 h (bare: 75 

% decay) 

[49]/ 

2014 

Solution-

based 

colloidal 

40 nm/ 

100 nm 

thick 

Sn/ 

None 

1 M NaOH,  

AM 1.5 G  

100 mW∙cm-2 

1.9 mA∙cm-2 

and IPCE 19.2 

% at 400 nm 

 [14]/ 

2011 

Solution-

based 

colloidal  

500 nm 

thick 

P/ 

Co-Pi co-

catalyst 

1 M NaOH;  

100 mW∙cm-2 

3.1 mA·cm-2 

(bare: 0.8 

mA∙cm-2) 

12 % decay 

after 1 h 

(bare: stable 

over 40 h) 

[49]/ 

2015 

Solution-

based 

colloidal 

50 nm/ 

500 nm 

thick 

Pt/ 

Co-Pi co-

catalyst 

1 M NaOH;  

100 mW∙cm-2 

4.3 mA∙cm-2 

and IPCE 60 

% at 375 nm 

(bare: 1.3 

mA∙cm-2) 

Stable over 

3 h 

[15]/ 

2013 
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Solution-

based 

colloidal 

500 nm 

thick 

Ru 1 M NaOH;  

100 mW∙cm-2 

5.7 mA∙cm-2 

and IPCE 82 

% at 320 nm 

(bare: 0.31 

mA∙cm-2) 

 [22]/ 

2015 

a ED: electrodeposition 

b PLD: pulsed layer deposition 

c HiPIMS: high impulse power magnetron sputtering 

 

4.2 EXPERIMENTAL 

4.2.1 HEMATITE PHOTOANODES PREPARATION 

The synthesized materials were prepared by spray pyrolysis in an in-house assembled 

setup consisting of: i) spray pyrolysis chamber; ii) automatic syringe pump; iii) liquid 

and air feeding system; and iv) spray nozzle and its control system; v) heating plate 

and its control system – Figure 4.2. The spray nozzle (Spraying Systems Co. model SU 

J4B-SS) was fed with an ethanolic solution of iron (iron (III) acetylacetonate - 

Fe(AcAc)3) and mixed with compressed air, directing the spray to the substrates at ca. 

2 bar. An automatic syringe pump (Cronus programmable Sigma 2000 C, SMI-Labhut 

Ldt, UK) was used to deliver 1 mL of 10 mM of Fe(AcAc)3 (99.9 %, Aldrich) in EtOH 

(99.5 %, Aga) to the spray head, at a flowrate of 12 mL·min-1 (spray length of 5 s). The 

heated plate, 18 × 18 cm2, displayed a uniform surface temperature regulated up to 

550 ºC. The substrates were placed on the heated plate at constant temperature; a range 

of 400 ºC to 500 ºC was tested. After the spray deposition, the hematite samples were 

air-annealed for 30 min at 550 ºC, before being cooled down to the room temperature. 

This setup allows depositing homogeneous films up to 10 × 10 cm2. For each set of 

parameters tested, three samples were prepared to assess the reproducibility.  

The photoanodes were prepared on 2.2 mm thick, 7 Ω·square-1 fluorine-doped tin 

oxide (FTO) coated glass substrates (Solaronix, Switzerland). The glasses were 

adequately cleaned as described elsewhere [50]. A TEOS (tetraethyl orthosilicate) pre-

treatment was also performed to allow better α-Fe2O3 film organization, reducing the 

interfacial strain between the FTO layer and the hematite crystals and, consequently, a 

photoactivity response improvement [25]. The FTO-glass substrates were heated at 

450 ºC and ca. 1.5 mL of a diluted TEOS solution (10 % volume in ethanol) were 
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hand-sprayed with a glass atomizer onto the heated substrates. These samples were 

cooled down before heating again to deposit the hematite film.  

 

Figure 4.2: Spray pyrolysis setup assembled for the deposition of hematite films: (a) 

photograph; and (b) schematic representation. 
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4.2.2 RESPONSE SURFACE METHODOLOGY 

According to literature [12, 23], the deposition of hematite films by spray pyrolysis 

technique strongly depends on several operating parameters. An optimization 

procedure is necessary to obtain the best operating conditions and, therefore, to 

develop an efficient and stable photoanode. This optimization was done using a 

response surface methodology implemented in a commercial software (JMP 8.0.2, SAS 

software). This method combines mathematical and statistic tools for studying 

effective way processes where responses are dependent on several operating variables 

[51]. In this work the central composite design method was considered for fitting the 

obtained second order models. The selected response variable was the photocurrent 

density (Jphoto, in mA∙cm−2) generated by the prepared material at a bias potential of 

1.45 VRHE.  

Several preliminary tests were performed to assess the influence of different 

operating conditions on the performance of the bare hematite photoanodes. The 

deposition parameters selected for optimization were: i) sprayed solution volume (v); 

ii) temperature of the glass substrate during the deposition (T); and iii) time gap 

between sprays (t) – Table 4.2. The following parameters were set constant: i) 

concentration of the iron solution was 10 mM; ii) distance of the spray head to the 

sample was 20 cm and; iii) annealing temperature was 550 ºC. 

 

Table 4.2: Central composite design factors and their respective levels. 

Factor Symbol 
Level 

-1 0 1 

v / mL x1 30 45 60 

T / ºC x2 400 450 500 

t / s x3 30 45 60 

 

For generating the design matrices, dimensionless (coded) factors (Xi), ranging from 

1 to +1 were used. These factors are computed from their actual values (xi), middle 

value and the semi-variation interval according to [52]:  

1
1

45

15

x
X


 ; 2

2

450

50

x
X


 ; 3

3

45

15

x
X


    (4.1) 
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4.2.3 ELECTROCHEMICAL CHARACTERIZATION 

A PEC cell device known as “cappuccino” [53] was chosen to perform the 

electrochemical characterization of the prepared hematite photoanodes - Figure 4.3. 

This cell was filled with a 1 M NaOH (25 ºC, pH 13.6) electrolyte solution in which 

the photoelectrode was immersed. The surface area illuminated was ca. 0.5 cm2 

defined by an external mask. A standard three-electrode configuration was used: 

Ag/AgCl/Sat. KCl (Metrohm, Switzerland) as a reference electrode (RE), 99.9 % pure 

platinum wire (Alfa Aesar®, Germany) as counter electrode (CE) and hematite 

photoanodes as working electrodes (WE). 

 

Figure 4.3: Details of the test bench: (a) the cappuccino PEC cell in a three-electrode 

configuration; and (b) the cappuccino PEC cell with a hematite photoelectrode placed on the 

sample holder. 

 

J-V MEASUREMENTS 

J-V characteristic curves were obtained applying an external potential bias to the cell 

and measuring the generated photocurrent using a ZENNIUM workstation (Zahner 

Elektrik, Germany) controlled by Thales software package (Thales Z 2.0). The applied 

potential bias was reported as a function of the reversible hydrogen electrode (RHE). 

The measurements were performed at room temperature in dark and under 1-sun 

simulated sunlight, at a scan rate of 10 mV∙s−1 between 0.80 and 1.80 VRHE. A class B 

solar simulator equipped with a 150 W Xe lamp (Oriel, Newport, USA) and an 
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AM 1.5 G filter (100 mW∙cm-2; Newport, USA) was used; the light beam was 

calibrated with a c-Si photodiode (Newport, USA). 

EIS MEASUREMENTS 

EIS analyses were performed applying a small potential sinusoidal perturbation to the 

system. The amplitude and the phase shift of the resulting current response was 

recorded using also the ZENNIUM workstation. The frequency range was 0.1 Hz – 

100 kHz and the amplitude 10 mV. The measurements were carried out in dark 

conditions and the range of the applied potential was equal to that of the photocurrent 

measurements (0.80 – 1.80 VRHE) with a step of 50 mV. An appropriate electrical 

analog was then fitted to the EIS spectra using the ZView software (Scribner 

Associates Inc., USA). 

STABILITY TESTS  

During stability tests the hematite photoanodes were continuously submitted to 1-sun 

simulated solar illumination (100 mW∙cm−2) at 1.45 VRHE. The photocurrent density 

response was monitored as a function of time using an AUTOLAB electrochemical 

station (Metrohm Autolab B.V., Netherlands). The lamp power used was a Plasma-I 

AS1300 light engine (Plasma International, Germany) equipped with a standard 

sulphur lamp (SS0); a c-Si photodiode was used for light calibration. The photocurrent 

history of the prepared hematite photoanodes was assessed over 1000 h. 

DETERMINATION OF INTRINSIC SOLAR TO CHEMICAL CONVERSION EFFICIENCY 

Dotan et al. [54] proposed the intrinsic solar to chemical (ISTC) conversion efficiency 

model, obtained from the photocurrent density-voltage (J-V) characteristic curves in 

the dark and under illumination. Briefly, this parameter indicates the efficiency of the 

photoanode in converting photonic energy into chemical energy used for oxidizing 

water. Thus, the ISTC efficiency of the photoanode is given by [54]:  

 

 

 2

photo photophoto photo RHE

el 2

light dark RHEAM 1.5 G

mA cm (V)× 1.23

100(mW cm )

J EJ E V
ISTC η

P U V





  
  

  

 (4.2) 

where ηel is the electrolysis efficiency, Jphoto is the generated photocurrent, Ephoto is the 

correspondent photopotential and Udark is the potential that must be applied to the 
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photoanode in order to reach the respective current in the dark. After computing the 

photocurrent (Jphoto) and photopotential (Ephoto) from J-V curves, the photocurrent as a 

function of the photopotential was drawn to obtain the intrinsic photovoltaic 

characteristics of the photoanode, i.e. the photocurrent density measured under 

short‐circuit conditions (Jsc) and open‐circuit photopotential (Voc). The intrinsic 

photovoltaic power (P) of the photoanode is the product of photocurrent to the 

photopotential; by plotting it vs. photopotential, the maximum power point (MPP) can 

be obtained and also the respective potential (EMPP) and current (JMPP). 

 

4.2.4 STRUCTURAL CHARACTERIZATION 

FILM THICKNESS DETERMINATION 

UV-visible absorption data were used to estimate the hematite samples thickness. Since 

there is a similarity in the shape of the spectra for all samples, their thicknesses can be 

estimated assuming a Lambertian absorption behavior: 

 ln 1 abs α    (4.3) 

where abs is the absorbance, α is the hematite absorbance coefficient (44 nm)-1 at 

400 nm [55] and 𝓁 is the thickness of the hematite film in nanometers. An UV-vis-NIR 

spectrophotometer (Shimadzu Scientific Instruments Inc., model UV-3600, Kyoto) was 

used to obtain the absorbance of the prepared hematite samples. It was decided to 

measure the reflectance and transmittance of all samples and then to calculate the 

absorbance by subtracting both to the incident radiation. Finally, the absorbance was 

corrected by subtracting the FTO glass absorbance (control). 

SCANNING ELECTRON MICROSCOPY (SEM) ANALYSIS  

SEM was used to obtain information on the morphology and surface topography of the 

prepared materials. The morphology of the hematite films was characterized using a 

high-resolution scanning electron microscope (Quanta 400 FEG, FEI Company, USA); 

the analyses were made at CEMUP (Centro de Materiais da Universidade do Porto). 

The acceleration voltage was 15 keV while an in-lens detector was employed with a 
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working distance of about 10 mm. The surface of fresh and aged samples was 

examined in order to identify and analyze modifications in their surface morphology. 

X-RAY DIFFRACTION (XRD) ANALYSIS  

XRD analysis was carried out in a PANalytical X’Pert MPD (Spectris plc, England) 

equipped with an X’Celerator detector and secondary monochromator (Cu K α λ = 

0.154 nm, 40 kV, 30 mA; data recorded at a 0.017 step size, 100 s·step-1). Rietveld 

refinement with Powder-Cell software was used to identify the crystallographic phases 

from the XRD diffraction patterns. 

 

4.2.5 ELECTROLYTE CHARACTERIZATION 

INDUCTIVELY COUPLED PLASMA (ICP) TECHNIQUE  

ICP-AES (atomic emission spectroscopy) technique was used to determine the 

concentration of iron in the NaOH electrolyte solution used in the stability test. 

Electrolyte samples of ca. 50 cm3 were tested. 

  

4.3 RESULTS AND DISCUSSION 

4.3.1 RESPONSE SURFACE METHODOLOGY 

A design of experiments (DoE) approach was used to optimize the bare hematite 

deposition. Table 4.3 shows the experiments plan generated by the DoE software; a 

second order polynomial equation was fitted to the obtained results:  

 
3 3 3

2

0 i i ij i j ii

1 1 1

i

ji i

y f f X f X X f X
  

      (4.4) 

where y is the process response, Xi are the dimensionless process factors, a0 is the 

interception coefficient, ai are the coefficients related to the dimensionless factors Xi, 

aij correspond to the cross interaction between different factors and aii are the 

coefficients related to the quadratic effects (curvature). 
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Table 4.3: Actual and coded values for the central composite design run conditions. 

Runs 
Actual values Coded values 

x1 / mL x2 / ºC x3 / s X1 X2 X3 

1 30 500 60 -1 1 1 

2 60 400 30 1 -1 -1 

3 30 400 60 -1 -1 1 

4 60 450 45 1 0 0 

5 45 500 45 0 1 0 

6 45 450 45 0 0 0 

7 45 450 60 0 0 1 

8 60 400 60 1 -1 1 

9 60 500 60 1 1 1 

10 30 450 45 -1 0 0 

11 45 400 45 0 -1 0 

12 60 500 30 1 1 -1 

13 30 500 30 -1 1 -1 

14 30 400 30 -1 -1 -1 

15 45 450 45 0 0 0 

16 45 450 30 0 0 -1 

 

A standard least squares analysis was performed and the p-values (Prob > F) were 

used to assess the relevance of each factor to the process response. Smaller p-values 

correspond to the higher significance factors, i.e. p-values < 0.05 indicate that the 

parameter has a relevant effect on the response with a confidence level of more than 

95 %. A factor has a marginal effect on the model response when 0.05 < p-value < 0.15 

and should be neglected if p-values > 0.15 [51]. Following these criteria, the final model 

is:  

1 2 3 1 2

2 2 2

1 3 1 2 3

0 852 0 003 0 058 0 019 0 016

0 053 0 066 0 068 0 036

. . X . X . X . X X

. X X . X . X . X

J       

  
 (4.5) 

The fitting model was used to predict the photocurrent density obtained at 1.45 VRHE. 

Figure 4.4 shows the corresponding parity plot. 
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Figure 4.4: Parity plot of experimental vs. predicted photocurrent values for the prepared 

hematite samples. 

 

The parity plot indicates a quite good agreement of the empirical model to the 

experimental values, which is also confirmed by the high correlation coefficient of the 

fitting model (R2 = 0.92). The empirical model was then used to study the influence of 

each operating parameter on the photocurrent density - Figure 4.5.  

Based on the interpolating model, the operating conditions that give the highest 

photocurrent density at 1.45 VRHE, Jphoto = (0.90 ± 0.06) mA·cm-2, are the following: 

v = 42 mL, T = 425 ºC and t = 35 s. A new deposition was then performed using these 

optimal conditions and the prepared hematite samples showed an average photocurrent 

density of (0.94 ± 0.04) mA·cm-2, in line with the empirical model. The film thickness 

of the optimized sample, estimated from Equation (4.3), was ca. (18.8 ± 0.1) nm; the 

literature refers that a film thickness of ca. (20.0 ± 2.2) nm maximizes the internal 

quantum yield [56].  
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Figure 4.5: Predicted photocurrent density (Jphoto) as a function of: (a) sprayed solution volume 

(v) and temperature of the glass substrate during the deposition (T) for a time gap between 

sprays of 45 s (t); (b) v and t for T = 450 ºC; and (c) t and T for v = 45 mL. 
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4.3.2 J-V CHARACTERISTIC CURVES 

The performance of the bare hematite photoanodes was assessed based on the 

photocurrent-voltage (J-V) curves in dark and under 1-sun AM 1.5 G illumination 

(100 mW∙cm−2) conditions. The characteristic curves of each photoanode sample are 

summarized in Table 4.4. The replicated curves differ less than 10 % from each other. 

 

Table 4.4: Experimental conditions of the DoE (sprayed solution volume – v, temperature of 

substrate during the deposition – T and time gap between sprays – t), correspondent 

photocurrent density values at 1.45 VRHE (experimentally – Jactual and predicted by DoE – 

Jpredicted) and thickness of the prepared hematite photoanodes – 𝓁. 

v / 

mL 

T / 

ºC 

t / 

s 

Jactual / 

mA∙cm−2 

Jpredicted / 

mA∙cm−2 

𝓁 / 

nm 

30 500 60 0.51 0.53 16.73 

60 400 30 0.73 0.69 22.12 

30 400 60 0.70 0.68 17.28 

60 450 45 0.74 0.79 23.60 

45 500 45 0.74 0.73 18.48 

45 450 45 0.92 0.85 19.86 

45 450 60 0.80 0.80 19.77 

60 400 60 0.77 0.77 21.33 

60 500 60 0.69 0.68 24.47 

30 450 45 0.80 0.78 22.70 

45 400 45 0.80 0.84 23.39 

60 500 30 0.61 0.61 24.43 

30 500 30 0.68 0.68 18.73 

30 400 30 0.82 0.82 12.89 

45 450 45 0.85 0.85 22.65 

45 450 30 0.80 0.84 20.88 

42 425 35 0.94 0.90 18.84 

 

The J-V characteristic curve for the best performing hematite sample prepared at the 

optimized conditions is shown in Figure 4.6a. Under dark conditions the current 

steeply increased for a potential higher than 1.66 VRHE, indicating the electrochemical 

water oxidation onset potential. Under sunlight conditions the sample showed an onset 

potential at ca. 0.95 VRHE and photocurrent densities of ca. 0.67 mA∙cm-2 at the 
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potential of reversible oxygen electrode (1.23 VRHE) and ca. 0.94 mA∙cm-2 at 

1.45 VRHE. These performance values represent one of the highest photocurrents ever 

reported for bare hematite photoanodes. To date, the best performing hematite 

photoanode was reported by Guo et al. [22] for Ru-doped α-Fe2O3 nanorod films; 

however, the bare hematite sample (prepared by doctor blading method and then 

annealed at 750 ºC) showed a low photocurrent of ca. 0.31 mA∙cm-2 at 1.23 VRHE. 

