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Nicolas André Clercin 

ORIGIN AND FATE OF ODOROUS METABOLITES,  

2-METHYLISOBORNEOL AND GEOSMIN,  

IN A EUTROPHIC RESERVOIR 

 

Taste-and-Odor (T&O) occurrences are a worldwide problem and can locally have 

extensive socio-economic impacts in contaminated waterbodies. Tracing odorous 

compounds in surface waters or controlling the growth of producing organisms is 

particularly challenging. These approaches require the understanding of complex 

interactions between broad climate heterogeneity, large-scale physical processes such 

basin hydrology, lake/reservoir circulation, responses of aquatic ecosystems and 

communities. Eagle Creek Reservoir (ECR), a eutrophic water body, located in central 

Indiana experiences annual odorous outbreaks of variable durations and intensities that can 

impair its water quality. Two major compounds, 2-methylisoborneol and geosmin, have 

been identified as the main culprits occurring seasonally when the reservoir receives high 

discharges and nutrient loads from its main tributaries. Under these conditions, the growth 

of T&O-producing bacteria tends to take over other phytoplanktic organisms. Discrete 

samples collected within the water column during severe outbreaks in 2013 revealed that 

some bacterioplankton members belonging to Actinobacteria (Streptomyces) and 

Cyanobacteria (Planktothrix) were involved in the generation of T&O compounds. Most 

of this production occurred in the upper layers of the water column where higher 

abundances of key enzymes from MIB and geosmin metabolic pathways were detected. 

Application of a copper-based algaecide to curb the biosynthesis of bacterial metabolites 

led to geosmin production (linked to Cyanobacteria) being quickly terminated, whereas 

MIB levels (linked to Actinobacteria) lingered for several weeks after the algaecide 

treatment.  

Significant chemical differences in the association of these metabolites were 

measured in ECR. Geosmin was dominantly found cell-bound and settling after cellular 

death increases susceptibility to biodegradation in bottom sediments. MIB was mostly 

found dissolved making it less susceptible to biodegradation in bottom sediments. Genetic 

data identified Novosphingobium hassiacum and Sphingomonas oligophenolica (α-
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Proteobacteria) as potential degraders of geosmin and, four Flavobacterium species 

(Bacteroidetes) as potential MIB degraders. The role of Eagle Creek natural sediments in 

the removal of bacterial metabolites via chemical adsorption was also tested but was not 

proven efficient. Bacterial breakdown activity was demonstrated to be the major loss 

mechanism of MIB and geosmin. 

 

   Gregory K. Druschel, PhD, Chair 
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CHAPTER 1 – INTRODUCTION 

 

Brief history 

 

Eagle Creek Reservoir, one of the three water supply reservoirs located in the Upper 

White River watershed, provides drinking water to the City of Indianapolis. Since strong 

T&O events that occurred in the early 2000’s, central Indiana drinking water supply 

reservoirs; namely Geist, Morse and Eagle Creek reservoirs, have been frequently impacted 

by redundant and sometimes severe taste-and-odor (T&O) issues which deteriorate the 

quality of source waters. To identify the source of the problem, the local water company 

began to investigate the origin of these T&O events. Seasonally, finished water produced 

in drinking water treatment plants was tainted by odorous volatile compounds. Primary 

investigations identified two organic compounds, 2-methylisoborneol and geosmin, as the 

main culprits. Next, the monitoring of these odorous compounds within water treatment 

plants, from the intake to the tap, rapidly extended to streams and reservoirs where raw 

water was taken from. In the case of Eagle Creek, a long-term research and development 

partnership between the water company and the Center for Earth and Environmental 

Science at IUPUI emerged. In 2004, the new Central Indiana Water Resources Partnership 

joined its forces with the Eagle Creek Watershed Task Force to create the Eagle Creek 

Watershed Alliance, a broad coalition of citizens, volunteers, county, state and federal 

agencies, universities and water managers who can work together for the improvement of 

the Eagle Creek water quality, raising public awareness and encouraging the stewardship 

of the watershed’s resources [Tedesco et al., 2005]. 

 

Taste-and-Odor Issues 

 

Episodes of taste-and-odor nuisance of water bodies have been reported worldwide 

[Juttner and Watson, 2007; Krishnani et al., 2008]. The production of odorous compounds 

by aquatic organisms is a significant concern for water utilities and the majority of T&O 

outbreaks in drinking water supplies are caused by microbial growth [Juttner and Watson, 

2007]. In natural environments, unpleasant T&O occurrences of the two smelling 
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terpenoids, geosmin (GSM; trans-1,10-dimethyl-trans-9-decalol) and 2-methylisoborneol 

(MIB) are frequently reported [Lanciotti et al., 2003; Ma et al., 2013; Watson et al., 2008; 

Westerhoff et al., 2005]. Geosmin and MIB are the main metabolites causing T&O 

problems in drinking water [Watson et al., 2008]. They impart an earthy (GSM) and musty 

(MIB) taint to the water [Izaguirre and Taylor, 2004b] and/or to fish flesh in aquaculture 

[Klausen et al., 2005; Robin et al., 2006]. Each compound exists as (+) and (-) enantiomers 

(Figure 1.1) but T&O outbreaks in nature occur as the (-) stereoisomer which is ten times 

more potent than its (+) counterpart [Juttner and Watson, 2007]. Odor threshold 

concentrations of geosmin and MIB are very low, thus concentrations at parts per trillion 

levels (or ng L-1) can easily be detected by human olfactory sense [Peter and Von Gunten, 

2007]. 

 

 

Figure 1.1: Chemical structures of MIB and GSM enantiomers 
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Known sources of T&O 

 

The most important source of geosmin and MIB are bacteria, which include a broad 

variety of non-related organisms such as Actinobacteria, Cyanobacteria and Myxobacteria 

[Juttner and Watson, 2007; Watson, 2003]. In aquatic environments, major producers of 

MIB and geosmin are Cyanobacteria [Juttner and Watson, 2007; Watson et al., 2008]. 

Although Actinobacteria are known to be the main producers of odorous metabolites in 

soil [Juttner, 1990; Zaitlin and Watson, 2006], these organisms are also very frequently 

found in lake sediments where they play a significant role in organic matter degradation 

[Jiang and Xu, 1996]. Soil dwelling Myxobacteria, who also have the ability to synthesize 

odorous metabolites have been detected in surface waters [Dickschat et al., 2005; 

Dickschat et al., 2007]. Off-flavor compounds, such as MIB and GSM which deteriorate 

the quality of water, are often associated with seasonal cyanobacterial blooms of 

Oscillatoria, Anaebana flos-aquae, Planktothrix and Microcystis aeruginosa [Hayes and 

Burch, 1989; Li et al., 2007; Su et al., 2015] but decaying blooms are also involved in the 

release of many odorous metabolites [Ma et al., 2013; Smith et al., 2008] and other 

bioactive compounds [Smith et al., 2008]. 

Historically, Bentley and Meganathan [1981] were the first to identify the origin of 

the two volatile compounds MIB and geosmin. They characterized MIB as a methylated 

monoterpene (C11) alcohol and, geosmin as a degraded sesquiterpenoid (C12) alcohol that 

has lost an isopropyl group (C3), both derived from the biosynthesis of isoprene units. 

These compounds have relatively low molecular weight [Pirbazari et al., 1992], moderate 

solubility, and moderate hydrophobicity [Song and O'Shea, 2007] (Table 1.1). The 

partitioning of MIB and geosmin in different cellular fractions was observed a few years 

later but neither compound occurred in solution in the cell cytoplasm. Most GSM was 

found to be bound to thylakoid and cytoplasmic membranes whereas MIB was less closely 

bound to membrane proteins [Juttner and Watson, 2007; Wu and Jüttner, 1988]. A 

potential linkage of MIB to the photosynthetic apparatus was illustrated by Bafford et al. 

[1993] and later linked to the production of lipophilic and phycobilin pigments [Zimba et 

al., 1999]. Light is the important parameter which changes cell pigment content and 

appears to affect the terpenoid production. Low light intensities (< 30 µmol photons. m-2. 



4 

s-1) enhance the synthesis of both MIB [Wang et al., 2011] and GSM [Zhang et al., 2009]. 

Many authors disucssed the importance of light in the production of geosmin in relation to 

chlorophyll content [Naes et al., 1985], to nutrients [Naes et al., 1988; Saadoun et al., 

2001], to temperature [Rashash et al., 1995; Zhang et al., 2009] and pH [Blevins et al., 

1995]. 

 

Table 1.1: Properties of the odorous metabolites MIB and GSM [Peter and Von 

Gunten, 2007; Pirbazari et al., 1992] 

 
 

MIB GSM 

CAS # 2371-42-8 19700-21-1 

Molecular formula C11H20O C12H22O 

Odor musty earthy 

Odor Threshold Concentration (ng L-1) 15.0 4.0 

Molecular weight (g mol-1) 168.3 182.3 

log Kow 3.13 3.70 

Aqueous solubility (mg L-1; 25ºC) 194.5 150.2 

Boiling point (ºC) 196.7 165.1 

Density (g cm-3) 0.9288 0.9494 

Vapor pressure (Pa) 6.68 5.49 

Henry’s law constant (Pa m3 mol-1) 5.76 6.66 

 

 

Biosynthesis of T&O metabolites 

 

Biosynthetically, terpenes are generated by terpene cyclases (= isoprenoid synthase 

type I) from linear precursors: geranyl pyrophosphate (GPP), the immediate precursor of 

C10 monoterpenes and, farnesyl pyrophosphate (FPP) of cyclic C15 sesquiterpenes [Cane 

et al., 2006]. Addition of labeled 1-deoxy-D-xylulose to culture of Streptomyces [Spiteller 

et al., 2002] and, labeled mevalolactone and leucine in the myxobacteria (Myxococcus and 
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Stigmatella) resulted in the production of labeled geosmin [Dickschat et al., 2005]. Among 

others, these two studies helped to reveal that different biosynthetic pathways of isoprene 

were involved (Figure 1.2). The synthesis of labeled geosmin by addition of [5,4-2H2]-1-

deoxy-D-xylulose demonstrated that the 2-methylerythritol-4-phosphate (MEP) pathway 

was predominant in Streptomyces whereas the mevalonate (MVA) pathway with addition 

of [4,4,6,6-2H5]-mevalolactone was the preferred route in myxobacteria [Spiteller et al., 

2002]. Kuzuyama [2002] found the gene coding for the MEP pathway in the 

cyanobacterium Synechocystis. For many bacterial groups, the MEP route is the major 

biosynthetic pathway. Nonetheless, both MEP and MVA can be used by the same 

organism. Dickschat et al. [2005] showed that Myxobacteria prefer using the MVA route, 

while Archaea exclusively use this latter pathway although no species have been 

documented as potential MIB and geosmin producers [Lange et al., 2000]. The enzyme 

germacradienol/geosmin synthase [E.C: 4.1.99.16] was identified in the actinobacterium 

Streptomyces coelicolor [Jiang and Cane, 2008]. Similarly, radio-labeled [methyl-13C] 

methionine and deuterium [2H5]-mevalolactone in the myxobacterium Nannocystis 

exedens revealed the pathway leading to the biosynthesis of MIB [Dickschat et al., 2007] 

and the identification of an unusual bacterial terpene cyclase, the MIB synthase [E.C: 

4.2.3.118] [Wang and Cane, 2008]. According to Rosen et al. [1992], geosmin is produced 

during the exponential growth phase and a relatively small fraction is excreted to 

surrounding water; production stops during the stationary phase, and the cell lysis causes 

the bulk release of cell-bound geosmin into the medium. In Streptomyces, the production 

of the secondary metabolites occurs during the secondary mycelial growth which requires 

the presence of oxygen and coincides with sporulation [Dionigi et al., 1992]. In a stratified 

lake, two independent sources of odorous metabolites were observed: a minor source of 

geosmin in the epilimnion produced by Actinomycetes and a larger source in the anaerobic 

hypolimnion where producing microorganisms were not identified [Henatsch and Jüttner, 

1986]. Due to high sulfide and ammonia concentrations at the bottom of the lake, known 

aerobic producers such as Actinomycetes and Myxobacteria were ruled out by the two 

authors. 
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Figure 1.2: Biosynthesis of isoprenoids with A) the mevalonate (MVA); B) the non-

mevalonate (MEP) and C) terpene pathways, from Watson et al. [2016]. 
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Nuisance of T&O 

 

The major challenge for the water industry is to effectively remove taste-and-odor 

compounds from the water to levels below the human detection threshold. The Odor 

Threshold Concentration (OTC) is extremely low for human olfaction and is around 10 ng 

L-1 or less for MIB and GSM [Ashitani et al., 1988; Rashash et al., 1997; Suffet, 1987]. 

While the conventional water treatment process (coagulation/flocculation/sedimentation) 

is ineffective to get rid of MIB and GSM from drinking water [Bruce et al., 2002], several 

other physical-chemical treatment processes have been studied: chlorination [Lalezary et 

al., 1986b], adsorption on granular activated carbon, GAC [Hrudey et al., 1995] or 

powdered activated carbon, PAC [Ng et al., 2002; Yuan et al., 2013], and ozonation [Ho et 

al., 2002; Nerenberg et al., 2000]. PAC is an important tool for maintaining the aesthetic 

quality of drinking water and was proven very useful at adsorbing MIB, geosmin and other 

contaminants [Graham et al., 2000]. Competitive natural organic matter (NOM) reduces 

PAC effectiveness, the availability of sorption sites [Lalezary et al., 1986a] and high PAC 

dosages can be challenging for cost optimization. This reduction of PAC effectiveness can 

be significant, depending on the nature and concentrations of NOM in water  [Sontheimer 

et al., 1988]. To enhance the removal efficiency of MIB and GSM with PAC in presence 

of NOM, Matsui et al. [2010] suggested the utilization of super-powdered activated carbon 

(S-PAC) which has finer particles than those of a regular PAC. Unfortunately, the presence 

in raw water of dissolved organic matter (DOM) usually depletes ozone which favors the 

incomplete oxidation of MIB and GSM that produces hazardous by-products [Nerenberg 

et al., 2000]. For this reason, advanced oxidative technologies such as TiO2 photo-catalysis 

[Bellu et al., 2008; Lawton et al., 2003], ZnO photo-catalysis [Sirtori et al., 2006] and 

UV/H2O2 [Rosenfeldt et al., 2005] gained credit for a quick and effective removal of MIB 

and GSM that may go through the filtration step. The degradation of earthy GSM and musty 

MIB compounds is promoted by hydroxyl radicals [Jo et al., 2011]. Ultrasonic-induced 

degradation of odorous metabolites at 640 kHz was also proven effective [Song and 

O'Shea, 2007]. Two by-products, 2-methylene-bornane (2-MB) and 2-methyl-2-bornene 

(2-M-2-B) on Figure 1.3, were identified from the dehydration of MIB [Manickum and 

John, 2012; Schumann and Pendleton, 1997] while enone (Figure 1.4) resulted from 
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degradation of geosmin [Saito et al., 1999]. A new alternative approach, called bio-

filtration, consists in using the water treatment plant sand filters as a medium to remove 

MIB and GSM [Ho et al., 2007; Hsieh et al., 2010; McDowall et al., 2007] which can also 

be seeded with bacteria able to degrade the odorous compounds [McDowall et al., 2009]. 

Biodegradation has also shown promise in removal by mixing quartz sand with 10% of 

lake bed sediments [DeVries et al., 2012]. 

 

 

 

 

Figure 1.3: Dehydration of 2-methylisoborneol (MIB) into 2-methylenebornane (2-MB) 

and 2-methyl-2-bornene (2-M-2-B), after Manickum and John [2012]. 

 

 

 

 

Figure 1.4: General structure of enones 
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Possible ways of remediation 

 

Interrelationships between tastes and odors in water supplies, the seasonal cycles 

of freshwater algae (diatoms and cyanobacteria) and the growth of gram-negative bacteria 

were first hypothesized by Silvey and Roach [1964]. Subsequently, a few strains of Bacillus 

cereus were found to effectively degrade geosmin [Silvey et al., 1970]. A few years later, 

Bacillus cereus and B. subtilis both isolated from soil-enrichment cultures were readily 

able to breakdown geosmin  [Narayan and Nunez, 1974]. A strain of Pseudomonas putida 

that can oxidize MIB was isolated by Izaguirre et al. [1988] as well as seven other gram-

negative strains of bio-degraders, belonging to the Pseudomonas and Flavobacterium 

genera [Egashira et al., 1992]. Since then, many other reports have demonstrated the role 

of bacteria in the degradation of MIB and geosmin: Arthrobacter and Chlorophenolicus 

[Saadoun and el-Migdadi, 1998], Bacillus [Ishida and Miyaji, 1992; Lauderdale et al., 

2004], Pseudomonas [Oikawa et al., 1995], Novosphingobium and Sphingopyxis [Hoefel 

et al., 2006; Hoefel et al., 2009], Comamonas and Variovorax [Guttman and van Rijn, 

2012], and Rhodococcus [Eaton and Sandusky, 2009; 2010; Guttman and van Rijn, 2012; 

Saadoun and el-Migdadi, 1998]. 

 

Scope of this study 

 

Notwithstanding numerous aquatic organisms being described as potential sources 

of volatile and odorous compounds in surface waters, most T&O outbreaks have never 

been forecast or partially traced to their biological origins. The scientific literature is well-

documented about the role and the implication of both heterotrophic and autotrophic 

prokaryotes in the production of T&O compounds but very few studies have shown a direct 

relationship with environmental factors under natural conditions. The research presented 

in this document is an attempt to understand the dynamics of MIB and geosmin 

compounds, ‘from source to sink’, in a eutrophic drinking water supply reservoir, Eagle 

Creek Reservoir, located in central Indiana that experiences frequent annual T&O 

outbreaks. In the following chapters, we will first explore what environmental factors are 

important triggers for the production of MIB and GSM. Then, with the help of an 
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innovative high throughput sequencing (HTS) technology and augmented online databanks 

of 16S rRNA gene sequences, we will identify on one hand what bacteria are involved in 

the biosynthesis of these odorous metabolites and, on the other hand, which ones play a 

crucial role in their biodegradation. Finally, as there is currently no knowledge about the 

fate of these two terpenoids once released into raw water, naturally released after cellular 

death or chemically after application of an algaecide, our investigations will focus on the 

sediment-water interface. Sediment materials are not pristine surfaces but likely colloid-

bound with humic, fulvic acids and other organics. This NOM is commonly found at 

concentrations parts per millions (mg/L) in natural raw waters and usually occurs at several 

orders of magnitude higher concentrations than MIB and GSM (ng/L), thus outcompeting 

T&O metabolites for adsorption sites [Newcombe et al., 2002]. Therefore, in the last 

chapter, sorption and biodegradation experiments will be carried out to determine the role 

of bottom sediments in the removal/ sequestration of bacterial odorous terpenoids. 
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CHAPTER 2 - INFLUENCE OF ENVIRONMENTAL FACTORS ON OFF-

FLAVOR METABOLITE PRODUCTION BY BACTERIA IN A EUTROPHIC 

RESERVOIR 

‘Make hay while the sun shines’ 

Traditional 

 

Introduction 

 

Continental freshwater systems have received increasing scientific attention over 

the past decades as water quality deterioration and cyanobacterial bloom activity has been 

linked to eutrophication and global warming [Paerl et al., 2001; Paerl and Huisman, 2009; 

Shatwell et al., 2008]. When excessive nutrient is supplied to surface waters and 

temperature is optimal for growth, Cyanobacteria rapidly form massive water blooms 

[Dokulil and Teubner, 2000] which produce small dissolved organic compounds frequently 

involved in ecological [Christoffersen, 1996; Miguéns and Valério, 2015], economical 

[Dodds et al., 2008; Steffensen, 2008] and health issues [Carmichael, 2001]. Such 

compounds can also support the growth of heterotrophic bacteria and shape the structure 

of the bacterioplankton community [Eiler and Bertilsson, 2004; Louati et al., 2015]. 

Occurrences of off-flavor compounds synthetized by aquatic bacteria are a nuisance in 

source water systems and numerous episodes of taste-and-odor (T&O) compounds have 

been reported worldwide [Juttner and Watson, 2007; Krishnani et al., 2008b].   

In natural environments, two smelling terpenoids, geosmin (GSM; trans-1,10-

dimethyl-trans-9-decalol) and 2-methylisoborneol (MIB), are the main metabolites causing 

T&O problems in drinking water [Lanciotti et al., 2003; Ma et al., 2013; Watson et al., 

2008; Westerhoff et al., 2005]. They impart an earthy (GSM) and musty (MIB) taint to the 

water [Izaguirre and Taylor, 2004a] and to fish in aquaculture [Klausen et al., 2005; Robin 

et al., 2006]. Due to their lipophilic properties, both MIB and GSM easily cross the gills 

and guts of fish causing longer depuration or purging times for the removal of the 

earthy/moldy flavors accumulated in fish flesh prior to commercialization [Burr et al., 

2012; Davidson et al., 2014; Howgate, 2004; Reineccius, 1991]. Each compound exists as 

(+) and (-) enantiomers but biological sources produce the (-) stereoisomer [Krasner, 1988] 
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which is ten times more potent than its (+) counterpart [Juttner and Watson, 2007]. Both 

MIB and GSM are potent odorous metabolites and have very low odor threshold 

concentrations (OTCs; at parts per trillion levels or ng L-1) that can be detected by a 

human’s olfactory senses [Peter and Von Gunten, 2007].  Drinking water quality, and thus 

the value of that water, are impacted by frequent occurrences of MIB and GSM in water 

supplies [Davies et al., 2004; Srinivasan and Sorial, 2011]. The tertiary alcohol structure 

of both GSM and MIB render them extremely resistant to oxidation processes commonly 

used in water purification. Low concentrations tend to persist in finished water as 

conventional water treatment processes such as air stripping [Terashima, 1988], dissolved 

air flotation (DAF) [Hargesheimer and Watson, 1996], flocculation/ sedimentation/sand 

filter [Hargesheimer and Watson, 1996], oxidation with chlorine (Cl2), chloramines and 

chlorine dioxide (ClO2) [McGuire, 1999; Nerenberg et al., 2000] or potassium 

permanganate (KMnO4) [McGuire, 1999] fail to remove them entirely. Ozone (O3) remains 

the strongest oxidant to efficiently remove MIB and geosmin but their oxidation can 

generate by-products such as low molecular weight ketones that also have odorous 

properties [Lundgren et al., 1988; Mcguire and Gaston, 1988]. Besides the offensive 

odorous properties in source, recreational and drinking waters, T&O compounds currently 

have no regulations in the U.S. because they are associated with no known adverse effects 

on human health [Dionigi et al., 1993]. Therefore, the U.S. Environmental Protection 

Agency (EPA) has defined no maximum concentration level (MCL) or maximum 

concentration level goal (MCLG) for MIB and GSM in drinking water. 

The most important source of GSM and MIB in surface waters are bacteria [Juttner 

and Watson, 2007; Watson, 2003]. Both compounds are secondary metabolites synthetized 

through the isoprenoid pathway [Bentley and Meganathan, 1981] but their biological 

functions have not been elucidated. Trace concentrations of various odorous metabolites 

produced by bacteria may change the organoleptic properties of water and act as chemical 

attractants or repellents in the aquatic food-web for invertebrates, fish and humans 

[Höckelmann et al., 2004; Juttner and Watson, 2007; Watson et al., 2007]. In freshwater 

environments, Cyanobacteria have been known as the major producers of odorants [Juttner 

and Watson, 2007; Watson, 2010; Watson et al., 2008]. Off-flavor compounds, such as 

MIB and GSM, which deteriorate the quality of water, are often associated with seasonal 
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blooms of Oscillatoria, Anabaena flos-aquae, Planktothrix and Microcystis aeruginosa 

[Hayes and Burch, 1989; Li et al., 2007; Su et al., 2015], where decaying blooms can 

release many odorous metabolites [Ma et al., 2013; Smith et al., 2008] and other bioactive 

compounds like cyanotoxins [Smith et al., 2008]. Actinobacteria were the first identified 

organisms as producers of T&O metabolites [Gerber, 1979; Gerber and Lechevalier, 1965; 

Juttner, 1990; B. Zaitlin and Watson, 2006], and are very frequently found in limnetic 

systems  [Glöckner et al., 2000; Methé and Zehr, 1999; Van der Gucht et al., 2005] and in 

bottom sediments [Boucher et al., 2006; Hahn et al., 2003], where they play a significant 

role in organic matter degradation [Jiang and Xu, 1996; Johnston and Cross, 1976; Zaitlin 

et al., 2003]. Other organisms, such as Myxobacteria, also have the ability to synthesize 

GSM and MIB [Dickschat et al., 2005; Dickschat et al., 2007].  

