
Kagaris et al. BMC Bioinformatics  (2018) 19:244 
https://doi.org/10.1186/s12859-018-2231-1

RESEARCH ARTICLE Open Access

AUCTSP: an improved biomarker gene
pair class predictor
Dimitri Kagaris1* , Alireza Khamesipour1 and Constantin T. Yiannoutsos2

Abstract

Background: The Top Scoring Pair (TSP) classifier, based on the concept of relative ranking reversals in the
expressions of pairs of genes, has been proposed as a simple, accurate, and easily interpretable decision rule for
classification and class prediction of gene expression profiles. The idea that differences in gene expression ranking are
associated with presence or absence of disease is compelling and has strong biological plausibility. Nevertheless, the
TSP formulation ignores significant available information which can improve classification accuracy and is vulnerable
to selecting genes which do not have differential expression in the two conditions (“pivot" genes).

Results: We introduce the AUCTSP classifier as an alternative rank-based estimator of the magnitude of the ranking
reversals involved in the original TSP. The proposed estimator is based on the Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC) and as such, takes into account the separation of the entire distribution of gene
expression levels in gene pairs under the conditions considered, as opposed to comparing gene rankings within
individual subjects as in the original TSP formulation. Through extensive simulations and case studies involving
classification in ovarian, leukemia, colon, breast and prostate cancers and diffuse large b-cell lymphoma, we show the
superiority of the proposed approach in terms of improving classification accuracy, avoiding overfitting and being less
prone to selecting non-informative (pivot) genes.

Conclusions: The proposed AUCTSP is a simple yet reliable and robust rank-based classifier for gene expression
classification. While the AUCTSP works by the same principle as TSP, its ability to determine the top scoring gene pair
based on the relative rankings of two marker genes across all subjects as opposed to each individual subject results in
significant performance gains in classification accuracy. In addition, the proposed method tends to avoid selection of
non-informative (pivot) genes as members of the top-scoring pair.

Keywords: Microarray data analysis, Gene expression, Gene selection, Receiver operating characteristic (ROC) curve,
AUC, Leukemia, Breast cancer, Ovarian cancer, Colon cancer, Prostate cancer, Diffuse large B-Cell lymphoma

Background
Microarray data analysis is a high throughput method
used to gain information about gene functions inside cells.
This information is in turn used to detect the presence or
absence of disease [1–3], and gain a better understanding
of a disease mechanism [4].
A particularly useful application of microarray tech-

nology uses microarray data to detect the presence of
disease by combining gene expression levels from a num-
ber of genes, to provide information on whether disease

*Correspondence: kagaris@engr.siu.edu
1Department of Electrical and Computer Engineering, Southern Illinois
University, 1230 Lincoln Drive, 62901 Carbondale, IL, USA
Full list of author information is available at the end of the article

is present (classification) or the risk for the occurrence
of disease in the future (prediction). While very complex
classifiers can be constructed, a number of authors have
expressed concern with the “black box” nature of these
approaches [5] preferring simpler more interpretable clas-
sifiers in clinical applications [6, 7]. It is noted that the
preference for the latter kind of classifiers should not be at
the expense of their performance.
Classification involves, at its most fundamental level,

a comparison between expression levels in one or more
genes between two or more conditions (e.g., disease ver-
sus no disease). This comparison can be based on a fairly
heuristic criterion (e.g., fold-change in gene expression
[8]), or by using parametric or non-parametric statistical
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methods [9–12]. There are several advantages and dis-
advantages with each of these methods. For example, it
is biologically plausible that genes with large differential
expression levels should be part of a classification crite-
rion. However, the fold-change criterion does not take
gene expression variability into account and determining
a cutoff is an arbitrary exercise [13]. On the other hand,
parametric statistical methods, which are based on some
variant of the t-test, provide some sense of one’s confi-
dence on the gene expression difference, but frequently
lose the intuitive appeal of heuristic methods like fold-
change (e.g., when even small differences are statistically
significant). In addition, parametric methods make strong
and frequently untenable assumptions regarding the dis-
tribution of gene expression levels [13]. Non-parametric
methods, which are based on ranking gene expression
levels, are expected to lose some information because of
the use of ranks instead of actual gene-expression data.
However, such methods are robust to deviations from
parametric assumptions [13], and are less vulnerable to
biases arising from data normalization and other pre-
processing steps [14], which are plausibly assumed to be
rank-preserving [6, 7].
The fact that the TSP provides classifiers based on only

two genes is also an attractive compromise in the so-called
“bias-variance” tradeoff [15]. As a classifier’s performance
is a combination of variance (random error) and bias (sys-
tematic error), in many cases, high-dimensional classifiers
with low bias (due to good performance in the current
sample) have large variances (i.e., poor precision) in new
samples. By contrast, simpler (and thus more rigid) clas-
sifiers, while possibly having higher levels of bias, are less
influenced by a specific sample and may have better over-
all performance (smaller variance) in multiple samples.
The simple TSP classifiers, it was hoped, would perform