Among hematite samples prepared by spray pyrolysis, the present result is ca. 65 % 

greater [25].  

From the J-V plots, the intrinsic power characteristics of the photoelectrode were then 

obtained as reported elsewhere [54]. First, the photocurrent (Jphoto) and photopotential 

(Ephoto) were determined from the difference between the light and dark currents and 

potentials, respectively. After computed these parameters, the Jphoto was plotted as a 

function of the Ephoto to obtain the photocurrent density measured under short‐circuit 

conditions (Jsc) and the open‐circuit photopotential (Voc) - Figure 4.6b. Consequently, 

the intrinsic photovoltaic power (P) of the photoanode, which is given by the product 

of Jphoto by Ephoto, was plotted vs. Ephoto (Figure 4.6c). The potential applied to the 

photoanode under light, Ulight, is also shown in secondary y axis of these figures vs. 

Ephoto. Thus, the optimized hematite photoelectrode reached a maximum power of 

0.43 %, showing that this sample generated an electric power of 0.43 mW∙cm−2 from 

the solar-simulated light power of 100 mW∙cm−2. At this point, the photoanode delivers 

the highest power with EMPP = 0.54 V by applying a potential, Ulight, of ca. 1.30 VRHE. A 

fill factor of 50.55 % at the maximum power point was obtained; fill factor values of 

less than 40 % are generally observed with hematite photoelectrodes [54, 56].  

The intrinsic solar to chemical (ISTC) conversion efficiency of the photoanode was 

computed from Equation (4.2) and it was plotted in Figure 4.6d as a function of the 

generated photocurrent density, Jphoto. The ISTC efficiency reached a maximum of ca. 

0.29 % at JMPP = 0.80 mA∙cm-2; this defines the optimal conditions for operating the 

PEC cell. This photocurrent could only be obtained in the dark at a potential of 

1.85 VRHE (see Figure 4.6a) meaning that the simulated solar light power saved 0.54 V 

from the external power source, i.e. a power of 0.43 mW∙cm−2 (0.54 × JMPP). Therefore, 

the conversion efficiency of the electrolysis reaction (ηel ≈ 1.23/Udark = 66.40 %) 

reduced the electric power saved, which is the light-induced contribution to the 
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chemical power produced by the photoanode of ca. 0.29 mW∙cm−2 (66.40 % × 

0.43 mW∙cm−2).  

 

Figure 4.6: (a) J-V characteristic curves obtained in the dark (dashed blue line) and under 1-sun 

AM 1.5 G illumination (100 mW∙cm−2, solid blue line) and the generated photocurrent, Jphoto 

(●). (b) Photocurrent (▼) as a function of the photopotential. (c) Intrinsic photovoltaic power 

(▲) as a function of the photopotential. (d) ISTC efficiency (♦) as a function of the photocurrent 

density. The secondary y axis on the right of the plots (b), (c) and (d) shows the potential (Ulight) 

that was applied to the photoanode by the potentiostat under light conditions. 
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4.3.3 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 

The electrochemical impedance measurements were performed in the dark and using a 

three-electrode configuration. In this configuration the potential is measured with 

respect to a fixed reference potential, short-circuited with the Pt counter electrode. This 

enables the detailed study of the electrochemical phenomena occurring at the interface 

between photoelectrode and electrolyte. Herein, the EIS data were analyzed based on 

the Randles electrical analogue circuit [11]. This electrical analogue comprises a series 

resistance (RSeries) and a simple resistor-capacitor (RC) element assigned to the 

semiconductor/electrolyte charge transfer resistance, RCT, together with bulk 

capacitance, CBulk - Figure 4.7a. 

 

Figure 4.7: (a) Energy diagram of the semiconductor/electrolyte interface and the electrical 

circuit analogue used to fit the impedance measurements in the dark of the optimized hematite 

sample. (b) Mott-Schottky analysis: the inverse of the square bulk capacitance (CBulk) is plotted 

vs. the potential bias applied. 

 

For using the Mott-Schottky model two main assumptions must be guaranteed: i) the 

space charge (CSC) and Helmholtz (CH) capacitances can only be fitted as a single 

capacitance, the so-called CBulk, since the contribution of the double layer capacitance 

to the total capacitance would be negligible (2 – 3 orders of magnitude higher); and ii) 

the fitting should be made at the high frequency range of the impedance spectra, in the 
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order of kHz [55]. Then, the flat band potential, Efb, and the donor density, ND, were 

obtained from Equation (4.6): 

 bias fb2 2

Bulk 0 r D

1 2 kT
E E

C ε ε qN A q

 
   

 
 (4.6) 

where ε0 is the vacuum permittivity (8.85 × 10-12 C·V-1·m-1), εr is the dielectric constant 

of the semiconductor (assumed to be 80 for undoped hematite photoanodes [12]), q is 

the elementary charge, A is the active area, k is the Boltzmann constant, T is the 

absolute temperature, and Ebias is the applied bias potential. Plotting CBulk
-2 as a 

function of the applied bias potential, a straight line was obtained in the linear region of 

the plot, from 0.80 to 1.40 VRHE, as shown in Figure 4.7b. ND value was determined 

from the slope of this line, while the Efb value was obtained extrapolating the 

interception of the straight line with the axis of the applied potential. From Equation 

(4.6), Efb = 0.54 VRHE and ND = 2.42 × 1018 cm-3. These values are in good agreement 

with the ones found in the literature; consistent values of Efb from 0.40 – 0.60 VRHE and 

ND on the order of 1017 to 1021 cm-3 have been reported for undoped and heavily doped 

hematite samples, respectively [6]. Thus, the obtained value for the donor density 

confirmed that the pre-treatment with TEOS before spraying the ultra-thin Fe2O3 layer 

is not acting as a doping agent. 

 

4.3.4 LONG-TERM STABILITY 

Recent studies have increasingly mentioned the importance of obtaining highly stable 

photoelectrodes as a critical objective to achieve commercial viability of 

photoelectrochemical hydrogen production devices [57]. Therefore, the stability of the 

optimised hematite sample was evaluated during a period of time of 1000 h under a 

bias potential of 1.45 VRHE and 1-sun AM 1.5 G illumination (100 mW∙cm−2). The 

photocurrent history is plotted in Figure 4.8. The photocurrent density values, obtained 

every 48 h, are presented in Table 4.5.  
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Figure 4.8: Polarization curve of the optimized hematite samples prepared by spray pyrolysis 

(solid blue line) obtained under a constant bias of 1.45 VRHE and simulated solar illumination 

(100 mW∙cm−2). 

 

Table 4.5: Photocurrent density (J) values obtained from the J-V curves at 1.45 VRHE for 

different times (t) under continuous exposure to simulated sunlight radiation. 

t /h 0 48 96 144 192 240 288 336 384 432 500 

J /mA∙cm−2 0.94 0.92 0.92 0.91 0.98 0.94 0.95 0.97 0.97 0.94 0.95 

t /h 528 576 624 672 720 768 816 864 912 960 1000 

J /mA∙cm−2 0.95 0.94 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.94 0.95 

 

From Figure 4.8 it can be concluded that the optimized hematite sample is stable over 

1000 h (approximately 42 days) with an average photocurrent density of ca. 

0.95 mA∙cm-2. To the best knowledge of the authors there are no published results for 

stability of hematite photoanodes for such long period. Figure 4.9 shows the J-V 

characteristic curves obtained before performing the stability test and after 500 and 

1000 h of simulated sunlight exposure; no significant differences were observed for the 

response under light conditions. On the other hand, the dark current onset potential 

shifted slightly to lower potentials, which may be related to increased FTO areas 
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exposed to electrolyte [31, 55, 58]. Figure 4.10 shows SEM images and EDS analyses of 

the fresh and aged hematite photoelectrode. 

 

Figure 4.9: J-V characteristics of the optimised hematite sample prepared by spray pyrolysis, 

before starting the stability test, 0 h (■), and after 500 h (●) and 1000 h (▲), in the dark (dashed 

lines) and under 1-sun AM 1.5 G illumination (100 mW∙cm−2, solid lines) conditions. 

 

Figure 4.10 confirms that the optimized hematite photoanode displays a very uniform 

surface fully covering the underneath FTO layer. The film growth follows a layer-plus-

island growth, known as a Stranski–Krastanov mode [25, 59]. The morphology is in 

straight agreement with previous hematite structures deposited by spray pyrolysis [39]. 

No significant differences are observed between the fresh and aged sample (see Figure 

4.10c and Figure 4.10d, respectively). Moreover, the global EDS analyses are also 

similar, as shown in Figure 4.10e and f. This behavior was not observed for hematite 

samples prepared using non-optimized preparation conditions. For example, a sample 

prepared with parameters v = 70 mL, T = 450 ºC and t = 45 s showed a photocurrent 

density of ca. 0.62 mA∙cm−2 at 1.45 VRHE. After a stability test of 168 h the dark 

current onset potential increased 150 mV and the SEM images of the photoelectrode 

showed hematite free areas – whiter regions at Figure 4.11. 
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Figure 4.10: Top view SEM images and EDS analyses of the optimised hematite film before 

[left-side] and after [right-side] the stability test  over 1000 h. 
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Figure 4.11: Top view SEM images of the aged hematite film produced under the following 

conditions: v = 70 mL, T = 450 ºC and t = 45 s; the stability test was performed for 168 h. (a) 

global view of the sample surface with the delimitation of an area affected by corrosion (1) and 

an unaffected area (2); (b) EDS analysis on the two delimited zones with the identification of 

the iron peaks; (c) closer view on the area affected by corrosion; and (d) closer view on the 

intact area. 

 

X-ray diffraction (XRD) analyses (Figure 4.12) of the optimized photoelectrode 

sample showed a very broad peak along the (110) plane found at 35.5° (reference 

pattern number: 01-085-0599) [15]. Since the hematite film is very thin, ca. 19 nm, the 

XRD diffraction pattern should superimpose the FTO background. However, above 

550 ºC β-FeOOH phase originates α-Fe2O3 [60] and according to Kment et al. [45] highly 

oriented films along the (110) direction should be obtained, which facilitate electron 

transport in the hematite photoanodes. After the 1000 h stability period no significant 

changes in the film crystallinity were observed.  
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Figure 4.12: XRD spectra of iron oxide film on F:SnO2 conducting glass prepared by spray 

pyrolysis before (the so-called fresh sample – blue spectra) and after (the so-called aged sample 

– green spectra) performing the stability test for 1000 h. The FTO glass substrate (the so-called 

FTO + TEOS Substrate – grey spectra) corresponds to the SnO2 signals. The signals of Fe2O3 

phases of hematite, maghemite, magnetite and bixbyite correspond to red, blue, green and 

purple lines, respectively, from the International Centre for Diffraction Data (ICDD) database. 

Main peaks from the substrate are also labeled with “*” and from the hematite phase with “●”. 

On the right-side is a zoom-out of the left-side from 33º to 37º. 

 

The electrolyte solution used in the stability test was also analyzed by inductively 

coupled plasma (ICP) spectroscopy; a fresh electrolyte sample was also analyzed as 

control. Since an iron concentration of ca. 88 μg·L-1 was detected in the control, the 

results were merely supportive of the film corrosion hypothesis. The electrolyte used in 

the aging test showed an iron concentration of ca. 143 μg·L-1 suggesting minimal 

material detachment from the film surface, probably resulting from the mechanical 

erosion by the oxygen evolution. Literature reports tremulously high iron concentration 

increase during the aging tests; for example, Mendes et al. [31] reported an increase of 

1 mg·L-1 only after 72 h of aging. 
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4.4 CONCLUSIONS 

The present work focused on improving the performance (photocurrent density and 

stability) of hematite photoanodes using a DoE approach. The optimized preparation 

parameters were: i) amount of volume solution sprayed (v); ii) temperature of the glass 

substrate during the deposition (T); and iii) time gap between sprays (t). The set of 

preparation conditions found to maximize the photocurrent density were: v = 42 mL, 

T = 425 ºC and t = 35 s. The optimized hematite film showed a photocurrent density of 

ca. 0.94 mA∙cm−2 at 1.45 VRHE, a fill factor of 50.55 % and an intrinsic solar to 

chemical conversion efficiency of ca. 0.29 %. SEM analysis confirmed the full surface 

coverage with well-organized and uniform hematite film. The deposited hematite film 

by spray pyrolysis showed a thickness of ca. 18.8 nm. X-ray diffraction detected only 

pure α-Fe2O3 phase, with the (110) preferential orientation. 

One of the most important contributions of this work is the long-term stability study. 

The prepared hematite photoanode generated a constant photoresponse over 1000 h 

under simulated sunlight exposure. SEM, EDS, XRD and ICP analyses confirmed the 

stability of the prepared hematite sample. 
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ABSTRACT 

The surface defects originate the low photopotentials observed on hematite 

photoanodes, limiting their performance for photoelectrochemical water oxidation. This 

work focuses on the surface modification of hematite thin films combining two 

strategies: annealing at high temperatures (800 ºC) and coating with RuO2 co-catalyst. 

The annealing at 800 ºC improved both the morphology and the electronic structure due 

to the diffusion of tin ions from the FTO layer into the hematite lattice. RuO2 is a highly 

active co-catalyst for the water oxidation on hematite photoanodes and when sintered at 

200 ºC originated a cathodic shift of the onset potential of ca. 360 mV. This synergetic 

effect resulted in a turn-on potential of 0.52 VRHE and a final photopotential of ca. 

 0.95 V. A photocurrent density of ca. 0.98 mA·cm-2 was obtained at 1.23 VRHE, 

corresponding to around 50 % increase compared with bare hematite. The study allowed 

obtaining an improved understanding of the water oxidation reaction at the hematite 

photoelectrode surface. 

 

 

Keywords: Hematite Photoanodes, Photoelectrochemical Water Splitting, 

Photopotential, Surface Modification, Annealing Treatment, RuO2 co-catalyst. 
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5.1 INTRODUCTION 

Hematite presents several favorable characteristics that turn this material very attractive 

for solar-driven water splitting, namely, a 2.1 eV bandgap, appropriate valence band 

(VB) position towards water oxidation, chemical stability, abundance and low-cost [1, 2]. 

However, the hematite conduction band (CB) is more positive than hydrogen evolution 

reaction and so its integration in a tandem PEC device with a photocathode or a 

photovoltaic cell can solve this mismatch [3]. Despite these encouraging characteristics, 

the highest solar-to-hydrogen (STH) efficiency achieved so far is 3.1 % [4], though STH 

efficiencies lower than 1 % are more typically reported using hematite photoanodes [3, 5]. 

The overall STH efficiency is mainly controlled by the efficiency of three general 

processes: i) light harvesting/charge separation – ηlight; ii) charge transport/ 

recombination within the semiconductor – ηct, i.e. fraction of VB holes that reach the 

semiconductor/electrolyte interface and CB electrons reaching the back contact; and iii) 

hole collection at electrode surface – ηhc, i.e. fraction of surface holes that oxidize water 

subtracted from the ones that recombine at the surface [6] - Figure 5.1a.  

 

Figure 5.1: (a) Schematic energetics and charge transfer processes under PEC water oxidation 

using hematite photoanodes. The water oxidation photocurrent is controlled by the efficiency of 

light harvesting (ɳlight), charge transport (ɳct), and holes collection (ɳhc). Red arrows indicate 

recombination pathways (adapted from ref. [6]). (b) PEC performance comparison between a 

state-of-the-art (real) photoanode and an ideal photoanode. The arrows indicate the main 

performance limiting factors for increasing anodic potential: first, ɳhc at the hematite/electrolyte 

interface, then ɳct within hematite, and finally ɳlight in the semiconductor (adapted from ref. [5]). 
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Figure 5.1b compares the behavior of an ideal hematite photoanode, where the plateau 

photocurrent is the maximum photocurrent in the optical limit (Jmax = 12 mA·cm-2) and 

the onset potential (Eonset) equals the flatband potential (Efb is normally between 0.4 and 

0.6 VRHE) [7]; the photocurrent should reach Jmax within 0.1 V from Eonset [5]. State-of-the-

art nanostructured hematite photoanodes show Jmax = 5.7 mA·cm-2 at 1.23 VRHE and 

Eonset of ca. 0.7 VRHE [8]; however, the potential for reaching the maximum photocurrent 

density is very high for practical PEC devices.  

The photoelectrochemical activity of hematite is limited by its relatively long visible 

light absorption depth (hundred nanometers) and a very short minority carrier lifetime 

and mobility; both combined hinder efficient carrier separation and transport (decrease 

of ηlight and ηct) [3, 9]. Bulk modifications, e.g. by doping [8, 10], nanostructuring [11, 12] or 

surface modification [13, 14], have shown to be effective in alleviating this problem. In 

addition, the oxygen evolution reaction (OER) kinetics is reported to be sluggish, 

increasing the recombination of the surface holes with conduction band electrons 

competes with the forward water oxidation efficiency (low ηhc) [15]. The water oxidation 

mechanism on hematite surfaces is currently subject of intense investigation; Young et 

al. [1] proposed the following reaction scheme:  

 h VB  + Fe -OH Fe-O H    (5.1) 

  2h VB  + Fe -O + H O Fe-OOH H    (5.2) 

  2h VB  + Fe -OOH O  + Fe H    (5.3) 

  2h VB  + Fe + H O  Fe -OH H     (5.4) 

The OER involves four holes for each O2 molecule produced and the formation of 

reaction intermediates, such as Fe-O and Fe-OOH. This is consistent with the 

hypothesis that the OER occurs via the holes trapping at Fe species on the electrode 

surface and then the transport of these holes to the electrolyte (rate limiting step) [1, 5]. 

