
Performance Analysis and Optimization of In-situ Integration of
Simulation with Data Analysis: Zipping Applications Up∗

Yuankun Fu, Feng Li
Purdue University, Indianapolis

Indianapolis, Indiana
{fu121,li2251}@purdue.edu

Fengguang Song
Indiana University-Purdue University

Indianapolis, Indiana
fgsong@cs.iupui.edu

Zizhong Chen
University of California, Riverside

Riverside, California
chen@cs.ucr.edu

ABSTRACT
This paper targets an important class of applications that requires
combining HPC simulations with data analysis for online or real-
time scientific discovery. We use the state-of-the-art parallel-IO
and data-staging libraries to build simulation-time data analysis
workflows, and conduct performance analysis with real-world ap-
plications of computational fluid dynamics (CFD) simulations and
molecular dynamics (MD) simulations. Driven by in-depth perfor-
mance inefficiency analysis, we design an end-to-end application-
level approach to eliminating the interlocks and synchronizations
existent in the present methods. Our new approach employs both
task parallelism and pipeline parallelism to reduce synchronizations
effectively. In addition, we design a fully asynchronous, fine-grain,
and pipelining runtime system, which is named Zipper. Zipper is a
multi-threaded distributed runtime system and executes in a layer
below the simulation and analysis applications. To further reduce
the simulation application’s stall time and enhance the data transfer
performance, we design a concurrent data transfer optimization
that uses both HPC network and parallel file system for improved
bandwidth. The scalability of the Zipper system has been verified by
a performance model and various empirical large scale experiments.
The experimental results on an Intel multicore cluster as well as
a Knight Landing HPC system demonstrate that the Zipper based
approach can outperform the fastest state-of-the-art I/O transport
library by up to 220% using 13,056 processor cores.

KEYWORDS
High performance computing, performance analysis and optimiza-
tion, in-situ/in-transit workflows

1 INTRODUCTION
As high end supercomputing systems are evolving from petas-
cale to exascale, data generated from extreme-scale modeling and
simulation applications reach a scale of hundreds of terabytes or

∗This material is based upon research supported by the Purdue Research Foundation
and by the NSF Grant# 1522554. ⋄ Corresponding author: Fengguang Song.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’18, June 11–15, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5785-2/18/06. . . $15.00
https://doi.org/10.1145/3208040.3208049

even petabytes. The grand challenges confronted by today’s scien-
tific computing community hence include not only computation-
intensive simulations, but also data-intensive analyses that need
to process the huge amount of computed results generated from
the simulations [7, 31, 44]. Today, it is even challenging to answer
certain basic questions such as: Did any unusual phenomena hap-
pen or not during the simulation? When and where did they occur?
With the new advanced big data analytics techniques, it is more
and more popular and appealing to combine modeling/simulation
with big data analysis to create a virtuous cycle that amplifies their
collective effects [16, 35, 37].

However, it is exceedingly challenging to achieve high perfor-
mance for an integrated workflow with both simulation and data
analysis applications particularly at extreme scales. There exist
workflow solutions that target high productivity. Workflow middle-
ware such as Kepler [28] and Pegasus [10] has been widely used in
different scientific domains. They provide orchestrating, executing,
and monitoring coarse-grain steps in a workflow. Each step runs an
application program or web service [17]. Also, those participant
steps are often loosely coupled such that the resultant workflows
have higher latencies (i.e., milliseconds or much more) than the
MPI-based HPC applications (i.e., microseconds).

In this paper, we seek to achieve the microsecond-level HPC
performance on scientific workflows. Achieving high performance
workflows requires we solve the following issues. First, what could
be the minimum end-to-end time-to-solution and how can we
achieve it? Second, simulation and data analysis applications work
as an interactive producer-consumer system, then how can we re-
duce the simulation stall time if the analysis is slow? Third, how
can we reduce the I/O time between simulation and analysis appli-
cations? The third issue of I/O bottleneck has been well recognized
and studied by many researchers. For instance, in-situ/in-transit
approaches, data-staging approaches, and a number of high-level
I/O libraries have been developed to reduce the I/O bottleneck. Sec-
tion 2 will briefly introduce a few state-of-the-art I/O transport
libraries.

Instead of focusing on the I/O bottleneck only, we bring on an
end-to-end approach to optimizing a scientific workflow’s time-
to-solution, which is comprised of simulation time, data analysis
time, and I/O time. We use the latest high-level I/O libraries such as
MPI-IO [45], ADIOS [27], DataSpaces [11], DIMES [50], Decaf [13],
and Flexpath [9] to “glue” standalone simulation and analysis appli-
cations in a workflow. We have developed seven different workflow
implementations to combine a lattice Boltzmann method [20] based
computational fluid dynamics (CFD) simulation with a turbulence
flow analysis application. Each workflow implementation employs
a different I/O transport method (in total, seven methods). From the

Fu, Y., Li, F., Song, F., & Chen, Z. (2018). Performance Analysis and Optimization of In-situ Integration of Simulation with Data Analysis: Zipping Applications Up. In Proceedings of the 27th International 
Symposium on High-Performance Parallel and Distributed Computing (pp. 192–205). New York, NY, USA: ACM. https://doi.org/10.1145/3208040.3208049

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/200272788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3208040.3208049


Simulation 
Application

Analysis 
Application

Zipper Runtime System

High-level I/O and Communication Lib

Parallel File System and Network

buffering, pipelining, scheduling

concurrent message&file data transfers

Combined Execution of 
Simulation with Analysis

Figure 1: The Zipper runtime system.

experimental results, we find that these workflows’ end-to-end time
is significantly larger than the essential simulation time or analysis
time (shown in Section 3). Detailed performance analysis then iden-
tifies a set of performance inefficiencies such as synchronization
with centralized servers, coarse-grain critical sections, interlock
between applications, barriers, network bandwidth contention, and
application stalls.

In order to solve the performance inefficiencies, we devise a new
approach, which uses fine-grain data blocks, task parallelism, and
pipelining parallelism to tightly interleave simulation and analysis
applications. The new approach is driven by data availability, and
has no artifactual data dependency (e.g., barriers) between tasks. A
runtime system called Zipper is designed and developed to enable
the new end-to-end approach, as shown in Figure 1. Zipper is lo-
cated below the application layer, and above the high-level I/O and
communication libraries. The Zipper runtime system itself has two
strata: 1) The upper stratum provides the functions of buffering
data in memory, pipelining data blocks from simulation to analy-
sis applications, and scheduling data transfer operations and data
analysis tasks; 2) The lower stratum is an optimization layer, which
can transport computed results by two concurrent channels: low-
latency HPC network and file-based parallel file system. Section 4
will introduce the Zipper runtime system. In addition to the par-
allel framework implementation, we also build an analysis model
to evaluate the Zipper system. With this performance model, we
are able to estimate a combined workflows’s time-to-solution, and
provide an insight into which component should be improved to
achieve the fastest end-to-end time.

We conduct experiments with synthetic applications, a computa-
tional fluid dynamics (CFD) application, and a LAMMPS application
on two supercomputing systems. The CFD application is coupled
with an online statistical turbulence analysis, and the LAMMPS
application is coupled with the Mean-Squared Displacement (MSD)
data analysis. The paper shows three types of experiment: The

first type of experiment is used to validate the analytical perfor-
mance model; the second type is used to show that the concurrent
dual-channel data transfer optimization can reduce data transfer
time as well as the simulation application stall time; and the third
type validates the scalability of the Zipper system. Based on the
experimental results, using Zipper can outperform the fastest state-
of-the-art I/O transport library by up to 2.2 times on 13,056 cores.
The performance benefits have been studied and analyzed by col-
lecting and comparing different workflow implementations’ traces.

To the best of our knowledge, this work makes the following
contributions:

• Detailed performance analysis and comparison between an
arrange of state-of-the-art I/O transport libraries designed
for implementing high performance scientific workflows.

• An end-to-end approach to combining the pipelining paral-
lelism and the asynchronous task parallelism, at a fine-grain
task level, to create the new Zipper runtime system for min-
imized workflow end-to-end time.

• Introducing the concurrent data transfer optimization to
reduce I/O time and simulation stall time with in-depth per-
formance analysis.

• Application of the Zipper runtime system to large-scale CFD
and molecular dynamics. The experimental results demon-
strate Zipper provides better performance than the existing
work. Zipper’s end-to-end time has also been verified by a
performance model and detailed traces.

In the remainder of the paper, the following section introduces
different state-of-the-art I/O transport libraries. Section 3 shows
performance analysis of scientific workflows using the I/O transport
libraries. Section 4 introduces the Zipper runtime system, its parallel
implementation, and an analytical performance model. Section 5
compares the existing work with our work. Finally, Sections 6 and
7 present the experimental results and summarize the paper.

2 BACKGROUND OF EXISTING I/O
TRANSPORT LIBRARIES

Integrating simulation and data analysis applications into a work-
flow requires efficient data transport libraries. In this section, we
briefly introduce six high performance software packages that we
deploy to combine simulation with data analysis applications: 1)
MPI-IO, 2) DataSpaces, 3) DIMES, 4) Flexpath, 5) ADIOS, and 6)
Decaf.

(1) MPI-IO is a parallel file I/O interface that allows multiple
processes of an MPI program to write or read parts of a
shared common file [19, 45]. It can map I/O reads and writes
to message-passing sends and receives to improve the I/O
performance. Unlike the following five software packages,
MPI-IO is a low-level I/O library that can support each in-
dividual MPI application’s file I/O. Also, coupling different
applications with MPI-IO requires writing code to let a con-
sumer application know when new data is available in a
file.