sufficiently well both in the current sample as well as in
new samples. The TSP is a rank-based classifier in the
sense that it uses the rankings of gene expression levels
within a gene profile rather than the levels themselves, an
approach with significant advantages due to the nonpara-
metric nature of the classification technique. The central
idea behind the TSP classifier is that it identifies two genes
whose gene expression ranking changes between the two
conditions under consideration. This change lends itself
to a simple biological interpretation as an inversion of
mRNA abundance of the two genes in the two conditions
under consideration. The pair of genes selected by the
TSP [6], referred to as the top scoring pair (TSP), is found
by the following approach: Consider G genes which have
been profiled by microarray analysis. Let n1 be the num-
ber of experiments from the first class with expression
levels Yi = {Yi,1,Yi,2, · · · ,Yi,n1}, and let n2 be the number
of experiments from the second class with expression lev-
els Yi = {Yi,n1+1,Yi,n1+2, · · · ,Yi,n}, where n = n1 + n2.

Given a pair of genes (i, j), 1 ≤ i �= j ≤ G, the reversal
score of the pair was defined in [6] as

�ij = ∣
∣P(Yi > Yj|C = 1) − P(Yi > Yj|C = 2)

∣
∣ (1)

where P(Yi > Yj|C = m) denotes the probability that the
expression level of gene i is larger than the expression level
of gene j in samples from class C, with C being equal to
m = 1, 2. The score �ij can be empirically approximated
by the expression [6]

Dij =
∣
∣
∣
∣
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where index � indicates the �th subject, 1 ≤ � ≤ n and
Im(Yi,� > Yj,�) = 1 if Yi,� > Yj,� in class m = 1, 2, and 0
otherwise.
Obviously, the larger the �ij, the higher the probabil-

ity that the expression levels of genes i and j have reverse
relative rankings in the two groups, and it is exactly this
property that is used for classification by the TSP. More
specifically, let (α,β) be the pair of genes that yields the
maximum score �αβ = max{�ij} (referred to as the
Top Scoring Pair (TSP) [6]). Then the classification is
performed as follows:
Assume that

P(Yα > Yβ |C = 1) > P(Yα > Yβ |C = 2) (3)

i.e.,
∑n1

�=1 I1(Yα,� > Yβ ,�)

n1
>

∑n
�=n1+1 I2(Yα,� > Yβ ,�)

n2
(4)

Then a new subject s whose measured expression levels
for genes a and b are Yα,s and Yβ ,s respectively, will be clas-
sified as belonging to the first class if Yα,s > Yβ ,s, and to
the second class otherwise.
The genes in the top scoring pair as selected by the TSP

method may have a problem, as Lin et al. [5] also point
out: the selected genes may not be a pair of genuinely
up-regulated and down-regulated genes, but one of the
selected genes in the pair happens to serve only as a ref-
erence or “pivot” gene that may lead to a high TSP score
but a rather non-informative gene pair. Most researchers
have used more complicated methods or selected more
features in order to overcome the mentioned problems.
In the proposed method we employ a simple statistic
associated with the Receiver Operating Characteristic
(ROC) curve that is commonly known as the Area Under
the ROC curve (AUROC) or the Area Under the Curve
(AUC), for short. The ROC curve and the AUC in par-
ticular have been widely used as a measure for microar-
ray classification and other medical diagnostic tests
(see, e.g., [16–23].
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The proposed method, referred to as AUCTSP (AUC-
based TSP), uses similar ideas as the TSP, thus benefiting
from the simplicity of the TSP approach, but enhances
TSP by making the resulting classifier less prone to over-
fitting, achieving higher classification accuracy and avoid-
ing the selection of pivot genes as members of the top
scoring pair of genes.

Methods
In this manuscript we propose the AUCTSP, a classifier
that works according to the same principle as TSP but
differs from the latter in that the probabilities that deter-
mine the top scoring pair are computed based on the
relative rankings of the two marker genes across all sub-
jects instead of within each individual subject. Although
the classification is still done on an individual-subject
basis, consideration of all subject data in the estimation
of the ranking reversals results in a classifier with higher
accuracy. This performance superiority of AUCTSP over
TSP is demonstrated through simulations and case studies
(see “Results” section) involving classification in ovarian,
leukemia, colon, prostate and breast cancers and diffuse
large b-cell lymphoma.