The environmental factors triggering the synthesis of geosmin by Actinobacteria 

were studied by Wood et al. [1983]. Some of the relevant factors were elevated nutrient 

levels in water, aerobic conditions and accumulation of sediment in the reservoir. The 

importance of nitrogen in the synthesis of geosmin by Actinobacteria was later confirmed 

[Lind and Katzif, 1988]. In the cyanobacterium Fischerella muscicola, Wu and Jüttner 

[1988] showed that geosmin was indifferently obtained under aerobic or anaerobic 

conditions, and that geosmin production was minimal at the optimal growth temperature 

but maximal at the lowest and highest temperature ranges. The influence of light and 

nutrient (N and P) on the synthesis of geosmin by Oscillatoria brevis was demonstrated to 

have no direct effect [Naes et al., 1985]. Instead, it was concluded that geosmin detection 

was the result of increased algal biomass due to excess nutrient conditions rather than 

increased production rates [Wnorowski, 1992].  

In central Indiana, Eagle Creek Reservoir has a long history of T&O events with 

major outbreaks of MIB and/or GSM occurring during the spring and the fall seasons. The 

main objective of the current study is to determine whether the reservoir hydrology drives 

the bacterioplankton communities leading to the production of T&O compounds and 

subsequently, to determine which bacterial taxa may be involved in the in situ production 

when the reservoir’s water column is mixed. 
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Materials and Methods 

 

Study site 

Eagle Creek Reservoir (39°51’20”N, 86°17’39”W) located in central Indiana 

(Figure 2.1), receives drainage from 419.6 km2 of the Eagle Creek Watershed and has a 

surface area of 5.7 km2. The reservoir was constructed in 1967 to provide flood control and 

then drinking water for the city of Indianapolis and surrounding communities. The 

maximum depth ranges from about 11 to 13 meters, with the deepest areas located in the 

southern basin, near the dam. Eagle Creek Reservoir is a small, dimictic, and eutrophic 

water body with seasonal thermal stratification from June to September. Reservoir mixings 

usually occur in April/May and October each year. The mean annual discharge of Eagle 

Creek, the main tributary, is 35.74 m3.s-1 with maxima recorded between April and June. 

The calculated residence time of the reservoir is 39.5 days. 

 

Figure 2.1: Sampling site location (dot) on Eagle Creek Reservoir. KEYE = Eagle Creek 

Airpark (square) where weather data were retrieved. 
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Sample collection and processing 

Water samples were collected on a biweekly basis from mid-May to end of October 

2013 near the dam where the strongest water column stratifications occur (Figure 2.1). 

Discrete water samples were collected with a vertical Van Dorn sampler at four different 

depths corresponding to sub-surface (0 m), summer epilimnion (3 m), metalimnion (6 m) 

and hypolimnion (9-10 m), i.e. 1 meter above the water-sediment interface. The photic 

zone was measured by the mean of a Secchi disk (SD), and the euphotic depth (Zeu, in 

meters) was estimated from Secchi disk reading (ZSD) using the relationship: Zeu= 2.7 x 

ZSD [Tedesco and Clercin, 2010]. Transmission of Photosynthetically Active Radiation 

(PAR, μmol photons m-2 s-1 from 400 to 700 nm) was measured at 50 cm intervals from 

just below the surface down to a depth of 1% incident PAR with a LI-192SA Underwater 

Quantum Sensor (LI-COR Inc., Lincoln, NE, USA). Prior to water collection, a 

submersible multi-parameter V2-6600 YSI probe (YSI, Inc., Yellow Spring, OH) was 

deployed in order to characterize the water column at meter intervals from the water surface 

down to the bottom. Measured parameters were water temperature (Temp, °C), 

conductivity (COND, μS cm-1), total dissolved solids (TDS, g L-1), dissolved oxygen (DO, 

mg L-1), pH (s. u.), oxidation reduction potential (ORP, mV) and, chlorophyll and 

phycocyanin fluorescence (RFUs, Relative Fluorescence Units). The intensity of the 

reservoir thermal stratification was assessed by calculating the Relative Thermal 

Resistance to Mixing (RTRM) between adjacent layers (1 meter increment) within the 

water column. RTRM values were computed from temperature profile data using the 

relation [Wetzel, 2001]: ψ=(ρz2- ρz1)/(ρ4- ρ5) ; where ψ is the RTRM value (dimensionless), 

ρz1 and ρz2 are water densities at depths z1 and z2, respectively (kg m-3) and ρ4 and ρ5 are 

water densities at 4 and 5 °C, respectively. Greater density differences between water layers 

are highlighted by higher RTRM values. Boundaries of the metalimnion are identified by 

RTRM 30 while the maximum value of RTRM identifies the depth of the thermocline. 

When RTRM values exceed 80, reservoirs are characterized as being “strongly stratified” 

[Vallentyne, 1957]. 
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Nutrients and taste-and-odor compounds 

Aliquots of the water sample were stored in 1L white HDPE bottles for nutrient 

analyses. Samples for methylisoborneol (MIB) and geosmin (GSM) analysis were stored 

in brown amber glass jars with no headspace or bubbles to avoid the volatilization of these 

compounds. All samples were stored on ice for transport to the laboratory. Inorganic 

nitrogen forms (nitrate, nitrite) were measured by ion chromatography Dionex DX-500 

using the EPA 300.0 method [USEPA, 1993a]. Total Kjeldahl Nitrogen (TKN) was 

determined by digestion, followed by ammonia determination by ion selective electrode 

[USEPA, 1993b]. Total P was measured by ascorbic acid colorimetric method [USEPA, 

1974]. Geosmin and MIB concentrations in water were quantified by a Head-Space Solid-

Phase Micro-Extraction (HS-SPME) combined with a Gas Chromatography-Mass 

Spectrometry (GC-MS) to analyze the volatile metabolites MIB and geosmin according the 

Standard Method SM 6040D [APHA, 2000].  

 

Enzyme-Linked Immuno-Sorbent Assay (ELISA) 

Water sample aliquots were put in acid washed 125 mL clear glass for microcystin 

analysis using the ELISA analytical method which is sensitive for low levels of 

microcystins [Pyo et al., 2005] in raw water; the limit of detection (LOD) of this method 

is 0.15 µg L-1 (ppb). Three freeze/thaw cycles followed by sonication (15 minutes at 40 

kHz) was used to optimize the extraction of cyanotoxins. An aliquot (1 mL) of each sample 

was used for total microcystins analysis using competitive ELISA kits [Fischer et al., 2001] 

targeting the non-proteinogenic amino acid (ADDA) found in cyanobacterial toxins 

following the protocols supplied by the manufacturer (Abraxis LLC., PA, USA). All assays 

were performed in duplicate. For statistical and graphical purposes, half of the LOD value 

was used to represent non-detected concentrations of microcystins in water [Croghan and 

Egeghy, 2003]. 

 

Hydrology and weather data 

Stream discharge data from Eagle Creek, the main tributary of the reservoir, was 

recorded by the USGS super gage (USGS 03353200), located upstream from the reservoir 
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in Zionsville, IN. Weather data were recorded by Eagle Creek Airport (Figure 2.1, KEYE), 

adjacent to the reservoir. 

 

Bacterial community identification 

To identify and to determine the abundance of bacteria in water samples, a 460 bp-

long amplicon was amplified by polymerase chain reaction (PCR). The gene-specific 

sequences target the 16S rRNA V3 and V4 regions (MiSeq v.3 Nextera XT, Illumina) using 

5' TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 

and 5' GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTAT 

CTAATCC as forward and reverse primers, respectively. The 16S rRNA sequencing 

provides reliable information on the taxonomic composition and the phylogenetic structure 

of natural bacterial communities expressed as Operational Taxonomic Units (OTUs). After 

collection near the dam, all discrete water column samples (0m, 3m, 6m and 10m) were 

put on ice in autoclaved 1-L HDPE brown bottles and filtered in the lab through 0.22 µm 

mesh size pores on a sterile glass filtration unit, then frozen for storage in 15-mL Falcon 

tubes. Samples were later shipped to Illumina, Inc., San Diego, CA for analysis on frozen 

filters to determine the bacterial community assemblages using 16S.  

 

Statistical analysis 

The 16S dataset along with physical and chemical parameters collected during the 

sampling campaign were analyzed with PAST 3.1 software [Hammer et al., 2001]. We 

used Spearman’s rho correlations to assess potential links between OTUs and off-flavor 

metabolite concentrations, and Canonical Correspondence Analysis (CCA) to extract 

major gradients among all physicochemical parameters that could trigger the growth of 

bacteria and the production of metabolites. 

 

Results 

 

Metabolite detections in raw water 

On a routine basis, the local water company analyzes Eagle Creek Reservoir’s raw 

water samples for odorous compound detections at several locations: at the dam, at the 
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water intake and before the entry of the water treatment plant. Two or three analyses are 

run weekly and the sampling frequency is usually augmented when either MIB or GSM 

levels exceed 10 ng L-1. In 2013, a total of 359 water samples were analyzed; with an 

annual average of 10.8 and 12.6 ng L-1 for MIB and GSM respectively (Figure 2.2). Highest 

concentrations are commonly found between the months of April and June but maxima are 

reached during May for each metabolite (Table 2.1). It is noticeable that MIB 

concentrations exceed the odor threshold value of 10 ng L-1 seasonally during the spring 

and early fall while GSM detections are always above 4 ng L-1 but show minima throughout 

the summer months. GSM exceeds its odor threshold concentration 100% of the times 

(Table 2.1) from October to February and peaks during the month of May. Maximal values 

of MIB and GSM were both observed in May 2013 with 111.79 and 77.26 ng L-1 

respectively. 

 

16S rRNA analysis 

Genetic data for the 2013 sampling campaign illustrated Cyanobacteria as a critical 

part of the bacterioplankton community but there are other orders distributed with depth 

(Figure 2.3). Proteobacteria as the second largest group includes a wide range of organisms 

but none of them are known producers of T&O compounds. Actinobacteria are known 

producers of T&O compounds and were found in significant abundance in the system at 

all depths. On average, Cyanobacteria represent 36% of the bacterioplankton community, 

followed by Proteobacteria (25%), Actinobacteria (7%) and all other groups individually 

lower than 5%. A spatial and temporal representation of the 16S rRNA dataset throughout 

the water column is presented in Figure 2.4, where the T&O outbreak (and algaecide 

intervention event as the white arrow) is compared to cyanobacterial (Oscillatoriales and 

Nostocales) and Actinobacterial (Acidimicrobiales and Actinomycetales) orders. 
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Figure 2.2: Monthly concentrations of a) 2-methylisoborneol (MIB), b) geosmin (GSM) 

and c) Eagle Creek discharges for the year 2013. Odor Threshold Concentrations (OTC; 

dotted lines) are 15 ng. L-1 for MIB and 4 ng. L-1 for GSM after Peter and Von Guten 

[2007]. Stream discharge is expressed in cubic meters per second (m-3.s-1). 
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Table 2.1: Monthly MIB and GSM concentrations (in ng L-1) in Eagle Creek Reservoir; 

N= 359 samples and, %> OTC as percent of Odor Threshold Concentration exceedance 

indicating the percentage of samples collected that measured above the odor threshold. 

OTC values are defined by Peter and Von Guten [2007]. 

 
  MIB  GSM 

2013 n Mean Max %> OTC  Mean Max %> OTC 

Jan 25 3.16 6.73 0.0  19.59 34.44 100.0 

Feb 27 1.05 2.48 0.0  9.36 14.49 100.0 

Mar 23 1.00 1.00 0.0  4.17 5.18 60.9 

Apr 31 9.01 44.32 22.6  9.03 23.83 80.6 

May 38 44.84 111.79 60.5  32.10 77.26 100.0 

Jun 38 23.97 78.13 57.9  13.31 62.27 55.3 

Jul 31 3.69 6.79 0.0  4.83 11.57 74.2 

Aug 31 4.37 10.19 3.2  3.61 6.86 29.0 

Sep 33 10.12 16.44 36.4  6.87 15.00 97.0 

Oct 30 7.25 13.37 30.0  11.51 18.23 100.0 

Nov 28 1.50 4.39 0.0  15.60 20.11 100.0 

Dec 24 1.18 3.59 0.0  16.90 22.91 100.0 
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Figure 2.3: Average relative abundance of 16S reads for major clades of bacteria during 

2013 campaign. Inset pie chart represents the average abundance for sub-surface samples. 
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Figure 2.4: Spatial and temporal distribution of odorous metabolites and main bacterial 

orders throughout the water column. Top row: MIB and Geosmin; middle row: 

Cyanobacteria; bottom row: Actinobacteria; vertical dotted arrow: algaecide treatment 

date. Warmer colors represent highest concentrations or relative abundances. White arrow 

indicates timing of the June 2, 2013 algaecide application. 

 

Identification of taste-and-odor producers 

When the 16S rRNA dataset for microbial populations is checked for correlation 

against measured MIB and Geosmin levels, significant correlations are found for specific 

Cyanobacteria for GSM and for specific Actinomycetales species for MIB. Geosmin 

production is linked to several cyanobacterial OTUs, but not positively correlated with any 

statistical significance to any actinobacterial OTUs (Table 2.2).  MIB production is linked 

to Actinomycetales OTUs, but not positively correlated with any cyanobacterial OTUs 

(Table 2.2). Actinobacteria are known T&O producers usually associated with soil 

environments [Juttner, 1990], bottom sediments [Sugiura and Nakano, 2000] or suspended 

sediments [Jensen et al., 1994] whereas many others have not been documented yet about 

their potential capability to produce volatile odorous compounds (Table 2.2). These results 

strongly suggest that MIB production in Eagle Creek Reservoir is not linked to Cyano-

bacteria at all.
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Table 2.2: Correlation between potential T&O compound producers found in ECR with measured concentrations of MIB and GSM. 

Correlations with strong statistical significance are in bold p < 0.05, *p < 0.01 and **p < 0.001. 

 

 

 

 

 

 

 Order Genera MIB GSM Habitat Metabolites References 

C
y

an
o

b
ac

te
ri

a 

Chroococcales Chroococcus -0.48* 0.07 Planktic - - 

 Cyanobacterium -0.27 0.37 Planktic - - 

 Microcystis -0.58** -0.18 Planktic - - 

 Prochlorococcus -0.59** -0.48** Planktic - - 

 Snowella -0.23 0.16 Planktic - - 

Oscillatoriales Microcoleus -0.17 0.45* Planktic GSM Izaguirre and Taylor (1995) 

 Oscillatoria -0.57** -0.07 Benthic MIB, GSM Izaguirre et al. (1983); Suurnäkki et al. (2015) 

 Phormidium  -0.15 0.42* Benthic GSM Izaguirre and Taylor (1995) 

 Planktothrix  -0.17 0.53** Planktic GSM Kutovaya and Watson (2014) 

Pseudanabaenales Leptolyngbya  -0.41* 0.06 Epiphytic MIB, GSM Wang et al. (2015);  Watson et al. (2016) 

 Limnothrix -0.54** 0.07 Planktic - - 

 Prochlorothrix -0.46* -0.01 Planktic - - 

 Pseudanabaena  -0.59** 0.04 Planktic MIB, GSM Izaguirre et al. (1999) 

Nostocales Aphanizomenon -0.60** -0.16 Planktic GSM Kutovaya and Watson (2014); Suurnäkki et al. (2015) 

 Calothrix -0.31 0.32 Epiphytic GSM Kutovaya and Watson (2014); Suurnäkki et al. (2015) 

 Cylindrospermopsis -0.45* -0.02 Planktic - - 

 Dolichospermum -0.75** -0.37 Planktic GSM Watson et al. (2016) 

  Nostoc -0.22 0.44* Benthic GSM Taylor et al. (2006) 
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Table 2.2 continued. 

 

 

 

 

 

 

 

 Order Genera MIB GSM Habitat Metabolites References 

A
ct

in
o

b
ac

te
ri

a 

Actinomycetales Arcanobacterium 0.27 -0.15 Soil - - 

 Cryobacterium 0.44* -0.05 Soil - - 

 Demequina 0.33 -0.24 Soil - - 

 Georgenia 0.40* -0.15 Soil - - 

 Mycobacterium 0.10 -0.20 Soil - - 

 Nocardia 0.15 0.17 Soil MIB, GSM Zaitlin and Watson (2006) 

 Rhodococcus -0.06 -0.32 Soil - - 

 Saccharomonospora 0.45* -0.11 Soil - - 

 Saccharopolyspora -0.24 -0.13 Soil MIB, GSM Komatsu et al. (2008); Watson et al. (2016) 

 Sanguibacter 0.41* -0.06 Soil - - 

 Streptomyces 0.42* -0.13 Soil MIB, GSM Saadoun, Schrader and Blevins (1997) 

 Streptosporangium 0.23 0.08 Soil -  

Acidimicrobiales Acidimicrobium -0.13 -0.01 - - - 

 Acidithiobacillus 0.08 0.14 - - - 
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Distribution of T&O producers 

Having determined the major microbial OTUs potentially involved with T&O 

production, the combination of this 16S dataset with detailed hydrological, physical and 

chemical data allows us to investigate how changing conditions on Eagle Creek may select 

for specific populations of organisms capable of, and actually generating, MIB and GSM. 

In order to determine the most important environmental factors involved in the growth of 

off-flavor metabolite-generating bacteria, a Canonical Correspondence Analysis (CCA; 

Figure 2.5) was used. This constrained ordination technique extracts major gradients 

among the multitude of environmental variables measured on the field that would explain 

the abundances of bacterial OTUs at a given time of collection. Axes represent linear 

combinations of all environmental variables maximally projected in a Euclidean space; 

with axis 1 explaining 38.83% and axis 2, 26.64% of total variance of the dataset. Each 

environmental variable (here, physicochemical parameters) are represented as vectors with 

arrowheads indicating the direction of the increasing gradients. Dots illustrate bacterial 

OTUs. 

The cloud of bacterial taxa is well divided into two separate clusters; with 

cyanobacteria in the lower part of the horizontal axis (dashed box) and Actinobacteria in 

the upper part (full box). The dispersion of individual taxa is ruled by different 

environmental gradients and vectors crossing clusters of dots that are more significantly 

important for these given clusters than distant ones, in other words the longer vector lines 

pointing towards the boxes delineating the two broad OTU groupings of Actinobacteria 

and Cyanobacteria indicate the groups are selected by different physicochemical 

conditions. On the horizontal axis, environmental parameters describe separate habitats: 

summer stratification on the left hand driven by warmer temperature and reservoir mixing 

periods on the right hand driven by turbidity. Ellipses representing different environmental 

conditions are defined according to sampling dates and depths of collection (Figure 2.5B). 

Spring and fall mixing conditions are represented by the grey ellipse. The main odorous 

episode of MIB and GSM that occurred during the month of May 2013 in Eagle Creek 

Reservoir is highlighted by the shaded grey ellipse. The summer stratification of the water 

column is represented by a black ellipse; epilimnion (full line ellipse) with highest temps 

and nutrient-depleted and, hypolimnion (dotted line ellipse) with nutrient-rich and oxygen-
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depleted (low DO). Most cyanobacteria tend to thrive under high water temperatures, 

strong water column stratification (high RTRM) are correlated to high phycocyanin (PC) 

concentrations although a few taxa are found in more mixed (low RTRM) and turbid waters 

(low light coefficients; kT) with cooler temperatures. These latter cyanobacteria, either 

benthic (Nostoc, Phormidium, Microcoleus) or pelagic (Planktothrix), often co-occur along 

with higher detections of geosmin and chlorophyll a. In opposition, Actinobacteria are 

driven by high stream discharges (Q) coupled with elevated nitrate (NO3) concentrations. 

Some actinobacterial OTUs are more closely related to high MIB detections under 

conditions closely similar to geosmin-producing cyanobacteria. 

 

Discussion 

 

Reservoir hydrology and T&O events 

Our study on odorous events highlights the key role of hydrological drivers on the 

production of MIB and GSM metabolites by different bacterial groups. These findings have 

direct implications on the forecasting and the management of off-flavor occurrences in 

source waters and then, the optimization of MIB and GSM removal. Eagle Creek Reservoir 

is a dimictic water body and receives most of its water during the spring: in April, from 

snow melt and, in May/June thanks to rainfalls and thunderstorms. Peak discharges bring 

terrestrial materials from soil erosion in the upstream watershed and could introduce 

Actinobacteria as well into the reservoir [Zaitlin et al., 2003].  The highest concentrations 

of MIB and geosmin compounds are observed in May when the reservoir water columns 

are fully mixed and turbid. Throughout the summer, very low detections of each metabolite 

are found when the reservoir stratifies.  
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Figure 2.5: Canonical Correspondence Analysis showing: a) physical, chemical and 

genetic-based microbial data and, b) the distribution of 2013 campaign samples. Ellipses: 

mixed water column (grey), stratification (black), hypolimnion (black dotted), taste-and-

odor event (shaded). Rectangles: Actinobacteria (solid line) and Cyanobacteria (dashed 

line). Blue dots represent bacterial OTUs and vectors are environmental parameters. Black 

dots are encoded as sampling dates – depths (S: surface; 3-meter; 6-meter and B: bottom). 
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The maxima of T&O compounds happen 37 days after a peak discharge of 236.7 

m3 s-1 that occurred on April 29th 2013.  A cross-correlation analysis of stream discharges 

versus metabolite concentrations recorded between April 1st and June 30th 2013 show a 

positive correlation of both MIB and GSM peaks with the inflow after a 37-day delay 

(Table 2.3). This delay value is closely similar to the reservoir’s calculated residence time 

of 39.5 days and supports the hypothesis that external import and delivery of off-flavor-

producing bacteria from the upstream watershed is part of the processes driving T&O 

production in this reservoir. However, during the months of April and May, average 

monthly retention times were shorter than the annual average; with 1.6 and 14.7 days 

respectively (Table 2.4). This implies than any imported bacteria would undergo a lag time 

prior to exponential growth and production of T&O compounds in the reservoir. 

Temperature plays a major role in bacterial growth but also in the production of metabolites 

[Usha Kiranmayi et al., 2011]. Reservoir water temperatures in April/May are cool 

(<16.7ºC) and far from optimal growth temperatures for freshwater planktonic 

Actinobacteria; i.e. 25-35ºC [Hahn and Pöckl, 2005]. In temperate lakes, freshwater 

Actinobacteria have lower growth rates and lower optimal growth temperatures (0.34 h-1 

and 28 ºC, respectively) compared to subtropical and tropical habitats (0.41 h-1 and 34 ºC) 

or culture media (0.6 h-1 and 35 ºC) [Flowers and Williams, 1977; Hahn and Pöckl, 2005]. 

The observed 37-day delay would provide enough time to support a slower growth rate of 

Actinobacteria and peak production of off-flavors metabolites as recorded by the end of 

May in Eagle Creek Reservoir. 
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Table 2.3: Cross-correlation between off-flavor metabolites (MIB, GSM) versus main 

tributary inflow (Q). Lags are expressed in days (d). 

