
Comparison of in-vitro stereoselective metabolism of bupropion in human, 

monkey, rat and mouse liver microsomes 

Chandrali Bhattacharya, Danielle Kirby, Michael Van Stipdonk, Robert E. Stratford 

1. Introduction

Bupropion has been marketed as Wellbutrin® and Zyban® for the management of depression 

and as a smoking cessation aid, respectively, since the early 1990s [1]. Its recent approval by 

the U.S. FDA in combination with naltrexone, Contrave®, for obesity, and a recent positive 

outcome in clinical trials for attention-deficit/hyperactivity disorder (ADHD), further 

exemplify the multifaceted therapeutic potential of this drug [2-6]. However, despite being a 

biopharmaceutical classification system (BCS) class I drug, failure of generic bupropion to 

meet U.S. FDA bioequivalence standards has drawn attention to the problem of interpatient 

variability in its clinical response [7-15]. This is of concern due to its high propensity to 

induce seizures and other side effects [7, 10, 11, 16-19]. With over 40 million 

patients worldwide prescribed bupropion [1], understanding causes of inter-subject variability 

is critical.  Variability regarding bupropion metabolism is considered chiefly responsible for 

variability in its response [10, 12-14, 20-22]. 

The disposition and pharmacology of bupropion are complex, since both bupropion 

and its metabolites have diverse pharmacokinetic and pharmacodynamic profiles [20-30]. 

Though bupropion is clinically administered as a racemate, plasma exposure of R-bupropion 

and its metabolites are reported to be higher than exposure to the S enantiomer and its 

metabolites [20-22].  Both enantiomers are reported to undergo stereoselective phase I and II 

metabolism mediated by multiple enzymes [20, 23, 28]. In-vitro and in-vivo studies indicate 

stereoselective phase I and II metabolic pathways contribute to observed differences in 

plasma profiles of bupropion enantiomers and their metabolites [20-23]. Furthermore, several ___________________________________________________________________
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of the isoforms of these metabolizing enzymes and pharmacological targets are polymorphic 

[31, 32], making this also a potential factor contributing to inter-subject variability.  

Despite lower plasma exposure of S,S-hydroxybupropion than R,R-hydroxybupropion 

and bupropion enantiomers, in-vitro [25, 26] and rodent behavioural studies [25, 26, 33, 34] 

indicate this metabolite plays an important role in the efficacy of the marketed product, both 

as an antidepressant and smoking cessation aid. Yet, attempts to bring S,S-hydroxybupropion 

or its structural analogs to the clinic have met with limited success [35, 36], implying that 

other metabolites may also contribute to bupropion`s overall therapeutic activity. This 

argument is strengthened by findings from studies that attribute pharmacological activity at 

several targets (dopamine and norepinephrine transporter inhibition, and agonist and/or 

antagonist effects at multiple central nicotinic receptors) to reductive metabolites [33, 37-39]. 

Previous studies of other centrally acting drugs have suggested that, despite lower 

brain cytochrome P450 (CYPs) expression than liver, local metabolism by CYPs may also 

influence exposure in brain, and that this might contribute to inter-individual variability in 

response [40-46].  The possibility of stereoselective brain disposition as a potential source of 

inter-subject variability in bupropion response is supported by rodent studies demonstrating 

nicotine-mediated induction of brain CYP2B [47].  Interestingly, metabolite-to-bupropion 

exposure ratios in plasma were different relative to those observed in rat brain [24] and 

human cerebrospinal fluid (CSF) [8], suggesting that plasma may not be an adequate 

indicator of brain exposure.  One approach to understanding bupropion stereoselective 

disposition in the brain as a potential source of its inter-subject response variability would be 

to conduct plasma and brain  pharmacokinetic studies in surrogate non-clinical species. In-

vitro and in-vivo studies conducted in mice, rats and monkeys have not comprehensively 

evaluated relative systemic exposure and, hence, potential pharmacologic contributions of 

individual R- or S-bupropion enantiomers and their metabolites [24, 25, 29, 48-51].  
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Thus, the aim of the present work was to compare the stereoselective phase I 

metabolism of bupropion in liver microsomes in three animal species with that in humans.  

Ideally, this would enable selection of the animal species most resembling bupropion 

stereoselective systemic metabolism in humans, and subsequently to be used for in-vivo 

experiments to measure bupropion enantiomer and corresponding metabolite diasteriomer 

exposure in brain interstitial fluid using microdialysis.  This comprehensive exposure profile 

in brain interstitial fluid that bathes the multiple targets postulated to contribute to bupropion 

efficacy would ultimately support translational physiologic-based pharmacokinetic modeling 

and simulation to predict their contribution to target engagement in human brain, much like 

what has been done with atomoxetine and duloxetine [52, 53].  It is hoped these efforts will 

help predict the full gamut of bupropion and metabolite disposition in CNS, and so further 

our understanding of factors contributing to variability in bupropion’s effectiveness in 

depression, weight loss and as adjunctive therapy in smoking cessation programs.   

2. Materials and methods 

2.1. Materials 

R-bupropion, S-bupropion, R,R-hydroxybupropion, S,S-hydroxybupropion, racemic (rac)-

threohydrobupropion, rac-erythrohydrobupropion and acetaminophen were purchased from 

Toronto Research Chemicals (Toronto, Ontario, Canada). Nicotinamide adenine dinucleotide 

phosphate (NADPH) was purchased from Sigma Aldrich Chemical Co. (St. Louis, MO, 

U.S.A). Magnesium chloride heptahydrate, dibasic potassium phosphate anhydrous, 

monobasic potassium phosphate, HPLC grade methanol, and HPLC grade acetonitrile were 

purchased from Fisher Scientific (Fair Lawn, NJ, U.S.A). Pooled human liver microsomes, 

rat (adult male Sprague Dawley) liver microsomes and mouse (female CD-1) liver 
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microsomes were purchased from Corning (Woburn, MA, U.S.A).  Monkey (adult male 

marmoset) liver microsomes were purchased from BD Gentest (Woburn, MA, U.S.A). 