The proposed AUCTSP classifier
The score that TSP computes is based on the probability
P(Yi > Yj|C = m) that the expression level of gene i is
larger than the expression level of gene j in samples from
the m-th class, m = 1, 2. This probability was approxi-
mated in [6] by the proportion of individuals of class m
with higher expression level in gene i than in gene j out of
all individuals in classm, i.e., by the probability

PTSP(Yi > Yj|C = m) =
∑nm

�=1 Im(Yi,� > Yj,�)
nm

(5)

We propose to approximate the original probability
P(Yi > Yj|C = m) by the probability that a ran-
domly chosen individual from class m has an expres-
sion level for gene i that is larger than that of a ran-
domly chosen individual from class m (m = 1, 2) for
gene j.
The estimate of the original probability P(Yi > Yj|C =

m) in the proposed AUCTSP method is given by

PAUCTSP(Yi > Yj|C = m) =

∑nm
k=1

∑nm
�=1 I(Yi,k > Yj,�)
n2m

(6)

The numerator in Eq. 6 denotes the sum over all samples
k, 1 ≤ k ≤ nm, of the number of times that the expression
level of gene i in sample k is larger than the expression
level of gene j in some other sample � �= k, 1 ≤ � ≤ nm,
from the same classm (m = 1 or 2).

The probability PAUCTSP can be calculated by the Area
Under the ROC Curve (AUC) [23]. The AUC statistic
has been used extensively in diagnostic test validation
[18–20, 22, 23] and gene feature selection [21] in two-
group settings. In our case here, group 1 is taken to be
the set of expression levels of gene i in class m, and group
2 is taken to be the set of expression levels of gene j in
the same class m. It is well established that, for indepen-
dent samples, the AUC statistic is the minimum-variance
unbiased estimate of P(X > Y ) [24]. In correlated sam-
ples (as we have here, since the gene expression levels
are measured on the same individual i = 1, 2, · · · , nm for
m = 1, 2), it is expected that PAUCTSP is still an unbiased
estimate of P(X > Y ) and should generate more precise
estimates of the probability P(Yi > Yj|C = m) compared
to PTSP, unless the correlation of gene expression levels
between genes i and j in the same individual is too high
(thus leading to an inflated variance of the AUC-based
estimator). In addition, the AUCTSP classifier, which is
based on a summary measure derived from all subjects
(compared to the single-subject approach in the TSP), has
the potential to yield a top scoring pair that is less sus-
ceptible to the specific training data, thus further avoiding
overfitting compared to the TSP. The better perfor-
mance of AUCTSP is corroborated by our experimental
results.
We highlight the following two points about our use of

the AUC statistic in the proposed method: (i) the AUC
statistic is traditionally applied on two groups one of
which is the “healthy” and the other one the “diseased,”
whereas in our method we apply it on gene expression
profiles from the same (“healthy” or “diseased”) group; (ii)
although the PAUCTSP is obtained from all subjects, the
classification rule that we obtain in the AUCTSP classi-
fier is still applied on the expression levels of the marker
genes from the same single subject, exactly as in the TSP
classifier.
To elucidate the intuition behind the AUCTSP classifier,

consider the following example. Assume that the expres-
sion levels of a gene A for 5 healthy subjects are as given
in Table 1. The probability that the expression level of A
is less than the level of B in the healthy subjects is 5/5 =
1 while the probability that the level of A is less than the
level of B in the diseased subjects is 0, yielding an overall

Table 1 Gene expression levels in two genes

Healthy Diseased Healthy Diseased

Gene A Gene B Gene A Gene B Gene C Gene D Gene C Gene D

11 12 32 31 10 20 42 31

21 22 34 33 12 23 43 33

23 24 36 35 15 25 45 35

25 26 38 37 17 27 47 37

27 28 40 39 19 18 39 41
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TSP scoreDTSP
AB = 1. Contrast the above with the situation

involving two other genes, C and D (Table 1). The proba-
bility that the expression level of C is less than the level of
D in the healthy subjects is 4/5 = 0.8, while the probabil-
ity that the expression level of C is less than the level of D
in the diseased subjects is 1/5 = 0.2. This yields an over-
all TSP score DTSP

CD = 0.6, which is less than the score of
pair A and B, and consequently the pair C and D would
be discarded by the TSP. However, the distributions of the
expression levels of C and D in the healthy (and the dis-
eased) subjects exhibit greater separation than those for A
and B and thus, using genes C and D for classification is
arguably preferable.
The above intuitive preference for pair (C,D) is sup-

ported by the score derived for these two genes according
to the proposed AUCTSP approach. The non-parametric
estimate of the AUC for pair (C, D) on the healthy sub-
jects is 24/25 = 0.96, and on the diseased subjects it
is 1/25 = 0.04. This yields an overall AUCTSP score of
DAUCTSP
CD = 0.92, while the corresponding AUCTSP score

for the (A,B) gene pair isDAUCTSP
AB = 15/25−10/25 = 0.2

and, therefore, the (C,D) pair is preferred over(A,B) by
the proposed approach.We note here that the claim about
the greater separation of the gene expression distributions
is not based in any way on the actual values of the data,
only on their ranking. This in turn means that the pro-
posed method will be robust in selecting the top scoring
pair and will not be affected by outliers in the gene expres-
sion data and will also be invariable to any rank-preserving
normalization technique.