 

MIB GSM 

Lag (d) Correlation p Lag (d) Correlation p 

-40 0.414 0.0493 -40 0.423 0.0443 

-39 0.412 0.0454 -39 0.516 0.0099 

-38 0.529 0.0065 -38 0.402 0.0461 

-37 0.582 0.0018 -37 0.665 0.0002 

-36 0.402 0.0376 -36 0.386 0.0466 

-35 0.233 0.2322 -35 0.249 0.2015 

-34 0.217 0.2671 -34 0.291 0.1329 

-33 0.334 0.0820 -33 0.096 0.6265 

-32 0.126 0.5139 -32 0.108 0.5783 

-31 -0.049 0.7966 -31 -0.057 0.7653 

-30 0.094 0.6146 -30 0.110 0.5559 

… … … … … … 

-3 -0.107 0.4488 -3 -0.028 0.8457 

-2 -0.216 0.1212 -2 -0.141 0.3153 

-1 -0.223 0.1047 -1 -0.132 0.3420 

0 -0.148 0.2825 0 -0.077 0.5781 

1 -0.152 0.2671 1 -0.120 0.3815 

2 -0.175 0.2000 2 -0.138 0.3167 

3 -0.156 0.2564 3 -0.141 0.3041 

 

Table 2.4: Mean monthly inflow discharge (Q, in cubic meters per second) and mean 

residence time (RT, in days) of Eagle Creek Reservoir, year 2013. 

 

 Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

N 365 31 28 31 30 31 30 31 31 30 31 30 31 

Mean Q 52.0 124.7 44.6 42.3 211.4 23.2 72.9 9.2 2.4 1.8 7.5 25.7 58.7 

Mean RT 39.5 2.7 7.7 8.1 1.6 14.7 4.7 37.0 139.5 193.3 45.8 13.3 5.8 

 

Summer stratification and T&O occurrences 

Epilimnion – Throughout the summer, the thermal stratification of the water 

column was strong and influenced the distribution of odorous metabolite-producing 

bacteria. The water column stratified from end of June to mid-September and some 
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geosmin production was observed in early July, likely due to the active growth of 

Nostocalean cyanobacteria Dolichospermum sp. in the epilimnion (a known Geosmin 

producer [Watson et al., 2016]. The production of geosmin was maximal around the depth 

of 3 meters (Figure 2.4). No other detection of geosmin was found throughout the summer 

period.  

Hypolimnion – Interestingly, the MIB signal was exclusively recorded in the 

hypolimnion of the reservoir, between 8 and 10 meters, whereas the upper parts of the 

water column was below detection (Figure 2.4). The 16S rRNA analysis documented the 

detection of Acidimicrobiales in June and again in late September and, Actinomycetales 

from June up to the end of October near the bottom. Actinobacteria are known to be 

prevalent and abundant in freshwater bottom sediment [Schrader and Blevins, 1993; 

Sugiura and Nakano, 2000] but the question of their survival under suboxic or anoxic 

conditions remains uncertain as abundances decrease with oxygen depletion [Taipale et 

al., 2009]. Here, the 16S signature near the bottom simply does not necessarily distinguish 

between live and dead or senescent cells. Actinobacteria that spread out after the 

application of an algaecide occupied the whole water column when it was mixed during 

the month of June. When thermal stratification began to occur from early July, 

Actinobacteria progressively disappeared from the top layers of the water column and then 

were found near the bottom. Also noteworthy, the tailing of MIB detections can be 

observed near the bottom whereas no geosmin was recorded in the hypolimnion. Most of 

bacterial OTUs found in the hypolimnetic zone are identified as Actinobacteria, 

specifically: the anaerobic cellulolytic Micromonospora [Leschine et al., 1988], the 

saprophytic and potentially pathogenic Mycobacterium [Kazda, 2010], the humic acid-

reducing Propionibacterium [Benz et al., 1998], and the alkaline soil indicator 

Yonghaparkia [Yoon et al., 2006]. As none of these taxa are documented as potential off-

flavor metabolite degraders, the recorded hypolimnetic MIB signal could simply result 

from cellular release after bacterial breakdown, with MIB remaining non-degraded 

afterwards. MIB concentrations that mimicked this Actinobacteria pattern thus reflect the 

release of dissolved metabolite into the bottom water after cellular death. 
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Distribution of T&O-producing bacteria 

Reservoir hydrology is a critical driver influencing the spatial distribution of 

bacterial OTUs [Šimek et al., 2011]. Seasonal mixing and thermal stratification create 

different habitats for bacteria; each having its own characteristics in term of light, pH, 

temperature, oxygen or nutrient gradients [Ramsing et al., 1996]. To assess the influence 

of the reservoir hydrological cycle on the seasonal successions of bacterial OTUs, a 

Canonical Correspondence Analysis (CCA) was used (Figure 2.5). For Eagle Creek 

Reservoir, this multivariate analysis illustrates the seasonal succession of Actino- and 

Cyanobacteria that are correlated to the hydrological regime (Figure 2.5a). During the 

spring mixing (grey ellipse), numerous OTUs belonging to Actinobacteria are strongly 

correlated to high stream discharges (Q) and nitrates (NO3). Vectors corresponding to off-

flavor metabolites also point out to that direction; with MIB towards the cloud of 

Actinobacteria such as Saccharopolyspora [Komatsu et al., 2008; Watson et al., 2016] and 

Streptomyces [Saadoun et al., 1997]; and GSM towards spring-blooming Cyanobacteria, 

such as Microcoleus [Izaguirre and Taylor, 1995], Phormidium [Izaguirre and Taylor, 

2004b] and Planktothrix [Kutovaya and Watson, 2014]. This observed pattern grouping the 

cyanobacteria with GSM and the Actinobacteria with MIB confirms the results of the 

Spearman’s rho test (Table 2.2). On the left side of Figure 2.5, the water column is more 

stable with higher water temperatures and higher stratification index values (RTRM). 

Under these conditions, the bacterial community is driven by summer Cyanobacteria that 

thrive in the epilimnion such as Aphanizomenon spp. and Anabaena spp. that can produce 

geosmin [Kutovaya and Watson, 2014; Suurnäkki et al., 2015], Cylindrospermopsis 

raciborskii, Anabaenopsis elenkinii and Prochlorothrix sp. correlate with elevated 

phycocyanin signals throughout the summer period.  

From late August, occurrences of other Cyanobacteria such as the benthic 

Oscillatoria [Izaguirre et al., 1983; Suurnäkki et al., 2015] and potentially the epiphytic 

Leptolyngbya [Wang et al., 2015] may also have contributed to the production of geosmin 

although individual contributions to the general background signal is often very difficult 

to assess [Juttner and Watson, 2007]. As the water column de-stratifies, occurrences of 

both MIB and geosmin are observed throughout the water column. According to Figure 

2.4, few Actinomycetales were present in the top layers of the water column in September 
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as the reservoir turns over. However, the presence of some Acidimicrobiales, i.e. 

Acidimicrobium and Acidithiobacillus, show no robust correlation with MIB or geosmin 

(Table 2.2). Meanwhile, the mixing-tolerant cyanobacteria Planktothrix (in the order 

Oscillatoriales, Figure 2.4) dominates the bacterial community. All co-occurring OTUs are 

known geosmin producers, i.e. the pelagic Planktothrix [Kutovaya and Watson, 2014], the 

benthic Calothrix [Kutovaya and Watson, 2014; Suurnäkki et al., 2015] and Nostoc [Taylor 

et al., 2006], and correlate positively to geosmin detections (Table 2.2). Increasing 

detections of geosmin were observed as the fall bloom of Planktothrix becomes more 

intense and severe in October. 

 

Role of nitrogen 

Taste-and-Odor Compounds – In Midwestern reservoirs, the production of 

secondary metabolites MIB and geosmin are likely to occur when the growth of potential 

producers is favored by low TN:TP < 30:1 (by mass) and low NO3:NH3 ratios [Harris et 

al., 2016]. The CCA from Figure 2.5a shows that elevated abundances of Actinobacteria 

and Cyanobacteria are correlated to low TN: TP and NO3: NH3 ratios. Peaks of MIB and 

geosmin occurred during the spring when TN:TP and NO3:NH3 ratios were lower than 12 

and 47 respectively; which is in concordance with Harris’s results [Harris et al., 2016]. A 

study in an Australian reservoir showed that occurrences of MIB were linked to increasing 

ammonia concentrations in water [Uwins et al., 2007]. In the present study, although 

geosmin shows no correlation to inorganic nitrogen, MIB levels are strongly linked to 

ammonia in water (p <0.01; Table 2.5) consistent with Uwins’ observations.  

Actinobacteria – These bacteria have shown a positive correlation between nitrogen 

concentration and production of odorous metabolites [Lind and Katzif, 1988]. In Eagle 

Creek Reservoir, most Actinobacteria (Table 2.5) are strongly correlated to high levels of 

nitrate (Arcanobacterium, p <0.001; Demequina, p <0.001; Rhodococcus, p <0.001) and 

to ammonia (Saccharomonospora, p <0.05; Streptomyces, p <0.01). This supports the CCA 

results (Figure 2.5) that these OTUs occurred during high discharge periods in spring 2013 

when nitrogen concentrations were maximal and then, supposedly the terrestrial origin of 

these bacteria from upstream watershed. While inorganic nitrogen may promote the growth 

of many Actinobacteria, Streptomyces a potent producer of MIB [Saadoun et al., 1997] is 
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the only OTU in Eagle Creek Reservoir that shows a concurrent positive correlation to NH3 

(Table 2.5; rho = 0.45, p <0.01) and to MIB occurrences (Table 2.3; rho = 0.42, p <0.01). 

Although Saccharomonospora has a similar profile as Streptomyces, its growth is more 

likely due to the presence of high NO3
- (p <0.001) in water rather than NH3 (p <0.05). 

Additionally, its own MIB biosynthesis capacity has never been demonstrated.  

Cyanobacteria – Conversely to Actinobacteria, the majority of Cyanobacteria are 

not correlated to nitrite levels or negatively correlated to nitrate and ammonia levels in the 

reservoir water (Table 2.5). Negative correlations are explained by the fact that most 

Cyanobacteria thrived in the epilimnion during the summer stratification when nitrogen 

was depleted. Non-heterocystous (Oscillatoriales, Pseudanabaenales) and heterocystous 

(Nostocales) Cyanobacteria also have the capacity to fix atmospheric nitrogen [Bergman 

et al., 1997; Fay, 1992] and do not exclusively rely on the reservoir’s nitrogen availability. 

 

 

Table 2.5: Correlation between inorganic nitrogen (Nitrite, NO2
-; Nitrate, NO3

- and 

Ammonia, NH3), major producing bacteria, off-flavor compounds MIB and GSM and, 

cyanotoxins (microcystins). Correlations with strong statistical significance are in bold 

with p < 0.05, *p < 0.01 and **p < 0.001. 

 

Phylum Order Genera  NO2
- NO3

- NH3 Metabolites 

Cyanobacteria Chroococcales Chroococcus 0.25 0.02 -0.37 - 
  Cyanobacterium -0.05 -0.53** -0.29 - 
  Microcystis  -0.11 -0.23 -0.27 - 
  Prochlorococcus -0.20 0.10 -0.09 - 

  Snowella  -0.02 -0.61** -0.13 - 

 Oscillatoriales Microcoleus  0.26 -0.17 -0.43* GSM 
  Oscillatoria  0.31 -0.14 -0.33 MIB, GSM 
  Phormidium 0.31 -0.14 -0.43* GSM 
  Planktothrix 0.27 -0.10 -0.45* GSM 
 Pseudanabaenales Leptolyngbya 0.08 -0.50** -0.17 MIB, GSM 

  Limnothrix  0.12 -0.24 -0.28 - 

  Prochlorothrix -0.10 -0.62** -0.03 - 
  Pseudanabaena 0.03 -0.09 -0.45* MIB, GSM 
 Nostocales Aphanizomenon -0.09 -0.21 -0.33 GSM 
  Calothrix  0.24 -0.18 -0.43* GSM 
  Cylindrospermopsis -0.08 -0.33 -0.42* - 

  Dolichospermum -0.05 0.16 -0.27 - 

  Nostoc  0.26 0.04 -0.53** GSM 
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Actinobacteria Actinomycetales Arcanobacterium -0.12 0.70** 0.08 - 

  Cryobacterium -0.13 0.41* 0.09 - 

  Demequina  0.07 0.59** 0.23 - 
  Georgenia  -0.10 0.58** 0.21 - 
  Mycobacterium 0.16 -0.20 0.29 - 
  Nocardia  0.04 -0.63** 0.18 MIB, GSM 
  Rhodococcus 0.15 0.71** -0.18 - 

  Saccharomonospora 0.05 0.49** 0.32 - 

  Saccharopolyspora 0.33 0.59** -0.35 MIB, GSM 

  Sanguibacter 0.07 0.58** 0.20 - 
  Streptomyces -0.12 0.00 0.45* MIB, GSM 

  Streptosporangium 0.25 -0.35 0.11 - 

Metabolites  MIB -0.09 -0.22 0.45*  

  GSM 0.16 -0.29 -0.08  

  Microcystins -0.18 -0.04 -0.07  

 

 

Conclusions 

 

In Eagle Creek Reservoir, recurring major T&O episodes are very frequently 

observed during the spring and the fall while fewer detections are recorded during the 

summer time. These odorous events usually occur after the reservoir has received inflows 

from its main tributary in April and May. Spring episodes of MIB and geosmin have in 

general longer durations and are more intense than any other times later in the year. High 

stream discharges bring in nutrients and mix the reservoir water columns. These conditions 

are favorable to support the growth of some Actinobacteria (Streptomyces) and 

Cyanobacteria (Planktothrix) that are involved in the in situ production of MIB and 

geosmin. In the present study, a lag phase of 37 days between a major peak discharge and 

highest detections of both metabolites in the reservoir waters was observed. This lag phase 

seems to represent the time required for Actinobacteria to be transported from the 

watershed to the reservoir, to adapt to a non-optimal growth temperature and then 

synthetize off-flavor metabolites. This information provides a useful clue for managers 

desiring to anticipate major odorous events and may want to disrupt the bacterial growth 

before it becomes severe. Geosmin was strongly linked to the presence of Planktothrix in 

the reservoir while MIB detections frequently occurred when Streptomyces was around. 
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As seen in Eagle Creek Reservoir, algaecide treatment was only effective against 

Cyanobacteria and disrupted the geosmin production whereas it had little impact on 

Actinobacteria and MIB which remained detectable in the water a couple of weeks after 

the treatment. This observation highlights a difference in the chemical and biological 

behavior of the two metabolites MIB and GSM which should influence the choice of 

decision makers before treating a water supply reservoir. Genetics remains an important 

tool while studying bacterial communities in aquatic environments. The 16S method can 

provide key insights regarding the presence of potential T&O-producing bacteria at a given 

time compared to traditional morphologically based microscope counting techniques that 

can miss information about species without morphological distinctiveness, such as the 

Actinobacteria. 
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CHAPTER 3 – BACTERIOPLANKTON COMMUNITIES’ COMPOSITION IN A 

EUTROPHIC RESERVOIR DURING OCCURRENCES OF TASTE-AND-ODOR 

COMPOUNDS MIB AND GEOSMIN 

 

‘Be fruitful and multiply and, replenish the earth’  

Genesis I, v.28 

 

Introduction 

 

Over the past decades, rRNA-based technologies have promoted the study of the 

microbial diversity [Griffiths et al., 2000; Marchesi et al., 1998; Rheims et al., 1996] and 

led scientists to refinements in their understanding of the uncultured and undiscovered 

microorganisms which were recognized as a major component of all bacterial communities 

[Amann et al., 1995; Hugenholtz et al., 1998]. With the development of the polymerase 

chain reaction (PCR) technique [Pace et al., 1986; Vosberg, 1989], the inventory for 

bacterial taxa from any environmental sample was made possible without cultivation 

[Giovannoni et al., 1990]. Most surveys were performed in marine systems to characterize 

picoplankton [Giovannoni et al., 1995; Schmidt et al., 1991] and microbial communities in 

soil environments [Bruce et al., 1992; Rondon et al., 2000] whereas there were very limited 

insights into what bacterial communities could look like in freshwater habitats; with the 

exception of the phylum of Cyanobacteria which could easily be grown on culture media 

[Hugenholtz et al., 1998] and as morphologically distinct forms under the microscope 

[Zapomělová et al., 2008]. Since the late 1990’s, randomly cloning environmental DNA 

techniques, known as metagenomics [Handelsman et al., 1998], have emerged and 

constantly add to existing 16S rRNA databases that illustrate the diversity of the microbial 

world. Meanwhile, scientists realize that the microbial diversity is much larger than they 

were able to estimate prior to the advent of molecular methods [Pace, 1997] and high 

throughput sequencing techniques [Zarraonaindia et al., 2013]. 

The extensive use of these molecular tools in the exploration of microbial diversity 

has enabled the identification of bacterioplankton in freshwater ecosystems [Eiler and 

Bertilsson, 2004; Newton et al., 2011; Zwart et al., 2002]. The bacterioplankton 

communities’ composition (BCC) holds a central role in aquatic food webs [Pernthaler, 
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2005], plays a significant role in carbon- and nutrient-cycling, and is involved in many 

biochemical processes [Cotner and Biddanda, 2002]. Through many studies, the BCC has 

been shown as greatly variable between different freshwater lakes [Keshri et al., 2018; 

Lindström, 2000; Van Der Gucht et al., 2001] and its growth is highly influenced by 

environmental factors such as geographical regions [Lindström and Leskinen, 2002], water 

temperature [Keshri et al., 2018; Pearce, 2005], pH and water retention [Lindström et al., 

2005], nutrient loads [Haukka et al., 2006; Van der Gucht et al., 2005] and, potentially the 

lake trophic status [Eiler and Bertilsson, 2004; Lindström, 2000; Yannarell et al., 2003]. 

The BCC of freshwater environments is typically dominated by Actinobacteria [Keshri et 

al., 2018; Tanaka et al., 2017], Bacteroidetes [Schmidt et al., 2016; Šimek et al., 

2001], Cyanobacteria [Ávila et al., 2016; Su et al., 2017; Woodhouse et al., 2016; Zhao et 

al., 2016], or Proteobacterial bacterioplankton [Olapade, 2017; Salmaso et al., 2017; Wu 

et al., 2012]. The broad range of complex interactions between taxa within the 

bacterioplankton community, and between taxa with environmental factors, has been 

proposed using association networks [Fuhrman, 2009; Steele et al., 2011].  

Cyanobacteria are frequently involved in the production of bioactive compounds of 

concerns such as cyanotoxins and taste–and-odor compounds [Carmichael, 1992]. 

Worldwide reports show that various T&O compounds can be a source of nuisance in water 

bodies; these secondary metabolites during odorous outbreaks in drinking water supply 

reservoirs are caused by microbial growth [Juttner and Watson, 2007]. Unpleasant T&O 

occurrences of earthy/musty terpenoids such as geosmin (GSM) and 2-methyl-isoborneol 

(MIB) are common [Watson et al., 2008; Westerhoff et al., 2005]. In aquatic environments, 

the main source of T&O compounds are Cyanobacteria and Actinobacteria [Juttner and 

Watson, 2007; Watson et al., 2008]. Deteriorating the water quality, T&O occurrences in 

source waters are often associated with seasonal blooms of Cyanobacteria [Li et al., 2007; 

Su et al., 2015] while Actinobacteria contributions are often neglected.  

MIB was first characterized as a methylated monoterpene (C11) alcohol and, 

geosmin as a degraded sesquiterpenoid (C12) alcohol that has lost an isopropyl group (C3), 

both derived from the biosynthesis of C5 isoprene units [Bentley and Meganathan, 1981]. 

These compounds have relatively low molecular weights; i.e. 168.28 g. mol-1 for MIB 

(CAS #2371-42-8) and 182.31 g. mol-1 for geosmin (CAS #19700-21-1) [Pirbazari et al., 
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1992], moderate solubility, and moderate hydrophobicity [Song and O’Shea, 2007]. 

Biosynthetically, terpenes are generated by terpene cyclases (=isoprenoid synthase type I) 

from linear precursors: geranyl diphosphate (GPP), the immediate precursor of C10 

monoterpenes and, farnesyl diphosphate (FPP) of cyclic C15 sesquiterpenes [Cane et al., 

2006]. These terpene cyclase enzymes, i.e. the MIB synthase [E.C. 4.2.3.118] [Wang and 

Cane, 2008] and the germacradienol/geosmin synthase [E.C. 4.1.99.16] [Jiang and Cane, 

2008] were both identified in the actinobacterium Streptomyces coelicolor. Biosynthesis 

of terpenes can follow two different pathways and both can be used by the same organism. 

The 2-methylerythritol-4-phosphate (MEP) pathway is considered to be prevalent in 

bacteria such as Actinobacteria and Cyanobacteria [Kuzuyama, 2002; Lange et al., 2000; 

Spiteller et al., 2002] whereas the mevalonate (MVA) pathway would be the preferred 

route by Myxobacteria, Archaea and Eukaryotes [Boucher et al., 2004; Dickschat et al., 

2005] of the two isoprenoid precursors: isopentenyl pyrophosphate (IPP) and the dimethyl-

allyl diphosphate (DMAPP) biosynthesis. However, there are exceptions as some bacteria 

do possess the MVA pathway [Bochar et al., 1999]. 

The use of the metagenomics technique would allow to characterize the BCC, 

assuming that both T&O-producing Cyanobacteria and Actinobatceria cooccurred and 

were highly abundant during the odorous events of Eagle Creek Reservoir. Similarly, 

during those events, detections of key enzymes involved in the biosynthtetic pathways of 

MIB and GSM should be enhanced as the expression of the MIB and GSM synthase genes 

is increased as both odorous compounds were recorded in the reservoir water. The aim of 

the present work was to identify geosmin- and MIB-producing bacteria in Eagle Creek 

Reservoir using a shotgun sequencing approach in order to illustrate the connections 

between microbial organisms and environmental variables. Co-occurring bacteria during a 

T&O outbreak could reveal potential associations of species. The shotgun technique also 

allows to screen for metabolic enzymes involved in the biosynthetic pathways of geosmin 

and MIB. The recovery of key enzyme would unmask critical producers if the relationship 

is assessed. 

 



 

56 

Materials and Methods 

 

Study site 

Eagle Creek Reservoir (39°51’20”N, 86°17’39”W) located in central Indiana 

(Figure 3.1), receives drainage from 419.6 km2 of the Eagle Creek Watershed (HUC 

05120201120). The reservoir was constructed in 1967 to provide flood control and then 

drinking water for the city of Indianapolis and surrounding communities. The maximum 

depth ranges from about 11 to 13 meters, with the deepest areas located in the southern 

basin, near the dam. Eagle Creek Reservoir is a small, dimictic, and eutrophic water body 

with seasonal thermal stratification from June to September. Reservoir mixings usually 

occur in April/May and October each year. The mean annual discharge of Eagle Creek, the 

main tributary, is 35.74 m3.s-1 with maxima recorded between April and June. The 

calculated residence time of the reservoir is 39.5 days. 

 

Figure 3.1: Sampling site location (black dot) near Eagle Creek Reservoir dam. 

 

Sample collection and processing 

Water collection – Water samples were collected in May, July and October 2013 

near the dam where the strongest water column stratifications occur (Figure 3.1). Discrete 

water samples were collected with a vertical Van Dorn sampler at four different depths 
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corresponding to sub-surface (0 m), epilimnion (3 m), metalimnion (6 m) and hypolimnion 

(9-10 m), i.e. 1 meter above the water-sediment interface. A total of 11 samples was 

collected as the sub-surface sample from October did not recover enough genetic materials 

to be processed. A submersible multi-parameter V2-6600 YSI probe (YSI, Inc., Yellow 

Spring, OH) was deployed to measure water temperature (Temp, °C) and pH (s. u.) at each 

sampling depth. 

Nutrients and T&O compounds analysis – Water sample splits were stored in 1-L 

white HDPE bottles for nutrient analyses and brown amber glass jars with no headspace or 

bubbles to avoid the volatilization of methylisoborneol (MIB) and geosmin (GSM). All 

samples were stored on ice for transport to the laboratory. Inorganic nitrogen forms were 

measured by ion chromatography using a Dionex DX-500 ion chromatograph applying the 

EPA 300.0 method [USEPA, 1993a]. Total Kjeldahl Nitrogen (TKN) was determined by 

digestion of organic nitrogen compounds with sulfuric acid, then followed by free-

ammonia determination by ion selective electrode [USEPA, 1993b]. Total P was measured 

by the ascorbic acid colorimetric method [USEPA, 1974]. Methylisoborneol and geosmin 

concentrations were quantified by a Head-Space Solid-Phase Micro-Extraction (HS-

SPME) combined with a Gas Chromatography-Mass Spectrometry (GC-MS) to analyze 

the volatile and odorous compounds [APHA, 2000]. 