2.2. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) method 

development and validation 

2.2.1. Standard curve and quality control samples  

Individual standard stock solutions (1 mg/mL) each of R-bupropion, S-bupropion, S,S-

hydroxybupropion, R,R-hydroxybupropion, rac-threohydrobupropion, and rac-

erythrohydrobupropion were prepared in 2 mL polypropylene tubes by dissolving the 

compounds in methanol which, as reported by Masters et al [54], have been demonstrated to 

be stable for 48 hours.  All solutions were stored at -20 °C.  On the day of an analysis, 

standards were prepared from the standard stock solutions.  Standard curves for R-bupropion, 

R,R-hydroxybupropion, rac-threohydrobupropion, and rac-erythrohydrobupropion had the 

following concentrations:  0.025, 0.05, 0.20, 1.0, 5.0, 20, 100, and 500 ng/mL. S-bupropion, 

S,S-hydroxybupropion, rac-threohydrobupropion, and rac-erythrohydrobupropion had the 

following concentrations:  0.050, 0.25, 0.50, 1.0, 2.5, 5.0, and 10 ng/mL. The smaller 

concentration range for S-bupropion and its metabolites was in response to observations from 

R-bupropion incubations in which metabolite concentrations did not exceed 10 ng/mL.  

Quality control (QC) samples were run in triplicate along with standards to generate 

statistical data for assay accuracy and precision.  QC samples had the following 

concentrations for R-bupropion, R,R-hydroxybupropion, rac-threohydrobupropion, and rac -

erythrohydrobupropion:  1 ng/mL (low QC), 100 ng/mL (medium QC), and 500 ng/mL (high 

QC).  For S-bupropion and S,S-hydroxybupropion, QC samples had the following 

concentrations:  0.10 ng/mL (low QC), 1.0 ng/mL (medium QC), and 10 ng/mL (high QC).  
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Samples were run in a matrix consisting of a 1:4 phosphate buffer (pH 7.4): acetonitrile 

mixture with the addition of 0.1% formic acid, containing 100 nM acetaminophen (APAP) as 

the internal standard.  In addition, standards and QC samples also contained 0.5 mg/mL of 

hepatic microsomes from the relevant species to be consistent with the incubated sample 

preparations.   

2.2.2. HPLC conditions 

Chromatography was performed using a Phenomenex KINTEX Luna® (150 x 4.6 mm) 3.0-

micron C18 column.  Achiral chromatography conditions were used; this was possible 

because separate incubations were conducted with the individual bupropion enantiomers.  

Injection volume was held constant at 3 µL, and the mobile phase was delivered as a gradient 

with a constant flow rate of 0.5 mL/min.  A binary mobile phase was employed, which 

consisted of A) aqueous solution of 20 mM ammonium acetate plus 0.1% ammonium 

hydroxide (pH 5.7) and B) methanol.  The mobile phase was delivered as a gradient that 

began at 55% A and decreased to 45% of mobile phase A over 8 minutes.  From 8-12 

minutes, mobile phase A was decreased to 35%.  From 12 to 14 minutes, mobile phase A was 

decreased from 35% to 25%.  Next, mobile phase A was decreased from 25% to 10% over 2 

minutes, and was held for 2 minutes.  From 18 minutes to 18.1 minutes mobile phase A was 

increased from 10% to 55% and held for 4.4 minutes to re-equilibrate the column for the next 

run. 

2.2.3.Triple-quadrupole mass spectrometer (QqQ/MS) conditions 

An Agilent 6460 with Agilent Jet Stream (AJS) Thermal Focusing Technology was used for 

the identification of analytes following LC separation.  A multiple reaction monitoring 

(MRM) scanning method was used, because of its sensitivity.  The optimal parameters for the 



6 
 

AJS-ESI source were the following: gas temperature (320 °C); nebulizer pressure (45 psi); 

sheath gas temperature (400 °C); sheath gas flow (11 L/min); capillary voltage (4000 V); and 

nozzle voltage (500 V).  Bupropion and its metabolites were detected by positive ion 

electrospray ionization (ESI) using the mass transitions summarized in Table 1S (Online 

Resource 1).  As shown in the table, mass transitions are identical for S-bupropion and its 

derived metabolites versus the respective stereoisomers of R-bupropion parent and its derived 

metabolites.   

2.2.4. Assay performance 

Calibration curves were analyzed by least squares regression analysis using Agilent 

MassHunter Workstation Quantitative Software™. The model used for each calibration curve 

was linear with a weighting of 1/y for optimization for each analyte.  Accuracy and precision 

for each analyte were determined based on the QC concentrations. Intra-assay precision and 

accuracy were calculated from three samples per QC concentration. Samples from each 

species were run on a single day, thus obviating the need for evaluation of inter-assay 

accuracy and precision. Accuracy is expressed as the percentage of the nominal concentration 

and precision is represented as percent coefficient of variation (%CV).  