These states are often referred as surface states; the recombination at surface states of 

hematite is the process mostly contributing to the large potential necessary to oxidize 

water [6]. When a high anodic potential is applied to hematite, the holes are transferred 

to electrolyte with an efficiency, ηhc, close to unity [5]. Understanding the loss 

mechanisms at the hematite surface is critical to solve the highly anodic electrochemical 

potential required to initiate the OER and then the energy efficiency improvement. 
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The recent advances using hematite photoanodes for PEC water splitting are then 

focused on lowering the high onset potential for the OER by hematite surface treatment, 

since the semiconductor/electrolyte interface has proven to strongly influence the charge 

separation/recombination, the catalytic activity and also the stability of the 

photoelectrode [5, 16]. Several strategies have been investigated in the field, such as: 

introducing overlayers on top of hematite [9, 17], reducing the surface defects by coating 

oxide layers between hematite and the electron collector/substrate [18, 19], using co-

catalysts [20-22], optimizing the post-fabrication annealing conditions [14, 23], etc.  

In the present study, a synergetic combination of surface modification by high 

temperature annealing at 800 ºC and by coating ruthenium dioxide (RuO2) co-catalyst 

was used to cathodically shift the onset potential, aiming at to minimize the surface state 

recombination. The shift in the water oxidation potential upon surface modification has 

been attributed to the mitigation of Fermi level pinning at the hematite/electrolyte 

interface and, thus, enhanced band bending [24]. The annealing of hematite thin films at 

800 ºC was found to passivate the surface states, minimizing the recombination, but it 

also promotes the diffusion of Sn atoms from the FTO (fluorine-doped tin oxide) layer 

into the hematite lattice, enhancing the PEC properties of the hematite [25]. On the other 

hand, RuO2 was used as a co-catalyst to accelerate the OER kinetics, since it is 

considered as the material showing the highest catalytic activity among the single-

transition metal oxides [26, 27]. While RuO2 has already been tested as an OER co-catalyst 

for overall water splitting on Ga1-xZxN1-xOx [28] and for the HER on Cu2O [29, 30], its 

performance as co-catalyst for the OER was not yet fully investigated. However, 

organometallic Ru-containing complexes of Ru(tpy)(pba)Cl Ru (II) were tested on 

hematite by Chen et al. [31], showing an onset potential shift of ca. 300 mV.  

The optimization of hematite surface is made using ultrathin films (ca. 19 nm) 

prepared by spray pyrolysis; this photoanode material was recently reported exhibiting 

high stability performance over 1000 h of sunlight exposure in a 1 M NaOH electrolyte 

solution [32]. The RuO2 electrodeposition conditions were varied for the improvement of 

onset potential and photocurrent density, as well as the temperature and time of 

annealing treatment. The optimized hematite thin film coated with RuO2 co-catalyst 

allows obtaining a low turn-on potential of ca. 0.52 VRHE and a high photopotential of 

ca. 0.95 V.  
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5.2 EXPERIMENTAL 

5.1.1 HEMATITE PHOTOANODES PREPARATION 

Ultrathin films of hematite were deposited on 1 mm thick, 10 Ω·square-1 conducting 

fluorine doped tin oxide (F:SnO2) coated glass substrates (Solaronix, Switzerland) by 

spray pyrolysis using the in-house assembled setup [32]. The FTO-glasses were 

adequately cleaned as described elsewhere [30]. The substrates were first pretreated with 

tetraethyl orthosilicate (TEOS) to allow better Fe2O3 film organization, reducing the 

interfacial strain between the FTO layer and the hematite crystals and, consequently, a 

photoactivity response improvement [33]. The FTO-glass substrates were heated at 

450 ºC and ca. 1.5 mL of a diluted TEOS solution (10 % volume in ethanol) were hand-

sprayed with a glass atomizer onto the heated substrates. These samples were cooled 

down before heating again to deposit the hematite film. To prepare the hematite films, a 

solution containing 10 mM iron(III) acetylacetonate (Fe(acac)3) in EtOH was sprayed 

onto a temperature controlled substrate surface heated at 425 ºC with a spray nozzle 

from a distance of ca. 20 cm. A solution volume of 42 mL was sprayed with a time gap 

between sprays of 35 s, corresponding to a final film thickness of ca. 19 nm. After the 

spray deposition, the hematite samples were air-annealed for 30 min at 550 ºC, before 

being cooled down to the room temperature. These conditions were previously 

optimized through a design of experiments approach [32].  

The hematite thin films were then subjected to a high-temperature annealing at 800 ºC 

in air for various periods of time (5 min, 10 min and 20 min). 

 

5.1.2 DEPOSITION OF RUO2 CO-CATALYST 

RuO2 co-catalyst was electrodeposited under galvanostatic conditions using an aqueous 

solution of 1.3 mM KRuO4; the deposition was made at room temperature. Since the 

initial pH of the deposition bath strongly influences the rate of RuO2 electrodeposition 

[34], a fresh KRuO4 solution was made before each deposition. A platinum wire was used 

as counter-electrode. A constant current density (among 5 - 30 μA·cm-2) was applied for 

different periods of time (5 min, 15 min, 30 min, 1 h, 2 h, 4 h and 8 h) to deposit RuO2 

films on hematite thin film photoelectrode surfaces. The electrodeposited films were 

then sintered at 200 ºC over 2 h. 
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5.1.3 ELECTROCHEMICAL CHARACTERIZATION 

A PEC cell device known as “cappuccino” was chosen to perform the electrochemical 

characterization of the prepared hematite photoanodes [35]. The cell was filled with 1 M 

NaOH (pH 13.6) electrolyte aqueous solution and the surface area illuminated was 

0.238 cm2 defined by an internal mask. A standard three-electrode configuration was 

used: Ag/AgCl/Sat. KCl (Metrohm, Switzerland) as a reference electrode, 99.9 % pure 

platinum wire (Alfa Aesar®, Germany) as counter-electrode and hematite photoanodes 

as working electrodes. 

J-V MEASUREMENTS 

J-V characteristic curves were obtained applying an external potential bias to the cell 

and measuring the generated photocurrent using a ZENNIUM workstation (Zahner 

Elektrik, Germany) controlled by Thales software package (Thales Z 2.0). The applied 

potential bias was reported as a function of the reversible hydrogen electrode (RHE). 

The measurements were performed at room temperature in dark and under 1-sun 

simulated sunlight, at a scan rate of 10 mV∙s−1 between 0.80 and 1.80 VRHE. A class B 

solar simulator equipped with a 150 W Xe lamp (Oriel, Newport, USA) and an AM 1.5 

G filter (100 mW∙cm-2; Newport, USA) was used; the light beam was calibrated with a 

c-Si photodiode (Newport, USA).  

During stability tests the hematite photoanodes were continuously submitted to 

simulated solar illumination (100 mW∙cm−2, 1-sun AM 1.5 G) at an applied potential of 

ca. 1.00 VRHE. The photocurrent density response was monitored as a function of time 

using the same electrochemical station. 

EIS MEASUREMENTS 

EIS analyses were performed applying a small potential sinusoidal perturbation to the 

system. The amplitude and the phase shift of the resulting current response was 

recorded using also the ZENNIUM workstation. The frequency range was 0.1 Hz – 

100 kHz and the amplitude 10 mV. The measurements were carried out in the dark and 

under 1-sun AM 1.5 G illumination conditions and the range of the applied potential 

was equal to that of the photocurrent measurements (0.80 – 1.80 VRHE) with a step of 

50 mV. An appropriate electrical analog was then fitted to the EIS spectra using the 

ZView software (Scribner Associates Inc., USA). 
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5.1.4 STRUCTURAL CHARACTERIZATION 

FILM THICKNESS DETERMINATION 

UV-visible absorption data were used to estimate the hematite samples thickness. Since 

there is a similarity in the shape of the spectra for all samples, their thicknesses can be 

estimated assuming a Lambertian absorption behavior: 

 ln 1  abs α  (5.5) 

where abs is the absorbance, α is the hematite absorbance coefficient (44 nm)-1 at 

400 nm [36] and 𝓁 is the thickness of the hematite film in nanometers. An UV-vis-NIR 

spectrophotometer (Shimadzu Scientific Instruments Inc., model UV-3600, Kyoto) was 

used to obtain the absorbance of the prepared hematite samples. It was decided to 

measure the reflectance and transmittance of all samples and then to calculate the 

absorbance by subtracting both to the incident radiation. Finally, the absorbance was 

corrected by subtracting the FTO glass absorbance (control). 

SCANNING ELECTRON MICROSCOPY (SEM) ANALYSIS  

SEM was used to obtain information on the morphology of the prepared materials. The 

morphology of the hematite films was characterized using a high-resolution scanning 

electron microscope (Quanta 400 FEG, FEI Company, USA); the analyses were made at 

CEMUP (Centro de Materiais da Universidade do Porto). The acceleration voltage was 

15 keV while an in-lens detector was employed with a working distance of about 

10 mm. The surface of fresh and aged hematite samples was examined in order to 

identify and analyze modifications in their surface morphology. 

ATOMIC FORCE MICROSCOPY (AFM) ANALYSIS  

AFM was used to obtain the surface topography and roughness of the prepared hematite 

photoanodes before and after surface modifications with RuO2 co-catalyst and high-

temperature annealing. The surface roughness, Rq, extracted from the topography of the 

studied surfaces was defined as the root-mean-square value of the image pixel height. A 

Nanoscope Multimode Atomic Force Microscope (Veeco Instruments Inc., USA) was 

used in non-contact mode; the analyses were made at CEMUP (Centro de Materiais da 

Universidade do Porto).   
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X-RAY DIFFRACTION (XRD) ANALYSIS  

XRD analysis was carried out in a PANalytical X’Pert MPD (Spectris plc, England) 

equipped with an X’Celerator detector and secondary monochromator (Cu K α λ = 

0.154 nm, 40 kV, 30 mA; data recorded at a 0.017 step size, 100 s·step-1). Rietveld 

refinement with Powder-Cell software was used to identify the crystallographic phases 

from the XRD diffraction patterns. 

X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) ANALYSIS 

XPS analysis was performed in a Kratos Axis Ultra HAS (Kratos Analytical, England) 

spectrometer using a monochromatic Al K α radiation (1486.6 eV) and operating at 

15 kV (300 W). The XPS spectra were deconvoluted with the XPSPEAK 4.1 software, 

using non-linear least squares fitting routine after a Shirley-type background subtraction 

(or linear, taking in account the data). The surface atomic percentages were calculated 

from the corresponding peak areas and by using the sensitivity factors provided by the 

manufacturer. This technique was used to investigate the surface chemistry of bare 

hematite, of hematite annealed at 800 ºC and of RuO2-coated hematite photoelectrodes. 

 

5.3 RESULTS AND DISCUSSION 

Many strategies are being followed to lower the onset potential of hematite 

photoelectrodes; in particular, surface treatments are being extensively used to address 

the intrinsic defects expected to improve charge separation by minimizing charge 

recombination. Herein, the onset potential was reduced combining a surface coating 

with an efficient co-catalyst and high temperature annealing. 

 

5.1.5 HEMATITE SURFACE COATING WITH RuO2 CO-CATALYST 

The surface modification of hematite photoanodes with a water oxidation co-catalyst 

should accelerate the kinetics of water oxidation and reduce the surface recombination 

rate. It must be emphasized that the preparation and morphology of hematite film highly 

influence its photoelectrochemical performance and stability. An ideal co-catalyst 

would minimize the unfavorable energetic relation between intermediate species of the 
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water oxidation mechanism [26]. To date, many co-catalysts were studied to cathodically 

shift the photocurrent onset potential such as CoOx [11], Co-Pi [37], IrO2 [20], NiFeOx [22] 

and Ni(OH)2 [38]. RuO2 is recognized as one of the most active catalyst for oxygen 

evolution both in acidic and alkaline electrolytes [26, 39]; however, its use with a hematite 

photoelectrode has never been addressed [5].  

In this work, RuO2 co-catalyst was electrodeposited onto hematite surface using an 

aqueous solution of KRuO4, avoiding the use of harmful reagents such as carbonyl 

derivatives and poison chlorides [40]. The film was formed via reduction of the 

perruthenate anions by conduction band electrons of hematite to form densely packed 

particles. Despite the cathodic electrodeposition potential depends upon nature of 

substrate, bath temperature and metal ion concentration, the parameters that influence 

the most the uniformity and thickness of the RuO2 films are the applied current density 

and the time of deposition. The current densities applied for the catalyst 

electrodeposition took place at relatively low potentials, insufficient for water oxidation 

[41]. Though, larger overpotentials were observed at initial stage of deposition, attributed 

to the high energy barrier of Ru metal oxide nucleation onto the substrate [34].  

The galvanostatic electrodeposition conditions were optimized playing with the 

following operating conditions: i) applied current density, in the range of 5 - 30 μA·cm-2 

and ii) deposition time (5 min, 15 min, 30 min, 1 h, 2 h, 4 h and 8 h). The films 

deposited at low current densities proved to be quite uniform and so a constant current 

density of ca. 5 μA·cm-2 was considered for the subsequent optimization.  

The film thickness of the co-catalyst coating can be estimated based on the amount of 

current passing during the deposition time, taking into consideration that three electrons 

are involved in the deposition of one Ru atom (Ru7+
 in the KRuO4 precursor goes to 

Ru4+
 in RuO2) and a Faradaic efficiency of ca. 20 % [41]. For instance, the thickness of 

the RuO2 layer obtained from a constant current density of 5 μA·cm-2 over 2 h (charge 

of ca. 36 mC·cm-2) is ca. 4.5 nm, assuming a density of the crystalline RuO2 of 

6.93 g·cm-3 [41]. However, the deposited catalyst is a hydrous, amorphous layer and then 

an accurate measurement of RuO2 film thickness becomes difficult [30]. To avoid 

ambiguity in the discussion of the RuO2 films properties, thicknesses are expressed as to 

the amount of electrical charge density for the deposition.  

The photoelectrochemical performances of a bare hematite (BH) photoanode and 

RuO2-coated hematite (HRu) photoanodes with different thicknesses were then 
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evaluated based on the photocurrent-voltage characteristics in dark and under 1-sun 

AM 1.5 G illumination - Figure 5.2. A three-electrode configuration in 1 M NaOH 

electrolyte was used.  

 

Figure 5.2: (a) J-V characteristic curves measured in the dark and under 1-sun AM 1.5 G 

illumination conditions for a bare hematite (BH) photoanode (■) and RuO2-coated hematite 

(HRu) photoanodes prepared applying a charge density of ca. 9 (▼), 18 (), 36 (◄), 72 (▲) 

and 144 (●) mC·cm-2; (b) Butler plots in which the turn-on potential is defined as the value at 

which the extrapolation of the linear relationship between (Jphoto)2 and applied potential 

intercepts with (Jphoto)2 = 0.  

 

From Figure 5.2a is clear that the coating of hematite photoanodes with RuO2 co-

catalyst decreases the photocurrent onset potential, improving the water oxidation 

efficiency. For the bare hematite (BH) photoanode under dark conditions, the current 

density rises steeply for a potential higher than 1.70 VRHE - the so-called dark current. 

Under sunlight conditions, BH shows an onset potential of 1.04 VRHE and a photocurrent 

density of ca. 0.36 mA·cm-2 at the potential of reversible oxygen electrode (1.23 VRHE), 

reaching a plateau of ca. 0.55 mA·cm-2 at 1.45 VRHE. Considering HRu sample prepared 

with a charge density of 36 mC·cm-2, the photocurrent onset potential was cathodically 

shifted to ca. 0.72 VRHE, with a dark current onset potential similar to the bare sample. A 

photocurrent density of ca. 0.23 mA·cm−2 was obtained at 1.00 VRHE, where BH shows 

mostly no photocurrent. Gains in photocurrent are less substantial at higher applied 
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potentials, i.e. a current increase of ca. 28 % and 7 % were achieved at 1.23 VRHE and 

1.45 VRHE, respectively. Increasing the RuO2 film thickness (HRu sample with 

144 mC·cm-2) yields better PEC performance at more negative potentials, i.e. until 1.10 

VRHE, but the current density values starts lower for higher potentials. Moreover, the 

hematite electrode surface was visibly darker after deposition of higher amount of 

catalyst, e.g. 144 mC·cm-2. This appearance is not desirable if a semi-transparent 

photoanode is desired for tandem applications.  

The PEC data can alternatively be analyzed by the method proposed by Butler [42] – 

Figure 5.2b – that provides information about the light-to-charge energy-conversion 

performance of the electrode. Butler derived the following relation 

   fb phot lighto αwqPE E J  , in which α is the optical absorption coefficient, q is the 

elementary charge, w is the space charge width and Plight is the light intensity. When the 

charge transfer across the semiconductor/electrolyte interface is slow, as for hematite, 

the Butler equation should carry information about the overpotentials,  fbE E  [22]. 

From the Butler plot, the RuO2 coating with 36 mC·cm-2 caused a photocurrent onset 

potential shift in the negative direction of ca. 300 mV compared with bare hematite. For 

BH photoanode, the onset potential of ca. 1.04 VRHE results from a severe Fermi level 

pinning effect, which is the key reason for the low photopotentials observed. 

