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ABSTRACT 
The skeletal system provides support for the body, enables movement and protects inner 

organs. Moreover, it supplies blood cells and acts as a reservoir for minerals and fat.  

Several external factors, including nutrition and long-term illness, influence bone health but 

genetic factors also play an important role. More than 400 different rare skeletal diseases, 

collectively called skeletal dysplasias, have thus far been delineated and mutations in over 

350 genes have been identified as underlying causes in these conditions. Although the 

recent evolution of the sequencing technologies and molecular methods has increased 

diagnostic yield of rare skeletal diseases, knowledge on the genetic and phenotypic 

features in some of these conditions is still limited and novel forms of skeletal dysplasia 

still remain to be characterized. 

This thesis focused on rare skeletal diseases primarily affecting the major component of 

the skeleton, the bone. In paper I and III Sanger sequencing was used. In paper I this 

method excluded the presence of rare variants in CRTAP, encoding the cartilage 

associated protein, in patients with mild-to-severe skeletal fragility. In paper III two novel 

mutations in two components of the WNT signaling pathway, LRP5 and AMER1, were 

identified in two patients affected by high bone mass. In paper II a custom designed high-

resolution array-CGH, targeting all the genes thus far linked to skeletal diseases and the 

cilia genes, enabled the identification of two novel copy number variants (CNVs) affecting 

COL1A2 and PLS3 in two index patients with primary osteoporosis. Other rare CNVs in 

genes not yet related to bone homeostasis were detected and regarded as variants of 

unknown significance. In papers IV and V massively-parallel sequencing was applied. In 

paper IV five novel variants in the fibronectin gene (FN1), which was recently linked to 

spondylometaphyseal dysplasia with “corner fractures”, were revealed in five patients 

affected by this disease. Finally, in paper V two novel variants in the gene encoding the 

ribosomal protein L13, RPL13, were for the first time associated with a novel form of 

spondyloepimetaphyseal dysplasia. 

Our findings expand the genetic and phenotypic spectrum of some known rare skeletal 

diseases. Moreover, a novel gene-disease association was identified but further studies 

are required to explore the pathomolecular mechanisms underlying this condition. Studying 

rare metabolic bone diseases is important not only for arriving at a specific diagnosis but 

also for understanding the pathogenesis of these conditions - only an increased 

understanding of the molecular mechanisms will enable the development of targeted 

therapies. 
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PREFACE 
My PhD journey started in January 2015 when I joined Outi Mäkitie’s team in Clinical 

Genetics at Karolinska Institutet. During my undergraduate studies I became fascinated by 

the field of genetics but only during my PhD I became passionate about performing 

research on rare skeletal diseases. I feel grateful to have been a PhD student in medical 

genetics during these exciting times, in which the rapid development and application of 

massively-parallel sequencing technologies has tremendously revolutionized the way of 

approaching patients with rare monogenic diseases. My PhD project, which started with 

the use of Sanger sequencing to then move to high-resolution array-CGH and finally to 

high-throughput sequencing, is a proof of the shift from clinical genetics to clinical 

genomics. My PhD studies enabled me to learn different methods, to deepen my 

knowledge in clinical genetics, to acquire understanding of bone homeostasis and skeletal 

diseases as well as to develop myself as a researcher.  

 

 

Stockholm, May 8th 2019 

 



 

 

TABLE OF CONTENTS 
1 INTRODUCTION ................................................................................................................................. 1 

1.1 BONE STRUCTURE ............................................................................................................... 1 
1.1.1 Bone cells and extracellular matrix ........................................................................... 2 
1.1.2 Bone strength ............................................................................................................ 3 

1.2 SKELETAL DEVELOPMENT .................................................................................................. 4 
1.2.1 Intramembranous ossification ................................................................................... 4 
1.2.2 Endochondral ossification ......................................................................................... 4 

1.3 BONE HOMEOSTASIS ........................................................................................................... 5 
1.3.1 Bone modeling and remodeling ................................................................................ 6 
1.3.2 Calcium and phosphate homeostasis ....................................................................... 7 
1.3.3 Other regulators ......................................................................................................... 8 

1.4 THE HUMAN GENOME .......................................................................................................... 9 
1.4.1 Human genetic variation ............................................................................................ 9 
1.4.2 Types of genetic variants ........................................................................................ 10 
1.4.3 Rare monogenic diseases ....................................................................................... 11 
1.4.4 Challenges in variant interpretation ......................................................................... 12 

1.5 RARE SKELETAL DISEASES .............................................................................................. 12 
1.5.1 Diseases affecting growth ....................................................................................... 13 
1.5.2 Diseases affecting bone homeostasis .................................................................... 16 
1.5.3 Treatments .............................................................................................................. 20 

1.6 APPROACHES TO INVESTIGATE GENETIC SKELETAL DISEASES .............................. 22 
1.6.1 From genetics to genomics ..................................................................................... 23 

2 AIMS .................................................................................................................................................. 25 
3 PATIENTS AND METHODS ............................................................................................................. 27 

3.1 ETHICAL APPROVALS AND PATIENTS’ CONSENTS ...................................................... 27 
3.2 PATIENTS ............................................................................................................................. 27 
3.3 METHODS ............................................................................................................................. 28 

3.3.1 Genetic testing ......................................................................................................... 28 
3.3.2  Variant filtering, prioritization and interpretation ...................................................... 32 
3.3.3 Variant validation ..................................................................................................... 33 

4 RESULTS AND DISCUSSION .......................................................................................................... 37 
4.1 SANGER SEQUENCING OF KNOWN DISEASE GENES .................................................. 37 

4.1.1 CRTAP screening in patients with skeletal fragility ................................................. 37 
4.1.2 Genes associated with HBM diseases ................................................................... 38 

4.2 CUSTOM DESIGNED ARRAY-CGH TARGETING GENES RELATED TO 
SKELETAL FRAGILITY AND CILIARY FUNCTION ............................................................ 40 
4.2.1 CNVs in known genes associated to skeletal fragility ............................................ 40 
4.2.2 CNVs in genes not yet associated with skeletal diseases ...................................... 41 

4.3 MPS TO SEARCH FOR DISEASE-CAUSING GENETIC DEFECTS IN RARE 
SKELETAL PHENOTYPES .................................................................................................. 43 
4.3.1 Studies in SMD with “corner fractures” ................................................................... 43 
4.3.2 Studies in SEMD ..................................................................................................... 45 

4.4 STUDY LIMITATIONS .......................................................................................................... 49 
4.5 ETHICAL CONSIDERATIONS ............................................................................................. 49 

5 CONCLUSIONS ................................................................................................................................ 51 
6 FUTURE PERSPECTIVES ............................................................................................................... 55 
7 ACKNOWLEDGMENTS .................................................................................................................... 57 
8 REFERENCES .................................................................................................................................. 61 
 



 

  

LIST OF ABBREVIATIONS 

1,25(OH)2: 1,25-dihydroxyvitamin D (active vitamin D) 

ACMG: American College of Medical Genetics 

AMER1: adenomatous polyposis coli membrane recruitment 1 

Array-CGH: comparative genomic hybridization arrays  

BMD: bone mineral density  

BMP: bone morphogenetic protein 

BWA: Burrows-Wheeler Aligner 

CADD: Combined Annotation-Dependent Depletion (CADD) 

CNV: copy number variant 

COL1A1/COL1A2: type I collagen chain 1/2 

COMP: cartilage oligomeric matrix protein 

CRTAP: cartilage associated protein  

ddNTP: dideoxyribonucleotide triphosphate 

DGV: Database of Genetic Variation 

DKK: Dickkopf 

dNTP: deoxyribonucleotide triphosphate  

Dpf: days post-fertilization 

DXA: dual-energy X-ray absorptiometry 

eBMD: estimated BMD 

ECM: extracellular matrix  

ExAc: Exome Aggregation Consortium 

F1: first filial  

FGF: fibroblast growth factor 

FZD: frizzled  

GERP: Genomic Evolutionary Rate Profiling 

gnomAD: Genome Aggregation Consortium 

GOF: gain-of-function 

GWAS: genome-wide association study 

HBM: high bone mass  

HPP: hypophosphatasia  

HRP: horseradish peroxidase 

HSC: hematopoietic stem cells  

ICC: immunocytochemistry 

IGV: Integrative Genomics Viewer 

IHH: Indian hedgehog 

LOF: loss-of-function 

LRP: lipoprotein receptor related protein 

MAF: minor allele frequency 

MPS: massively-parallel sequencing 



 

 

mRNA: messenger RNA 

MSC: mesenchymal stem cell 

NHEJ: non-homologous end joining  

OCN: osteocalcin 

OI: osteogenesis imperfecta 

OMIM: Online Mendelian Inheritance in Man 

OPG: osteoprotegerin 

ORF: open reading frame 

OSCS: osteopathia striata with cranial sclerosis  

PCR: polymerase chain reaction  

PLS: plastin 

POC: primary ossification center 

PTH: parathyroid hormone 

PTHrP: parathyroid hormone-related protein 

RANK: receptor activator of nuclear factor kappa-Β 

RANKL: receptor activator of nuclear factor kappa-Β ligand 

rER: rough endoplasmic reticulum 

RP: ribosomal protein 

RPL: L ribosomal protein 

SD: standard deviation 

SEMD: spondyloepimetaphyseal dysplasia 

sgRNA: single guide RNA  

SMD-CF: spondylometaphyseal dysplasia with “corner fractures” 

SMD: spondylometaphyseal dysplasia  

SNP: single nucleotide polymorphism 

SNV: single nucleotide variant 

SOC: secondary ossification center  

SOST: sclerostin 

SV: structural variant 

TGF-β: transforming growth factor β 

TNSALP: tissue-nonspecific alkaline phosphatase 

VEP: Variant Effect Predictor 

VUS: variant of uncertain significance  

WB: Western blot 

WES: whole-exome sequencing 

WGS: whole-genome sequencing 

WNT: wingless-type 

XYLT: xylosyltransferase



 

  1 

1 INTRODUCTION 
The skeletal system has several vital functions: it supports the body, enables movement 

and protects inner organs. Furthermore, it acts as a source of blood cells and a reservoir 

for minerals, mainly calcium and phosphate, as well as fat. The skeleton is composed of 

several tissues including bone, cartilage, tendons, ligaments and other connective tissues.  

Several external factors influence bone health. These factors include nutrition, physical 

activity, potential long-term illnesses (e.g. inflammatory diseases) and medications such as 

glucocorticoid therapy. However, genetic factors also play an important role. This thesis 

will focus on rare skeletal diseases that are caused by a single genetic defect (monogenic, 

or Mendelian conditions) and primarily affecting the major component of the skeleton, the 

bone. 

1.1 BONE STRUCTURE 
The adult skeleton is composed of 206 skeletal elements, which can be subdivided into 

five groups based on their shape: long bones (e.g. tibia), short bones (e.g. phalanges), flat 

bones (e.g. scapula), irregular bones (e.g. vertebrae) and sesamoid bones (e.g. patella). 

Furthermore, two types of bone tissue have been characterized: the cortical bone and the 

cancellous bone. In long bones, the cortical bone forms the outer layer whereas the 

cancellous bone occupies the inner part that is in contact with the bone marrow (Fig. 1).  

 

Osteons are the structural and functional units of the cortical bone. They consist of 

concentric bone layers (lamellae) surrounding a canal, known as Haversian canal, that 

supplies blood. In contrast, the cancellous bone is comprised of trabeculae that form a 

porous network (Fig. 1).  

 

Figure 1. Schematic illustration of the 
inner structures of a long bone. 
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1.1.1 Bone cells and extracellular matrix 
Bone is composed of cells and extracellular matrix (ECM) [Florencio-Silva et al., 2015]. 

Two types of cells, namely osteoblasts and osteocytes, derive from mesenchymal stem 

cells (MSCs) (Fig. 2A). Osteocytes are terminally-differentiated osteoblasts. Osteoclasts, 

which are embedded in the ECM, differentiate instead from hematopoietic stem cells 

(HSCs) (Fig. 2A). Osteocytes are the largest cell population (90-95%) in the adult skeleton, 

followed by osteoblasts (4-6%) and osteoclasts (approximately 1-2%). Each bone cell type 

expresses specific markers and captures stimuli sent by other cells or external factors to 

promptly regulate bone homeostasis.  

 
Figure 2. Differentiation of bone and cartilage cells from their stem cell precursors (A). Schematic 
representation of the bone cells and ECM (B). 
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Osteoblasts are the cells responsible for building up new bone. Since they are specialized 

in secreting a large amount of ECM, osteoblasts are characterized by an extensive Golgi 

complex, a large number of mitochondria as well as a dilated rough endoplasmic reticulum 

(rER) [Del Fattore et al., 2012]. In addition, they produce several factors to regulate cell-to-

cell interactions in particular with the osteoclasts. Once osteoblasts reach maturity, they 

become bone lining cells (Fig. 2B). 

Osteoclasts are large multinucleated macrophage-like cells located on the bone surface 

(Fig. 2B) and their role is to resorb bone. Cell membrane polarization together with 

extensive ion systems are required to dissolve the mineralized matrix [Vaananen et al., 

2000]. Three different zones characterize the membrane of the osteoclasts: a sealing zone 

required to adhere to bone matrix, a ruffled border specialized to resorb mineralized matrix, 

and a functional secretory domain to exocytose the degraded matrix.  

Osteocytes are stellar-shaped cells that reside within the bone matrix (Fig. 2B) [Dallas et 

al., 2013]. They communicate with each other as well as with osteoblasts and the bone 

marrow through their cytoplasmic extensions, named canaliculi.  

Finally, the ECM is synthesized and secreted by the bone cells, primarily by the 

osteoblasts, and mainly composed of type I collagen (90%), other non-collagenous 

proteins (especially glycoproteins and proteoglycans), water, lipids and minerals (mostly 

hydroxyapatite) (Fig. 2B) [Young, 2003]. The ECM enables both adhesion and movement 

of the cells and it is also a source of growth factors and cytokines required for cell 

differentiation and signaling [Rozario and DeSimone, 2010]. Type I collagen is a protein 

comprised of three polypeptide chains, two alpha-1 and one alpha-2 chains, which are 

tightly packed together through hydrogen bonding. A recurrent sequence motif of three 

amino acids Xaa-Yaa-Gly, where every third position is occupied by glycine (Gly) and 

Xaa/Yaa can be any amino acid, characterizes the helical region of collagen. Moreover, 

the activity of several other proteins is required for the post-translational processing and 

folding of type I collagen as well as for fibril assembly. The assembly of a variety of other 

proteins besides collagen, such as fibronectin, determines the structure and organization 

of the ECM.  

1.1.2 Bone strength 
Bone strength, defined as the resistance of bone to fractures, is determined by the amount 

of, and ratio between, cortical and cancellous bone, and by the number, thickness and 

organization of the trabeculae within the cancellous component. Bone mineral density 

(BMD), corresponding to the mass per unit volume of mineralized bone, is measured by 

dual-energy X-ray absorptiometry (DXA) and it is commonly used as a measure for bone 
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strength. Twin studies have demonstrated that up to 85% of BMD variance can be 

explained by genetic variants [Pocock et al., 1987; Stewart and Ralston, 2000].  

Bone strength is also impacted by bone quality, which is influenced by several factors such 

as the microarchitecture of cancellous bone, the shape of bones, and the mineralization 

and the molecular composition of the ECM.  

 

1.2 SKELETAL DEVELOPMENT 
Skeletal patterning begins early during embryonic development and determines the precise 

location, shape and function of each skeletal element in the body [Olsen et al., 2000]. 

Aggregation of the MSCs into mesenchymal condensations is the first step in bone 

development [Hall and Miyake, 2000]. The skeletal elements are formed via two different 

processes: intramembranous ossification and endochondral ossification. 