2.3. Microsomal incubations 

Microsomal incubation mixtures consisted of 100 mM potassium phosphate buffer pH 7.4, 5 

mM magnesium chloride (MgCl2), 0.5 mg/mL hepatic microsomes of a given species 

(human, monkey, rat, mouse), and substrate (R or S bupropion).  Based on prior time-

dependent experiments of each species, 7-minutes was chosen as the incubation time.  At this 

time and microsomal protein concentration, there was no observable substrate depletion; 

furthermore, formation of metabolites was linear with respect to time.     Formation rate of 



7 
 

the metabolite across the four species was determined at six different substrate concentrations 

ranging from 0.4 to 10 µM.  This range is identical to that used by Sager et al [28] using 

human liver S9 fractions, and which encompasses clinically relevant bupropion 

concentrations [21].  It also encompasses the range of racemic bupropion and S,S-

hydroxybupropion concentrations observed in rats following a 10 mg/kg dose of racemic 

bupropion or 2 mg/kg S,S-hydroxybupropion, which were maximal at 1 µM and 3 µM, 

respectively [48].  Because similar systemic concentrations would be targeted for any of the 

three non-clinical species potentially used to evaluate in vivo plasma and brain 

pharmacokinetics of bupropion enantiomers and corresponding metabolites, the same 

concentration range used in the human incubations was also used for the non-clinical species.   

Reactions were initiated by adding NADPH (1 mM) following a 5-minute preincubation at 

37˚C in a water-bath. Total incubation volume after addition of NADPH was 100 µL. All 

concentrations stated above represent the final concentration in the 100 µL incubation 

volume. The reaction was stopped with 400 µL of ice-cold acetonitrile containing 0.1% (v/v) 

formic acid and acetaminophen (final internal standard concentration in 500 µL was 0.1 µM).  

After stopping the reaction, all samples were centrifuged for 15 minutes at 3000g, 4˚C and 

the supernatant was transferred to microcentrifuge tubes and stored at -80˚C until analysis. 

Incubations were performed in triplicate and controls (no NADPH) were run in parallel.  

Microsomal protein binding was assumed to be negligible in all four species.  In support of 

this assumption, Sager et al [28] demonstrated neglible binding of both bupropion 

enantiomers in human S9 fraction at 5 mg/mL protein.  Data was analyzed using JMP®, 

Version 13.2.0. SAS Institute Inc., Cary, NC and tested for statistical differences by one-way 

ANOVA with post-hoc Tukey`s test. 

Since S- or R- 4`hydroxybupropion are reported as minor metabolites in humans 

(contributing  <10% to overall bupropion clearance) [28], and with no reported 
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pharmacological activity or commercially available standards, these metabolites were not 

evaluated.  As shown in Fig. 1, a specific threohydrobupropion (S,S vs. R,R) or 

erythohydrobupropion (R,S vs S,R) metabolite is formed when incubations are conducted 

with a specific enantiomer.  This obviated the need to correct standard concentrations of the 

racemic mixture of these two metabolite types (threo and erythro) for the individual 

diasteriomers when calculating unknown concentrations of these metabolites from the 

incubations.   

Formation rate of a metabolite was plotted against substrate concentration and fit via 

linear or nonlinear regression models in JMP®, Version 13.2.0. SAS Institute Inc., Cary, NC 

and GraphPad Prism version 6.00 for Windows (GraphPad Software, CA, USA). Final model 

selection was guided by precision of parameter estimates, objective function and examination 

of goodness-of-fit plots. When metabolite formation kinetics followed linear kinetics, 

intrinsic clearance (CLint) was calculated from the slope of formation rate (v) versus substrate 

concentration (S) plots. When non-linear kinetics were observed, CLint was calculated as the 

ratio of Vmax and Km based on the Michaelis–Menten equation (1) that reduces to 

concentration-independent kinetics when [S] << Km. 

v = Vmax ∙ [S]
Km+[S]               (1) 

Intrinsic clearance (CLint) was scaled to intrinsic hepatic clearance (CLint,H) using the 

equation below (2) for the four species.  Values for the two ratios that are specific to each 

species are summarized in the respective table legends.   

CLint,H = CLint ∙
mg microsomes
gram (g) of liver

∙ liver weight (g)
body weight (kg)

              (2) 
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3. Results 

3.1. LC-MS/MS method development and validation 

Chromatographic separation of bupropion (R or S), hydroxybupropion (S,S or R,R), rac-

erythrohydrobupropion and rac-threohydrobupropion was successfully achieved using a 

Phenomenex KINTEX Luna® (150 x 4.6 mm) 3.0-micron C18 column.  Fig. 1S (Online 

Resource 3) shows a chromatogram for S-bupropion and its derived metabolites.  As achiral 

conditions were used, the  developed method was employed for both R- and S- bupropion 

and their corresponding metabolites, and was successfully reproducible for the four animal 

species. Bupropion enantiomer inversion was minimized by using a short incubation time of 

seven minutes, which is consistent with a reported half-life in plasma of 1.3 hours [28].  

Assessment of method performance is summarized in Table 2S (Online Resource 2) 

Calibration curves generated were linear for all analytes where the common r2 values were ≥ 

0.99. Assay accuracy and precision were ≤ 20% for all QC samples.  

3.2. Microsomal incubation kinetics 

Tables 1 – 4 summarize the kinetics of R- and S-bupropion phase I metabolism in human, 

marmoset, rat and mouse liver microsomes, respectively.  Formation clearance (CLint) of each 

metabolite was estimated from the relationship between formation rate relative to the range of 

substrate concentrations evaluated (0.4-10 µM).  These relationships are summarized in Figs. 

2 – 5 for each species, respectively.  In marmoset, a linear relationship was observed for all 

six metabolites; whereas, in the mouse, saturable kinetics were observed for all six 

metabolites.  Human and rat formation kinetics were mixed linear and non-linear.  Table 5 

summarizes Vmax and Km estimates in cases where non-linear kinetics were observed.  In such 

cases, CLint represents the ratio Vmax/Km, which would apply to conditions in which substrate 
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concentration << Km according to Equation 1.  

