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Abstract

Purpose—Pancreatic adenocarcinomas (PAAD) often are not diagnosed until their late stages 

leaving no effective treatments. Currently immunotherapy provides a promising treatment option 

against this malignancy. However, a set of immunotherapy agents benefit patients with many types 

of cancer, but not PAAD. Sharing the origin in the same organ, diabetes and PAAD tend to occur 

concurrently. We aimed to identify the impact of diabetes on immunotherapy of PAAD by 

conducting a comparative genomics analysis.

Experimental Design—We analyzed levels 3 PAAD genomics data (RNAseq, miRNAseq, 

DNA methylation, somatic copy number and somatic mutation) from TCGA and Firehose. The 

differential molecular profiles in PAAD with/out diabetes were performed by the differential gene 

expression, pathway analysis, epigenetic regulation, somatic copy number alteration and somatic 

gene mutation.

Results—Differential gene expression analysis revealed a strong enrichment of immunogenic 

signature genes in diabetic individuals including PD-1 and CTLA4 that were currently targetable 

for immunotherapy. Pathway analysis further implied that diabetic individuals were defective in 

immune modulation genes. Somatic copy number aberration (SCNA) analysis showed a higher 

frequency of amplification and deletion occurred in the cohort without diabetes. Integrative 

analysis revealed strong association between differential gene expression and epigenetic 

regulations, however seemed not affected by SCNAs. Importantly, our somatic mutation analysis 

showed that the occurrence of diabetes in PAAD was associated with a large set of gene mutations 

encoding genes participating in immune modulation.

Conclusions—Our analysis reveals the impact of diabetes on immunodeficiency in PAAD 

patients and provides novel insights into new therapeutic opportunities.
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Introduction

Pancreatic cancer is the 4th leading cause of cancer-related death in USA. In 2017, an 

estimate of 53,670 patients will be diagnosed with pancreatic cancer in United State(1). 

Early detection of pancreatic cancer is difficult since cancer-specific symptoms occur only in 

the advanced stage resulting in a low 5-year survival rate of 8%(1). Of all types of pancreatic 

cancer, pancreatic adenocarcinoma (PAAD) is the most common. Treatment of PAAD is still 

a major challenge and surgery is the only curative therapy. However, only 15∼20% patients 

are suitable for resection and up to 80% of the individuals that undergo surgery will suffer 

relapse(2). Radiotherapy and chemotherapy have been shown to benefit individuals with 

PAAD and increase the overall survival rate; however survival is still very low(2). No 

therapeutic agent has provided long term benefit for patients who are not surgical 

candidates(2). Immunotherapy represents an exciting new anticancer therapy that recruits 

and activates the immune system to recognize tumor-specific antigens(3). Clinical trials of 

immunotherapy against PAAD have shown promising outcomes by increasing survival 

rate(4). Moreover, individuals with drug resistance were suitable for immunotherapy(5).

Diabetes is an endocrine disease ranking the 7th leading cause of death in USA. There is a 

significant association between diabetes and pancreatic cancer, although it is still under 

debate whether diabetes is a cause or a result of the malignancy(6). Current thinking regards 

diabetes as a risk factor for pancreatic cancer. Evidence to support this notion includes a 

large cohort study of 109,581 individuals hospitalized in Denmark showing that incidence 

ratio of diabetics developing pancreatic cancer is 2.1(7). The risk of developing pancreatic 

cancer is relatively higher for new onset diabetes, especially for older subjects(8). A meta-

analysis conducted in 1995 including 20 case-control and cohort studies between 1975 and 

1994 reported that the pooled relative risk of pancreatic cancer for diabetics to non-diabetics 

is 2.1(9). Another meta-analysis including 36 studies between 1996 and 2005 also 

demonstrates that diabetes is a risk factor for pancreatic cancer with the overall odds ratio of 

1.8(10).

In contrast, other studies do not show that diabetes is a risk factor, but rather is a 

consequence of pancreatic cancer. This comes from the observation that in a majority of 

subjects with pancreatic cancer (56.1%), diabetes is diagnosed concomitantly or 2 years 

before the diagnosis of cancer(11). Insulin sensitivity and diabetes metabolic control is 

improved in pancreatic cancer patients 3 months following surgery(12). The pancreatic 

cancer cell line MIA PaCa2 could induce hyperglycemia in immunodeficient mice and the 

diabetogenic agent was identified as a 14 amino acid peptides from N-terminal of 

S100A8(13, 14).

Genomics-scale technologies foster advances in the identification of a molecular profile in 

PAAD subjects. Exome sequencing and copy number analysis reveals a list of mutations 
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aggregating into multiple molecular pathways(15, 16). In the mutational landscape, KARS 

(Lysyl-tRNA synthetase), TP53 (tumor protein p53), SMAD4 (SMAD family member 4) 

and CDKN2A (cyclim-dependent kinase inhibitor 2A) are the four most common mutated 

genes, of which KARS mutation has the highest frequency and is almost ubiquitous(15, 17). 

Molecular mechanisms involved in the mutational profiles include activating mutations of 

KRAS, TGF-β signaling, WNT signaling, SWI-SNF complex, NOTCH signaling, disruption 

of G1/S transition, ROBO/SLIT signaling, histone modification, DNA damage repair and 

RNA processing(16). DNA copy number variation resulted in the genetic loss of tumor 

suppressor gene and increase copy number of oncogenes (MYC (c-Myc), KRAS and EGFR 

(epidermal growth factor receptor))(18). Explicit studies of genomics profiles have 

attempted to uncover the molecular aberrations in PAAD, however, despite the well-known 

association of diabetes in PAAD, the differential molecular profiles in PAAD with/out 

diabetes remain unknown. In this study, we examine the molecular signatures and find that 

PAAD with diabetes is accompanied by immunodeficiency indicating potential challenges 

for immunotherapy in this specific subgroup.

Materials and methods

Data resource

The Cancer Genome Atlas (TCGA) sponsored by National Cancer Institute is publicly 

available resource depositing multi-dimensional cancer genomics and clinical data set. We 

downloaded PAAD clinical information, level 3 genomics data (RNAseqV2, miRNASeq, 

DNA Methylation and somatic mutation data) from TCGA data portal (https://tcga-

data.nci.nih.gov/tcga/). SCNA data was downloaded from Firehose (http://

gdac.broadinstitute.org/). The data used in this study was the updated as of 8/15/2016. 