1.2.1 Intramembranous ossification 
During intramembranous ossification, bone develops without the mediation of a 

cartilaginous phase [Opperman, 2000]. This process initiates when a group of MSCs 

aggregate and give rise to specialized cells. Some of these cells are responsible for tissue 

vascularization while others differentiate into osteoprogenitors and subsequently to 

osteoblasts, which locate in the ossification centers and produce unmineralized matrix 

(osteoid). Mineralization of osteoid causes trapping of osteoblasts in the matrix, leading to 

transformation of osteoblasts into osteocytes [Ornitz and Marie, 2002]. The deposition of 

osteoid around the capillaries constitutes the trabecular matrix whereas the osteoblasts on 

the surface form the periosteum, which is a layer of compact bone that protects the 

cancellous bone and the bone marrow. The craniofacial bones and clavicles are formed via 

intramembranous ossification whereas development of all other skeletal elements requires 

cartilage formation and are formed through endochondral ossification. [Long and Ornitz, 

2013].  

1.2.2 Endochondral ossification 
Endochondral ossification is mediated by the epiphyseal plate, commonly known as the 

growth plate, which is a highly organized cartilaginous structure that allows longitudinal 

bones to elongate during childhood and adolescence. The growth plate can be subdivided 

into three zones occupied by chondrocytes with different functions and proliferation 

capacities: 1) resting zone, 2) proliferative zone and 3) hypertrophic zone (Fig. 3) 

[Brighton, 1978].  
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Figure 3. Structure of a long bone and details of the growth plate. On the left, different zones of the 
growth plate are represented. Chondrocytes in each zone have different properties. In the middle, a 
schematic picture of a tubular bone indicates the location of the growth plate and other bone 
structures. On the right, the X-ray shows the distal femur and the tibia and fibula of a child. The 
cartilaginous growth plates are open and not mineralized.  

The function of the chondrocytes as well as their size and orientation differ in each zone 

and they are tightly regulated by several signaling pathways, including NOTCH, IHH, FGF, 

BMP, PTHrP, and WNT [Long and Ornitz, 2013]. Two other crucial structures are formed 

during cartilage growth: the primary ossification centers (POCs) and the secondary 

ossification centers (SOCs) [Olsen et al., 2000]. POCs are formed during prenatal 

development when hypertrophic chondrocytes are replaced by perichondrial osteoblasts 

that produce osteoid. At the same time, the cartilage matrix is degraded and this region 

becomes vascularized [Dao et al., 2012]. SOCs instead develop postnatally within the 

epiphysis and are also invaded by blood vessels (Fig. 3). At the end of puberty, the growth 

plate fuses with the epiphysis and the growth plate cartilage is replaced by bone. This 

culminates in the cessation of linear bone growth. 

1.3 BONE HOMEOSTASIS 
Bone is a dynamic organ in which old bone is cyclically resorbed by the osteoclasts and 

new bone is produced by the osteoblasts throughout life [Raisz, 1999]. A balance between 

bone formation and resorption is necessary to regulate mineral homeostasis and maintain 

skeletal integrity. To provide the proper amount of minerals to bone and, vice versa, to 

transfer minerals from bone to circulation and other organs, our skeleton is regulated by a 

complex endocrine network. In addition to hormones produced by endocrine glands, the 

bone itself produces hormones to regulate mineral homeostasis.   
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1.3.1 Bone modeling and remodeling 
Osteoblasts are responsible for producing new bone while osteoclasts break down old 

mineralized bone. Osteocytes respond to mechanosensory signals and mediate the 

activity and communication between osteoblasts and osteoclasts by secreting soluble 

factors (Fig. 4) [Bonewald, 2011]. Bone formation and resorption are tightly coupled in 

order to maintain bone health, via two mechanisms known as bone modeling and 

remodeling. Bone modeling occurs during skeletal growth and allows the skeleton to adapt 

to loading by changing the size and shape of bones. Bone remodeling instead ensures 

mechanical integrity of the bone tissue. These mechanisms are necessary not only to 

respond to bone loading but also for fracture resistance, fracture healing and calcium and 

phosphate homeostasis [Florencio-Silva et al., 2015]. In this thesis, we refer only to bone 

remodeling as a general term to encompass bone formation and resorption during both 

skeletal growth and maturity. 

Several signaling pathways and soluble factors secreted by other organs separate from 

the bone play a role in bone metabolism. The WNT signaling pathway plays a pivotal role 

in skeletal development and in bone remodeling, in particular by inducing bone formation 

[Clevers, 2006; Baron and Kneissel, 2013]. This pathway enhances the differentiation of 

MSCs into osteoblasts while it inhibits adipogenesis and chondrogenesis (Fig. 2A) [Day et 

al., 2005; Kennell and MacDougald, 2005]. Although the non-canonical pathway has an 

emerging role in bone homeostasis, the canonical pathway, also termed Wnt-β-catenin 

pathway, is the best understood [Liu et al., 2007]. This pathway is activated when a G-

protein-coupled receptor protein, named Frizzled (FZD), binds to its co-receptor, either the 

low-density lipoprotein receptor related protein 5 or 6 (LRP5 and LRP6, respectively), to 

inactivate the cytosolic β-catenin “destruction complex”. This complex is composed of 

three proteins involved in the phosphorylation of β-catenin (glycogen synthase kinase 3, 

axin, and casein kinase 1) and by adenomatous polyposis coli [Baron and Kneissel, 2013]. 

Consequently, the degradation of the mediator β-catenin is prevented allowing for its 

translocation to the nucleus where it stimulates transcription of target genes. Sclerostin 

(SOST) and Dickkopf-related protein 1 (DKK1) are antagonists of the WNT pathway (Fig. 

4). Mutations in some of the key participants of this pathway, such as LRP5 and SOST, 

lead to diseases characterized by abnormal BMD.  

The OPG-RANK-RANKL pathway is also required to regulate bone formation and 

resorption (Fig. 4) [Khosla, 2001]. Osteocytes secrete receptor activator of nuclear factor 

kappa-Β ligand (RANKL) that binds to its receptor RANK on the osteoclasts to stimulate 

bone resorption. On the other hand, osteoblasts produce osteoprotegerin (OPG), which is 

an antagonist of this pathway and impedes RANK-RANKL interaction by binding RANKL. 
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In the recently identified RANKL reverse signaling, mature osteoclasts secrete vesicular 

RANK, which binds to RANKL on the surface of osteoblasts [Ikebuchi et al., 2018]. This 

close interaction and communication between the osteoblastic and osteoclastic lineages 

ensures balance between the opposing processes of bone resorption and bone formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Simplified overview of bone homeostasis with main focus on the OPG-RANK-RANKL and 
the WNT signaling pathways. Osteoblasts, osteoclasts and osteocyte cooperate to regulate bone 
formation and resorption. RANK= receptor activator of nuclear factor kappa-Β; RANKL= receptor 
activator of nuclear factor kappa-Β ligand; vRANK= vesicular RANK; OPG= osteoprotegerin; 
SOST= sclerostin; DKK1= Dickkopf-related protein 1; WNT1= Wnt Family Member 1. 

1.3.2 Calcium and phosphate homeostasis 
Parathyroid hormone (PTH), vitamin D and fibroblast growth factor 23 (FGF23) are the 

major regulators of circulating calcium and phosphate levels; they influence the handling of 

these minerals in target organs, including bone (Fig. 5).   

Reduced levels of ionized calcium in the circulation lead to a rapid increase in PTH 

secretion by the parathyroid glands (Fig. 5) [Bilezikian, 2019]. Consequently, high levels of 

PTH stimulate bone resorption and thus promote the release of calcium and phosphate 

from the hydroxyapatite crystals in bone. The increased PTH also promotes phosphaturia 

in the kidney, ensuring normal circulating phosphate concentration despite increased 

release from the bone.   

Vitamin D, which is produced by the skin with UV radiation from sunlight and absorbed in 

the gut from diet, is further hydroxylated in the liver and the kidneys (Fig. 5). Once the 
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active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2) is produced by the kidneys, 

it stimulates calcium and phosphate absorption in the intestine and their release from 

bone, the net effect being an increase in circulating calcium and phosphate (Fig. 5) [Fraser 

and Kodicek, 1973]. Vitamin D deficiency is an acquired nutritional disease that leads to 

rickets, a condition characterized by impaired bone mineralization. Several genetic defects 

that impair vitamin D metabolism, like vitamin D-dependent rickets type I (MIM #264700) 

caused by mutations in the vitamin D 1α-hydroxylase gene, have also been identified.  

FGF23, which is mainly produced by osteocytes, acts as a hormone to regulate phosphate 

homeostasis by modifying renal phosphate reabsorption and 1,25(OH)2 production (Fig. 5) 

[Shimada et al., 2004]. Several genetic conditions are linked to FGF23 defects and can 

lead to either high or low levels of phosphate [Liu and Quarles, 2007]. Hypophosphatemia 

can lead to rickets (MIM #193100) and osteomalacia whereas hyperphosphatemia due to 

low FGF23 underlies tumoral calcinosis (MIM #617993).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Role of vitamin D, PTH and FGF23 in regulating mineral homeostasis. PTH stimulates 
bone resorption when there is lack of calcium and phosphate in circulation. Active vitamin D is 
metabolized in the liver and the kidneys and the final form, 1,25-dihydroxvitamin D, leads to calcium 
and phosphate absorption from the intestine and release from the bone while inhibiting PTH. High 
levels of FGF23 inhibit both PTH and vitamin D. Dashed lines represent the organ from which each 
hormone and the vitamin D metabolite is released. 

1.3.3 Other regulators 
Several other hormones are important for controlling bone formation and resorption. 

Osteocalcin (OCN) is a protein produced by the osteoblasts and it participates in the 
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regulation of glucose metabolism [Lee et al., 2007; Clemens and Karsenty, 2011]. In mice 

OCN stimulates the pancreas to produce and secrete insulin, the adipocytes to produce 

adiponectin and the muscles to use glucose [Fukumoto and Martin, 2009]. Findings in 

human studies have however been inconclusive.  

Calcitonin, which is secreted by the thyroid gland, lowers the calcium and phosphate levels 

in the blood by inhibiting bone resorption [Brown, 2007].  

Finally, sex steroids play a major role in skeletal homeostasis beginning in early skeletal 

development. Estrogens and androgens are not only important for shaping bones 

differently in females and males but they also regulate skeletal growth. They reduce bone 

loss by maintaining a delicate balance between bone formation and resorption [van der 

Eerden et al., 2003; Bilezikian, 2019].  

 

1.4 THE HUMAN GENOME 
The human haploid genome is a sequence of 3.2 billion base pairs that are stored in 23 

chromosomes (22 autosomes and one sex chromosome). Under physiological conditions, 

only our germ cells contain a single set of chromosomes whereas all other cells are diploid 

and host 23 pairs of chromosomes. Genes are segments of DNA composed of exons and 

introns that provide the template for producing RNA and polypeptides or proteins. Only 

exons, via a mechanism named RNA splicing, are used as a template to make a 

complementary RNA sequence (transcription), either a messenger RNA (mRNA) that will 

be translated into a protein or a mature non-coding RNA. Roughly 1% of the total DNA 

sequence is occupied by protein-coding genes, which are approximately 20,500 in total. 

Each gene might have different forms, known as alleles, but a normal individual has only 

two alleles for each gene, one inherited from the mother and the other inherited from the 

father. The more closely related the parents are, the more genomic sequence they share. 

A specific chromosomal location that defines the location of either an individual gene or a 

DNA sequence is named locus. A set of the alleles present at one or several loci is 

referred as the genotype while the phenotype comprises the observable characteristics 

(also known as traits) of a certain individual.  

1.4.1 Human genetic variation 
In the last quarter of the past century, the invention of recombinant DNA cloning and 

sequencing technologies enhanced the decryption of the genetic code of different species.  

In 2001, the first draft of the human genome was sequenced and in 2003 it was fully 

completed by the Human Genome Project [Lander et al., 2001]. Soon after, the shift from 
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Sanger sequencing to massively-parallel sequencing (MPS) led to sequencing of 

thousands of human exomes and genomes and to discovery of a large inter-individual 

genetic variability. In fact, it is now known that a random human genome differs from the 

reference sequence at 4.1 million to 5 million sites [Genomes Project et al., 2015]. 

However, the majority of these variants are neutral, meaning that they do not have a 

notable impact on the phenotype.  

In 2012, when the 1000 Genome Project was completed, a map of genetic variation from 

1,092 human genomes from 14 different populations facilitated the distinction between 

common variants, shared among several individuals, and rare variants present in one or a 

few subjects [Genomes Project et al., 2010; Genomes Project et al., 2012]. Later, other 

genomic databases like the Exome Aggregation Consortium (ExAc) including over 60,000 

exomes and subsequently expanded to the Genome Aggregation Consortium (gnomAD) 

containing 125,748 exome sequences and 15,708 whole-genome sequences improved 

genotype-phenotype associations  [Lek et al., 2016].  

Frequently, common variants at several loci determine one quantitative phenotype, such 

as vitamin D levels, which is then defined as a polygenic trait [Jiang et al., 2018]. On the 

other hand, some other traits are monogenic (determined by variation at a single locus) 

and can be inherited in a family according to four main inheritance patterns: autosomal 

dominant (attributed to a change in one copy of a gene on an autosomal chromosome), 

autosomal recessive (attributed to a change in both copies of a gene on an autosomal 

chromosome), X-linked dominant (attributed to a change in one copy of a gene on a sex 

chromosome), and X-linked recessive (attributed to a change in two copies of a gene on a 

sex chromosome). If an individual has two copies of the same allele the subject is 

homozygous for that trait and otherwise he or she is heterozygous. 

Sometimes a subject might harbor a variant that is not present in either of the parents (de 

novo change). New variants arise in a germ cell of a parent or in the fertilized egg during 

early development.   

1.4.2 Types of genetic variants 
Genetic variants can be classified as small-scale variants if they affect one or a small 

number of nucleotides (< 50 base pairs, bp) and large-scale variants, or structural variants 

(SVs), if they involve over 50 bp [Tattini et al., 2015]. The small-scale variants include 

single base substitutions, also named single nucleotide variants (SNVs), and small 

insertions and deletions (indels). According to the mutation nomenclature proposed by the 

Human Genome Variation Society, SNVs are further subdivided to six groups, based on 

their effect at the peptide level: 1) synonymous variant – not altering the encoded amino 
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acid (silent change), 2) missense variant – substituting a certain amino acid into another 

amino acid, 3) start codon variant - altering the translation initiation codon (methionine 1), 

4) nonsense variant - introducing an immediate stop codon, 5) no-stop change variant - 

removing the termination codon and generating an extension of the protein at the C-

terminus, and 6) splicing variant – leading to abnormal splicing. 

Concerning indels, they include all types of small changes that lead to a size change at a 

specific locus: duplications, deletions, insertions or combined insertions and deletions. 

Indels are classified as in-frame if they do not introduce a shift within the open reading 

frame (ORF; the coding sequence of triplets between the start codon and the stop codon) 

and as out-of-frame (or frameshift) when they shift the ORF and alter the C-terminal end of 

the protein by often introducing an early stop codon. 

SVs can be either balanced changes if they do not lead to any gain or loss of genetic 

material, or unbalanced, if they affect the gene dosage. Copy number variants (CNVs) 

refer to large deletions or duplications (> 50 bp) that either decrease or increase the DNA 

content [Zarrei et al., 2015]. Translocations are rearrangements leading to an exchange in 

genetic material between chromosomes. They can be both balanced or unbalanced. 

Inversions are balanced changes in which the new sequence is the reverse-complement of 

the original sequence.  

Genetic variants (or mutations) can be classified as loss-of-function (LOF) if the protein 

loses its activity and gain-of-function (GOF) if the protein acquires a new or enhanced 

activity. A genetic variant that is disease-causing is defined as pathogenic. 