(2) DataSpaces offers an abstraction of virtual shared space that
is distributed across a number of dedicated data servers [8,
11]. It can support data coupling at runtime. In DataSpaces,
each participant application is launched by its ownmpirun or

193



aprun command such that there are multiple failure domains.
If one application fails, the other applications can still survive.
DataSpaces provides put and get functions that use RDMA
to write/read data to/from the dedicated data servers. It also
provides reader-writer locks to coordinate accesses to shared
data among different applications.

(3) DIMES is another data staging library that is provided by the
DataSpaces project [8, 50]. Similar to DataSpaces, it supports
runtime data coupling, and has multiple failure domains.
However, DIMES stores data in RDMA memory buffers lo-
cated in the simulation application’s nodes directly. This way
data staging becomes as fast as copying data to main mem-
ory. Although data-storage servers are not needed, DIMES
requires metadata servers to manage where data are located
and provide locking services to collaborating applications.

(4) Flexpath implements a publisher/subscriber communication
mechanism to combine simulations with componentized
data analyses [9, 14]. With Flexpath, different software com-
ponents can be connected by event channels and source-to-
sink event communications at runtime. Each publisher or
subscriber is executed as an independent application by run-
ning mpirun or aprun. Hence, Flexpath has multiple failure
domains. To transfer data, a publisher uses an output epoch
(i.e., open, write, close) to save data to its buffer. Later on,
a subscriber sends to each of the event publishers a fetch
message to request its desired data. Flexpath provides the
ADIOS interface (see below) as its own interface.

(5) The Adaptable IO System (ADIOS) supports a range of I/O
transport methods [1, 27]. It can be configured to make use of
different data-staging libraries such as DataSpaces, DIMES,
and Flexpath. In the paper, we call it the “ADIOS/name” trans-
port method if we use ADIOS’s interface and use the specific
I/O method of name. Otherwise, we call it a “native” method
for which we use the intrinsic I/O library directly.

(6) Decaf is a dataflow system for parallel communication of
participant applications in workflows [13]. It can be regarded
as a “coupling service”, which allows users to describe nodes
and links as serial entities while Decaf takes care of their
parallelism. It provides a simple put/get API that utilizes MPI,
and can implement aworkflow system by using a PythonAPI.
Different from the above DataSpaces, DIMES and Flexpath,
Decaf creates a single MPI_Comm_World for all the partic-
ipant applications. Data coupling between applications is
defined during the compile time. Also, it requires existing
MPI-based programs to replace their MPI_COMM_WORLD
by the communicator provided by Decaf. Therefore, there is
a single failure domain in Decaf workflows.

Next section will compare the performance differences between
different workflows that use the above I/O transport libraries.

3 PERFORMANCE ANALYSIS OF
WORKFLOWSWITH STATE-OF-THE-ART
I/O LIBRARIES

We use the I/O transport libraries of MPI-IO, Flexpath, ADIOS
DataSpaces, native DataSpaces, ADIOS DIMES, native DIMES, and
Decaf to implement a scientific workflow. The workflow application

uses a Lattice Boltzmann method (LBM) based CFD simulation to
generate steps of simulation data, which are read and processed by
a coupled parallel n-th moment turbulence data analysis applica-
tion [34, 39]. LBM is a numerical method to solve Navier-Stokes
equations and simulate complex fluid flows. It considers fluid as
a collection of particles, each of which has random motions [20].
Collision and streaming are two phases in each simulation time step.
Collision happens when each particle updates its own distribution
function using its local information, and streaming happens when
a particle exchanges its local information with its neighbors.

We perform workflow experiments on the Bridges system from
the Pittsburgh Supercomputing Center. Bridges has 752 (regular)
compute nodes, each of which has two Intel Haswell 3.3 GHz 14-
core CPUs and 128GB memory (more detailed system information
is provided in Section 6).

Figure 2 shows the various end-to-end time of the CFD workflow
experiments using different I/O libraries. Table 1 also presents the
experimental setup information of the workflow experiments. On

0

50

100

150

200

250

300

350

400

E
nd

 to
 E

nd
 T

im
e 

(s
ec

on
ds

)

176.9
157.2

281.6

96.1 83.4

140.9

104.9

39.2 48.4

Figure 2: Performance of the CFD workflow application using 7
different I/O transport libraries, in comparison with the simulation
time and analysis time.

Table 1: Experimental setup of the CFD workflow experi-
ments shown in Figure 2.

Global input grid size in 3D 16384×64×256 (64×64×256 per process)
#Simulation processes 256 processes on 16 nodes
#Analysis processes 128 processes on 8 nodes
Compute node information Each node has 28 cores, 128GB of memory
#Data staging processes DataSpaces: 32 server processes on 8 nodes

DIMES: 32 server processes on 8 nodes
Decaf: 64 Decaf-link processes on 8 nodes

#Time steps in the simulation 100, every time step has a data analysis
The n-th moment turbulence
data analysis n=4

Total amount of data moved 400GB

194



Table 2: Configurations of different I/O transport libraries that have been used to generate Figure 2.

Software Tested Version Build Configurations Runtime Configurations
ADIOS/DataSpaces, DataSpaces: 1.6.2, Default ADIOS autoconfig script lock_type=1, hash_version=2
and ADIOS/DIMES ADIOS: 1.13
Native DataSpaces, DataSpaces 1.6.2 --with-ib-interface=ib0 lock_type=2, hash_version=2
and Native DIMES --with-dimes-rdma-buffer-size=1024
ADIOS/MPI-IO ADIOS 1.13 Default ADIOS autoconfig script xml: type=“MPI”, without time aggregation
Flexpath EVPath, ADIOS 1.13 perl chaos_bootstrap.pl adios-1.13 CMTransport=socket, CM_Interface=ib0

Decaf https://bitbucket.org/tpeterka1/decaf mpi_transport=on redist=“count”
Git commit version used: 637eb58

Bridges, we build all the software and libraries with gcc 4.8.5 and
the Intel MPI library (2017 Update 3). Table 2 particularly lists the
software versions and configuration options we use to install and
build the tested software systems. Furthermore, we perform large
scale experiments using the MPI-IO, Flexpath and Decaf libraries
on 13,056 cores as shown in Section 6.3 (see Figures 16 and 18).

Our first attempt tried to use four I/O transport libraries (i.e.,
ADIOS/{DataSpaces, DIMES, MPI-IO, Flexpath}). Among all the
transport methods, MPI-IO performs the worst: it gives the longest
and most variational end-to-end time. This is anticipated because
MPI-IO writes data to a file system, which is also shared by many
other users. However, MPI-IO in the fastest case can still achieve a
performance that is comparable to the in-memory methods (e.g.,
ADIOS/DataSpaces), which had surprised us.

To investigate the problem and enhance the performance of
ADIOS/DataSpaces, we turn to the native DataSpaces and DIMES
libraries. This brings on a significant speedup of 1.3 times for DataS-
paces, and a speedup of 1.5 times for DIMES. The reason for the
speedup is as follows. ADIOS introduces a uniform interface for all
transport methods. However, to achieve this goal, low-level details
in certain transport methods have to be hidden in this common
interface. For instance, native DataSpaces provides a customized
light-weight lock strategy to enforce synchronizations among ap-
plications (e.g., dspaces_lock_on_write). The native lock strategy
is not exposed by the ADIOS interface. Therefore, we use multiple
native DataSpaces locks to implement both native DataSpaces and
DIMES workflow experiments.

As shown in Figure 2, among all the libraries, Decaf achieves
the best end-to-end time of 83.4s, followed by ADIOS/Flexpath of
96.1s. All of our workflow implementations have been designed
to overlap simulation with analysis time steps to obtain the best
performance. For instance, Figure 3 illustrates how our workflow
implementation can hide the analysis time when the simulation
time is greater than the analysis time. A similar figure can also
be drawn when the analysis time is greater than the simulation
time (omitted here). By using such a software design, either the
simulation time or the analysis time can be totally hidden from the
workflow execution time.

However, the experimental results in Figures 2 show that the
workflow execution time is still much larger than the simulation
time or analysis time. To investigate why and where the perfor-
mance is lost, we use TAU [41] and Intel Trace Analyzer and Col-
lector (ITAC [23]) to collect traces of the experiments. Due to the

Step 1 Step 2 Step 3 Step 4 Step 5

Simulation

Analysis

…

…

Step n

Figure 3: Our workflow implementations can overlap simulation
and analysis using I/O transport libraries. In this example, we as-
sume data analysis is faster than simulation for each time step.

space limit, here we only show the performance analysis results
for the three fastest methods (i.e., the native DIMES, Flexpath, and
Decaf) to reveal major performance inefficiencies.

Figure 4 shows the trace for the CFD workflow implementation
that uses the native DIMES library. In this workflow, simulation
needs to synchronize between metadata servers and computing
processes, and then inserts results into the DIMES buffer. Notice that
there is a lengthy “lock” period, when the simulation is performing
data insertions. We use the type-2 customized lock of DIMES, which
is a collective lock and enforces strict synchronization between
producers and consumers. To better overlap simulation with data
analysis, and efficiently utilize the RDMA memory in DIMES, our
DIMES workflow uses multiple locks.