Clinical information and DNA methylation data were downloaded by TCGA Assembler(19). 

miRNASeq were downloaded by tcga2stat(20). Individuals with PAAD that had a history of 

diabetes were regarded as PAAD with diabetes while individuals with PAAD but without a 

history of diabetes were considered PAAD without diabetes. An independent RNAseq 

dataset with accession number of GSE79668 was downloaded from GEO database. 

GSE79668 dataset was originally used to conduct the association study between gene 

expression and long-term survival in pancreatic adenocarcinoma patients(21). We also 

download another independent microarray dataset (GSE15932) from GEO database to 

further validate our result. This microarray dataset was originally used to study the blood 

biomarkers of pancreatic cancer associated with diabetes(22).

Clinical information analysis

Clinical information was analyzed in R (version 3.2.0) and SAS 9.3 (SAS institute). Fisher's 

exact test was used to test significance in categorical data and logistic regression for 

continuous variable. Survival curves for PAAD with/out diabetes were plotted by Kaplan-

Meier method. The comparison of the survival curves was conducted by log rank test. A 

total of 38 PAAD with diabetes and 111 PAAD without diabetes patients deposited in TCGA 

data portal were used for the clinical information analysis.
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Analysis of differential gene expression of RNAseq data and microarray data

Raw counts of gene expression from RNAseq deposited in TCGA data portal were used for 

the differential gene expression. The analysis was performed through edgeR package in 

R(23). edgeR examined the differential gene expression by accounting variability through an 

overdispersed Poisson model and moderating the degree of overdispersion by Empirical 

Bayes methods(23). In this study, CPM (count per million) was calculated through the 

program and only genes with CPM larger than 1 across at least 15 samples (10% of all 

samples) were considered. A generalized linear model plus likelihood ratio test were used to 

calculate the significance as well as the fold change (FC). The genes were considered as 

statistically significant when the adjusted p value was less than 0.05 and the absolute FC 

larger than 1.5. A total of 147 patients were analyzed, including 38 PAAD with diabetes and 

109 PAAD without diabetes. We performed the same strategy to analyze the differential 

gene expression in GSE79668 dataset. For GSE15932 microarray dataset, we used Wilcoxon 

rank-sum test to conduct the differential expression of each probe.

Gene set enrichment analysis(GSEA) of RNAseq data

To investigate potential biological pathways in subjects of PAAD with/without diabetes, we 

downloaded normalized gene expression data from TCGA data portal with RSEM (RNA-

Seq by Expectation-Maximization) values provided. The dataset for canonical pathways 

were downloaded from msigdb(24). The enrichment score as well as the significance were 

evaluated by GSEA 1.0(24). In this analysis, a total of 1320 gene sets were included. Only 

the gene sets with size not less than 15 genes were considered. A total number of 5000 

random permutations were performed to calculate p value. The pathways with false 

discovery rate (FDR) q-value less than 0.05 were considered as statistically significant. A 

total of 147 patients were analyzed, including 38 PAAD with diabetes and 109 PAAD 

without diabetes.

Analysis of somatic copy number aberration between PAAD with/out diabetes

SCNA data was downloaded from Firehose and split into the sets of PAAD with/out diabetes 

respectively. GISTIC 2.0 was used to conduct SCNA analysis(25). GISTIC 2.0 was a revised 

computational program to identify somatic copy number alteration by investigating the 

frequency and amplitude of observed events(25). GISTIC 2.0 investigated the significance of 

the amplification or deletion of the regions of the genome. In this study, the genes within the 

significant genomic regions were further analyzed to examine the overlay with those 

significantly differentially expressed as identified from RNAseq.

Integration of gene expression and epigenetic change

miRNASeq data deposited in TCGA data portal provided the miRNA stem-loop expression 

level as rpmmm (reads per million miRNA mapped). In this study, a total of 147 patients 

were analyzed for miRNA stem loop expression, including 38 PAAD with diabetes and 109 

PAAD without diabetes. To investigate the potential gene regulation by miRNA, we focused 

on miRNA (nmiRNA=44) with largest difference in PAAD with/out diabetes (here we 

selected absolute fold change larger than 1.2) and the significant differential gene selected 

from RNAseq. Since miRNASeq only provided the expression level of the stem loop, the 
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stem loop's expression level was considered as the mature miRNA. The relationship between 

miRNA and gene was analyzed by microRNA Target Filter module in Ingenuity Pathway 

Analysis (IPA). Pairs selected for further analysis showed i) the miRNA and gene in a 

negative relationship; ii) high prediction accuracy or iii) experimental evidence based on 

laboratory studies. The relationship between miRNA and gene was illustrated by network.

DNA methylation profile change could affect gene expression and this regulation was 

mostly modulated by methylation of CpG sites near the promoters. DNA methylation data 

was downloaded from TCGA data portal and average beta value of TSS200 (within 200 bp 

from transcription start sites) was calculated by TCGA Assembler(19). To integrate gene 

expression and DNA methylation profiles, we only focused on significantly differentially 

expressed genes as identified from RNAseq and then the gene's corresponding methylation 

profile. We conducted the differential correlation analysis by the transformed Pearson's 

correlation coefficient and permutation test(26). The details of the analysis were as follows: 

a) Pearson's correlation coefficients between gene and its corresponding methylation probe 

were calculated in PAAD with diabetes (Rwi_dia) and without diabetes (Rwo_dia) 

respectively; b) the Pearson's correlation coefficients were subjected to Fisher's z-

transformation as

Zwi dia = 1
2 ln [

1 + Rwi dia
1 − Rwi dia

] and Zwo dia = 1
2 ln [

1 + Rwo dia
1 − Rwo dia

] (1)

c) differential correlation between PAAD with diabetes and without diabetes was calculated 

as

Rdiff =
Nwi dia − 3

2 ∗ Zwi dia −
Nwo dia − 3

2 ∗ Zwo dia (2)

Here, Nwi_dia was the samples size of PAAD with diabetes and Nwo_dia denoted samples size 

of PAAD without diabetes; Zwi_dia and Zwo_dia was the transformed z values for PAAD with 

or without diabetes derived from equation (1). The statistical significance of differential 

correlation was assessed by 5000 permutation test by randomly shuffling the samples and P 

value less than 0.05 was considered as statistically significant.