1.4.3 Rare monogenic diseases 
To diagnose a rare monogenic disease, it is necessary to identify a single pathogenic 

variant (or a compound heterozygous variant) within millions of variants present in the 

genome.    

The minor allele frequency (MAF) refers to frequency in which the less common allele 

occurs in a given population; this parameter needs to be considered when investigating a 

genetic condition. In fact, it is important to make a distinction between genetic variants that 

are relatively common among the general population (MAF > 1%), known as single 

nucleotide polymorphisms (SNPs), and rare variants shared by single or a few families. 

Theoretically, a genetic variant causing a rare monogenic disease has a MAF below 1%. 

However, most commonly, such a variant has either a MAF below 0.1% or it is completely 

absent from large genomic databases [Lek et al., 2016].  

Although the genetic defects explaining a large number of monogenic diseases has 

already been identified, new mutations are continuously discovered. During recent years, 
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the American College of Medical Genetics and Genomics (ACMG) has made efforts to 

standardize the classification of pathogenicity of genetic variants. According to the ACMG 

guidelines, variants can be classified based on different parameters, including MAF, effect 

of the variant, in silico prediction scores (for missense and splicing variants) as well as co-

segregation of the variant with the disease in families [Kearney et al., 2011; Richards et al., 

2015; Jarvik and Browning, 2016].  

To assess and/or validate the pathogenicity of a certain DNA variant it is often necessary 

to investigate its effect on the mRNA or protein structure and function. Furthermore, if a 

genetic defect is identified for the first time, functional studies are needed to understand 

the molecular mechanisms leading to disease. 

1.4.4 Challenges in variant interpretation 
Understanding the link between a particular variant and a phenotypic trait can sometimes 

be complicated by the presence of genetic mechanisms that render variant interpretation 

challenging.  

In dominant conditions, haploinsufficiency arises when the expression of one wild-type 

copy of a gene is not sufficient to guarantee a normal phenotype. In some other cases, a 

defective copy of a gene interferes with the wild-type allele (dominant-negative effect) and 

confers a different function to the protein.  

Non-penetrance can also be found in dominant conditions. This phenomenon occurs when 

an individual carries a pathogenic mutation without showing any sign of abnormal 

phenotype. Sometimes, variable expressivity leads to phenotypes marked by different 

levels of severity in patients with the same dominant mutation.  

Both non-penetrance and variable expressivity might be due to the effect of other genes 

(genetic modifiers and epigenetic changes), to environmental factors or determined by 

pure chance.  

 

1.5 RARE SKELETAL DISEASES 
As previously described, bone formation begins early during embryonic development. 

Mutations in genes playing pivotal roles in bone development and homeostasis can reduce 

the capacity of bone to resist fractures or they may interfere with normal bone growth 

[Viguet-Carrin et al., 2006].  

Rare skeletal diseases – skeletal dysplasias - comprise a group of over 400 conditions 

affecting the skeleton. These diseases are characterized by broad clinical and genetic 

heterogeneity [Bonafe et al., 2015]. As conventional radiographs are commonly used for 
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diagnosis, the nosology of genetic skeletal diseases has classified these conditions into 42 

groups based on the most relevant criteria: clinical features, molecular mechanisms and 

radiological findings [Panda et al., 2014; Bonafe et al., 2015]. The severity of these 

disease ranges from perinatal and neonatal lethality to mild impairments, such as 

moderate growth delay [Kornak and Mundlos, 2003]. Although each single skeletal disease 

is rare and some conditions are significantly less frequent than others, the overall 

prevalence of these conditions is approximately 5 in 10,000 births [Panda et al., 2014]. 

Until now, mutations in approximately 350 genes have been identified as the underlying 

causes of these diseases [Bonafe et al., 2015].  

1.5.1 Diseases affecting growth 
Short stature is a common feature for several skeletal diseases. As previously mentioned, 

the growth plate is the site where skeletal growth takes place and the chondrocyte function, 

proliferation and differentiation within the growth plate is regulated by several factors and 

hormones. Additionally, 90% of the volume of the cartilage is occupied by the ECM, which is 

rich in type II collagen, proteoglycans and glycoproteins. Rare genetic mutations in genes 

that play a pivotal role in chondrogenesis are likely to be a frequent cause of disproportionate 

short stature, which is a hallmark of several forms of skeletal dysplasias. Some rare forms of 

skeletal dysplasia are caused by defects in the primary cilium, a structure that is required for 

cell mechanosensing. These diseases are collectively named ciliopathies. 

In this work, two particular types o, named spondylometaphyseal dysplasia (SMD) and 

spondyloepimetaphyseal dysplasia (SEMD), will be described.  

Spondylometaphyseal dysplasia (SMD) 
SMD affects mainly the spine (spondylo) and the metaphyses (metaphyseal) of tubular 

bones. The patients exhibit severe growth retardation, flat vertebrae (platyspondyly) and 

abnormal shape and maturation of metaphyses in different locations. Furthermore, a range 

of extra skeletal manifestations, including ocular impairment, respiratory problems and 

immune defects, can also be present in SMD (Table 1). To date, at least 9 different subtypes 

of SMD have been clinically characterized and a specific molecular defect has been 

identified in each of them (Table 1).  
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Table 1. Genetic defects causing SMD. 
 

 
* Previously known as SMD Sutcliffe type; °= phenotype MIM number; I.P= inheritance pattern; AD= 
autosomal dominant; AR= autosomal recessive. 

Spondyloepimetaphyseal dysplasia (SEMD) 
SEMD is a subgroup of skeletal dysplasias of which hallmarks are severe short stature and 

skeletal impairments affecting the spine, metaphyses and epiphyses. Sometimes only a 

careful radiological investigation can clearly distinguish SEMD from SMD. Until today, over 

20 different subtypes of SEMD have been identified (Table 2). Pseudoachondroplasia, 

caused by mutations in COMP, is one of the most common forms of SEMD. COMP is a 

cartilage ECM protein which, when mutated, is retained within the ER, thus compromising 

Type of SMD MIM #° Gene Protein I.P Main clinical 
features 

SMD with immune 
dysregulation  

607944 ACP5 Tartrate-resistant acid 
phosphatase (TRAP) 

AR Impairment of the 
immune system 

Odontochondrodysplasia 
(ODCD) 

184260 TRIP11 Thyroid Hormone 
Receptor Interactor 11 

AR Joint laxity and 
dentinogenesis 
imperfecta 

SMD with cone-rod 
dystrophy 

608940 PCYT1A Phosphate 
cytidylyltransferase 1 

AR Early-onset 
progressive visual 
impairment 
associated with a 
pigmentary 
maculopathy and 
cone-rod dysfunction 

SMD with retinal 
degeneration, axial type 

602271 Unknown Unknown AR Impaired visual 
acuity, retinitis 
pigmentosa or 
pigmentary retinal 
degeneration 

SMD Sedaghatian type 250220 GPX4 Glutathione peroxidase 4 AR Severe hypotonia and 
cardiorespiratory 
problems; cardiac 
problems; half of the 
cases have central 
nervous system 
malformations 

SMD Kozlowski type 184252 TRPV4 Transient receptor 
potential cation channel, 
subfamily V, member 4 

AD Narrow thorax, 
prominent joints and 
occasionally tail-like 
coccygeal appendage 
(caudal tail) 

SMD axial 602271 CFAP410 Cilia And Flagella 
Associated Protein 410 

AR Impaired visual acuity 
and retinal 
impairment; mild to 
moderate respiratory 
problems in the 
neonatal period and 
later susceptibility to 
airway infection 

SMD Megarbane-
Dagher-Melike type 

613320 PAM16 Presequence 
Translocase Associated 
Motor 16 

AR Any peculiar features; 
only two families have 
been described 

SMD with corner 
fractures, SMD-CF* 

184255 FN1 Fibronectin 1 AD Irregular metaphyses 
with “corner fracture” 
appearance 
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chondrocyte function and increasing cell death [Acharya et al., 2014]. Recently, mutations 

in the gene (TONSL), encoding a protein involved in DNA repair, have been identified as 

the underlying cause of Sponastrime dysplasia [Chang et al., 2019]. 

Table 2. Genetic defects underlying SEMD. 

 
°= phenotype MIM number; I.P= inheritance pattern; AD= autosomal dominant; AR= autosomal 
recessive; XLR= X-linked recessive. 

Ciliopathies with major skeletal involvement 
Ciliopathies are rare recessive conditions that arise from cilia dysfunction. Cilia are small 

organelles consisting of microtubule filaments that in a few specialized cells enable 

movement. However, a single primary cilium can be found in the majority of the vertebrate 

cells and instead of being involved in cell’s motility, it functions as a sensor of the cellular 

environment [Reiter and Leroux, 2017]. Altogether approximately 180 genes have already 

been linked to ciliopathies. However, mutations in another 240 genes playing a role in 

Type of SEMD MIM #° Gene Protein I.P 

Dyggve–Melchior–Clausen dysplasia 
(DMC) 

223800 
615222 

DYM 
RAB33B 

Dymeclin 
RAS-associated protein 
rab33b 

AR 

Smith–McCort dysplasia 607326 DYM Dymeclin AR 
Immuno-osseous dysplasia 
(Schimke) 

242900 SMARCAL
1 

SWI/SNF-related regulator of 
chromatin subfamily A-like 
protein 1 

AR 

SED, Wolcott–Rallison type 226980 EIF2AK3 Translation initiation factor 2-
alpha kinase-3 

AR 

SEMD, Matrilin type 608728 MATN3 Matrilin 3 AR 
SEMD, short limb–abnormal 
calcification type 

271665 DDR2 Discoidin domain receptor 
family, member 2 

AR 

SED tarda, X-linked (SED-XL) 313400 SEDL Sedlin XLR 
Spondylodysplastic Ehlers–Danlos 
syndrome 

612350 SLC39A13 Zinc transporter ZIP13 AR 

Sponastrime dysplasia 271510 TONSL Tonsoku Like, DNA Repair 
Protein 

AR 

Platyspondyly (brachyolmia) with 
amelogenesis imperfecta 

601216 unknown unknown AR 

CODAS syndrome 600373 LONP1 LON peptidase 1 AR 
Opsismodysplasia 258480 INPPL1 Inositol polyphosphate 

phosphatase-like 1 
AR 

SEMD, Maroteaux type 184095 TRPV4 Transient receptor potential 
cation channel, subfamily V, 
member 4 

AD 

SEMD with joint laxity, type 2 603546 KIF22 Kinesin Family Member 22 AD 
SEMD with joint laxity, type 1, with or 
without fractures 

271640 B3GALT6 Beta-1,3-
Galactosyltransferase 6 
 

AR 

SEMD Shohat type 602557 DDRGK1 DDRGK Domain Containing 1 AR 
SEMD Faden-Alkuraya type 616723 RSPRY1 Ring Finger And SPRY 

Domain Containing 1 
AR 

SEMD Missouri type 602111 MMP13 Matrix Metallopeptidase 13 AD 
SEMD Strudwick type 184250 COL2A1 Collagen type II alpha 1 chain AD 
SEMD X-linked 300106 BGN Biglycan XLR 
SEMD Pakistani type 612847 PAPSS2 3'-phosphoadenosine 5'-

phosphosulfate synthase 2 
AR 

SEMD Camera-Genevieve type 610442 NANS N-acetylneuraminate synthase AR 
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ciliary structure and/or function might potentially also lead to ciliopathies [Anvarian et al., 

2019].  

A myriad of heterogeneous diseases affecting different tissues and organs arise from cilia 

impairments [Reiter and Leroux, 2017]. Some conditions are organ-specific (e.g. polycystic 

kidney disease) whereas some others like Bardet–Biedl syndrome affect multiple organs. 

A specific class of skeletal dysplasias are caused by ciliary defects [Huber and Cormier-

Daire, 2012]. So far, approximately ten conditions with major skeletal impairment have 

been reported [Bonafe et al., 2015]. As one, the short rib–polydactyly syndrome types 1-3 

are characterized by narrow chest, short ribs, short limbs and trident aspect of the 

acetabular roof [Huber and Cormier-Daire, 2012].  

The molecular mechanisms linking mutations in cilia genes to skeletal impairments have 

yet to be fully elucidated. It is known that defective primary cilia affect bone growth due to 

impaired Hedgehog signaling pathways in some cases [Huber and Cormier-Daire, 2012]. 

For instance, the two genes encoding the EvC ciliary complex subunit 1-2, EVC1 and 

EVC2, are mutated in chondroectodermal dysplasia (Ellis-van Creveld) [Ruiz-Perez et al., 

2000]. The EVC protein, which is localized on the basal part of the primary cilium of 

chondrocytes, is only expressed during skeletal development in mice [Ruiz-Perez et al., 

2007; Goetz and Anderson, 2010]. Furthermore, Evc knockout mice show reduced IHH 

only in the skeletal structures, thus demonstrating that this protein is required for normal 

transcriptional activation of IHH target genes specifically in chondrocytes.     

1.5.2 Diseases affecting bone homeostasis 
Several skeletal conditions arise from mutations in genes that encode proteins that are 

involved in bone remodeling. An impaired differentiation and/or function of osteoblasts, 

osteoclasts or osteocytes can lead to an imbalance between bone formation and resorption 

and cause an insufficient or an excessive accumulation of bone in the skeleton.  

Osteoporosis developing later in adult life and especially post-menopausal osteoporosis are 

commonly due to hormonal imbalance and/or multiple deleterious genetic variants with small 

effect size. In contrast, primary osteoporosis in the young population is often caused by a 

single genetic variant with a large effect size [Makitie, 2013; Kampe et al., 2015; Costantini 

and Makitie, 2016]. In children a BMD value below -2.0 SD (Z-score) associated with 

increased fractures is indicative of osteoporosis [Makitie, 2013]. 

Osteogenesis imperfecta 
Osteogenesis imperfecta (OI), also known as brittle bone disease, is the most common 

form of early-onset skeletal fragility. OI is a congenital disease with broad phenotypic 
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variability. Milder forms of the disease may show only low BMD and increased 

susceptibility to fractures whereas the severest forms are prenatally or postnatally lethal 

[Forlino and Marini, 2016; Marini et al., 2017]. Extra-skeletal impairments, including 

dentinogenesis imperfecta, blue sclerae and impaired hearing, might also be present in OI 

patients. Mutations in 20 different genes have thus far been linked to OI (Table 3) [Bonafe 

et al., 2015; Marini et al., 2017; Doyard et al., 2018; Makitie et al., 2019; Pekkinen et al., 

2019]. 

Table 3. Genetic defects underlying OI and related bone fragility conditions. 
 

 
°= phenotype MIM number; AD= autosomal dominant; AR= autosomal recessive; XLD/XLR= X-
linked dominant/recessive; * Described only in a few consanguineous families; NA= not available.  

Up to 90% of OI cases can be explained by heterozygous mutations in one of the two 

genes encoding type I collagen (COL1A1 and COL1A2). Rarely, biallelic COL1A2 

mutations have also been identified in consanguineous families [Costantini et al., 2018]. 

