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Abstract 

Electrochemical erasing of conductive coatings at microscale for the fabrication of 

functional devices on flexible and hard surfaces is demonstrated.  The nanoporous 

pyramidal-shaped nano- and micro-scale polyacrylamide hydrogel PLE probes 

allowed delivery of electrochemical etchants to the surface providing on-demand 

maskless patterning at microscale.  Highly efficient erasing (silver and copper metals 

erasing efficiency ≈100%), areal erasing rate ≈80 m2/s, and pressure dependent 

spatial erasing feature dimensions between 3 m to many tens of microns on metal 

surfaces allowed fabrication of microelectrodes of various geometries.  Overall, PLE-

based microscale erasing allowed rapid and accessible fabrication of organic 
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electron-hole carrier pair based micro-photodetector, as well as the assembly of LED 

on flexible and rigid ITO substrates. 

Keywords:  Lithographic editor, electrochemical etching, hydrogel, device 

fabrication, micro-photo-detector 

Introduction 

Dip-pen nanolithography (DPN)1-4, polymer-pen lithography (PPL)5-7, micro-contact 

printing (µCP)8 , and nano-fountain pen (NFP)9-11 have been demonstrated for 

selective delivery and patterning of a large number of molecules2 on a variety of 

surfaces12.  A plethora of studies3 are published for improving the delivery and the 

patterning of a large variety of molecules,13,14,15-16 the spatial resolution,7 and  

throughput rate17.  The patterned surfaces and devices fabricated using these 

techniques possess a wide range of potential applications in bioengineering18, 
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medical diagnostics,19-20 and electronics industry21,22, and the number of studies is 

expected to grow further.23 

The tip probe-based deposition using DPN, PPL, and NFP are well-suited for 

achieving ultra-high patterning resolution below 100 nm.  DPN is capable of 

achieving spatial resolution patterning as low as 15 nm over large areas.24  For large-

scale patterning, a reservoir of molecular ink allows continuous supply of ink.  For 

example, ink reservoirs containing NFP can allow patterning at large scale without a 

need to redeposit ink in the probes.25  For example, use of a cantilever coated with 

PDMS yielded nanostructures within a range of 60-470 nm26. The reservoirs have 

also allowed storage of a large amount of ink molecules and particles for 

deposition.17 Additionally, control over the patterning area by changing the pen-

substrate contacting area was also demonstrated using soft PDMS probes27.  

Analogously, hydrogel matrixes can be loaded with a large amount of aqueous-ink 

molecules several orders higher concentration as compared to non-porous probes,28 

allowing the delivery and deposition of molecules over large areas.29,30 

In general, probe-based erasing and patterning requires formation a meniscus 

between the probe and the substrate.  This is usually achieved when the probe is 

brought near a desire surface resulting in the transfer of molecules from the probe 

to the surface.  In the case of PPL, transfer of ink can occur through the meniscus 

at substrate-probe interface, and through direct contact between tip and substrate 

as well.  This molecule transport mechanism is comparable to the deposition 

mechanism involved in µCP.  The rate of molecular transport from probe to the 

substrate is dependent on the physical and chemical characteristics of the ink31, 
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substrate, tip material properties,32 and environmental conditions such as 

temperature and relative humidity.33  Ink-tip and ink-substrate interactions are key 

processes that also affect the size of the patterned features in the probe-based 

patterning.  Although the concentration difference based-passive diffusion and/or 

through fluid dynamics34 are dominantly used for molecular transport for the surface 

patterning, much higher patterning rate (~2-3 orders of magnitude larger than those 

observed in the passive transport probe delivery systems) can be accomplished the 

application of an external electrical potential stimulus between probe and 

substrate.10, 35 

Although the molecular deposition using probe-based techniques is broadly 

investigated, the studies describing the selective removal of molecules from surfaces 

are limited in the literature.  For example, nanoshaving,36 nanografting,37 and 

electrochemical removal using a conductive atomic force microscope (AFM) tip38 are 

demonstrated for molecular removal and erasing. Because of serial probe 

movements at nanometer scale during erasing, these techniques can be expensive 

and time-consuming.39  For example, in the case of nanoshaving and nanodrafting, 

the mechanical erasing requires intimate probe-surface contact that may damage 

and/or induce defects in probe tips and substrates.  Recently, an error rectifying 

method using polymer lithography editor (PLE) was introduced, where a soft probe 

composed of agarose hydrogel allowed molecular erasing and writing mediated 

through a meniscus formed between the probe and substrate.40  The rectification 

process “writing-erasing-rewriting” was demonstrated by “writing” ~10 µm 

fluorescein array dots on glass substrate.  The accuracy of erasing was 
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demonstrated by placing PLE eraser within 700 nm of a given registration spot; 

“rewriting” with fluorescein using PLE at the erased area completed the editing 

process.  The erasing process in PLE involves two major steps:  an initial step 

involves the solvation of the patterned molecules by solvent molecules transported 

from the tip or molecules that are already present on the substrate surface.  This is 

followed by a second step where solvated molecules  diffuse into the nanoporous 

PLE tip matrix driven by concentration gradient.40  Similarly, the writing/rewriting 

process was accomplished by transport of the ink molecules through the meniscus 

at the PLE probe-substrate interface.  PLE was also utilized for the fabrication of the 

functional photo-active micro-devices in this study.   

Manipulation of physical and chemical properties of the conductive and elastomeric 

materials has led to the development of flexible electronics devices.  These devices 

possess a wide range of potential applications including, but not limited to, non-linear 

electronic eyeball cameras, deformable LEDs, 3D micro/nano-structures and 

functional devices, flexible diagnostic devices for brain surgery, and interfaces for 

human-computer control systems and related biointegrated devices.41-49  The PLE-

based lithography is complementary to many lithographic deposition and patterning 

techniques presently used in industry. 

In this manuscript, we show that polyacrylamide (PAAM) hydrogel PLE probes 

delivered electrochemical etchant molecules selectively to carry out reactions at the 

microscale level for the functional device fabrication.  We demonstrate 

electrochemical etching of multi-electrode materials (silver, copper, and indium tin 

oxide) for the fabrication of interdigitated electrodes on soft and hard substrates.  
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The interdigitated electrodes were used to fabricate micro-photodetectors using 

deposition of organic electron-hole pair (P3HT-bis[60]PCBM) on hard substrates.  