Analysis of somatic mutation data

Mutation annotation format (MAF) files deposited in TCGA data portal for somatic 

mutation were downloaded for the analysis. In this study, the mutation occurred in only one 

or two samples was regarded as rare mutation and filtered out for further analysis. The 

number of mutant samples for each gene in each group was counted. Fisher's Exact test was 

used to analyze the association between mutation status and the occurrence of diabetes in 

PAAD. The log odds ratio was calculated to assess the risk of having diabetes if mutation 

was present. To avoid the zero or infinity issue in odd ratio, we added 0.5 to each cell of the 
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table having zero cell count. Benjamini-Hochberg method was used to adjust the multiple 

hypothesis testing (27). The mutations with adjusted p value less than 0.2, indicating that the 

result is likely to be valid 4 out of 5 times, were selected for further analysis. A total of 145 

patients were available for somatic mutation analysis, including 37 PAAD with diabetes and 

108 PAAD without diabetes.

Results

Patient characteristics

To characterize PAAD patients with/out diabetes, we first analyzed the clinical indices of 

these two groups of patients including age at initial pathologic diagnosis, maximum tumor 

dimension, gender, race, ethnicity, history of other malignancy, pathologic stage, smoking 

and alcohol history (Table 1). Within this 147 patient cohort, we did not find significant 

associations between occurrences of diabetes with any of the factors. Interestingly, we found 

that there was a trend toward being significant between smoking status and the occurrence of 

diabetes in PAAD (Table 1, p value=0.058). Consistent with what is reported by other 

groups, we did not observe a significant difference in the survival between diabetic and non-

diabetic patients (Fig. S1, p value=0.738)(28).

Differential gene expression profile in PAAD with/out diabetes

To investigate the differential gene expression pattern in PAAD with/out diabetes, we 

analyzed RNASeq data deposited in TCGA data portal by edgeR program(23). By setting 

the adjusted p value cutoff of 0.05 and the absolute fold change of 1.5, a total of 408 genes 

were significantly different (Fig. 1A, table S1). The number of genes over-expressed in 

diabetic subjects was almost two folds larger than that of down-regulated genes (Fig. 1A). 

The most significant gene was Thyroglobulin (TG) which was highly expressed in diabetic 

patients, showing a fold-change larger than 14. Diabetes is associated with various degrees 

of deterioration of thyroid function and the up-regulation of TG suggested thyroid 

dysfunction in PAAD with diabetes(29). We also observed that a large set of genes were 

strongly associated with immune modulation and some of them were the key genes targeted 

for immunotherapy. PD-1 (programmed death 1), an immunoinhibititory receptor expressed 

on various immune cells, including T cells, B cells, natural killer cells and tumor-infiltrating 

lymphocytes(30), was one of the immunotherapy targeted genes. In our study, we observed a 

highly up-regulation of this gene in PAAD with diabetes with FDR of 0.023 and fold change 

of 1.84 (Fig. 1B). Cytotoxic T-lymphocyte associated protein-4 (CTLA4), functioning as an 

immune checkpoint and another promising cancer immunotherapy target(31), was over-

expressed in PAAD with diabetes with FDR of 0.045(fold change: 1.71) (Fig. 1C). 

Chemokine (C-X-C motif) ligand 12 (CXCL12), restricting immune cells migration and the 

recognition of cancer antigens by creating a network of dense stroma (32), was up-regulated 

in diabetic subjects (FDR: 0.045; FC: 1.70; Fig. 1D). Indoleamine 2,3-dioxygenase (IDO), 

whose expression was up-regulated in PAAD with diabetes (FDR: 0.045; FC: 2.03; Fig. 1E), 

is an enzyme to catabolize tryptophan into kynurenine which inhibits T cell activation and 

stimulates regulatory T cell differentiation(33).
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The PANC-1 cell line was examined in vitro used conditions to mimic several aspects of 

PAAD with diabetes, the addition of 25mM glucose and10 nM insulin plus 0.4 mM 

palmitate bound to BSA. We found that this short 6 hr metabolic treatment in PANC-1 

increased gene expression of PD-1, CTLA4, CXCL12 and IDO, key genes identified from 

TCGA cohort. However, while there was an increase, statistical significance was not 

achieved (Fig. S2).

In addition to TCGA cohort, two independent datasets (GSE79668 and GSE15932) with 

diabetes were also identified to provide additional pancreatic adenocarcinoma samples. 

From GSE79668 RNAseq dataset, PD-1, CTLA4, CXCL12 and IDO were all highly 

expressed in PAAD with diabetes, validating our observations from the TCGA cohort (Fig. 

1B-1E). Even in the nucleated blood cells of individuals with pancreatic adenocarcinoma, 

the expression level of CTLA4 was significantly increased in diabetics (Fig. S3). IDO was 

also increased in diabetics, although it did not reach significant level (Fig. S3).

In addition to individual genes, the potential biological pathways affected by diabetes in 

PAAD were conducted by GSEA. Among 1320 canonical pathways, we observed a much 

larger number of pathways highly enriched in subjects of PAAD with diabetes (Fig. 1F). By 

setting significant FDR q value at 0.05, a total of 5 pathways were selected: hematopoietic 

cell lineage; primary immunodeficiency; T cell receptor signaling pathway; CD8 TCR 

pathway and NKT pathway (Fig. 1G). These 5 highly up-regulated pathways regulated 

immune cell development and function supporting the notion of dysfunction of immune 

system in subjects with PAAD and diabetes. Extending the number of pathways by setting 

FDR q value at 0.10, we found that 32 pathways were involved and these pathways were all 

up-regulated in diabetic subjects (Table 2).