Results
The AUCTSP classifier was implemented in the C pro-
gramming language. The evaluation of the methodology
was based on (i) simulations and (ii) case studies.

Simulations
We compared the estimations given by TSP (Eq. 5) and
AUCTSP (Eq. 6) for the probability P(X > Y ) involved
in the computation of the TSP and AUCTSP scores. We
generated random expression levels for “genes” X and Y
from normal distributions with different combinations of
mean μ and deviation σ for different sample sizes, where
μX is greater than or equal to μY in all of the simulated
cases. In this case, the probability P(X > Y ) is given by
the detectability index Az defined by Metz et al. [22] as:

Az = P(X > Y ) = �

⎛

⎜
⎜
⎝

|μX−μY |
σX

√

1 +
(

σY
σX

)2

⎞

⎟
⎟
⎠

(7)

where �() denotes the cumulative distribution func-
tion (CDF) of the standard normal distribution and μX ,

σX , and μY , σY denote the mean and standard devia-
tion of the assumed normal distributions for X and Y,
respectively.
The cases chosen for comparison are two normal distri-

butions with:
(i) small means (μX = 1, μY = 0) with small variances

(σX = 1, σY = 1);
(ii) small means (μX = 1, μY = 0) with large variances

(σX = 3, σY = 3);
(iii) large means (μX = 5, μY = 0) with small variances

(σX = 1, σY = 1);
(iv) large means (μX = 5, μY = 0) with large variances

(σX = 3, σY = 3);
(v) equal small means (μX = 1, μY = 1) with a small

variance for one distribution (σX = 1) and a large
variance for the other distribution (σY = 3);

(vi) equal large means (μX = 5, μY = 5) with a small
variance for one distribution (σX = 1) and a large
variance for the other distribution (σY = 3).

Table 2 Simulation results on estimation of P(X > Y) by TSP and
AUCTSP

Gene X Gene Y N TSP AUCTSP Az

N(1,1) N(0,1) 10 0.763 0.762 0.760

20 0.762 0.761 0.760

30 0.759 0.760 0.760

40 0.759 0.760 0.760

N(1,3) N(0,3) 10 0.595 0.594 0.592

20 0.594 0.593 0.592

30 0.594 0.593 0.592

40 0.593 0.592 0.592

N(5,1) N(0,1) 10 0.998 0.998 0.999

20 0.998 0.998 0.999

30 0.998 0.998 0.999

40 0.998 0.998 0.999

N(5,3) N(0,3) 10 0.883 0.882 0.878

20 0.881 0.880 0.878

30 0.880 0.879 0.878

40 0.880 0.879 0.878

N(1,1) N(1,3) 10 0.619 0.610 0.500

20 0.587 0.581 0.500

30 0.572 0.564 0.500

40 0.563 0.557 0.500

N(5,1) N(5,3) 10 0.616 0.610 0.500

20 0.585 0.575 0.500

30 0.570 0.563 0.500

40 0.559 0.554 0.500

The estimates of P(X > Y) closer to Az are marked in bold



Kagaris et al. BMC Bioinformatics  (2018) 19:244 Page 5 of 13

Table 3 Simulation results for the ability of AUCTSP and TSP to identify the most informative gene pair

Gene 1 Gene 2 N=100 n1 = n2=20 N=100 n1 = n2=40 N=200 n1 = n2=20 N=200 n1 = n2=40

TSP AUCTSP TSP AUCTSP TSP AUCTSP TSP AUCTSP

NH(0,1) ND(1,1) NH(1,1) ND(0,1) 23.4 51.2 58.8 93.2 15.4 39.8 45.4 89.7

NH(-1,1) ND(1,1) NH(1,1) ND(-1,1) 69.1 98.9 97.7 99.9 57.8 97.2 94.0 99.9

NH(-2,1) ND(2,1) NH(2,1) ND(-2,1) 91.6 99.9 97.6 99.9 92.7 99.8 95.7 99.9

NH(-2,2) ND(2,2) NH(2,2) ND(-2,2) 48.2 93.2 80.2 99.9 38.3 91.4 71.4 99.9

The results for different sample sizes N = 10, 20, 30, 40
are shown in Table 2. Columns 4 and 5 show the estimates
of probability P(X > Y ) obtained by TSP and AUCTSP
over 1000 random trials. The theoretical probability Az =
P(X > Y ) (see Eq. 7) is shown in the last column. With
bold, we show the value that is closer to the theoretical
value Az. As can be seen, for the cases where both sim-
ulated gene expression distributions have equal variances
(cases i-iv), the AUCTSP and TSP estimates are virtually
identical and are very close to the theoretical probability
even for small sample sizes. In the two cases where the
variance in one of the genes is greater (cases v-vi), both
estimators do poorly for small sample size N and improve
with increasing N, but the AUCTSP is always closer to the
target quantity Az.
Next, we compared the capability of TSP and AUCTSP