Further, the assembling of LED was accomplished using PLE-assisted micro-

electrodes fabricated on both hard and flexible substrates.  Using PLE, this work 

demonstrates the fabrication of microscale functional devices in wet laboratory 

conditions without a need of traditional clean room lithography facilities. 

Overall, due to selective spatial etching, PLE allows the fabrication of devices on a 

variety of substrates including both soft and hard materials and those that may be 

susceptible to multi-steps harsh conditions employed in traditional photolithography.  

Importantly, PLE provides mask-less on-demand electrochemical etching at the 

microscale over large areas in ambient wet conditions.  Clean-room conditions are 

optional for microscale patterning when utilizing PLE.  Thus, the main attractive 

feature of the PLE is that through simple programming of a micro-stage with attached 

substrate that needs to be patterned allows fabrication of desired patterns at 

microscale features under ambient conditions.  Thus, the use of PLE based 

fabrication can be potentially useful for fast prototyping without the need of extensive 

instrumentation and clean room facility. 

Experimental section 

A.1 Materials.  MCC Primer 80/20 was purchased from Micro Chem. ME 351 

(MicrodepositTM 351 Developer) and S1805 photoresist (MicropositTM S1805TM 

Positive photoresist) were obtained from ROHM and HAAS Electronic Materials, 

Massachusetts.  Buffered-HF was purchased from Transene Company, Inc. 

Danvers, MA.  Pyrocathecol (Cathecol 99 %) was obtained from Alfa Aesar.  
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Ethylene diamine 99% (extra pure), ammonium persulfate 98% (extra pure), 

acrylamide 99%, hydrogen peroxide 30 %, and sulfuric acid were purchased from 

Fisher Scientific. Bis-acrylamide was purchased from Amresco, N,N,N´,N´-

tetramethylenediamine 99% extra pure (TEMED), ferric chloride, and poly(3-

hexylthiophene-2,5-diyl) P3HT (MW 85,000–100,000) were obtained from Sigma 

Aldrich.  Bis[60]PCBM and potassium permanganate were obtained from TCI and 

Mallinckrodt respectively. 

A.2.  Characterization and methods.  The electronic absorption spectrum of 

bis[60]PCBM and P3HT in o-dichlorobenzene were acquired using a PerkinElmer 

Lambda 25 spectrometer with a slit width of 1 nm. Emission spectroscopy was 

performed using a Perkin Elmer LS 55 spectrometer.  Both the excitation and 

emission slit widths were 3.0 nm, and the scanning speed for the acquisition of the 

spectra was 50 nm/min.  The photo-induced current (PIC) measurements were 

accomplished using Keithley 6487 picoammeter/voltage source.  A xenon arc lamp 

(300 W) controlled by a power supply (model no. 69907, Newport) provided photo-

excitation for photoelectron-induced studies. The optical characterization of the 

hydrogel pen and electrochemical metal erasing were performed using a bright-field 

inverted Leica DMIRB microscope. 

Scanning Electron Microscopy (SEM) and energy dispersive X-ray spectroscopy 

(EDS).  SEM was performed using a FEI Quanta FEG 450 SEM equipped with an 

EDX MaxX 50 mm2 Oxford detector controlled using an INCA software. SEM images 

and EDS were acquired at an accelerating voltage of 10-20kV.  Non-conductive 
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samples for SEM analysis were coated with a silver or gold-palladium layer 

(thickness ~100-150 Å). 

Atomic Force Microscopy. The AFM measurements were performed using 

Autoprobe Thermomicroscopes in contact mode.  The microscope was controlled 

using ThermoMicroscopes ProScan version 1.6 Beta software. The sample was 

probed with a silicon nitride tip MLCT-AUMT-A with a nominal force constant given 

by the manufacturer of 30 pN/nm. 

B.  Fabrication of PAAM PLE probes. 

B.1 Pyramidal silicon master fabrication using photolithography.  The fabrication of 

array pyramidal pores was accomplished using anisotropic etching of Si(100) 

plane.50  To guide future researchers in the fabrication of lithographic patterning, we 

provide a detailed flow chart and give some tips that may be helpful for the fabrication 

of multiple pyramidal pores (Scheme 1).  In addition, with the aim to help readers, 

we captured a sequence of images at each key step of the methodology (Fig. S1). 

A detailed procedure of the mold fabrication (photolithography and Si anisotropic 

etching) can be found in the supporting information. 

B2. Fabrication of hydrogel probes.  PAAM hydrogel was chosen because its 

mechanical properties and porosity can be modulated by monomer (acrylamide) to 

cross-linker (bis-acrylamide) ratio (RMC).  For example, variation in the RMC can 

provide PAAM with a wide range of Young´s modulus, porosity, and pore size51 .  

The porosity of the PAAM hydrogels enables large capacity for hydrophilic material 
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that can be stored within the pores, and it also facilitates the transfer of solute and 

solvent from/to pores to/from bulk solution. 

 

 

Scheme 1.  Flow chart for the Si master fabrication through photolithography and 

HF anisotropic etching.  Fig. S1 shows the optical micrographs of the wafer and the 

pores at various stages. 

Prior to formation of the PAAM PLE probes, the surface of the Si chips was cleaned 

using O2 plasma for 120 s (power 250 W, Ar 80%, 20% O2).  The hydrogel mixture 

was prepared as follows: 250 µL of acrylamide (AM, 100 % w/v), 50 µL of bis-

acrylamide (bAM, 2 % w/v), and 25 µL of APS (initiator, 10 % w/v) were vigorously 

mixed in a 2 mL tube.  This mixture was kept in an ice bath for 2 minutes and 2 µL 

of TEMED (catalyst) was added along the inner walls of the tube.  A homogeneous 

distribution of the components in the solution ensured uniform crosslinking and 
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polymerization within the matrix of the hydrogel.  180 µL of this solution was added 

promptly to a Si chip template containing sixteen pyramidal shape pores.  The PAAM 

crosslinking process was rapid and was observed to occur within two minutes of the 

mixture into the pores.  Once PAAM hydrogel was gelled, it was peeled off from the 

template and stored in nanopure water at 4°C until further use.  The treatment of the 

pore templates was not found to be necessary for the release of the polymer probes 

from the templates. 