Differential somatic copy number aberration in PAAD with/out diabetes

To explore the SCNA in PAAD with/out diabetes, we used GISTIC 2.0 to analyze the 

alteration of chromosome regions. A larger number of cytobands were significantly 

amplified in non-diabetic subjects, but only 8q24.13 and 18q11.2 were observed in the 

diabetic subgroup (Fig. 2A). Among the 22 chromosomes, significant copy number 

amplification was only observed in Chr1, 7, 8, 9, 12, 17, 18 and 19 (Fig. 2A). A total of 85 

genes were within the chromosome regions with significant copy number amplification in 

the non-diabetic subjects; however, the number of genes for PAAD with diabetes was 4 (Fig. 

2B). When these genes were overlaid with the significantly differentially expressed genes 

identified by RNAseq, 4 out of 85 genes (SPAG17, PGAP3, ERBB2, RMRP) within the 

amplification regions in non-diabetic subgroup showed the concordant expression pattern in 

RNAseq. This implied that the differential expression of these genes may be partially due to 

the copy number amplification (Fig. 2B). In PAAD without diabetes, a total of 18 

chromosome regions were identified as deletions (Fig. 2D). Two of them (9p21.3 and 

18q21.2) reached statistical significance in diabetic subjects (Fig. 2C). The chromosomes 

with significant deletion were Chr1, 4, 5, 6, 9, 12, 13, 16, 17, 18, 19 and 22 (Fig. 2C). The 

numbers of genes within the deletion in PAAD with/out diabetes were 5 and 2137 

respectively, with 3 of them occurred in both groups (Fig. 2D). Thirty-four genes in the non-

diabetic subgroup were also identified as statistically down-regulated, implying the gene 
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expression level may be partially due to the copy number variation (Fig. 2D). Although a 

small set of genes showed concordance between RNAseq and SCNA, regardless of 

amplification and deletion, the majority of the differentially expressed genes identified from 

RNAseq were not affected by SCNA, indicating the independence of gene expression and 

SCNA in PAAD with/out diabetes.

Integration of epigenetic and gene expression in PAAD with/out diabetes

Gene expression could be regulated by the expression of microRNAs (miRNAs). 

MicroRNAs are 19∼24nt small RNA that could bind to 3′UTR of the gene to induce the 

degradation of mRNA. Various diseases have been reported to be associated with the dys-

regulation of miRNA expression. In this study, we examined the potential regulation of gene 

expression by miRNA. The relationship between miRNA and its target gene was evaluated 

by microRNA Target Filter module in IPA. A total of 64 pairs were identified with 41 pairs 

having gene expression highly up-regulated in PAAD with diabetes (Fig. 3A). Among these 

pairs, hsa-miR-135-5p negatively regulated 7 genes. Each gene was negatively regulated by 

one or two miRNAs. There were nine genes of IGSF1, DCX, CACNA1A, CALN1, 

FAM23A, ZNF831, TRHDE, PPP1R16B and NR4A3 which were negatively regulated by 

two miRNAs (Fig. 3A). A set of genes responsible for immune modulation, such as 

CXCL12, TNFRSF13B (Tumor Necrosis Factor Receptor Superfamily Member 13B), IL16 

(Interleukin 16) and CXCR5 (C-X-C Motif Chemokine Receptor 5), were potentially 

regulated by miRNA expression. These pairs of miRNAs and genes from IPA were all based 

on prediction and further laboratory experimental validation will be needed.

Another epigenetic factor affecting gene expression is DNA methylation. DNA methylation 

occurred in the CpG island of promoters would suppress gene expression. Similar to 

miRNA, abnormal DNA methylation can lead to disease development and progression. To 

examine the gene regulation by DNA methylation in PAAD with/out diabetes, the 

differential correlation analysis was performed by transforming Pearson's correlation 

coefficients and permutation test. The majority of the correlation between DNA methylation 

and gene expression in either diabetic or non-diabetic subjects was negative (Fig. 3B). A 

permutation test identified 13 genes having differential correlation with the corresponding 

methylation status (Fig. 3B). One of the genes was ITGB7 (Integrin Subunit Beta 7), which 

showed no correlation in non-diabetic subjects (r2= -0.007), but a strong negative correlation 

in PAAD with diabetes (r2= -0.631) (Fig. 3C). The other interesting gene identified was 

SPAG6 (Sperm Associated Antigen 6) which is regarded as a novel target for cancer 

immunotherapy(34). We observed a weak negative correlation (r2= -0.287) in diabetic 

subjects, but a stronger correlation in non-diabetic subjects (r2= -0.615) (Fig. 3D). The 

differential correlation pattern implies that diabetes status in PAAD affects the regulation of 

gene expression by DNA methylation, suggesting that the diabetes status should be carefully 

considered when considering the treatment option for PAAD.

Somatic mutation analysis in PAAD with/out diabetes

Gene function is affected not only by its expression level and epigenetic regulation, but also 

by mutation status. Analysis of somatic mutation showed that there were considerably more 

mutational genes in diabetic subgroup compared to non-diabetic subjects (Fig.4A). By 
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setting the cutoff of false discovery rate less than 0.2, we identified a list of 28 mutational 

genes (Fig. 4B). These mutations all occurred in diabetic subjects indicating diabetes status 

in PAAD was associated with frequent gene mutations (Fig. 4B). Of these mutational genes, 

one gene (MAP2K4: Mitogen-Activated Protein Kinase Kinase 4) had the highest frequency 

which occurred in 4 out of 37 diabetic patients (Fig. 4B). MAP2K4, a tumor suppressor, is a 

member of the mitogen-activated protein kinase family and responsible for signal 

transduction to regulate various cellular process including proliferation, differentiation and 

development(35). Genetic inactivation of MAP2K4 in pancreatic cancer has been 

observed(35); here we found that the mutation of this gene exclusively occurred in the 

diabetes subgroup (Fig. 4B). A total of four missense and one splice mutation were observed 

in this gene (Fig. 4C). Importantly, we also observed that several genes encoding receptors 

were mutated in diabetic subjects (Fig. 4B). IL4R (Interleukin 4 Receptor), a type I cytokine 

receptor, could bind to IL4 and/or IL13 to stimulate immune response by antibody 

production and macrophages activation(36). The critical role of IL4R in tumor biology, 

tumor immunology and immunosurveillance rendered this gene an effective target for cancer 

therapy, including immunotherapy(36). We observed that this gene was mutated in diabetic 

subjects implying the toughness of this therapy in PAAD with diabetes (Fig. 4B). There 

were three mutations occurred for this molecule with two missense and one deletion (Fig. 