3.2.1. Characterization of bupropion metabolism in human liver microsomes (HLMs) 

With respect to the two bupropion isomers, total CLint of S-bupropion was 5.6-fold higher 

than R-bupropion (Table 1). The various fractions of this total contributed by the measured 

metabolites are also summarized in Table 1.  The various fractions of measured metabolites 

contributing to the total CLint of each of the bupropion enantiomers are also summarized in 

Table 1. R,R-hydroxybupropion was found to be the major metabolite of R-bupropion, while 

S,S-threohydrobupropion was the major metabolite of S-bupropion.  All three metabolites 

derived from S-bupropion had higher CLint of formation compared to their corresponding 

diastereoisomers derived from R-bupropion.  Fig.  6 summarizes the fractional clearance (fm, 

racemic) that each metabolite contributes to the clearance of racemic bupropion.  In human liver 

microsomes, S,S-threohydrobupropion was found to be the major metabolite, contributing 

37% to total racemic bupropion clearance.   

3.2.2. Characterization of bupropion metabolism in marmoset monkey liver 

microsomes (MMLMs) 

In MMLMs, total CLint of S-bupropion was 1.3-fold relative to R-bupropion (Table 2).   As 

with HLMs, R,R-hydroxybupropion was found to be the major metabolite of R-bupropion; 

however, unlike HLMs, in which S,S-threohydrobupropion was the major metabolite derived 

from S-bupropion, S,S-hydroxybupropion was the major metabolite in MMLMs.  Formation 

clearance (CLint) of S,S-hydroxybupropion and R,R-hydroxybupropion were similar in 

MMLMs.  CLint of the two-remaining metabolite diastereoisomer pairs was faster from S-

bupropion; namely, S,S-threohydrobupropion was nearly 2-fold higher than R,R-

threohydrobupropion; R,S-erythrohydrobupropion was 3-fold higher than S,R-
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erythrohydrobupropion.  For both enantiomers, the rank order for formation of the three 

metabolites was the same in this species.  Considering the overall contribution of each of the 

measured metabolites to total racemic bupropion clearance (Fig. 6), R,R-hydroxybupropion 

was the major metabolite, contributing 36% to overall bupropion clearance (0.71/2).  

Comparing to HLMs, the rank order of R-bupropion-derived metabolite formation kinetics 

(fm, enantiomer) was the same in MMLMs.  However, the rank order of S-bupropion-derived 

metabolite formation kinetics was different between the two species, with fm, enantiomer of S,S-

hydroxybupropion being 3-fold higher, S,S-threohydrobupropion 3-fold lower and R,S-

erythrohydrobupropion 3.5-fold higher in MMLMs relative to HLMs. 

3.2.3. Characterization of bupropion metabolism in rat liver microsomes (RLMs) 

In striking contrast to HLMs and MMLMs, total CLint of S-bupropion in RLMs was 7-fold 

lower than R-bupropion (Table 3), and the erythrohydrobupropion isomers were the 

dominant metabolites formed for both R- and S-bupropion.  While formation of R,R-

hydroxybupropion, R,R-threohydrobupropion and S,S-hydroxybupropion followed linear 

kinetics, formation of S,R-erythrohydrobupropion, R,S-erythrohydrobupropion and S,S-

threohydrobupropion followed Michaelis-Menten kinetics (Fig. 4).  Considering, the relative 

contribution of all the measured metabolites to racemic bupropion clearance, S,R-

erythrohydrobupropion was the chief metabolite, contributing 44% to overall bupropion 

clearance (Fig. 6).  In comparison to HLMs, fm, enantiomer of R,R-hydroxybupropion in RLMs 

was 5-fold lower; R,R-threohydrobupropion was 31-fold lower and that of S,R -

erythrohydrobupropion was 7-fold higher in RLMs. The fm, enantiomer of S,S-hydroxybupropion 

in RLMs was nearly the same as HLMs; S,S-threohydrobupropion was 2-fold lower and R,S-

erythrohydrobupropion was 7-fold higher in RLMs. 
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3.2.4. Characterization of bupropion metabolism in mouse liver microsomes (MLMs) 

In MLMs, total CLint of S-bupropion was nearly 2-fold lower than R-bupropion (Table 4).  

Like rats, and in contrast to humans, total R-bupropion CLint was faster than S-bupropion.  

R,R-hydoxybupropion was responsible for 95% of total R-bupropion clearance; likewise, 

S,S-hydroxybupropion was the main metabolite from S-bupropion phase I metabolism (fm, 

enantiomer = 95%).  Of all the measured metabolites, both S,S- and R,R-hydroxybupropion were 

found to contribute 48% each towards racemic bupropion clearance (Fig. 6).  Comparing the 

fraction that each metabolite contributes to CLint, H for an enantiomer (fm, enantiomer), it was 

observed that R,R-hydroxybupropion formation was 2-fold higher, R,R-threohydrobupropion 

was 8-fold lower and that of S,R -erythrohydrobupropion was 13-fold lower than HLMs. The 

fm, enantiomer of S,S-hydroxybupropion in MLMs was 5-fold higher; S,S-threohydrobupropion 

was 38-fold lower and R,S-erythrohydrobupropion was 2-fold lower than HLMs.   

As summarized in Fig. 6, comparing across the four species, the total 

hydroxybupropion proportion contributing to racemic bupropion clearance was highest in the 

mouse (96%), followed by monkey (62%), human (38%) and least in rat (17%).  

Threohydrobupropion was the most prevalent metabolite in human microsomes (53%), 

followed by monkey (23%), rat (17%) and least in mouse (3%).  The highest fraction of total 

erythrohydrobupropion was observed in the rat (66%), followed by monkey (14%), human 

(9%) and least in mouse liver microsomes (1.3%). 