Figure 5.3 shows the behavior of the onset cathodic shift (obtained from the Butler 

plots) and the photocurrent obtained at 1.23 VRHE as a function of the catalyst amount 

deposited. The cathodic shift of the photocurrent onset potential increases with RuO2 

thickness, as expected for efficient co-catalysts, but it quickly levels out above at 300 - 

350 mV for thicknesses greater than 36 mC·cm-2. Thick layers of RuO2 may inhibit 

rapid charge transport up to the electrolyte, thus restricting current flow and favoring 

recombination between photogenerated conduction band electrons and accumulated 

holes at the RuO2 surface. This may justify the observed photocurrent decrease for 

higher potentials in the J-V curves. Based on Figure 5.2a and Figure 5.3, the 

electrodeposition condition that maximizes both the cathodic onset shift as well as the 

photocurrent density corresponds to an applied charge density of 36 mC·cm-2; three 

samples were prepared for each RuO2 thickness and the results showed high 

reproducibility. Hereafter, RuO2-coated hematite photoanode prepared with 36 mC·cm-2 

is called as HRu sample. 
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Figure 5.3: Potential shift of the photocurrent onset (■) and obtained photocurrent density at 

1.23 VRHE (●) as a function of the RuO2 thickness deposited for the prepared hematite samples.  

 

As abovementioned, bare hematite is a self-limiting photoanode in which positive 

surface charge accumulation inhibits band bending through quasi-Fermi level pinning, 

leading to rapid electron-hole recombination at low applied bias [43]. Thus, the primary 

role of the RuO2 co-catalyst is to catalyze water oxidation at the lowest potentials that 

avoids positive charge accumulation at the hematite surface. However, the data shown 

in Figure 5.2a, and in particular for low potentials, leads to hypothesize about the 

overlap of two mechanisms for water oxidation in RuO2-coated hematite photoanodes: 

one involving water oxidation catalyzed by RuO2 and the other directly at the hematite 

surface. The contribution of each mechanism depends on the co-catalyst film thickness. 

Therefore, for thin RuO2 layers, the majority of oxygen evolution seems to occur via 

RuO2 at low bias potentials, but the hematite surface mechanism dominates at higher 

potentials. Hematite photoanodes with thicker catalyst layers oxidize water mostly via 

RuO2 co-catalyst. Gamelin and his co-workers reported very recently a similar behavior 

for mesostructured α-Fe2O3 photoanodes decorated with Co-Pi [43], a co-catalyst 

extensively studied for hematite photoanodes [9, 37].  

A slow decrease in the cathodic shift is observed upon successive J-V scans in alkaline 

media, although the shift can be fully restored with the application of more catalyst, as 

reported for IrO2 co-catalyst [20]. This is not desirable for practical applications and so 

the stability of the RuO2 layer should be improved. A post-annealing treatment was 



PHOTOELECTROCHEMICAL WATER OXIDATION USING HEMATITE PHOTOANODES COATED WITH RuO2 

 

191 

found to play an important role on the structure and electrochemical performance of 

ruthenium oxides, improving the structural organization and stability. Fang et. al. [44] 

reported that an annealing in air at 200 ºC for 2 h helps the amorphous-to-crystalline 

phase transformation, creating a suitable nanostructure that balances electronic and hole 

conduction with enhanced electrochemical performance. Figure 5.4 plots the J-V curves 

for the prepared photoanodes before and after annealing at temperatures up to 400 ºC. 

 

Figure 5.4: (a) J-V characteristic curves measured in the dark and under 1-sun AM 1.5 G 

illumination conditions for the bare hematite (BH) photoanode (■) and RuO2-coated hematite 

photoanode without annealing (HRu sample with 36 mC·cm-2,◄). HRu photoanodes were 

further annealed in air at 100 ºC (HRu100,▲), 200 ºC (HRu200,●), 300 ºC (HRu300,) and 400 

ºC (HRu400,▼); and (b) correspondent Butler plots. 

 

The photoelectrochemical performance increased by post-annealing the RuO2-coated 

hematite photoanodes at 100 ºC (HRu100) and 200 ºC (HRu200) over 2 h. For 

temperatures above 300 ºC, the as-deposited RuO2 amorphous film should be converted 

to crystalline; however, amorphous RuO2 favors less OER overpotentials than 

crystalline films [45]. Though, a significant decrease on the potential onset of the 

photocurrent was observed for samples annealed at 300 ºC and 400 ºC, the dark current 

onset also begun early. For samples annealed at 100 ºC and 200 ºC, no significant 

differences were observed for their dark currents. A turn-on photopotential of ca. 

0.68 VRHE was observed with the HRu200 photoanode, followed by a huge photocurrent 



CHAPTER 5 

 

192 

increase of more than 180 % at 0.80 VRHE, 50 % at 1.00 VRHE and 18 % at 1.23 VRHE, 

compared with a bare hematite (BH) photoanode. An onset cathodic shift of ca. 360 mV 

was then obtained, which is one of the highest values reported for catalyst-based 

hematite water oxidation reaction without additional absorbers [22]. The morphology of 

bare hematite and RuO2-coated hematite films with and without annealing treatment at 

200 ºC was analyzed by scanning electron micrograms (SEM) - Figure 5.5.  

 

Figure 5.5: SEM images: (a) surface top-view and (b) cross-sectional view of the bare hematite 

film (BH); (c) and (d) surface view of the RuO2-coated hematite film (HRu), with magnifications 

of 100000× and 50000×, respectively; (e) and (f) surface view of the HRu after annealing at 200 

ºC (HRu200), with magnifications of 100000× and 200000×, respectively. 
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The top-view SEM images revealed that all of the prepared films were quite uniform. 

Figure 5.5a shows a thin and very dense film of hematite crystals over the FTO-glass 

substrate typical of a layer-plus-island growth, known as a Stranski–Krastanov mode [32, 

33]. Figure 5.5b shows a cross-section SEM image of the bare hematite (BH) film 

(deposited on a FTO layer of ca. 500 nm); this figure does not allow to obtain the film 

thickness, which was estimated to be ca. 19 nm by UV-visible absorption. Figure 5.5c 

and d display a very thin and uniform layer of RuO2 coated atop the hematite thin film 

(HRu sample with 36 mC·cm-2), presenting an average grain size of (133 ± 34) nm. The 

annealing treatment at 200 ºC smoothened the surface of the RuO2 coating (HRu200 

sample), allowing to increase the grain size to ca. (214 ± 48) nm - Figure 5.5e. 

Additionally, from Figure 5.5f the RuO2 layer exhibits small grains with a spherical 

morphology that should limit the developed space charge layer, enabling better hole 

diffusion to the electrode surface; thus, reflecting the high current densities obtained in 

Figure 5.4. 

Atomic force microscopy (AFM) scan images of bare hematite (BH) and RuO2 coated-

hematite films with and without annealing treatments at 200 ºC over 2 h also revealed 

differences in their surface topography. Figure 5.6 shows representative 1 × 1 µm2 

images of the surfaces. BH thin film presents a significant surface roughness of ca. Rq = 

27.4 nm (root-mean-square value of the image pixel height), slightly higher than the 

RuO2-coated hematite film (HRu), i.e. Rq = 22.9 nm – Figure 5.6a. This suggests that 

RuO2 film covers the hematite surface homogenously and fills some voids in the 

hematite film surface, which can actually be seen in Figure 5.5. Thereafter, annealing 

the RuO2 film at 200 ºC (HRu200) mostly did not change the roughness of the film 

(Rq = 22.5 nm); the annealed RuO2 film actually displays smoother surface at large with 

small grains on the surface as illustrate in Figure 5.7.  
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Figure 5.6: Surface topography obtained using 3D [left-side] and 2D [right-side] AFM scan 

images for: (a) and (b) bare hematite (BH) thin film; (c) and (d) RuO2-coated hematite film 

(HRu); (e) and (f) RuO2-coated hematite film after the annealing treatment at 200 ºC over 2 h 

(HRu200). The image scale is 1 × 1 µm2 and Rq is the root mean square roughness of the surface. 
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Figure 5.7: Surface topography obtained using AFM scan images for the RuO2-coated hematite 

films: (a) profile height of both samples; 2D images of (b) as-prepared (HRu sample) and (c) 

after annealing treatment at 200 ºC (HRu200 sample). The AFM image scale is 500 × 500 µm2. 

 

X-ray diffraction (XRD) was used to obtain information about the crystalline nature of 

the prepared photoelectrodes – see Figure 5.8. The obtained X-ray diffractograms shows 

mainly peaks of the FTO (F:SnO2) coating layer where Fe2O3 signal pattern is 

superimposed. Bare hematite (BH) photoanode shows two peaks due to pure α-Fe2O3 

(hematite), namely the (104) plane found at 35.8º and the (110) plane found at 35.8º. 

The strong diffraction peak at 33.3º, corresponding to the (110) plane of a pseudo-cubic 

system, indicates the strong preferential crystal orientation for electron transport in 

hematite photoanodes. Much weaker peaks are observed for planes (012) at 24.2º, (024) 

at 49.6º and (116) at 54.2º. No other phases of Fe2O3 could be observed in the XRD 

patterns. When coated with RuO2 co-catalyst (HRu sample), the Fe2O3 peaks are less 

intense compared with the BH sample and no RuO2 characteristic peaks are observed in 

Figure 5.8; RuO2 layer is amorphous as previously mentioned. After annealing the 

RuO2-coated hematite film at 200 ºC (HRu200 sample), the RuO2 diffuse scattering 

peak at 36º reported by Fang et al. [44] is not detected. Herein, the RuO2-coated hematite 

film only displays two strong peaks at 33.3º and 35.8º, characteristic of hematite film. 
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The characteristic hematite peak at 35.8º may superimpose the expected signal of RuO2, 

at 36º, which should be rather small due to the very thin RuO2 film thickness, ca. 5 nm. 

Despite no evidences of amorphous-to-crystalline phase transformation, the morphology 

(Figure 5.5) and topography (Figure 5.6) of the HRu200 film indicate a better surface 

organization. 

 

Figure 5.8: XRD spectra of the prepared photoanodes: bare hematite (BH, black line), RuO2-

coated hematite (HRu, green line), RuO2-coated hematite sintered at 200 ºC (HRu200, purple 

line), hematite annealed at 800 ºC (H800, blue line), hematite annealed at 800 ºC and coated with 

RuO2 further sintered at 200 ºC (H800Ru200, red line). The FTO glass substrate (grey line) 

corresponds to the SnO2 signals (ICDD reference pattern number: 96-100-0063). The signals of 

hematite (ICDD reference pattern number: 96-101-1241) and RuO2 (ICDD reference pattern 

number: 96-101-0059) phases correspond to red and blue column bars, respectively. Main peaks 

from the FTO substrate are labelled with “*”. On the right-side is a zoom-out of the left-side 

from 33º to 37º. 
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5.1.6 HIGH-TEMPERATURE ANNEALING OF THE HEMATITE PHOTOANODES 

Annealing at elevated temperatures (higher than 650 ºC) has been recently reported to 

cathodically shift the water oxidation onset potential; this shift was assigned to the 

decrease of hematite surface defects [6]. Also, the diffusion of Sn from the FTO layer 

into the hematite lattice, expected for temperatures above 650 ºC, contributes for 

photocurrent enhancement [46]. The prepared hematite photoelectrodes were sintered at 

550 ºC for 30 min to induce the phase transition from β-FeOOH to pure α-Fe2O3; 

however, only temperatures above 800 ºC can fully remove the hydroxyl groups from 

the hematite [47]. For that reason, hematite photoanodes were further annealed at 800 ºC 

for various periods of time (5, 10 and 20 min). Figure 5.9 shows the J-V curves for a 

typical bare hematite film (sintered at 550 ºC for 30 min) and after high-temperature 

annealing treatments. 

 

Figure 5.9: (a) J-V characteristic curves measured in the dark and under 1-sun AM 1.5 G 

illumination conditions for the bare hematite (BH) photoanode sintered at 550 ºC (■) and 

hematite photoanodes and after annealing treatment at 800 ºC (H800) for different periods: 20 

min (), 10 min (◄) and 5 min (▼); and (b) correspondent Butler plots.  

 

The bare hematite (BH) photoanode sintered at 550 ºC (control sample) exhibited a 

late photocurrent onset potential of ca. 1.00 VRHE with a photocurrent response of 

0.62 mA·cm-2 at 1.23 VRHE and 0.90 mA·cm-2 at 1.45 VRHE [32]. On the other hand, 

hematite heat-treated at 800 ºC (H800 samples) showed a dramatic improvement in their 
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photocurrent onset potential, showing a cathodic shift of around 200 mV; similar 

cathodic shifts were reported by other research groups [14, 21, 48]. Despite an annealing 

time of 5 min being sufficient to cathodically shift the turn-on potential to ca. 

0.78 VRHE, the best overall performance (onset potential and photocurrents) was 

obtained for sample annealed at 800 ºC over 10 min. For this sample, the photocurrent 

onset potential starts at ca. 0.80 VRHE and showed a noticeable photocurrent of ca. 

0.48 mA·cm-2 at 1.00 VRHE compared to the control BH sample (< 0.01 mA·cm-2). At 

1.23 VRHE a photocurrent of ca. 0.79 mA·cm-2 was obtained, which is one of the best 

reported performances for a thin-film of bare hematite photoanode; the state-of-the-art 

bare hematite film showed a current density of ca. 0.31 mA·cm-2 [8]. By further 

increasing the annealing time to 20 min, the performance increased at higher potentials 

(10 % increase at 1.45 VRHE), but a slight decrease is observed for lower potentials, i.e. 

the current decreased to ca. 0.20 mA·cm-2 at 1.00 VRHE. Hereafter, the hematite thin film 

annealed at 800 ºC for 10 min is called as H800 sample. 

Figure 5.10 shows SEM and AFM images of the best performing hematite thin films 

(H800 - annealing temperature of 800 ºC during 10 min). The morphological structure 

did not change after the high-temperature treatment; however, the average grain size 

slightly increased possibly driven by grain aggregation occurred in the annealing 

process, i.e. the grain size increased from (97 ± 12) nm to (128 ± 17) nm for the bare 

hematite and hematite annealed films, respectively. This behavior effectively reduces 

the grain boundaries that can act as electron traps in the photoanodes [49]. AFM images 

also shows a smoother surface after annealing at 800 ºC, as a result of the significant 

roughness decrease to Rq = 18.1 nm. From Figure 5.8 the H800 sample displays similar 

X-ray patterns with a predominant (110) diffraction peak compared with BH sample. 

However, the peaks of the H800 sample are sharper, with a decrease in full width at 

half-maximum (fwhm), showing a significant increase in crystallite size.  
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Figure 5.10: Surface top-view SEM images of the hematite photoanode annealed at 800 ºC over 

10 min (H800 sample), with magnifications of (a) 100000× and (b) 50000×. Surface topography 

obtained using: (c) 3D AFM scan image (1 × 1 µm2 image scale) and (d) 2D image. 

 

X-ray photoelectron spectroscopy (XPS) was assessed to obtain information about the 

surface chemistry of the prepared photoanodes - Figure 5.11. For all hematite 

photoanodes, the C 1s photoelectron peak (Figure 5.11e) should be attributed to 

adventitious carbon contamination. Bare hematite (BH) film sintered at 550 ºC presents 

mainly iron and oxygen elements on XPS spectra shown in Figure 5.11a. Silicon is also 

detected, which is related to the TEOS pre-treatment performed before hematite thin 

film deposition. The O 1s signal position at 529.3 eV and the separation of Fe 2p peaks 

(Fe 2p3/2 at 711.0 eV from Fe 2p1/2 at 529.7 eV) are in good agreement with the presence 

of iron (III) oxide - Figure 5.11c and b, respectively. After annealing treatment at 

800 ºC (H800 sample), a shift on the position of Fe 2p, O 1s and C 1s peaks to higher 

binding energies is observed, but their shape is similar to BH sample. As expected, Sn 

was detected on the surface XPS spectra of the H800 sample - Figure 5.11d. The H800 

sample exhibits two peaks at 495.1 eV and 486.4 eV due to the presence of Sn(IV) 
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species, corresponding to the Sn 3d3/2 and Sn 3d5/2 peaks, respectively [25]. The presence 

of Sn at the surface of H800 photoanode (overall amount of ca. 0.69 at%) suggests a 

thermally induced diffusion of Sn ions from the FTO layer [49], since no traces of Sn was 

detected for the BH sample.  

 

Figure 5.11: (a) Surface wide-scan XPS spectra for the bare hematite (BH), hematite annealed at 

800 ºC (H800) and RuO2-coated hematite sintered at 200 ºC (H800Ru200) photoanodes. 

Detailed regions for: (b) Fe 2p; (c) O 1s; d) Sn 3d and Ru 3p; and (e) C 1s and Ru 3d. 

 

Summarizing, the high temperature annealing (800 ºC) improves the water oxidation 

efficiency through three mechanisms: i) the grain aggregation allows a compact 

hematite structure to be formed that decreases the amount of recombination centers on 

the surface; ii) better hematite crystallinity improves charge carrier extraction; and iii) 

Sn doping from the FTO layer to the hematite lattice enhances both the electron donor 

density and electrical conductivity. 



PHOTOELECTROCHEMICAL WATER OXIDATION USING HEMATITE PHOTOANODES COATED WITH RuO2 

 

201 

5.1.7 SYNERGETIC COMBINATION OF HIGH-TEMPERATURE ANNEALING AND 

RuO2 SURFACE COATING  

For obtaining high-energy performing photoelectrodes, hematite photoelectrodes were 

annealed at 800 ºC and coated with RuO2 (charge of 36 mC·cm-2) and further sintered at 

200 ºC (the so-called H800Ru200 sample) - Figure 5.12. A significant decrease on the 

turn-on potential of ca. 0.52 VRHE was achieved with this optimized photoelectrode as 

illustrated in Figure 5.12a. Photocurrent densities of ca. 0.29 mA·cm-2 and 0.60 mA·cm-

2 were obtained at 0.60 and 1.00 VRHE, respectively; when compared with bare hematite, 

it shows an increase higher than 50 % at 1.23 VRHE. Again, water oxidation seems to be 

catalyzed by RuO2 co-catalyst at the onset potential range (lower applied bias) and 

directly at the hematite surface at greater applied potentials, as observed in Figure 5.2. 