The DIMES implementation is presented as follows: we use
(step%num_slots) as the lock name so that we keep reusing a circu-
lar queue of multiple locks with a fixed size of num_slots , where
step is the time step index of the CFD simulation, and num_slots is
the number of slots the CFD simulation can use to buffer its output
data in a FIFO manner. When the analysis application is slower,
the simulation application will be stalled in order to make sure
the previous data are not overwritten. This scenario is shown in
Figure 4 where the application stall time is almost equal to one
step of simulation time. As a result, the end-to-end workflow time
nearly doubles. 1

Next, we present the TAU trace for the Flexpath-based workflow
implementation in Figure 5. In the figure, we display a snapshot
of length of three seconds for two different cases: 1) running sim-
ulation alone, and 2) running the Flexpath workflow. The orange
stripes represent the time to execute the MPI_Sendrecv function,
which performs the inter-process communication in the streaming
phase of the LBM simulation. We can see that after adding the
1Workflow implementations with DIMES can be further optimized by using an ad-
ditional thread in the consumer application to fetch newer version of data while the
main thread is analyzing the data of previous time steps.

195



lock_on_write CFD 1 stepCFD 1 step

STCL UD

MPI_Barrier

PUT

lock_on_write

MPI_Barrierunlock_on_write

Figure 4: A trace of native DIMES with a snapshot of 2 seconds.

CFD-only

Flexpath

1 step1 step1 step1 step 1 step 1 step 1 step

CFD 1 stepCFD 1 step CFD 1 step CFD 1 step

MPI_Sendrecv

MPI_Sendrecv

Figure 5: Comparison between running CFD simulations only and
running Flexpath based workflows. This figure shows a snapshot of
3 seconds.

Flexpath data staging, the MPI_Sendrecv time in the LBM simu-
lation takes much longer, which results in increased end-to-end
time. Because both LBM’s streaming operation and Flexpath’s event
channel involve intensive communications, Flexpath’s data-staging
operations will compete with the simulation’s MPI communication.
In particular, when staging a large slab of simulation data (e.g., 16
MB per time step per process in this workflow experiment), the
chances to have communication interferences are much higher.

Finally, we compare the fastest workflow implementation that
uses the Decaf method (whose performance is shown in Figure 2)
to the experiment that runs simulation only. We are not able to use
TAU for the tracing purpose, because the latest TAU library (version
2.27) cannot filter out the huge number of inline Boost serialization
function calls made by Decaf. The inline function calls make the
trace files too large to generate. We have reported the problem to
TAU developers, and they are working on it. To circumvent the
tracing problem, wemanually instrument the workflow source code,
and use the Intel Trace Analyzer and Collector (ITAC) software to
collect execution traces.

Figure 6 shows the two traces for CFD simulation only, and
Decaf-based workflow, respectively. In the CFD simulation only
trace, each time step contains three major computation kernels:
collision (CL), streaming (ST), and update (UD). In a trace snapshot
for 0.9 seconds, CFD simulation itself can execute 3 time steps. Note
that all time steps have the similar performance pattern. By contrast,
in the lower Decaf-based workflow trace, there is an additional PUT
function invoked by simulation processes to transfer output data to

CFD-only

Decaf

CFD 1 step CFD 1 stepCFD 1 step

CFD 1 stepStallsCFD 1 step

STCL UD

PUT

ST UDCL

MPI_WaitallMPI_Sendrecv

MPI_Sendrecv

Figure 6: Comparison between running CFD simulations only and
runningDecaf-basedworkflows. Thisfigure shows a snapshot of 0.9
seconds.

link nodes via Decaf. We observe that the PUT function utilizes a
collective “MPI_Waitall” function, during which time all simulation
processes stall. This is because Decaf has to make sure data is safely
stored in the link nodes before it can proceed to the next step. We
also observe that the “MPI_Sendrecv” time (within the streaming
ST phase) increases significantly after Decaf is added. This indicates
that using Decaf has affected the MPI communication performance
of the original simulation application.

4 THE ZIPPER RUNTIME SYSTEM AND
IMPLEMENTATION

From the above performance analysis, we findmultiple performance
issues and optimization opportunities as follows: 1) The staging-
server access cost including the server query, data movement and
locking service can be reduced (e.g., DataSpaces and DIMES have
such a cost); 2) the enforced global barriers for all writer processes
and all reader processes can be reduced (e.g., Decaf and Flexpath
have such barriers); 3) the data transfer time between consecutive
simulation steps can be hidden by computation time, and decreased
by an early-start fine-grain pipelining approach (e.g., we will in-
crease the degree of task-level parallelism and use pipelining to
overlap all simulation, analysis, and I/O tasks); and 4) asynchro-
nous fine-grain-block data transfers have a more balanced network
traffic, which can have a less interference with the original ap-
plication’s communication time than a burst of large data block
transfers (e.g., Decaf and Flexpath have experienced increased MPI
communication time in the original simulation application).

The rest of this section will introduce a new runtime system
called Zipper to improve the above identified performance ineffi-
ciencies.

4.1 System Overview
In our system design, both simulation and analysis applications
are executed in parallel using different compute nodes of an HPC
system. For instance, we allocatem compute nodes to execute the

196



Buffers

Simulation Process Analysis Process

Zipper library

Producer runtime module Consumer runtime module

Zipper library

Buffers

low-latency network

Parallel file system servers

Zipper Scientific Workflow

high-performance file I/O

Figure 7: Architecture of the Zipper workflow framework to inte-
grate a parallel simulation application with a parallel analysis ap-
plication.

simulation application, and allocate n compute nodes to execute the
data analysis application simultaneously. The analysis application
is driven by data-availability. At the same time, the simulation
application pushes data to the analysis application continuously
(i.e., using two-sided data transfers). Whenever a new data block
arrives, the analysis application will immediately read and process
it.

The architecture of the Zipper system is shown in Figure 7.
Both simulation process and analysis process use the Zipper li-
brary to output or input data, respectively. The interface provided
by the Zipper library is simple: Zipper.write(block_id, void* data,
block_size) and Zipper.read(block_id, void* data, block_size). The
Zipper.write() method passes data to the Producer Runtime Module.
The producer runtime module is multi-threaded and provides the
essential functionalities of buffer management, asynchronous I/O,
data prefetching, communication with consumers, and the concur-
rent data transport optimization. On the other side, the analysis
application works as a consumer. Each analysis process uses Zip-
per.read() to interact with its Consumer Runtime Module to get data
constantly. Both producer and consumer runtime modules can uti-
lize low-latency HPC network and high-performance parallel file
system to transport and store computed results.

The Zipper system offers two modes to users: Preservemode and
No Preservemode. A user may choose the Preservemode to keep the
computed results for future analysis, validation, and verification.
On the other hand, one may choose the No Preserve mode to save
storage space and perform faster experiments.

4.2 Implementation
Figure 8 shows the producer runtime module. It consists of a pro-
ducer buffer, a sender thread, and a writer thread. The sender thread
is responsible for sending data to the consumer processes via the
HPC network. The writer thread is responsible for storing com-
puted results to a parallel file system. More specifically, the sender
thread checks whether there are blocks stored on disks, and then
appends the on-disk block IDs to form amixed message. Notice that

Producer
Bu�er

data messages

se
nder t

hrd

writer thrd

mixed messaeges
blkid, data blkids on disk

Paralle �le system
{ block IDs on disk }

HPC
Network

Zipper.write()

Figure 8: The producer runtime module.

even when the analysis application is slower than the simulation,
the simulation application will not be blocked or stalled since the
writer thread is also moving data to the parallel file system. In
Subsection 4.3, we will describe how the writer thread can help the
sender thread to increase data transfer rate by using a concurrent
dual data-path method.

Figure 9 shows the consumer runtime module, which consists of
a consumer buffer, a receiver thread, a reader thread, and an output
thread. The receiver thread gets a mixed message from the HPC
network, and divides it into a data block and a list of block IDs. The
data block will be moved to the consumer buffer and the block IDs
will be copied to an array of “block IDs on disk”. The reader thread
will read the block from the parallel file system and put it to the
consumer buffer. The data block itself contains all the necessary
information that the analysis application will need, which includes
the time step index, the process ID that sends the block, and the
position of the data block in the global input domain. This way the
consumer process knows which specific block it receives and can
apply appropriate data analysis to it.

The output thread in Figure 9 is dedicated to supporting the
Preserve mode. It constantly fetches data blocks from the consumer
buffer. If the fetched data block has a flag of on_disk = false, the
output thread will store the data block to the file system. A data
block in the consumer buffer can be freed from the system only
if the block has been both analyzed by the analysis process and
stored to the file system by the output thread. Note that the output
thread will not be created by the runtime system in the No Preserve
mode.

Consumcer
Bu�er

re
ad

er t
hrd

receiver thrd mixed messaeges
blkid,data blkids on disk

Paralle �le system

{ block IDs on disk }

HPC
Network

Zipper.read()

output th
rd

(1)

(2)

(3)

Figure 9: The consumer runtime module.

197



4.3 Optimization of Concurrent Message and
File Data Transfers

The Zipper runtime system relies on two data paths to transport
data: 1) message passing via a low-latency HPC network, and 2)
parallel I/O via a parallel file system. We use the parallel file system
because we need it to alleviate the simulation stall time when the
analysis application is relatively slow such that the simulation
application is blocked.