B.3.  Micro-scale electrochemical erasing using PLE-based probes.  The micro-

photodetectors on the PLE probe etched interdigitated electrodes were fabricated 

by the deposition of an organic electron-hole active pair on the electrodes.  Briefly, 

sputtered 100 nm thick silver or copper films with a 10 nm thick Cr adhesion layer 

on glass slides was used. The metal substrate was placed on a Leica DMRIB 

inverted microscope with a Ludl computerized stage that controlled x- and y-direction 

movements using an Oasis Blue PCI controller card.  The PLE probe was attached 

to a z-axis piezoelectric stage, and was brought close to the substrate at a vertical 

speed (vz) of 0.1 µm/s with a step size of 150 nm.  The erasing process was followed 

on an inverted microscope in transmission mode using microscope objectives (10x 

and 20x with numerical apertures of 0.25 and 0.40, respectively).  The microscope 

was equipped with a camera Photometrics CoolSNAP Myo.  Briefly, a PAAM PLE 

containing either Ag etchant (KI + I2, TFS from Transene Inc.) or Cu etchant (Fe(III), 

CE-200 Transene Inc.) was allowed to make contact with the metal coating using a 

z-axis piezoelectric stage.  For ITO etching, an acidic solution of Fe(III) containing 

PAAM single pen attached to the z-piezoelectric stage.  The PLE probe formed a 
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liquid meniscus between the probe and substrate delivering redox etchants to the 

substrate that resulted in the erasing (etching) of the metal coating.  The relative 

humidity for all the experiments was 40±10%.  For copper- and silver-coated 

substrates, the chromium adhesion layer in-between Cu or Ag and glass was 

removed by dipping the substrates in an alkaline potassium permanganate solution.  

After removal of the chromium etchant, the substrate was rinsed with copious 

amounts of water and ethanol, then it was followed by air drying.  The complete 

removal of metal coating was confirmed by measuring the electrical resistance of the 

electrodes.  The open circuit was assumed when the electrical resistance of the 

fabricated electrode was >1 GΩ. 

B.4.  Fabrication of micro-photo-detector.  An active layer of a light harvesting 

mixture composed of poly(3-hexylthiophene-2,5-diyl) (P3HT) and bis-phenyl C60-

butyric acid methyl ester (bis[60]PCBM) was deposited on the microelectrode.  

Briefly, 0.02 g of P3HT dissolved in 2 mL of o-dichlorobenzene was mixed with 0.016 

g of bis[60]PCBM solution in 2 mL of o-dichlorobenzene.  3 µL of the active layer 

was deposited by spin-coating on the electrodes at 500 rpm for 10 seconds (step 1) 

followed by 1000 rpm for 10 s (step 2). The spin-coated surfaces were checked for 

uniformity using optical microscopy.  The absorption, emission spectroscopy and 

atomic force microscopy were used to characterize the active layer of the micro-

photodetector devices. 

B.5.  LED assembly on PLE fabricated flexible electrodes.  The conductive flexible 

ITO-PET substrates (Delta Technologies) of dimensions 4 mm x 13 cm were rinsed 

with ethanol and air-dried prior to the probe etching for the fabrication of electrodes. 
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The film attached to a glass slide was placed on the x- and y-motorized stage of the 

microscope using a double-sided tape (3M).  PLE hydrogel probes attached to a 

piezoelectric stage were soaked in an acidic solution of Fe(III) for at least one hour 

prior to the experiment.  The PLE was brought in contact to the conductive substrate.  

The stage was programmed to move with x- and y- speed (vx and vy) of 5 µm/s in a 

zig-zig pattern (175 µm in x-direction followed by 200 µm in the y-direction) that 

resulted in inter-digitated electrodes for the fabrication of the micro-

photodetectors/LED assembly.  The metal erasing was performed from edge to edge 

for an etched length of ~4 mm.  The electrical resistance across the inter-digitated 

electrodes yielded an open circuit system (>1GΩ), indicating that the conductive 

material in the patterned area was completely removed.  Blue and green LEDs were 

glued to the film using silver paint followed by putting a thin layer of super glue for 

mechanical stability.  Copper tape was connected to the two electrodes on the 

flexible ITO substrates for attaching devices to an external power supply (GW 

INSTEK GPS-18500).  A forward bias of 3.0 V was used for all LED experiments.  

Stretching studies on the flexible electrodes was carried out by mounting the LED-

ITO-PET setup on an x-y stage.  The LED glued using silver paint and copper tape 

on PLE etched devices were then connected to Keithley 6487 (applied potential 

(Vappl) = 3 V).  Current and resistance measurements were monitored as the device 

was stretched with increments of 2 mm.  

Results and Discussion 

Pyramidal pores in Si wafers.  Fig. 1 shows SEM images of the pyramidal pores 

obtained using Si anisotropic etching in an aqueous pyrocathecol-ethylenediamine 
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mixture.  The activation energy for alkaline etching of Si(100) planes is smaller than 

that of Si(111) planes52 that results in higher etching rate for the Si(100) planes 

compared to the Si(111) planes.  The size and shape of the pyramidal pore depends 

upon the shape and size of the exposed silicon during etching.  The square-shaped 

exposed areas on photo-resist coated Si wafers resulted in sharp pointed pores 

when the etching is proceeded to completion.  However, the square-shaped tip 

 

Figure 1.  SEM of typical pyramidal pores and PAAM PLE probes. (A) SEM of line-
shaped.  Inset shows a larger magnification image of the tip, the tip width is roughly 
50 nm (scale bar=4 µm).  (B) and (C) pyramidal pores in Si wafers were fabricated 
using anisotropic etching of Si in basic solution.  Corresponding nanoporous PAAM 
PLE probes of line-shaped (D) and rectangular-shaped (E) and (F) were formed by 
filling the pores up with PAAM solution and peeling them away from the Si wafer.  
Higher-resolution SEMs of (D) are shown in (G) and (H) show that the tip is ~300 nm 
x 700 nm (scale bars are 10 and 5 µm, respectively).  The scale bar is 100 µm for 
images (A) to (F). 
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pyramidal pores were resulted when the etching was stopped prior to its completion.  