to identify the single informative pair of genes in the midst
of other non-informative genes. For this purpose, we gen-
erated random normal expression levels for N “genes”
from n1 “healthy” individuals and n2 “diseased” individ-
uals, for all combinations of N = 100, 200 and n1 =
n2 = 20, 40. In all these simulations the genes numbered
1 and 2 carry the differentiating information between
the healthy and diseased groups, represented by normal
distributions (NH() for the “healthy” andND() for the “dis-
eased”) that are different fromN(0,1), as shown in Table 3.
All remaining genes other than 1 and 2 have expression
levels obtained from the same “non-informative” distri-
bution N(0,1). The efficacy of each classifier is measured
by how many times it is able to identify the pair of genes
(1,2) as the top scoring pair. The results (as averages over
1000 simulations) are shown in Table 3. The rows corre-
spond to cases exploring the effect of increasing variance
and increasing differences in the means of the expression
level distributions. As can be observed, the AUCTSP con-
sistently outperforms the TSP, in some cases dramatically,
even for small sample sizes.

Case studies
We evaluated the performance of the AUCTSP classifier
over the TSP classifier in 8 publicly available datasets:

(i) Ovarian Cancer (Pepe et al., 2003 [17]) dataset which
consists of 1536 genes with expression levels from 23
healthy and 30 diseased subjects;

(ii) Acute Leukemia (Golub et al., 1999 [25]) dataset
which consists of 3571 human genes with expression
levels from 25 cases of acute myeloid (aka
myelogenous) leukemia (AML) and 47 cases from
acute lymphoblastic (aka lymphocytic) leukemia;

(iii) Breast Cancer - Estrogen Receptor (ER) status (West
et al., 2001 [26]) dataset which consists of the
expression levels of 7129 genes in 49 tissues
separated into two groups of 25 positive and 24

Table 4 Top scoring pairs of genes under TSP and AUCTSP

Score

Dataset Method Gene pair TSP AUCTSP

OVARIAN TSP [PKM2, OVGP1] 0.900 0.675

AUCTSP [IRS1, OVGP1] 0.833 0.826

LEUKEMIA TSP [SPTAN1, CD33] 0.979 0.938

TSP [ARHGAP45, ZYX] 0.979 0.770

TSP [PCDHGC3, ZYX] 0.979 0.855

AUCTSP [SPTAN1, CD33] 0.979 0.938

BREAST-ER TSP [MUC2, ESR1] 0.918 0.812

TSP [JAK3, ESR1] 0.918 0.791

TSP [GNB3, ESR1] 0.918 0.804

TSP [HARS2, ESR1] 0.918 0.834

TSP [ERF, ESR1] 0.918 0.822

AUCTSP [CTSC, ESR1] 0.878 0.891

BREAST-LN TSP [BP1CR, GYPB] 0.838 0.675

AUCTSP [BP1CR, KRT31] 0.717 0.765

TSP [FABP3, ACVR1B]b 0.716 0.531

AUCTSP [GYPB, ACVR1B]b 0.633 0.615

DLBCL TSP [PDE4B, GPR12] 0.596 0.414

AUCTSP [POLR2J, PTGER4] 0.341 0.46

DLBCL-FL TSP [YWHAZ, SNRPB] 0.983 0.727

AUCTSP [FCGR1A, NEO1] 0.759 0.83

COLON TSP [VIP, DARS] 0.879 0.637

AUCTSP [MYH9, HNRNPA1] 0.759 0.724

PROSTATE TSP [CFD, ENO1] 0.901 0.693

AUCTSP [CFD, NUMB] 0.882 0.883

aindicates the selected TSP gene pair by [7] to break the tie for pairs with equal TSP
scores
bindicates the selected pair of genes by TSP and AUCTSP after removing the
genetically modified gene BP1CR (see [32, 33]) from the dataset
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Table 5 Gene legend

Data set Gene ID Gene
acronym

Gene description

OVARIAN g47 IRS1 Insulin Receptor
Substrate 1

g93 OVGP1 Oviductal
Glycoprotein 1

g1202 PKM2 Pyruvate Kinase,
Muscle

LEUKEMIA D86976 ARHGAP45 Rho GTPase
Activating Protein 45

J05243 SPTAN1 Spectrin Alpha,
Non-Erythrocytic 1

L11373 PCDHGC3 Protocadherin
Gamma Subfamily C, 3

M23197 CD33 CD33 Molecule
X95735 ZYX Zyxin

BREAST-ER L21998 MUC2 Mucin 2
U09607 JAK3 Janus Kinase 3
U15655 ERF ETS2 Repressor Factor
U18937 HARS2 Histidyl-TRNA