On the other hand, using two data paths has the potential to
increase the data transfer rate if a portion of the data movement
work is offloaded to parallel file I/O. Figure 10 explains how a con-
current transfer optimization may work. The top part shows that all
data blocks are sent by network. The bottom part shows that most
blocks are transferred by network while a few blocks are trans-
ferred by parallel file I/O. Considering that emerging HPC systems
will deploy much faster non-volatile memory (NVM) technologies,
future HPC systems will benefit more from this optimization.

Our concurrent data transfer optimization method is implemented
as a work-stealing algorithm, which allows data blocks to be sent
through the parallel file system path only when it is necessary. The
writer thread in the producer runtime module works like a helper.
When detecting the producer buffer is almost full (defined by a
“high water mark” threshold), the writer thread will fetch a data
block from the buffer and send it to the file system. Algorithm 1
shows the pseudocode of the adaptive writer thread. This strategy
can automatically adapt to either the message-passing-only method
or the mixed network&file-IO method depending on how full or
empty the producer buffer is. For instance, if the buffer is constantly
near-empty, Zipper will always use the fastest HPC network to send
data to the analysis application (Section 6 shows the experiments
and effect of using the concurrent data transfer optimization).

We use hardware performance counters to monitor network
traffic and verify the cause of the speedup by using the concurrent
data transfer optimization method. If an HPC system has two sepa-
rate networks (i.e., one for message passing and the other for I/O
traffic), we expect the proposed concurrent data transfer optimiza-
tion will increase the data transfer rate. If an HPC system does not
have a segregation of communication traffic and I/O traffic (such
as the Bridges system and the Stampede2 system used in Section
6), the concurrent data transfer optimization may not be able to
reach its highest potential. Nevertheless, we still observe a signifi-
cant speedup on Bridges and Stampede2 (detailed experiments are
shown in Section 6). Here, we briefly introduce the reason. Since
both InfiniBand and Omni Path Architecture (OPA) networks have

…

…

w r w r w r w r

Simulation

Simulation

Analysis

Analysis

1. Data blocks sent via network

2. Data blocks sent via network and file I/O

Figure 10: The concurrent data transfer method can reduce the
data transfer time by converting a portion of message passing time
to certain overlapped parallel file I/O time.

Algorithm 1Writer Thread Work-stealing Algorithm
1: while true do
2: block ← StealBlock(ProducerBuffer)
3: store the block to the parallel file system
4: place the block’s ID into the in-memory data structure of

block IDs on disk

5: end

6: function StealBlock(ProducerBuffer)
7: while true do
8: acquire the lock of ProducerBuffer
9: if #Blocks in ProducerBuffer > Threshold then
10: fetch the address of the first block in ProducerBuffer
11: release the lock of ProducerBuffer
12: return the address of the block
13: else
14: wait on a condition variable and release the lock
15: /* Note: the computation thread will produce data and signal the

condition variable when #Blocks in ProducerBuffer > Threshold. */

network congestion control mechanisms, when many simulation
processes try to send data to many analysis processes simultane-
ously, network congestion control in network switches will play a
key role in performance. Our concurrent data transfer optimization
method is more efficient in working with the congestion control
mechanism because our dual paths allow messages (i.e., the data
blocks) to arrive out of order and take different network paths, to
ease network congestion and take advantage of multiple network
links/switches for improved bandwidth. In-depth performance anal-
ysis will be presented in Subsection 6.2.

Brief summary of Zipper’s features: In summary, 1) Zipper
uses fine-grain data blocks and creates a higher degree of task
parallelism to accelerate the pipeline execution. The other in-situ
workflow systems often generate one big data block per time step.
2) Zipper does not impose strict barriers between time steps, and
deploys a dataflow-driven approach tominimizing application stalls.
The other workflow systems often force using strict writer-reader
interlocks and collective global operations (e.g., wait_wall, global
locks). 3) There is no server overhead involved, which is different
form DataSpaces and DIMES. 4) Zipper supports multiple failure
domains (similar to DataSpaces, DIMES, and Flexpath). And 5)
Zipper supports both Preserve mode and No-Preserve mode, and
introduces a concurrent data transfer optimization, which is based
on an adaptive work-stealing algorithm.

4.4 Performance Model
To evaluate the efficiency of Zipper, we use a simplified analytical
performance model to estimate the workflow end-to-end time. The
analytical model uses the following notation. A number of P pro-
cessor cores are used to compute simulation, and a number of Q
processor cores are used to analyze results. The total amount of
simulation data generated is D. Given a fine-grain data block of
size B, there would be nb = D

B blocks. In the experiments, we use
block sizes that are between 1MB and 8MB.

198



To keep our analytical model simple, we assume that each simu-
lation processor core computes nb

P blocks, and each analysis pro-
cessor core analyzes nb

Q blocks. Nevertheless, the model can be
adapted to support load imbalance situations by considering the
process with the maximumworkload. The analytical model is based
upon the time spent on each data block. Since we use the pipelining
parallelism to couple applications, a data block will go through
different stages: Simulation → Transfer result→ Analyze result.

Let tc , tm , and ta denote the time to compute a data block, trans-
fer a block, and analyze a block, respectively. We model the parallel
computation timeTcomp as tc × nb

P , and model the parallel analysis
time Tanalysis as ta × nb

Q . Because each pipeline stage works inde-
pendently from any other stage, the end-to-end time-to-solution
can be expressed as follows: Tt2s = max(Tcomp,Ttransfer,Tanalysis).
We assume that the number of data blocks is much greater than
the number of pipeline stages for which we can ignore the pipeline
startup time and drainage time. In the paper, we use the analytical
model to show the end-to-end time is almost equal to the time
of one stage. A more detailed model that can accurately predict
performance would require modeling the time to compute a block,
transfer a block, and analyze a block (for any data block size from
small to large), as well as network contention/congestion given a
block size and different numbers of P and Q . Our future work will
study how to build a more detailed performance model.

The simplifiedTt2s formula can be easily derived from a pipeline
diagram. For instance, as shown in Figure 11, different stages are
overlapped such that the end-to-end time is almost equal to the time
of the slowest stage. Based upon the model, if the simulation appli-
cation and analysis application are scalable, the Zipper workflow
can scale well accordingly.

Note that the data transfer time of Ttransfer can be controlled by
the frequency to output the simulation data (e.g., one data output
perk time steps) to reduce the I/O time. In Section 6, wewill perform
a variety of experiments to verify the model.

Compute (C) Output (O) Input (I) Analysis (A)

C I AO

C

C

C

C

C

O

O

O

O

O

I

I

I

I

I

C O I

A

A

A

A

A

A

n ops

n ops

Time

Data
blocks

1
2
3
4
5
6
7

Figure 11: Non-integrated design (upper) vs. integrated de-
sign (lower). In the (lower) integrated design, at any time, four stages (C,
O, I, and A) are working on four distinct data blocks. The four data blocks
could be sequentially dependent, but can still be processed in parallel due to
the data pipelining parallelism.

5 RELATEDWORK
In the conventional post data processing methods [21, 32, 42], a
simulation application computes and stores computed results to
files. Next, an analysis application is launched to perform various
data analyses. Due to the post-processing methods’ expensive I/O
cost, in-situ approaches are introduced to analyze data when the
data are still in memory [4, 5]. For instance, Paraview/Catalyst
[15] and VisIt/Libsim [47] can be used to perform in-situ analysis
and visualization on large datasets in memory. Paraview/Catalyst
defines an interface between simulation and visualization appli-
cations, which requires developers implement three subroutines:
initialize, coprocess, and finalize. Similar functions are also provided
by VisIt/LibSim to support in-situ visualization.

As an alternative to in-situ approaches, data staging approaches
can enable co-analysis pipelines by using a loosely coupled integra-
tion model. ADIOS [1], PreDatA [51], GLEAN [46], DataStager [2],
DataSpaces [11], DIMES [50], and Flexpath [9] leverage advanced
I/O infrastructure to reduce the I/O cost. In particular, PreDatA [51]
realizes in-transit data processing along a data flow. It moves data
from compute nodes to staging nodes through two passes: the first
pass of sending data-fetch requests to the staging nodes, followed
by the second pass of pulling packed data chunks from the compute
nodes. We use a single pass to move data to the analysis processes
rapidly. DataSpaces [11] and DIMES [50] allow different applica-
tions to store data to and extract data from dedicated servers (or
metadata servers) simultaneously. Our Zipper system does not use
dedicated servers and has no accompanying server access overhead.
Sun et al. [43] use DataSpaces and asynchronous coupling of work-
flows as a user case to develop scheduling polices for placing data
to different staging cores. GLEAN [46] and DataStager [2] deploy
a data staging service on analysis nodes of a cluster to support
in-situ processing. FlexIO [52] uses local memory and RDMA to
support co-analysis either on the same compute nodes or on differ-
ent staging nodes. Our research shares the data-staging philosophy
of theses libraries (e.g., data coupling at runtime and multiple fail-
ure domains), but uses fine-grain data blocks, asynchronous task
parallelism, and holistic end-to-end level pipelining to minimize
application idle time, reduce network contention, and overlap all
workflow stages (i.e., simulation, data write, data read, and data
analysis).