 

Figure 5.12: (a) J-V characteristics of the bare hematite (BH sample) photoanode (■) and the 

H800Ru200 sample, before starting the stability test (▼) and after 6 h of testing (◄), in the dark 

(dashed lines) and under 1-sun AM 1.5 G illumination (solid lines) conditions. (b) Polarization 

curve of the H800Ru200 photoanode obtained under a constant bias of 1.00 VRHE and simulated 

solar illumination (AM 1.5 G, 100 mW∙cm−2). 

 

The stability of the optimized sample was evaluated over 6 h of simulated sunlight 

exposure at a constant potential of 1.00 VRHE – Figure 5.12b. The electrolyte solution 

was continuously bubbled with nitrogen during the measurements to facilitate the 

removal of evolved oxygen from the RuO2 electrode surface. The oxygen removal 

decreases the water oxidation overpotential and benefits the electrode stability [27]. The 
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photocurrent density decreased to 0.57 mA∙cm-2 at 1.00 VRHE after the stability period, 

corresponding to ca. 5 % decrease. The loss of current is not uniform over the J-V 

characteristic curve, Figure 5.12a, but shows a measurable decrease only for the low 

potential range, where RuO2 is thought to control the water electrooxidation. This loss 

should be related to the loss/detachment of RuO2, as illustrated in Figure 5.14d. This 

shift can be fully restored with the application of more catalyst, data not shown. 

Figure 5.13 shows the open circuit potential (OCP) difference between dark and 

illumination (Ephoto), which is directly related to the photopotential. A photopotential of 

ca. 350 mV was obtained for the bare hematite (BH) photoanode, in line with previous 

reports [22], while the RuO2-coated hematite (HRu200) photoanode exhibited 

Ephoto = 500 mV. Interestingly, after annealing at 800 ºC, the original photopotential 

increased even more, for Ephoto = 750 mV. Lastly, a remarkable Ephoto = 950 mV was 

obtained for the optimized RuO2-coated hematite photoanode, i.e. H800Ru200 sample. 

A larger photopotential means that less potential bias is required to promote oxygen 

evolution [22]. To the best knowledge of the authors, the final photopotential of 0.95 V is 

the highest reported for hematite-based PEC water splitting [50]. 

 

Figure 5.13: Open circuit potential difference between dark (■) and light (◄) conditions for the 

photoanodes under study: (1) bare hematite (BH sample), (2) RuO2-coated hematite (HRu 

sample - 36 mC·cm-2), (3) hematite annealed at 800 ºC over 10 min (H800 sample), and (4) 

optimized RuO2-coated hematite sintered at 200 ºC (H800Ru200 sample). 
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Figure 5.14 shows SEM and AFM surface images of a fresh H800Ru200 sample; EDS 

analyses of fresh and aged photoelectrode are also displayed. Figure 5.14a and b 

confirm that the optimized hematite photoanode presents a very organized structure and 

the RuO2 co-catalyst fully covered the hematite surface. The morphology is similar to 

the hematite film after annealing at 800 ºC (H800 sample shown in Figure 5.10), but the 

characteristic RuO2 small grains after sintering at 200 ºC are not as clear as in Figure 

5.5. This may justify the smaller photocurrents obtained at lower potentials compared to 

Figure 5.9. Therefore, further optimization of RuO2 loading in the smoothened hematite 

surface is needed to obtain even higher photopotentials. No significant morphological 

differences were observed between the fresh and aged sample, though the observed 

photocurrent decrease during the stability test - Figure 5.14. Moreover, the EDS 

analyses of both fresh and aged H800Ru200 sample are similar, with the exception of 

Ru and O elements that tends to slightly decrease at aged sample, as presented in Figure 

5.14d. The topography of the fresh H800Ru200 photoanode analyzed by AFM also 

reveals a smoother surface after coating with RuO2, i.e. Rq decreased to ca. 15.1 nm 

(Figure 5.14e and f).  

Figure 5.8 displays the XRD diffractogram obtained for the H800Ru200 sample; the 

preferential hematite crystal orientation along (110) plane is similar to BH and H800 

photoanodes. The intensity of the strong peak of (104) plane found at 33.3º decreases 

and the peak the (110) plane found at 35.8º increases, which can be related to the RuO2 

coating; however, no RuO2 signal were detected. XPS analysis displayed in Figure 5.11 

reveals the presence of Fe, O, C, Si, Sn and Ru elements for the H800Ru200 

photoanode. No appreciable variations in the position and shape of Fe 2p, O 1s and 

Sn 3d peaks were observed compared with H800 sample. The Ru 3p3/2 peak presented 

in Figure 5.11d is attributed to the RuO2 component (463.6 eV). However, the Ru 3d 

core levels in the C 1s region (Figure 5.11c) is quite complex due to the overlapping 

between C 1s and Ru 3d3/2 XPS data; a total of eight components including peaks 

assigned to the Ru 3d photoelectrons was observed. Deconvolution analysis yielded 

two well-defined emission lines at 281.8 and 283.7 eV assigned to Ru 3d5/2 and 

Ru 3d3/2, respectively. These peaks are typical of the Ru4+ oxidation state of ruthenium, 

which confirmed the presence of a RuO2 film [51]. Finally, intensity increase of the 

asymmetric O 1s emission line (Figure 5.11c) can be attributed to the lattice oxygen in 

the RuO2 film. The surface of H800Ru200 sample presented very small amount of 



CHAPTER 5 

 

204 

RuO2, confirming the expected small amount of RuO2 co-catalyst deposited (ca. 4.5 nm 

thick). 

 

Figure 5.14: Surface top-view SEM images of fresh H800Ru200 photoanode with 

magnifications of (a) 100000× and (b) 50000×. EDS analyses for the H800Ru200 sample: (c) 

before and (d) after the stability test over 6 h. Surface topography of fresh H800Ru200 

photoanode obtained using: (e) 3D AFM scan image (1 × 1 µm2 image scale) and (f) 2D image. 
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Electrochemical impedance measurements were performed using a three-electrode 

configuration in dark and under 1-sun AM 1.5 G illumination conditions: of bare 

hematite (BH), hematite annealed at 800 ºC (H800) and optimized RuO2-coated 

hematite (H800Ru200) photoanodes. Representative Nyquist plots obtained at 1.00 

VRHE under dark conditions are shown in Figure 5.15a.  

 

Figure 5.15: (a) Nyquist plots obtained in the dark at 1.00 VRHE for bare hematite (BH, ■), 

hematite annealed at 800 ºC (H800, ▼) and optimized RuO2-coated hematite (H800Ru200, ◄) 

photoanodes; and (b) electrical circuit analogue used to fit the impedance data under dark 

conditions. 

 

The EIS measurements in dark of the bare hematite photoelectrode with and without 

annealing treatment at 800 ºC show only one semicircle, whereas for RuO2-coated 

hematite photoelectrode shows two semicircles. However, for potentials higher than 

1.25 VRHE it is only observed one semicircle also for RuO2-coated hematite 

photoelectrode. The low-frequency (high impedance) semicircle disappears since the 

contribution of the RuO2 tends to decrease at higher potentials, i.e. the oxygen evolution 

seems to occur via the hematite surface at higher potentials, as previously observed 

(Figure 5.2). In this case, a Randles electrical analogue circuit was employed to fit the 

impedance data, which comprises a series resistance (RSeries) and a simple resistor-

capacitor (RC) element assigned to the semiconductor/electrolyte charge transfer 

resistance, RCT, together with bulk capacitance, CBulk – Figure 5.15b.  
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The Mott-Schottky analysis was performed in the dark at high frequency range of the 

impedance spectra, in the order of kHz [36]. The flat band potential, Efb, and the donor 

density, ND, were then estimated using the following equation: 

 fb2 2

Bulk 0 r D

1 2 kT
E E

C ε ε qN A q

 
   

 
 (5.6) 

where ε0 is the vacuum permittivity (8.85 × 10-12 C·V-1·m-1), εr is the dielectric constant 

of the semiconductor (assumed to be 80 for undoped hematite photoanodes [10]), q is the 

elementary charge, A is the active area, k is the Boltzmann constant, T is the absolute 

temperature, and E is the applied potential. Plotting CBulk
-2 as a function of the applied 

bias potential, a straight line can be fitted to the linear region of the plot, from 0.80 to 

1.40 VRHE, as shown in Figure 5.16. ND value was determined from the slope of this 

line, while Efb value was obtained extrapolating the interception of the straight line with 

the axis of the applied potential; Table 5.1 shows the obtained values.  

 

Figure 5.16: Mott-Schottky analysis of bare hematite (BH, ■), hematite annealed at 800 ºC 

(H800, ▼) and optimized RuO2-coated hematite (H800Ru200, ◄) photoanodes. 
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Table 5.1: Flatband potential (Efb) and donor density concentration (ND) values obtained from 

Mott-Schottky measurements in the dark for the three photoelectrodes under study. 

Samples Efb / VRHE ND / cm-3 

BH 0.54 2.32 × 1018 

H800 0.57 5.38 × 1019 

H800Ru200 0.52 2.88 × 1019 

 

From the slope of the Mott-Schottky plots (Figure 5.16) it can be seen that hematite 

photoelectrodes annealed at 800 ºC (both H800 and H800Ru200) have an order of 

magnitude higher donor density (ND) than bare hematite (BH). This great increase 

should be related to the migration of Sn from the FTO layer, as mentioned before. It 

should be emphasized that a photoelectrode with higher ND shows higher electrical 

conductivity. RuO2-coated hematite photoelectrode (H800Ru200) exhibits a Efb = 

0.52 VRHE, which is the observed onset potential for this photoelectrode – Figure 5.12a. 

This result suggests the role of RuO2 co-catalyst in increasing the band bending that 

further improves the PEC performance; similar observations were reported for Co-Pi 

co-catalyst as described elsewhere [52].The obtained values are consistent with the ones 

found in literature for hematite photoelectrodes: Efb range from 0.40 – 0.60 VRHE and ND 

on the order of 1017 – 1021 cm-3 for undoped and heavily doped hematite samples, 

respectively [7]. 

Figure 5.17a displays the Nyquist plots under illumination conditions for the three 

photoelectrodes under study. Herein, two semicircles can be seen for all 

photoelectrodes: a small semicircle in the high frequency range ascribed to the charge-

transfer process in the bulk of hematite photoelectrode; and the low-frequencies arc 

attributed to the electron transfer at hematite surface states or RuO2 layer, respectively 

for hematite and RuO2-coated hematite photoelectrodes. The low-frequency semicircle 

is smaller for H800Ru200 sample, indicating a faster surface water oxidation. However, 

at more positive potentials (> 1.25 VRHE), the low-frequency semicircle tends to 

disappear for all samples, showing that the charge transfer from the surface states of 

hematite or the RuO2 co-catalyst to electrolyte solution is not the rate-limiting step of 

water oxidation [9].  
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Figure 5.17: (a) Nyquist plots obtained under 1-sun AM 1.5 G illumination and at 1.00 VRHE for 

bare hematite (BH, ■), hematite annealed at 800 ºC (H800, ▼) and optimized RuO2-coated 

hematite (H800Ru200, ◄) photoanodes; electrical circuit analogue used to fit the impedance 

data under illumination for the photoelectrodes under study: (b) BH and H800 samples and (c) 

H800Ru200 sample.  

 

For interpreting the EIS data under illumination conditions the equivalent circuit 

proposed by Klahr et al. [9] was considered. Figure 5.17b shows the equivalent circuit 

used for bare hematite and hematite annealed at 800 ºC photoelectrodes, consisting of a 

RSeries, then a CBulk in parallel with a resistance from the charge transport/recombination 

within the bulk semiconductor (RBulk) and a RC unit consisting of a charge transfer 

resistance from the surface states (RCT, SS) to electrolyte in parallel with its 

correspondent capacitance (CSS). This model highlights the central role of a surface 

states acting as recombination centres, either trapping electrons from the conduction 

band and holes from the valence band within the hematite bulk, or affecting the charge 

transfer from the semiconductor to redox species. For the RuO2-coated hematite 

electrode, additional electrical components were added accounting to the co-catalyst 

layer: the charge transfer resistance from the RuO2 surface layer (RCT, RuO2) and its 

capacitance (CRuO2). However, this equivalent circuit could not fit the impedance spectra 

and, thus, it was simplified to the equivalent circuit illustrated in Figure 5.17c; a similar 

observation was reported for hematite electrodes coated with Co-Pi [53]. Therefore, the 

obtained impedance parameters for bare hematite, hematite annealed at 800 ºC (CBulk, 
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RBulk, CSS and RCT, SS) and RuO2-coated hematite photoelectrodes (CBulk, RBulk, CRuO2 and 

RCT, RuO2) are presented vs. applied potential – Figure 5.17. The series resistance, RSeries, 

was essentially constant and small for all the applied potentials, which is consistent with 

ohmic behavior at the FTO/hematite interface. RSeries values were higher for hematite 

photoanode annealed at 800 ºC possible due to loss of Sn from the FTO layer – inset 

plot of Figure 5.18a. 

 

Figure 5.18: Impedance parameters obtained from fitting the EIS data under illumination for 

bare hematite (BH, ■), hematite annealed at 800 ºC (H800, ▼) and optimized RuO2-coated 

hematite (H800Ru200, ◄) photoanodes. 

 

From Figure 5.18a the charge transport resistance within the bulk semiconductor, 

RBulk, shows a similar trend for all photoelectrodes from 1.00 to 1.70 VRHE; it increases 

after ca. 1.00 VRHE to a maximum of ca. 3.85 Ω·cm-2 at 1.50 VRHE. However, at lower 

potentials (< 1.20 VRHE) RBulk for the H800Ru200 photoanode is lower than for hematite 

photoanodes (BH and H800), suggesting that the RuO2 co-catalyst influences the 

surface electron-hole recombination. 
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The charge transfer resistance, RCT, drops until the onset potential for PEC water 

oxidation (ca. 1.23 VRHE) and it drops exponentially for the RuO2-coated hematite 

photoelectrode. After this potential, RCT, RuO2 closely resembles RCT, SS for hematite 

photoelectrode annealed at 800 ºC; for bare hematite photoelectrode, the RCT, SS is 

smaller throughout the applied potential range. Thus, the charge transfer from RuO2 to 

electrolyte is not the limiting rate to oxidize water when the applied potential is higher 

than 1.40 VRHE, as observed in Figure 5.2. At these potentials the photocurrent density is 

controlled by the number of holes that reach hematite surface for both bare and RuO2-

coated hematite photoanodes [9]. Comparing Figure 5.18a and b, RBulk is lower than RCT, 

RuO2 at potentials lower than 1.23 VRHE, which evidences a faster charge transfer of holes 

from the valence band of hematite to the RuO2. 

The bulk capacitance, CBulk, is essentially constant for the applied potentials, as 

illustrated in Figure 5.18c. On the other hand, the capacitance of the surface states 

associated to hematite, CSS, or of the RuO2 surface, CRuO2, varies with the applied 

potential - Figure 5.18d. CSS peaks near the water oxidation onset potential, which 

correlates with the observed minimum of RCT, SS; the potential at which these features 

happen, coincides with the photocurrent onset potential. This behavior is not observed 

for H800Ru200 photoelectrode. At cathodic potentials (< 1.00 VRHE) CRuO2 is mainly 

constant and presents the highest values; in this region water oxidation seems to be 

catalyzed by RuO2 co-catalyst, which captures efficiently the photogenerated holes.  

The water oxidation kinetics and electron-hole recombination are the main processes 

controlling the performance of hematite photoanodes [54]. The sluggish kinetics of the 

multistep oxygen evolution reaction, with four holes being required to drive the 

oxidation of two molecules of water and one molecule of oxygen, increases the 

recombination probability. The bulk recombination (> 5 nm from the semiconductor 

liquid junction) is almost independent of the hematite surface modification [43]; its 

contribution may be regarded as part of the photoelectrode charge separation and was 

not considered here. On the other hand, the electron-hole recombination at hematite 

surface is expected to be a bispecies process, depending on the electron and hole 

densities. Actually, the yield of surface holes depends on both the applied bias and the 

excitation density; the recombination becomes slower as the steady state electron 

density in the film reduces under positive bias. Moreover, the electron density of the 

film should be independent of the light intensity and the recombination tends to behave 
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linearly with the irradiance; this behavior suggests a pseudo first-order recombination 

rate with respect to hole concentration [15], and the rate constant is denoted as krec. The 

timescale of water oxidation is independent of the photogenerated holes concentration, 

indicating that the mechanism of water oxidation on hematite proceeds via a sequence 

of single-hole oxidation steps. Therefore, the charge transfer rate constant (kCT), which 

corresponds to the reaction between surface trapped holes and water/surface-bound 

water is assumed to be first-order in hole density [43]. From the photoelectrodes EIS 

analysis under illumination conditions, the kCT can be obtained directly at the maximum 

phase angle of the charge transfer semicircle in the Nyquist plots, i.e. the charge transfer 

time constant CT = RCT·CCT. The rate constants kCT and krec are related to the resistance 

parameters measured by EIS (RBulk and RCT) by the following equation [55]:  

 
 Bulk CT CT

CT Bulk rec rec

R k k
γ E

R nk k k
 


    (5.7) 

where n is the electron density (taken to be constant at constant illumination intensity), 

kBulk is the bulk electron trapping rate constant and γ(E) is the probability of electron-

trap occupation at a given trap energy and E is the applied potential. γ(E) is given by the 

potentials and the trap depth (taking values between 0 and 1) [55]:  
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B B
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E E qE

γ E
k T k T
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       
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  (5.8)  

where EF is the Fermi level at equilibrium and ET is the energy of the electron trap. At 

zero potential bias, γ(E) depends exclusively on the trap depth in the bandgap. However, 

it converges to the unity as the potential increases [43] allowing the simplification of 

equation (5.8): Bulk CT CT recR R k k . 