Similarly, the rectangular-shaped exposed areas on photo-resist coated Si wafers 

yielded sharp line or rectangular shaped pores depending upon extend of etching.  

For example, a line-shaped tip was obtained when the exposed area at the start of 

the etching is rectangular.  However, stopping the etching process at an intermediate 

stage prior to a complete etching resulted in a rectangular tip pyramidal pore.  Fig. 1 

shows both the line shaped and rectangular shaped pores in the Si wafer produced 

in our experiments.  The tip (dt) of the PLE probes ranged between 300 nm to 64 µm 

depending upon the extent of the Si(100) etching.  Sub-micron PLE line-shaped 

probe of 300 nm wide and 700 nm length was also prepared (Figs. 1D and 1H).  

These sharp tips were used for the fabrication of the PAAM hydrogel probes for the 

high- resolution erasing applications. 

A nanoporous hydrogel PLE probes were prepared by radical polymerization of AM 

(monomer, M) with bAM (crosslinker, C) in presence of APS (initiator) and catalyst 

TEMED.  The ratio of C to M (RMC) was 0.2% in all PLE probes (Eqs. 1 and 2).  In 

practice, both the storage capacity and mechanical properties of the probe needs to 

be considered for patterning requirements. Therefore, the composition of the PLE 

probes should be carefully adjusted depending upon the erasing and writing 

requirements. 

𝑇 (𝑤/𝑣) =
𝑀+𝐶

𝑉
 × 100%    Eq. 1 

𝐶 (
𝑤

𝑤
) =

𝐶

𝑀+𝐶
 × 100%    Eq. 2 

After crosslinking of the polymer in the pyramidal pores and subsequent peeling off 

from the Si wafer yielded an optically clear array of  polymer probes.  Porous PAAM 
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probes were imaged using SEM after lyophilization of the hydrogel for a closer 

visualization at high spatial resolution of the porous matrix (Figs. 1 G-H).  Although 

SEM provided nanoscale resolution of the pores, the pore size distribution within the 

PLE matrix from SEM images cannot accurately obtained.  This is because of low 

contrast limitation for our samples below 10 nm and a lack of high resolution 

information deep inside of the PLE matrix.  Further, the harsh vacuum conditions 

used during imaging also affected the pore and interpore dimensions.  Finally, a thin 

conductive metal coating (~10-15 nm) sputtered for SEM imaging may also damage 

or distort the sample at nanoscale.  Due to these reasons, although the SEM 

information on the porous PLE is highly useful, the spatial information below 10 nm 

however should be interpreted with caution. 

Patterning using PLE electrochemical metal erasing.  Patterning and deposition of 

metals to fabricate micro-electronic components at the micro- and nano-scale 

frequently utilize wet chemical etching of noble metals including Au, Ag, and Cu53.  

One reason for their extensive use in electronic and opto-electronic devices is their 

low electrical resistivity and relatively high chemical inertness to chemical attacks.  

Metal etching usually involves dissolution of metal using a liquid-phase etchant on 

selective parts of the metal whereas a masked metal area is protected against the 

etching.  The photoresist masked metal using photolithography followed by isotropic 

metal etching is shown to achieve spatial resolution as high as 50 nm54. 

Device miniaturization in the electronic industry demands development and 

enhancement in the state-of-the-art of tools and techniques for microfabrication. 

Several techniques including FIB55  is capable meeting the industry requirements in 
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terms of resolution, yet multiplexing, throughput rate of these techniques are not 

implemented at the industrial scale for device fabrication.  Further, in general, 

appropriate clean room facilities are required for above-mentioned lithography and 

photolithographic patterning techniques where sub-micron resolution is required.  

However, the equipment and maintenance costs (including, that of clean room) 

associated with the above mentioned tools can be extremely high which warrants for 

alternatives fabrication tools that would help in lowering the cost of device 

fabrication. 

In this report, PLE-based editing is demonstrated for on-demand etching and 

patterning of metal (Cu, AG, and ITO) and other technologically important materials 

with features at microscale.  Further, we also demonstrate here the fabrication of 

functional micro-photodetectors and LED assembly on soft and hard surfaces that 

were patterned at microscale using PLE probes.   

Electrochemical copper erasing using PLE probes.  Fe(III) is industrially used for the 

etching of the Cu metal.  Cu(0)/Fe(III) redox reaction provides water soluble, 

predominantly FeCl2+ and Cu(II) species.56  The overall redox reaction usually 

represented by Eq. 3 is thermodynamically accessible (Eo= 0.43 V):   

       Eq. 3 

Importantly, redox reaction Cu(0)/Fe(III) is kinetically fast and follows first order rate 

constant with Retching=0.2-0.33 mg Cu∙kg/cm2∙s∙mol Fe(III) for 0<[Fe(III]<0.8 

mol/kg.57-58 

Scheme 2 shows the set-up used to perform PLE experiments.  The PLE probe was 

attached to a glass cantilever that was then fixed to a piezoelectric stage (step size 

Page 16 of 37

ACS Paragon Plus Environment

ACS Applied Electronic Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17 
 

of 150 nm).  By programming the x-y stage as described in the Materials and 

Experimental section a desired erasing pattern was achieved by delivering etchant 

molecules contained in the probe matrix to the substrate while moving the stage 

(Schemes 2B and 2C).  Fig. S2 shows the photographs of various parts of set up 

used in the microscale erasing of various metallic surfaces for the devices 

fabrication. 

Fig. 2 presents a line array patterns of ten electrochemical etched lines fabricated 

on a 100 nm copper coated glass, using a rectangular PLE probe impregnated with 

Fe(III) (probe tip dimension was 500 nm x 110m).  Figs. S3 and S4 show EDS color 

mapping and spectra of PLE probes loaded with Ag, Cu, and ITO etchants.  For line 

patterns formed in Fig. 2, the Fe(III) etchant concentration, etching time (e), relative 

humidity (RH), and temperature (T) were 3% (w/w), 30 s, 40+10%, and 25oC, 

respectively.  The width and length of the line shaped patterns were 2.7+0.7 m and 

112+2.5 m (n=9), respectively suggesting the microscale features with a narrow-

etched pattern distribution can be obtained using PLE probes in wet lab settings. 
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Scheme 2.  (A) Schematic of the set-up used for PLE-based erasing.  The PLE 
probe is attached to a glass cantilever which is fixed to a piezoelectric micro-
manipulator.  (B)  The relative movement between the substrate and PLE probe 
loaded with a redox-etchant allowed a desired pattern formation (C) A close up 
image of the meniscus formed between the PLE probe and the substrate. 