Our concurrent data transfer optimization method improves the
communication throughput by taking advantage of the network
congestion control and multiple switches and links. Our deployed
network congestion measurement is inspired by the work of Alali
et al. [3], which conducts a study to understand whether network
congestion occurs on production HPC systems. There are also stud-
ies that investigate how to use Quality of Service (QoS) mechanisms
to enhance communication. Reinemo et al. compare a list of QoS
capabilities on InfiniBand, Advanced Switching, and Ethernet [38].
Gonsiorowski et al. create a model to analyze the use of QoS lanes
to reduce the impact of the RAID rebuild traffic by assigning dif-
ferent traffic quotas to read, write, and rebuild operations. [18].
Kim et al. design an OpenSM (Open SubnetManager) based scheme
to adjust the QoS level dynamically by considering the estimated
bandwidth and requirement to increase the overall bandwidth of
multiple concurrent traffics [25].

199



Workflow systems such as Pegasus [10], Kepler [28], Taverna
[48], and Condor/DAGMan [24] use files to communicate data and
target coarse job-level meta-scheduling. Decaf [13] is a workflow
middleware that uses multiple overlapping MPI communicators
and a special staging area called “link” to transfer data between
a producer and a consumer. The communication among Decaf
producer, link, and consumer are inter-locked, and all data must
arrive in link before they can be forwarded to the next application.
Also, slower consumers will block the producers from running.
Swift/T [49] uses a Swift-Turbine compiler to translate a Swift
program to an ADLB [30] MPI program, and executes it with a
master-worker model. Differently, we target fine-grain tasks and
asynchronous computing, and use data-staging to minimize the
workflow latency.

6 PERFORMANCE EVALUATION
This section evaluates the performance model, concurrent message
and file transfer optimization, and scalability of the Zipper system
on two different supercomputers: Bridges and Stampede2.

The Bridges system from the Pittsburgh Supercomputer Cen-
ter (briefly mentioned in Section 3) has 752 regular nodes (128GB
memory each), 42 large shared-memory nodes (3TB memory each),
and 4 extreme shared-memory nodes (12TB memory each). Each
node has 28 Intel Haswell cores. Bridges deploys a 100 Gbps Intel
Omni-Path Architecture, which connects all compute nodes with a
10PB high performance Lustre parallel file system.

The Stampede2 system in the Texas Advanced Computing Center
entered full production in August 2017. It has 4,200 Knights Land-
ing nodes. Each node has a self-booting Knights Landing (KNL)
processor (68 cores), 96GB of DDR memory, and 16GB of MCDRAM
(Multichannel DRAM), and peak performance of 3 Teraflops per
node. Stampede2 uses an Intel Omni-Path Architecture and has a
30PB Lustre parallel file system.

We perform experiments with three synthetic applications and
two real-world scientific computing applications. Information of
the applications is presented in Table 3.

6.1 Evaluation of the Performance Model
Wedescribe an analytical performancemodel in Section 4.4 showing
that the Zipper system ideally should obtain end-to-end time of
T = max(Tcomp,Ttransfer,Tanalysis). Our first experiment is intended
to verify whether the performance model conforms to the actual
Zipper workflow’s performance. The experiments were performed
on Bridges using 1,568 CPU cores for simulation and 784 CPU cores
for data analysis in both No Preserve and Preserve modes. In the
experiments, a total amount of 3,136GB of data are transferred from
simulation to analysis.

Figure 12 shows the No Preserve mode’s time breakdown for
three synthetic applications (i.e., the O(n), O(n logn), and O(n3/2)
applications listed in Table 3) using two block sizes of 1MB and
8MB. In the synthetic workflow, each data block is analyzed and
its standard variance is reduced to one double-precision floating
point value. For each block size (i.e., 1MB and 8MB), we show the
measured simulation time, data transfer time, and analysis time, as
well as the workflow’s end-to-end time.

2.1

22.2

64.0

1.8

34.6

99.1

38.2 38.2

14.9

37.9 37.9

3.1

23.6 23.2
28.9

22.2
30.5

20.5

40.7 41.6

69.8

38.8 38.7

99.1

0

20

40

60

80

100

120

1MB (O(n)) 1MB (O(nlgn)) 1MB (O(n3/2)) 8MB (O(n)) 8MB (O(nlgn)) 8MB (O(n3/2))

T
im

e 
(s

)

Block size (Synthetic application's time complexity)

Simulation Data Transfer Analysis End-to-end time

Figure 12: Time breakdown of the execution time for three differ-
ent synthetic applications in the No Preservemode.

As depicted in the figure, given the same block size, as the applica-
tion’s time complexity T(n) increases, the dominant stage switches
from data transfer time (in red color) to simulation time (in blue
color). However, regardless of the distinct synthetic applications,
the workflow’s end-to-end time is always close to the maximum
stage time, which empirically validates our performance model.

Next, we do the same experiments using the Preserve mode. Fig-
ure 13 shows the corresponding time breakdown and total time.
The experiments show that the end-to-end workflow time is almost
equal to the time spent on storing computed results to the file sys-
tem. Since all processes have generated a total amount of 3,136 GB
of data, storing data to disks takes the longest time.

2.2

22.5

58.7

1.8

31.7

108.5

46.9 48.7
58.1

68.8

35.7

5.1

131.3 135.7 133.8 139.9 139.0 134.6

23.7 27.7 22.9
37.5

21.9 23.9

139.0 140.4 141.8 144.8 144.1 139.6

0

50

100

150

200

1MB (O(n)) 1MB (O(nlgn)) 1MB (O(n3/2)) 8MB (O(n)) 8MB (O(nlgn)) 8MB (O(n3/2))

T
im

e 
(s

)

Block size (Synthetic application's time complexity)

Simulation Data Transfer Store data Analysis End-to-end time

Figure 13: Time breakdown of the execution time for three differ-
ent synthetic applications in the Preservemode.

Moreover, we evaluate the performance model with two real-
world applications of CFD and LAMMPS. Their results are shown
together with the weak-scalability experiment (in Subsection 6.3).
For the CFD and LAMMPS applications, their workflow end-to-end
time is nearly the same as the dominant simulation time.

6.2 Effect of the Concurrent Message and File
Transfer Optimization

Our second experiment will evaluate the effect of using the concur-
rent message and file data transfer optimization.

The three synthetic applications in Table 3 are used to do exper-
iments on Bridges. We instrument the applications’ source code,
and measure the time spent on two parallel threads of each simula-
tion process: the computation thread, and the sender thread. The
computation thread will be either computing simulations or stalled
due to a full producer buffer (represented as stacked simulation
and stall in Figure 14). Similarly, the sender thread will be either

200



Table 3: Description of the applications used in our experiments.

Workflow applications Simulation Data analysis
Synthetic O (n) To emulate T(n)=O (n) linear algorithms Standard variance computation
Synthetic O (n logn) To emulate T(n)=O (n logn) such as divide&conquer algorithms Standard variance computation
Synthetic O (n3/2) To emulate T(n)=O (n3/2) algorithms such as matrix computations Standard variance computation
CFD application Use the Lattice Boltzmann method to compute 3D channel flows Turbulence analysis
LAMMPS application Use LAMMPS to compute 3D Lennard-Jones atoms melt dynamics Atoms movement statistics

sending messages or waiting for new data (represented as stacked
data transfer and stall).

As seen in Figure 14, we increase the number of CPU cores from
84 to 2,352 to perform weak scaling experiments. For each specific
number of cores, we compare the implementation that uses the
message-passing-only method to the implementation that uses the
concurrent message&file transfer optimization. Given n cores, there
is a group of four columns in the figure. The left two columns show
the performance of the message-passing-only implementation, and
the right two columns show the performance of the concurrent
transfer optimization.

In Figure 14.a for the O(n) application, from 84 to 2352 cores,
the simulation application’s wallclock time has been reduced by
32.4%, 26.3%, 29.2%, 16.1%, 29.4% and 20.2%, respectively. This im-
provement is mainly due to the reduced stall time. For this O(n)
application, the data generation rate from each compute node is
56GB/s, while the point-to-point network bandwidth for each port
is 10.2GB/s. As a result, the sender thread cannot move data out
in time, and the producer buffer becomes full and the simulation
thread is blocked. In this case, our work-stealing writer detects that
the threshold is reached and starts to steal blocks (stolen 47%∼62.4%
of total blocks) in the above cases.

In Figure 14.b for theO(n logn) application, the concurrent trans-
fer optimization has reduced the simulation stall time and data
transfer time by 8.1%, 14.2%, 21.7%, and 22.5%, from 336 to 2352
cores, respectively. Our work stealing doesn’t improve the two
smaller cases of 84 and 168 cores because the producer buffer is
mostly empty and there is nothing to steal during the execution.

Figure 14.c shows the time for the computation-intensiveO(n3/2)
application. Since this application has the slowest data generation
rate, the producer buffer is almost always empty such that the work-
stealing in the writer thread is never activated. In this case, the
concurrent transfer optimization falls back to the message-passing
method.

Based on the performance results in Figure 14, we can find that
the concurrent optimizationmethod is always as good or better than
themessage-passing-onlymethod. The reason is that the concurrent
optimization deploys an adaptive stealing-based approach such that
it lends a hand only if there exist appropriate opportunities to steal.
If there is no stealing opportunity, its performance will be the same
as the original performance.

6.2.1 Why the concurrent optimization can improve performance.
The HPC system of Bridges uses the Intel Omni Path Architecture
(OPA) network, where each compute node is connected to a leaf
edge switch (42 ports, 12.5 GB/s each) and then all leaf switches are
connected through a set of core edge switches [6]. At first glance, it

seems to be impossible to gain any benefits by using the concurrent
transfer optimization because there is only one link from a compute
node to one port of a leaf switch.