 
MIM #° 
 

Gene Protein Inheritance Pathomolecular 
mechanism 

166200; 
166210; 
259420; 
166220 

COL1A1 Collagen alpha-1(I) chain AD 

Defects in collagen 
type I synthesis, 
structure, folding, 
post-translational 
modification, 
processing and 
cross-linking 

259420; 
166210; 
166220 

COL1A2 Collagen alpha-2(I) chain AD; AR* 

610682 CRTAP Cartilage-associated protein AR 

259440 PPIB Peptidyl-prolyl cis-trans isomerase 
B; cyclophilin B AR 

610915 P3H1 Prolyl 3-hydroxylase 1 AR 

610968 FKBP10 Peptidyl-prolyl cis-trans isomerase 
FKBP10 AR 

609220 PLOD2 Procollagen-lysine,2-oxoglutarate 
5-dioxygenase 2 AR 

613848 SERPINH1 Serpin H1  AR 
614856 BMP1 Bone morphogenetic protein 1 AR 
616507 SPARC SPARC; osteonectin AR 

Defects in other 
proteins leading to 
abnormal bone 
mineralization  

613982 SERPINF1 Pigment epithelium-derived factor 
(PEDF) AR 

610967 IFITM5 Interferon induced transmembrane 
protein 5 AD 

300910 PLS3 Plastin 3 XLD 
NA SGMS2 Sphingomyelin Synthase 2 AD 

615066 TMEM38B Trimeric intracellular cation 
channel type B AR 

Defects in 
osteoblast 
differentiation and 
function 

615220 WNT1 Proto-oncogene Wnt-1 AR 
613849 SP7 Transcription factor Sp7; osterix AR 

616229 CREB3L1 Cyclic AMP-responsive element-
binding protein 3-like protein 1 AR 

301014 MBTPS2 Membrane-bound transcription 
factor site-2 protease XLR 

617952 TENT5A (also 
known as 
FAM46A) 

Terminal nucleotidyltransferase 
5A AR Unknown 
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Glycine substitutions affecting the Xaa-Yaa-Gly pattern in type I collagen that unfold the 

helix (structural defect) are the most common cause of severe OI. Overall, mutations that 

impair the structure of the triple helix have more severe consequences than mutations 

leading to a reduced amount of protein, due to a dominant-negative effect [Makitie et al., 

2019]. A particular form of OI characterized by high BMD derives from mutations in the C-

terminus of collagen [Forlino and Marini, 2016].  

Defects in proteins taking part in the processing and folding of type I collagen can also 

lead to OI. For instance, mutations in the molecular chaperone FKBP10, encoding 

immunophilin FKBP65, inhibit lysine hydroxylation and cause either OI or Bruck syndrome 

type 1, a condition characterized by congenital contractures and fractures (MIM #259450) 

[Alanay et al., 2010; Shaheen et al., 2010; Barnes et al., 2012]. Defects in the prolyl 3-

hydroxylation complex, composed by three different proteins, the prolyl3-hydroxylase 1, 

the cartilage associated protein (CRTAP) and cyclophylin B, also lead to OI. As an 

example, biallelic CRTAP mutations lead to either lethal or severe OI (MIM #610682) 

[Cabral et al., 2007].   

Some subtypes of OI arise from mineralization defects. For instance, mutations in SPARC, 

encoding the most abundant non-collagenous protein, osteonectin, affect the interaction of 

this protein with other components of the ECM, including collagen and hydroxyapatite, thus 

leading to bone fragility [Mendoza-Londono et al., 2015].  

Defects in WNT signaling  
WNT signaling is a major determinant of BMD and bone fragility. The significance of this 

pathway for bone health was discovered when biallelic loss-of-function mutations in LRP5  

were shown to cause two low BMD diseases: osteoporosis-pseudoglioma syndrome (MIM 

#259770) and early-onset osteoporosis (MIM #166710) [Gong et al., 2001; Hartikka et al., 

2005]. 

Heterozygous mutations in WNT1, a secreted protein belonging to the canonical Wnt-β-

catenin pathway, are responsible for an autosomal dominant form of osteoporosis (MIM 

#615221). This disease is characterized by defective modeling of long bones and low BMD 

in children and recurrent vertebral fractures, kyphosis and short stature in adults [Laine et 

al., 2013; Makitie et al., 2016]. On the other hand, biallelic WNT1 mutations underlie 

severe autosomal recessive OI (MIM #615220) [Keupp et al., 2013; Laine et al., 2013; 

Pyott et al., 2013].  

Recently, genetic defects in the frizzled-related protein 4 (SFRP4), an inhibitor of the Wnt 

pathway, have been detected in patients with Pyle’s disease, which is characterized by 

bone fragility and cortical bone thinning (MIM #265900) [Simsek Kiper et al., 2016]. 
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Mutations in SGMS2, encoding sphingomyelin synthetase 2, cause increased bone fragility 

and impaired bone mineralization which can be associated with severe skeletal dysplasia 

and neurological manifestations [Pekkinen et al., 2019]. 

PLS3 osteoporosis  
In recent years, mutations in the plastin-3 gene (PLS3), have been found in patients with 

low BMD and recurrent fractures (MIM # 300910) [Van Dijk et al., 2013; Kampe et al., 

2015; Kampe et al., 2017; Kampe et al., 2017]. Although the molecular function of PLS3 is 

still largely elusive, mutations in this Ca2+-dependent actin-binding protein lead to reduced 

bone mineralization possibly due to impaired osteocytic mechanosensing [Kampe et al., 

2017; Wesseling-Perry et al., 2017]. Since PLS3 locates on the X chromosome, males are 

usually more severely affected than females. 

Other forms of skeletal fragility 
In addition to OI and osteoporosis-pseudoglioma syndrome, other syndromes featuring low 

BMD have been recognized. Bruck syndrome type 2 (MIM #609220), derives from biallelic 

mutations in a collagen-modifying enzyme, PLOD2 [Ha-Vinh et al., 2004]. Spondylo-ocular 

syndrome (MIM #605822) is another autosomal recessive disease, characterized by low 

BMD, spinal compression fractures and cataract due to mutations in xylosyltransferase 2 

(XYLT2) [Munns et al., 2015; Taylan et al., 2016]. This enzyme has a role in the 

biosynthesis of glycosaminoglycan chains and is essential for endochondral ossification 

[Taylan and Makitie, 2016]. 

High BMD diseases 
Imbalances in bone remodeling can also lead to increased BMD. Two main types of high 

BMD diseases can be distinguished: 1) osteopetrosis, which is due to impaired osteoclast 

function and decreased bone resorption and 2) high bone mass (HBM) diseases caused by 

osteoblast dysfunction and increased bone formation.   

Osteopetrosis is characterized by dense and at the same time fragile bones. Patients with 

osteopetrosis often feature also hearing and vision impairments. Some forms of 

osteopetrosis appear early after birth whereas in some milder forms patients receive a 

diagnosis only during adulthood. Mutations in over 10 different genes have been identified in 

osteopetrosis, including defects in the RANK/RANKL pathway [Bonafe et al., 2015]. Another 

major protein that can be mutated in osteopetrosis is the chloride channel called ClC-7 

(CLNC7). CLNC7 mutations impair the regulation of the relative acidity (pH) of osteoclasts 

and lead to reduced bone resorption [Kornak et al., 2001]. 
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1.5.3 Treatments 
Concerning pharmacological treatment of skeletal diseases, most of the achievements 

have been obtained for osteoporosis while no specific treatments are available for most of 

the skeletal dysplasias. Two major classes of drugs have been developed to increase 

BMD and decrease the risk of bone fractures: 1) anti-resorptive treatments that target 

osteoclasts and 2) anabolic treatments that act on osteoblasts. 

Concerning anti-resorptive treatments, bisphosphonates, which are chemically stable 

derivatives of inorganic pyrophosphate, have been on the market for over four decades. 

Bisphosphonates suppress the activity of osteoclasts by promoting their apoptosis and 

consequently lead to increased bone mineralization and a rapid gain in BMD. Two 

commonly used bisphosphonates are alendronate and zoledronic acid. While per oral 

alendronate reduces the risk of sustaining vertebral fractures, this drug does not show any 

major impact on long bone fractures [Bone et al., 2004]. On the other hand, intravenous 

zoledronic acid given once a year efficiently reduces both vertebral fractures and long 

bone fractures [Black et al., 2007; Lorentzon, 2019]. Some side effects of bisphosphonate 

have been identified. The most severe consequence is osteonecrosis of the jaw, the risk of 

which increases with dental surgeries or removal of teeth. Negative effects on the 

gastrointestinal tract and kidneys as well as atypical femur fractures have also been 

identified [Pazianas et al., 2010; Lorentzon, 2019]. Another type of anti-resorptive drug is 

denosumab, which is a monoclonal antibody against RANKL. Even though this drug 

drastically decreases osteoclast activity, the effect on reduced bone resorption is rapidly 

reversed after only a few months [Bekker et al., 2004].  

Among the anabolic treatments, teriparatide plays a major role. This drug is a recombinant 

protein form of the parathyroid hormone consisting of the first (N-terminus) 34 amino acids 

(PTH 1-34). When given intermittently, teriparatide acts on bone formation and leads to 

thickening of the cortex. The treatment decreases the risk of both vertebral and non-

vertebral fractures. The gain in BMD is superior to anti-resorptive drugs but the high costs 

of the treatment limit its wide use [Lorentzon, 2019].  

Romosozumab, an antibody targeting SOST, has been shown to increase bone formation 

(anabolic effect), to decrease bone resorption and also to reduce the risk of fractures in 

postmenopausal women [McClung et al., 2014; Cosman et al., 2016]. Recently, combined 

use of romosozumab and alendronate was shown to significantly reduce the risk of 

fractures compared to alendronate alone in over 4000 postmenopausal women with 

osteoporosis and fractures [Saag et al., 2017]. Concerns about the use of romosozumab 

have arisen due to side effects on cardiovascular and cerebrovascular systems [Saag et 

al., 2017]. 
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Recently, an antibody against TGF-β has undergone animal testing but contrasting results 

have been obtained so far. While this drug rescues the phenotype in both Crtap knock-out 

mice and in mice with a heterozygous missense mutation p.Gly610Cys in Col1a2, the 

treatment is not effective in reducing the number of spontaneous fractures in a mouse 

model of autosomal dominant OI due to a Col1a1 splicing mutation [Grafe et al., 2014; 

Tauer et al., 2019].  

Although many pharmacological treatments have been tested and used in adults, less is 

known about the efficacy of these drugs for early-onset osteoporosis due to the limited 

number of clinical trials in young subjects [Makitie, 2013]. Bisphosphonates are the most 

widely applied treatment for children with OI even though this drug is not officially approved 

for pediatric use. Bisphosphonates lead to a gain in BMD, improve vertebral compression 

fractures and reduce pain in patients with moderate to severe OI but the results on long bone 

fractures are still inconclusive [Bishop et al., 2013; Hald et al., 2015; Palomo et al., 2015]. 

Despite the benefits seen in clinical practice, there are still unanswered questions regarding 

for example the appropriate drug dosage and treatment pausing, the quality of bone after 

treatment as well as the long-term safety of bisphosphonate treatment in young subjects. 

Despite available pharmacotherapies, orthopedic surgeries are still often required to 

correct skeletal deformities and scoliosis or to prevent fractures by intramedullary rodding 

in patients with skeletal fragility. Furthermore, non-pharmacological interventions, including 

physical activity, physiotherapy, and calcium and vitamin D supplementation should be 

considered when treating these patients. A multidisciplinary team is needed to evaluate 

different aspects of the disease, such as major skeletal impairments, underlying genetic 

and molecular defects and potential extra-skeletal manifestations such as dental problems.  

Regarding the skeletal dysplasias not featuring low BMD, no treatment is available for 

most of the conditions. One major problem is that skeletal dysplasias are an extremely 

heterogeneous class of diseases from both the phenotypic and genetic point of views. 

Often, impairments affecting tissues and organs other than the skeleton are found in 

patients with skeletal dysplasia. Recently, an efficient treatment has been developed for 

hypophosphatasia (HPP) [Whyte et al., 2012] and X-linked hypophosphatemic rickets 

[Carpenter et al., 2018]. HPP is a rare metabolic disease caused by mutations in the ALPL 

gene that lead to an impaired production of the tissue-nonspecific alkaline phosphatase 

(TNSALP) and defective mineralization. Forms of HPP that appear in utero are frequently 

associated with infantile and perinatal lethality due to impaired skeletal development and 

respiratory problems [Jelin et al., 2017]. A recombinant TNSALP enzyme, asfotase alfa, is 

given as a treatment to re-establish bone mineralization and to improve bone strength, 

thus leading to an increased perinatal and postnatal survival of HPP patients [Whyte et al., 
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2012; Whyte et al., 2016]. In hypophosphatemic rickets, an antibody against FGF23 has 

been shown to prevent excessive renal phosphate loss and reverse radiographic changes 

of rickets [Carpenter et al., 2018].  

1.6 APPROACHES TO INVESTIGATE GENETIC SKELETAL DISEASES 
Skeletal diseases can be investigated using different genetic approaches. Family-based 

studies aim to identify genetic mutations having a large effect size in families with rare 

Mendelian skeletal diseases. On the other hand, oligogenic/polygenic conditions are 

investigated using genome-wide association studies (GWASs) by genotyping a large group 

of subjects to associate SNPs with small effect size to a certain trait (e.g. variance in 

BMD). 

In the last decade, GWASs identified several genetic loci linked to BMD and the risk of 

fracture [Rivadeneira et al., 2009; Estrada et al., 2012; Paternoster et al., 2013]. In 2017, 

over 150 novel genetic loci associated with BMD were detected in a large GWAS [Kemp et 

al., 2017]. In the most recently published study, 518 loci (301 novel) were identified as 

being associated with estimated BMD (eBMD) in the largest GWAS ever performed [Morris 

et al., 2019]. These findings explain 20% of the eBMD variance [Morris et al., 2019]. In this 

work, the authors also identified the protein-coding genes in close proximity to the most 

significant SNPs and evaluated the skeletal phenotype of 126 knockout mice in which 

these genes were disrupted. This approach led to the identification of a novel candidate 

gene for osteoporosis involved in WNT signaling, Daam2: mice lacking this gene exhibited 

reduced bone strength. However, this is not the only example in which GWAS hits can 

potentially pinpoint genes linked to monogenic conditions. In fact, some variants that have 

been identified in previous GWASs are close to genes in which rare pathogenic variants 

have been detected in patients with rare skeletal diseases [Rivadeneira and Makitie, 

2016]. 

Although GWASs have led to outstanding discoveries concerning the molecular 

mechanisms predisposing to bone fragility, these findings have had a limited impact on the 

clinical practice. Genetic testing of families with rare skeletal diseases offers several 

benefits, such as providing a diagnosis and a prognosis, enabling an appropriate 

management and surveillance of the disease as well as offering genetic counseling to the 

patients and their family members. During the last years, several rare monogenic forms of 

skeletal diseases have been characterized in family-based studies with MPS and 

subsequent functional validation of genetic findings. 
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1.6.1 From genetics to genomics 
In the last four decades, the approaches to identify a novel disease-causing gene have 

changed with the evolution of sequencing technologies. Before the introduction of MPS, 

identification of novel genes underlying monogenic conditions was conducted by positional 

cloning and linkage analysis to identify regions to be prioritized for Sanger sequencing. 

These techniques were time-consuming and required large multi-case families.  

From low-throughput technologies, like Sanger sequencing, where only small parts of DNA 

(up to 800 bp in length) could be amplified and sequenced at the same time, we have 

recently entered to an era of high-throughput technologies, where an entire exome (all the 

exons of the genome) or genomes (the complete set of DNA) of an individual can be 

sequenced in only few days. In the last 5-10 years, the cost of performing whole-exome 

sequencing (WES) and whole-genome sequencing (WGS) have considerably decreased 

with the outcome that the exome/genome of several thousands of individuals has been 

sequenced and several disease-causing genes have been identified. Gene panels, targeting 

a limited set of genes, or WES/WGS are appropriate methods for diagnosing conditions 

characterized by genetic heterogeneity, like OI [Bardai et al., 2016]. In the “post-genome 

era”, Sanger sequencing is mainly applied to sequence single or a few candidate genes as 

well as to validate WES/WGS findings. The resolution of the genome-wide assays has 

increased substantially (Fig. 6) [Wright et al., 2018]. 

 

Figure 6. Evolutions of the genetic methods to investigate rare skeletal diseases. From karyotyping 
to the most recent and powerful method, WGS. Along with the increased resolution and the 
possibility to detect most types of genetic variants, MPS technologies also increment the risk of 
incidental findings. Figure adapted from Wright et al., 2018, with permission from the Publisher. 