4C).

Discussion

Individuals suffering from diabetes are more likely to develop cancers of the liver, pancreas, 

endometrium, colon, rectum, breast and bladder(37, 38). Previously, studies have focused on 

the link between pancreatic cancer and diabetes, since these two diseases share their origin 

in the same organ. Although which of these two disease comes first when they are found in 

the same individual is still under active debate, it is clear that diabetes status impacts the 

clinical outcome by increasing tumor size and worsening the histological grade of the 

tumor(6, 39). Until this study, to our knowledge, the impact of genomics profiling in 

pancreatic cancer with/out diabetes was incomplete. Our study depicts these differential 

molecular alterations and provides a better understand for this complex disease.

Similar to other types of cancer, PAAD develops a set of mechanisms to avoid the 

recognition of the immune system(40). One of the mechanisms is over-expression of ligands 

to evade immunological checkpoints that may interrupt effector T cell responses(40). 

CTLA4 and PD-1 pathways are the two negative co-stimulatory pathways mediating 

immunosuppression in a diversity of cancer types, including melanoma, ovarian and lung 

cancers(41). In pancreatic cancer, over-expression of PDL-1 results in lymphocyte 

exhaustion, down-regulation of most MHC class I members, and is associated with shorter 

disease-free survival and overall survival(42). Moreover, PAAD is a heterogeneous disease 

involving types of molecular and cellular pathways. Bailey et. al. recently showed in a study 

of 456 PAAD subjects that the gene expression profiles fall into 4 subtypes: squamous, 

pancreatic progenitor, immunogenic and aberrantly differentiated endocrine exocrine(16). 

The immunogenic class was associated with an activated immune system including up-

regulation of B cells, CD4+ T cells, antigen presentation and CD8+ T cells (16). From our 

differential gene expression and pathway analysis, we found that PAAD with diabetes was 
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strongly associated with immunomodulation by up-regulating numerous immune pathways 

and stimulating cytokine production. The up-regulation of the immune system pattern we 

observed was consisted with that found by Bailey et al(16). Since Bailey et. al. did not 

include diabetes as one of the factors in the study, we suspected that the immunogenic class 

was derived from the subgroup of PAAD subjects with diabetes. Thus, we put forth that it 

may be more biologically meaningful to separate diabetic subjects for optimization of 

medical management especially for immunotherapy.

Another mechanism that could contribute to the immunosuppression observed in this cohort 

is abnormality in the antigen presentation. Continuous generation of tumor variants and/or 

alteration of antigen processing machinery by increased frequency of mutations can result in 

an escape of the tumor cells from recognition by the immune system(43). In addition, cancer 

microenvironment, a complex tissue consists of tumor cells as well as stromal cells, 

extracellular matrices, vasculature and inflammatory cells, results in immunosuppression by 

preventing effective lymphocyte priming and suppressing infiltrating effector cells. Over-

expression of CXCL12 stimulates fibroblast migration and proliferation and creates a dense 

network in cancer microenvironment to restrict immune cells migration to recognize cancer 

antigens (32). Up-regulation of IDO impairs immune clearance by creating a cancer 

microenvironment rich in immunosuppressive regulatory T cells but devoid of effector T 

cells (44). Besides CXCL12 and IDO, a large set of genes as well as mutations relevant to 

the antigen processing pathway and/or immune cell functions were observed in PAAD with 

diabetes. This provides additional insight into possible mechanisms of immune deficiency in 

this disease and proves the different biological behavior in diabetic subjects.

Discovery of immunosuppression in cancer has prompted the novel therapeutic approach of 

invoking the immune system to attack the tumor. Numerous immunotherapy treatments, 

including checkpoint inhibitors, cancer vaccine, adoptive therapy and monoclonal 

antibodies, have been proposed to cure pancreatic cancer(3). Some of these approaches have 

even been applied in clinical trials. However, these studies did not, or to a lesser extent, 

consider the co-occurrence of diabetes and the potential impact of diabetes for 

treatment(45-48). Based on our results, the immune deficiency caused by diabetes may 

influence the clinical outcomes. Two immunotherapy clinical trials against pancreatic cancer 

showed a partial response for anti-CTLA4 treatments(45, 48). Another phase I clinical trial 

of BMS-936559 using anti PDL-1 conducted in 2012 recruited 207 patients including 14 

pancreatic cancers. This study showed an objective response for melanoma, renal-cell 

cancer, non-small-cell lung cancer and ovarian cancer, but not pancreatic cancer(46). These 

clinical outcomes might be improved if the study took diabetes occurrence into 

consideration, since our data has shown an abnormally higher expression of both CTLA4 

(FDR: 0.045; fold change: 1.71) and PD-1(FDR: 0.023; fold change: 1.84) compared to the 

non-diabetic subjects. In addition, trials using vaccine immunotherapy and various 

monoclonal antibody treatments similarly resulted in a low percentage of response(49, 50). 

We could expect a high response rate to be observed if future trials could consider the 

presence of diabetes as one of the influential factors for immunotherapy.

In summary, for the first time to our knowledge, we conducted the differential molecular 

profile analysis in PAAD with/out diabetes and found that the disease features diverse modes 
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of genomic alteration, but not a single genetics component. Our findings through gene 

expression and pathway analysis showed a large set of up-regulated genes in PAAD with 

diabetes and the occurrence of diabetes was associated with immunodeficiency. Integration 

of gene expression and epigenetic changes reveal that regulation is at the levels of miRNA 

expression and DNA methylation. We analyzed the somatic mutation and found a high 

number of gene mutations in diabetic subjects and a large set of these mutated genes 

involved immune responses supporting the mechanism of immune deficiency in this 

subgroup.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We gratefully acknowledge contributions from TCGA research Network. We are grateful to Dr Chunying Yang at 
the Houston Methodist Research Institute for providing PANC-1 cell line.