It is noticeable that the size of the patterned features is larger than the tip dimension.  

For example, the patterns formed in these studies were about five times wider (~2.7 

m) than the width of the PLE probe tip of 500 nm (Fig. 2).  This is consistent with 

our previous studies where the PLE fabricated patterns were also larger than the 

size of the probe.59  The contribution of various factors including meniscus size at 

tip-substrate interface, molecular interaction between the tip and surface, 

mechanical properties of the probe tip, and ink-transport characteristics ultimately 

determine the size of the patterned features.34  Further, parameters such as relative 

humidity, temperature and ink physico-chemical characteristics also contribute to the 

formation and size of the water meniscus.60 

In Scheme 2C, the meniscus at the PLE probe-substrate interface is shown for 

illustrative purposes.  However, at this point, we do not know the exact size of the 

meniscus at the PLE tip-substrate interface.  However, we estimate the meniscus at 

the tip-substrate interface larger than the size of the tip.  The erasing process is 

through a diffusion-based mechanism where the redox etchant from the PLE probe 

transports etchant to the substrate.59  Thus, the PLE erasing is similar to DPN 

lithography where the solvated ink molecules diffused to the patterning surface 

through meniscus at the tip-substrate interface.  Finally, the erasing pattern size 

using PLE etching depends upon many experimental parameters, and probe and ink 
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characteristics (please see above for more discussion).  More detailed studies are 

needed to fully understand the contributions of each parameter on the erasing 

pattern dimension. 

Cu etching with PLE probes was also confirmed by EDS and AFM analysis. EDS 

elemental Cu and Si concentration represented by [Cu]EDS and [Si]EDS in the EDS 

mapping confirmed the depletion of Cu (Figs. 2B-2E).  The orange and purple 

shaded EDS maps show elemental Cu and Si respectively (Figs. 2C and 2D), 

whereas the elemental Cu and Si overlap is shown in Fig. 2E.  Under our 

experimental conditions, the electrochemical Cu(0)/Fe(III) redox reaction was 

dependent upon both the etching time (etching) and Fe(III) concentration.  Fig. 2F 

shows that decrease in the 
[Cu]EDS

[Si]EDS
⁄  ratio with etching for both [Fe(III)]=0.3% 

and 3% conditions.  
[Cu]EDS

[Si]EDS
⁄  ≈0.1 suggested that copper was not completely 

etched but it remained constant for etching>45s and [Fe(III)]= 0.3% (Fig. 2).  The 

etching rate of Cu(0) was found to increase with [Fe(III)]=3% containing PLE probes 

– a complete Cu etching was observed for etching=60s as confirmed using EDS.  The 

quantitative Cu(0) volumetric etching rate (Rvol,etching) was followed by AFM 

measurements (Fig. 2G).  Rvol,etching=  
𝜕𝐴×𝑑𝑓

𝜕𝑡
 was estimated by erased metal area (𝜕A) 

from SEM measurements, known thickness (df=100 nm) of the coating and erasing 

time.  We estimated Rvol,etching ≈0.5 m3/s and 1.0 m3/s with [Fe(III)]=0.3% and 3% 

respectively for a rectangular-shaped PLE probes of dimension 500 nm x 110 m. 
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Figure 2.  Copper erasing and pattern formation.  PLE was used to erase copper 
and formation of patterns on copper surfaces for the fabrication of the micro-photo-
detectors.  (A)  An SEM of an array of rectangular shaped Cu erased patterns using 
a PLE probe.  The electrochemical erasing was performed using a PLE probe with 

tip dimension of 500 nm x 110 m;e=30s; RH=40+10%; T=25oC; and [Fe(III)]=3%.  

The length and width of the erased patterns were 112+2.5 m and 2.7+0.7 m (n=9) 
respectively.  (B)  A higher magnification SEM of an erased pattern in blue rectangle 
in (A).  The EDS mapping analysis shows complete depletion of element Cu (C) with 
increase in the Si signal (D).  (E)  An overlap of elemental Cu and Si signals.  The 

comparison of the Retching,vol-etching for the PLE probe and bulk etching is shown in 

(F).  Retching,vol for the PLE were 0.4 m3/s and 0.90 m3/s for [Fe(III)]=0.3% and 3% 
respectively, whereas the bulk etching rate was four times larger for [Fe(III)]=3%.  
(G)  An AFM of an etched pattern of depth of ~45 nm. 

We performed additional experiments to study the etching rates of the copper in bulk 

conditions and compared this with PLE probe etching.  We found that the etching 

rate was more than four times faster in the bulk solution for [Fe(III)]=3% as compared 

to the PLE etching ([Fe(III)]=3%, Fig. 2F).  However, there were insignificant 

differences in the etching rates between PLE-based and bulk etching for 

[Fe(III)]=0.3%.  These results imply that there are differences between the PLE-

probe and bulk etching rate depending upon the etchant conditions and that the PLE 

locomotion speed needs to be adjusted for optimum etching.  Although more 

thorough studies are needed to investigate why this difference would be.  One of the 

possibilities is that at higher etchant conditions beyond a limiting value for the bulk 

case, the local etchant concentration and mass transport are sufficiently high that 
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allowed enhanced etching rate in comparison to the PLE-based etching.  

Additionally, we also investigated the mechanical stability of the polymer PLE 

probes.  After utilizing the PLE probes for three erasing cycles with >30,000 m2 Cu 

erasing, insignificant damage to the probe was evident from the SEM imaging. 

The coating thickness employed in the micro-electronics, batteries, and other 

devices are comparable to those employed here, suggesting that the results in these 

studies are relevant to the etching of conductive coatings employed in the micro-

electronics and other related industries.  Importantly, we routinely and reproducibly 

obtained spatial features of <10 m in width and up to many cm in length using PLE 

probes.  These results are useful for device fabrication because of the microscale 

erased feature dimension we can obtain at relatively high throughput rate.  With 

optimization of the PLE probe and etching conditions (etching time, temperature, 

and etchant concentration), finer etching patterns of sub-micron dimensions with 

appropriate high throughput rate are feasible. 