Bacterioplankton community composition – After collection near the dam, all 

discrete samples (i.e. 0m, 3m, 6m and 10m) were put on ice in autoclaved 1-L HDPE brown 

bottles and filtered in the lab through 0.22 µm mesh size pores on a sterile glass filtration 

unit, then frozen for storage in 15-mL Falcon tubes. Samples were later shipped to Illumina, 

Inc., San Diego, CA for analysis on frozen filters to determine the phylogenetic structure 

of the BCC by next-generation sequencing (NGS) Shotgun Metagenomics method. 

Sequencing-ready libraries were prepared using the Prep Kits for MiSeq v.3 Nextera XT, 

Illumina. Data outputs were uploaded on the MG-RAST server [Meyer et al., 2008] for k-

mer alignments and taxonomic profiles; using the Refseq and SEED Subsystems databases 

for OTUs and hierarchical annotations. Cut-off values for abundance profiles of harvested 

reads were set to 10-5 (e-value), 70% identity and a minimal alignment of 15 nucleotides. 
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Measurement of sample biodiversity 

In order to compare each sample’s biodiversity and complexity, we used indices 

that combine richness and abundance. The simplest metric to measure biodiversity is the 

Specific Richness (S) that corresponds to the number of species present in the sample 

[Whittaker, 1972]. Shannon’s diversity (H’) is commonly used for assessing species 

diversity between different habitats/ samples [Hutcheson, 1970]. Simpson’s dominance 

(D) measures the probability that two random individuals from a sample belong to the same 

species. D index is simply the inverse of Simpson’s original index [Simpson, 1949] and is 

commonly used to emphasize the diversity [Magurran, 2004]. Simpson’s evenness (E) 

takes a value between 0 and 1, with 1 assuming that individuals are completely evenly 

distributed in the community [Hill, 1973]. Calculations of diversity indices are shown in 

Supplemental Table S1. 

 

Sequence processing 

A bacterioplankton abundance heat map was generated using the matrix 

visualization software Morpheus from the Broad Institute website 

(https://software.broadinstitute.org/morpheus/). Descriptive statistics, Non-metric Multi-

dimensional Scaling (NMDS) and Correspondence Analysis (CA) were generated using 

the PAST 3.1 software [Hammer et al., 2001]. For NMDS, sample dissimilarities derived 

from Bray-Curtis distances weighted on OTU abundances. The CA shows the relationships 

between OTUs and enzyme reads identified from the MG-RAST SEED Subsystems 

database. 

 

Network construction 

All 11 samples were used for the construction of a global network of bacterial 

OTUs interacting with environmental parameters using Cytoscape 3.6.0 software [Shannon 

et al., 2003]. Only OTUs belonging to Actinobacteria and Cyanobacteria were illustrated 

and identified down to the genus level whereas all other bacteria were grouped up at the 

phylum level for visual clarity. Global and sub-sequent networks were generated using the 

‘Prefuse Force Directed and Unweighted’ and the ‘Hierarchical Edge Bundling’ 

algorithms to reduce visual clutter of adjacent edges between parent nodes [Holten, 2006]. 

https://software.broadinstitute.org/morpheus/
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The relative abundances of each taxonomic groups were extracted in order to build a 

correlation matrix. Both correlation r and significance p matrices were generated by 

calculating all pairwise Spearman’s rank correlation possibilities between all OTUs and, 

all OTUs versus environmental variables. For network constructions, only robust and 

significant correlations (r >0.6 and p <0.05; r >0.7 and p <0.01) were retained [Barberán 

et al., 2012]. 

 

Results 

 

Bacterioplankton diversity and seasonal variations 

In Eagle Creek Reservoir, the Specific Richness (S) did not show any significant 

differences within the water column and throughout seasons (Figure 3.2A); with the lowest 

S (590 genera) near the bottom in fall and the highest S (599 genera) at 6 meters during the 

spring (Supplemental Table S2). The average Shannon’s diversity (H’) index was equal to 

3.63 for all seasons and depths combined; with both lowest (2.74) and highest (4.98) values 

found near the bottom during the fall and summer respectively (Figure 3.2B). Simpson’s 

dominance (D) index increased with depth independently of the season. Highest values of 

D were found near the bottom of the water column and during the fall (Figure 3.2C). 

Reversely, Simpson’s evenness (E) tended to increase with upper layers of the water 

column although the bottom layer in summer displayed the highest value while the 

reservoir was stratified (Figure 3.2D). 

In each sample, harvested 16S rRNA reads were assigned to different taxonomic 

ranks from phyla to genera and used to determine the relative abundances of the top 5 most 

abundant phyla (Supplemental Table S3) and top 5 genera in each of these phyla (Figure 

3.3). From spring to fall, Actinobacteria were the most abundant bacterial group in all 

samples. The highest and the lowest abundances of Actinobacteria were both recorded in 

the hypolimnion (10-m) during the spring (83.9%) and the summer (24.8%), respectively. 

Within the water column, Actinobacteria always represented more than 60% of the total 

bacterioplankton community except during the summer when they tend to be less abundant. 

The genus Arthrobacter is by far the most representative out of the 66 actinobacterial OTUs 

and its individual abundance exceeded more than 40% of the total bacterial community 
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during the fall in the whole water column (Figure 3.3). Proteobacteria were the second most 

abundant (Supplemental Table S3) with Acidovorax whose maximal abundance reached 

1.03% at 3-m depth during the spring, being the most representative genus out of 271 

OTUs. Then, Firmicutes with 99 OTUs and Bacteroidetes with 42 OTUs were represented 

by the genera Bacillus (>5% in the upper layer in spring and summer) and Flavobacterium 

(max. abundance 0.46% at 10-m in summer), respectively. Finally, Cyanobacteria always 

maintained the 5th position with less than 3% of the total bacterioplankton abundance. 

However, their abundance jumped to 7.5% near the surface during the summer 

(Supplemental Table S3). This increase was due largely to increases of the pico-

cyanobacteria Synechococcus (Figure 3.3). 

 

 

 

Figure 3.2: Spatial (depth: 0, 3, 6 and 10 meters) and temporal (seasonal) variations of the 

bacterioplankton community alpha-diversities in Eagle Creek Reservoir. A) Specific 

richness [S]; B) Shannon’s diversity [H’]; C) Simpson’s dominance [D]; and, D) Simpson’s 

evenness [E]. 
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Figure 3.3: Heat map of the top 5 most abundant bacterioplankton phyla and their top 5 

genera in Eagle Creek Reservoir discrete water samples. 

 

 

 

Figure 3.4: Non-metric multidimensional scaling (NMDS) plot illustrating the similitude 

of bacterioplankton assemblages among Eagle Creek Reservoir’s 11 water samples. 

Seasons were represented with different colors such as spring (blue), summer (yellow) and 

fall (green). 
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These results suggest that the presence and the dominance of some bacterial OTUs 

are influenced by both its position within the water column and seasons. The different 

community assemblages of Eagle Creek Reservoir bacterioplankton were compared using 

a NMDS analysis. The NMDS analysis confirmed the well-separated and successive 

bacterioplankton communities along time (horizontal axis) and space (vertical axis) 

gradients (Figure 3.4). The BCC from sub-surface (00-m) and epilimnetic (03-m) samples 

are clustered and not very dissimilar in May and July, and between 03-m and 06-m in 

October compared to bottom samples. This highlights homogeneous water layers and, by 

extension, partially mixed conditions during the months of May and October and, a well 

stratified water column in July (Figure 3.4). The low stress value of 0.028 indicates the 

very good fit of the NMDS (R2> 0.97). 

 

Seasonal variations of MIB and Geosmin 

Eagle Creek Reservoir witnesses frequent T&O episodes of both MIB and geosmin 

annually. Usually, these odorous events occur during the spring and the fall; peaks in 

concentration are recorded in May and/or September. In 2013, MIB and GSM co-occurred 

during the month of May. Maximal concentrations of MIB and GSM reached 120.9 and 

51.4 ng. L-1, respectively (Supplemental Table S4). Such elevated levels of MIB and GSM 

were not recorded again and the month of May remained the major episode of T&O in the 

reservoir in 2013. Detections of the odorous compounds barely exceeded 20 ng. L-1 in 

October and minima were recorded in July. 

 

Bacterial consortia and environmental parameters 

Interactions of environmental variables on Eagle Creek Reservoir’s BCC and 

interspecific relationships are represented by an association network where edges represent 

robust (r >0.6) and significant (p >0.05) positive correlations (full lines) and negative 

correlations (dotted lines). Most OTUs are clustered in four different groups based on 

species-species relationships defined by their direct first neighbors; thus forming two 

predominant bacterial consortia (CI and CII) and two peripheral minor ones (Ci and Cii; 

Figure 3.5).  
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Figure 3.5: Global network of Eagle Creek Reservoir bacterioplankton communities’ 

composition. Only correlations that are strong (r > 0.6) and statistically significant (p < 

0.05) are shown by full gray lines (positive correlations) and dotted lines (negative 

correlations). Legend: diamonds) Environmental variables: GSM, geosmin; MIB, 

methylisoborneol; NH3, ammoniac nitrogen; NO3, nitrate nitrogen; pH; Temp, 

Temperature; TP, Total Phosphorus; circles) OTUs with Actinobacteria (blue), 

Cyanobacteria (red), Bacter (Bacteroidetes; gray), Proteo (Proteobacteria; gray), Firm 

(Firmicutes; gray) and Others (other bacteria; gray). Circle size represents OTU abundance, 

such as small (<2%), medium (2-5%) and large (> 5%). OTUs are grouped in major (CI 

and CII) and minor (Ci and Cii) consortia. List of OTUs can be found in Table S5. 
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Each bacterial consortium tends to be driven by some environmental variables. 

Consortium I shows a dominance of Cyanobacterial genera such as Lyngbya (Cyan-10), 

Microcystis (Cyan-12), Prochlorococcus (Cyan-16) and Synechococcus (Cyan-18) in 

association with members of Bacteroidetes (Bacter) and numerous minor actinobacterial 

OTUs; CI is driven by NO3-N. Adjacent minor consortium Ci is dominated by Clavibacter 

(Acti-16), unclassified Actinobacteria (Acti-65) and Firmicutes (Firm); all driven by 

temperature. Bacteria from consortium CII are clustered around the T&O compounds MIB 

and geosmin (GSM); i.e. the dominant Arthrobacter (Acti-8), Leifsonia (Acti-34) and 

Rhodococcus (Acti-47), cyanobacteria belonging to Anabaena (Cyan-2), Arthrospira 

(Cyan-3), Cyanobium (Cyan-5), Cyanothece (Cyan-6), Nostoc (Cyan-14), Synechocystis 

(Cyan-19), Trichodesmium (Cyan-21). These OTUs are also grouped with Proteobacteria 

and other bacteria (Figure 3.5). Furthermore, the CII cluster is also linked to total 

phosphorus (TP; p < 0.05). The minor Cii consortium is represented by Microcoleus (Cyan-

11), Nodularia (Cyan-13) and Renibacterium (Acti-46) and several minor Actinobacteria 

(Figure 3.5). 

 

Bacteria and metabolic pathways 

The metagenomics analysis recovered and identified several enzymes involved in 

the two independent metabolic pathways, i.e. Mevalonate (MVA) and Methyl-Erythritol-

Phosphate/Deoxy-Xylulose-Phosphate (MEP/DOXP) pathways (Table 3.1). A 

Correspondence Analysis using enzyme reads and most abundant OTUs from each 

bacterial groups found in the spring sample (May 2013) when MIB and GSM 

concentrations were the highest in the reservoir water is illustrated on Figure 3.6. The two 

first axes explain more than 97.9% of the variability of the dataset, with 82.4% for axis I 

and 15.5% for axis II, respectively. The primary axis highlights the spatial distribution of 

OTUs and enzymes across the water column while the secondary axis focuses more on the 

sampling depth of 3 meters. It appears that the most abundant actinobacterial OTUs are 

gathered near the surface (00-m) and clustered around the cmk enzyme from the MEP 

whereas Streptomyces (Acti-58) is more present in the 3-m depth sample. Most abundant 

OTUs belonging to the Firmicutes looks to be exclusively present in the sub-surface sample 

(00-m). Cyanobacteria are stretched out between surface and 3 meters. Their abundances 
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tend to correlate with numerous copies of dxs, dxr and IDI enzyme reads. Bacteroidetes 

and Proteobacteria are clearly occurring the 3-m depth water layer. These two groups seem 

to correlate with enzymes involved in the MVA pathway. Enzymes from both pathways 

are more abundant in the top layers of the water column, i.e. 00-m and 03-m (Figure 3.6). 

 

 

 

 

 

 

Figure 3.6: Correspondence Analysis (spring 2013) of main bacterioplankton OTUs and 

enzymes from the mevalonate (MVA, squares) and Methyl-Erythritol-Phosphate pathway 

(MEP, filled squares). Legend: Actinobacteria (blue crosses), Bacteroidetes (light green 

dots), Cyanobacteria (triangles), Firmicutes (dark green dots) and Proteobacteria (blue 

dots) and other bacteria (diamond). List of enzymes and OTUs can be found in Tables 3.1 

and S5, respectively. 
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Table 3.1: Recovered enzymes from the two isoprenoid pathways MVA and MEP/ DOXP 

and, the two enzymes leading to precursors of monoterpenes (DMATT) and sesquiterpenes 

(FPS). 

 

Pathway Enzyme Name Nomenclature 

Mevalonate 

(MVA) 

AACT acetoacetyl-CoA thiolase EC 2.3.1.9 

HMGS hydroxymethylglutaryl-CoA synthase EC 2.3.3.10 

HMGR hydroxymethylglutaryl-CoA reductase EC 1.1.1.34 

MVK mevalonate kinase EC 2.7.1.36 

PMK phosphomevalonate kinase EC 2.7.4.2 

MVD mevalonate 5-diphosphate decarboxylase EC 4.1.1.33 

Non-

Mevalonate 

(MEP/DOXP) 

dxs 1-deoxy-D-xylulose-5-phosphate synthase EC 2.2.1.7 

dxr 1-deoxy-D-xylulose-5-phosphate reductoisomerase EC 1.1.1.267 

mct 2-C-methyl-D-erythritol 4-phosphate 

cytidylyltransferase 

EC 2.7.7.60 

cmk 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol 

kinase 

EC 2.7.1.148 

hdr 4-hydroxy-3-methylbut-2-enyl diphosphate reductase EC 1.17.1.4 

IDI isopentenyl-diphosphate Delta-isomerase EC 5.3.3.2 

Monoterpenes DMATT dimethylallyltranstransferase EC 2.5.1.1 

Sesquiterpenes FPS farnesyl pyrophosphate synthase EC 2.5.1.10 

 

 

Discussion 

 

Influence of nitrate nitrogen and temperature 

The study of Eagle Creek Reservoir’s bacterioplankton allowed us to identify four 

different clusters that seem to be driven by two major environmental factors, i.e. nitrate 

nitrogen and temperature (Figure 3.7). The first identified cluster CI (Figure 3.5) shows a 

tight connection with nitrate nitrogen and a dominance in abundance of Cyanobacteria, 

either benthic like Lyngbya (Cyan-10) or pelagic such as Microcystis (Cyan-12), the two 

picocyanobacteria Prochlorococcus (Cyan-16) and Synechococcus (Cyan-18). Next, the 

minor Ci cluster looks like being an offshoot of CI and tends to be more influenced by 

higher water temperatures which seems to be favorable for the growth of Clavibacter (Acti-

16), Firmicutes, and many minor Actinobacteria like Actinosynnema, Amycolatopsis, 

Beutenbergia, Cellulomonas and Xylanimonas. Together, temperature and NO3-N seem to 

be more favorable conditions for the growth of Actinobacteria (25 OTUs or 37.9% of total 
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Actinobacteria) and Firmicutes (Figure 3.7). Nitrate nitrogen is also positively correlated 

with pH whereas it shows a negative relationship with NH3-N, Arthrobacter (Acti-8), 

Geodermatophilus (Acti-25) and Raphidiopsis (Cyan-17). Temperature is negatively 

correlated to NH3-N and some unclassified cyanobacterial OTUs (Cyan-22). Total 

phosphorus is not linked to any T&O compounds although it is positively correlated to the 

growth of Synechocystis (Cyan-19; Figure 3.5). 

 

 

Figure 3.7: Relationships between nitrate-nitrogen, temperature and bacterioplankton 

OTUs in Eagle Creek Reservoir. Significant correlations (p < 0.05) are represented by dark 

colored edges and robust correlations (p < 0.01) by light colored edges. Circle size 

represents OTU abundance, as explained in Figure 3.5 legend. 
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Potential T&O producers 

Occurrences of T&O compounds in the reservoir’s waters are tightly bound to the 

consortium CII of bacterial OTUs (Figure 3.5). Members of Actinobacteria and 

Cyanobacteria are well described as strong producers of either MIB or GSM and eventually 

both compounds. While several OTUs are co-occurring during a taste-and-odor event, it is 

very often difficult to characterize individual contributions to the production of odorous 

compounds. Furthermore, the most abundant OTUs may not be the most active producers 

[Juttner and Watson, 2007].  

Occurrences of MIB – Detections of MIB are correlated (r > 0.6; p <0.05) to the 

presence of three abundant cyanobacterial OTUs (Figure 3.8A), i.e. the pelagic Cyanothece 

(Cyan-06) and Synechocystis (Cyan-19) and, the benthic Nostoc (Cyan-14) and the lesser 

abundant Cylindrospermum (Cyan-8). However, none of these Cyanobacteria are known 

producers of MIB [Juttner and Watson, 2007; Watson et al., 2016]. Actinobacteria are well 

known as MIB producers; with Streptomyces (Actino-58) being frequently reported as a 

strong MIB producer [Juttner and Watson, 2007; Sugiura et al., 1994; Zaitlin et al., 2003b]. 

The recent discovery of the gene encoding for MIB synthase in Micromonospora (Acti-36) 

[Citron et al., 2012] also broadens the spectrum of potential MIB producers in Eagle Creek 

Reservoir during outbreaks. 

Streptomyces who are commonly found in stream, river, lake waters [Johnston and 

Cross, 1976b; Willoughby, 1969; Zaitlin et al., 2003a] and sediments [Jiang and Xu, 1996] 

are frequently accompanied by other Actinobacteria such as Micromonospora and 

Rhodococcus [Cross, 1981]. The presence of Actinobacteria in surface waters is often 

found associated with sediments [Johnston and Cross, 1976a]. The Eagle Creek watershed 

characteristics, land use and soil types have not been investigated during this study but 

Actinobacteria found in the reservoir waters are possibly coming from the agricultural soil 

erosion. Spore-carrying soil particles would be transported by Eagle Creek and other 

tributaries to finally seed the reservoir. 
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Figure 3.8: Relationships between bacterioplankton OTUs and A) MIB and, B) Geosmin 

(GSM). Significant correlations (p < 0.05) are represented by dark colored edges and robust 

correlations (p < 0.01) by light colored edges. Circle size represents OTU abundance, as 

explained in Figure 3.5 legend. 

 

A 

B 
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Occurrences of GSM – On Figure 3.8B, there is a strong correlation (r > 0.7; p < 

0.01) between GSM detections and occurrences of Synechococcus (Cyan-18) although this 

OTU is not known as a potential producer [Juttner and Watson, 2007]. Moreover, seven 

other co-occurring cyanobacterial OTUs positively correlate as well (p < 0.05) but only 

two are well-known producer of geosmin; i.e. Anabaena (Cyan-02) [Tsao et al., 2014] and 

Trichodesmium. However, an anomaly was detected here as Trichodesmium is almost 

exclusively described as a marine organism [Capone et al., 1997]. Routine visual 

identification of cyanobacterial taxa under a photonic microscope reported co-occurrences 

of Planktothrix agardhii and P. rubescens in Eagle Creek Reservoir during the month of 

May 2013. This genus is frequently cited as a MIB- and geosmin-producing bacteria 

[Durrer et al., 1999; Juttner and Watson, 2007]. In addition, Trichodesmium and 

Planktothrix belong to the same new family rank (status novus) Microcoleaceae (ex-

Phormidiaceae) from the cyanobacterial order of Oscillatoriales [Komárek et al., 2014] 

and a misidentification in the Refseq database could have easily happened due to the 

phylogenetic proximity/similarity of these two OTUs (Supplemental Table S6). 

The geosmin-producing Streptomyces (Acti-58) [Juttner, 2007], non-producing 

Leifsonia (Acti-34) and 13 other less abundant actinobacterial OTUs also show a positive 

relationship with GSM. Among these lesser abundant OTUs, presumed geosmin synthases 

were identified in Frankia (Acti-23) and Saccharopolyspora [Ghimire et al., 2008], cryptic 

and silent synthase genes have been revealed in others like Streptosporangium (Acti-59) 

[Yamada et al., 2012] and recently confirmed in Nocardiopsis (Acti-42) [Sun et al., 2017]. 

Again, individual contributions to the final signal of geosmin recorded in Eagle Creek 

Reservoir is hard to assess and the origin of GSM outbreaks may come from a cocktail of 

various OTUs belonging to both Cyanobacteria and Actinobacteria. 

 

Metabolic pathways and enzymes 

In May 2013, during the major episode of T&O, the upper layers (0-3 meters) of 

the water column sheltered most of the Actinobacteria and Cyanobacteria OTUs (Figure 

3.6). Elevated densities of potential producers in these layers co-occurred with high 

abundances of both MVA and MEP enzymes which were undoubtedly active, compared to 

the deepest layers of 6 and 10 meters (Figure 3.6). As the SEED Subsystems database from 
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the MG-RAST server was unable to directly recover the key enzymes of interest; i.e. 

methylisoborneol synthase (EC 4.2.3.118) and germacradienol-geosmin synthase (EC 

4.1.99.16), we focused our attention on the two upstream enzymes producing the 

immediate compounds utilized by MIB and geosmin synthases. Thus, dimethyl-allyl-trans-

transferase (DMATT; EC 2.5.1.1), that catalyzes the reaction between dimethyl-allyl 

pyrophosphate and isopentenyl pyrophosphate (IPP), forms geranyl pyrophosphate (GPP) 

which leads to MIB production [Giglio et al., 2011; Komatsu et al., 2008] and, farnesyl 

pyrophosphate synthase (FPS; EC 2.5.1.10) catalyzes the conversion of GPP and IPP into 

farnesyl pyrophosphate (FPP) towards geosmin production [Cane et al., 2006; Jiang et al., 

2007]. On Figure 3.6, DMATT is abundant at the depths of 0 and 3-m whereas FPS is 

abundantly found at 3 meters. This difference in the spatial distribution seems to match the 

distribution of the two major groups of potential producers. DMATT near the surface 

mimics the presence of the most abundant Actinobacteria while FPS follows the pattern of 

Cyanobacteria. Anabaena (Cyan-02), Trichodesmium/Planktothrix (Cyan-21) and 

Streptotmyces (Acti-58) previously identified as the major players in the production of MIB 

and GSM in Eagle Creek Reservoir are also found clustered near the isopentenyl-

diphosphate delta-isomerase (IDI; EC 5.3.3.2) which is responsible of the reversible 

conversion of two isoprenoid precursors: isopentenyl pyrophosphate (IPP) and dimethyl-

allyl pyrophosphate (DMAPP), independently synthesized by the MVA or MEP pathways 

[Lombard and Moreira, 2010]. This close connection demonstrates that both pathways and 

enzymes are active in the upper layers, although the MEP pathway is the preferred route of 

Actino- and Cyanobacteria [Kuzuyama, 2002; Lange et al., 2000]. The GPP monoterpene 

precursor can also lead to the synthesis of other odorous compounds such as limonene, 

pinene or camphor [Trudgill, 1990] and, FPP the product of FPS is the precursor to a wide 

variety of sesquiterpenes, aromas and essential oils, such as germacrene [Dewick, 2002] 

and its cometabolite germacradienol from whom geosmin would be a degradation by-

product [Yamada et al., 2015]. Nevertheless, the detection of MIB and GSM compounds 

in Eagle Creek waters means that both enzymes, DMATT and FPS, likely were active in 

the synthesis of T&O compounds.  
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Fate of MIB and Geosmin 

Since Actinobacteria and Cyanobacteria are abundant in natural water ecosystems, 

it is expected that the microbial breakdown of T&O compounds occurs. MIB has been 

found to be degraded by Pseudomonas, Enterobacter [Izaguirre et al., 1988; Tanaka et al., 

1996], Flavobacterium [Egashira et al., 1992] and Bacillus [Ishida and Miyaji, 1992; 

Lauderdale et al., 2004] while geosmin is degraded by Rhodococcus and Arthrobacter 

[Saadoun and El-Migdadi, 1998], Sphingopyxis [Hoefel et al., 2009], Sphingomonas and 

Novosphingobium [Ho et al., 2007] and, Comamonas [Guttman and van Rijn, 2012]. A 

slow degradation of T&O compounds can be stimulated by addition of ethanol which 

activates alcohol dehydrogenase [Saito et al., 1999]. This enzyme could enhance the 

degradation of MIB and geosmin as both are tertiary alcohols. Our data support that 

microbial degradation can occur in Eagle Creek Reservoir because of the presence of 

Flavobacterium, Novosphingobium, Sphingomonas and Pseudomonas. This would require 

a high microbial degradation rate to effectively remove elevated concentrations of MIB 

and geosmin in water bodies with long residence times, such as drinking water supply 

reservoirs and fish ponds. Unfortunately, information about microbial degradation rates of 

MIB or GSM in natural environments is not available in the current literature. Furthermore, 

several authors reported that both MIB and GSM compounds can simultaneously be found 

as dissolved or as cell-/particle-bound [Durrer et al., 1999; Jähnichen et al., 2011; Juttner 

and Watson, 2007; Peter et al., 2009]. The fractionation of these compounds in the water 

would affect their availability for biodegradation, their steadiness and even the efficiency 

of removal rates during the coagulation, flocculation and clarification in drinking water 

treatment plants. 