In the “pre-genome era”, chromosomes were analyzed by karyotyping under the microscope. 

This method only allows for the identification of SVs involving at least 5 Mb of DNA. On the 

other hand, standard comparative genomic hybridization arrays (array-CGH) can identify 

CNVs up to 50 kb in size.  
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Nowadays, custom made array-CGHs are available to pinpoint smaller CNVs in targeted 

regions within the genome. SNP-arrays provide similar information to array-CGH but they 

also detect uniparental disomy and autozygosity, regions in which both copies of DNA derive 

from a common ancestor most likely due to consanguinity between the parents. However, 

balanced abnormalities, like inversions and translocations, can not be identified by arrays. 

Finally, WGS and WES can identify most types of genetic variants with a resolution of 1 bp. 

Considering the number of variants detected by these different methods, usually no variants 

are detected by karyotyping because chromosomal abnormalities are rare among healthy 

individuals as well as in patients with skeletal diseases. On the other hand, as many as five 

million variants can be identified by WGS [Genomes Project et al., 2015]. 

Although MPS technologies offer several benefits, these methods generate a massive 

amount of data that have to be processed, analyzed and stored. Furthermore, both variant 

prioritization and interpretation are challenging, especially if the disease-causing variant 

reside outside the coding regions of the genome. Finally, MPS data might contain genetic 

information about conditions other than those affecting the skeleton (e.g. genetic variants 

that predispose to cancer). In this way, MPS can lead to a relatively high yield of incidental 

findings. Despite these challenges, MPS approach has completely revolutionized the field of 

rare skeletal diseases by leading to the identification of several novel disease mechanisms 

and by increasing the diagnostic rate.  
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2 AIMS 
Although the use of MPS has considerably increased the diagnostic yield of rare skeletal 

diseases, both the phenotypic and the genetic spectrum of many of these entities still 

remain to be fully characterized. Furthermore, the genetic causes and molecular 

mechanisms underlying some extremely rare conditions have yet to be identified.   

The overall goal of this thesis is to expand the genetic and pathomolecular background of 

rare metabolic bone diseases by studying patients or families affected by early-onset 

skeletal fragility, HBM as well as skeletal dysplasia (SMD and SEMD). 

The specific aims are:  

• To identify novel disease-causing gene variants and correlate them with the clinical 

phenotype of the patients (Papers II-IV) 

• To discover potentially novel gene-disease associations (Papers I, II and V) 

• To investigate novel genetic and molecular mechanisms leading to disease (Paper V) 
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3 PATIENTS AND METHODS 

3.1 ETHICAL APPROVALS AND PATIENTS’ CONSENTS 

The majority of the patients included in this thesis are Finnish and were recruited at the 

Children's Hospital, Helsinki University Hospital, Finland. Due to the extreme rarity of some 

of the studied conditions, patients were also recruited from other clinics through an 

international collaborative network. Ethical approvals for our research studies were 

obtained from the Helsinki University Hospital Ethics Committee and the other Institutional 

Ethics Boards. All studies were carried out according to the World Medical Association 

Declaration of Helsinki. Prior to inclusion to our studies, a written informed consent was 

signed by each participant and/or the caregivers. 

 

3.2 PATIENTS 
The clinical evaluation of each patient was carried out as part of the patient’s routine 

clinical care. The phenotype and skeletal features were carefully investigated by expert 

clinicians and radiologists. Biochemical parameters, including parameters of calcium 

metabolism and bone turnover markers, were measured in the majority of the patients. 

BMD was measured with DXA. BMD values were reported using the T-score in adults ≥ 30 

years of age whereas the Z-score was adopted for subjects < 30 years of age. 

Furthermore, a preliminary genetic testing (with negative result) was performed in some of 

the patients before inclusion to our research, as described in the following paragraphs.  

In papers I-II we studied a cohort of patients with mild to severe skeletal fragility. These 

patients were subdivided into two groups according to the inclusion criteria described in 

Fig. 7.  

 

Figure 7. Inclusion criteria and number of patients with skeletal fragility included in paper I and II. 
Tot= total.  

Group 1 encompassed children or young adults (N= 30 in paper I; N= 15 in paper II) 

fulfilling the diagnosis of early-onset osteoporosis. Sequencing of type I collagen genes 

• BMD Z-score < 2.0 and/or 
• ≥ 3 peripheral fractures and/or 
• ≥ 1 vertebral compression fractures
• exclusion of secondary osteoporosis  
• age < 30 years before the onset of osteoporosis

Group 1 Group 2

• age 4-16 years
• ≥ 2 low-energy long bone fractures before age 10 years or
• ≥ 3 low-energy long bone fractures before age 16 years and/or 
• ≥ 1 low-energy vertebral compression fracture

Paper I Paper II

Tot= 30 Tot= 15

17 x       13 x 6 x       9 x 

Paper I Paper II

Tot= 66 Tot= 55

44 x        22 x 38 x       17 x 
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had been performed for some of the patients but no disease-causing variants had been 

identified. Group 2 involved children (N= 66 in paper I; N= 55 in paper II) who sustained 

multiple long bone and/or compression fractures but had usually normal BMD. Group 2 

was carefully selected from an epidemiological study performed by Mäyränpää et al. 

[Mayranpaa et al., 2010; Mayranpaa et al., 2012]. No systematic genetic testing apart from 

LRP5 screening was carried out for these patients before inclusion to our study [Saarinen 

et al., 2010]. 

In paper III two patients with HBM were recruited. Patient #1 (male, age 53 years) was 

enrolled to our study due to high BMD (T-score +10.1 for lumbar spine) and surgeries 

required to correct excessive bone formation. Patient #2 (female, age 17 years) was 

referred to our clinical care due to abnormal bone structure on radiographs and high BMD 

(Z-score 3.0 for lumbar spine). No preliminary genetic investigations were performed for 

Patients #1-2 prior to enrolment to this study. 

In paper IV we recruited a Finnish trio (parents and their affected child) with a rare form of 

SMD. The most striking skeletal features identified in the index patient (Patient #1, male, 

12.5 years), born from healthy non-consanguineous parents, were short stature and 

metaphyseal abnormalities with “corner fracture” appearance in long bones. No mutation 

was identified in any skeletal dysplasia-related gene included in the commercially available 

Comprehensive Skeletal Dysplasias and Disorders Panel by Blueprint Genetics at the time 

of recruitment. Four other patients with a similar skeletal phenotype (Patients #2-5) as well 

as some healthy and affected family members were recruited through the international 

collaboration. 

In paper V a Finnish trio with a potentially novel form of SEMD was recruited. The index 

patient (Patient #1, male, 4.5 years), was born from healthy non-consanguineous parents. 

He featured severe and disproportionate short stature and on radiographs short ribs, 

vertebral changes and metaphyseal and epiphyseal abnormalities. The patient was 

mutation negative for all the genes included in the Comprehensive Skeletal Dysplasias and 

Disorders Panel (Blueprint Genetics). Two-unrelated Korean children (Patients #2-3) 

featuring the exact same abnormal clinical phenotype as the Finnish patient were also 

enrolled to our study along with other healthy and affected family members.  

 

3.3 METHODS 

3.3.1 Genetic testing 
In order to identify the genetic cause of disease in patients with rare skeletal phenotypes, 

different genetic approaches and methods were used in this thesis (Table 4). 
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Table 4. Methods used in each paper. 
 

  # 
targeted 
genes 

Paper I Paper II Paper III Paper IV Paper V 

Sanger 
Sequencing 

1 Sequencing 
of CRTAP in 
Groups 1-2 

  Sequencing 
of LRP5 in 
Patient #1 

Sequencing 
of FN1 in 
Patient #2 

Sequencing 
of RPL13 in 
Patients #2-3 

Gene panel for 
osteopetrosis 

21   Used for 
Patient #2 

    

Custom made 
array-CGH 

> 1,150   Performed 
in Groups 
1-2 

      

Whole-exome 
sequencing 

~ 20,500       Performed in 
Patients #3-5 

  

Whole-genome 
sequencing 

~ 20,500       Performed in 
Patient #1 

Performed in 
Patient #1 

Patients from Groups 1-2 in papers I-II were investigated using either Sanger sequencing 

or a custom designed array-CGH. The two patients with HBM described in paper III were 

analyzed using Sanger sequencing and a panel targeting 21 genes associated with 

osteopetrosis. Finally, WGS, WES as well as Sanger sequencing were carried out for 

patients included in papers IV-V.  

Sanger sequencing 
Sanger sequencing was used in this thesis when only one gene was to be analyzed. In 

paper I we used this method to investigate whether rare variants in the CRTAP gene, 

encoding the cartilage-associated protein, were present in patients with mild to severe 

skeletal fragility. The same method was also chosen for sequencing other candidate genes 

in papers III-V.  

Briefly, in Sanger sequencing the regions of interest (up to 400 bp each) are amplified by 

polymerase chain reaction (PCR). Sanger sequencing reactions are performed individually 

for each amplified fragment using forward and reverse PCR primers, a DNA polymerase as 

well as the four deoxyribonucleotide triphosphates (dNTPs). Furthermore, low 

concentrations of labeled dideoxyribonucleotide analogs (ddNTPs), lacking two OH groups 

on two sugar carbons, are also added. Once a ddNTP is incorporated within the extending 

fragment DNA synthesis is terminated. Finally, all DNA fragments are separated by size 

and the fluorescent signal is detected on the semi-automated capillary electrophoresis 

instrument Applied Biosystems 3730 DNA Analyzer. 

Custom designed array-CGH  
A custom-made array-CGH with enriched probe density in >1,150 genes linked to skeletal 

diseases and/or associated with cilia function was designed to identify CNVs in patients 
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with different degrees of skeletal fragility (paper II). Our design had two arrays per slide 

with a total number of 400 k probes per sample (2 x 400 k). Out of 440 k oligonucleotide 

probes 180 k were evenly distributed throughout the genome whereas 220 k probes 

specifically targeted our genes of interest with an average coverage of one oligonucleotide 

probe (60 bp in length) per 100 bp and one probe per 500 bp in the non-coding regions.  

The name array-CGH refers to the sets of DNA that are used in this method: a test DNA 

(patient DNA), a sex-matched reference DNA (control DNA) and a large set of DNA probes 

immobilized on the array. The array-CGH workflow consists of four main steps that are 

described in Fig. 8. 

 

MPS 
In order to identify the disease-causing variant in either a list of candidate genes (paper III) 

or in the entire exome/genome (papers IV-V) we used MPS. In the MPS field, several 

technologies with diverse sequencing chemistries have been developed by different 

companies. Among these, Illumina is the most widely chosen and it is also the technology 

that was used in this thesis.  

The general workflow of MPS sequencing consists of three mains steps: DNA library 

construction, amplification of the separated DNA fragments (not always needed) and 

Figure 8. The array-CGH workflow 
consists of four main steps: 1) the same 
amount of test DNA and reference DNA are 
fragmented using restriction enzymes 2) 
test DNA fragments and reference 
fragments are first labeled using two 
different fluorescent dyes and then mixed 
together; 3) the DNA mix is hybridized on 
the array; the average color on the array 
corresponds to relative amount of test and 
reference samples; 4) the results are 
analyzed using a specific analysis 
software. 
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sequencing (Fig. 9A). First, the DNA is randomly fragmented and two double-stranded 

adaptor oligonucleotides are ligated to each fragment. Each DNA fragment is then 

physically separated and amplified to give clusters of monoclonal DNA that will be used as 

templates for sequencing. Sequencing reactions are performed via sequencing-by-

synthesis using a DNA polymerase and dNTPs, as in Sanger sequencing. In MPS 

sequencing the incorporation of nucleotides into growing DNA is recorded during the 

reaction (each base is detected by a specific light signal). In this thesis, sequencing was 

performed at both ends of the fragments to generate pair-end reads. 

 
Figure 9. MPS workflow. Libraries are prepared, amplified and finally sequenced (A). The 
sequencing data are delivered from the sequencing facility in form of FastQ files (B). The 
sequencing reads are then mapped to reference genome and variants are called, annotated and 
loaded into GEMINI (B). Finally data filtering, prioritization and analysis take place (C); example 
based on a rare autosomal recessive condition. FastQ, BAM, VCF and PED are different file 
formats. 

Once the sequencing part is accomplished, an enormous amount of raw data (sequencing 

reads) is produced and delivered in fastQ format. At this point, data pre-processing is 

performed (Fig. 9B). During this step, sequencing reads are mapped to the reference 

genome (GRCh37/UCSC hg19) and quality control is carried out to correct for technical 

biases. Afterwards, variant discovery takes place. Once all the positions at which the DNA 

sequence does not correspond to the reference genome are identified, the variants are 

annotated and filtered (Fig. 9B). Only after this step, the genetic analysis of the data takes 

place (Fig. 9C). SVs, which are not detectable using the pipeline designed for small scale 
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variants, were identified using the FindSV pipeline on GitHub 

(https://github.com/J35P312/FindSV) and manually assessed. 

In order to identify the genetic cause of HBM in Patient #2 of paper III a MPS targeting the 

coding regions of 21 genes linked to osteopetrosis and HBM was performed at Bristol 

RGC, UK Genetic testing Network. The targeted regions were selected using Agilent 

Haloplex Method. Sequencing reads (2 x 150 bp) were generated using the Illumina MiSeq 

platform. 

In paper IV Patients #3-5 were analyzed by WES. WES for Patient #3 was carried on at 

CEGH-CEL-Universitade de São Paulo. Library preparation was performed by capturing 

the exome with the Illumina TruSeq PCR-free and sequencing was performed on the 

HiSeq 2500 instrument. PCR-free methods offer a more comprehensive coverage in the 

challenging regions, such as GC rich and repetitive regions. Reads mapping was 

performed using Burrows-Wheeler Aligner (BWA-MEM) [Li, 2013], variants were called 

using Genome Analysis Toolkit (GATK) [Van der Auwera et al., 2013] and annotated using 

ANNOVAR [Wang et al., 2010]. WES for Patients #4-5 was conducted at GeneDx. Exome 

was captured with the Clincial Research Exome kit (Agilent Technologies, Santa Clara, 

CA) and sequenced on an Illumina system generating 2 x 100 bp pair-end reads. A 

detailed variant processing protocol has been described previously [Tanaka et al., 2015].  

In papers IV-V we used WGS to identify the cause of disease in the two Finnish index 

patients (both named Patient #1 in the two papers). Both library preparation and 

sequencing were performed at the Science for Life laboratory (SciLifeLab) in Stockholm, 

Sweden. Library were prepared using the Illumina TruSeq PCR-free methods generating 

fragments of 350 bp. Afterwards the fragments were sequenced on the HiSeq X instrument 

as 2 x 150 bp pair-end reads with an average coverage of 30X. Reads mapping was 

carried out using BWA-MEM, data processing and variant calling were performed 

according to GATK best practice and variant annotated using Variant Effect Predictor 

(VEP) [McLaren et al., 2016]. 

3.3.2  Variant filtering, prioritization and interpretation 
In papers I-III the genetic investigations led to a limited number of variants to be analyzed. 

In this way, variant interpretation could be done manually for each variant that was 

identified (including CNVs). This also applies to the samples that were investigated by 

Sanger sequencing in papers IV-V. 

WES and WGS produce thousands to millions of variants that differ from the reference 

genome. In this way, after each DNA change is annotated, the variants have to be filtered 

(Fig. 9C) and prioritized. The Finnish families in paper IV-V were analyzed as trios, 
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meaning that the index patients plus their parents were sequenced. This strategy offers the 

possibility to filter the data according to the inheritance pattern thus considerably reducing 

the numbers of variants in GEMINI, a flexible tool used in this thesis to explore genetic 

variation (Fig. 9B) [Paila et al., 2013]. Furthermore, since we are studying rare diseases, a 

MAF < 0.001 in the gnomAD and SweGen [Ameur et al., 2017] databases was used (Fig. 