Synthetase 2,
Mitochondrial

U47931 GNB3 G Protein Subunit
Beta 3

X03635 ESR1 Estrogen Receptor 1
X87212 CTSC Cathepsin C

BREAST-LN AFFX-CreX-3 BP1CR Bacteriophage P1 Cre
Recombinase

X82634 KRT31 Keratine 31
J02982 GYPB Glycophorin B
M18079 FABP3 Fatty Acid Binding

Protein 3
X15357 ACVR1B Activin A Receptor

Type 1B
DLBCL K03008 POLR2J RNA Polymerase II

Subunit J
L20971 PDE4B Phosphodiesterase 4B
L28175 PTGER4 Prostaglandin E

Receptor 4
U18548 GPR12 G Protein-Coupled

Receptor 12
DLBCL-FL D78134 YWHAZ Tyrosine

3-Monooxygenase/
Tryptophan
5-Monooxygenase
Activation Protein
Zeta

M63835 FCGR1A Fc Fragment Of IgG
Receptor Ia

U61262 NEO1 Neogenin 1
X17567 SNRPB Small Nuclear

Ribonucleoprotein
Polypeptides B and B1

COLON Hsa.37937 MYH9 Myosin Heavy Chain 9
Hsa.8010 HNRNPA1 Heterogeneous

Nuclear
Ribonucleoprotein A1

Hsa.2097 VIP Vasoactive Intestinal
Peptide

Hsa.601 DARS Aspartyl-TRNA
Synthetase

PROSTATE 40282_s_at CFD Complement Factor D
2035_s_at ENO1 Enolase 1
37693_at NUMB NUMB, Endocytic

Adaptor Protein

negative tissues based on the estrogen receptor (ER)
status;

(iv) Breast Cancer - Lymph Node (LN) status (West et al.,
2001 [26]) dataset which consists of the expression
levels of 7129 genes in 49 tissues separated into two
groups of 24 positive and 25 negative tissues based
on the lymph node (LN) status;

(v) Diffuse Large B-Cell Lymphoma (DLBCL) to predict
patient outcome (Alizadeh et al., 2000 [27]) dataset
which consists of the expression levels of 7129 genes
in 32 cured samples and 26 fatal or refractory disease
samples.

(vi) DLBCL versus Follicular Lymphoma (FL) (Alizadeh
et al., 2000 [27]) dataset which consists of the
expression levels of 7129 genes in 58 DLBCL
samples and 19 FL samples;

(vii) Colon Cancer (Alon et al., 1999 [28]) dataset which
consists of the expression levels of 2000 genes from
40 subjects diagnosed with colon cancer and 22
healthy subjects;

(viii) Prostate cancer (Singh et al., 2002 [29]) dataset
which consists of the expression levels of 12533

Table 6 Deviation of the genes selected by TSP and AUCTSP
from the non-informative “pivot” gene

Dataset Method Gene Pair (Pg1 , Pg2 ) (P̂g1 , P̂g2 )

OVARIAN TSP (PKM2, OVGP1) (0.16, 0.03) (0.84, 0.97)

AUCTSP (IRS1, OVGP1) (0.84, 0.03) (0.84, 0.97)

LEUKEMIA TSP (SPTAN1, CD33)a (0.05, 0.99) (0.95, 0.99)

TSP (ARHGAP45, ZYX) (0.61, 0.02) (0.61, 0.98)

TSP (PCDHGC3, ZYX) (0.63, 0.02) (0.63, 0.98)

AUCTSP (SPTAN1, CD33) (0.95, 0.01) (0.95, 0.99)

BREAST-ER TSP (MUC2, ESR1)a (0.72, 0.04) (0.72, 0.96)

TSP (JAK3, ESR1) (0.66, 0.04) (0.66, 0.96)

TSP (GNB3, ESR1) (0.56, 0.04) (0.56, 0.96)

TSP (HARS2, ESR1) (0.57, 0.04) (0.57, 0.96)

TSP (ERF, ESR1) (0.58, 0.04) (0.58, 0.96)

AUCTSP (CTSC, ESR1) (0.91, 0.04) (0.91, 0.96)

BREAST-LN TSP (FABP3, ACVR1B) (0.60, 0.69) (0.60, 0.69)

AUCTSP (GYPB, ACVR1B) (0.14, 0.69) (0.86, 0.69)

DLBCL TSP (PDE4B, GPR12) (0.73, 0.32) (0.73, 0.68)

AUCTSP (POLR2J, PTGER4) (0.30, 0.72) (0.70, 0.72)

DLBCL-FL TSP (YWHAZ, SNRPB) (0.80, 0.10) (0.80, 0.90)

AUCTSP (FCGR1A, NEO1) (0.06, 0.84) (0.94, 0.84)

COLON TSP (VIP, DARS) (0.82, 0.16) (0.82, 0.84)

AUCTSP (MYH9, HNRNPA1) (0.89, 0.24) (0.89, 0.76)

PROSTATE TSP (CFD, ENO1) (0.91, 0.27) (0.91, 0.73)

AUCTSP (CFD, NUMB) (0.91, 0.04) (0.91, 0.96)

aindicates the selected TSP gene pair by [7] to break the tie for pairs with equal TSP
scores
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genes from 52 subjects diagnosed with prostate
cancer and 50 healthy subjects.

