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Congenital heart disease (CHD) is one of the most common groups of birth defects1, 

contributing to a major portion of mortality in early childhood and consuming large amounts 

of healthcare and family resources. They have a birth prevalence of 6–8/1000 live births, 

excluding late recognized defects such as BAV which has a population frequency of 1–2%1.

Genetic epidemiology studies and reports of multiple recurrences of CHDs within families 

demonstrate a strong genetic component. Familial clustering of CHDs is particularly 

apparent when grouped by developmental mechanism2. A recent large study using hundreds 

of these multiplex families confirmed the concept of grouping CHD by developmental 

mechanism, and supporting animal data suggests these groupings are due to perturbations of 

genetic networks important in cardiogenesis3. Indeed, of all risk factors for CHD, a family 

history of CHD has the highest relative risk even over maternal diabetes or twinning4. More 

formal segregation analyses have confirmed the strong genetic component, also noting the 

inheritance pattern is likely complex and oligogenic2.

This evidence for the genetic basis of CHD spurred investigators to search for responsible 

loci and genes. A few early successes occurred using the traditional genetic approach of 

linkage, identifying pathogenic variants in NKX2-55, NOTCH16, and GATA47 among 

multiplex families with CHDs. Unfortunately, further successes have been scarce, with the 

exception of CHDs occurring as part of a syndrome (such as the RASopathies). Genome-

wide association studies (GWAS) for specific groups of CHD have added a few more loci, 
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but with limited replications in a second study8, 9. Copy number variant (CNV) studies have 

identified novel genomic disorders in as many as 20% of syndromic cases, a few percent of 

nonsyndromic CHDs, including identification of individuals with multiple CNVs10–12. The 

advent of next-generation sequencing technology raised hopes that this bottleneck in gene 

discovery would be resolved. Early studies appeared exciting, with the identification of 

chromatin remodeling genes in CHD cases13. Unfortunately it appears at least some 

individuals may have had unrecognized or undefined syndromes that include CHDs, rather 

than an isolated CHD. Subsequent studies have found de novo changes in only 1–2% of 

those cases14, thus the cause remains elusive for isolated CHD. These studies also highlight 

the significant difficulty in case ascertainment, the need for careful (and longitudinal) 

phenotyping, and the challenges of variant interpretation.

While the causes of syndromes that include CHD as part of the phenotype have been 

answered more successfully, an interesting question has arisen: Why does only a portion of 

individuals with the syndrome have a CHD?Conversely, individuals with specific syndromes 

offer a unique opportunity to study a population with susceptibility to CHDs. This topic was 

highlighted in our previous editorial on Modifying Mendel15 in which Li et al. used a 

trisomy 21 (Down syndrome) mouse (Ts65dn) in an attempt to answer the question of CHD 

risk using this sensitized model16. Their work implicated Creld1 and Gata4 in mouse, 

supported by data from human T21 subjects, providing one of the first studies on 

modification of a major susceptibility locus (in this case an extra chromosome 21) in the 

causation of CHD.

The article by Guo et al.17 in this issue is among the first to use an unbiased approach to 

identifying a modifier locus for CHD in humans. Using GWAS in individuals with a deletion 

of 22q11.2 (22q11DS), the authors combined bioinformatics of the human locus with 

additional studies in mice to narrow down to a potential candidate gene. 22q11DS is the 

most common genomic disorder that causes CHD. Individuals may have characteristic 

dysmorphic features, velopalatal abnormalities (cleft or insufficiency), hypocalcemia, 

immunodeficiency, and a variety of neurodevelopmental disorders. Most individuals have 

CHD related to second heart field developmental anomalies, including truncus arteriosus, 

interrupted aortic arch type B, and most commonly, tetralogy of Fallot (TOF).

Dr. Morrow’s group was able to assemble an impressive cohort of nearly 1500 carefully 

phenotyped individuals with 22q11DS. Over 1200 samples were SNP genotyped on an 

Affymetrix 6.0 platform. The analysis was careful and thorough, including proper quality 

control and accounting for possible biases from population stratification. Comparing 

22q11DS subjects with TOF (n=326) to 22q11DS subjects with normal cardiac anatomy 

(n=566) in the cohort, they identified a locus on 5q14.3 with multiple SNPs (genotyped and 

imputed) exceeding the threshold for genome-wide significance. The highest associated SNP 

was rs12519770 (p=2.98×10–8) with an odds ratio of 1.69. This locus was further narrowed 

to a ~100kb interval within an intron of GPRC78 using additional whole genome sequencing 

of just under 400 22q11DS subjects. Bioinformatic analysis of chromatin confirmation (Hi-

C) showed that this region lay in a topological associated domain of 2.3 Mb size, containing 

six genes: GPR98, MEF2C, CETN3, MBLAC2, POLR3G, and LYSMD3. Expression 

studies in mouse were performed using in-situ hybridization, and only Mef2c demonstrated 
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expression in cardiac progenitor cells. MEF2C is a very biologically plausible candidate 

gene, as it is an important transcription factor during cardiogenesis, acting in a network that 

regulates second heart field development.