9C). Moreover, by using the filter “impact severity” in GEMINI, it was possible to discard 

variants that are likely to have a small effect and/or variants of difficult interpretation (e.g. 

synonymous variants, intergenic variants as well as variants in the 3’/5’-UTR) while 

retaining variants affecting known non-coding RNAs or promoter regions (Fig. 9C) [Paila et 

al., 2013]. Once one or a few candidate variants are identified, they were manually 

evaluated using the program Integrated Genome Viewer (IGV). In silico prediction tools, 

like SIFT [Ng, 2003] and PolyPhen-2 [Adzhubei et al., 2013], give an hint about the effect 

of missense mutations on protein function by performing multiple sequence alignment in 

related proteins (paralogs in humans and orthologs between different species). Other in 

silico tools can instead predict the effect of splicing variants [Jian et al., 2014]. The 

Genomic Evolutionary Rate Profiling (GERP) score instead offers information about the 

conservation of a certain amino acid between different species. The information provided 

by most of the available in silico prediction tools are combined into a unique score, named 

Combined Annotation-Dependent Depletion (CADD) score [Kircher et al., 2014]. The 

higher CADD score a variant has, the more deleterious the change is likely to be.  

Following this, other parameters have to be evaluated. First of all, it is important to 

investigate if a variant affects a gene that has already been linked to the studied disease. 

ClinVar is a database that contains all the genetic variants that have been linked to a 

certain phenotype. Some of these variants have been functionally validated whereas some 

others are only variant-phenotype observations. If the variant of interest has already been 

reported as causing a similar skeletal disease, there is strong evidence that the variant is 

pathogenic. However, if a variant has never been described before, segregation studies as 

well as experiments at mRNA and/or protein level might be needed. If a variant is identified 

in a gene that is not yet associated to a Mendelian disease, further investigations have to 

be carried out. For example, mRNA/protein expression levels in the relative tissue/cell type 

are a useful information that can be acquired from publicly available databases. Moreover, 

functional studies on cellular or animal models are always necessary when a new 

candidate gene is identified. 

3.3.3 Variant validation 
Different approaches to validate a certain genetic variant are used and they can be 

subdivided into two major groups: in silico validations and in vivo validations. In this thesis 
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several in vitro experiments at DNA and protein level were performed. In addition, a 

zebrafish model was generated.  

In vitro validations 
In order to confirm the presence of the candidate variants identified by MPS in the DNA 

Sanger sequencing was performed (papers III-V). 

In paper II breakpoint PCR and Sanger sequencing were performed to confirm two rare 

CNVs that were identified by array-CGH. Breakpoint PCR consists of performing PCR (or 

long-range PCR) and primer walking around the breakpoints detected by array-CGH. This 

strategy enabled us to pinpoint and sequence the exact breakpoints of one pathogenic 

deletion. Furthermore, by using this method it was possible to show that one likely 

pathogenic duplication was in tandem. Breakpoint PCR was also applied to screen for 

mutation in other family members. 

Finally, WGS was used in paper II to exclude the presence of any likely pathogenic variant 

other than the identified CNV in the patient harboring the duplication.   

Since germline mutations are present in all cells of the body, blood is a convenient source 

for extracting genomic DNA from patients with Mendelian diseases. However, protein 

expression is highly tissue-dependent. Since it was not possible to obtain a bone biopsy, 

we collected skin biopsies from patients and controls as a ‘proxy-tissue’ for investigating 

the cellular consequences of the mutation at the protein level in paper V. In order to 

validate the genetic findings in this paper, where a new candidate gene for SEMD 

dysplasia was identified, we collected a skin biopsy from each of the three index patients 

as well as from some healthy and affected family members. Biopsies from unrelated 

controls were also included. Primary dermal fibroblasts were isolated and cultured 

according to standard protocols as previously described [Pekkinen et al., 2019]. 

Expression of the target protein was investigated by Western blot (WB) and 

immunostaining. 

WB was performed to evaluate if there was a difference in the expression level of a 

candidate ribosomal protein in fibroblasts from patients compared with controls. For WB, 

total protein lysate is extracted from fibroblasts cultures using standard procedures. 

According to the basic principles of WB, proteins are separated by gel electrophoresis and 

then transferred (blotted) to a membrane. In order to specifically detect the protein of 

interest, the membrane is blocked and incubated with a primary antibody that specifically 

targets the protein of interest. The detection of the protein-antibody interaction is detected 

by the use of a secondary antibody conjugated with horseradish peroxidase (HRP). By 
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adding the HRP substrate the HRP enzyme activity (and thus the amount of protein of 

interest) is detected by chemiluminescence. 

Immunocytochemistry (ICC) experiments were carried out to investigate if the candidate 

ribosomal protein is localized to the same subcellular compartments in the patients’ 

fibroblasts compared to controls. Furthermore, the co-localization of our protein of interest 

with other ribosomal proteins was investigated. Briefly, fibroblasts were cultured on cover 

slips for three days, fixed in 4% paraformaldehyde, permeabilized 0.1% triton-X in PBS, 

blocked in in 0.1% BSA in PBS, and then incubated with primary antibodies targeting the 

proteins of interest. Secondary fluorescently labeled antibodies were then added to allow 

signal detection by confocal imaging. Colocalization analysis was performed using the 

Colocalization Test plugin of ImageJ Fiji, where agreement in localization is expressed as 

Pearson’s correlation coefficient [Dunn et al., 2011]. 

In vivo validations 
Although cellular models are a useful tool to study some aspects of the molecular 

mechanisms leading to disease, animal models enable us to study the disease 

pathogenesis in the whole organism from embryo to adult stage. In vivo studies are 

necessary to investigate new gene-disease correlations. 

In paper V we knocked out our gene of interest in zebrafish through CRISPR-Cas9 

genome editing [Doudna and Charpentier, 2014]. Zebrafish (Danio rerio) was chosen 

because it has been shown to be a good model for investigating skeletal diseases [Witten 

et al., 2017]. By using this bony fish it is possible to study bone and cartilage formation as 

well as skeletal deformities since bone development and some basic skeletal components 

are highly conserved between teleost and humans [Witten et al., 2017]. In previous studies 

on OI and osteoporosis, this animal model has been used to understand the molecular 

mechanisms leading to disease as well as to perform drug testing [Van Dijk et al., 2013; 

Gistelinck et al., 2016; Gioia et al., 2017; Fiedler et al., 2018; Gistelinck et al., 2018]. 

Zebrafish has also been applied to validate the skeletal phenotype observed in patients 

with novel forms of skeletal dysplasia, such as a skeletal ciliopathy caused by KIAA0753 

mutations [Hammarsjö et al., 2017]. 

In general, zebrafish is widely used as a model organism because approximately 70% of 

the human genes have a orthologue in this species [Howe et al., 2013]. Furthermore, every 

week a couple of fish can produce hundreds of eggs that are externally fertilized and can 

be easily visualized and manipulated.  

The CRISPR-Cas system is an adaptive system found in bacteria to protect them against 

viruses and plasmids. In our genome editing, a Cas9 endonucleases as well as a single 
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guide RNA (sgRNA) targeting a region just downstream of the mutated loci in the patients 

were injected into the zebrafish embryos. The sgRNA has a scaffold sequence that binds 

Cas9 as well as a 20 bp sequence that specifically targets our gene of interest specifically. 

In order for the Cas9 to bind the target, the sgRNA has to hybridize to a sequence that 

locates close to a NGG protospacer-associated motif (PAM sequence). Only in this way 

the Cas9 can perform a double strand break close to the targeted DNA sequence, which is 

consequently repaired by non-homologous end joining (NHEJ) resulting in the introduction 

of indels. 

In order to obtain the knocked-out fish we inter-crossed two fish with the same 

heterozygous frameshift mutation in our gene of interest from first filial (F1) generation. 

Phenotypic characterization was performed by gross analysis of the larvae from 1 to 5 

days post-fertilization (dpf) and by skeletal tissue staining upon fixation on 5 dpf larvae. 

Cartilage development and mineralization were evaluated using alizarin red and alcian 

blue staining. Cartilage deformities in the head were investigated based on the 

measurement of the angle between the left and the right ceratohyals.  
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4 RESULTS AND DISCUSSION 

4.1 SANGER SEQUENCING OF KNOWN DISEASE GENES 
In papers I and III we used Sanger sequencing to search for the genetic cause of disease 

in patients with early-onset skeletal fragility and HBM diseases. 

4.1.1 CRTAP screening in patients with skeletal fragility 
Previous studies have suggested that even carriers of mutations in genes causing severe 

recessive OI or other recessive syndromes characterized by low BMD may feature early-

onset osteoporosis [Hartikka et al., 2005; Keupp et al., 2013; Laine et al., 2013]. In 2006, 

Morello et al. showed that the parents of index patients with CRTAP mutation-related OI 

were healthy carriers [Morello et al., 2006]. However, to the best of our knowledge, no 

larger studies investigating potential associations between CRTAP variants and low BMD 

and bone fractures have been performed.  

To determine whether rare variants in the CRTAP exons or splicing boundaries could 

explain low BMD and increased bone fractures, in Paper I we sequenced CRTAP in two 

groups of patients with mild to severe skeletal fragility. While the phenotypes in the two 

groups were partly overlapping, overall, subjects in Group 1 more commonly had low BMD 

and vertebral fractures whereas Group 2 had multiple long-bone fractures and normal 

BMD. The screening of CRTAP detected no clearly pathogenic variants. We detected four 

synonymous SNPs in both groups of patients and one synonymous SNP in only one 

patient in Group 2 (Table 5). The patient harbouring this rare SNP was an 11-year-old boy 

who sustained two compression fractures but had normal BMD values for the lumbar spine 

and whole body. Although this SNP has never been reported in the Finnish population 

before, synonymous SNPs are unlikely to have a pathogenic effect. No parental samples 

were available for testing.  

Regarding all identified SNPs in CRTAP, only one SNP, rs11558338, was less common in 

the fracture-prone children (Group 2) compared to the osteoporosis group (Group 1) and 

the general population (Table 5). However, even if the uncorrected p-value was statistically 

significant (p=0.0304), after correcting for multiple testing (Bonferroni correction) the p-

value became insignificant suggesting that the finding is most likely random. As expected, 

the number of heterozygous individuals for each SNP was higher than the number of 

homozygous individuals in both groups of patients. A significant pathogenic role of a 

homozygous genotype for the identified SNPs can be excluded in light of the relatively high 

frequency of homozygous individuals in the general population.  
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Table 5. Genetic variants identified in the CRTAP gene.  

SNP DNA 
change * 

Involved 
amino 
acid 

MAF 
ExAc 

MAF 
gnomAD 

MAF 
Group
1 

MAF 
Group 
2 

# patients 
Group 1 

# patients 
Group 2 

rs11558338 c.213G>A p.Leu71= 22% 15% 20% 8% 10 8 
Het 
8 

Hom 
2 

Het 
6 

Hom 
2 

rs4076086 c.534C>T p.Asp178= 17% 17% 22% 18% 11 21 
Het 
9 

Hom 
2 

Het 
18 

Hom 
3 

rs35357409 c.558A>G p.Ala186= 1% 1% 0%  1% 0 1 
Het 
/ 

Hom 
/ 

Het 
1 

Hom 
/ 

rs1135127 c.1032T>G p.Thr344= 38% 37% 38% 40% 20 42 
Het 
17 

Hom 
3 

Het 
31 

Hom 
11 

rs1135128 c.1044G>A p.Ser348= 38% 37% 38% 40% 20 42 
Het 
17 

Hom 
3 

Het 
31 

Hom 
11 

 
* Reference sequence: NM_006371.4. 

In conclusion, we were aiming at searching for rare damaging CRTAP mutations as the 

cause of mild skeletal fragility in our two patient cohorts but we only identified synonymous 

changes that can also be detected at relatively high frequency in the general population. 

Our negative might indicate that there is no association between CRTAP variants and 

decreased bone mass and/or increased fractures in children and young adults when a 

typical phenotype of severe OI is not present. Since we only identified synonymous 

variants it is not possible to exclude that monoallelic variants with more severe 

consequences, like loss of function or certain missense mutations, may lead to decreased 

bone mass or increased risk of fractures. Moreover, other types of variants that are not 

detectable by Sanger sequencing might also affect CRTAP and contribute to disease.  

4.1.2 Genes associated with HBM diseases 
In paper III exons 2-4 of the LRP5 gene were sequenced in a male patient with autosomal 

dominant HBM (Patient #1). Most of the HBM phenotype mutations in LRP5 have 

previously been identified in these exons. We identified a novel missense mutation in exon 

3, c.592A>T (p.Asn198Tyr) (reference sequence: NM_002335.3) (Fig. 10). 

 
A  C  T  G G  C  C C  A  A  T  G  G  A C T

T

Figure 10. Sanger sequencing showing the missense 
variant, c.592A>T (p.Asn198Tyr), identified in LRP5. 
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Exons 2-4 encode the β-propeller 1, the extracellular domain that interacts with different 

proteins of the WNT pathway, such as the inhibitors SOST and DKK1. Since 71% of the 

residues, including Asn198, are conserved among the LRP5/6 receptors, Bourhis et al. 

used LRP6 as a surrogate for LRP5 to validate the effects of 9 mutations in LRP5 identified 

in patients with HBM [Bourhis et al., 2011; Joiner et al., 2013]. Asparagine 198 strictly 

interacts with the asparagine of the ‘Asn-Xaa-Ile’ motif of the SOST/DKK1 inhibitors 

[Bourhis et al., 2011]. Biolayer interferometry showed that a mutation affecting the same 

codon as our mutation, p.Asn198Ser, causes a significant loss in affinity for DKK1 and 

SOST [Bourhis et al., 2011]. Furthermore, a structural model of the LRP5 protein clearly 

shows how the asparagine to serine change at position 198 leads to a loss of affinity due 

to the different amino acid structure [Gregson et al., 2014]. The mutation identified in our 

study substitutes asparagine for tyrosine and it is likely to be even more deleterious than 

the p.Asn198Ser change since an uncharged amino acid is substituted with a highly 

hydrophobic one. The identified gain-of-function mutation in LRP5 is likely to affect the 

binding to SOST and DKK1, which are no longer capable to antagonize the association of 

WNT ligands to LRP5, leading to increased WNT signaling [Van Wesenbeeck et al., 2003; 

Semenov and He, 2006].   

A female patient with HBM (Patient #2) was investigated using a commercially available 

gene panel for osteopetrosis and HBM. A novel herterozygous frameshift deletion in exon 

2 of AMER1 (reference sequence: NM_152424.3), c.655del (p.Glu219Argfs*6), was 

determined as the cause of osteopathia striata with cranial sclerosis (OSCS). Striations in 

the long bones, also present in our patient, are a hallmark of this disease in female 

patients [Jenkins et al., 2009]. AMER1 locates on the X-chromosome and males with a 

hemizygous mutation are in general more severely affected than heterozygous females. 

AMER1 interacts with several proteins, including members of the β-catenin “destruction 

complex”. Loss of function mutations in AMER1 are likely to affect the ubiquitination of β-

catenin, which is no longer degraded and leads to increased bone formation. Furthermore, 

AMER1 is a tumor suppressor and somatic AMER1 mutations have been associated to 

Wilms tumors, a pediatric cancer. Our presently 17-year-old patient is carefully followed for 

potential extra-skeletal complications.  

Although both gain-of-function mutations in LRP5 and loss-of-function mutations in AMER1 

in paper III lead to an excessive bone accrual due to an increased activation of the WNT 

pathway, the phenotypes of the two studied patients were remarkably different. While 

cranial hyperostosis with no macrocephaly was evident in the patient with HBM, severe 

macrocephaly with small jaw was detected in the patient with OSCS. Moreover, the tubular 

bones of the two patients also appeared different: severe hyperostosis was seen in the 



 

 40 

diaphyses of the HBM patient whereas typical striations and abnormally shaped long 

bones were noticed in the OSCS patient. 