Top scoring pairs selected by TSP and AUCTSP
For each of these datasets, we applied AUCTSP and TSP
and identified the top-scoring pairs obtained by AUCTSP
and TSP. The selected pairs of genes are shown in Table 4
and the gene legend is shown in Table 5.
Table 4 reports also (for informational purposes) the

score that the selected pair by TSP and AUCTSP receives
under the opposite classifier (AUCTSP and TSP, respec-
tively). For example, the pair selected by TSP for the ovar-
ian cancer dataset has a TSP score of 0.9 but it receives
a score of 0.675 under AUCTSP, whereas the AUCTSP
score of the pair selected by AUCTSP is 0.826, while the
score given to it by TSP is 0.833. This shows that pairs
selected by TSP may have significantly lower scores under
AUCTSP.
The biological relevance of the selected genes was found

by consulting the GENECARDS database [30] and the
VarElect NGS Phenotyper [31]. All of the genes identified
by AUCTSP have been reported in the existing literature
to be indeed related to the corresponding disease, whereas
some of the genes identified by TSP such as DARS for
colon cancer have not been reported to be related. A full
description of the biological findings on the genes selected
by AUCTSP and TSP is given in the Additional file 1.
The histograms of the selected genes are also given in the
Additional file 2.
We also note that for the datasets examined, AUCTSP

resulted in no ties, whereas TSP frequently selected
multiple pairs of genes having the same highest TSP
score (3 such pairs in the Leukemia dataset and 5 pairs
in the Breast-ER dataset). We have identified the gene
pair ultimately chosen by the TSP after applying the
tie-breaking rule proposed by Geman et al. [6] with an
asterisk (“*”) in Table 4. (For the case of the Breast-LN
dataset, both the AUCTSP and TSP resulted in selecting a
genetically modified gene (“Bacteriophage P1 Cre recom-
binase”) [32, 33] as member the top-scoring pair. The pair

of genes selected by the AUCTSP and TSP after eliminat-
ing this gene from the dataset are marked with (“**”) in
Table 4).
Furthermore, in order to check how far the selected

genes (by either method) are from being non-informative
“pivot” genes, we computed for each gene g the probability
Pg = P(g∈ C1 > g∈ C2) that the expression levels of g
in class C1 are greater than the expression levels of g in
class C2, where C1,C2 are the two classes in the corre-
sponding dataset. A value of Pg close to 0.5 means that the
gene is strongly non-informative. A value of Pg close to 1
or close to 0 means that the gene is strongly informative.
For the case where the value of Pg is close to 0, we can
simply inverse the ROC curve to compute the probability
P(g∈ C1 < g∈ C2), so that all informative genes are indi-
cated by values of Pg close to 1. The computation of Pg
was done by computing the AUC of the ROC curve corre-
sponding to the expression values of gene g in classes C1
and C2. The results are shown in Table 6. The Pg values
for each member of a selected pair are shown in column
4, whereas column 5 shows the corresponding values P̂g
if the ROC curve has to be inverted so that values closer
to 1 indicate more informative genes. As can be seen, the
genes selected by AUCTSP have better deviation from
the 0.5 value of a non-informative gene in almost every
case.

Classifier performance of AUCTSP vs. TSP
We also compared the performance of the proposed
AUCTSP classifier vs. the TSP classifier in terms of
accuracy for predicting the correct status of subjects
in a “testing” set after the classification rule (i.e., the
top-scoring pair and its associated probabilities under
AUCTSP and TSP, respectively) is obtained from a
“training” set.
For each of the eight datasets in our case study, we gen-

erated several training sets and testing sets, by randomly
picking a percentage p of subjects to form the training
set and using the remaining q = 1 − p percentage of

Table 7 Comparison of classifier accuracy by TSP and AUCTSP for decreasing size of training set

Test set fraction OVARIAN LEUKEMIA COLON BREAST-LN BREAST-ER DLBCL DLBCL-FL PROSTATE

TSP AUCTSP TSP AUCTSP TSP AUCTSP TSP AUCTSP TSP AUCTSP TSP AUCTSP TSP AUCTSP TSP AUCTSP

1% 87.18 93.39 97.89 97.89 88.98 96.59 89.76 94.66 84.26 91.07 78.50 78.88 95.80 99.30 91.90 91.90

5% 87.48 89.43 96.02 96.12 84.45 92.45 86.03 89.35 75.40 84.11 78.20 78.50 91.46 96.23 90.70 90.50

10% 77.43 82.78 91.64 92.27 76.76 95.01 89.76 94.66 84.26 91.06 77.20 78.02 83.18 92.49 81.34 80.37