4. Discussion 

Despite proven efficacy, bupropion therapy is associated with wide inter-subject variability in 

clinical response [11, 18, 21, 55].  Complex pharmacokinetics and pharmacology of this 

drug, which includes formation of several active metabolites displaying variations in their 

own clearance to secondary metabolites, are the attributed causes [20-22, 25, 28, 30, 33, 50, 
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56].  In order to advance understanding of this variability and its sources, application of non-

clinical animal experiments designed to enable chiral resolution of bupropion enantiomers 

and phase I metabolite diastereoisomers in plasma and brain might be useful.  Preference in 

species selection would be based on similarity of metabolite formation kinetics relative to 

humans.  The objective of the study reported herein was to compare phase I metabolite 

formation kinetics in rodents and NHPs to those in human in order to justify species selection 

for stereospecific CNS disposition studies. This is the essential stepping stone towards 

building a translational pharmacokinetic-pharmacodynamic model, to further our 

understanding of variability and its sources, associated with bupropion.   

The 5.6-fold higher S-bupropion relative to R-bupropion total CLint in HLMs is close 

to the 5-fold difference observed in human liver S9 fractions [28].  This preferential loss of S-

bupropion observed in two in vitro studies agrees with clinical results [21] identifying S-

bupropion as the higher clearance enantiomer.  The presently reported relative CLint for R,R- 

and S,S-hydroxybupropion in HLMs (0.48 versus 0.93 µl/min/mg of microsomal protein, 

respectively) is in excellent agreement with the difference reported in human liver S9 fraction 

(0.47 versus 0.81 µl/min/mg of S9 protein, respectively) [28].  This agreement confirms that 

hydroxybupropion formation is primarily by microsomal enzymes [23, 28, 30, 57].  For both 

diasteriomers, CYP2B6 was shown to be responsible for 90% of their formation, with minor 

contributions from CYP2C19 and CYP3A4 [28].  The linear formation rate observed for 

these two metabolites over the concentration range evaluated is also consistent with the 

estimated CYP2B6 Km values being > 100 µM for R- and S-bupropion [28]. Disparity in 

CLint of R,R- and S,S-threohydrobupropion formation between HLMs (0.27 and 3.59 

µL/min/mg protein, respectively) and the S9 fraction (0.69 and 5.61 µL/min/mg protein, 

respectively) [28] is attributed to cytoplasmic aldo-keto reductase contribution in the S9 

fraction [30, 57].  The CLint of S,R and R,S-erythrohydrobupropion (0.11 and 0.29 µl/min/mg 
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of microsomal protein, respectively) observed in our study is in close agreement with 

reported values (0.11 and 0.25 µl/min/mg of S9 protein, respectively) in liver S9 [28].  As 

with hydroxybupropion, this similarity supports that microsomal 11β-HSD1 is primarily 

responsible for the production of erythrohydrobupropion diastereoisomers at clinically 

relevant bupropion concentrations[21]. It is also consistent with reports of minor contribution 

by cytosolic aldo-keto reductase in the formation of total erythrohydrobupropion [30, 57].  

Overall, the finding that racemic bupropion clearance in HLMs is mainly by carbonyl 

reduction (62% combined for threo- and erythro-hydrobupropion isomers, as summarized in 

Fig. 6) is consistent with published in-vitro and in-vivo results [13, 20, 21, 28, 30, 50, 57].  

Studies conducted in rats and mice are unclear regarding the contribution of phase I 

metabolites to observed pharmacologic effects [24-27, 29, 38, 39, 49, 50, 58].  In part, this is 

due to different metabolic profiles between rats and mice.  Our finding of higher 

hydroxybupropion formation in MLMs relative to RLMs is consistent with higher systemic 

exposure of this metabolite in-vivo in mice [24, 27, 49].  S,S-hydroxybupropion is an active 

metabolite, possessing potency comparable to bupropion at dopamine active transporter 

(DAT) and norepinephrine transporter (NET) and nicotinic receptors [25, 26, 33].  

Combined, these  pharmacokinetic and pharmacologic data are the basis for speculation for 

the superior translational efficacy of mice to humans [24-26, 29, 39, 49].  However, our 

findings summarized in Fig. 6 that threohydrobupropion diastereoisomers account for < 5% 

of racemic bupropion clearance in the MLMs versus 54% in HLMs, and that 

threohydrobupropion possesses exposure-related pharmacologic or toxic activity [29, 33, 39], 

limits the translational value of the mouse from the standpoint of safety.   

Based simply on the close genetic homology of NHPs to humans [59], it is reasonable 

to expect they would be a superior translational model to understand bupropion CNS 

disposition and ensuing central effects in humans.  However, in vitro metabolite kinetics, and 
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in vivo metabolite disposition in NHPs is limited [51, 60-62], and reports of stereoselective 

analysis are absent.  We found that the total percentage of hydroxybupropion, 

threohydrobupropion, erythrohydrobupropion in marmoset monkey liver microsomes (62%, 

23%,14%, respectively) is in good agreement with a previously published report 

(62%,28%,10%) in baboon hepatic microsomes [60].  Of note, the Wang et al [60] study 

identified the CYP2B subfamily was responsible for hydroxybupropion formation, which is 

the case in humans, and supports similarity of bupropion metabolism between NHPs and 

humans.  However, the Wang et al [60] study did not delineate the proportions of the 

diastereomer metabolites, which would be important to determine both systemically and 

centrally in order to more fully comprehend the complex CNS pharmacology of bupropion.  