Funding: These studies were partially supported by National Institutes of Health (NIH) - EY012601-17, 
EY007739-25, HL110170-05, EY023629-03 and EY025383-01A1 to MBG.

References

1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017; 67:7–30. 
[PubMed: 28055103] 

2. Conroy T, Bachet JB, Ayav A, Huguet F, Lambert A, Caramella C, et al. Current standards and new 
innovative approaches for treatment of pancreatic cancer. Eur J Cancer. 2016; 57:10–22. [PubMed: 
26851397] 

3. Kotteas E, Saif MW, Syrigos K. Immunotherapy for pancreatic cancer. Journal of cancer research 
and clinical oncology. 2016; 142:1795–805. [PubMed: 26843405] 

4. Wang J, Reiss KA, Khatri R, Jaffee E, Laheru D. Immune Therapy in GI Malignancies: A Review. J 
Clin Oncol. 2015; 33:1745–53. [PubMed: 25918295] 

5. Laheru D, Lutz E, Burke J, Biedrzycki B, Solt S, Onners B, et al. Allogeneic granulocyte 
macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with 
cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune 
activation. Clinical cancer research : an official journal of the American Association for Cancer 
Research. 2008; 14:1455–63. [PubMed: 18316569] 

6. Magruder JT, Elahi D, Andersen DK. Diabetes and pancreatic cancer: chicken or egg? Pancreas. 
2011; 40:339–51. [PubMed: 21412116] 

7. Wideroff L, Gridley G, Mellemkjaer L, Chow WH, Linet M, Keehn S, et al. Cancer incidence in a 
population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer 
Inst. 1997; 89:1360–5. [PubMed: 9308706] 

8. Pannala R, Basu A, Petersen GM, Chari ST. New-onset diabetes: a potential clue to the early 
diagnosis of pancreatic cancer. The Lancet Oncology. 2009; 10:88–95. [PubMed: 19111249] 

9. Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. 
JAMA. 1995; 273:1605–9. [PubMed: 7745774] 

10. Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A, Barzi F, Woodward M. Type-II 
diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005; 92:2076–83. 
[PubMed: 15886696] 

11. Gullo L, Pezzilli R, Morselli-Labate AM, Italian Pancreatic Cancer Study G. Diabetes and the risk 
of pancreatic cancer. N Engl J Med. 1994; 331:81–4. [PubMed: 8208269] 

Yan et al. Page 11

Clin Cancer Res. Author manuscript; available in PMC 2018 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Permert J, Adrian TE, Jacobsson P, Jorfelt L, Fruin AB, Larsson J. Is profound peripheral insulin 
resistance in patients with pancreatic cancer caused by a tumor-associated factor? Am J Surg. 
1993; 165:61–6. discussion 6-7. [PubMed: 8380314] 

13. Basso D, Brigato L, Veronesi A, Panozzo MP, Amadori A, Plebani M. The pancreatic cancer cell 
line MIA PaCa2 produces one or more factors able to induce hyperglycemia in SCID mice. 
Anticancer Res. 1995; 15:2585–8. [PubMed: 8669828] 

14. Basso D, Greco E, Fogar P, Pucci P, Flagiello A, Baldo G, et al. Pancreatic cancer-derived S-100A8 
N-terminal peptide: a diabetes cause? Clin Chim Acta. 2006; 372:120–8. [PubMed: 16678810] 

15. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic 
cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012; 491:399–405. 
[PubMed: 23103869] 

16. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses 
identify molecular subtypes of pancreatic cancer. Nature. 2016; 531:47–52. [PubMed: 26909576] 

17. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine 
the mutational landscape of pancreatic cancer. Nature. 2015; 518:495–501. [PubMed: 25719666] 

18. Harada T, Chelala C, Bhakta V, Chaplin T, Caulee K, Baril P, et al. Genome-wide DNA copy 
number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. 
Oncogene. 2008; 27:1951–60. [PubMed: 17952125] 

19. Zhu Y, Qiu P, Ji Y. TCGA-assembler: open-source software for retrieving and processing TCGA 
data. Nat Methods. 2014; 11:599–600. [PubMed: 24874569] 

20. Wan YW, Allen GI, Liu Z. TCGA2STAT: simple TCGA data access for integrated statistical 
analysis in R. Bioinformatics (Oxford, England). 2015; 32:952–4.

21. Kirby MK, Ramaker RC, Gertz J, Davis NS, Johnston BE, Oliver PG, et al. RNA sequencing of 
pancreatic adenocarcinoma tumors yields novel expression patterns associated with long-term 
survival and reveals a role for ANGPTL4. Molecular oncology. 2016; 10:1169–82. [PubMed: 
27282075] 

22. Huang H, Dong X, Kang MX, Xu B, Chen Y, Zhang B, et al. Novel blood biomarkers of pancreatic 
cancer-associated diabetes mellitus identified by peripheral blood-based gene expression profiles. 
The American journal of gastroenterology. 2010; 105:1661–9. [PubMed: 20571492] 

23. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics (Oxford, England). 2010; 
26:139–40.

24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set 
enrichment analysis: a knowledge-based approach for interpreting genome-wide expression 
profiles. Proc Natl Acad Sci U S A. 2005; 102:15545–50. [PubMed: 16199517] 

25. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates 
sensitive and confident localization of the targets of focal somatic copy-number alteration in 
human cancers. Genome Biol. 2011; 12:R41. [PubMed: 21527027] 

26. Hu T, Zhang W, Fan Z, Sun G, Likhodi S, Randell E, et al. Metabolomics Differential Correlation 
Network Analysis of Osteoarthritis. Pac Symp Biocomput. 2016; 21:120–31. [PubMed: 26776179] 

27. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate - a Practical and Powerful 
Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological. 
1995; 57:289–300.