15% 76.96 79.7 88.2 90.9 72.71 73.02 77.85 78.6 65.84 75.07 72.84 76.73 83.02 87.57 79.10 79.50

20% 70.71 73.95 84.32 89.1 61.39 79.15 86.03 89.35 75.39 84.10 69.23 75.35 71.30 75.45 68.70 76.06

25% 72.2 76.6 81.27 87 53.75 67.65 82.05 85.48 71.20 80.80 66.79 72.11 66.87 67.14 63.30 74.35

30% 61.15 80.38 77.53 81.1 41.38 42.39 77.85 78.6 65.84 75.06 63.41 72.13 67.35 66.74 53.30 60.7
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Fig. 1 Comparison of TSP vs. AUCTSP classification accuracy for different sizes of training sets: OVARIAN dataset

subjects as the testing set, for different values of q =
1%, 5%, 10%, 15%, 20%, 30%. The actual size of the testing
set was set to �N · q�, where N is the size of the dataset,
and the set of the training set was set to N − �N · q�.
Our intention was to see how AUCTSP and TSP behave

as the training set decreases, i.e., how well AUCTSP and
TSP can “generalize” their classification rule. Each test was
repeated for 1000 trials and the average of the classifier
accuracy (i.e., the ratio of the sum of the true positive and
true negative test cases identified by the classification rule

Fig. 2 Comparison of TSP vs. AUCTSP classification accuracy for different sizes of training sets: COLON dataset
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Fig. 3 Comparison of TSP vs. AUCTSP classification accuracy for different sizes of training sets: LEUKEMIA dataset

obtained from the training set over the total number of
test cases) was calculated over these trials for each training
set.
The results for increasing sizes of test sets (equiva-

lently, decreasing sizes of training sets) as percentages of
subjects left out from the original dataset are shown in

Table 7. The plot representations of the results listed in
Table 7 are given in Figs. 1, 2, 3, 4, 5, 6, 7 and 8. These
results show that the AUCTSP method performs better in
terms of classification accuracy than the TSPmethod. The
results indicate that the AUCTSP classifier is able indeed
to identify useful marker genes from small training sets,

Fig. 4 Comparison of TSP vs. AUCTSP classification accuracy for different sizes of training sets: BREAST-LN dataset
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Fig. 5 Comparison of TSP vs. AUCTSP classification accuracy for different sizes of training sets: BREAST-ER dataset

in accordance with the “generalization” capability of the
AUC statistic.

Discussion
AUCTSP maintains the basic advantages of TSP namely
the data-driven and parameter-free machine learning

features that resolve the parameter tuning issue without
making any assumptions about the data used, as well as
the production of easily interpretable classification rules.
AUCTSP, however, improves TSP by avoiding overfitting
and suffering less from small sample sizes, due to the fact
that every sample is compared to all other samples in the

Fig. 6 Comparison of TSP vs. AUCTSP classification accuracy for different sizes of training sets: DLBCL-FL dataset
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Fig. 7 Comparison of TSP vs. AUCTSP classification accuracy for different sizes of training sets: DLBCL dataset

same class rather than on only a single sample by sam-
ple comparison as in TSP. In addition, AUCTSP tends to
avoid selection of non-informative pivot genes, which are
a known problem of TSP. Concerning selection of genes
whose over-expression or under-expression is due to

reasons unrelated to the disease in question, we note that
this is less likely to create a problem since pairs of genes
rather than single genes have to be affected in that way.
Finally, we note that AUCTSP can be extended to select

a number of k > 1 pairs of genes, with the classification

Fig. 8 Comparison of TSP vs. AUCTSP classification accuracy for different sizes of training sets: PROSTATE dataset
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being made according to a majority voting rule among
those k pairs of genes, as was done in [7], or to find
triplets instead of pairs of genes as was done in [5]. As a
non-parametric based technique, AUCTSP can also have
potential benefits in areas such as RNA sequence analysis
(see, e.g. [34]), but this extension is left for future work.

Conclusion
In this paper, we have proposed the AUCTSP, a simple yet
reliable and robust rank-based classifier for gene expres-
sion classification. AUCTSP works according to the same
principle as TSP but differs from the latter in that the
probabilities that determine the top scoring pair are com-
puted based on the relative rankings of the two marker
genes across all subjects as opposed to for each indi-
vidual subject. Results of calculating and comparing the
AUCTSP and TSP probabilities for synthetic data as well
as 8 publicly available datasets demonstrate the better
performance of AUCTSP over TSP.

Additional files

Additional file 1: Biological relevance of the selected gene pairs. A full
description of the biological findings on the genes selected by AUCTSP
and TSP is given. (PDF 112 kb)

Additional file 2: Histograms of the selected genes. The histograms of all
the genes selected by AUCTSP and TSP are given. (PDF 294 kb)
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