 

4.2 CUSTOM DESIGNED ARRAY-CGH TARGETING GENES RELATED TO 
SKELETAL FRAGILITY AND CILIARY FUNCTION 

In paper II a custom designed array-CGH was used to search for rare CNVs in patients 

with skeletal fragility. The array-CGH was designed to especially cover genes that have 

already been linked to skeletal diseases and/or genes that are known or predicted to play a 

role in cilia. The specific focus was on CNVs because firstly, only a small number of large 

deletions and duplications have thus far been detected in patients with skeletal fragility. 

Secondly, this approach was regarded as a potential way of detecting novel genetic loci 

underlying skeletal fragility. Concerning the primary cilium, defects in this organelle have 

already been described in some types of skeletal dysplasia but no association with skeletal 

fragility has been determined so far. Since osteocytes are the mechanosensors of bone, 

our hypothesis was that abnormalities in the primary cilium could affect the way osteocytes 

perceive mechanical forces.  

In order to identify rare CNVs we excluded variants listed in the Database of Genetic 

Variation (DGV) and variants that were present in a Finnish control group that had 

previously been described and screened using array-CGH [Viljakainen et al., 2015]. 

4.2.1 CNVs in known genes associated to skeletal fragility 
Our array-CGH analysis led to the identification of two novel heterozygous CNVs in genes 

involved in skeletal fragility. 

The first CNV is a novel deletion of around 4 kb, chr7: 94,024,366–94,028,364 (reference 

genome: GRCh37), identified in the N-propeptide of COL1A2, g.491_5060del (reference 

sequence: NM_000089.3) in a male patient affected by early-onset osteoporosis. The 

patient’s phenotype was not as severe as in other patients with qualitative defects in type I 

collagen. COL1A2 mutations, in general, have less severe consequences compared to 

COL1A1 mutations. This is mostly due to the fact the collagen triple helix is formed by two 

α-1 chains and only one α-2 chain. Moreover, it has been shown that quantitative defects 

are better tolerated than qualitative defects affecting the Xaa-Yaa-Gly pattern [Forlino and 

Marini, 2016]. According to in silico predictions, the identified deletion is likely to lead to a 

frameshift in the ORF resulting in the introduction of an early stop codon in the mRNA that 

would lead to a truncated protein, p.Arg8Phefs∗14. In order to prevent the translation of a 

truncated protein, nonsense-mediated mRNA decay can act to remove the affected 

transcript. In this way, a reduced amount of normal type-I collagen, which is only produced 



 

  41 

by wild-type allele, might lead to haploinsufficiency in this patient. This condition is less 

deleterious for the patient’s phenotype than producing a truncated protein that interferes 

with the normal activity of wild-type collagen. Segregation analysis and genotyping 

confirmed the presence of the same CNV in the patient’s affected brother and father, who 

are both characterized by a very similar skeletal phenotype. All patients have severe spinal 

changes but normal BMD at the proximal hips.  

A tandem duplication of around 12.5 kb within PLS3, chrX: 114,848,381–114,860,880, the 

first duplication ever reported in this gene, was identified in a male patient with early-onset 

osteoporosis. The identified change, starting in intron 2 and ending in intron 3 (reference 

sequence: NM_005032.6), is likely to lead to a frameshift in the ORF. The CNV and ed 

with the disease in the proband’s family, in which one affected brother and the affected 

mother also carried the same CNV. The two affected brothers featured severe skeletal 

impairments, characterized by multiple long bone and vertebral fractures as well as low 

BMD. On the other hand, the mother, who also has a wild-type copy of the gene, featured 

a milder skeletal phenotype. So far, PLS3 mutations in females have been shown to give 

rise to phenotypes of variable severity. Although the majority have a milder phenotype, 

some individuals have a severe phenotype resembling that observed in males [Van Dijk et 

al., 2013; Kampe et al., 2017]. A skewed X-inactivation could determine the phenotypic 

severity in female patients with PLS3 mutations. 

Our investigation on skeletal fragility using a custom designed array-CGH revealed two 

novel and pathogenic or likely pathogenic CNVs in COL1A2 and PLS3 in two families with 

early-onset osteoporosis. Since from the literature a larger number of small-scale 

mutations than CNVs has been reported in patients with skeletal fragility, we expected to 

identify a small number of CNVs in genes associated to bone fragility in our groups. 

Moreover, patients in Group 2 were prone to bone fractures but were otherwise healthy. 

Therefore, it is not surprising that no pathogenic CNVs were detected in this group. It could 

be speculated that fractures in these patients are a polygenic trait resulting from multiple 

SNPs with low effect size rather than from a single gene defect with a major impact. 

Epigenetic changes might also contribute to the patients’ phenotype in this group.  

 

4.2.2 CNVs in genes not yet associated with skeletal diseases 
Our second aim in paper II was to search for rare CNVs in genes playing a role in cilia. By 

performing array-CGH in Groups 1-2 we identified 12 rare heterozygous CNVs.  
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Seven out of these variants located in intronic regions of genes that have not been 

associated with skeletal diseases. Intronic variants are unlikely to affect the function of a 

protein and therefore these CNVs were classified as likely benign.  

On the other hand, five heterozygous CNVs were detected in coding regions of genes not 

related to skeletal diseases. Four out of these CNVs affected genes that are involved 

neither in bone nor in cilia (ETV1-DGKB, SCN4A, RPS6KL1-PGF and ATM) whereas one 

variant was identified in a gene with ciliary function, AGBL2. All these CNVs were regarded 

as variants of uncertain significance (VUSs).  

The largest deletion identified in our study (about 1.6 Mb) affected the entire ETV1 gene 

and exons 21-25 of DGKB (reference sequence: NM_004080.2) (Fig. 11).  

ETV1 encodes a member of the ETS (E twenty-six) family of transcription factors. Gene 

fusions involving ETS transcription factors are responsible for different types of cancers, 

including a bone sarcoma named Ewing sarcoma (ETV1-EWS translocations) [Peter et al., 

1997]. DKGB encodes a diacylglycerol kinase but its role in bone is not yet known. 

Although the detected deletion might potentially have an impact on bone fragility, no family 

samples were available for segregation analysis.  

An intragenic deletion removing exons 15-17 of SCN4A (reference sequence: 

NM_000334.4) was identified in an 11-year-old male who had sustained three long bone 

fractures and had reduced BMD Z-score (-1.8 at lumbar spine) but did not fulfill the criteria 

for primary osteoporosis. Heterozygous SCN4A mutations are linked to myotonia 

congenita, which is characterized by painful muscle stiffness [Lerche et al., 1993]. Our 

chr7:12878014-14503169

Figure 11. A large heterozygous deletion spanning the entire 
ETV1 gene and partially DKGB identified by array-CGH. 
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finding is unlikely to explain low BMD but muscle stiffness could potentially be the cause of 

the patient’s falls and consequent bone fractures. For this reason, this variant has to be 

further investigated in the patient and his family.  

The duplication that we identified in ATM (NM_000051.3), duplicating the last part of the 

gene starting from intron 62-63, was excluded as the cause of skeletal fragility in a 

fracture-prone child because homozygous ATM mutations underlie ataxia-telangiectasia 

[Savitsky et al., 1995; McConville et al., 1996]. 

Concerning the RPS6KL1-PGF deletion, removing exons 1-4 of RPS6KL1 (NM_031464.4) 

and the entire PGF gene, we could not identify a direct link between the involved genes 

and bone homeostasis. RPS6KL1 encodes the ribosomal protein S6 kinase. Despite the 

fact a GWAS hit has been found to BMD in another gene of the family of ribosomal protein 

kinases, RPS6KA5 [Estrada et al., 2012], further studies are necessary to assess the 

significance of this CNV. 

Finally, one deletion affected exons 5-7 of a gene belonging to the cilia proteome, AGBL2 

(NM_024783.3). Although we can not exclude a function of AGBL2 in bone, a defect in 

tubulin deglutamylation was detected in the testes and sperm of a Agbl2/Agbl3 double-

knockout mice [Tort et al., 2014]. In this way, this deletion is unlikely to explain the skeletal 

phenotype of the studied patient. 

Although the significance of these rare CNVs remains unclear and has to be further 

ascertained, the results indicate that custom designed array-CGH could potentially be a 

powerful method to detect novel gene-disease associations.  

 

4.3 MPS TO SEARCH FOR DISEASE-CAUSING GENETIC DEFECTS IN RARE 
SKELETAL PHENOTYPES 

In papers IV-V MPS was performed to find the genetic diagnosis in families with rare 

subtypes of skeletal dysplasia. 

4.3.1 Studies in SMD with “corner fractures” 
Paper IV started with the recruitment of a Finnish family with a rare form of SMD. The 

index patient (Patient #1), born from healthy non-consanguineous parents, featured short 

stature with severe metaphyseal changes in the long bones together with “corner 

fractures”. “Corner fractures”, which are not real fractures, are radiological findings 

appearing as lucent areas in the long bone metaphyses, especially in the tibias and 

femurs. At the time of initiation of our study, the causative gene in SMD with “corner 

fractures” (SMD-CF) was not known. In order to identify the genetic etiology of the disease 
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in the Finnish index family we carried out WGS. Through filtering variants according based 

on modes of inheritance, MAF < 0.001 and impact severity other than “LOW” in GEMINI 

one candidate variant was detected: a novel heterozygous variant in the fibronectin gene 

(FN1, reference sequence NM_212482.2), c.638G>A (p.Cys213Tyr), which was absent in 

the parents and thus determined as a de novo change (Fig. 12). In silico predictions 

classified this variant as probably damaging/deleterious. 

 

In order to identify the genetic cause of disease in other four unrelated patients with a 

similar skeletal phenotype and “corner fractures” WES and Sanger sequencing were 

carried out in Patients #3-5 and Patient #2, respectively. Data analysis identified a novel 

FN1 mutation in each patient: c.368G>A (p.Cys123Tyr), c.506G>A (p.Cys169Tyr), 

c.693C>G (p.Cys231Trp) and c.773G>A (p.Cys258Tyr). Half of these mutations were 

inherited from one affected parent whereas the other half were de novo variants. 

FN1 mutations were linked to SMD-CF (MIM #184255) for the first time in 2017, during the 

course of our study, and only seven mutations had been reported before our study [Lee et 

al., 2017; Cadoff et al., 2018]. Prior to understanding the genetic etiology, SMD-CF was 

described as a separate clinical entity in a dozen of patients who lacked a genetic 

diagnosis [Langer et al., 1990]. Fibronectin is a glycoprotein that assembles into a highly 

organized matrix and partakes in cell and protein interactions within the bone ECM. This 

protein is a dimer composed by three types of modules, which organize into functional 

domain I-III that interact with other proteins within the ECM, including collagen, integrins 

and glycosaminoglycans [Potts and Campbell, 1994]. Interestingly, all five FN1 mutations 

identified in our study cluster to type-I domains involved in ECM assembly and four out of 

FN1

chr2:216295485

Figure 12. Snapshot from IGV showing the de novo 
c.638C>T (p.Cys213Tyr) variant in FN1 identified in 
Patient #1.  
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the five affected residues partake in disulfide bonds. Disulfide bridges are formed between 

the free sulfhydryl groups (-SH) of two cysteine residues that are in close proximity and 

determine the structure of fibronectin. Since the majority of the FN1 mutations affect 

disulfide bridges, it could be argued that these changes do not only affect the overall shape 

and stability of the protein but they might also impair the ability of fibronectin to bind other 

proteins. Previous studies have shown that the mutated fibronectin is preferentially 

retained within the ER instead of being secreted [Lee et al., 2017; Cadoff et al., 2018]. 

Although functional validations were not performed, the disease mechanism is likely to be 

the same in our patients.  

The most common features among the patients were corner fractures and short stature. 

Scoliosis was detected in three out of four patients. For the first time, bilateral femoral 

fractures and osteopenia were described in a patient with SMD-CF (Patient #1). 

Furthermore, some of the skeletal changes at the proximal metaphyses in the same 

patient resolved over time, similar to the case described by Cadoff et al [Cadoff et al., 

2018].  

Our study not only expands the still limited mutation spectrum of SMD-CF but also 

highlights the phenotypic variability of this disease. 

4.3.2 Studies in SEMD 
In paper V we investigated the genetic and molecular mechanism underlying a potentially 

novel form of SEMD in a Finnish trio, in which the index patient, a 4.5-year old boy with 

severe skeletal dysplasia and growth failure since birth (Patient #1), was the only affected 

subject. WGS analysis identified two candidate variants: a rare heterozygous missense 

variant in the UBC gene (reference sequence: NM_021009.6), c.2045G>A, (p.Arg682Lys) 

and 2) a novel heterozygous missense variant in the RPL13 gene (reference sequence 

NM_000977.3), c.533C>A (p.Ala178Asp). UBC encodes ubiquitin C while RPL13 encodes 

the ribosomal protein L13. Since the UBC change was predicted to be likely benign 

according to both SIFT and PolyPhen-2, the RPL13 variant was regarded to be the most 

likely cause of the patient’s skeletal disease. 

In order to increase the power of our study and to confirm the pathogenic role of RPL13 

variants in this specific form of SEMD, we recruited two unrelated index patients (Patients 

#2-3) featuring the same skeletal phenotype as the Finnish patient. These children were 

born to unrelated Korean families. Sanger sequencing of RPL13 in the Korean families led 

to the identification of two likely damaging mutations: Patient #2 inherited the same 

c.533C>A (p.Ala178Asp) change detected in Patient #1 from her affected mother; Patient 

#3 harbored instead a de novo missense mutation c.553G>C (p.Ala185Pro). Both 
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mutations were absent from the gnomAD database but two changes affecting the same 

codons, p.Ala178Val and p.Ala185Val, were previously reported in one and five 

individuals, respectively. Both alanine and valine are hydrophobic amino acids.  

RPL13 is a protein of the large 60S subunit of the ribosome but its specific molecular 

function is not yet known. Since the two mutations identified in our study clustered only a 

few amino acids apart each other, this region in RPL13 might be essential for the protein to 

function and/or to correctly assemble into the ribosome.   

All three index patients feature severe growth retardation and abnormal metaphyseal and 

epiphyseal changes, mainly affecting the growth plate, and delayed ossification of the 

SOCs. Other family members in Family #2 carry the same mutation and feature 

impairments at the same skeletal sites. However, the skeletal changes in these relatives 

were milder than in the index patient. Interestingly, the index patient’s aunt, who carries the 

same mutation, does not exhibit the skeletal disease. Apparently, both non-penetrance 

and variable expressivity of the disease seem to be present in this family. It could be 

speculated that protective modifiers, which are alleles and/or variants in other genes, might 

prevent the skeletal disease to manifest, or to be notably milder in some mutation carriers. 

The effect of RPL13 mutations can also be possibly compensated by increased expression 

of the wild-type allele (allelic compensation). Furthermore, lifestyle as well as 

environmental factors might additionally be involved in these mechanisms.  

Mutations in other ribosomal proteins (RPs), ribosomal RNA or other components playing a 

role in ribosomes have been identified in congenital diseases, such as Diamond-Blackfan 

anemia [Draptchinskaia et al., 1999] and Shwachman-Diamond syndrome [Boocock et al., 

2003]. All diseases that are known or suspected to be caused by ribosome dysfunction are 

collectively called ribosomopathies. Even if ribosomes are organelles present in all types of 

cells, most of the time, ribosomopathies are tissue-specific diseases, predominantly 

affecting the bone marrow-derived cell lineages and the skeletal tissues [Mills and Green, 

2017]. Our patients feature severe skeletal impairments but unlike other patients with RP 

mutations, they have not developed hematological or immunological abnormalities thus far. 