Figure 3.  (A) A higher magnification SEM image of a PLE tip loaded with 
[Fe(III)]=0.3% after Cu etching (magnification~28 k, scale bar=2 µm).  Inset of (A) 
shows a lower magnification image.  EDS color mapping in the PLE probe with Cu 
(B, maroon), etchant molecules Fe (C, green), and Cl (D, blue), scale bars=2 µm.  
(E) The EDS spectrum obtained at the tip of the PLE probe before (bottom) and after 

(top) Cu etching.  Energy peaks at 2.98 keV (Ag L), 2.12 keV (Au M), 9.712 keV 
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(Au L), and 2.828 keV (Pd L) came from conductive coating performed on the 
PLE probe.  The presence of Cu x-ray peaks in the spectrum suggested the diffusion 
of the aqueous copper species into the porous PLE probe. 
 

An interesting question arises when metal is removed from the substrate during PLE 

erasing, what is the fate of the reaction products following the erasing process?  In 

the PLE process, erasing is performed at the probe-substrate interface through an 

electrochemical reaction between an etchant and metal (M(0)).  The formation of 

solvated Mn+ through the redox reaction allows erasing of M(0).  The solvated Mn+ 

ions diffuse into the probe and to the surrounding areas.  In order to address this 

question, EDS and SEM were used to examine the PLE probe before and after 

copper etching.  A total area of ~28,716 µm2 was etched using [Fe(III)]= 0.3% and 

RH=40% at 25 °C.  Low etchant concentration in the PLE probe and large surface 

erasing were found to be suitable for investigating the fate of solvated Cu(II) after 

the erasing process.  Erasing of small areas (<10,000 m2) were not successful in 

the detection of solvated Cu(II) in the PLE probe, probably due to the EDS detection 

limit and low concentration of the Cu(II) into the probe. 

The EDS spectra gathered at the tip of the PLE probe showed accumulation of Cu 

speciation after etching within the PLE matrix (Fig. 3).  Fe Kα and Lα with energy of 

6.398 keV and 0.705 keV respectively, and that of Cl Kα 2.621 keV are shown in Fig. 

3E.  The energy peaks of 0.93 and 8.04 keV corresponding to Cu Lα and Kα peaks 

respectively confirmed the presence of Cu in the PLE probe (Fig. 3E).  It is important 

to note that the EDS analysis is semi-quantitative in the present studies.  Therefore, 

we cannot over-emphasize the EDS data presented here, although, qualitatively 
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EDS results provided a clear evidence of erased Cu species in the probe.  Further, 

at this point, it is not entirely clear if all the solvated Cu species diffused into the 

probe.  More extensive quantitative studies are underway to clarify these questions 

and will be reported in a future manuscript. 

The diffusion of the reaction products into PLE matrix can have implication on the 

erasing process.  In the initial stage, the effect of the diffusion of the products into 

the PLE matrix is expected to be low because the etchant concentration difference 

(which is the driving force) is large for etchant to diffuse out of the probe.  Also, the 

low product concentration is expected to have an insignificant effect on the erasing 

rate.  However, large area erasing may significantly increase the reaction product 

concentration in polymer matrix, which, in principle, can hinder the etchant diffusion 

out of the probe to the meniscus present at the probe-substrate interface.  It appears 

that careful studies are needed to fully understand the effect of diffusion of the 

reaction products on PLE erasing. 

Translocation of PLE probes for metal patterning.  Whereas Cu etching in the 

previous section was accomplished using PLE probe-copper surface contact, the 

relative motion between the PLE and the substrate was demonstrated for patterning 

on Ag and ITO surfaces.  Fig. S5 shows the microscale Ag erasing patterns 

accomplished by moving [I2-KI]=18% (w/v) containing PLE probes at a speed of 5 

m/s.  A rectangular-shaped PLE probe (dimension = 11 m x 24 m) was used for 

these experiments.  The SEM and EDS measurements of the erased patterns 

indicated that the complete removal of Ag from the surface was achieved after two 

probe passes (cycles) over the pattern.  One PLE erasing cycle did not appear to 
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etch Ag completely but ~97% silver remained on the surface after one erasing cycle.  

The EDS mapping of elemental Ag and Si confirmed complete erasing after three or 

more erasing PLE cycles (Fig. S6).  Patterns with width and length ~32.2+11.6 m 

and ~1330 m (1.33 mm) respectively, an erased area of ~0.043 mm2 was 

accomplished which yielded areal speed (Rarea,etching) and Rvol,etching of ≈80 m2/s and 

8 m3/s respectively.  Rarea,etching = w x vprobe and Rvol,etching = w x vprobe x d; here, w, d, 

and vprobe were width of the pattern, thickness of silver coating, and speed of the 

probe, respectively.  Assuming complete Ag erasing was accomplished in two 

erasing cycles (Fig. S6) at vprobe=5 m/s, the observed Ag Rvol,etching was ~8 times 

that of Rvol,etching for the Cu where the PLE probe-surface contact mechanism was 

employed.  The Rvol,etching depends upon the probe size, concentration and 

temperature of the redox etchant, and etchant-metal redox kinetics rate.  For 

example, larger probe size delivers larger volume of the etchants that will result in 

enhanced Rvol,etching.  Similarly, as shown for the Cu etching, the etchant 

concentration is also an important parameter that affects the etching rate.  In our 

experiments, the area of the PLE probe used for the Ag erasing was ~5 times larger 

than the area of the probe used for the Cu etching which may account for enhanced 

etching rate.  Further, the etchant-metal redox kinetics consideration is also 

important for fully utilization of the probe-based pattern formation.  Under optimized 

conditions, a larger etching rate than those demonstrated here can be obtained by 

controlling the etchant concentration and temperature, probe dimension, and mass-

transport and kinetics of the metal-etchant reaction. 
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Fabrication of functional micro-photodetector and LED devices using PLE patterned 

electrodes.  The interdigitated electrodes were fabricated by translocating 18% w/v 

aqueous [KI-I2]-complex containing PLE probes over Ag-coated glass wafers at a 

speed of 5 m/s.  Fig. 4A shows a schematic of the interdigitated electrode based 

micro-photodetector fabricated using the PLE erasing.  The zig-zag probe movement 

of the PLE over metallic coating resulted in interdigitated electrodes with conductive 

metal electrode width and spacing of 50 m and 150 m respectively (inset Fig. 4B).  