To dig into the reason, we use the PAPI network component [36]
and OPA network analysis tools to measure network related perfor-
mance events. We measure the performance counters of XmitData,
XmitPkts, RcvData, RcvPkts, and XmitWaitwhen we compare the
message-passing only method and the concurrent method. Since
users do not have privileges to access the counters on switches, we
can only collect the performance counters on the network adapter
on each compute node.

Among all the network events, we find that the XmitWait counter
shows the biggest difference between using the message-passing
onlymethod and using the concurrentmethod. The specific XmitWait
counter is used to count the number of events (in FLIT2) when any
virtual lane had data but was unable to transmit [22], for reasons
such as no transmission credits available, or the link was busy send-
ing non-data packets. Hence, this counter is often used to measure
the extent of network congestion [3].

We use the Linux command “opapmaquery -o getportstatus”
to collect the values of the counters on each compute node periodi-
cally. Whenever 10% of the total number of blocks are generated,
our sender thread will query the counters and calculate the dif-
ference between the current query and the previous query. This
measured difference indicates how many messages are attempted
to send out but rejected due to the network congestion control
mechanism. The larger the XmitWait value is, the more times the
network adapter is unable to transmit, and the more congested the
network is.

We use the measured XmitWait counter to show the relationship
between the degree of the network congestion and the data transfer
time. As shown in Figure 15.a dedicated for the O(n) application,
we observe that the counter of XmitWait using message-passing-
only is larger than that using the concurrent method by 80%, 21%,
13%, 13%, 13%, and 24% from 84 to 2,352 cores, respectively. This
suggests that when we use the message-passing-only method, more
messages are not able to transmit than when we use the concurrent
method. Since XmitWait is an indication of the degree of network
congestion, we can say that the concurrent method has less serious
congestion than the message-passing-only method. Also due to the
reduced network congestion, the concurrent method can send data
more quickly and has shorter transfer time, which is confirmed by
Figure 14.a correspondingly.

2In Omni Path, the Link Transfer (LT) layer segments the end-to-end Fabric Packets
(FPs) into 64 bit Flow Control Digits (FLITs), and groups 16 FLITs into a Link Transfer
Packet (LTP) to reliably transport FP FLITs and control information on the link[6].

201



84 168 336 588 1176 2352
0

10

20

30

40

50

60

70

Number of cores

Si
m

ul
at

io
n 

w
al

l c
lo

ck
 ti

m
e 

(s
) Simulation

Stall
Data Transfer

Sim using MPI

Sim using Concr. Opt.

Sender thread

Comp. thread

(a) O (n) application.

84 168 336 588 1176 2352
0

10

20

30

40

50

60

70

Number of cores

Si
m

ul
at

io
n 

w
al

l c
lo

ck
 ti

m
e 

(s
) Simulation

Stall
Data Transfer

Sim using MPI
Sim using Concr. Opt.

(b) O (n logn) application.

84 168 336 588 1176 2352
0

10

20

30

40

50

60

Number of cores

Si
m

ul
at

io
n 

w
al

l c
lo

ck
 ti

m
e 

(s
) Simulation

Stall
Data Transfer Sim using MPI

Sim using Concr. Opt.

(c) O (n3/2) application.

Figure 14: Effect of the concurrent data transfer optimization using different number of cores on three synthetic applications.

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

84 168 336 588 1176 2352

X
m

itW
ai

t 

Number of cores

Message Passing
Concr. Opt.

(a) O (n) application.

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

84 168 336 588 1176 2352

X
m

itW
ai

t 

Number of cores

Message Passing
Concr. Opt.

(b) O (n logn) application.

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

84 168 336 588 1176 2352

X
m

itW
ai

t 

Number of core

Message Passing
Concr. Opt.

(c) O (n3/2) application.

Figure 15: Network Congestion of the concurrent data transfer optimization using different number of cores on three synthetic applications.
XmitWait counts the number of occurrences when any virtual lane had data but was unable to transmit.

Measurement of the XmitWait counter for the O(n logn) appli-
cation is shown in Figure 15.b. On 84 and 168 cores, the XmitWait
counter is less than 0.5× 109, which implies a light network conges-
tion and all data can be sent out rapidly without waiting. The other
sign of a light network congestion is that the producer’s message
buffer is almost empty all the time. Therefore, our writer thread
does not steal any data blocks such that the concurrent method be-
comes the message-passing-only method. Hence, Figure 14.b shows
equal data transfer time on 84 and 168 cores. However, for larger
scales starting from 336 cores, the XmitWait counter rises up signif-
icantly (i.e., 3 times to 12 times bigger than that on 168 cores). This
suggests a higher degree of congestion, and the producer’s buffer
becomes full and the writer thread starts stealing and eases the
congestion again. The reduced congestion also justifies the shorter
data transfer time by using the concurrent method from 588 to 2352
cores (see Figure 14.b).

In Figure 15.c, for the slowest O(n3/2) producer application, the
value of the XmitWait counter is around 106 (i.e., three orders of
magnitude less than the previous two applications). The congestion
degree is constantly low for all different numbers of cores, and
the producer’s buffer is almost empty such that the concurrent
method falls back to the message-passing-only method. Therefore,
the corresponding Figure 14.c shows that the message-passing-only
and concurrent methods have equal data transfer time.

6.3 Scalability Performance
The last experiment is to evaluate the scalability performance of
the Zipper system. We perform experiment with two real-world

applications of CFD and LAMMPS on the larger Stampede2 system.
Bridges only allows 4,704 cores per job.

The CFD application uses the Lattice Boltzmann method to com-
pute 3-D simulations of viscous incompressible fluid sliding down
3D hydrophobic microchannel walls [20, 53]. Its corresponding
analysis component computes the n-th moment of the velocity
distribution: E(u(x , t)n ), where u(x , t) is the velocity at a spatial
point x at time t . The statistics can help scientists understand the
properties of the turbulent flow with high Reynolds numbers. When
all n-th moments are available, the probability density function of
u(x , t) can be evaluated to give the complete information of the
velocity fluctuation of a turbulent flow [29, 40].

The LAMMPS application simulates clusters of Lennard-Jones
atoms. We use the application to study the melting process of ma-
terials from a low-energy solid structure at low temperatures to
a set of higher energy liquid structures at high temperatures. The
Lennard-Jones model is a mathematical model for approximating
interactions between neutral atoms or molecules. The counterpart
data analysis application will computeMSD (mean squared displace-
ment). MSD calculates the deviation time between the position of
a particle and a reference position, in order to analyze the spatial
extent of random motions.

Remark: The reason we select the CFD and LAMMPS workflows
to do experiments is that simulation-time data analyses are com-
mon in scientific and engineering domains, and achieving high
performance is crucial to most domain scientists [12, 26, 33]. The
data analysis application in our workflows receives data blocks and
analyzes them accordingly, followed by asynchronous reduction

202



operations. Our future work will add a simplified programming
interface (e.g., an application interface similar to MapReduce) to
Zipper to simplify parallel programing of big data analysis.

6.3.1 The CFD application. In the CFD workflow experiments,
each simulation process is allocated with a fluid subgrid of dimen-
sion 64×64×256.When doubling the number of CPU cores, the total
input size also doubles (i.e., weak scaling). Among the total number
of cores, two thirds of the cores are used for CFD simulations and
one third are used for the n-th moment analysis.

Figure 16 shows the end-to-end time using MPI-IO, Flexpath,
Decaf, and Zipper, as well as the simulation-only time in the No Pre-
serve mode. On Stampede2, when the number of compute nodes is
larger than 8, DataSpaces and DIMES aborted with “rpc_bind_addr”
error in the DataSpaces/DIMES initialization function. The error is
related to “an issue related to OPA and KNL processors”, and has
been confirmed by the DataSpaces team. Hence, we could not test
DataSpaces/DIMES on Stampede2. Nevertheless, the fastest library
is Decaf, which we choose to compare with Zipper.

Simulation-only time is the time spent only by the simulation
program’s computational kernels (excluding any I/O, idle time, and
data staging related cost). It works as a lower bound of the workflow
end-to-end time. As depicted in Figure 16, we can see that using
MPI-IO is not scalable: as the number of cores increases from 3264
to 13,056, larger MPI-IO experiments take too long to finish. On the
other hand, Flexpath and Decaf scale well from 204 cores to 3,264
cores. However, Flexpath and Decaf crashed with software faults
on 6,528 and 13,056 cores. In particular, Decaf has segmentation
faults due to integer overflows. We have reported the issue to Decaf
developers and they have confirmed the error. Flexpath terminated
with segmentation fault when the number of cores reaches 6,528.
We have also reported the problem to Flexpath developers.

In order to show complete experimental results for Flexpath
and Decaf, we assume that both methods have perfect scalability
on 6,528 and 13,056 cores, and show their ideal end-to-end time
(denoted by dotted lines). As shown in Figure 16, Zipper’s end-to-
end time is almost equal to the simulation-only time, and is 11.5
times faster than Flexpath, and 1.7 times faster than Decaf.