 

Conclusions 

 

The present study was able to characterize and identify bacterial OTUs in a 

eutrophic reservoir during an outbreak of MIB and geosmin as well as relationships 

between these organisms. Two major consortia of bacterioplankton were described. A 

consortium CI with a dominance of Cyanobacteria was driven by temperature, nitrate 

nitrogen and was reflective of epilimnetic conditions before nutrient exhaustion during the 
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summer stratification. The consortium CII mostly described conditions during T&O 

outbreaks with high concentrations of MIB and GSM in May, and in a lesser extent in 

October when water columns were partially mixed. A co-dominance of Actinobacteria and 

Cyanobacteria was observed in CII who were almost exclusively found in the upper layers 

of the water column, between 0 and 3 meters. Potential producers of MIB in Eagle Creek 

Reservoir have been identified as the actinobacterial Streptomyces and Micromonospora 

whereas geosmin-producing OTUs were the cyanobacterial Anabaena and Trichodesmium/ 

Planktothrix and, eventually Streptomyces. Individual contribution to the global signal of 

each T&O compound is difficult to assess. Delays and shifts in the growth of co-occurring 

species may also blur the signal from minor contributors. Despite the inability to recover 

key enzyme reads from MIB and GSM synthases, immediate upstream enzymes (DMATT 

and FPS) were also found abundant in the upper layers of the water column. Their presence 

highlights an active biosynthesis of mono- and sesquiterpenes associated with high 

abundances of Actino- and Cyanobacteria. 
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CHAPTER 4 – OCCURRENCES OF (MIB, GEOSMIN) – DEGRADING 

BACTERIA IN A EUTROPHIC RESERVOIR AND THE ROLE OF CELL-BOUND 

VERSUS DISSOLVED FRACTIONS 

 

‘Don’t forget that the flavors of wine and cheese  

depend upon the types of infecting microorganisms’  

Martin H. Fischer 

 

Introduction 

 

World major cities rely on surface waters as an important source for drinking water. 

Raw waters must undergo a treatment process throughout a multi-step procedure before 

human consumption. Generally, basic treatment processes consist of particle separation, 

oxidation and adsorption to meet quality, aesthetics and microbiological requirements. 

Failures in fulfilling these requirements may lead to customers’ negative perception of 

drinking water quality and confront water utilities to customer complaints and a loss of 

trust [Suffet et al., 1996]. Taste-and-Odor (T&O) compounds like 2-methylisoborneol 

(MIB) and geosmin (GSM) often compromise the aesthetic properties of drinking waters. 

These tertiary alcohols have relatively low molecular weights; i.e. 168.28 g. mol-1 for MIB 

and 182.31 g. mol-1 for GSM [Pirbazari et al., 1992], moderate solubility, and moderate 

hydrophobicity [Song and O'Shea, 2007]. Reported odor threshold values are very low, 

thus concentrations as low as 4 ng. L-1 (or parts per trillion) for GSM and 15 ng. L-1 for 

MIB can readily be detected by human olfactory sense [Peter et al., 2009; Young et al., 

1996].  

In source waters, the production of T&O compounds is caused by microorganisms 

[Juttner and Watson, 2007] belonging to numerous Actinobacteria and seasonal bloom-

forming Cyanobacteria [Juttner and Watson, 2007; Li et al., 2007; Su et al., 2015; Watson 

et al., 2008]. Technically, T&O issues can be handled in two different ways; either 

controlled at the source or in the water treatment plant. First, reducing nutrient loads into 

water bodies may achieve long-term management goals in an effort of limiting algal or 

bacterial growth [Paerl et al., 2011]. Punctual applications of copper-based algaecides 
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provide the same results on the short term [Murray-Gulde et al., 2002] although small areas 

of a lake/reservoir can only be treated due to associated elevated cost. In addition, there are 

known negative side effects to using copper in aquatic environments as it negatively affects 

autotrophic bacteria [Le Jeune et al., 2007], invertebrates [Joachim et al., 2017] and fish 

[Song et al., 2015]. Copper also accumulates in sediments where potential changes in the 

water chemistry may later release it and become a long-term problem [Haughey et al., 

2000]. Secondly, an enhancement of T&O removal in a drinking water treatment plant can 

be achieved if seasonal fluctuations are anticipated by monitoring the dynamics of potential 

producers [Westerhoff et al., 2005]. Therefore, the screening of T&O compounds in surface 

waters is utterly important for managers who want to curb forthcoming odorous outbreaks 

by adapting their treatment dosages for efficient removal [Bruce et al., 2002]. The chemical 

control of microbial growth is often limited by the risks of disrupting cell walls and thus 

releasing intracellular T&O compounds. Releases of intracellular MIB and Geosmin 

exceeding Odor Threshold Concentrations (OTC) were observed from a few 

cyanobacterial genera such as Oscillatoria and Lyngbya after treatment with chlorine, 

chlorine dioxide and chloramine [Wert et al., 2014]. Different techniques of water 

treatment and purification processes have been optimized as cell-bound fractions of MIB 

or geosmin do not behave like their dissolved counterparts [Srinivasan and Sorial, 2011]. 

The physical removal of cell-bound or intracellular T&O is preferred and cell disruption 

must be avoided as it releases other dissolved organics exacerbating the problem [Peterson 

et al., 1995]. The chemical adsorption of dissolved compounds requires the use of activated 

carbons [Durrer et al., 1999] but is challenged by the presence of dissolved organic carbon 

in water which competes for adsorption sites [Bruce et al., 2002]; with geosmin showing 

greater removal rates than MIB on activated carbons [Zamyadi et al., 2015]. Effective 

removals of the recalcitrant dissolved MIB is usually accomplished using ozonation [Liang 

et al., 2006] as the formation of hydroxyl radicals (HO•) degrade the molecule [Westerhoff 

et al., 2006] primarily into d-camphor [Qi et al., 2009]. 

Biological methods for the removal of MIB and geosmin have received little 

attention in the drinking water industry as applications are limited to bio-filtration through 

sand filters [Srinivasan and Sorial, 2011]. The first study conducted on the biological 

removal of geosmin demonstrated that bacterial degradation was ineffective in drinking 
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water [Huck et al., 1995]. Since, other investigations have shown the contrary. 

Biodegradation of geosmin was identified in a consortium of three bacteria (Sphingopyxis 

alaskensis, Novosphingobium stygiae and Pseudomonas veronii) isolated from a sand filter 

biofilm [Hoefel et al., 2006]. Subsequently, the removal of both MIB and GSM was 

established in biologically active sand filters by four bacteria identified as an α-

Proteobacterium, an Acidobacteriaceae, Pseudomonas sp., and Sphingomonas sp. [Ho et 

al., 2007]. Over the past decade, most studies conducted on bio-filtration have used sand 

or activated carbon [Doederer et al., 2018; Elhadi et al., 2006; Metz et al., 2006; Persson 

et al., 2007; Zamyadi et al., 2015]. To date, only a few investigations tried to identify 

potential degraders from natural environments, such as rivers [Du et al., 2017], reservoirs 

[Westerhoff et al., 2005] and drinking water supplies [Ho et al., 2012]. Currently, the 

knowledge of bacteria capable of degrading T&O compounds is still sparse. 

In Eagle Creek Reservoir, a eutrophic water body providing drinking water to the 

city of Indianapolis, seasonal episodes of either MIB, geosmin or both compounds have 

been recorded for almost two decades by the local water company. Sources of T&O 

outbreaks were elucidated and members of Actinobacteria and Cyanobacteria were 

identified to correlate to T&O occurrences (cf. Chapter 3). The objectives of the present 

study are to identify which naturally occurring bacterial degraders were dominant during 

the two 2013 T&O outbreaks and then, to determine which ones of these Operational 

Taxonomic Units (OTUs) had the capability to degrade T&O compounds. Furthermore, 

the fractionation of cell-bound versus dissolved compounds will also be investigated to 

highlight different chemical behaviors and their influence on the dynamics of bacterial 

degraders. 

 

Materials and Methods 

 

Study site 

Eagle Creek Reservoir, located in central Indiana (Figure 4.1), receives drainage 

from the Eagle Creek Watershed (419.6 km2; HUC 05120201120) and has a surface area 

of 5.7 km2. Since 1967, the reservoir has been providing drinking water for the city of 

Indianapolis and surrounding communities. The maximum depth ranges from about 11 to 
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13 meters, with the deepest areas located in the southern basin, near the dam. Eagle Creek 

Reservoir is a small, dimictic, and eutrophic water body with seasonal thermal stratification 

from June to September. Reservoir mixings usually occur in April/May and October each 

year.  

 

Figure 4.1: Eagle Creek Reservoir sampling site (gray dot), south of West 56th street. 

 

Sample collection and processing 

Water collection – Water samples were collected from May to October 2013 on a 

biweekly basis near the reservoir water intake located south of W. 56th street (Figure 4.1). 

Epilimnetic water samples were collected with a vertical Van Dorn sampler at the depth of 

3 meters. A total of 11 samples were collected throughout the sampling campaign covering 

the summer stratification and the spring and fall mixing periods. A submersible multi-

parameter V2-6600 YSI probe (YSI, Inc., Yellow Spring, OH) was deployed each time to 

measure water temperature (Temp, °C) and pH (s. u.) at the given depths. 

T&O compounds analysis – Water sample splits were stored in brown amber glass 

jars with no headspace or bubbles to avoid the volatilization of methylisoborneol and 

geosmin. All samples were stored on ice for transport to the laboratory. T&O compound 
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fractionation was realized using 0.22 µm syringe-mounted filters and then, concentrations 

were quantified by Head-Space Solid-Phase Micro-Extraction (HS-SPME) combined with 

a Gas Chromatography-Mass Spectrometry (GC-MS) [APHA, 2000]. 

Bacterioplankton community composition – After collection, all water samples 

were put on ice in autoclaved 1-L HDPE brown bottles and filtered in the lab through 0.22 

µm mesh size pores on a sterile glass filtration manifold. Filters were then frozen for 

storage in 15-mL Falcon tubes. Samples were later shipped to Illumina, Inc., San Diego, 

CA for analysis on frozen filters to determine the phylogenetic structure of the BCC by 

using a 460 bp-long amplicon amplified by polymerase chain reaction (PCR). The gene-

specific sequences target the 16S rRNA V3 and V4 regions (MiSeq v.3 Nextera XT, 

Illumina): 5'TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGG 

CWGCAG and, 5'GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACH 

VGGGTATCTAATCC as forward and reverse primers respectively.  

 

Statistical Analysis 

Descriptive statistics were run on the 16S and T&O datasets using PAST 3.1 

software [Hammer et al., 2001]. Spearman’s rho (rs) correlations were used to highlight 

the robustness of relationships between occurrences of bacterial degraders and T&O 

concentrations in the reservoir water. In this study, only highly significant relationships; 

i.e. rs > 0.73 (p< 0.01) and rs > 0.83 (p< 0.001) were retained in order to identify with 

confidence potential degraders. 

 

Results 

 

Seasonal fractionation of Geosmin and MIB 

Between May and November 2013, the reservoir raw water was analyzed 

intensively (n= 134) in order to illustrate the fractionation of MIB and geosmin. Results of 

total concentrations and fractionations (cell-bound versus dissolved) are shown on Figure 

4.2. Three major phases were identified: phases I and III as odorous outbreaks when total 

concentrations of either MIB or GSM exceeded respective OTCs; i.e. 15 ng L-1 (MIB) and 

4 ng L-1 (GSM) [Peter et al., 2009] and, phase II as non-odorous. Throughout the sampling 
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season, MIB was mostly found dissolved in water while GSM was more frequently cell-

bound. MIB barely exceeded its OTC (14.2%) whereas GSM overpassed it 76.9% of the 

times (Table 4.1). 

Phase I – From May 1st and June 15th, MIB and GSM co-occurred during the spring 

outbreak. Year maxima in total concentrations were reached during phase I with 99.1 and 

77.3 ng L-1 of MIB and geosmin, respectively. Both compounds exceeded their respective 

OTC more than 50% of the times across Phase I (Table 4.1). Most of the MIB was found 

in the dissolved fraction while GSM seemed to be mainly cell-bound (Figure 4.2), with 

respective bound vs. dissolved (B:D) ratios of 0.21 and 0.97 respectively (Table 4.1). 

Phase II – During this phase, from June 16th to August 26th, total concentrations of 

MIB and GSM in water were extremely low and did not exceed 6 ng L-1 and only GSM 

reached its OTC (Figure 4.2). Year minima for MIB and GSM concentrations were 

recorded during phase II as both compounds were mostly found in the dissolved fraction, 

resulting in low observed B:D ratios. This phase was described as non-odorous as MIB 

always remained lower than its OTC value and GSM only attained it 38.8% of the times 

(Table 4.1). 

Phase III – The second odorous outbreak began on August 27th and extended 

beyond the end of sampling campaign. Moderate concentrations were recorded in the 

reservoir water with averages of 8.3 and 9.4 ng L-1 of MIB and geosmin, respectively. 

However, MIB never exceeded its OTC whereas GSM was always above with a peak 

concentration of 20.1 ng L-1. Similarly to phase I, MIB was almost exclusively dissolved 

with its B:D ratio of 0.04 while GSM was dominantly cell-bound with a B:D ratio that 

bounced back to 0.80 (Table 4.1). 
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Table 4.1: MIB and geosmin concentrations, fractionations expressed as Bound: Dissolved 

(B:D) ratios, during the whole 2013 campaign and major odorous outbreaks I, II and III. 

OTC: Odor Threshold Concentration. 

 
 2013  Phases 

 Campaign  I  II  III 

Compound MIB GSM  MIB GSM  MIB GSM  MIB GSM 

n 134 134  37 37  49 49  48 48 

min (ng L-1) 1.0 2.1  5.4 3.9  2.0 2.1  2.1 4.0 

max (ng L-1) 99.1 77.3  99.1 77.3  7.5 6.0  13.4 20.1 

mean (ng L-1) 14.1 11.8  35.5 25.8  3.7 3.7  8.3 9.4 

            

OTC Exceedance            

n>OTC 19 103  19 36  0 19  0 48 

%>OTC 14.2 76.9  51.4 97.3  0.0 38.8  0.0 100.0 

            

Fractionation            

mean % bound (B) 9.1 38.0  17.0 49.3  92.1 76.7  4.1 44.3 

mean % dissolved (D) 90.9 62.0  83.0 50.7  7.9 23.3  95.9 55.7 

B:D ratio 0.10 0.61  0.21 0.97  0.09 0.30  0.04 0.80 

 

 

Figure 4.2: Fractionation of MIB (top panel) and GSM (bottom panel) in 2013 Eagle Creek 

Reservoir raw water. Legend: dissolved fraction (light gray); particle-bound fraction (dark 

gray); total concentration (dotted line, in ng L-1 or ppt). OTC: Odor Threshold 

Concentration = 15 ng L-1 (MIB) and 4 ng L-1 (GSM). Odorous outbreaks are marked as 

phases exceeding the respective OTC and labelled I, II and III. Reverse triangles indicate 

sampling dates. 
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Phasic dynamics of T&O-degrading bacteria 

In Eagle Creek Reservoir, the whole bacterioplankton community composition was 

overall driven by the presence of four major phyla. Based on the 16S rRNA analysis, results 

showed that Cyanobacteria were the most abundant group with an average of 42.8% of the 

reservoir’s microbiome, followed by Proteobacteria (21.8%), Bacteroidetes (6.5%) and 

Actinobacteria (3.7%) (Figure 4.3). Interestingly, Cyanobacteria and Actinobacteria 

include known producers of MIB and geosmin [Juttner and Watson, 2007; Watson et al., 

2016] while some members of Proteobacteria, Bacteroidetes, Firmicutes and also a few 

Actinobacteria are representative of potential degraders of these compounds (Table 4.2). 

Throughout the 2013 sampling campaign, a total of 138 OTUs potentially capable to 

degrade either MIB (n=96) or GSM (n=42) were identified. MIB-degraders tended to be 

grouped within Bacteroidetes (Bact), Firmicutes (Firm) and γ-Proteobacteria (γ-Prot) 

whereas GSM-degrading OTUs belonged to α-Proteobacteria (α-Prot), β-Proteobacteria 

(β-Prot), and Actinobacteria (Acti) groups (Appendix I). 

Phase I – During the main T&O event, Proteobacteria were the most abundant with 

31.8% of total bacterial abundance (Figure 4.3): 35 OTUs of almost exclusively 

Pseudomonas spp. (γ-Prot), 27 OTUs of Novosphingobium spp., Sphingomonas spp. and 

Sphingopyxis spp. (α-Prot), and 5 OTUs of Comamonas spp. (β-Prot) (Table 4.3). Other 

co-occurring OTUs belonged to Flavobacterium spp. (Bact). All of these phyla were found 

dominant during Phase I (Figure 4.4). 

Phase II – A dominance of cyanobacterial OTUs (>50%) were observed during 

phase II which matched to the summer period. All other major phyla showed a significant 

drop compared to phase I (Fig. 4.3). The B:D ratio of geosmin remained around 0.30 (Table 

4.1), and several GSM-degraders were found in the reservoir water, including: 

Novosphingobium spp. (α-Prot; Figure 4.4a) and Rhodococcus spp. (Acti; Figure 4.4d) 

whose abundances increased, contrary to Sphingomonas ssp. (Figure 4.4b) and 

Comamonas spp. (Figure 4.4c) whose abundances decreased. On the other hand, the 

abundances of potential MIB-degraders such as Pseudomonas spp. (Figure 4.4e) and 

Flavobacterium spp. (Figure 4.4f) were minimal. Enterobacter spp. (Figure 4.4g) who 

were not so abundant during Phase I almost disappeared as the B:D ratio of MIB dropped 

to 0.09 (Table 4.1). 
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Phase III – The second odorous event of the reservoir showed a dominance of 

Cyanobacteria (47.1% of total microbiome) and an increase in Proteobacteria (19.9%) and 

Firmicutes (4.7%) abundances. The rise of cell-bound geosmin in water; i.e. elevated B:D 

ratio of 0.80 (Table 4.1) seemed to be beneficial to support the growth of some 

Novosphingobium and Sphingomonas species, both α-Proteobacteria (Figure 4.3). 

Although not known as a potential degraders of GSM, Firmicutes represented by Bacillus 

spp. increased significantly with this increase of cell-bound geosmin while all other MIB-

degrading OTUs (Figures 4.4e, f and g) were almost gone due to the scarcity of MIB (<13.4 

ng L-1; Table 4.1). 

 

 

Figure 4.3: Relative abundances of major bacterioplankton phyla during the three phases 

of the reservoir. Bars represent standard deviations. 
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Table 4.2: Known MIB and geosmin (GSM)-degrading bacteria. 

 
Actinobacteria Compound Source 

Arthrobacter atrocyaneus GSM [Saadoun and El-Migdadi, 1998] 

Arthrobacter globiformis GSM [Saadoun and El-Migdadi, 1998] 

Brevibacterium spp. MIB [Yuan et al., 2012] 

Chlorophenolicus strain N-1053 GSM [Saadoun and El-Migdadi, 1998] 

Micrococcus spp. MIB [Yuan et al., 2012] 

Rhodococcus moris GSM [Saadoun and El-Migdadi, 1998] 

Rhodococcus ruber T1 MIB [Eaton and Sandusky, 2009] 

Rhodococcus wratislaviensis 

DLC-cam 
MIB, GSM [Eaton and Sandusky, 2010] 

Bacteroidetes    

Chryseobacterium sp. GSM [Zhou et al., 2011] 

Flavobacterium multivorum MIB [Egashira et al., 1992] 

Flavobacterium spp. MIB [Egashira et al., 1992; Yuan et al., 2012] 

Firmicutes    

Bacillus cereus GSM [Narayan and Nunez III, 1974; Silvey et al., 1970] 

Bacillus subtilis MIB, GSM [Narayan and Nunez III, 1974; Yagi et al., 1988] 

Bacillus idriensis MIB [Du et al., 2017] 

Bacillus spp. MIB [Ishida and Miyaji, 1992; Lauderdale et al., 2004] 

α-Proteobacteria    

Novosphingobium stygiae GSM [Hoefel et al., 2006] 

Sinorhizobium sp. GSM [Zhou et al., 2011] 

Shinella zoogloeoides MIB [Du et al., 2017] 

Sphingomonas sp. GSM [Ho et al., 2007] 

Sphingopyxis alaskensis  GSM [Hoefel et al., 2006] 

Sphingopyxis sp. Geo48 GSM [Hoefel et al., 2009] 

β-Proteobacteria    

Comamonas sp. GSM [Guttman and van Rijn, 2012] 

γ-Proteobacteria    

Enterobacter spp. MIB [Tanaka et al., 1996] 

Pseudomonas aeruginosa MIB [Egashira et al., 1992] 

Pseudomonas putida G1 MIB [Eaton and Sandusky, 2009; Oikawa et al., 1995] 

Pseudomonas spp. MIB, GSM 
[Egashira et al., 1992; Ho et al., 2007; Izaguirre 

et al., 1988; Tanaka et al., 1996; Yuan et al., 2012] 

Pseudomonas sp. SBR3-tpnb GSM [Eaton and Sandusky, 2010] 

Pseudomonas veronii GSM [Hoefel et al., 2006] 

Stenotrophomonas sp. GSM [Zhou et al., 2011] 

 

Table 4.3: Phasic occurrences of T&O-degrading OTUs. 

 
 n Phase I Phase II Phase III 

Actinobacteria 4 4 (100%) 1 (25.0%) 1 (25.0%) 

Bacteroidetes 31 30 (96.8%) 22 (71.0%) 19 (61.3%) 

Firmicutes 24 12 (50.0%) 9 (37.5%) 18 (75.0%) 

α-Proteobacteria 34 27 (34.2%) 25 (31.6%) 21 (26.6%) 

β-Proteobacteria 6 5 (6.3%) 3 (3.8%) 3 (3.8%) 

γ-Proteobacteria 41 35 (44.3%) 13 (16.5%) 9 (11.4%) 
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Figure 4.4: Phasic dynamics of main potential degraders of geosmin (a, b, c, d) and MIB 

(e, f, g, h). Relative abundances are expressed as percent of total microbiome. 