Despite marked differences between bupropion metabolism in rodents and humans, in-vivo 

studies in rodents have identified an important contribution of phase I metabolites to 

bupropion effects [24, 26, 29, 33, 49].  Rodent studies also provide evidence that relative 

metabolite-to-bupropion exposure in brain is different than plasma [24].  Potential causes of 

the latter could be due to different permeability properties of metabolites relative to 

bupropion [48] and/or metabolism of bupropion in brain [63].  Overall, given the relative 

similarity of stereoselective bupropion phase I metabolism between MMLMs and HLMs we 

observed, in vivo systemic and brain disposition studies conducted in NHPs would be 

preferred over rodent studies to support development of translational physiologic-based  

pharmacokinetic models to improve our understanding of bupropion CNS pharmacology, 

including its potential to elicit seizures, in the context of its complex metabolic disposition. 

A limitation of our analysis is that we did not measure blood-to-plasma concentration 

ratios of the two enantiomers in the four species, nor did we measure unbound plasma 

fractions (fu) of these enantiomers across species.  These determinations would have enabled 

a determination of hepatic blood clearances of the two enantiomers in each species, which 
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would have provided a more comprehensive comparison.  However, Sager et al [28] who did 

estimate plasma binding and blood-plasma concentration ratios for the two enantiomers, 

indicated that differences in hepatic extraction alone were sufficient to explain bupropion 

stereoselective disposition.  We invoke this argument on behalf of the other species [64].  As 

well, racemic bupropion fu in rats ranges from 0.31 to 0.49 [64] which is close to humans [28, 

64] and therefore, considered similar.   

5. Conclusion 

This study used hepatic microsomes as a tool to compare the stereospecific formation kinetics 

of bupropion metabolites amongst three animal species to humans.  To our knowledge, this is 

the first characterization of stereoselective metabolism of bupropion in rodent and NHP liver 

microsomes.  Our findings demonstrate that phase I metabolism in NHPs best approximates 

that observed in humans, thereby supporting, based on similarity of stereoselective metabolite 

formation patterns alone, preferential use of this species to extend our understanding of 

stereoselective bupropion CNS disposition.  For example, awareness of carrier-mediated 

transport at the BBB and/or metabolism within brain would generate new possibilities for 

causation of the unpredictable CNS adverse effects observed with this drug.    
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Tables 

Table 1  Kinetics of R- and S-bupropion metabolism in human liver microsomes 

Substrate and metabolites CLint CLint, H
a fm, enantiomer

 b 

  (µl/min/mg of microsomal protein) (L/h)  

R-bupropion           

  R,R-hydroxybupropion 0.48 2.12 0.56 
  R,R-threohydrobupropion 0.27 1.19 0.31 
  S,R-erythrohydrobupropion 0.11 0.49 0.13 
  Total R-bupropion CLint 0.86 3.80   
S-bupropion           
  S,S-hydroxybupropion 0.93 4.14 0.19 
  S,S-threohydrobupropion 3.59 16.01 0.75 
  R,S-erythrohydrobupropion 0.29 1.29 0.06 
  Total S-bupropion CLint 4.81 21.4   

a Microsomal intrinsic clearance (CLint) values were scaled to hepatic intrinsic clearance (CLint, H) 

using the scaling factor of 40 mg microsomal protein/g liver. Assuming a body weight of 81 kg and 

22 g liver/kg body weight results in 1782 g liver weight. These values are from SIMCYP® simulator, 

version 17, Certara®. 

b Fractional contribution of a metabolite to the total bupropion enantiomer CLint, H (fm, enantiomer). 
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Table 2  Kinetics of R- and S-bupropion metabolism in monkey liver microsomes 

Substrate and metabolites CLint CLint, H
a fm, enantiomer

 b 
       (µl/min/mg of microsomal protein) (L/h)   
R-bupropion           

  R,R-hydroxybupropion 1.02 0.16 0.71 
  R,R-threohydrobupropion 0.29 0.04 0.20 
  S,R-erythrohydrobupropion 0.12 0.02 0.08 
  Total R-bupropion CLint 1.43 0.22   
S-bupropion           
  S,S-hydroxybupropion 0.97 0.15 0.52 
  S,S-threohydrobupropion 0.50 0.08 0.27 
  R,S-erythrohydrobupropion 0.39 0.06 0.21 
  Total S-bupropion CLint 1.86 0.29   

a Microsomal intrinsic clearance values were scaled to CLint, H using the scaling factor of 31 mg 

microsomal protein/g liver. Assuming a body weight of 4 kg and 19.67 g liver/kg body weight results 

in 78.7 g liver weight. These values are from SIMCYP® simulator, version 17, Certara®. 

b Fractional contribution of a metabolite to the total bupropion enantiomer CLint, H (fm, enantiomer). 
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Table 3  Kinetics of R- and S-bupropion metabolism in rat liver microsomes 

Substrate and metabolites CLint CLint, H
a fm, enantiomer

 b 
       (µl/min/mg of microsomal protein) (L/h)   
R-bupropion           

  R,R-hydroxybupropion 1.33 0.034 0.12 
  R,R-threohydrobupropion 0.10 0.003 0.01 
  S,R-erythrohydrobupropion 10.00 0.256 0.88 
  Total R-bupropion CLint 11.43 0.29   
S-bupropion           
  S,S-hydroxybupropion 0.30 0.008 0.22 
  S,S-threohydrobupropion 0.46 0.012 0.34 
  R,S-erythrohydrobupropion 0.60 0.015 0.44 
  Total S-bupropion CLint 1.36 0.04   
a Microsomal intrinsic clearance values were scaled to CLint, H using the scaling factor of 46 mg 

microsomal protein/g liver.  Assuming a body weight of 0.25 kg and 35.6 g liver/kg body weight 

results in 8.9 g liver weight. These values are from SIMCYP® simulator, version 17, Certara®. 