One might wonder why Flexpath is slow. We conducted a set
of investigations to find out the reason. Based on our experiments,
Flexpath’s data transfer time becomes significantly slower as we
increase the number of processes per node (each process uses Flex-
path to transport data). Our finding is that Flexpath does not have
optimized support for multiple processes per node. Flexpath utilizes
a socket interface and all communications (even within the same
node) have to go through the socket interface. However, the com-
munication between processes on one node can use shared memory
to achieve higher performance (e.g., MPI uses this optimization).
In order to show the ideal performance of Flexpath, we attempt
one-process-per-node to rerun the 204-core experiment (although
wasting many cores on each node). In the new experiment, Flexpath
using 102 processes on 102 nodes (i.e., 6,936 cores) only takes 46
seconds, but is still slower than Zipper using 102 processes on 3
nodes (i.e., 204 cores) by 16.8%. Besides using a smaller number of
processes per node, another Flexpath optimization is to use a “Mas-
ter” process on each node to aggregate data from all processes of

0

100

200

300

400

500

600

204 408 816 1632 3264 6528 13056

E
nd

-t
o-

en
d 

tim
e 

(s
)

Number of cores

MPI-IO
Flexpath
Decaf
Zipper
Simulation-only

1.7X1.4X

Figure 16: Scalability performance of the CFD workflows using
MPI-IO, Flexpath, Decaf and Zipper, respectively.

Zipper

Decaf

CFD 1 time step CFD 1 time step CFD 1 time step

CFD 1 time step CFD 1 time stepStalls Stalls

MPI_WaitallMPI_Sendrecv

MPI_Sendrecv

Figure 17: Trace comparison between Zipper and Decaf for the
CFD application on 204 cores. This figure shows a snapshot of 1.3
seconds when using 204 cores, which is taken from the experiment
shown in Figure 16.

the node to reduce the communication cost. However, this method
requires significant code modifications.

In order to illustrate why Zipper is faster than Decaf, Figure 17
displays Zipper and Decaf’s traces within a time interval of 1.3
seconds on 204 cores. To take the snapshot, we zoom in the entire
trace, and then cut out a trace segment of 1.3 seconds. Note that
showing the entire trace all at once will make the figure too dense
to view any details. During the same interval, Zipper is able to run
three simulation steps, while Decaf is able to run two steps with a
significant amount of stall time. This speedup of 1.4 times is almost
the same as the speedup shown in Figure 16 on 204 cores.

The reason for the performance inefficiency is as follows (also
reported in Section 3): 1) Decaf has significant simulation stall
time caused by MPI_Waitall, and 2) the simulations application’s
MPI_Sendrecv time becomes longer due to Decaf’s interference.
Since Zipper uses smaller data blocks and asynchronous pipelin-
ing data transfers, both the network traffic interference and the
collective MPI cost have been reduced.

203



2.2X

0

200

400

600

800

1000

1200

204 408 816 1632 3264 6528 13056

E
nd

-t
o-

en
d 

tim
e 

(s
)

Number of cores

MPI-IO
Flexpath
Decaf
Zipper
Simulation-only

Figure 18: Scalability performance of the LAMMPS workflows us-
ing MPI-IO, Flexpath, Decaf and Zipper, respectively.

6.3.2 The LAMMPS application. Figure 18 shows the experi-
mental results for the LAMMPS workflow application. Again, we
perform weak scaling experiments. Figure 18 shows that Flexpath
scales well from 204 to 3,264 cores but is 7.1 times slower than
Zipper. Because the data size in LAMMPS does not reach the inte-
ger limit, we are able to execute Decaf on 6,528 and 13,056 cores
successfully without integer overflows. From the figure, we can see
that Decaf scales greatly from 204 to 1,632 cores, but becomes 128%
slower from 1,632 to 6,528 cores. Eventually, its end-to-end time
increases by 177% from 6,528 to 13,056 cores.

To study why Decaf is 2.2 times slower than Zipper in the largest
experiment, we specifically collect two very large traces for Decaf
and Zipper using 13,056 cores, respectively. Visualizing the large-
scale trace itself requires us to use a dedicated compute node from
the Stampede2 HPC system for 2 hours.

Figure 19 shows a snapshot of the two traces in an interval of
9.1 seconds. During the same time interval, LAMMPS using Zipper
runs around 4.4 time steps. On the other hand, LAMMPS using
Decaf runs around 2 time steps. Notice that the Decaf trace has a
significant stall time at the end of each step. Also, the LAMMPS
simulation time using Decaf becomes much longer than that using
Zipper. In this LAMMPS workflow experiment, each LAMMPS pro-
cess generates approximately 20MB of data in each time step. While
Decaf directly sends a message of 20MB to destination processes,
Zipper divides the contiguous 20MB data into many small blocks
of size 1.2MB. Such an asynchronous fine-grain-block data transfer
method has managed to keep network traffic more balanced with
lesser interference to the LAMMPS simulation processes.

7 CONCLUSION
This work studies the important class of scientific workflows that
combine large-scale simulations with big data analysis by carrying
out performance analysis and optimization on the present I/O and
data transfer libraries. Our trace analyses reveal that there are sig-
nificant performance inefficiencies in the current practice (such as
remote server and metaserver read/write time, coarse-grain critical
sections, interlock between applications, barriers, and application
stalls). With the aim of minimizing the end-to-end time of scientific

Zipper

Decaf

LAMMPS 1 step LAMMPS 1 step LAMMPS 1 stepLAMMPS 1 step

LAMMPS 1 step LAMMPS 1 stepStalls Stalls

Figure 19: Trace comparison between Zipper and Decaf for the
LAMMPS application on 13,056 cores. This figure shows a snapshot
of 9.1 seconds when using 13,056 cores, which is taken from the ex-
periment shown in Figure 18.

workflows, we propose to combine the abstraction of pipelining par-
allelism with the abstraction of fine-grain task parallelism to totally
intertwine the simulation and analysis applications such that the
time-to-solution is merely one stage of time. A new Zipper runtime
system has been designed and implemented. Supported by both
an analytical performance model and empirical experiments, we
show that the Zipper system can obtain the fastest end-to-end time,
which almost reaches the lower bound of the simulation-only time.
In addition, the concurrent data transfer optimization can reduce
the stall time of the simulation application when the simulation is
coupled with a relatively slow data analysis. Our experiments with
the real-world CFD and LAMMPS workflows show that the Zipper
approach is able to outperform the Decaf method — which is the
fastest one among seven modern methods — by up to 2.2 times.
A set of subsequent traces also reveal that the reduced idle/stall
time, the lesser interference with the simulation time, and the full
overlapping of all workflow stages have contributed the most to
Zipper’s enhanced end-to-end workflow time.

ACKNOWLEDGMENT
This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by the NSF Grant# ACI-
1548562. It is also supported by the NSF Grant# 1513201. We thank
Dr. Luoding Zhu for providing the parallel CFD application. We also
thank the DataSpaces team and the Flexpath team for their support
of using their software. In particular, we would like to thank our
shepherd, Dr. Gerald Lofstead, for providing many suggestions and
guiding the revision of our paper.

REFERENCES
[1] H. Abbasi, J. Lofstead, F. Zheng, K. Schwan, M. Wolf, and S. Klasky. 2009. Extend-

ing I/O through high performance data services. In IEEE International Conference
on Cluster Computing and Workshops (CLUSTER’09). IEEE, 1–10.

[2] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng. 2010.
Datastager: Scalable data staging services for petascale applications. Cluster
Computing 13, 3 (2010), 277–290.

[3] Fatma Alali, Fabrice Mizero, Malathi Veeraraghavan, and John M Dennis. 2017.
A measurement study of congestion in an InfiniBand network. In Network Traffic

204



Measurement and Analysis Conference (TMA), 2017. IEEE, 1–9.
[4] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky, K. Moreland,

P. O’Leary, V. Vishwanath, B. Whitlock, et al. 2016. In Situ Methods, Infrastruc-
tures, and Applications on High Performance Computing Platforms. In Computer
Graphics Forum, Vol. 35. Wiley Online Library, 577–597.

[5] J.C. Bennett, H. Abbasi, P.T. Bremer, R. Grout, A. Gyulassy, T. Jin, et al. 2012.
Combining in-situ and in-transit processing to enable extreme-scale scientific
analysis. In High Performance Computing, Networking, Storage and Analysis (SC),
2012 International Conference for. IEEE, 1–9.

[6] Mark S Birrittella, Mark Debbage, Ram Huggahalli, James Kunz, Tom Lovett,
Todd Rimmer, Keith D Underwood, and Robert C Zak. 2015. Intel® Omni-path
architecture: Enabling scalable, high performance fabrics. In The 23rd IEEE Annual
Symposium on High-Performance Interconnects (HOTI). IEEE, 1–9.

[7] J Chen, A Choudhary, S Feldman, B Hendrickson, CR Johnson, R Mount, V Sarkar,
V White, and D Williams. 2013. Synergistic challenges in data-intensive science
and exascale computing. DOE ASCAC Data Subcommittee Report, Department of
Energy Office of Science (2013).

[8] DataSpaces Project. 2018. http://dataspaces.org. (2018).
[9] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang, H. Abbasi, S.

Klasky, and N. Podhorszki. 2014. Flexpath: Type-based publish/subscribe system
for large-scale science analytics. In The 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 246–255.

[10] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good, et al.
2005. Pegasus: A framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming 13, 3 (2005), 219–237.

[11] Ciprian Docan, Manish Parashar, and Scott Klasky. 2012. DataSpaces: An inter-
action and coordination framework for coupled simulation workflows. Cluster
Computing 15, 2 (2012), 163–181.