 

 

Identification of potential T&O-degrading bacteria 

Out of the 138 identified OTUs with the potential capability to degrade T&O 

compounds, only a small part showed a significant positive correlation with either MIB or 

GSM concentrations and/or B:D ratios (Appendix II). The identification of potential 

degraders was assessed, using Spearman’s rho, according to best correlation factors and 

levels of significance between co-occurrences of a given OTU and concentrations of T&O 

compounds in the water. 

MIB-degrading bacteria – Amongst the 29 identified potential degraders of MIB, 

12 OTUs belonged to the genus Flavobacterium (Bacteroidetes); with F. resistens, F. 

granuli, F. saliperosum (p <0.001), F. kamogawaensis (p <0.01) and the remaining 8 OTUs 

with p <0.05 (Figure 4.5A). Eight Pseudomonas species (γ-Prot) only showed a p value of 

0.05, with Pseudomonas teessidea having the highest correlation factor. Then, Bacillus soli 

(p <0.05) was the only representative of the Firmicutes. A total of 8 other OTUs belonging 

to phyla not known as capable to degrade MIB compounds did show a strong relationship: 

Comamonas odontotermitis (β-Prot; p <0.001), and seven α-Proteobacteria: Sphingomonas 
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oligophenolica (p <0.001), S. hunanensis, S. soli, S. panipatensis (p <0.05), 

Novosphingobium subterraneum (p <0.01), N. lentum and N. hassiacum (p <0.05). 

GSM-degrading bacteria – A total of 17 OTUs showed a positive and significant 

correlation with geosmin concentrations in the water but only three of them belonged to 

phyla of known degraders: the two α-Proteobacteria Novosphingobium hassiacum (p 

<0.001), Sphingomonas oligophenolica (p <0.01) and, Comamonas odontotermitis (β-Prot; 

p <0.05). Amongst the 9 Flavobacterium species, only F. saliperosum had the strongest 

relationship with geosmin (p <0.01). Bacillus niacini (Firmicutes) and the four 

Pseudomonas species (γ-Prot): P. umsongensis, P. teessidea, P. corrugata and P. lundensis 

were statistically significant (p <0.05) (Figure 4.5B). 

 

 

Figure 4.5: List of the 33 bacterial OTUs showing a positive correlation (Spearman’s rho; 

x-axis) with A) methylisoborneol and, B) geosmin. Level of significance is rho > 0.60 and 

displayed using colored bars as follows: blue (non-significant), green (p < 0.05), yellow (p 

< 0.01) and orange (p < 0.001). 
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The case of Pseudomonas – As previously mentioned, many OTUs belonging to 

Pseudomonas have an undetermined role in T&O compounds biodegradation. They mainly 

occurred during phase I (Figure 4.4) when both T&O compounds were elevated. Most of 

them had p values lower than 0.05 for either MIB or GSM compounds (Figure 4.5). These 

weaker correlations can be explained by the ambivalence of the Pseudomonas group with 

some OTUs described as MIB and/or GSM degraders (Table 4.2). Although the respective 

role and the individual contribution of each Pseudomonas species cannot be explained with 

confidence from our dataset, they may or not have played a role in the biodegradation of 

T&O compounds in Eagle Creek Reservoir and, any correlation to MIB or GSM could 

simply be coincidental and not casual. 

 

Discussion 

 

T&O degraders and odorous compounds 

The dynamics of T&O-degrading bacteria in Eagle Creek Reservoir mimicked the 

seasonal peaks of MIB and geosmin. These bacteria were more abundant during phases I 

and III, showed lower abundances and, for some, fewer occurrences during phase II (Figure 

4.4). Odorous episodes with elevated concentrations of T&O compounds in the reservoir’s 

water supported the growth of numerous co-occurring OTUs. The most abundant MIB-

degrading bacteria were Bacteroidetes represented by several species of Flavobacterium 

as described in some earlier studies [Egashira et al., 1992; Yuan et al., 2012]. In this study, 

we were able to identify four Flavobacterium species (F. resistens, F. granuli, F. 

saliperosum, F. kamogawaensis) with the potential capability to degrade MIB (Figure 

4.5A). Several Pseudomonas species mainly occurred during phase I while MIB 

concentrations were the most elevated. Despite their low significance (p <0.05), highest 

abundances of P. teessidae, P. corrugata, P. anguilliseptica, P. panipatensis, P. 

cremoricolorata, P. tremae, P. lundensis and P. resinovorans were found in phase I 

(Appendix II). This suggests that Pseudomonas spp. could have used MIB as a carbon 

source [Eaton and Sandusky, 2009; Oikawa et al., 1995; Tanaka et al., 1996] or 

biodegradation by-products such as 6-hydroxy-2-MIB, 5-hydroxy-2-MIB, 3-hydroxy-2-
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MIB and 5-keto-2-MIB produced by camphor-degrading bacteria [Eaton and Sandusky, 

2009]. 

The capability to degrade geosmin was proven for some members of α-

Proteobacteria [Ho et al., 2007; Hoefel et al., 2006]. In Eagle Creek Reservoir, the strongest 

and more robust correlations were linked to the presence of two α-Proteobacteria: 

Novosphingobium hassiacum and Sphingomonas oligophenolica. Biodegradation by a 

consortium of gram negative bacteria [Hoefel et al., 2006] can also be suggested in Eagle 

Creek Reservoir if the activity of Sphingopyxis granuli on cell-bound geosmin is 

considered for this cooperative work (Appendix II, rs= 0.69; p < 0.05). The β-

Proteobacteria Comamonas odontotermitis [Guttman and van Rijn, 2012] was the third 

identified player who may have contributed to the GSM biodegradation during phase I. 

Major by-products of the biodegradation of geosmin have been identified as 2-ketogeosmin 

and 7-ketogeosmin as well as several other minor products [Eaton and Sandusky, 2010]. 

Unfortunately, none of these by-product compounds were monitored throughout the 2013 

sampling campaign. In order to substantiate the biodegradation of geosmin in natural 

environments, it is not excluded that the growth of some bacteria identified in the current 

study could have also been based on occurrences of these two ketogeosmins. 

 

The importance of B:D ratios 

The seasonal variations of MIB and GSM concentrations are the response of 

producers to different environmental factors such as nutrient availability [Peter et al., 

2009], light [Zhang et al., 2009] or the presence of lysing agents [Velzeboer et al., 1995]. 

Steps of the growth phase also influence the fractionation of dissolved (extracellular) and 

cell-bound (intracellular) concentrations [Rosen et al., 1992]. As seen in Table 4.1 and 

Figure 4.2, over the 2013 campaign, MIB was mostly dissolved in water, with a mean B:D 

ratio of 0.10. The pattern for GSM is completely different as it was mainly found cell-

bound (mean B:D =0.61). Differences in behavior between MIB and GSM likely impact 

their availability as a food source for degraders. Dissolved compounds that leaked out of 

the cells are more likely to be volatilized and generate unpleasant odorous. Moreover, this 

dissolved fraction is more bioavailable to degraders, and would be taken up and disappear 

more rapidly from the environment. In the case of Eagle Creek Reservoir, many more MIB-
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degrading bacteria were found in terms of OTU number and abundance (e.g. 

Flavobacterium ssp.) in response to the large availability of dissolved MIB. As mainly 

bound to cell membranes, GSM was less susceptible to biodegradation and remained longer 

in water until cell walls become disrupted by lysing factors (viruses, algaecides, grazers, 

senescence). In addition, only a few known GSM-degrading bacteria were detected in the 

reservoir and, abundances of Novosphingobium and Sphingomonas were approximately 5 

to 10 times lower than Flavobacterium (Figure 4.4). Scarcer availability of dissolved GSM 

seemed to have not allowed the support of larger populations of potential degraders. 

 

 

Figure 4.6: Relationship between Bound to Dissolved (B:D) ratios and A) Geosmin or B) 

MIB concentrations. The shaded area represents values below the Odor Threshold 

Concentration (OTC); with B:Dotc as the intersect of OTC and the curve. Black and labelled 

dots highlight post- algaecide treatment days. 

 

Interestingly, when geosmin concentrations increased, B:D ratios followed the 

same trend thus, meaning that most GSM was found intracellular or cell-bound (Figure 

4.6A). The rise of geosmin in ECR was demonstrated to be linked to the growth of 

Planktothrix species during periods of reservoir mixing corresponding to phases I and III 

as described in this study and, to the growth of Dolichospermum spp. during the summer 

stratification or phase II [cf. Chapter 2]. From the equation displayed in Figure 4.6A, the 

calculation of the B:D ratio corresponding to the OTC of geosmin (B:Dotc) provided the 

value of 0.14 which indicates that beyond 14% of cell-bound GSM, increasing 
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concentrations of this compound tends to be more and more odorous. Unfortunately, the 

different behavior of MIB showed a poor correlation between dissolved and bound forms 

(Figure 4.6B). Low or high concentrations of MIB did not show a clear fractionation 

between dissolved and bound MIB. Lower than OTC concentrations revealed that MIB 

tended to be found more frequently in the dissolved fraction but the reverse was not true 

for higher levels with MIB being independently intra- or extracellular. After application of 

a copper-based algaecide on June 2nd 2013, both GSM and MIB concentrations dropped 

linearly (Figure 4.6) concurrently with their B:D ratios but went back up after the fifth day. 

This observed decrease was more drastic for GSM as Planktothrix spp. were highly 

impacted by the copper treatment while Streptomyces spp. (Actinobacteria) did not seem 

to be inflicted as much as Cyanobacteria were [cf. Chapter 3]. Nonetheless, the calculation 

of MIB B:Dotc from the entire dataset yielded a value of 0.07. The poor correlation tells 

why it is much lower than GSM and could be at least equivalent if higher concentrations 

of MIB were more frequently cell-bound. In the case of GSM, the B:Dotc of 0.14 can 

eventually be utilized as a reference value to determine whether the bacterial 

biodegradation will be triggered. Lower than B:Dotc values would indicate that dissolved 

GSM prevails and is more susceptible to degraders. From a manager’s perspective, higher 

B:Dotc will be sought as good indicators to be implemented in the treatability index that 

will assist to prepare the water treatment process for removal optimization. 

 

Conclusions 

 

The 2013 sampling campaign of Eagle Creek reservoir witnessed two major 

outbreaks of T&O compounds. To describe the timeline of these outbreaks, three phases 

were identified based on intensities of the peaks and OTC exceedances of MIB and/or 

GSM. Geosmin outbreaks were always found with a prevalence of the cell-bound fraction 

or high B:D ratios during phases I and III. Conversely, this was not always the case for 

MIB which displayed high ratios for a short period of time during the first phase. 

Nevertheless, T&O outbreaks allowed to identify several potential degraders. Four 

Bacteroidetes identified as Flavobacterium resistens, Flavobacterium granuli, 

Flavobacterium saliperosum and Flavobacterium kamogawaensis showed strong 
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correlations with MIB occurrences and, two α-Proteobacteria Novosphingobium hassiacum 

and Sphingomonas oligophenolica with geosmin. The role of several Pseudomonas spp. 

was unclear as they showed affinities for both MIB and GSM. Even though individual 

contributions was impossible to determine, Pseudomonas species were very likely 

involved in the biodegradation. The fractionation of T&O compounds is an important 

parameter to consider as more dissolved compounds are crucial to assess bacterial 

biodegradation whereas high cell-bound T&O can be used by managers for optimal 

treatment adjustments. 
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CHAPTER 5 – LOSS PROCESSES OF MIB AND GEOSMIN IN NATURAL LAKE 

SEDIMENTS 

 

‘Loss is nothing else but change, and change is Nature's delight’ 

Marcus Aurelius 

 

Introduction 

 

Sorption processes at the sediment-water interface play a crucial role on the 

transport, bio-availability and concentrations of nutrient [Zhou et al., 2001], organic matter 

[Huang et al., 2003; Meyers and Ishiwatari, 1993] and trace metals [Traina and Laperche, 

1999; Yuan et al., 2018] in lakes. Considered as a major repository for many organic and 

inorganic compounds, sorption processes onto natural sediments have been widely 

investigated [Cornelissen et al., 2005; Søndergaard et al., 2003; Wang et al., 2007]. 

Sorption processes of inorganic P received the most attention as releases into water are 

critical for the growth of microorganisms such as algae and potentially toxic cyanobacteria 

[Paerl et al., 2001]. Previous studies on sorption capacities in soils with different textures 

showed variations and tended to be higher when small size particles like clays were 

abundant [De Willigen et al., 1982]. High proportions of iron/aluminum oxides enhance 

sorption capacities in clay-containing soils [Herlihy and McGrath, 2007; Strahm and 

Harrison, 2007] while clay minerals even have a greater binding capacity than Fe or Al 

oxides [Gérard, 2016]. In aquatic systems, sediment properties affect sorption processes 

[Goldberg and Sposito, 1985; Walling and Moorehead, 1987]. The size, the surface area 

and the weight of mineral particles are important characteristics which influence the 

sorption capacities of sediments [Wang et al., 2006; Warren and Zimmerman, 1994]. The 

chemical composition of sediments can also affect the settling of microbial degraders, thus 

influencing their sorption capacities [Sharpley et al., 1994]. Mineralization of organic 

matter (OM) is an important parameter to consider as it may change pH and redox potential 

[Detenbeck and Brezonik, 1991]. Humic acids are known to stabilize iron particles and 

promote the growth of Fe(III)-reducing bacteria [Kappler et al., 2004; Lovley et al., 1998]. 

Two major sources of dissolved organic carbon (DOC) have been identified in aquatic 
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ecosystems. The allochthonous origin consisting of terrestrial materials have already been 

extensively processed in soils. This DOC is deemed to be recalcitrant to further bacterial 

degradation [Schiff et al., 1997]. The autochthonous source is the within-lake production 

by photosynthetic organisms like microalgae and macrophytes who release DOC into water 

through cell wall leakage, upon cell death by senescence, lysis by pathogens or by grazing 

predators [Bertilsson and Jones, 2003]. Autochthonous DOC is generally labile 

[Søndergaard and Middelboe, 1995] and is the preferred carbon source by bacteria [Cole 

et al., 1988]. Many small organic compounds known as secondary metabolites are 

produced by aquatic bacteria in sediments [Zuo et al., 2010] and, in water especially during 

blooms of cyanobacteria which can be toxic [Kenefick et al., 1992; Watson et al., 2008]. 

Toxic compounds in water, i.e. cyanotoxins, are well studied because of the potential 

human health risk of exposure [Carmichael, 2001; Funari and Testai, 2008]. Microcystin 

toxins are also found in pore water as well as in deeper sediments over 100 years old 

[Zastepa et al., 2015]. However, fewer studies were conducted on the elimination by 

sorption process in natural sediments [Rapala et al., 1994]. Microbial degradation of 

cyanotoxins is minor in sediments where losses by adsorption are prevalent [Chen et al., 

2008; Rapala et al., 1994]. Sorption reactions of microcystins are pH dependent and 

sediment OM dependent: microcystins either compete for adsorption sites with organic 

matter in lower OM-containing sediments or interact with adsorbed OM in organic-rich 

sediments [Wu et al., 2011]. The presence in sediments of dissolved OM promotes the 

degradation of cylindrospermopsin suggesting that some substrate specificity of OM may 

influence the degradation reaction [Klitzke et al., 2010].  

The fate and persistence of volatile Taste-and-Odor compounds, such as 2-methyl-

isoborneol (MIB) and geosmin (GSM) are poorly understood in aquatic ecosystems despite 

the inconvenience these metabolites pose to the drinking water industry. As conventional 

water treatments are not efficient at removing T&O compounds [Montiel, 1983], for 

several decades the main core of studies have been focusing on granular or powdered 

activated carbons with enormous sorption capacity [Cook et al., 2001; Doederer et al., 

2018; Wnorowski, 1992] in order to optimize removal rates during the water treatment 

process in plants [Shang et al., 2018; Zamyadi et al., 2015]. The effect of competition of 

MIB and geosmin with OM in natural waters was also assessed [Graham et al., 2000]. 
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Regarding the biodegradation process, water temperature is a critical factor that controls 

degrading bacteria. Optimal temperatures for effective MIB and GSM biodegradation 

range from 11 to 30ºC [Christoffersen et al., 2002; Elhadi et al., 2006; Ho et al., 2007] and 

are correlated to the abundance of T&O-degrading bacteria [Ho et al., 2007; Hoefel et al., 

2009]. Besides, elevated T&O concentrations in source waters tend to be met with higher 

rates of biodegradation [Hoefel et al., 2009]. It has been suggested that water treatment 

plants’ sand filters can be used to harbor T&O-degrading bacteria in order to enhance the 

bio-filtration process [Ho et al., 2007; Ho et al., 2012; Hsieh et al., 2010].  

The purpose of this study is to investigate the fate of MIB and geosmin in source 

waters. Retained concentrations of MIB and geosmin in sediment interstitial water are at 

the interface of sorption reactions and bacterial biodegradation. These two loss processes 

will be evaluated. The adsorption capacities of Eagle Creek Reservoir’s sediments will be 

tested and compared to other adsorbents (bentonite and ferrihydrite) in order to determine 

their removal efficiencies for MIB and geosmin compounds 

 

Materials and Methods 

 

Study site 

Eagle Creek Reservoir located in central Indiana (Figure 5.1), receives drainage 

from 419.6 km2 of the Eagle Creek Watershed and has a surface area of 5.7 km2. The 

reservoir was constructed in 1967 to provide flood control and then drinking water for the 

city of Indianapolis and surrounding communities. The maximum depth ranges from about 

11 to 13 meters, with the deepest areas located in the southern basin, near the dam. Eagle 

Creek Reservoir is a small, dimictic, and eutrophic water body with seasonal thermal 

stratification from June to September. Reservoir mixings usually occur in April/May and 

October each year. The mean annual discharge of Eagle Creek, the main tributary, is 35.74 

m3.s-1 with maxima recorded between April and June. The calculated residence time of the 

reservoir is 39.5 days. 
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Figure 5.1: Locations of Eagle Creek Reservoir’s sediment cores sampling sites. 

 

Sediment collection and processing 

Sediment collection – Sediment cores were collected at three different locations in 

the reservoir. Site 1 represents the deepest area near the dam with an average depth of 10.6 

meters. Site 2 is the mid-reservoir with 6.5 m of depth and, site 3 represents the upper basin 

of Eagle Creek Reservoir (Figure 5.1). The shallow upper basin receives direct drainage 

from the main tributary Eagle Creek. The average depth at this sampling location is 3.2 

meters. A total of six cores were collected: cores I-IV in May, core V in June and core VI 

in August 2015 (Table 5.1). A gravity corer was used to collect sediments and then brought 

back to the lab to be extruded. Each time, the top layer corresponding to the sediment-water 

interface was scraped off with a cutting plate and kept frozen until further analysis. 

Grain size analysis – The top centimeter of sediment cores were sectioned to 

analyze the grain size of settled particles at the sediment-water interface. Wet samples were 

poured over a 125 µm sieve and rinsed with DI water for gross organic matter removal. 

Dump content was brushed with a small paintbrush to get rid of the smaller visible organic 

detritus. Then, samples were boiled and oxidized with 30% of H2O2 for 15 minutes to 
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remove remaining organic matter. The cycle was repeated twice to minimize the amount 

of organic matter left. Clean sediments were re-suspended in 500 mL DI water and allowed 

to settle overnight. Top water was siphoned off and collected materials (n=5; 52.18 ± 6.02 

g) were put into 50-mL plastic Falcon™ tubes and centrifuged at 3,500 rpm for 5 minutes 

and then, 8,000 rpm for 10 minutes. Top water was poured off and 20 mL of sodium hexa-

metaphosphate was added to each sample tube as a dispersing agent. Samples were then 

shaken for 30 seconds on a mechanical shaker. Naturally cemented or aggregated particles 

were separated with the assistance of the sodium meta-phosphate which prevented the 

flocculation of the dispersed particles. Finally, suspended sediment particles were ready 

for subsequent determination on a Malvern Mastersizer 2000 particle-size analyzer 

(Malvern Instruments, UK). Average percentages of clays, silts and sands were obtained 

from three replicates per sediment core. 

Sediment desiccation and loss on ignition – To characterize the moisture content of 

each sample, wet sediment splits were weighted prior to desiccation at 60ºC for 24 hours 

and then, dry weights were measured. The difference of masses was calculated to estimate 

the mass of interstitial water. The content of organic matter was measured by the loss on 

ignition (LOI) method. Desiccated sediments were placed in pre-weighted porcelain 

crucibles and then combusted in a muffle furnace at 550ºC for 2 hours. The measured value 

obtained from LOI was divided by 2.44 to determine the organic matter content [Jacinthe 

et al., 2010]. 

 

Sorption experiments 

Interstitial MIB and geosmin – Known masses of sediments (n= 27; 508.7 ±10.9 

mg) were put into 120-mL glass jars and filled with 50 mL of DI water (18MΩ). Samples 

were left at room temperature on lab countertops without any shaking. Triplicate samples 

were collected through time, between 5 minutes and 5 days, for measurements of MIB and 

geosmin in water. Sample blanks with no sediments in jars were run at 60 minutes after the 

beginning of the experiment. 

Adsorption experiment – 50 mL of a spike solution of MIB (94.1 ng L-1) and 

geosmin (95.0 ng L-1) were added to desiccated sediments (n= 27; 524.5 ±19.5 mg) in glass 

amber vials with a rubber septum. Samples were shaken continuously on a Labquake™ 
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tube rotator at 60 rpm until the end of the experiment. Triplicate samples were collected 

for MIB and geosmin analysis at given time intervals between 90 minutes and 28 days. 

Sorption comparison – The sorption capacity of MIB and geosmin was tested on 

two other minerals, such as bentonite which is an aluminum phyllosilicate clay and 

ferrihydrite produced from oxidation of Mohr’s salt as ammonium iron (II) sulfate 

hexahydrate (Sigma Aldrich). The same stock solutions as the previous experiment (see 

above adsorption experiment) were used. Meanwhile, sodium azide (0.1% N3Na; Fisher 

Scientific) was added as a biocide to inhibit the bacterial activity that could occur in 

sediment samples. Sorption capacities were also compared between the three Eagle Creek 

Reservoir sampling sites. A glassware blank with no sediment was also run. All samples 

were measured for MIB and geosmin after the 10th day of experiment.  

 

T&O analysis 

Methylisoborneol and geosmin concentrations were quantified by a Head-Space 

Solid-Phase Micro-Extraction (HS-SPME) combined with a Gas Chromatography-Mass 

Spectrometry (GC-MS) to analyze the volatile and odorous compounds [APHA, 2000]. 

 

Statistical test 

To compare removal capacities of MIB and geosmin between samples, a one-way 

ANOVA and a Tukey post hoc test were run, using Past 3.1 software [Hammer et al., 

2001], to highlight significant differences in sorption capacities between adsorbent 

materials. 

 

Results 

 

Eagle Creek Reservoir granulometry 

A total of six sediment cores were collected in the reservoir. Site 1, near the dam, 

had the largest fraction of clays compared to the other cores. Site 2, from the middle 

reservoir, had the most sands (17.3%) as the corer hit the old talweg of the main tributary 

(Table 5.1). The four sediment cores collected in the upper basin of the reservoir (Site 3) 

were relatively homogenous in terms of grain size composition (Figure 5.2). On average, 
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silts represent the largest fraction with 70.2%, clays 26.7% and sands 3.1% (Table 5.1). 

The core texture is described as ‘silt loam’ typical of highly fertile agricultural soils which 

retain water, i.e. alfisols, commonly encountered in the US Midwest [Staff, 1999]. After 

desiccation, bulk sediment cores contained in average 53.03% (Site 3), 48.65% (Site 2) and 

35.11% (Site 1) of water. This longitudinal gradient in pore space can be explained by the 

increasing amount of impervious clays from the upper basin to the dam. The loss on 

ignition analysis revealed a reverse gradient regarding the content of organic matter in 

sediments. The upper basin cores showed the highest content with 0.31%, mid-reservoir 

with 0.27% and dam with 0.20% of OM (Table 5.1). 