The water oxidation quantum efficiency (φ) can then be calculated using these 

parameters: 

 
CT

OER

CT rec




k
η

k k
 (5.9) 

Figure 5.19 summarizes the values of kCT, krec and ηOER parameters vs the applied 

potential. The charge transfer rate constant (kCT) for hematite photoanodes (BH and 

H800 samples) is in the range of 1 – 10 s-1 at potentials below 1.10 VRHE, which is the 

typical range for efficient water oxidation, exhibiting lifetimes of holes in the order of 
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0.1 – 1 s [56]. From Figure 5.19a is also observed a kCT increase for RuO2-coated 

hematite photoanode, showing that RuO2 is an efficient water oxidation electrocatalyst 

and that at low applied potentials the OER occurs mainly at the co-catalyst surface, as 

previously observed. However, kCT should be independent of the applied potential for an 

ideal PEC system; this change should be related to the Fermi-level pinning [43]. Fermi-

level pinning has been reported for hematite photoanodes in aqueous electrolyte, which 

is the main reason for late turn-on potential required for PEC water oxidation [43, 57]. 

Indeed, the RuO2 layer has the ability to store holes at its surface, reducing the positive 

charge accumulation at hematite, which is expected to decrease the degree of the pinned 

Fermi level and then allow the band bending to increase at lower potentials [58].  

 

Figure 5.19: (a) Charge transfer rate constants, kCT; (b) recombination rate constants, krec; and (c) 

water oxidation quantum efficiencies, ηOER, obtained from the EIS data under illumination for 

bare hematite (BH, ■), hematite annealed at 800 °C (H800, ▼) and optimized RuO2-coated 

hematite (H800Ru200, ◄) photoanodes. 
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Electron-hole recombination rate constants, krec, between 100 and 1 s-1 for the applied 

potentials under study were obtained - Figure 5.19b. Bare hematite photoanode shows a 

krec one order of magnitude higher than kCT for potentials below 1.20 VRHE, as reported 

elsewhere.[59, 60] The much faster recombination compared to the charge transfer 

determines the overpotential and, consequently, the PEC performance of the hematite 

photoanodes. Moreover, at these potentials the recombination for BH photoanode is 

considerably higher than that for H800, which is still higher than that for H800Ru200. 

In the absence of RuO2, the recombination phenomena would occur either within the 

bulk or at surface of hematite and it tends to decrease as the potential increases; whereas 

the krec is limited by the flux of holes to the hematite surface at the RuO2/hematite 

interface. This justifies that the high temperature annealing treatment and the addition of 

RuO2 co-catalyst indeed reduce the surface recombination.  

Figure 5.19c plots the water oxidation quantum efficiency vs the applied potential; the 

shape of these curves are similar to the J-V plot shown in Figure 5.12. RuO2-coated 

hematite photoanode shows greater quantum efficiencies, with values above 90 % for 

potentials higher than 1.00 VRHE. The efficiency slightly decreases for high applied 

potentials (> 1.30 VRHE), which should be due to deviations of charge transfer kinetics 

models under large degree of band bending [58]. Indeed, the H800Ru200 photoelectrode 

presented a lower flatband potential (Table 5.1), indicating that the new heterojunction 

increased the band bending in hematite by reduction of surface states on the RuO2 layer. 

The improvement of interfacial hole transfer by catalysis and by suppressing the surface 

recombination influences the PEC efficiency and strongly increases the photopotential 

(shown in Figure 5.13). 

 

5.4 CONCLUSIONS 

Hematite thin films annealed at 800 ºC over 10 min showed an earlier onset potential at 

ca. 0.80 VRHE and an increased photocurrent of 0.48 mA·cm-2 at 1.00 VRHE compared 

with the hematite control sample (onset potential at ca. 1.00 VRHE and photocurrent 

lower than 0.01 mA·cm-2). The hematite performance was further improved coupling it 

with a highly active RuO2 co-catalyst. The co-catalyst thickness balances the electron-

hole recombination and charge transfer kinetics; at the optimal RuO2 thickness, the 

water oxidation catalysis was assigned to RuO2 co-catalyst at the onset potential range 
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and to hematite for greater applied potentials. Therefore, hematite thin films coated with 

electrodeposited RuO2 (optimal load corresponding to a charge density of 36 mC·cm-2) 

and sintered at 200 ºC demonstrated to be effective decreasing the onset potential to ca. 

0.52 VRHE, closer to its flatband potential. This corresponds to a cathodic shift of the 

onset potential higher than 400 mV and a final photopotential of ca. 0.95 V, which is the 

highest reported for hematite-based photoanodes. RuO2 worked as a hole storage layer 

to enhance the charge transfer kinetics and minimize the surface recombination, 

resulting in improved quantum efficiency and PEC performance at low bias potentials. 

For potentials over 1.10 VRHE, no significant photocurrent losses were observed over 6 h 

of stability test under continuous AM 1.5 G illumination. For the lower potential range, 

it was observed a 5 % decrease assigned to the loss of RuO2 catalyst. The use of 

favorable electrolytes should allow to significantly extending the RuO2 co-catalyst 

stability, while the introduction of a non-noble metal, such as Co and Ni, on the top of 

RuO2 structure should improve the stability and reduce co-catalyst cost without 

affecting the catalytic activity. Future research efforts should focus both on retarding the 

surface electron-hole recombination and on improving intrinsic electronic structure of 

hematite to achieve longer photoexcited charge carrier lifetime. 
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ABSTRACT 

Photoelectrochemical (PEC) water splitting represents an attractive method of 

capturing and storing the immense energy of sunlight in the form of hydrogen, a clean 

chemical fuel. Given the large energetic demand of water electrolysis, and the defined 

spectrum of photons available from incident sunlight, a two absorber tandem device is 

required to achieve high efficiencies. The two absorbers should be of different and 

complementary bandgaps, connected in series to achieve the necessary potential, and 

arranged in an optical stack configuration to maximize the utilization of sunlight. This 

latter requirement demands a top device that is responsive to high-energy photons but 

also transparent to lower-energy photons which pass through to illuminate the bottom 

absorber. Here, cuprous oxide (Cu2O) is employed as a top absorber component, and 

the factors influencing the balance between transparency and efficiency toward 

operation in a tandem configuration are studied. Photocathodes based on Cu2O 

electrodeposited onto conducting glass substrates treated with thin, discontinuous 

layers of gold achieve reasonable sub-bandgap transmittance while retaining 

performances comparable to their opaque counterparts. This new high performance 

transparent photocathode is demonstrated in tandem with a hybrid perovskite 
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photovoltaic cell, resulting in a full device capable of standalone sunlight-driven water 

splitting. 

 

 

Keywords: Cu2O Photocathodes, Photoelectrochemical Water Splitting, Optical 

Tandems, Solar Fuels, Metal Oxides, Perovskite Photovoltaics. 
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6.1 INTRODUCTION 

No ideal single material has been discovered that can drive stand-alone 

photoelectrochemical (PEC) water splitting with reasonable efficiency, although high-

throughput searches are underway [1, 2]. A more promising approach is to employ a two-

absorber tandem comprising a wider bandgap transparent top absorber stacked above a 

smaller bandgap device [3]. By detailed balance calculations, the ideal pair of bandgaps 

would be approximately 1.7 eV (absorbing wavelengths up to 730 nm) and 1.1 eV (up 

to 1127 nm) [4]. The theoretical maximum water splitting efficiency for such a system 

exceeds that of a single-absorber system, a result of the more complete solar spectral 

utilization and the ability to produce additive photopotential toward the electrolysis 

demand. 

Dual-absorber tandem devices can be accomplished with photoanode–photocathode 

systems (PA/PC PEC tandem) [5, 6] or photoelectrode–photovoltaic coupled devices 

(PEC/PV tandem) [7] to generate the sufficient driving force for standalone solar water 

splitting while simultaneously maximizing the fraction of solar energy collected. 

Among the various studied tandem configurations [8], the benchmark performances 

were achieved by devices using efficient III–V materials [9, 10]. Since the balance 

between materials availability, fabrication cost, and device performance must be 

optimized to realize a competitive device, most recent attention has targeted the 

discovery and development of Earth-abundant materials for using toward these goals. 

A tandem cell combining an Earth-abundant solar cell with an oxide-based 

photoelectrode could be an ideal solution to obtain cost-effective unassisted water 

splitting [3].  

Studies employing the PEC/PV configuration have mostly focused around the use of 

n-type semiconductors for water oxidation as the PEC component, largely due to the 

number of promising candidate materials in this class, their suitable bandgaps, and 

their Earth-abundant nature. Among them, Fe2O3 [7, 11], BiVO4 
[12-15], and WO3 [7, 16, 17] 

photoanodes have been employed most commonly in approaches succeeding at 

unassisted water splitting. Comparatively fewer Earth-abundant candidates exist for 

photocathode PEC devices, with even fewer demonstrated toward complete water 

splitting in tandem systems [5, 6, 18]. While photocathode stability can prove to be a 

challenge, Seger et al. [19] have recently suggested that when effective surface 
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passivation strategies are used, tandems based on photocathodes as the larger bandgap 

component may offer several advantages over photoanode-based approaches [19].  

To this end, p-type photocathode materials for water reduction are a topic of ongoing 

research [20-23]. Copper oxide-based materials, such as cuprous oxide (Cu2O), have 

gained significant interest due to their elemental abundance, scalable synthesis 

techniques, and natural p-type character [24]. Moreover, the Cu2O bandgap energy 

around 2.1 eV exhibits great potential for solar hydrogen production, although its poor 

stability in aqueous solutions is a limiting factor for its use. Paracchino et al. [25] 

developed a highly active and stable multilayer composite photocathode that consists 

of a p–n junction between electrodeposited p-type Cu2O and n-type overlayers of Al-

doped zinc oxide (AZO) and TiO2, activated with Pt co-catalyst. This material 

achieved a high photocurrent of 7.60 mA·cm-2 at 0 VRHE and remained active for 1 h of 

testing [25]. The photoactivity of Cu2O was then optimized through controlling the 

electrodeposition conditions (pH, temperature and deposition current density) [26], the 

atomic layer deposition (ALD) temperature [27] and the electrolyte pH and composition;  

a stability of 62 % over 10 h of testing under AM 1.5 G chopping illumination (biased 

at 0 VRHE in pH 5 electrolyte) was reported [27]. Furthermore, RuOx top layer was 

investigated as a co-catalyst [28] and, together with a steam treatment of the multilayer 

structures, showed a stable photocurrent of ca. 5 mA·cm-2 during 50 h (photocurrent 

loss < 10 %) under 1-sun of light chopping [29]. This photocathode material was 

recently demonstrated as part of a PA/PC PEC tandem capable of complete water 

splitting at modest efficiency [5].  

Despite the recent success with this device architecture, the photopotential produced 

by this photocathode alone is insufficient to drive complete water splitting, so it should 

ideally be incorporated as the top, wide-bandgap component of a tandem system. 

However, the fact that the Cu2O thin films are typically electrodeposited onto an 

opaque Au layer precludes their use as a top absorber. Therefore, the development of 

an efficient and stable transparent Cu2O thin film device is an important goal, wherein 

the portion of solar radiation not absorbed by the photocathode can be transmitted and 

utilized by a second photoabsorber. In this work, an innovative tandem device was 

enabled by the development of a transparent and stable Cu2O photocathode, which 

when connected in series with a hybrid perovskite photovoltaic was demonstrated to 

perform unassisted sunlight-driven water splitting. 
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6.2 EXPERIMENTAL 

6.2.1 CUPROUS OXIDE PHOTOCATHODES PREPARATION 

The films of cuprous oxide were electrodeposited onto fluorine-doped tin oxide (FTO, 

TEC-15, NSG glass) substrates with or without Au treatments. The FTO-glass 

substrates were cleaned by sequential ultrasonic treatments in soapy water (15 min), 

acetone (15 min), ethanol (15 min), and deionized water (15 min). The substrates were 

then coated with various treatments of Au by direct current (DC) sputtering. The 

standard opaque films of ca. 150 nm were deposited at a calibrated rate of 1.1 nm·s−1 

(after depositing a 10 nm Cr adhesion layer). The transparent Au treatments (without 

Cr layers) were performed at a calibrated rate of 0.2 nm·s−1 for durations 5, 15 and 25 s 

to yield the substrates labeled herein by their nominal thicknesses of 1, 3 and 5 nm Au, 

respectively.  

The electrodeposition of Cu2O from a basic solution of lactate-stabilized copper 

sulphate was performed as described previously [30]. The electrodeposition was 

performed in galvanostatic mode (constant current density of −0.10 mA·cm−2) by using 

a two-electrode configuration with a platinum mesh as the counter electrode. The time 

of deposition was varied during the experiments among 105 minutes, 50 min and 

25 min to study the effect of Cu2O thickness on the transparency of the film. Cu2O 

thicknesses of roughly 500 nm, 260 nm and 100 nm were achieved, respectively for 

105 min, 50 min and 25 min of deposition time; the film thickness was confirmed by 

cross-sectional SEM (Figure 6.7). 

ATOMIC LAYER DEPOSITION 

To protect the Cu2O films against photocathodic decomposition in water, ultrathin n-

type oxides overlayers were deposited by atomic layer deposition (ALD) using a 

thermal ALD system (Savannah 100, Cambridge Nanotech), as described previously 

[31]. Before ALD deposition, the samples were rinsed with distillate water and dried 

with argon. The ALD protective structure consisted of 20 nm of Al:ZnO (AZO; 

deposited at 120 ºC using precursors of diethyl zinc, trimethylaluminum, and water 

vapor) followed by 100 nm of TiO2 (deposited at 150 ºC using precursors of 

tetrakis(dimethylamino)titanium at 75 ºC and H2O2 50 % in water at 25 ºC). 
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CO-CATALYST DEPOSITION 

After ALD, the electrode areas were defined by encapsulation using hot glue or opaque 

epoxy. Onto the exposed active area, RuO2 co-catalyst was galvanostatically deposited 

under illumination using an aqueous solution of 1.3 mM KRuO4. The deposition was 

carried out at a current density of −28.3 μA·cm−2 for 15 – 20 min under simulated 1-

sun illumination, following the procedure described previously [31]. A schematic 

representation of the electrode structure is presented in Figure 6.1.  

 

Figure 6.1: Schematic representation of the prepared Cu2O photocathode structure. 

 

6.2.2 PHOTOVOLTAIC PREPARATION  

A 50 nm compact TiO2 blocking layer was first deposited onto the surface of a pre-

cleaned FTO substrate by spray pyrolysis on a hotplate at 450 ºC using Ti-

isopropoxide and acetylacetone in ethanol. Then a nanostructured layer of TiO2 was 

deposited by spin-coating diluted Dyesol paste (18 NR-T), and sintering at 500 ºC for 

20 min. The desired perovskite solutions of (FAPbI)3−x(MAPbI3)x, were prepared by 

dissolution of CH3NH3Br, NH2CH=NH2I, with PbI2 and PbBr2 in the mixed solvent of 

dimethyl sulfoxide (DMSO) and dimethylformamide (DMF). The mixed perovskite 

film was obtained by spin-coating the precursor solution, followed by anti-solvent 

treatment. The coated films were then placed on a hot plate set at 100 ºC to evaporate 

the solvent. The composition of hole transport material was 2,2′, 7,7′-tetrakis-(N,N-di-

p-methoxyphenyl-amine)-9,99-spirobifluorene (spiro-OMeTAD, 0.06 M, Lumtec.), 

bis(trifluoromethane)sulfonimide lithium salt (LiTFSI, 0.03 M, 99.95 %, Aldrich), 

FK209 (Co[t-BuPyPz]3[PF6]3, 0.0024 M), and 4-tert-butylpyridine (0.2 M, 99 %, 
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Aldrich) in anhydrous chlorobenzene (99.8 %, Aldrich). The perovskite sensitized 

TiO2 films were coated with hole transporter medium (HTM) solution using spin-

coating, followed by deposition of Au (80 nm) as electrode by thermal evaporation. 

6.2.3 IRO2 ANODE PREPARATION  

A 1.8 cm2 square piece of titanium foil (99.7 %, 0.25 mm, Sigma Aldrich) was etched 

for 60 min in boiling oxalic acid (1 M, ≥ 97 %, anhydrous, Fluka). Subsequently, 

H2IrCl6 (30 μL, 0.2 M, 99.9 %, hydrate, ABCR) in isopropanol (ACS Reagent, Merck) 

were drop cast on the foil. This was followed by drying at 70 ºC for 10 min and 

calcination at 500 ºC for 10 min in air. The step was repeated 3 times on each side of 

the Ti foil, resulting in the deposition of 6.3 mg of IrO2 onto each side. 

6.2.4 TANDEM ASSEMBLY AND TESTING 

After defining the active area of the transparent photocathode using opaque epoxy 

(Loctite Hysol 9461), the device was fixed into a custom gas-tight test cell with front 

and back windows of quartz, gas inlet (submerged) and outlet (headspace) tubes, and 

feedthroughs for the anode, cathode, and reference electrodes. The IrO2 anode was 

positioned to the side, ca. 1 cm away from the photocathode surface. The pH 5 

electrolyte solution (15 mL) was filled into the cell, rapid stirring was applied, and a 

20 mL·min–1 flow of He was continuously bubbled through the cell. Behind the 

electrochemical cell, against the rear quartz window, was placed the perovskite 

photovoltaic cell which was illuminated by light passing through the photocathode 

aperture. The photovoltaic FTO contact (electron collector) was connected to the 

photocathode by a short wire, while its gold contact (hole collector) was connected to 

the IrO2 anode (through a potentiostat in two-electrode configuration with zero applied 

bias to measure the short circuit current). The cell was illuminated from the front 

window by simulated sunlight from a 450 W Xe lamp (Osram, ozone-free) equipped 

with an AM 1.5 G filter (LOT-QD), calibrated with a silicon diode to 1-sun intensity. 