After Ag etching, the electrical resistance of the electrode increased from <10 Ω to 

>1 GΩ (reliable limiting electrical resistance of our multimeter was 1 GΩ) suggesting 

that the Ag erasing was successful.  These results were also confirmed by the EDS 

measurements (Fig. S6).  An electron donor-acceptor pair of P3HT and bis[60]PCBM 

of 1% and 0.8% concentrations respectively were spin-coated on the interdigitated 

electrodes.  The films composed of only P3HT and bis[60]PCBM, and that of P3HT-

bis[60]PCBM mixture were also characterized using AFM (Figs. S7 and 4C).  The 

emission spectra of P3HT before and after addition of acceptor in the solution phase 

indicated an emission quenching efficiency of ~45% (Fig. S8).  These results are 

consistent with previous studies suggesting strong donor-acceptor interactions, and 

charge transfer between excited state P3HT and bis[60]PCBM.61  Figure 4B shows 

the experimental set-up used for the acquisition of photo-induced current (PIC).  Fig. 

4D shows typical PIC-time responses of a typical micro-photodetector device with 

light “ON” and “OFF”.  A solar simulator (AM 1.5) under ambient wet laboratory 

conditions was used for all photo-induced studies.  With photon irradiation, the PIC 

increases sharply exhibiting both the rise (rise) and decay times (decay) <500 ms.  
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The device response was found to stable for less than five “ON-OFF” cycles; the PIC 

signal response decreased significantly after >10 cycles.  This decrease in the PIC 

signal is attributed to photo-degradation of the active organic layer. 

 

Figure 4.  Micro-photodetector fabricated using PLE-based patterning of silver 
interdigitated electrodes.  (A)  A schematic of a micro-photodetector prepared by 
erasing silver in a zig-zag pattern thereby fabricating an interdigitated electrode and 
spin coating an electron donor-acceptor pair on the electrode (brown zig-zag line).  
Two copper electrodes were attached to the pattern substrate and connected to 
electric potential using Keithley 6487.  (B)  The optical photograph (left) and higher 
magnification optical photograph (middle) of a micro-photodetector assembly in the 
blue square.  The zig-zag patterns on the electrodes are visible in (B).  The dark-
reddish color comes from the deposition of the donor-acceptor mixture.  An SEM 
image of the patterned electrode (right, scale bar 2 mm).  (C)   An AFM of P3HT- 
bis[60]PCBM mixture deposited on the photodetector.  (D) A typical PIC-time 
response of the micro-photodetector for three different powers (200 W, 230 W, and 
250 W).  The measured photon intensity at 534 nm (Newport Model:  818-SL) for 
200 W, 230 W, and 250 W were 142 mW/cm2, 220 mW/cm2, and 240 mW/cm2 
respectively.  (D)  Normalized PIC-Vappl dependence for the micro-photodetector at 
three different photon intensities. 
 

Fabrication and testing of devices were performed in wet lab conditions in air (21% 

oxygen and humidity between ~50%).  Oxygen is singlet in its ground state, and is 

an excellent quencher for molecules in the excited state.62  Both P3HT and PCBM 
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are known to oxidize and degrade under photo-irradiation conditions. Specifically, 

the photo-degradation of P3HT is a light-initiated radical mechanism where the 

concentration of the quenched sites increases with the photo-oxidation.63  Similarly, 

PCBM can undergo a series of oxidation when photo-radiated which acts as electron 

traps as shown by experimental and DFT studies.64  The degradation of the 

performance of the devices such as ours can be minimized by hermetically sealing 

the devices with materials that eliminate (or significantly reduce) the transport of 

oxygen, water, and other performance degrading species. 

Interestingly, the PIC signal depends on the photo-excitation power (P) and the 

applied voltage (Vappl) across two electrodes.  PIC-photo-excitation power and PIC-

Vappl dependences are shown in Figs. 4D and 4E respectively.  In general, higher 

photon intensity consistently resulted in larger PIC.  For example, PIC was~ 2 times 

when P=250 W than when P=200 W.  The PIC enhancement at higher lamp power 

is attributed to increase in photo-charge generation leading to enhanced PIC.  More 

dramatic PIC-Vappl dependence was observed under same photon intensity 

conditions (Fig. 4D).  For example, PIC10,1 = 
𝑃𝐼𝐶10

𝑃𝐼𝐶1
 was >20 for all the photon 

intensities (200 W, 230 W, and 250 W) tested under our experimental conditions.  

PIC10,1 is a measure of influence of applied potential, and it is defined as ratio PIC at 

Vappl=10V to PIC at Vappl=1 V.  Similarly, PIC5,1 and PIC1,0.1 were >9 and >2.5 

respectively for our experimental conditions.  In fact, PIC10,0.1>65 for all the photon 

power tested in our experiments.  The strong PIC-Vappl dependence is not surprising 

for randomly dispersed donors and acceptors in the inhomogeneous film where 

significant losses due to charge recombination and charge trapping, and other 
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charge loss mechanisms exist.65  The application of an external electric field 

drastically decreased the charge recombination and other losses in the device by 

forcing the electrons and holes to transport to opposite appropriate electrodes, 

thereby, dramatic enhancing the PIC signal at higher Vappl. 

LED device assembly on flexible electrodes.  ITO coated flexible polyester (PET) 

substrates (1 cm x 2.7 cm) were also patterned using PLE probes soaked in acidic 

0.2 M Fe(III).  Etching of ITO with acidic Fe(III) is thermodynamically favorable with 

a reported activation energy of 56 ±5 kJ/mol.66  The Fe(III) containing PLE probes 

were translocated at a speed of 5 µm/s over the ITO surface.  Under these 

experimental conditions, multiple PLE probe erasing cycles were needed to 

completely etch ITO from the surface.  The electrical resistance-number of erasing 

cycles dependence is shown in Fig. 5A.  The electric resistance (R) of the ITO 

surface increased from 500 Ω to >50 MΩ after four erasing passes for an etched line 

of ~200 m x 1 cm line suggesting successful ITO erasing (Fig. 5A).  A schematic 

and a typical working device with six LEDs (four green and two blue) mounted on 

the PLE etched ITO substrate are shown in Figs. 5B and 5C, respectively.  We 

examined the working behavior of an LED assembled on a flexible ITO-PET 

substrate by mounting it on a mechanical station for stretching experiments (Figs. 