 

Table 5.1: Bulk mineral composition of sediment cores, moisture and organic matter (OM) 

content are expressed as weight percent units. 

 

 Site 1 Site 2 Site 3 

 Core I Core II Core III Core IV Core V Core VI Average 

% Clays 46.0 33.8 27.3 25.6 27.8 26.1 26.7 

% Silts 52.6 48.9 71.0 70.9 69.0 70.1 70.2 

% Sands 1.4 17.3 1.7 3.5 3.2 3.8 3.1 

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

        

wt% Moisture 35.11 48.65 52.05 54.02 - - 53.03 

wt% OM 0.20 0.27 0.32 0.30 - - 0.31 
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Figure 5.2: Grain size analysis of Eagle Creek Reservoir sediments; Site 1 (bold dotted 

line), Site 2 (dashed line) and Site 3 with the median value (bold black line), 10th percentile 

(lower dotted line) and 90th percentile (upper dotted line). Shaded area represents the silt 

fraction. 

 

Interstitial and desorbable T&O compounds 

The first experiment was conducted in order to verify if there was any MIB or 

geosmin within the pore water of Eagle Creek sediments. T&O compounds that leaked out 

of interstices were rapidly detected in the DI water medium after 5 minutes; with an average 

concentration of 15.61± 1.73 and 5.90± 1.38 ng L-1, for MIB and geosmin respectively 

(Figure 5.3). This desorption process led to a combination of interstitial and desorbable 

MIB and GSM. Detected concentrations remained constant for about a day and then began 

to decrease below detection levels on day 3.  

 

Sorption of MIB and Geosmin 

The dynamics of initial concentrations of MIB and geosmin from the stock solution 

to the sediment were studied through time. The primary goal was to assess whether T&O 

compounds can sorb onto sediments. On Figure 5.4, it is clear that geosmin quickly 

disappears from the solution after 90 minutes of contact time whereas there is a lag phase 

for MIB whose removal is triggered between 0.5 and 0.75 day (12 – 18 hours). Calculations 
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derived from equations indicate that total geosmin is completely removed from the solution 

after 15.4 days. The sorption process of MIB is slower and compounds are entirely 

removed after 37.8 days. 

 

 

Figure 5.3: Desorption of interstitial MIB (triangles) and geosmin (squares) in DI water 

from natural sediments of Eagle Creek Reservoir. 

 

 

Figure 5.4: Sorption of MIB (triangles; C0= 94.1 ng L-1) and geosmin (squares; C0= 95.0 

ng L-1) onto Eagle Creek Reservoir sediments. 



 

115 

Comparison of removal capacities 

There was a statistically significant difference between MIB and geosmin removal 

efficiencies by natural sediment and other adsorbents as determined by one-way ANOVA 

(F= 29.46; p < 0.001). The Tukey post hoc test revealed that there was no statistically 

significant differences between the glassware blank and azide control (p = 0.974), azide + 

sediment (p = 0.971) and, between azide control and azide + sediment (p = 1). This 

indicates that MIB and geosmin concentrations remained the same in jars after 10 days of 

contact time with the biocide. A significant difference was also observed between bentonite 

and ferrihydrite (p < 0.05), site 1 (p < 0.05) whereas sites 2 and 3 were non-significant. 

The sorption efficiency of ferrihydrite was similar as sites 1, 2 and 3 (p = 1). Bentonite’s 

removal capacity of MIB and geosmin is lower than ferrihydrite and Eagle Creek Reservoir 

natural sediments, especially site 1 which contains the highest amount of clays (Table 5.2). 

Bentonite and ferrihydrite are better at removing MIB than GSM contrary to ECR 

sediments which are more efficient at GSM removal. 

 

Figure 5.5: Comparison of MIB and geosmin removal by different adsorbents: bentonite 

(clays), ferrihydrite (oxy-hydroxides) and ‘silty loamy’ sediments from Eagle Creek 

Reservoir (see Figure 5.2 for details). Blank and Azide control have no sediments; sodium 

azide treatment (0.1%). Statistically significant differences are expressed by different 

letters. 
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Table 5.2: Comparison of removal efficiencies of MIB and geosmin by different absorbent 

materials; with Ci: initial concentration and Cf: final concentration. 

  

Blank Azide Azide + Sed Bentonite Ferrihydrite Site 1 Site 2 Site 3 

mass (g) 0.000 0.000 0.548 0.548 0.143 0.554 0.542 0.527 

MIB         

Ci 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 

Cf 57.1 50.6 53.2 24.1 1.0 9.1 12.2 11.7 

% removal 39.3 46.3 43.5 74.4 98.9 90.3 87.0 87.6 

Geosmin         

Ci 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 

Cf 56.6 51.8 48.9 36.7 11.4 1.0 1.0 1.0 

% removal 40.5 45.5 48.5 61.4 88.0 98.9 98.9 98.9 

 

Table 5.3: Estimated quotas of T&O losses from Eagle Creek Reservoir sediments. 

Volatilization was calculated as the difference between final concentrations of MIB and 

GSM in jars minus losses by sorption, bacterial degradation and the dissolved fraction. 

 
Percent (%) MIB GSM 

Volatilization 39.3 40.5 

Sorption 4.1 8.0 

Bacterial 44.8 50.4 

Dissolved 11.8 1.1 

 

Discussion 

 

The experiments conducted in this study on Eagle Creek Reservoir sediments 

provide important information regarding the fate of MIB and geosmin compounds in water. 

First, average concentrations of 15.61 ng L-1 of MIB and 5.90 ng L-1 of geosmin were 

extracted from interstitial water. These concentrations remained stable for about one day 

and then rapidly decreased to non-detect levels. This abrupt changes may denote the 

activation of the bacterial breakdown of T&O compounds as collected sediment samples 

were not sterile and were seeded with their own natural microbial flora (Figure 5.3). Next, 

the sorption experiment of T&O compounds onto the reservoir’s sediments showed that 

geosmin began to be removed from the medium after 90 minutes of contact time whereas 

MIB removal was triggered after 12-18 hours. The sharp decrease after day 1 may match 

the same drop observed in the interstitial water experiment, i.e. the triggering of microbial 
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degraders’ growth. Nevertheless, the complete removal process by natural sediments is 

slow; removal of geosmin was achieved after 15 days and MIB after 37 days (Figure 5.4). 

These results do not allow us to discriminate between chemical sorption and bacterial 

breakdown of MIB and geosmin. However, it is clear that geosmin disappears more rapidly 

from the medium whereas, in general, a lag phase of about one day is required for MIB. 

Finally, after 10 days of incubation, the blank sample displayed ca. 40% removal of both 

compounds compared to initial concentrations of stock solution (Table 5.2). This loss was 

due to volatilization of MIB and geosmin. Sediment samples treated with sodium azide 

showed a +4.1% (MIB) and +8.0% (geosmin) loss compared to blank samples (Figure 5.5). 

This observed loss of MIB and GSM points out at the chemical sorption of T&O 

compounds onto sediments. The calculated difference of T&O final concentrations 

between ECR sites’ samples (1, 2 and 3) and azide + sediment samples leads to the loss by 

‘bacterial degradation’ which is estimated around 45% (MIB) and 50% (Geosmin). The 

remaining quota corresponds to the amount of T&O compounds left dissolved in the 

medium, i.e. <12 ng L-1 for MIB and <2 ng L-1 (below detection limit; BDL) for geosmin 

(Table 5.3). Amongst adsorbent materials, bentonite had the lowest removal efficiency but 

both bentonite and ferrihydrite were more efficient at removing MIB. Reversely, all natural 

sediments from Eagle Creek Reservoir described as a mixing of clays and silts were better 

at removing geosmin (BDL) while ca. 10 ng L-1 of MIB remained in the medium (Figure 

5.5). These loss mechanisms explain the previous observations of T&O levels in the 

reservoir’s raw water; i.e. quick disappearance of geosmin and remaining dissolved MIB 

[cf. Chapters 2 & 4]. 

 

Conclusions 

 

Natural sediments retain T&O compounds in pore waters. These compounds can 

sorb onto mineral particles but this loss process is very slow and limited. Bacterial 

breakdown of MIB and geosmin is more likely the prevalent mechanism which contributes 

to the largest loss of T&O compounds. The silty loamy composition of Eagle Creek 

sediments tends to favor microbial degradation over chemical sorption which seems to be 
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more effective at geosmin removal than MIB. In opposition, Al/Fe oxides from bentonite 

and ferrihydrite are more effective to remove MIB. 
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CHAPTER 6 – CONCLUSIONS & PERSPECTIVES 

 

Occurrences of T&O-producing organisms are common in surface waters. Seasonal 

blooms of bacteria can rapidly plague a drinking water supply and subsequently, the 

biosynthesis of elevated concentrations of odorous metabolites such as MIB and Geosmin 

can easily impair drinking water quality. In the first chapter, the study identified the 

environmental factors that were important triggers for the growth of MIB- and GSM-

producing bacteria in Eagle Creek Reservoir. Cool water temperatures during spring time 

concurrently with high stream discharges from Eagle Creek bringing in high levels of 

nitrogen and mixing the whole reservoir were identified to generate favorable conditions 

to support the growth of Streptomyces (Actinobacteria) and Planktothrix (Cyanobacteria) 

involved in the in situ production of MIB and geosmin, respectively. High T&O levels in 

the reservoir waters were estimated to respond to Eagle Creek peak discharges that 

occurred 37 days earlier. Hence, it has been inferred that peaks in production of both 

odorous metabolites were detected when the duration of this lag period was shorter than 

the reservoir residence time. In the second chapter, the use of a shotgun sequencing 

technique documented the bacterial assemblages of Eagle Creek Reservoir during severe 

T&O outbreaks. Based on 16S rRNA gene detections, the bacterioplankton community 

was dominated in order of higher abundances by Actinobacteria, Proteobacteria, 

Firmicutes, Bacteroidetes and Cyanobacteria. Main producers of MIB were identified as 

Streptomyces and Micromonospora (Actinobacteria) and, for geosmin as Anabaena and 

Planktothrix (Cyanobacteria). Surprisingly, in Eagle Creek Reservoir, a clear and sharp 

separation in metabolite biosynthesis was demonstrated; MIB seemed to be exclusively 

produced by Actinobacteria and GSM by Cyanobacteria although Streptomyces might 

potentially be involved in the production of both metabolites. The spatial analysis of 

bacterioplankton distribution showed that T&O-producing species were located in the 

upper layers of the water column (0-3m) which coincided with the highest detections of 

precursor enzymes involved in the metabolic pathways of mono- and sesquiterpenes. 

Applications of a copper-based algaecide to curtail the T&O production in the reservoir 

impacted bacteria differently. Cyanobacteria tended to be more sensitive than 

Actinobacteria and, as a consequence the production of geosmin was immediately 
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terminated whereas moderate MIB detections lingered. This difference in behavior 

between odorous compounds was detailed in the third chapter. After cellular release, 

fractionation analyses of the metabolites showed that MIB was more frequently detected 

in the dissolved fraction while geosmin was essentially cell-bound. This discovery was 

determinant as it now sheds light on the susceptibility of each metabolite to bacterial 

degradation. Investigations conducted in the epilimnion during T&O outbreaks led to 

bacteria identified as potential degraders; with high dissolved MIB linked to higher 

abundances of four Flavobacterium species (Bacteroidetes) and cell-bound geosmin linked 

to Novosphingobium and Sphingomonas species (α-Proteobacteria). Pseudomonas species 

may have played an ambiguous role and could have been involved in the biodegradation 

of both compounds. The last chapter of the present study was intended to characterize the 

loss processes of T&O compounds. Sorption experiments showed that MIB and GSM can 

sorb onto Eagle Creek Reservoir’s natural sediments but that loss mechanism was minor 

and very slow. Main losses of T&O metabolites were mainly due to bacterial breakdown 

within the sediments which contributed to the removal of at least half of the initial T&O 

concentrations while the chemical adsorption represented less than 8%. 

 

The original design of the study presented in this research work was to identify and 

understand the major mechanisms involved in the production of MIB and geosmin in a 

water supply reservoir. Although hydrological drivers and water temperatures were found 

critical, the accurate identification of organisms involved in the in situ production of 

odorous metabolites is still evolving and challenging. This step was achieved with the help 

of Illumina next-generation sequencers (NGS) and extensive reference databases for 

taxonomic assignments. Shotgun genomics based on 16S rRNA analysis revealed the 

presence of all bacterial taxa in the same water sample (i.e. environmental DNA or eDNA); 

thus, simultaneously screening for taxonomic and functional diversities. This DNA-based 

approach is sometimes referred to as “DNA metabarcoding”. However, this expression is 

more appropriate when pointing at taxa identification while ‘metagenomics’ refers to 

functional aspects and genome assemblies. Now that major producers have been identified 

in Eagle Creek Reservoir, the continuation of this work will be to determine accurately the 

presence or absence of a single species, such as Streptomyces or Planktothrix. A species-
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specific approach is very often the best solution and is generally based on quantitative 

Polymerase Chain Reaction (qPCR) or targeted PCR. These two techniques target a 

metabarcode, i.e. a short and informative DNA region flanked by two conserved regions 

which harbor PCR primers. Such primers already exist to detect major bacterial clades but 

must be first clearly defined to aim specifically at the group of interest. Furthermore, 

existing metabarcodes may not be entirely satisfying and in silico primer design is often an 

alternative approach to refine the taxonomic resolution. Similarly, the designing of primers 

that flank genes encoding for MIB or geosmin is utterly relevant and possible. The sole 

prerequisite for in silico designing of a robust and efficient metabarcode is to get access to 

a set of reference sequences that truly represent the group/gene of study with the lowest 

levels of sequencing errors. Once a good set of sequences is obtained, primer anchoring 

regions may emerge and be identified from sequence alignments or, instead, based on a 

pattern search. The high specificity of these newly designed primers is to ensure that DNA 

from non-target organisms will not be co-amplified. Then, MIB and GSM-producing 

bacteria can be monitored routinely in Eagle Creek Reservoir. A real-time biomonitoring 

program may as well be set up to forecast and anticipate T&O outbreaks and potential 

water treatment impairments when environmental conditions are becoming favorable for 

the biosynthesis of odorous metabolites. 

 

The advancements in knowledge regarding the behavior and the fate of MIB and 

geosmin in surface waters, from source to sink, presented in this research work are 

important from a water manager’s perspective. Hydrological drivers and nitrate levels are 

the major component as they dictate whether conditions are favorable to support the 

growths of bacterial producers. These parameters can now easily be monitored online 

through the USGS super gages located on main tributaries upstream the reservoir at 

Zionsville, IN (USGS 03353200) and recently, at Brownsburg, IN (USGS 03353420). The 

list of known T&O-producing bacteria is growing every day. Major metabolic pathways 

are being unraveled and biological controls may be proposed in a near future. The 

comprehension of cell-bound to dissolved fractions may be a useful parameter to decide 

for optimal treatment/cost adjustments within the water treatment plant as well as whether 

to decide or not to treat the reservoir with an algaecide depending on which metabolite is 
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present in the water at a given time. Finally, it is not impossible that the identification of 

new bacterial species or strains capable of degrading T&O compounds may have future 

applications in the water industry and, as well be used to seed sand filter beds in order to 

enhance the removal efficiency of treatment plants. 
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SUPPLEMENTAL TABLES S1-S6 

 

 

 

Table S1. Formulas used to calculate diversity indices; with pi the proportion of individuals 

belonging to species i. 

 
Metric Traditional formula 

Richness (S) Number of species 

Shannon’s diversity (H’) −∑pi ln(pi) 

Simpson’s dominance (D) 1/∑pi2 

Simpson’s evenness (E) D/S 

 

 

 

 

 

Table S2. Variations of diversity indices of bacterioplankton with depths in the Eagle Creek 

water column and seasons. 

  
Spring Summer Fall 

 
0m 3m 6m 10m 0m 3m 6m 10m 3m 6m 10m 

Richness S 590 592 593 592 592 589 590 592 590 594 590 

Shannon H’ 3.79 4.21 3.36 3.08 3.98 3.14 2.83 4.74 2.89 2.75 2.74 

Dominance D 0.07 0.08 0.16 0.23 0.06 0.13 0.23 0.04 0.25 0.25 0.27 

Evenness E 0.075 0.114 0.049 0.037 0.090 0.039 0.029 0.193 0.031 0.026 0.026 
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Table S3. Top 5 most abundant bacterial phyla in each Eagle Creek Reservoir water sample. 

  

Spring Summer Fall 
 

0m 3m 6m 10m 0m 3m 6m 10m 3m 6m 10m 

# 16S reads 7,748,921 8,578,024 13,881,256 9,161,193 5,802,341 19,669,842 17,593,523 4,531,446 10,097,700 15,079,509 12,969,708 

% Actinobacteria 75.3 60.4 83.6 83.9 36.2 39.2 56.4 24.8 70.6 70.7 74.5 

% Proteobacteria 9.7 28.3 10.9 10.6 26.0 39.3 30.1 40.9 15.9 19.5 15.2 

% Firmicutes 10.9 5.5 2.0 1.6 19.8 8.6 5.7 14.8 6.9 4.0 4.4 

% Bacteroidetes 1.6 2.2 1.2 1.2 4.8 5.9 3.5 7.3 0.8 0.6 0.7 

% Cyanobacteria 1.0 0.8 0.5 1.0 7.5 2.3 1.2 2.6 2.8 1.8 2.4 

% Other bacteria 1.5 2.8 1.7 1.6 5.6 4.7 3.1 9.7 3.1 3.4 2.8 
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Table S4. Seasonal averages of enzyme reads from metabolic pathways and environmental variables, including odorous compounds 

MIB and geosmin, recorded in Eagle Creek Reservoir. 

  
Spring 2013 Summer 2013 Fall 2013 

Enzymes n Mean Max St. Dev n Mean Max St. Dev n Mean Max St. Dev 

AACT [EC 2.3.1.9] 4 2526.8 3570.0 730.3 4 2799.0 4547.0 1897.8 3 3523.3 4258.0 777.6 

HMGS [EC 2.3.3.10] 4 8.5 18.0 6.4 4 22.5 47.0 19.8 3 11.3 24.0 11.0 

HMGR [EC 1.1.1.34] 4 71.5 82.0 13.2 4 72.8 102.0 22.9 3 40.0 46.0 8.7 

MVK [EC 2.7.1.36] 4 11.3 22.0 8.1 4 9.0 15.0 5.5 3 1.0 3.0 1.7 

PMK [EC 2.7.4.2] 4 6.3 17.0 7.5 4 3.5 12.0 5.7 3 0.0 0.0 0.0 

MVD [EC 4.1.1.33] 4 9.5 14.0 3.7 4 3.3 6.0 2.8 3 0.3 1.0 0.6 

dxs [EC 2.2.1.7] 4 2598.0 3910.0 1073.4 4 2803.5 4538.0 1725.3 3 3506.0 3974.0 541.4 

dxr [EC 1.1.1.267] 4 697.0 1019.0 241.1 4 666.3 1060.0 332.4 3 581.0 628.0 58.8 

mct [EC 2.7.7.60] 4 4.8 7.0 3.3 4 0.8 2.0 1.0 3 1.7 5.0 2.9 

cmk [EC 2.7.1.148] 4 592.5 929.0 285.1 4 561.3 923.0 352.7 3 643.3 762.0 184.3 

hdr [EC 1.17.1.2] 4 463.5 742.0 223.3 4 565.5 722.0 126.7 3 278.7 296.0 22.7 

IDI [EC 5.3.3.2] 4 192.3 229.0 32.7 4 241.5 442.0 146.5 3 110.7 140.0 29.5 

DMAPP [EC:2.5.1.1] 4 242.0 325.0 77.1 4 257.8 286.0 38.4 3 134.3 159.0 22.5 

FPS [EC 2.5.1.10] 4 31.5 47.0 15.6 4 25.3 37.0 8.7 3 21.0 28.0 6.6 

Environment                         

MIB          (ppt) 4 64.3 120.9 63.6 4 5.3 15.3 6.7 3 12.6 13.8 1.1 

Geosmin (ppt) 4 27.8 51.4 26.3 4 3.4 3.9 0.4 3 15.1 20.8 5.0 

NO3-N      (ppm) 4 1.0 1.3 0.2 4 1.0 1.5 0.6 3 0.0 0.0 0.0 

NH3-N      (ppm) 4 0.2 0.7 0.3 4 0.7 2.4 1.1 3 2.0 5.4 3.0 

Total P     (ppm) 4 0.1 0.1 0.0 4 0.2 0.7 0.3 3 0.3 0.7 0.4 

Temp       (ºC) 4 16.7 14.0 5.2 4 22.4 34.8 5.9 3 19.4 55.0 2.1 

pH 4 8.3 21.1 0.6 4 7.9 26.5 0.6 3 7.3 20.7 0.4 
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Table S5. List of OTUs identified in networks. 

Phylum Genus OTU Phylum Genus OTU 

Actinobacteria Acidimicrobium Acti-1 Actinobacteria Propionibacterium Acti-45 

Actinobacteria Acidothermus Acti-2 Actinobacteria Renibacterium Acti-46 

Actinobacteria Actinomyces Acti-3 Actinobacteria Rhodococcus Acti-47 

Actinobacteria Actinosynnema Acti-4 Actinobacteria Rothia Acti-48 

Actinobacteria Aeromicrobium Acti-5 Actinobacteria Rubrobacter Acti-49 

Actinobacteria Amycolatopsis Acti-6 Actinobacteria Saccharomonospora Acti-50 

Actinobacteria Arcanobacterium Acti-7 Actinobacteria Saccharopolyspora Acti-51 

Actinobacteria Arthrobacter Acti-8 Actinobacteria Salinispora Acti-52 

Actinobacteria Atopobium Acti-9 Actinobacteria Sanguibacter Acti-53 

Actinobacteria Beutenbergia Acti-10 Actinobacteria Scardovia Acti-54 

Actinobacteria Bifidobacterium Acti-11 Actinobacteria Segniliparus Acti-55 

Actinobacteria Brachybacterium Acti-12 Actinobacteria Slackia Acti-56 

Actinobacteria Brevibacterium Acti-13 Actinobacteria Stackebrandtia Acti-57 

Actinobacteria Catenulispora Acti-14 Actinobacteria Streptomyces Acti-58 

Actinobacteria Cellulomonas Acti-15 Actinobacteria Streptosporangium Acti-59 

Actinobacteria Clavibacter Acti-16 Actinobacteria Thermobifida Acti-60 

Actinobacteria Collinsella Acti-17 Actinobacteria Thermobispora Acti-61 

Actinobacteria Conexibacter Acti-18 Actinobacteria Thermomonospora Acti-62 

Actinobacteria Corynebacterium Acti-19 Actinobacteria Tropheryma Acti-63 

Actinobacteria Cryptobacterium Acti-20 Actinobacteria Tsukamurella Acti-64 

Actinobacteria Dermacoccus Acti-21 Actinobacteria Unclassified Actino- Acti-65 

Actinobacteria Eggerthella Acti-22 Actinobacteria Xylanimonas Acti-66 

Actinobacteria Frankia Acti-23 Cyanobacteria Acaryochloris Cyan-1 

Actinobacteria Gardnerella Acti-24 Cyanobacteria Anabaena Cyan-2 

Actinobacteria Geodermatophilus Acti-25 Cyanobacteria Arthrospira Cyan-3 

Actinobacteria Gordonia Acti-26 Cyanobacteria Crocosphaera Cyan-4 

Actinobacteria Intrasporangium Acti-27 Cyanobacteria Cyanobium Cyan-5 

Actinobacteria Janibacter Acti-28 Cyanobacteria Cyanothece Cyan-6 

Actinobacteria Jonesia Acti-29 Cyanobacteria Cylindrospermopsis Cyan-7 

Actinobacteria Kineococcus Acti-30 Cyanobacteria Cylindrospermum Cyan-8 

Actinobacteria Kocuria Acti-31 Cyanobacteria Gloeobacter Cyan-9 

Actinobacteria Kribbella Acti-32 Cyanobacteria Lyngbya Cyan-10 

Actinobacteria Kytococcus Acti-33 Cyanobacteria Microcoleus Cyan-11 

Actinobacteria Leifsonia Acti-34 Cyanobacteria Microcystis Cyan-12 

Actinobacteria Micrococcus Acti-35 Cyanobacteria Nodularia Cyan-13 

Actinobacteria Micromonospora Acti-36 Cyanobacteria Nostoc Cyan-14 

Actinobacteria Mobiluncus Acti-37 Cyanobacteria Oscillatoria Cyan-15 

Actinobacteria Mycobacterium Acti-38 Cyanobacteria Prochlorococcus Cyan-16 

Actinobacteria Nakamurella Acti-39 Cyanobacteria Raphidiopsis Cyan-17 

Actinobacteria Nocardia Acti-40 Cyanobacteria Synechococcus Cyan-18 
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Actinobacteria Nocardioides Acti-41 Cyanobacteria Synechocystis Cyan-19 

Actinobacteria Nocardiopsis Acti-42 Cyanobacteria Thermosynechococcus Cyan-20 

Actinobacteria Olsenella Acti-43 Cyanobacteria Trichodesmium Cyan-21 

Actinobacteria Parascardovia Acti-44 Cyanobacteria Unclassified Cyano- Cyan-22 

 

 

Table S6. Comparison of nucleotide sequences encoding for enzymes from the 

MEP/DOXP pathway belonging to the marine Trichodesmium erythraeum (Refseq 

Accession: YP_723652.1) and percent identity using the online NCBI BlastN Suite. 