[12] S Dormido-Canto, J Vega, JM Ramírez, A Murari, R Moreno, JM López, A Pereira,
and JET-EFDA Contributors. 2013. Development of an efficient real-time disrup-
tion predictor from scratch on JET and implications for ITER. Nuclear Fusion 53,
11 (2013), 113001.

[13] Matthieu Dreher and Tom Peterka. 2017. Decaf: Decoupled dataflows for in situ
high-performance workflows. Technical Report. Argonne National Lab.(ANL),
Argonne, IL (United States).

[14] Greg Eisenhauer, MatthewWolf, Hasan Abbasi, and Karsten Schwan. 2009. Event-
based systems: opportunities and challenges at exascale. In Proceedings of the
Third ACM International Conference on Distributed Event-Based Systems. ACM.

[15] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion, B. Gevecik, M.
Rasquin, and K. E. Jansen. 2011. The Paraview coprocessing library: A scal-
able, general purpose in situ visualization library. In Large Data Analysis and
Visualization (LDAV), 2011 IEEE Symposium on. IEEE, 89–96.

[16] Geoffrey Fox, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun Kamburuga-
muve. 2016. Big data, simulations and HPC convergence. In Workshop on Big
Data Benchmarks. Springer, 3–17.

[17] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble, M.
Livny, L. Moreau, and J. Myers. 2007. Examining the Challenges of Scientific
Workflows. Computer 40, 12 (Dec 2007), 24–32.

[18] E. Gonsiorowski, C. D. Carothers, J. LaPre, P. Heidelberger, C. Minkenberg, and
G. Rodriguez. 2017. Using quality of service lanes to control the impact of RAID
traffic within a burst buffer. In 2017 Winter Simulation Conference (WSC). 932–943.
https://doi.org/10.1109/WSC.2017.8247844

[19] William Gropp, Ewing Lusk, and Rajeev Thakur. 1999. Using MPI-2: Advanced
features of the message-passing interface. MIT press.

[20] Zhaoli Guo and Chang Shu. 2013. Lattice Boltzmann method and its applications
in engineering. World Scientific.

[21] Huateng Huang and L Lacey Knowles. 2014. Unforeseen consequences of ex-
cluding missing data from next-generation sequences: Simulation study of RAD
sequences. Systematic biology (2014), 1–9.

[22] Intel. 2015. Intel Omni-Path Fabric Suite Fabric Manager GUI User Guide.
[23] Intel. 2018. Intel Trace Analyzer and Collector. (2018). https://software.intel.

com/en-us/intel-trace-analyzer
[24] Selim Kalayci, Gargi Dasgupta, Liana Fong, Onyeka Ezenwoye, and Seyed Ma-

soud Sadjadi. 2010. Distributed and Adaptive Execution of Condor DAGMan
Workflows.. In SEKE. 587–590.

[25] Bongjae Kim and Jeong-Dong Kim. 2017. Dynamic QoS Scheme for InfiniBand-
Based Clusters. InAdvances in Computer Science and Ubiquitous Computing, James
J. (Jong Hyuk) Park, Yi Pan, Gangman Yi, and Vincenzo Loia (Eds.). Springer
Singapore, Singapore, 573–578.

[26] Feng Li and Fengguang Song. 2017. A Real-Time Machine Learning and Visual-
ization Framework for Scientific Workflows. In Practice & Experience in Advanced
Research Computing (PEARC-2017). ACM, New Orleans, LA.

[27] Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl
Choi, Scott Klasky, Roselyne Tchoua, Jay Lofstead, and Ron Oldfield. 2014. Hello
ADIOS: The challenges and lessons of developing leadership class I/O frameworks.
Concurrency and Computation: Practice and Experience 26, 7 (2014), 1453–1473.

[28] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao. 2006. Scientific workflow
management and the Kepler system. Concurrency and Computation: Practice and
Experience 18, 10 (2006), 1039–1065.

[29] John L Lumley. 2007. Stochastic tools in turbulence. Courier Corporation.
[30] Ewing L Lusk, Steve C Pieper, Ralph M Butler, et al. 2010. More scalability,

less pain: A simple programming model and its implementation for extreme
computing. SciDAC Review 17, 1 (2010), 30–37.

[31] Kwan-Liu Ma. 2009. In situ visualization at extreme scale: Challenges and oppor-
tunities. Computer Graphics and Applications, IEEE 29, 6 (2009), 14–19.

[32] Shahrbanou Madadgar, Hamid Moradkhani, and David Garen. 2014. Towards im-
proved post-processing of hydrologic forecast ensembles. Hydrological Processes
28, 1 (2014), 104–122.

[33] Takemasa Miyoshi, Masaru Kunii, Juan Ruiz, Guo-Yuan Lien, Shinsuke Satoh, To-
moo Ushio, Kotaro Bessho, Hiromu Seko, Hirofumi Tomita, and Yutaka Ishikawa.
2016. “Big Data Assimilation” revolutionizing severe weather prediction. Bulletin
of the American Meteorological Society 97, 8 (2016), 1347–1354.

[34] P. Nagar, F. Song, L. Zhu, and L. Lin. 2015. LBM-IB: A Parallel Library to Solve
3D Fluid-Structure Interaction Problems on Manycore Systems. In Proceedings of
the 2015 International Conference on Parallel Processing (ICPP’15). IEEE.

[35] National Academies of Sciences, Engineering, and Medicine. 2016. Future Direc-
tions for NSF Advanced Computing Infrastructure to Support U.S. Science and
Engineering in 2017-2020. Washington, DC: The National Academies Press.
https://doi.org/10.17226/21886

[36] PAPI project. 2018. http://icl.utk.edu/papi/. (2018).
[37] Daniel A Reed and Jack Dongarra. 2015. Exascale computing and big data.

Commun. ACM 58, 7 (2015), 56–68.
[38] S-A Reinemo, Tor Skeie, Thomas Sodring, Olav Lysne, and O Trudbakken. 2006.

An overview of QoS capabilities in InfiniBand, advanced switching interconnect,
and Ethernet. IEEE Communications Magazine 44, 7 (2006), 32–38.

[39] Denis Ricot, Virginie Maillard, and Christophe Bailly. 2002. Numerical simulation
of unsteady cavity flow using Lattice Boltzmann Method. In 8th AIAA/CEAS
Aeroacoustics Conference & Exhibit. 2532.

[40] Joerg Schumacher. 2001. Derivative moments in stationary homogeneous shear
turbulence. Journal of Fluid Mechanics 441 (2001), 109–118.

[41] Sameer S Shende and Allen D Malony. 2006. The TAU parallel performance
system. The International Journal of High Performance Computing Applications
20, 2 (2006), 287–311.

[42] Angela B Shiflet and GeorgeW Shiflet. 2014. Introduction to computational science:
Modeling and simulation for the sciences. Princeton University Press.

[43] Q. Sun, M. Romanus, T. Jin, H. Yu, P. Bremer, S. Petruzza, S. Klasky, and M.
Parashar. 2016. In-staging data placement for asynchronous coupling of task-
based scientific workflows. In International Workshop on Extreme Scale Program-
ming Models and Middleware (ESPM2). IEEE, 2–9.

[44] Alexander S Szalay. 2013. From Large Simulations to Interactive Numerical
Laboratories. IEEE Data Eng. Bull. 36, 4 (2013), 41–53.

[45] Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. On implementing MPI-IO
portably and with high performance. In Proceedings of the sixth workshop on I/O
in parallel and distributed systems. ACM, 23–32.

[46] V. Vishwanath, M. Hereld, M.E. Papka, R. Hudson, G.C. Jordan IV, and C Daley.
2011. In Situ Data Analysis and I/O Acceleration of FLASH Astrophysics Sim-
ulation on Leadership-Class System Using GLEAN. In Proc. SciDAC, Journal of
Physics: Conference Series.

[47] VisIt. 2018. https://visit.llnl.gov. (2018).
[48] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S.

Soiland-Reyes, I. Dunlop, A. Nenadic, Paul Fisher, et al. 2013. The Taverna
workflow suite: designing and executing workflows of Web Services on the
desktop, web or in the cloud. Nucleic acids research 41, W1 (2013), W557–W561.

[49] Justin M Wozniak, Timothy G Armstrong, Michael Wilde, Daniel S Katz, Ewing
Lusk, and Ian T Foster. 2013. Swift/T: Large-scale application composition via
distributed-memory dataflow processing. In 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid). 95–102.

[50] Fan Zhang. 2015. Programming and runtime support for enabling data-intensive
coupled scientific simulation workflows (Phd dissertation). Rutgers The State
University of New Jersey-New Brunswick.

[51] Fang Zheng, Hasan Abbasi, Ciprian Docan, Jay Lofstead, Qing Liu, Scott Klasky,
Manish Parashar, Norbert Podhorszki, Karsten Schwan, and Matthew Wolf. 2010.
PreDatA-preparatory data analytics on peta-scale machines. In 2010 IEEE Inter-
national Symposium on Parallel & Distributed Processing (IPDPS). IEEE, 1–12.

[52] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan, M. Wolf, J. Dayal, T.A. Nguyen, J.
Cao, H. Abbasi, and S. Klasky. 2013. FlexIO: I/O middleware for location-flexible
scientific data analytics. In IEEE 27th International Symposium on Parallel &
Distributed Processing (IPDPS). IEEE, 320–331.

[53] Luoding Zhu, Derek Tretheway, Linda Petzold, and Carl Meinhart. 2005. Simula-
tion of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann
method. J. Comput. Phys. 202, 1 (2005), 181–195.

205