b Fractional contribution of a metabolite to the total bupropion enantiomer CLint, H (fm, enantiomer). 
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Table 4  Kinetics of R- and S-bupropion metabolism in mouse liver microsomes 

Substrate and metabolites CLint CLint, H
a fm, enantiomer

 b 
       (µl/min/mg of microsomal protein) (L/h)   
R-bupropion           

  R,R-hydroxybupropion 39.63 0.15 0.95 
  R,R-threohydrobupropion 1.73 0.007 0.04 
  S,R-erythrohydrobupropion 0.22 0.001 0.01 
  Total R-bupropion CLint  41.58 0.158   
S-bupropion           
  S,S-hydroxybupropion 18.30 0.071 0.95 
  S,S-threohydrobupropion 0.43 0.002 0.02 
  R,S-erythrohydrobupropion 0.52 0.002 0.03 
  Total S-bupropion CLint  19.25 0.074   

a Microsomal intrinsic clearance values were scaled to CLint, H using the scaling factor of 48 mg 

microsomal protein/g liver. Assuming a body weight of 0.025 kg and 51.2 g liver/kg body weight 

results in 1.2 g liver weight. These values are from SIMCYP® simulator, version 17, Certara®. 

b Fractional contribution of a metabolite to the total bupropion enantiomer CLint, H (fm, enantiomer). 
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Table 5  Michaelis-Menten parameters for metabolites displaying saturable formation 

kinetics in liver microsomes 

Species Substrate Metabolite Vmax Km CLint (Vmax/Km) 

      (pmol/min/mg 
microsomal protein) (µM) 

 (µl/min/mg of 
microsomal 

protein) 

Human 
R-BP S,R-ErythroBP 0.35 ± 0.03 3.19 ± 0.76 0.11 

S-BP 
S,S-ThreoBP 52.56 ± 5.88 14.63 ± 2.32 3.59 

R,S-ErythroBP 0.84 ± 0.06 2.89 ± 0.56 0.29 

Rat 
R-BP S,R-ErythroBP 0.50 ± 0.01 0.05 ± 0.028 10 

S-BP 
S,S-ThreoBP 0.53 ± 0.03 1.16 ± 0.24 0.46 

R,S-ErythroBP 0.47 ± 0.02 0.78 ± 0.14 0.60 

Mouse 

R-BP 

R,R-OHBP 370.44 ± 71.12 9.34 ± 3.10 39.66 
R,R-ThreoBP 2.86 ± 0.17 1.65 ± 0.32 1.73 

S,R-ErythroBP 0.47 ± 0.04 2.20 ± 0.62 0.21 

S-BP 

S,S-OHBP 79.65 ± 9.44 4.35 ± 1.15 18.31 
S,S-ThreoBP 1.69 ± 0.18 3.9 ± 1.0 0.43 

R,S-ErythroBP 0.49 ± 0.02 0.96 ± 0.16 0.51 

Values expressed represent mean ± standard error of the estimate 

BP : Bupropion, R,R-OHBP : R,R-hydroxybupropion, R,R-ThreoBP : R,R-threohydrobupropion, 

S,R-ErythroBP : S,R-Erythrohydrobupropion. S,S-OHBP : S,S-hydroxybupropion, S,S-ThreoBP : 

S,S-threohydrobupropion, R,S-ErythroBP : R,S-erythrohydrobupropion. 
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Figure Legends   

Fig. 1  Human liver microsomal metabolic pathways of bupropion stereoisomers. In addition 

to the shown metabolic pathways and responsible enzymes, all metabolites undergo 

glucuronidation. 11β-HSD1: 11β-Hydroxysteroid dehydrogenase 1. Adapted from Sager, 

Price, and Isoherranen 2016 

Fig. 2  Metabolite formation kinetics of R- and S-bupropion in human liver microsomes. (a) 

Concentration dependent formation of R,R-hydroxybupropion, S,R-erythrohydrobupropion, 

R,R-threohydrobupropion from R-bupropion. (b) Concentration dependent formation of S,S-

hydroxybupropion, R,S-erythrohydrobupropion, S,S-threohydrobupropion from S-bupropion. 

Data are represented as the mean ± S.D (n=3) 

Fig. 3  Metabolite formation kinetics of R- and S-bupropion in monkey liver microsomes. (a) 

Concentration dependent formation of R,R-hydroxybupropion, S,R-erythrohydrobupropion, 

R,R-threohydrobupropion from R-bupropion. (b) Concentration dependent formation of S,S-

hydroxybupropion, R,S-erythrohydrobupropion, S,S-threohydrobupropion from S-bupropion. 

Data are represented as the mean ± S.D (n=3) 

Fig. 4  Metabolite formation kinetics of R- and S-bupropion in rat liver microsomes. (a) 

Concentration dependent formation of R,R-hydroxybupropion, S,R-erythrohydrobupropion, 

R,R-threohydrobupropion from R-bupropion. (b) Concentration dependent formation of S,S-

hydroxybupropion, R,S-erythrohydrobupropion, S,S-threohydrobupropion from S-bupropion. 

Data are represented as the mean ± S.D (n=3) 

Fig. 5  Metabolite formation kinetics of R- and S-bupropion in mouse liver microsomes. (a) 

Concentration dependent formation of R,R-hydroxybupropion, S,R-erythrohydrobupropion, 

R,R-threohydrobupropion from R-bupropion. (b) Concentration dependent formation of S,S-
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hydroxybupropion, R,S-erythrohydrobupropion, S,S-threohydrobupropion from S-bupropion. 