28. Hwang A, Narayan V, Yang YX. Type 2 diabetes mellitus and survival in pancreatic 
adenocarcinoma: a retrospective cohort study. Cancer. 2013; 119:404–10. [PubMed: 23292900] 

29. Nakamura S, Sakata S, Kojima N, Komaki T, Matsuda M, Miura K. Serum thyroglobulin 
concentration in patients with diabetes mellitus. Endocrinol Jpn. 1987; 34:473–8. [PubMed: 
3315639] 

30. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. 
Annu Rev Immunol. 2008; 26:677–704. [PubMed: 18173375] 

31. Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. 
Nature reviews. 2016; 15:235–47.

Yan et al. Page 12

Clin Cancer Res. Author manuscript; available in PMC 2018 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. Targeting CXCL12 from 
FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in 
pancreatic cancer. Proc Natl Acad Sci U S A. 2013; 110:20212–7. [PubMed: 24277834] 

33. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. The combined effects 
of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and 
induce a regulatory phenotype in naive T cells. J Immunol. 2006; 176:6752–61. [PubMed: 
16709834] 

34. Silina K, Zayakin P, Kalnina Z, Ivanova L, Meistere I, Endzelins E, et al. Sperm-associated 
antigens as targets for cancer immunotherapy: expression pattern and humoral immune response in 
cancer patients. J Immunother. 2011; 34:28–44. [PubMed: 21150711] 

35. Teng DH, Perry WL 3rd, Hogan JK, Baumgard M, Bell R, Berry S, et al. Human mitogen-activated 
protein kinase kinase 4 as a candidate tumor suppressor. Cancer Res. 1997; 57:4177–82. [PubMed: 
9331070] 

36. Suzuki A, Leland P, Joshi BH, Puri RK. Targeting of IL-4 and IL-13 receptors for cancer therapy. 
Cytokine. 2015; 75:79–88. [PubMed: 26088753] 

37. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes 
and cancer: a consensus report. Diabetes care. 2010; 33:1674–85. [PubMed: 20587728] 

38. Meyerhardt JA, Catalano PJ, Haller DG, Mayer RJ, Macdonald JS, Benson AB 3rd, et al. Impact of 
diabetes mellitus on outcomes in patients with colon cancer. J Clin Oncol. 2003; 21:433–40. 
[PubMed: 12560431] 

39. Hart PA, Law RJ, Frank RD, Bamlet WR, Burch PA, Petersen GM, et al. Impact of diabetes 
mellitus on clinical outcomes in patients undergoing surgical resection for pancreatic cancer: a 
retrospective, cohort study. The American journal of gastroenterology. 2014; 109:1484–92. 
[PubMed: 25070053] 

40. Amedei A, Niccolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer 
progression and vaccine-based immunotherapy. Hum Vaccin Immunother. 2014; 10:3354–68. 
[PubMed: 25483688] 

41. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 
2012; 12:252–64. [PubMed: 22437870] 

42. Birnbaum DJ, Finetti P, Lopresti A, Gilabert M, Poizat F, Turrini O, et al. Prognostic value of 
PDL1 expression in pancreatic cancer. Oncotarget. 2016; 7:71198–210. [PubMed: 27589570] 

43. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” 
phenotypes. Nat Immunol. 2002; 3:999–1005. [PubMed: 12407407] 

44. Witkiewicz A, Williams TK, Cozzitorto J, Durkan B, Showalter SL, Yeo CJ, et al. Expression of 
indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T 
cells to avoid immune detection. J Am Coll Surg. 2008; 206:849–54. discussion 54-6. [PubMed: 
18471709] 

45. Mohindra NA, Kircher SM, Nimeiri HS, Benson A, Rademaker A, Alonso E, et al. Results of the 
phase Ib study of ipilimumab and gemcitabine for advanced pancreas cancer. J Clin Oncol. 2015; 
33

46. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-
PD-L1 antibody in patients with advanced cancer. The New England journal of medicine. 2012; 
366:2455–65. [PubMed: 22658128] 

47. Koido S, Homma S, Takahara A, Namiki Y, Tsukinaga S, Mitobe J, et al. Current 
immunotherapeutic approaches in pancreatic cancer. Clinical & developmental immunology. 2011; 
2011:267539. [PubMed: 21922022] 

48. Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US, et al. Phase 2 trial of single 
agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. 
Journal of immunotherapy. 2010; 33:828–33. [PubMed: 20842054] 

49. Kimura Y, Tsukada J, Tomoda T, Takahashi H, Imai K, Shimamura K, et al. Clinical and 
immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine 
and/or S-1 in patients with advanced pancreatic carcinoma. Pancreas. 2012; 41:195–205. 
[PubMed: 21792083] 

Yan et al. Page 13

Clin Cancer Res. Author manuscript; available in PMC 2018 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



50. Philip PA, Benedetti J, Corless CL, Wong R, O'Reilly EM, Flynn PJ, et al. Phase III study 
comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic 
adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J Clin Oncol. 2010; 
28:3605–10. [PubMed: 20606093] 

Yan et al. Page 14

Clin Cancer Res. Author manuscript; available in PMC 2018 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Translational Relevance

Pancreatic adenocarcinomas (PAAD) and diabetes share their origin in the same organ 

and often occur concurrently. A list of immunotherapy agents deliver benefits for 

individuals with many types of cancer, but not PAAD. The reasons for this remain 

unclear. Here, we conduct the differential molecular profile analysis in PAAD with/out 

diabetes from the TCGA cohort, which reveals the impact of diabetes on 

immunodeficiency. To the best of our knowledge, this is the first comparative genomics 

study that provides novel molecular insight on the impact of immunotherapy for PAAD, 

which will help identify individuals who are most likely to benefit from treatment as well 

as facilitate in identification of optimal patient populations for immunotherapy clinical 

trials.
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Figure 1. 
Differential gene expression and pathway regulation in subjects with PAAD with/out 

diabetes. Overall pattern of differential gene expression in PAAD with/out diabetes is shown 

by volcano plot (A). Each point in the plot represents a gene and the gene over-expressed in 

PAAD with diabetes has log2 fold change larger than 0 which lies in the right-hand side of 

the plot (A). Genes in the top right corner are up-regulated with a small p value in PAAD 

with diabetes vs. without diabetes (A). Expression levels of PD-1 (B), CTLA4 (C), CXCL12 