5D, 5E, and S9).  Stretching and relaxation of the unstrained state in the first cycle 

did not result in a significant change in electrical resistance (Rext) under strain ()  up 

to  up to 4.5% (two-way black arrows) (Fig. 5F).  A second stretching cycle with 

=4.5% (two-way red arrows) led to increase in Rext by an order of magnitude which 

however returned to the original value after relaxed to =3% showing limited 
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electrical reversibility of the PLE fabricated devices on ITO coated polyester 

substrates.  For =7.6%, however, Rext>1 GΩ was observed.  This is due to tearing 

of the ITO-PET substrates that resulted in the destruction of the conductive pathways 

for charge transport through the devices. 

   

Figure 5.  Testing of the LED assembly on the PLE fabricated ITO electrodes.  (A)  
LogR-number of erasing passes dependence for the ITO electrodes.  Here, R 
represents the electric resistance of the ITO electrode as a function of number of 
PLE erasing cycles.  (B)  Schematic of an LED assembly on ITO electrodes.  (C)  
Four green and two blue LED assembled on an electrode fabricated across an ITO 
electrode that was fabricated using locomotion of a PLE probe impregnated with 
acidic Fe(III).  The optical photographs of the LED devices assembled on flexible 

electrodes that were stretched with =3% (D) and 7.8% (E).  (F)  LogRext- 
dependence indicated that the electrical resistance was not affected significantly for 

=3.3 but the Rext increase exponentially at >4.5%.  The device was damaged at 

=7.5%. 

The performance of the devices fabricated in this study was limited by the short-

range extension failure due to material selection.  With appropriate selection of base 

materials such as PDMS or PDMS-urethane composites, Rogers and Bao’s groups 

recently demonstrated working devices that can be stretched larger strain  values 

up to or >250%.43, 45, 67  More extensive studies are currently underway for the 
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fabrication of highly stretchable functional devices based on PLE for wearable 

pressure and motion sensing  applications.  

It is instructive to discuss the PLE in light of other lithography techniques widely used 

in the industry and academia.  The surface selective patterning can be accomplished 

using many currently available tools including coated-AFM tips, focused ion beam 

(FIB), and electron beam lithography (EBL).  For example, the selective removal of 

materials from a surface using AFM tips are demonstrated in the literature68.  

Importantly, AFM can remove materials from a surface through a mechanical 

process.  However, this causes damage to the probe because of the physical contact 

between the tip and the surface, and the probe may need to be replaced if it is blunt 

due to damage.  Similarly, FIB and electron lithography allows removal of materials 

and patterning at a high-resolution (<100 nm).  However, the equipment and 

operating cost of these two instruments is high; many institutes and resource-limited 

countries cannot afford these expensive instruments.  The PLE probe utilizes 

polymer and contains a liquid interface meniscus that reduces the friction during the 

locomotion of the probe.  However, as demonstrated in this and in a previous 

manuscript,59 an electrochemical reaction facilitates the erasing process which can 

be many orders larger than the mechanical erasing of hard materials.  Because 

chemical reaction performed at the microscale, a large number of materials are 

accessible for erasing at microscale.  Further, multiple materials can be erased 

simultaneously, or a given material within a matrix of a composite made up of many 

species can also be erased.  This opens new possibilities for fabricating new 

materials with spatial control at microscale level.  Finally, the usage of a hydrogel 

Page 30 of 37

ACS Paragon Plus Environment

ACS Applied Electronic Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



31 
 

ensures that the amount of ink enclosed within the polymeric matrix is several orders 

of magnitude higher than the dry weight of the polymer. 

It is also important to consider the resolution and throughput rate of erasing using 

AFM, FIB, EBL, and that of PLE probes.  The resolution of writing and erasing using 

AFM, FIB, and electron beam is 2-3 orders better than the patterns made using the 

PLE probes.  This is a direct consequence of the difference between the AFM and 

PLE probe size.59 Similarly, the electron and ion beams in FIB and EBL respectively 

allow much higher resolution erasing than that demonstrated in this study.  Further 

studies may allow decrease in the erasing features using PLE (probably through 

sharper tip and through control of the experimental conditions).  Additionally, the 

meniscus characteristics and experimental parameters such as humidity also 

influence the feature size of the patterns.  Throughput rate (erasing and deposition 

rate) of the PLE based patterning is many orders of magnitude larger than those 

patterns composed using AFM, FIB, and EBL tools.  This is because of the large 

differences in the probe/beam size.  Finally, the erasing process demonstrated in 

this report is accomplished using an electrochemical reaction at much larger area 

which are practically impossible to accomplish using AFM-based probes with the 

same erasing speed.  Overall, PLE, AFM, FIB, and EBL provide complementary 

tools that have potential applications in a wide field including microelectronics, 

biosensors, medical, and life-science. 

Conclusions 

We demonstrated the fabrication of functional devices based on interdigitated 

electrodes synthesized using probe-based etching of metallic coatings.  Three 
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different metallic coatings (Ag, Cu, and ITO) on both hard and soft surfaces were 

erased and patterned using diffusion-based etchant delivery to the metal coating in 

contact mode between substrate and PLE.  The translocation of PLE over a metallic 

coating allowed microscale erasing (etching) of metallic coating on demand in one-

step process.  Based on etchant concentration, PLE probe speed, and metal 

thickness, the microscale erasing features with minimum pattern size of 2.7 m was 

accomplished with etching rates of ~8 m3/s.  Functional micro-photodetector and 

LED assemblies were fabricated on flexible and hard conductive interdigitated 

electrodes composed using PLE probes.  Overall, the PLE allowed on-demand fast 

patterning of films of multiple metals with microscale features on both the soft and 

hard substrates for the fabrication of functional devices. 
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