For in-line characterization of evolved hydrogen and oxygen gases, the outflow was 

periodically injected into a gas chromatograph (TRACE Ultra with PDD detector, 

Thermo Scientific; ValcoPLOT Molesieve 5 Å fused silica column).  
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6.2.5 ELECTROCHEMICAL CHARACTERIZATION 

The photoelectrochemical cell performance was evaluated in a standard three-electrode 

configuration using the Cu2O device as photocathode, a Pt wire as counter electrode, 

and a reference electrode of Ag/AgCl/Sat. KCl. The electrolyte solution was 0.5 M 

Na2SO4 buffered with 0.1 M phosphate to obtain pH 5.  

J-V MEASUREMENTS AND STABILITY TESTS 

An Ivium Potentiostat/Galvanostat was used to acquire the photoresponse under 

chopped irradiation from a 450 W Xenon lamp (Osram, ozone-free) equipped with an 

IR/UV filter (KG3 filter, 3 mm, Schott). The photoelectrochemical cell was positioned 

for illumination at 1-sun intensity, the position determined by measuring the short 

circuit current on a calibrated silicon diode fitted with a KG3 filter to obtain low 

spectral mismatch with the AM 1.5 G spectrum across the relevant wavelength range 

of 300 – 800 nm. The scan rate for all photocurrent density-potential (J–V) studies was 

10 mV·s−1 in the cathodic direction. The potential was reported against the reversible 

hydrogen electrode (RHE) when a three-electrode configuration is used. The 

electrolyte was continuously bubbled with nitrogen during the J–V measurements and 

stability tests to remove oxygen and thus eliminate signals of oxygen reduction.  

EIS MEASUREMENTS 

EIS analyses were performed applying a small potential sinusoidal perturbation to the 

system. The amplitude and the phase shift of the resulting current response was 

recorded using also an Ivium Potentiostat/Galvanostat workstation. The frequency 

range used was 0.1 Hz – 1 MHz under an AC amplitude of 5 mV. The measurements 

were carried out in dark conditions by applying a bias of 0.5 VRHE in pH 5 solution.  

IPCE MEASUREMENTS  

IPCE measurements were performed under light from a 300 W Xenon lamp (Cermax 

PE 300 BUV) passing through a monochromator (Bausch & Lomb). In three-electrode 

configuration the photocathode current response was measured while holding the 

potential constant. This photoresponse was compared against that of a calibrated Si 

photodiode to determine the IPCE at each wavelength. 
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6.2.6 SPECTROSCOPIC AND MICROSCOPIC CHARACTERIZATION:  

The morphology of the substrates and photoelectrodes was characterized using a high-

resolution scanning electron microscope (Zeiss Merlin) with an in-lens secondary 

electron detector. Cross-sectional images were acquired from freshly cleaved surfaces. 

Total transmittance spectra were measured with a spectrophotometer (Shimadzu UV-

3600) equipped with an integrating sphere. The partial devices were tested directly in 

air, whereas the full devices were wetted with water and sandwiched between quartz 

slides in order to approximate the optical behavior of the device within the 

photoelectrochemical cell. The absence of sample was used as a transmittance blank in 

order to account for the contribution of every layer in the device. 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 TRANSPARENT GOLD SUBSTRATES FOR CU2O PHOTOCATHODES 

The photocathode device structure employed herein is depicted in Figure 6.2. 

Electrodeposited p-type Cu2O serves as the light absorbing component, producing 

photogenerated electrons for water reduction. As previously demonstrated, atomic 

layer deposition (ALD) overlayers of Al:ZnO (AZO) and TiO2 enable heterojunction 

formation and corrosion protection [27], respectively, and electrodeposited RuO2 

represents a highly active and stable co-catalyst for the hydrogen evolution reaction [28]. 

In this study, these three overlayers remained unchanged while the substrate and 

absorber characteristics were varied.  

In the majority of previous works employing Cu2O as photoabsorber in PV and PEC 

devices, a thick and opaque gold film was used as the hole-collecting contact to Cu2O 

[20, 24, 32, 33]. This arrangement prevents implementation of such devices in an optical 

tandem, since the long-wavelength portion of the solar spectrum cannot pass through to 

the second absorber. Herein, the first task was to adapt the substrate for enabling light 

transmittance. Films of the transparent conducting oxide F:SnO2 (FTO) on glass are 

routinely used as substrate for transparent electronic devices, so the photocathode 

synthesis was attempted using Au-free, pristine FTO-glass as substrate.  
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Figure 6.2: Cross-section scanning electron microscopy image of a Cu2O photocathode device 

based on a FTO substrate treated with a 3 nm dose of Au. False-color was added to aid 

visualization of the layers. 

 

The photocurrent density–potential (J–V) response of the device formed on bare FTO 

was considerably poorer than that of a typical device grown on a continuous 150 nm 

thick Au film, as shown in Figure 6.3. For a photocathode driving water reduction, the 

goal is to achieve large photocurrents at potentials well positive of the reversible 

potential of hydrogen evolution, i.e. at 0 VRHE. The typical device based on thick Au 

exhibits a photocurrent (Jphoto) onset potential of ca. 0.5 VRHE, and reaches cathodic 

Jphoto approaching −6 mA·cm−2 at 0 VRHE, a performance that is among the best for 

photoelectrodes based on metal oxide semiconductors. However, the PEC response 

suffered significantly in the absence of Au, with a very gradual onset and a Jphoto 

reaching only −2 mA·cm−2 at 0 VRHE – Figure 6.3. This transparent, Au-free device 

ultimately reached significant photocurrents, but only at large overpotential for water 

reduction; Jphoto of ca. −4.50 mA·cm−2 at −0.50 VRHE. This behavior suggests that a 

significant resistive element is present in this device configuration. A key role of the 

substrate contact to Cu2O is to form an ohmic junction for photogenerated hole 

collection [24, 34]. Due to the relatively large work function of p-type Cu2O, this 

constrains the contact material to one with a comparable or larger work function. It is 

likely that the Cu2O contact with FTO is not an ideal ohmic junction, but rather forms a 

slight Schottky barrier opposing the collection of holes, and therefore contributes to the 

worsening of the J–V response. Indeed, electrochemical impedance spectroscopy 
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analysis revealed a resistive element for this bare FTO device, a feature that was non-

existent in devices with Au at the interface with Cu2O – see Figure 6.4.  

 

Figure 6.3: J–V characteristics under 1-sun intensity chopped illumination for Cu2O 

photocathodes synthesized both with and without the presence of a 150 nm thick Au substrate 

layer. 

 

 

Figure 6.4: Nyquist plots of the Cu2O photocathodes in dark, biased at 0.5 VRHE in pH 5 

solution, measured at frequencies from 1 MHz to 0.1 Hz under an AC amplitude of 5 mV. The 

high-frequency regime is shown, in which an obvious resistive element appears for the device 

without Au; this element does not appear when Au is present at the interface. 
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Additionally, the electrodeposited Cu2O exhibited quite different morphology when 

grown on bare FTO, proceeding by the nucleation and growth of large and dispersed 

Cu2O crystals, in contrast to the dense, uniform and continuous growth of Cu2O films 

when using a gold-coated substrate. This behavior is shown in Figure 6.5 via scanning 

electron microscopy (SEM) images of the different substrates before and after device 

fabrication, correlating with previous reports on the substrate dependence of Cu2O 

electrodeposition [35]. Therefore, the Au substrate seems to affect both the electronics of 

the junction and the quality of the electrodeposited films, making its presence 

important for the device performance, but a challenge given the present goal of 

transparent devices. 

 

Figure 6.5: Scanning electron micrographs of different substrates before (top row) and after 

(bottom row) device fabrication following identical treatments (50 min Cu2O electrodeposition 

followed by atomic layer deposition of AZO and TiO2 overlayers). The substrates examined 

were: (a) bare FTO-glass, (b) FTO with a 150 nm thick Au film, and (c) FTO with a 3 nm dose 

of Au (scale bars: 100 nm). On bare FTO, the Cu2O nucleates and grows into large, distinct 

crystalline particles (d), whereas on both 150 nm (e) and 3 nm (f) Au-treated substrates the 

Cu2O growth is uniform, dense and continuous. 

 

To overcome these limitations while also allowing a high degree of transparency, 

very thin layers of Au were used, therefore, exploring the effect of using substrates of 

FTO treated by brief sputter depositions of Au. As shown in Figure 6.5c, sputtering Au 
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for an equivalent dose (based on calibrated film deposition rates) of 3 nm led to the 

formation of a discontinuous island coating on the FTO surface. Note that the Au 

substrates are herein labeled by their nominal thickness based on calibrated sputter 

deposition rates, although this does not accurately define the discontinuous 

morphology. Interestingly, Cu2O electrodeposition onto these Au island substrates 

resulted in dense, uniform and crystalline films (Figure 6.5f), similar to those deposited 

onto thick Au and in contrast to the large Cu2O particles that form on bare FTO 

substrates. Examination of the transmittance of Au-coated FTO-glass (Figure 6.6a) 

revealed that these substrates exhibit reasonable transparency across the spectrum, but 

the transparency drops with increasing amounts of gold.  

Indeed, employing these as substrates for the fabrication of Cu2O photocathodes, the 

PEC devices showed efficient performances. Figure 6.6b presents the PEC response for 

devices based on the three different Au-treated substrates, revealing that even a small 

amount of gold can enable photocathodes with onset potentials and photocurrent 

density values comparable to that obtained on thick Au. The performance is dependent 

on the amount of Au used, as the shape of the J–V curve improves with increased Au. 

For the smallest dose of 1 nm Au, the slow, rather linear photocurrent increase is likely 

due to a series resistance effect resulting from the limited interfacial area between Au 

and Cu2O. With increased Au, the apparent fill factor of the curves improves, but the 

transparency begins to suffer as a result of the coalescence of Au particles and the 

formation of continuous films. Note that the photocurrent transient behavior near the 

photocurrent onset, similar across all devices studied here, seems to result from the 

capacitive charging of the TiO2 overlayer or the RuO2 co-catalyst; these observations 

are presently under study. Therefore, FTO-glass substrates with slight Au treatments 

were established as suitable substrates for enabling transparent Cu2O-based devices, 

while identifying that the balance between transmittance and performance will be 

important in optimizing the tandem device. In this regard, the 3 nm dose of sputtered 

Au was selected as substrate for the studies continued below. 
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Figure 6.6: Optical and photoelectrochemical effects of Au and Cu2O thickness variation: (a) 

transmittance spectra of FTO-glass substrates with the addition of various doses of sputtered 

Au; (b) J–V characteristics of photocathodes based on 105 min Cu2O electrodepositions onto 

substrates of various Au treatments, under 1-sun intensity chopped illumination; (c) J–V 

characteristics; and (d) IPCE and transmittance spectra for devices of varied Cu2O thickness 

formed onto 3 nm Au treated substrates. The devices are labeled by approximate Cu2O 

thickness. The transmittance spectra were obtained on samples in air. The IPCE responses were 

measured while biased at +0.3 VRHE. All photocathodes in (b–d) were tested following 15 min 

of RuO2 catalyst deposition on their surfaces. 

 

6.3.2 EFFECTS OF Cu2O ABSORBER THICKNESS  

The next parameter to consider is the Cu2O absorber layer thickness. Previous reports 

employed Cu2O films of 500 nm or greater, while other groups have used thicknesses 

of several µm for photovoltaics based on electrodeposited Cu2O [32, 33]. Meanwhile, the 

device transparency and the application of Cu2O in dual-absorber tandems have been 

little explored [36, 37]. In this work, transparency was an important factor and, therefore, 

a series of Cu2O thicknesses was also examined by varying the duration of 
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electrodeposition onto substrates of FTO treated with 3 nm doses of Au. Three 

durations were explored, with 105, 50 and 25 min electrodepositions producing film 

thicknesses of ca. 500, 260 and 100 nm, respectively (see Figure 6.7 for electron 

micrographs and photographs of the films).  

 

Figure 6.7: (a) Cross-section micrographs of Cu2O films electrodeposited for different 

durations onto 3 nm Au-treated FTO-glass substrates. (b) Photographs of Cu2O films of 

different deposition durations onto different Au-treated substrates. 

 

As shown in Figure 6.6c the devices exhibited varying photocathode performances. 

The device with the thinnest absorber layer (100 nm) showed diminished plateau 

photocurrents, whereas the 260 nm and 500 nm films exhibited nearly identical J–V 

responses, both being comparable to the performance on a typical thick Au substrate. 

Variation in the absorber thickness modifies the light absorption profile and the 

resulting quantum efficiency spectra. In Figure 6.6d, the incident photon-to-current 
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conversion efficiencies (IPCE) of the devices under monochromatic illumination reveal 

the changes in spectral response. Although the bandgap of Cu2O is often stated as 

being ca. 2.1 eV, the nature of this transition is direct but forbidden, whereas the first 

allowed transition occurs at around 2.5 eV [24, 38]. This effect is clearly seen as an 

inflection in the IPCE spectra, where photons of lower energy (wavelengths longer 

than 500 nm) are poorly utilized by these thin Cu2O films. Film thicknesses of several 

µm are required for significant absorption in this range [36], but for a stacked tandem 

device the transmittance of long-wavelength photons is an important factor, and it can 

be seen that even a 500 nm Cu2O film contributes to a significantly decreased 

transmittance as compared to a 260 nm Cu2O device (Figure 6.6d). This loss is 

possibly due to an increase in scattering or reflection due to the visibly larger degree of 

surface roughness for the thick Cu2O films (Figure 6.7a). Furthermore, the response to 

short wavelengths decreases with thicker absorber layers, a result of the poor majority 

carrier (hole) collection in thick films. The 50 min electrodeposition photocathode was 

then selected as a relatively optimized candidate for balancing photoelectrochemical 

performance with optical transparency in the complete water splitting device. 

 

6.3.3 TANDEM DEVICE FOR COMPLETE WATER SPLITTING 

A schematic of the assembled tandem device is shown in Figure 6.8, where the two 

absorbers are placed back-to-back, the photovoltaic electron collector is wired to the 

photocathode, and its hole collector is wired to a water oxidation anode. In a dual-

absorber PEC/PV tandem, the photoelectrode and the photovoltaic utilize photons of 

different regions of the solar spectrum to enable broad sunlight harvesting. 

Furthermore, since they will be connected in series and operated at the same current 

density, it is desirable for their individual photocurrent responses to be well matched. 

In Figure 6.9a, the IPCE responses of the photocathode and the perovskite photovoltaic 

(behind the photocathode) are multiplied by the 1-sun AM 1.5 G photon flux to reveal 

the expected photogenerated electron flux from each device, which when integrated 

yields their expected photocurrent densities.  
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Figure 6.8: Schematic of the Cu2O–perovskite–IrO2 tandem cell during operation. An ammeter 

(A) is employed to monitor the short circuit current flowing through the unbiased tandem 

device, while a voltmeter (V) is used to periodically measure the potentials of the anode and 

cathode contacts against a reference electrode in the solution.  

 

In constructing a PEC/PV tandem for complete water splitting, three components are 

required: a suitably transparent photocathode driving hydrogen evolution, a 

photovoltaic cell responsive to the transmitted photons and an anode for oxygen 

evolution. Among water oxidation catalysts, IrO2 is known to be a top performer [39], 

and was, therefore, the anode choice for this proof-of-concept device. Even so, the 

water oxidation reaction imparts a large energetic demand on the overall water splitting 

processes, especially in near-neutral solutions, and significant overpotentials beyond 

the reversible potential for oxygen evolution (1.23 VRHE) are required to achieve 

meaningful current densities. In the tandem configuration employed here, the flat 

anode electrode is positioned parallel to the path of light, an approach that allows 

scaling its active area beyond that of the illuminated area as a tactic toward reducing 

the overpotential required for supporting the tandem photocurrent. In previous reports 

of PEC/PV tandems for unbiased water splitting, it has been common to either make no 

mention of the counter electrode dimensions or to employ counter electrode areas that 

are several times larger than the photoelectrode illuminated area [40-43]. This non-trivial 

parameter plays an important role in the tandem construction and performance, and 

here a catalyst with an active area of ca. 30 times that of the photocathode illuminated 
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area was used. While the anode overpotential is a key challenge producing an efficient 

tandem device, this mismatch of electrode areas can actually highlight an advantage of 

a photocathode-based tandem. Since the oxygen evolution reaction, which exhibits 

significantly larger overpotentials than the hydrogen evolution reaction, occurs on a 

non-photoactive component, its relative area may be increased as long as the cell 

design allows its placement out of the path of illumination, an approach that is even 

more desirable when abundant catalyst materials are employed. 

 

Figure 6.9: PEC/PV tandem assembly and operation. (a) Plot of the spectral flux of photons in 

the AM 1.5 G spectrum and the expected electron current flux of photocathode and PV obtained 

from multiplication of their respective IPCE responses by the photon flux (for IPCE acquisition, 

the photocathode was biased at +0.3 VRHE and the PV was measured at short circuit). 

Integration yields the expected current densities labeled for each component. (b) J–V plots of 

the photocathode and anode components with overlaid J–V response of the PV cell. The 

photocathode configuration was 3 nm Au + 260 nm Cu2O + ALD overlayers + 20 min RuO2 

surface catalyst. The position of the PV curve was defined by actual potential measurements at 

the PV electrode contacts after 60 min of tandem operation, as indicated by grey markers.  
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Figure 6.9b presents the J–V behavior of all three components tested individually, 

where the raw current of each was normalized by the photocathode illuminated area. 

Comparison of the photocathode and anode curves reveals the current-dependent 

additional potential needed to enable complete electrolysis. For instance, ca. 1 V is 

needed in order to drive a current density of ca. 2 mA·cm−2 between these electrodes. 

Few single-absorber photovoltaics are capable of photopotentials this large, but the 

emergent high-Voc hybrid perovskite photovoltaics represent promising candidates for 

this application [44]. Herein, a perovskite solar cell (PV cell) based on the mixed-cation 

formulation formamidinium methylammonium lead iodide ((MA)x(FA)1−xPbI3) was 

employed [45], which exhibits a Voc under 1-sun illumination of 1.13 V (see Figure 6.10 

for the photovoltaic cell J–V curves and IPCE analysis).  