 
Sequenc
e length 

(nt) 

Trichodesmium 
erythraeum  

Contig ID 
Function Enzyme 

E-
value 

NCBI taxon 

(% Identity) 

Accessio
n 

150 
NS500123:11:H0E9PA
GXX:1:12301:5238:15
375.1 

1-deoxy-D-xylulose-5-
phosphate synthase 

2.2.1.7 2e-44 
Pseudanabae
na sp. (89%) 

AP017560
.1 

118 
NS500123:11:H0E9PA
GXX:4:22410:20424:1
1333 

2-C-methyl-D-erythritol 
4-phosphate cytidylyl-
transferase 

2.7.7.60 2e-53 
Planktothrix 
agardhii 
(100%) 

LO018304
.1 

252 
NS500123:11:H0E9PA
GXX:2:11210:21598:1
5131 

4-diphospho-cytidyl-2-C-
methyl-D-erythritol 
kinase 

2.7.1.14
8 

1e-102 
Planktothrix 
agardhii 
(94%) 

- 

150 
NS500123:11:H0E9PA
GXX:3:21403:9736:12
72.1 

4-hydroxy-3-methylbut-
2-enyl diphosphate 
reductase 

1.17.1.4 4e-71 
Planktothrix 
agardhii 
(100%) 

- 

139 
NS500123:11:H0E9PA
GXX:1:21204:9083:68
57.2 

isopentenyl 
pyrophosphate 
isomerase 

5.3.3.2 3e-57 
Planktothrix 
agardhii 
(96%) 

- 

113 
NS500123:11:H0E9PA
GXX:2:11208:23616:6
077 

farnesyl-diphosphate 
synthase 

2.5.1.10 1e-50 
Planktothrix 
agardhii 
(100%) 

- 
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APPENDIX I - T&O-degrading bacteria abundances during each individual 

sampling date and phase of the reservoir 

 
 Phase I Phase II Phase III 

Arthrobacter spp. 5/15/13 5/23/13 6/11/13 6/27/13 7/11/13 7/25/13 8/6/13 8/22/13 9/4/13 10/1/13 10/23/13 

A. creatinolyticus 0.00000 0.00000 0.00004 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

A. psychrochitiniphilus 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

A. uratoxydans 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Bacillus spp.            

B. arbutinivorans 0.00009 0.00000 0.00003 0.00000 0.00000 0.00000 0.00002 0.00003 0.00005 0.00006 0.00010 

B. aryabhattai 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.00001 0.00001 0.00000 

B. beringensis 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00001 0.00002 0.00000 

B. boroniphilus 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 

B. butanolivorans 0.00000 0.00000 0.00005 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 

B. cereus 0.00000 0.00000 0.00000 0.00003 0.00002 0.00008 0.00000 0.00002 0.00001 0.00000 0.00001 

B. foraminis 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001 

B. funiculus 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

B. ginsengihumi 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

B. herbersteinensis 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 

B. horneckiae 0.00000 0.00000 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 

B. humi 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 

B. litoralis 0.00000 0.00000 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

B. longiquaesitum 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00004 0.00000 0.00001 0.00002 0.00004 

B. nealsonii 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

B. niacini 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002 0.00005 

B. olivae 0.00000 0.00001 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

B. oryzae 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

B. shandongensis 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

B. simplex 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002 0.00000 

B. siralis 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00003 0.00001 

B. soli 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 

B. thermoamylovorans 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

B. thioparans 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 

Comamonas spp.            

C. composti 0.00000 0.00000 0.00004 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

C. kerstersii 0.00025 0.00047 0.00018 0.00006 0.00010 0.00006 0.00008 0.00004 0.00003 0.00000 0.00003 

C. koreensis 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

C. nitrativorans 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 

C. odontotermitis 0.00001 0.00011 0.00065 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00003 0.00000 

C. testosteroni 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 

Enterobacter spp.            

E. amnigenus 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

E. hormaechei 0.00000 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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E. soli 0.00000 0.00001 0.00002 0.00001 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00001 

Flavobacterium spp.            

F. algicola 0.00006 0.00035 0.00010 0.00002 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

F. antarcticum 0.00021 0.00014 0.00009 0.00010 0.00005 0.00000 0.00008 0.00002 0.00001 0.00001 0.00004 

F. aquatile 0.00087 0.00102 0.00011 0.00021 0.00001 0.00000 0.00000 0.00002 0.00001 0.00000 0.00003 

F. branchiophilum 0.00040 0.00027 0.00022 0.00002 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 

F. cauense 0.00000 0.00002 0.00000 0.00000 0.00005 0.00018 0.00002 0.00005 0.00002 0.00000 0.00000 

F. cheniae 0.00028 0.00015 0.00014 0.00006 0.00011 0.00000 0.00000 0.00000 0.00000 0.00000 0.00010 

F. chungangense 0.00000 0.00007 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 

F. columnare 0.00001 0.00002 0.00000 0.00022 0.00003 0.00002 0.00000 0.00000 0.00001 0.00001 0.00000 

F. croceum 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 

F. defluvii 0.00001 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

F. flevense 0.00003 0.00007 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

F. frigidarium 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 

F. frigidimaris 0.00006 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

F. gelidilacus 0.00026 0.00005 0.00017 0.00000 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00004 

F. glaciei 0.00001 0.00003 0.00001 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 

F. glycines 0.00004 0.00015 0.00009 0.00003 0.00000 0.00000 0.00000 0.00002 0.00001 0.00001 0.00004 

F. granuli 0.00002 0.00007 0.00003 0.00002 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002 0.00000 

F. hydatis 0.00000 0.00051 0.00024 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

F. kamogawaensis 0.00046 0.00034 0.00008 0.00000 0.00001 0.00000 0.00000 0.00001 0.00002 0.00002 0.00000 

F. micromati 0.00000 0.00021 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

F. omnivorum 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

F. pectinovorum 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

F. reichenbachii 0.00036 0.00022 0.00007 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

F. resistens 0.00042 0.00017 0.00003 0.00002 0.00000 0.00000 0.00000 0.00000 0.00002 0.00003 0.00000 

F. saliperosum 0.00064 0.00054 0.00031 0.00002 0.00003 0.00000 0.00000 0.00002 0.00005 0.00006 0.00003 

F. succinicans 0.00015 0.00094 0.00043 0.00007 0.00020 0.00000 0.00000 0.00002 0.00005 0.00002 0.00005 

F. suncheonense 0.00024 0.00018 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

F. swingsii 0.00012 0.00003 0.00000 0.00002 0.00010 0.00000 0.00000 0.00002 0.00002 0.00001 0.00000 

F. terrigena 0.00175 0.00087 0.00041 0.00022 0.00002 0.00000 0.00004 0.00006 0.00006 0.00008 0.00029 

F. weaverense 0.00050 0.00032 0.00012 0.00057 0.00023 0.00018 0.00014 0.00011 0.00009 0.00009 0.00087 

F. xinjiangense 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Novosphingobium spp.            

N. acidiphilum 0.00002 0.00008 0.00013 0.00005 0.00010 0.00012 0.00008 0.00003 0.00005 0.00004 0.00005 

N. aromaticivorans 0.00004 0.00000 0.00005 0.00008 0.00001 0.00002 0.00004 0.00000 0.00001 0.00001 0.00006 

N. hassiacum 0.00001 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00002 

N. indicum 0.00006 0.00008 0.00004 0.00010 0.00000 0.00010 0.00000 0.00002 0.00001 0.00000 0.00006 

N. lentum 0.00021 0.00016 0.00006 0.00006 0.00001 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 

N. mathurense 0.00002 0.00007 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 

N. stygium 0.00041 0.00073 0.00019 0.00043 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

N. subterraneum 0.00000 0.00012 0.00022 0.00001 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002 0.00000 

N. taihuense 0.00000 0.00003 0.00013 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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N. yangbajingensis 0.00003 0.00004 0.00004 0.00005 0.00011 0.00030 0.00002 0.00006 0.00004 0.00002 0.00011 

Pseudomonas spp.            

P. alcaligenes 0.00000 0.00000 0.00013 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. anguilliseptica 0.00048 0.00022 0.00016 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. benzenivorans 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. borealis 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. brenneri 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 

P. caricapapayae 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. chloritidismutans 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 

P. clemancea 0.00000 0.00001 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. coronafaciens 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. corrugata 0.00006 0.00005 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. cremoricolorata 0.00000 0.00004 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. entomophila 0.00000 0.00006 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. gessardii 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. guineae 0.00000 0.00001 0.00017 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. jessenii 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. lundensis 0.00004 0.00001 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. lutea 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. mandelii 0.00000 0.00006 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. migulae 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. moraviensis 0.00000 0.00009 0.00000 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. mosselii 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. mucidolens 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. otitidis 0.00000 0.00008 0.00002 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00005 

P. panipatensis 0.00003 0.00001 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. parafulva 0.00000 0.00000 0.00000 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. pavonaceae 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. plecoglossicida 0.00003 0.00025 0.00007 0.00002 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 

P. pseudoalcaligenes 0.00000 0.00000 0.00003 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. resinovorans 0.00000 0.00001 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. rhodesiae 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. savastanoi 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. taetrolens 0.00002 0.00000 0.00000 0.00000 0.00002 0.00002 0.00002 0.00000 0.00000 0.00000 0.00000 

P. taiwanensis 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. teessidea 0.00001 0.00005 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. thermotolerans 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 

P. tremae 0.00000 0.00004 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. umsongensis 0.00001 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. vancouverensis 0.00000 0.00001 0.00001 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 

Rhodococcus spp.            

R. imtechensis 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

R. kyotonensis 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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R. percolatus 0.00030 0.00167 0.00075 0.00111 0.00101 0.00037 0.00024 0.00032 0.00031 0.00037 0.00048 

R. yunnanensis 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Sphingomonas spp.            

S. asaccharolytica 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00000 0.00001 

S. dokdonensis 0.00002 0.00000 0.00000 0.00000 0.00003 0.00000 0.00000 0.00000 0.00004 0.00000 0.00003 

S. echinoides 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

S. elodea 0.00003 0.00001 0.00002 0.00002 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

S. fennica 0.00000 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

S. ginsenosidimutans 0.00000 0.00001 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

S. hankookensis 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

S. hunanensis 0.00019 0.00025 0.00007 0.00002 0.00001 0.00002 0.00000 0.00004 0.00003 0.00003 0.00000 

S. insulae 0.00000 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

S. leidyia 0.00000 0.00000 0.00000 0.00000 0.00003 0.00000 0.00000 0.00000 0.00002 0.00000 0.00001 

S. mali 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

S. melonis 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 

S. oligophenolica 0.00005 0.00008 0.00006 0.00004 0.00000 0.00004 0.00004 0.00003 0.00004 0.00006 0.00005 

S. panni 0.00001 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

S. sanxanigenens 0.00000 0.00010 0.00010 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00008 

S. soli 0.00000 0.00004 0.00003 0.00000 0.00000 0.00000 0.00000 0.00002 0.00004 0.00003 0.00000 

S. wittichii 0.00004 0.00027 0.00011 0.00004 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00029 

S. yunnanensis 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00001 0.00000 0.00000 

Sphingopyxis spp.            

Sp. alaskensis 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Sp. chilensis 0.00000 0.00000 0.00000 0.00003 0.00001 0.00000 0.00000 0.00000 0.00002 0.00002 0.00000 

Sp. granuli 0.00000 0.00002 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Sp. witflariensis 0.00000 0.00005 0.00007 0.00013 0.00001 0.00002 0.00000 0.00002 0.00002 0.00003 0.00001 
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APPENDIX II – Spearman's rho (rs) correlations of identified T&O-degrading 

bacteria with total methylisoborneol (MIB), total geosmin (GSM) concentrations 

and their Bound to Dissolved (B:D) ratios in Eagle Creek Reservoir.  

 
 Correlations with strong statistical significance are in bold with p <0.05, *p <0.01 and **p <0.001. 

Actinobacteria (→ GSM) MIB B:D GSM B:D 

Arthrobacter creatinolyticus 0.28 -0.06 -0.24 -0.68 
Arthrobacter psychrochitiniphilus 0.10 -0.10 0.00 -0.10 
Arthrobacter uratoxydans 0.30 -0.36 0.10 -0.45 
Rhodococcus imtechensis 0.30 -0.36 0.10 -0.45 
Rhodococcus kyotonensis 0.50 0.51 0.50 0.40 
Rhodococcus percolatus 0.38 0.07 0.11 -0.24 
Rhodococcus yunnanensis 0.30 -0.36 0.10 -0.45 
     

Bacteroidetes (→ MIB) MIB B:D GSM B:D 

Flavobacterium algicola 0.60 0.32 0.36 -0.24 
Flavobacterium antarcticum 0.33 0.46 0.21 0.00 
Flavobacterium aquatile 0.52 0.49 0.43 0.12 
Flavobacterium branchiophilum 0.58 0.15 0.51 -0.12 
Flavobacterium cauense -0.51 -0.12 -0.30 0.21 
Flavobacterium cheniae 0.57 0.08 0.59 -0.03 
Flavobacterium chungangense 0.48 0.30 0.23 -0.02 
Flavobacterium columnare 0.25 0.30 -0.05 -0.37 
Flavobacterium croceum 0.46 0.17 0.43 -0.10 
Flavobacterium defluvii 0.13 0.47 -0.13 -0.30 
Flavobacterium flevense 0.66 0.33 0.68 0.13 
Flavobacterium frigidarium -0.10 -0.36 0.30 0.50 
Flavobacterium frigidimaris 0.50 0.51 0.66 0.35 
Flavobacterium gelidilacus 0.50 -0.08 0.70 0.12 
Flavobacterium glaciei 0.28 0.33 0.37 0.28 
Flavobacterium glycines 0.66 0.39 0.61 0.18 
Flavobacterium granuli 0.86** 0.49 0.43 -0.31 
Flavobacterium hydatis 0.57 0.37 0.18 -0.22 
Flavobacterium kamogawaensis 0.78* 0.27 0.69 -0.09 
Flavobacterium micromati 0.61 0.17 0.47 0.02 
Flavobacterium omnivorum 0.20 0.20 0.40 0.10 
Flavobacterium pectinovorum 0.50 0.51 0.50 0.40 
Flavobacterium reichenbachii 0.62 0.46 0.45 -0.10 
Flavobacterium resistens 0.89** 0.51 0.61 -0.19 
Flavobacterium saliperosum 0.85** 0.20 0.80* -0.04 

Flavobacterium succinicans 0.62 0.17 0.41 -0.21 

Flavobacterium suncheonense 0.62 0.29 0.67 0.10 
Flavobacterium swingsii 0.33 0.51 0.17 -0.11 
Flavobacterium terrigena 0.70 0.44 0.65 0.16 



  

138 

 

Flavobacterium weaverense -0.01 0.09 0.16 0.24 
Flavobacterium xinjiangense 0.50 0.51 0.50 0.40 

  
    

Firmicutes (→ MIB) MIB B:D GSM B:D 

Bacillus arbutinivorans 0.17 -0.12 0.45 0.32 
Bacillus aryabhattai 0.31 0.39 0.22 0.27 
Bacillus beringensis 0.16 -0.20 0.09 -0.20 
Bacillus boroniphilus -0.10 -0.36 0.30 0.50 
Bacillus butanolivorans 0.17 -0.20 -0.09 -0.37 
Bacillus cereus -0.54 -0.22 -0.55 -0.17 
Bacillus foraminis 0.29 -0.20 0.34 0.12 
Bacillus funiculus 0.30 -0.36 0.10 -0.45 
Bacillus ginsengihumi 0.30 -0.36 0.10 -0.45 
Bacillus herbersteinensis -0.10 -0.36 0.30 0.50 
Bacillus horneckiae 0.08 -0.20 -0.04 -0.14 
Bacillus humi 0.39 0.01 0.16 -0.23 
Bacillus litoralis 0.30 -0.36 0.10 -0.45 
Bacillus longiquaesitum -0.07 -0.35 0.04 0.16 
Bacillus nealsonii -0.16 -0.01 -0.50 -0.55 
Bacillus niacini 0.50 0.01 0.70 0.37 
Bacillus olivae 0.34 0.68 -0.07 -0.09 
Bacillus oryzae 0.10 -0.10 0.00 -0.10 
Bacillus shandongensis 0.50 0.51 0.50 0.40 
Bacillus simplex 0.39 0.01 0.16 -0.23 
Bacillus siralis 0.31 -0.17 0.31 0.05 
Bacillus soli 0.68 0.40 0.50 0.12 
Bacillus thermoamylovorans 0.10 -0.10 0.00 -0.10 
Bacillus thioparans -0.01 -0.36 0.24 0.34 

  
    

β-Proteobacteria (→ GSM) MIB B:D GSM B:D 

Comamonas composti 0.11 -0.53 -0.05 -0.57 
Comamonas kerstersii 0.23 0.23 0.19 -0.06 
Comamonas koreensis 0.20 0.20 0.40 0.10 
Comamonas nitrativorans 0.54 -0.20 0.21 -0.49 
Comamonas odontotermitis 0.88** 0.14 0.64 -0.20 
Comamonas testosteroni -0.40 0.28 -0.66 -0.14 

 
 
 
 
 

α-Proteobacteria (→ GSM) MIB B:D GSM B:D 

Novosphingobium acidiphilum -0.03 -0.46 -0.17 -0.38 
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Novosphingobium aromaticivorans -0.09 -0.30 -0.15 -0.31 
Novosphingobium hassiacum 0.63 0.27 0.87** 0.55 
Novosphingobium indicum 0.16 0.23 0.14 0.11 
Novosphingobium lentum 0.73 0.44 0.40 -0.36 
Novosphingobium mathurense 0.43 0.59 0.39 0.27 
Novosphingobium stygium 0.55 0.47 0.24 -0.24 
Novosphingobium subterraneum 0.81* 0.22 0.33 -0.39 
Novosphingobium taihuense 0.54 0.27 0.13 -0.32 
Novosphingobium yangbajingensis -0.40 -0.35 -0.15 0.16 
Sphingomonas asaccharolytica -0.25 -0.10 0.12 0.43 
Sphingomonas dokdonensis -0.02 -0.40 0.20 0.04 
Sphingomonas echinoides 0.50 0.51 0.50 0.40 
Sphingomonas elodea 0.45 0.22 0.12 -0.50 
Sphingomonas fennica 0.61 0.17 0.47 0.02 
Sphingomonas ginsenosidimutans 0.34 0.68 -0.07 -0.09 
Sphingomonas hankookensis 0.50 0.51 0.50 0.40 
Sphingomonas hunanensis 0.70 0.55 0.52 -0.03 
Sphingomonas insulae 0.50 0.51 0.50 0.40 
Sphingomonas leidyia -0.14 -0.52 0.01 -0.03 
Sphingomonas mali 0.50 0.51 0.50 0.40 
Sphingomonas melonis -0.10 -0.36 0.30 0.50 
Sphingomonas oligophenolica 0.86** 0.24 0.76* 0.12 
Sphingomonas panni -0.03 -0.15 0.11 -0.18 
Sphingomonas sanxanigenens 0.48 0.04 0.34 -0.01 
Sphingomonas soli 0.65 0.32 0.42 0.03 
Sphingomonas wittichii 0.49 0.01 0.49 0.09 
Sphingomonas yunnanensis -0.26 0.18 -0.24 0.18 
Sphingopyxis alaskensis -0.20 -0.36 -0.20 -0.30 
Sphingopyxis chilensis 0.19 0.14 -0.35 -0.63 
Sphingopyxis granuli 0.40 0.69 0.07 0.02 
Sphingopyxis witflariensis 0.51 0.23 -0.05 -0.53 
 

 

 

 

 

 

 

 

 

  

    

γ-Proteobacteria (→ MIB) MIB B:D GSM B:D 

Enterobacter amnigenus 0.00 0.41 -0.50 -0.45 

Enterobacter hormaechei 0.30 -0.36 0.10 -0.45 
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Enterobacter soli 0.01 0.10 -0.18 -0.03 
Pseudomonas alcaligenes 0.30 -0.36 0.10 -0.45 
Pseudomonas anguilliseptica 0.62 0.46 0.45 -0.10 
Pseudomonas benzenivorans 0.50 0.51 0.50 0.40 
Pseudomonas borealis 0.50 0.51 0.50 0.40 
Pseudomonas brenneri 0.39 0.01 0.16 -0.23 
Pseudomonas caricapapayae 0.50 0.51 0.50 0.40 
Pseudomonas chloritidismutans -0.10 -0.36 0.30 0.50 
Pseudomonas clemancea 0.34 0.68 -0.07 -0.09 
Pseudomonas coronafaciens 0.20 0.20 0.40 0.10 
Pseudomonas corrugata 0.62 0.29 0.67 0.10 
Pseudomonas cremoricolorata 0.61 0.17 0.47 0.02 
Pseudomonas entomophila 0.50 0.51 0.50 0.40 
Pseudomonas gessardii 0.50 0.51 0.50 0.40 
Pseudomonas guineae 0.58 0.06 0.42 -0.09 
Pseudomonas jessenii 0.00 0.41 -0.50 -0.45 
Pseudomonas lundensis 0.60 0.19 0.62 0.00 
Pseudomonas lutea 0.30 -0.36 0.10 -0.45 
Pseudomonas mandelii 0.40 0.69 0.07 0.02 
Pseudomonas migulae 0.20 0.20 0.40 0.10 
Pseudomonas moraviensis 0.43 0.59 0.06 -0.04 
Pseudomonas mosselii 0.50 0.51 0.50 0.40 
Pseudomonas mucidolens 0.50 0.51 0.50 0.40 
Pseudomonas otitidis 0.42 -0.24 0.53 0.21 
Pseudomonas panipatensis 0.61 0.13 0.59 -0.07 
Pseudomonas parafulva 0.00 0.41 -0.50 -0.45 
Pseudomonas pavonaceae 0.30 -0.36 0.10 -0.45 
Pseudomonas plecoglossicida 0.50 0.44 0.29 -0.07 
Pseudomonas pseudoalcaligenes 0.24 -0.01 -0.26 -0.67 
Pseudomonas resinovorans 0.60 0.00 0.39 -0.14 
Pseudomonas rhodesiae 0.50 0.51 0.50 0.40 
Pseudomonas savastanoi 0.30 -0.36 0.10 -0.45 
Pseudomonas taetrolens -0.39 -0.33 -0.15 -0.08 
Pseudomonas taiwanensis 0.50 0.51 0.50 0.40 
Pseudomonas teessidea 0.69 0.27 0.67 0.08 
Pseudomonas thermotolerans 0.39 0.01 0.16 -0.23 
Pseudomonas tremae 0.61 0.17 0.47 0.02 
Pseudomonas umsongensis 0.54 0.55 0.67 0.39 
Pseudomonas vancouverensis 0.10 0.14 0.07 0.17 
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