Several weaknesses in this study are important to note, despite the huge effort by this group. 

Relatively speaking, this study is small by GWAS standards, thus it was powered to only be 

able to identify loci associated with large effect sizes. They did not have a second, 

replication cohort; however, assembling this size of initial cohort at all is a striking 

accomplishment. Finally, although the authors performed appropriate analyses to control for 

population stratification, inclusion of a variety of populations (European, Hispanic, African 

American, Asian) does create some concern for false positive results. Further work will also 

be required to identify whether the SNPs in the intron of GPR78 are themselves functional 

or tag an as yet unidentified variant, and to determine the mechanistic basis by which the 

functional variants modify or cause CHDs in 22q11DS. Whether this study data can be 

generalized to other second heart field malformations not associated with 22q11DS will be 

interesting to see. While further validation of these data will be important, the results 

provide initial data on a potential modifier that causes CHD in 22q11DS individuals.

The previous study using T21 as a susceptibility group and known mouse CHD genes 

provided proof of principle that variant burden threshold influences disease penetrance. This 

current study by Dr. Morrow’s group advances the field in an important way by 

demonstrating that an unbiased approach in a human susceptibility population is able to 

identify a modifier locus. Other syndromes with CHD as part of the phenotype, such as 

Noonan syndrome and other RASopathies, are additional candidates for this type of study.

Identifying major susceptibility loci, let alone modifiers, remains a challenge for isolated 

CHDs. Here, several approaches are promising. First, multiplex families are also a 

susceptibility population. Rates of identifying major susceptibility loci are much higher, 

with identification of pathogenic variants in 25–30% of families, compared to 1–2% of 

sporadic cases14, 18. Genome approaches in multiplex families also offer an unbiased screen 

for finding multiple loci. Second, brute force animal models, such as using mouse forward 

genetic screens (inducing mutation followed by high throughput phenotypic screening), can 

find not only major susceptibility loci but also digenic inheritance or modifier loci. This has 

already been successfully accomplished by Dr. Cecilia Lo’s group, who found two genes 

causing hypoplastic left heart syndrome (HLHS) in a forward mouse screen followed by 

identification of variants in these genes in human subjects with HLHS19.

Many difficulties lie ahead. Phenotyping remains a problem not only for anatomic features 

of a specific individual, but also for the correct grouping of distinct, but related, 

malformations. Statistical modeling has yet to be successful given the small numbers of 

subjects with CHDs that can be collected. Even large groups, such as the Pediatric 

Cardiovascular Genetics Consortium, would be unable to collect the thousands of samples 

necessary to identify significant results in rare variant analyses by current statistical 

methods. Methods for multiplex families for narrowing the list of potential variants in 

oligogenic inheritance models are lacking. In addition, studying multiple variants in multiple 

genes in animal models is slow, laborious and expensive. Newer techniques, such as use of 
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CRISPR/Cas9 to more quickly create animal models, and use of fruit fly to rapidly and 

cheaply study variants in multiple loci via multiple crosses, may offer some hope20.

The genetics of CHD appears to be more complex than previously thought. The field will 

need to move away from simple Mendelian genetic models to those with multiple loci, 

possibly a major locus with one or more modifiers, or multiple loci acting together. This 

concept is not unique to the CHD genetics field. Other cardiovascular genetic diseases have 

well established complex patterns of inheritance that are already altering how patients with 

these diseases are diagnosed and managed in clinical practice. Arrhythmogenic right 

ventricular cardiomyopathy, where up to 10% of individuals have two disease causing 

variants, and long QT syndrome where two pathogenic variants lead to more severe 

phenotype that includes deafness, are two examples.

Dr. Morrow’s group shows that modifiers of Mendelian CHD traits can be found. These 

methods should become part of future study designs in CHD genetics.
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