Data are represented as the mean ± S.D (n=3) 

Fig. 6  Interspecies comparison of the fraction of racemic bupropion metabolized to a specific 

metabolite (fm, racemic). R,R-OHBP: R,R-hydroxybupropion, R,R-ThreoBP: R,R-

threohydrobupropion, S,R-ErythroBP: S,R-Erythrohydrobupropion. S,S-OHBP: S,S-

hydroxybupropion, S,S-ThreoBP: S,S-threohydrobupropion, R,S-ErythroBP: R,S-

erythrohydrobupropion 
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Table 1S  MS/MS settings for R- and S-bupropion, their metabolites and acetaminophen. 

  

 

Analyte Q1 
(m/z) 

Q3 
(m/z) 

Collision 
Energy 

(eV) 
Cell 

Accelerator 
(V) 

Fragmentor 
(V) Polarity 

S-bupropion 240 184 5 8 60 + 
S,S-hydroxybupropion 256 238 5 8 60 + 
R,S-erythrohydrobupropion 242 168 10 8 75 + 
S,S-threohydrobupropion 242 168 10 8 75 + 
R-bupropion 240 184 5 8 60 + 
R,R-hydroxybupropion 256 238 5 8 60 + 
S,R-erythrohydrobupropion 242 168 10 8 75 + 
R,R-threohydrobupropion 242 168 10 8 75 + 
Acetaminophen (APAP) 152 110 21 4 75 + 
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Species 

Nominal 
Concentration 
(conc), ng/mL

Calculated 
conc., 

(ng/mL)

Standard 
deviation 
(ng/mL)

Accuracy 
(%)

Precision 
(%) 

Calculated 
conc., 

(ng/mL)

Standard 
deviation 
(ng/mL)

Accuracy 
(%)

Precision 
(%) 

Calculated 
conc., 

(ng/mL)

Standard 
deviation 
(ng/mL)

Accuracy 
(%)

Precision 
(%) 

Calculated 
conc., 

(ng/mL)

Standard 
deviation 
(ng/mL)

Accuracy 
(%)

Precision 
(%) 

0.1 0.1 0.02 80 20 0.1 0.02 113 14 0.1 0.003 117 3 0.1 0.01 111 9
1 0.9 0.06 93 7 0.9 0.1 91 11 1.2 0.03 116 3 0.9 0.08 90 9
10 8.7 1.58 87 18 9.9 0.89 99 9 10.3 1.77 103 17 10.6 0.96 106 9

0.1 0.1 0.02 110 14 0.1 0.01 108 10 0.1 0.001 83 2 0.1 0.02 93 19
1 0.9 0.02 86 2 1.0 0.06 103 6 1 0.03 105 2 0.9 0.03 90 3
10 9.4 1.41 94 15 11.1 0.69 111 6 10.6 0.6 106 6 9.8 1.31 98 13

0.1 0.1 0.02 95 13 0.1 0.01 90 6 0.1 0.003 108 3 0.1 0.01 91 11
1 1.1 0.01 111 0 1.1 0.09 112 8 1.0 0.13 104 12 1.1 0.03 107 2
10 10.4 0.78 104 7 11.2 0.39 112 3 9.1 0.36 91 4 11.0 0.61 110 6

0.1 0.1 0.01 100 11 0.1 0.01 116 9 0.1 0.004 114 3 0.1 0.002 92 2
1 1.2 0.04 117 3 1.2 0.03 115 2 0.8 0.02 83 3 1.1 0.11 111 10
10 10.9 1.11 109 10 11.3 1.19 113 11 8.7 0.75 87 9 10.8 0.89 108 8

1 1.1 0.17 111 16 1.0 0.05 99 6 0.9 0.02 85 2 1.2 0.0006 119 0
100 94.6 12.55 95 13 108.9 11.91 109 11 99.2 6.19 99 6 106.3 12.56 106 12
500 538.4 81.85 108 15 518.7 73.39 104 14 524.5 84.25 105 16 522.4 19.02 104 4

1 1.2 0.01 119 1 1.1 0.24 114 2 1.1 0.06 111 6 1.2 0.04 119 2
100 114.0 3.86 114 3 119.2 0.62 119 1 101.8 15.36 102 15 116.1 5.18 116 4
500 497.5 77.28 100 16 504.3 75.85 101 15 549.5 62.36 110 11 527.2 60.27 105 11

1 1.2 0.13 120 11 0.9 0.19 93 20 1.0 0.07 100 7 1.1 0.04 113 4
100 108.2 10.95 108 10 106.4 8.31 106 8 81.7 1.94 82 2 116.9 3.4 117 3
500 497.4 52.16 99 10 508.8 70.28 102 14 481.9 59.51 96 12 557.3 33.56 111 6

1 1.2 0.22 118 19 1.1 0.02 114 2 1.2 0.03 115 2 1.2 0.06 120 5
100 99.9 6.11 100 6 109.8 5.07 110 5 98.8 0.95 99 1 117.4 1.48 117 1
500 479.5 58.21 96 12 512.3 87.94 102 17 503.9 47.22 101 9 517.1 61.26 103 12

S,R-erythrohydrobupropion

R,R-threohydrobupropion

MouseRat 
Intra-assay (n=3)   Intra-assay (n=3)   Intra-assay (n=3)  Intra-assay (n=3)

S-bupropion 

S,S-hydroxybupropion

Analytes 

Human Marmoset monkey 

R,S-erythrohydrobupropion

S,S-threohydrobupropion

R-bupropion 

R,R-hydroxybupropion

Article Title : Comparison of in-vitro stereoselective metabolism of bupropion in human, monkey, rat and mouse liver microsomes

Online Resource 2
Table 2S Intra-assay precision and accuracy for the quantitative analysis of bupropion and its metabolites in liver microsomes from the four animal species. Data are expressed as Mean ± SD (n = 3).
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