Moreover, they do not feature any remarkable extra-skeletal impairments. It could 

therefore be assumed that the predominantly affected cell type is the growth plate 

chondrocyte. Although intact ribosome function is essential for all cells, it could be 

hypothesized that chondrocytes are vulnerable to changes in global mRNA translation 

rates as chondrocytes produce a large amount of ECM and for this reason they are likely 

to require a large concentration of ribosomes. Furthermore, it is also possible that the 

production and/or function of a certain protein playing a pivotal role in the growth plate is 

specifically affected by the identified RPL13 mutations. In addition, ribosomopathies 
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manifest a broad variability in clinical manifestations even between subjects with the same 

RP mutation, as it was noticed in Patient’s #2 family [Narla and Ebert, 2010]. 

Different models have been proposed to explain ribosomal dysfunction, including ribosome 

stress due to p53 activation, reduced global or specific mRNA translational efficiency and 

defects in ribosome assembly, but the specific mechanisms underlying ribosome 

dysfunction remain still a matter of debate [Xue and Barna, 2012; Mills and Green, 2017]. 

In order to validate our genetic findings, we performed functional studies both in vitro and 

in vivo. Our in vitro studies showed that there is no significant difference in RPL13 

expression in the fibroblasts of patients (N= 4) and healthy controls (N= 4) suggesting that 

the protein is not degraded. Moreover, no significant difference in RPL13 localization in 

fibroblasts of patients (N= 3) as compared to fibroblasts of sex-matched healthy controls 

(N= 3). RPL13 is primarily distributed in the perinuclear region, corresponding to the ER 

(Fig. 13).  

 

 

Figure 13. ICC of dermal fibroblasts from one patient and a healthy control showing staining for 
RPL13 (column 1), RPL7 (column 2), co-staining for RPL13 and RPL7 (column 3) and merged with 
structural dyes Hoechst and Phalloidin (column 4). Scale bars= 10 μm; patient= Patient #2, age 6 
years; control 2= female, age 30 years. 

Since all the identified mutations are missense, they are unlikely to lead to a reduced 

amount of protein expression due to proteasomal degradation and these results are 

therefore in line with what could be expected. In contrast, the mutations could impair the 

function of RPL13. In order to test the hypothesis that RPL13 mutations affect the binding 

of the protein to the large subunit of the ribosome, we evaluated the colocalization of 

RPL13 with other two proteins of the 60S subunit, RPL7 and RPL28, in the cells of the 
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patients and controls. Surprisingly, we observed a significant increase in RPL13-RPL7 

colocalization in the fibroblasts of patients compared to the fibroblasts of controls (Fig. 13). 

To evaluate the effects of a RPL13 mutations in vivo, a CRISPR/Cas9 mediated knock-out 

of the orthologue gene was generated in zebrafish, in order to target the region just 

downstream of the two mutations identified in our patients. Our preliminary results show 

that around 25% of larvae in F1 generation, derived from the mating of two heterozygous 

larvae harboring the same frameshift mutation c.571_577delCTTTTCG (p.Lys191Alafs*32) 

that is predicted to cause an elongation of the protein C terminal end of the protein, feature 

an abnormal phenotype. Although these larvae have yet to be genotyped, they are likely to 

correspond to the knocked out larvae. These abnormal larvae feature between 2 and 5 

days post-fertilization (dpf) reduced body size, craniofacial defects and decreased 

pigmentation in the body. Whie pigmentation of the eyes is rescued at 5 dpf, the body still 

remains pale. Combined alizarin red and alcian blue staining show delayed cartilage 

formation and ossification in the head of the knockouts compared to wild-type fish at 5 dpf 

(Fig. 14). Concerning the reduced pigmentation, a previous study showed that RPL13 

plays a role in melanocytes [Kardos et al., 2014]. Specifically, RPL13 silencing in 

melanoma cells inhibits cell viability [Kardos et al., 2014]. Rpl13 impairment could then 

explain the partial loss of pigmentation in our fish model. 

 

Figure 14. Head of a wild-type zebrafish larva (left) and an abnormal larva (right) at 5 dpf. Alcian 
blue staining as well as alizarin red staining are less intense in the abnormal fish, suggesting 
delayed cartilage formation and reduced mineralization. Craniofacial defects are also evident and 
the angle between the two ceratohyals (dashed lines) is wider than in the wild-type larva. 

Although the functional studies exploring the specific molecular mechanisms leading to 

disease are still ongoing, our study is the first to report RPL13 mutations to be associated 

with a novel subtype of SEMD.  
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4.4 STUDY LIMITATIONS 
One limitation in this thesis concerns the small sample size of Groups 1-2 in paper I. A 

potential association between CRTAP variants and skeletal fragility might be missed due 

to the limited number of studied patients.  Moreover, the disease in patients from Group 2, 

who are only mildly affected, might be a polygenic trait rather than a monogenic condition. 

In this way, a GWAS could be a more suitable approach to investigate genetic associations 

between SNPs and risk of fractures but would naturally require a significantly larger cohort 

of similarly affected subjects. Although most of the patients from Group 1-2 have also been 

investigated using array-CGH in paper II, small-scale mutations are overall more frequent 

than CNVs in patients with rare skeletal diseases. In order to increase the diagnostic rate, 

other types of mutations could be sought in these patients using different methods, 

preferentially MPS. Apart from the CNVs identified in the known OI or osteoporosis genes, 

the rare CNVs that were identified in our study have not been functionally validated. For 

this reason, the significance of most of these findings still remains unclear. 

Concerning paper III, we identified novel genetic mutations in certain genes that are 

already known to play a role in skeletal diseases. Even if they can be classified as 

pathogenic according to the ACMG guidelines, functional studies might provide additional 

insights to the molecular mechanism underlying these diseases.  

In paper IV a mutation in FN1 was discovered in patient with SMD and “corner fractures” 

before even FN1 was known as the causative gene for the disease. Despite the fact that 

some functional studies to demonstrate the pathogenicity of FN1 mutations have been 

performed, experimental evidence showing how the different mutations contribute to 

disease in relevant cell types as well as in vivo is still lacking. 

Functional studies in paper V are still ongoing. One of the major limitations in our study, as 

is usually the case in human bone diseases, is the lack of investigations on a human tissue 

that is predominantly affected. Although it is not possible to collect bone or cartilage / 

growth plate biopsies from the patients, it would be important to investigate the role of the 

two identified RPL13 mutations in a human cell line/tissue other than the dermal 

fibroblasts. 

 

4.5 ETHICAL CONSIDERATIONS 
Performing research on patients with rare skeletal diseases offers the possibility to give a 

diagnosis to the families, to better understand the underlying pathogenesis and eventually 

develop efficient therapies.  
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Once the genetic cause of the disease is identified the parents can be informed about the 

risk of having another affected child. Estimating the recurrence risk for a genetic disease 

influences the clinical management of the condition as well as the reproductive choices of 

the parents of the affected child. Several pathogenic mutations identified in papers III-V 

are de novo variants and thus the recurrence risk given to the parents is significantly lower 

than for example when considering an autosomal recessive inheritance pattern. Although 

the recurrence risk for de novo mutations is in general low, the probability of having a 

second child with a new mutation can considerably increase depending on how the 

mutation has occurred. Most of de novo mutations have a paternal origin and the risk of 

new variants increase with paternal age. If a de novo mutation is transmitted by the mother 

or a young father the recurrence risk for autosomal dominant diseases is shown to be 

higher than the empirical risk of the disease [Campbell et al., 2014]. However, the parental 

origin of the de novo mutations identified in this thesis was not determined and for this 

reason an empirical risk might be given to the parents during genetic counseling.  

Moreover, genetic investigations cannot always be carried out without any harm or 

potential risks to the studied subjects. For instance, in order to carefully evaluate the 

skeletal phenotype, DXA measurements were carried out in most of the patients included 

in this thesis. This investigation involves a very small dose of radiation. However, in most 

cases these evaluations were performed on clinical grounds and not solely for study 

purposes. Further, in addition to blood samples, small skin biopsies were collected from 

the families included in paper V. This is a minor procedure but more invasive than 

obtaining a blood sample and usually performed only for study purposes.     

Concerning the risk of incidental findings, we did not identify any. However, paper II 

revealed some VUSs. Despite the fact that they might be benign, we can not exclude their 

contribution to the patients’ phenotype.  

Despite these disadvantages, several important scientific discoveries were made. From 

the clinical perspective, identifying the specific genetic cause of the child’s condition 

enables a better management of the disease and offers the possibility of prenatal or even 

pre-implantation genetic diagnosis, which parents of a severely affected child may wish in 

future pregnancies. 
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5 CONCLUSIONS 
The studies in this thesis have increased our knowledge of the phenotypic and genetic 

spectrum of some rare skeletal diseases. Novel genetic variants have been identified in 

patients with skeletal fragility, HBM and SMD. Moreover, a novel genetic form of SEMD 

caused by a defective ribosomal protein has been identified and is currently under further 

investigations. The findings identified in each paper are highlighted as follows: 

Paper I 

• Rare variants in CRTAP seem to be an unlikely cause of low BMD and/or fractures 

in young patients who lack other OI features  

Paper II 

• A novel deletion in COL1A2 and a novel tandem duplication within PLS3 were 

detected in two index patients with significant osteoporosis and their affected family 

members. These findings imply that screening of large scale mutations in genes 

related to skeletal fragility might be indicated if sequencing of the candidate genes 

does not reveal the genetic cause 

• Five CNVs in coding regions of genes not previously associated with skeletal 

fragility (ETV1-DGKB, AGBL2, ATM, RPS6KL1-PGF and SCN4A) were identified in 

patients with susceptibility to fractures. These changes were determined as VUSs 

and their significance remains uncertain  

• Our custom designed array-CGH might be a valid method to pinpoint novel 

candidate loci in early-onset skeletal fragility 

Paper III 

• Two novel mutations in LRP5 and AMER1 were identified as the underlying cause 

of HBM in two patients  

• Although both mutations lead to HBM due to increased activation of the Wnt-β-

catenin pathway the patients’ clinical features appear different 

Paper IV 

• Five novel missense mutations in the fibronectin gene were detected in five patients 

with a rare subtype of SMD characterized by corner fractures  

• All five mutations cluster in type-I domains and four out of five mutations affect 

disulfide bonds, suggesting that these regions might play an essential role in the 

pathogenesis of the disease 
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• Novel clinical features not previously associated with SMD-CF, including bilateral 

femoral fractures and osteopenia, were identified in one patient  

 

Paper V 

• Two novel mutations in the ribosomal protein L13 gene (RPL13) were identified to 

be associated with a novel subtype of SEMD in three unrelated families 

• WB analysis and ICC experiments in dermal fibroblasts did not show a significant 

difference in RPL13 expression and localization in cells from patients compared to 

cells from healthy controls 

• A significant increase in colocalization of RPL7 with RPL13 was detected in patient 

cells 

• Our CRISPR-Cas9 knock-out zebrafish model showed that rpl13 disruption is likely 

to cause an abnormal skeletal phenotype, characterized by reduced body length 

and delayed ossification 

In addition, this thesis shows how the field of clinical genetics has moved from genetics to 

genomics together with the revolution in the sequencing and molecular technologies. From 

the screening of a single candidate gene by Sanger sequencing (papers I and III) our 

approach shifted to a genome-wide analysis using array-CGH (paper II) and MPS 

technologies (papers IV-V). MPS outperforms previous sequencing methods by offering 

the possibility of detecting small scale variants as well as CNVs in either a list of candidate 

genes (gene panels, paper III) or in the whole exome (paper IV) or genome (papers IV-

V). Moreover, WGS also enables the detection of other structural changes, such as 

chromosomal translocations and inversions. Despite the fact that the cost of performing 

MPS has considerably decreased in the last years, it would still be too expensive to use 

this technology as a routine approach to investigate all patients with rare skeletal diseases. 

Another aspect that is evident in this thesis is that research on rare skeletal diseases 

would not be possible without international collaborations. As it has been shown in papers 

IV-V, patients with the same extremely rare phenotype might be spread in different places 

around the world and only through an expert and collaborative research network it is 

possible to group them together and pinpoint the genetic defect underlying their condition. 

In fact, analyzing more than one family with the rare disease increases the likelihood of 

identifying the genetic cause of the disease and understanding its pathophysiology. No 

genetic studies on rare bone diseases could be successfully carried out without reliable 
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phenotyping and therefore collaborative networks between clinicians and basic scientists 

are essential. 

In summary, this PhD thesis has led to the identification of novel mutations in genes 

already known to underlie rare bone diseases and identified a novel form of skeletal 

dysplasia. These outcomes expand our understanding of the genetic and molecular 

mechanisms underlying bone fragility and skeletal dysplasia. The delineated novel subtype 

of SEMD expands the genic scenario underlying skeletal dysplasias. Despite the fact that 

functional studies to understand the specific mechanisms connecting RPL13 mutations to 

SEMD are still ongoing, this discovery is likely to give promising results.  

Last but not least our findings will be of great importance during genetic counseling and for 

the management of the disease. Moreover, our research provides means to further 

investigations on rare skeletal diseases that might eventually lead to the development of 

targeted therapies for the patients affected by these conditions.
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6 FUTURE PERSPECTIVES 
Future studies will need to be performed to increase the diagnostic yield in patients with 

rare skeletal diseases and to better elucidate the pathomolecular mechanisms underlying 

these conditions. 

First, we would like to use our custom made array-CGH in larger cohorts to identify novel 

CNVs associated to skeletal fragility and to proof the efficiency of this method. Moreover, 

the VUSs detected in our patients with skeletal fragility must be validated. 

Concerning our findings on FN1 mutations in SMD-CF, functional studies are needed to 

elucidate the role of fibronectin in bone. Since most of the identified mutations affect 

disulfide bonds, we will continue studies together with the collaborators to understand how 

the mutations lead to this specific phenotype.  

Moreover, the investigation of the RPL13 involvement in SEMD will be carried on for better 

understanding the mechanisms leading to ribosome dysfunction and possibly diagnose the 

disease in other patients with rare RPL13 mutations. The primary goal is to genotype the 

zebrafish larvae in order to confirm that the ones showing an abnormal phenotype are 

those carrying the rpl13 frameshift mutation in homozygosity. In addition, the altered co-

localization of RPL7 with RPL13 requires further investigations. We will continue exploring 

the pathomolecular mechanisms leading to disease by checking the translational efficiency 

by sucrose gradient and polysome profiling and by measuring the extent of new protein 

synthesis in fibroblasts of patients and controls, respectively. Moreover, cell cycle analysis 

will be carried out to understand if RPL13 mutations cause cell cycle arrest due to p53 

activation. 

In addition, several interesting skeletal phenotypes still remain unexplained in our research 

cohorts. Using the existing clinical and research networks we have planned to recruit 

additional families and continue our search for novel genetic forms of skeletal dysplasia 

using MPS. The current success rate of WES/WGS in rare Mendelian diseases is 

approximately 25-50% [Cummings et al., 2017]. In order to improve the diagnostic yield we 

are aiming to increase our knowledge in interpreting the functional and clinical impact of 

variants in non-coding regions and variants of difficult interpretations, including e.g. 

synonymous variants causing deleterious effects on the splicing mechanisms, possibly by 

combining RNA-sequencing with WGS. It has already been shown that non-coding 

variants might be responsible for some monogenic skeletal diseases. As two examples, 

biallelic variants in a long non-coding RNA, named RMRP, have been found to underlie 

cartilage-hair hypoplasia whereas a neomorphic mutation in the microRNA-140 has 
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recently been associated to novel rare subtype of skeletal dysplasia [Ridanpaa et al., 

2001; Grigelioniene et al., 2019].  

Finally, due to the genetic and phenotypic heterogeneity of rare skeletal diseases, 

personalized treatments would be needed. The ultimate goal of our research on rare 

skeletal disease is to apply the gained knowledge to develop targeted strategies to make 

the future of our patients brighter. 
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