 

Figure 6.10: Photovoltaic cell characterization; (a) J–V curves of the (MA)x(FA)1−xPbI3 PV 

under various illumination conditions (0.98-sun and behind Cu2O in tandem configuration) 

scanned at 10 mV·s−1; (b) IPCE response of the PV cell as well as the product of the IPCE and 

the measured Cu2O transmittance to yield the expected IPCE of the PV when placed behind the 

photocathode. The photocathode IPCE is shown as well for reference. 

 

The PV cell was placed against the back window of the sealed PEC cell and 

connected by wires to the electrodes. Since the PV is electrically in series between the 

anode and photocathode, its J–V response can be plotted between the electrode J–V 

curves in order to predict the tandem operation current. Under operation, the currents 

through each component are equal, and the potentials of each contact spontaneously 

adjust to reach this equilibrium. From Figure 6.9b, this treatment predicts an operating 

current density of ca. 2 mA·cm−2 for this tandem configuration. All components were 
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then connected in series and the cell was illuminated with 1-sun intensity simulated 

sunlight, using a potentiostat to monitor the current flowing between the PV and anode 

(applying zero bias) while simultaneously performing in-line gas chromatography 

measurement of the evolved gases. Figure 6.11a shows the resulting measured current 

density, where it can be seen that the actual tandem performance corresponded well 

with that predicted by the separate component analysis. Measurement of both hydrogen 

and oxygen, important for proving complete water splitting [46], led to calculate 

Faradaic efficiencies around 100 % for each gas - Figure 6.11b.  

 

Figure 6.11: PEC/PV tandem assembly and operation: (a) photocurrent density history over 

time in the AM 1.5 G spectrum; (b) Faradaic efficiency from in-line gas measurements; and (c) 

potential measurements during operation of the complete assembled tandem in a sealed, stirred 

cell under continuous flow of He carrier gas, with a photocathode and photovoltaic illuminated 

area of ca. 0.057 cm2. Approximately 30 min were required for the produced gases to reach 

equilibrium in the cell. 
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Variations in the gas measurements are a result of the build-up and release of bubbles 

on the electrode surfaces. A photocurrent-density of ca. 2 mA·cm−2 combined with the 

near-unity yield of evolved gases corresponds to a solar-to-hydrogen (STH) efficiency 

of ca. 2.5 % by Equation (6.1): 
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 

  
  (6.1) 

where Jphoto is the photocurrent density during unbiased operation, 1.23 V is the 

standard-state potential for water electrolysis, ηF is the Faradaic efficiency of evolved 

hydrogen and Plight is the power of the incident illumination, taken here as 

100 mW·cm−2 for the AM 1.5 G spectrum at 1-sun intensity. This efficiency, while 

modest in comparison to more sophisticated systems [8-10], represents an important 

advance among photocathode-based tandem devices employing Earth-abundant 

absorbers.  

The tandem device was tested under continuous illumination for over two hours, 

during which time the photocurrent density slowly decreased to stabilize at ca. 

1.5 mA·cm−2. In addition to measurements of Jphoto and ηF, monitoring the device 

potentials during operation revealed insight into the tandem operation. By periodically 

measuring the electrode potentials against a reference electrode in the cell as illustrated 

in Figure 6.8 and shown in Figure 6.11c, the anode potential revealed to be quite stable 

whereas the photocathode potential was shifted to more positive values over time. 

These changes were concurrent with the gradual decrease of device Jphoto, and the 

behavior can be interpreted by referring to the analysis in Figure 6.9b. The measured 

potentials represent the potentials at the contacts between the PV cell and each 

electrode, equivalent to the labeled crossover points. Since the anode curve is steep, 

changes in current are accommodated with relatively little change in potential. For the 

photocathode, on the other hand, the observed positive shift in potential, combined 

with the decreasing measured Jphoto, reveals that the performance decline is likely a 

result of a decrease in the PV photopotential. Indeed, when its J–V response was re-

tested after tandem operation, Voc and fill-factor of the PV cell exhibited a slight 

decrease (Figure 6.10). Despite this observation, it was noted that several recent works 

have demonstrated extended stability for hybrid perovskite photovoltaics [47, 48], and 

this is a topic of ongoing study for the device type employed here. Meanwhile, the 
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photocathode was found to be robust. In an extended test, a representative Cu2O 

photocathode of this same transparent configuration was found to be highly stable 

when tested for 24 hours under continuous operation, as shown in Figure 6.12.  

 

Figure 6.12: Representative photocathode stability study for a device based on 3 nm Au + 50 

min Cu2O: (a) chronoamperometry under continuous illumination while biased at 0 VRHE for 

24 h; and (b) J–V response before and after the stability test.  

 

There are several clear paths toward improving upon this tandem efficiency, mostly 

based on the enhancement of the Cu2O photocathode performance. As shown above, 

the photocurrent density is highly dependent on the operating potential. An increase in 

the photopotential of the device, manifesting as a positive shift in the J–V curve, would 

allow tandem operation at higher current density. For instance, a photopotential 

increase of ca. 0.2 V could enable a near-doubling of the operating current density to 

ca. 4 mA·cm−2. Recently it has been shown that improving the nature of the Cu2O–

overlayer junction by using Ga2O3 interlayers can lead to significantly enhanced 

photopotentials [33, 49], an approach that may prove useful toward tandem applications. 

Improvement in the photocathode photocurrent is also needed, although the forbidden 

electronic transitions for photon energies below 2.5 eV require much thicker Cu2O 

films for improved absorption in that range [38], posing a challenge when targeting high 

device transparency. 

The tandem performance may also be improved by operating in a highly alkaline or 

acidic electrolyte more suitable for efficient electrolysis. Although rapid stirring was 

used here to prevent mass transport limitations and pH gradient build-up, it has been 

shown that devices in near-neutral solutions can be fundamentally limited in efficiency 
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when operated for extended periods [50]. Furthermore, catalysts for water oxidation are 

generally more efficient in alkaline solutions, for which there are several desirable 

Earth-abundant candidates [39]. At present, TiO2 overlayer approach was found to be 

insufficiently stable in alkaline conditions to allow a demonstration extended 

operation, but further study in this direction is ongoing [51], since a stable and efficient 

photocathode in alkaline solution would be highly desirable.  

 

6.4 CONCLUSIONS 

In this work, a PEC/PV water splitting tandem was constructed using a Cu2O 

photocathode and a hybrid perovskite photovoltaic. In developing a transparent 

photocathode, it is discovered the important role of gold as substrate and explored how 

different aspects of the device architecture influence the balance between performance 

and transparency. This transparent Cu2O photoelectrode enabled the construction of an 

optically-stacked two absorbers tandem device capable of performing standalone 

sunlight-driven water splitting at up to 2.5 % solar-to-hydrogen efficiency, a 

performance that may be significantly enhanced by further development of the Cu2O 

photocathode. 
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7  
GENERAL CONCLUSIONS AND OUTLOOK 

The present work studies the photoelectrochemical (PEC) water splitting using 

promising metal oxide semiconductors, such as hematite and tungsten trioxide 

photoanodes and cuprous oxide photocathodes, aiming efficient and stable devices. To 

accomplish the proposed goals, complete structural, morphological and 

electrochemical characterization, namely photocurrent density-voltage (J-V) 

characteristics, aging tests and electrochemical impedance spectroscopy (EIS), were 

performed for assessing PEC cells performance.  

PEC cells for water splitting, as other solar devices, are very sensitive to temperature.  

Understanding the behavior of these devices as a function of temperature is particularly 

important for practical applications since under real outdoor conditions the temperature 

should range between subzero to ca. 70 ºC. An experimental test bench was built and a 

PEC cell setup designed with a temperature controlling system. The performance of Si-

doped hematite photoanodes was assessed as a function of temperature. Within the 

temperature range considered, 25 ºC to 65 ºC, a global improvement of the energy 

performance with temperature was observed. The best operating conditions were 

obtained for ca. 45 ºC, which balances the energy efficiency and the photoanode 

stability (72 h). Moreover, a cathodic shift of the dark current onset potential was 

observed for higher temperatures. This effect was assigned to the role of the 

transparent conducting oxide applied to the substrate, FTO (fluorine doped tin oxide), 

on the water splitting. This role was further studied using two types of substrates; it 

was chosen tungsten trioxide photoanodes deposited on a FTO glass (WO3/FTO) and 

anodized on a tungsten foil (WO3/metal). An improvement in the photocurrent density 

with temperature was observed together with the cathodic shift of the onset potential 

for both samples. However, the WO3/FTO exhibited already a quite high dark current 

onset potential at ca. 1.80 VRHE, while the WO3/metal showed almost negligible dark 

current. Thus, the earlier dark current onset observed for WO3/FTO was assigned to the 

FTO layer and not to the effect of temperature on the photoanode material. The J-V and 

EIS measurements allowed concluding about the optimal operating temperature, 45 ºC 
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for the WO3/FTO sample and 55 ºC for the WO3/metal sample, which balances the 

energy efficiency and the photoelectrode stability. For higher temperatures, the bulk 

electron-hole recombination phenomenon, which is in direct competition with water 

oxidation, greatly affects the overall performance of WO3 photoanodes. The aging tests 

performed at these temperatures over 72 h showed that WO3/metal has the best 

stability performance for the oxygen evolution reaction, maintaining its morphology 

and good crystallinity with minimal energy conversion efficiency losses after 4 h 

(< 2 %). For WO3/FTO, a crystalline-to-amorphous phase transformation occurred 

during the stability test, which may justify the current decrease observed after the aging 

period. These findings provide crucial information about the role of substrate and 

preparation method on the photoelectrode energy performance and stability. 

Furthermore, stability is one of the main concerns when future commercial 

applications are envisaged but hematite was reported as a highly stable semiconductor 

material. Herein, photoanodes of bare hematite prepared by spray pyrolysis were 

systematically optimized following a design of experiments approach. A response 

surface methodology was applied considering the following factors: i) sprayed volume 

of solution; ii) temperature of the glass substrate during the deposition; and iii) time 

gap between sprays. The optimized operating conditions obtained were v = 42 mL, 

T = 425 ºC and t = 35 s. The optimized hematite photoelectrode showed a photocurrent 

density of ca. 0.94 mA·cm-2 at 1.45 VRHE, which is a remarkable value for an ultrathin 

film of ca. 18.8 nm. One of the most important contributions of the present work was 

the long-term stability study; the prepared hematite photoanode was extremely stable 

over 1000 h of PEC operation under 1-sun AM 1.5 G illumination. A record-breaking 

result, with no evidences of hematite film degradation neither of current density loss. 

This result opens the door to turn PEC cells into a competitive technology in the solar 

fuel economy. 

Hematite is one of the most promising photoelectrodes for solar water splitting. 

Nevertheless, its performance as a photoanode is considerably lower than what is 

thermodynamically expected, mainly due to the high electrochemical potential usually 

needed to initiate water splitting and its low photopotential. This low photopotential is 

essentially related to surface defects, while decreasing the water oxidation 

overpotentials harnesses the available photopotential. A synergetic combination of 

surface passivation, obtained by annealing the hematite photoanode at 800 ºC and by 
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coating with RuO2 co-catalyst, was the strategy used to cathodically shift the 

photocurrent onset potential. The annealing at 800 ºC improved both the morphology 

and the electronic structure due to the diffusion of tin ions from the FTO layer into the 

hematite lattice, whereas the coating of RuO2 co-catalyst (optimal load of 36 mC·cm-2) 

improved water oxidation kinetics and band bending. Therefore, RuO2-coated hematite 

thin films further sintered at 200 ºC showed an onset potential of ca. 0.52 VRHE 

(cathodic onset shift > 400 mV) and a noticeable photocurrent density of ca. 

0.60 mA·cm-2 at 1.00 VRHE was reached, compared to < 0.01 mA·cm-2 of the bare 

hematite. A final photopotential of ca. 0.95 V was obtained, which is the highest 

reported for hematite-based photoanodes. Future work should focus on improving the 

co-catalyst activity and stability to delivery at lower potentials high current densities; 

binary and complex co-catalysts are foreseen to this end. 

A major drawback in PEC cells is therefore the lack of suitable photoelectrode 

materials available to promote the overall water splitting reaction without an external 

bias source. Dual-absorber tandem devices can be accomplished with photoanode–

photocathode systems or photoelectrode-photovoltaic coupled devices to generate the 

sufficient driving force for standalone solar water splitting. However, a prerequisite of 

the photoelectrode is displaying high photopotential compatible with a single tandem 

arrangement of a PEC/PV cell. Literature studies employing PEC/PV tandem 

configuration have mostly focused around the use of n-type semiconductors for water 

oxidation since there are fewer Earth-abundant and stable candidates for photocathode 

PEC devices. Cu2O photocathodes have been reported for the hydrogen evolution 

reaction due to their recent stability enhancement using protective overlayers of 

AZO/TiO2 and RuO2 co-catalyst. However, these films are typically electrodeposited 

on an opaque Au layer, which precludes their use in a tandem configuration. Here, the 

treatment of FTO glass substrates with thin layers of gold (ca. 3 nm Au) had a crucial 

role for the development of a highly performing semi-transparent Cu2O photocathode 

as a top absorber. This material generated a photocurrent-density of ca. 5.50 mA·cm-2 

that remained almost constant over 24 h. Therefore, the new transparent photoelectrode 

enabled the construction of an optically-stacked two absorbers tandem device with a 

hybrid perovskite photovoltaic cell. The innovative PEC/PV system performed 

standalone sunlight-driven water splitting at ca. 2.50 % solar-to-hydrogen efficiency, a 
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performance that may be significantly enhanced by further improvements of the Cu2O 

photocathode. 

 

PEC hydrogen generation is not yet commercial and, in fact, to turn this technology 

cost-effective, solar-to-hydrogen energy conversion efficiency of 10 % and lifetimes of 

more than 1000 h have to be demonstrated up to 2017 to meet the FCH-JU’s (Fuel 

Cells and Hydrogen Joint Undertaking) cost target of 5 € per kg H2. Future directions 

are mainly focused on four crucial topics: i) development of stable and efficient metal 

oxide photoelectrodes, ii) optimization of tandem cell designs, iii) technology scale-up, 

and iv) techno-economic and life-cycle assessments. 

The scientific challenges of PEC cell devices comprise the design of new, Earth-

abundant light absorbing materials, such as heteronanostructures, with appropriate 

bandgap and band edge positions. Moreover, the development of transparent and high-

performance electrocatalysts and ameliorated interfaces should facilitate oxygen and 

hydrogen evolution reactions, reducing recombination rates. Hematite photoanodes are 

very promising for oxygen evolution reaction, with a maximum thermodynamic STH 

efficiency of 16.8 %. The present study proved high stability in an alkaline medium 

(1000 h PEC operation) using an ultrathin hematite film; the films were prepared by 

spray pyrolysis, exhibiting great reproducibility for future industrial applications. 

Continued efforts to control the surface-related processes are strongly required for 

further enhancing the performance of photoelectrodes and PEC devices. Surface 

modifications can address the fundamental photoelectrode defects, e.g. stability, 

surface states, poor band bending, catalytic activity, etc. The use of RuO2 as a highly 

active co-catalyst was effective on improving the hematite photopotential; however, 

the introduction of non-noble metals on the catalyst structure, such as Co and Ni, 

should enhance the photoelectrode performance, reducing also the final cost. Other 

water oxidation co-catalysts should be tested, e.g. NiFeOx, in order to reach the 

maximum photocurrent near the onset potential, which would allow the tandem 

arrangement with a Si photocathode or a PV cell enabling unassisted water splitting. 

For harnessing better hematite performances, the recent advances are focused on using 

a host-guest approach, where the light absorption and water oxidation roles are 

decoupled from the electron conduction. For instance, depositing an extremely thin 
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layer of hematite onto a WO3 mesoporous host, its short carrier diffusion lengths 

limitation together with a photocurrent increase can be overcome. On the other hand, 

Cu2O appears as an attractive photocathode material, since almost half of its 

thermodynamic STH conversion efficiency (maximum current density value of ca. 

14.7 mA·cm-2) was already achieved. The weak point is the lack of chemical stability 

of the top protective layer at the pH values where the hydrogen evolution co-catalyst 

shows peak-performance. Additional efforts on finding solutions to deposit a 

crystalline and stable protective overlayer that minimizes deleterious electron trapping 

in the film are very important. 

Despite many progresses, no single semiconductor material has been found that 

fulfills all the requirements needed to generate standalone water splitting devices. Dual 

light-absorber tandem devices enabling unbiased water splitting, mainly hybrid 

PEC/PV tandem systems, are considered the new generation for PEC hydrogen 

production. Recent breakthroughs have brought metal oxide photoelectrodes close to 

efficiency levels required for practical applications, but they also need to target high 

transparency when combined as top absorber materials; the later requirement sacrifices 

the light absorption and then the photoelectrode current. Thus, there are several clear 

paths toward improving upon tandem efficiencies, mostly based on the enhancement of 

the photoelectrode performance and the stability of the tandem device. For the 

proposed PEC/PV device, an increase in the photopotential of Cu2O photoelectrode 

would allow tandem operation at higher currents, e.g. a photopotential increase of 

ca. 0.20 V could enable a near-doubling current density to ca. 4 mA·cm−2, the half-

target to be attractive to industry.  

Future improvements on the performance of photoelectrode and/or photovoltaic 

materials and the control device fabrication techniques, as well as the 

phenomenological understandings of PEC tandem systems should continue as long as 

the viable targets are not reached. Moreover, engineering of a practical design for 

large-area tandem devices allowing the recovery of hydrogen and oxygen gases 

remains a challenge. The use of inexpensive materials to convert the most renewable 

source of energy that is the sun will ultimately lead to a sustainable energy economy. 

Quoting Thomas Edison, we should continue to put money on the sun and solar 

energy: “What a source of power!” 
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