(D) and IDO (E) in PAAD with/out diabetes are provided in violin plot. In the violin plot, 
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the black dot represents the median; the thick white bar in the center represents the 

interquartile range and the black line represents the 95% confidence interval. A wider 

section of the violin plot means a higher density of points. Scatter plot of normalized 

enrichment score (NES) and nominal p-value (red), family wise-error rate p-value (FWER p-

value; green), false discovery rate q-value (FDR q-value; black) is used to show differential 

pathway regulation in diabetes (F). Each point in the plot (F) represents a pathway from 

GSEA analysis. The pathway having a small p-value and large enrichment score in PAAD 

with diabetes lies in the right-bottom of the plot (F). Bar plot for significant pathways with 

FDR q-values less than 0.05 (G).
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Figure 2. 
SCNA analysis in PAAD with/out diabetes. Significance of SCNA was tested by GISTIC 2.0 

and the genomic regions showing significant amplification are provided (A). The dash green 

line indicates the q-value less than 0.05 (A). A venn diagram is used to show the number of 

genes within genomic regions showing significant amplification as well as the overlay with 

significant genes identified from RNAseq (B). Each circle in the venn diagram represents 

one set and the number in the overlaid area represents the common genes between the sets 

(B). There are 4 genes (pink area) overlaid between amplification regions in non-diabetic 

subgroup of SCNA analysis and down-regulation in diabetic subgroup of RNAseq analysis 

(B). The genomic regions with significant deletion in PAAD with/out diabetes (C). Number 

of genes within the significant deletion and the overlay with differentially expressed genes 

from RNAseq (D). The number of genes within the deletion regions in the diabetic subgroup 

is 5 (the sum of number in “Del_WiDia” set) and in non-diabetic subgroup is 2137 (the sum 

of numbers in “Del_WoDia” set) (D). There are 3 genes within the significant deletion 
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regions which are common in both diabetic and non-diabetic subgroups (orange area) (D). 

There are 34 genes (blue area) overlaid between the deletion regions in non-diabetic 

subgroup of SCNA analysis and up-regulation in diabetic subgroup of RNAseq analysis (D).
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Figure 3. 
Integration of epigenetic change and gene expression in PAAD with/out diabetes. Regulation 

of gene expression by miRNA is analyzed by microRNA target filter in IPA and plot as 

network in R (version 3.2.0) (A). miRNA is denoted in green (down-regulated in PAAD with 

diabetes) and pink (up-regulated in PAAD with diabetes) nodes. Up-regulated gene in PAAD 

with diabetes identified from RNAseq is colored in red and the down-regulated one is in 

blue (A). The differential correlation profile between gene and its DNA methylation in 

PAAD with/out diabetes is provided (B). Each point represents a gene and the ones in purple 

are significantly different from permutation test (B). The correlation coefficient value 

between gene expression and beta value of DNA methylation in PAAD with diabetes is 

plotted in the X-axis (B). The dash lines represent zero correlation coefficients (B). The 
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differential correlation of ITGB7 and its DNA methylation in PAAD with/out diabetes is 

shown in scatter plot with each point representing a sample(C). The differential correlation 

of SPAG6 and its DNA methylation in PAAD with/out diabetes is shown in scatter plot (D).
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Figure 4. 
Somatic mutation analysis in PAAD with/out diabetes. Log odds ratio of diabetes having 

mutation as well as p values derived from Fisher's Exact test is shown in scatter plot (A). 

Each point in the plot represents a mutant gene (A). To prevent over-plotting, the points are 

jittered and use of color to denote extent of over-plotting (Blue for lightest and Red for 

heaviest). A heatmap is to show the mutation pattern of the selected genes (B). Magenta 

color in heatmap means the mutation is detected (B). Bar plot above heatmap denotes the 

number of mutations occurring for each subject and left side bar plot is to show number of 

subjects having a mutation for each gene. The details of mutation occurred in MAP2K4 and 

IL4R are provided (C).
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Table 1
Baseline characteristics of participants in the PAAD with/out diabetes

PAAD without Diabetes 
(N=111)

PAAD with Diabetes 
(N=38) Pvalue

Age_at_initial_pathologic_diagnosis, mean(sd) 63.66(11.92) 65.95(9) 0.275

Maximum_tumor_dimension, mean(sd) 3.8(1.57) 3.73(1.23) 0.816

Gender, N(%)

0.135

Female 54(80.6%) 13(19.4%)

Male 57(69.51%) 25(30.49%)

Race, N(%)

0.217

White 92(71.32%) 37(28.68%)

Asian 10(90.91%) 1(9.09)

Black or African American 5(100%) 0(0%)

Unknown or Not Evaluated(Not used for statistical testing) 4(100%) 0(0%)

Ethnicity, N(%)

1

Hispanic or Latino 2(66.67%) 1(33.33%)

Not Hispanic or Latino 76(71.03%) 31(28.97%)

Unknown or Not Evaluated or Not Evaluated(Not used for statistical testing) 33(84.62%) 6(15.38%)

History_other_malignancy, N(%)

0.762

Yes 13(81.25%) 3(18.75%)

No 98(73.68%) 35(26.32%)

Pathologic_stage, N(%)

0.443

Stage I 14(77.78%) 4(22.22%)

Stage II 94(75.2%) (31(24.8%)

Stage III 2(66.67%) 1(33.33%)

Stage IV 0(0%) 1(100%)

Not Available or Discrepancy(Not used for statistical testing) 1(50%) 1(50%)

Smoking, N(%)

0.058

Current smoker 51(66.23%) 26(33.77%)

Lifelong Non-smoker 51(80.95%) 12(19.05%)

Unknown(Not used for statistical testing) 9(100%) 0(0%)

Alcohol_history_documented, N(%)

0.543

Yes 71(71.72%) 28(28.28%)

No 36(78.26%) 10(21.74%)

Unknown(Not used for statistical testing) 4(100%) 0(0%)
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Table 2
Pathways with FDR q value less than 0.10

Gene Set Size NES NOM.p.val FDR.q.val

KEGG_HEMATOPOIETIC_CELL_LINEAGE 81 2.037 0.0009 0.0406

KEGG_PRIMARY_IMMUNODEFICIENCY 35 2.023 <0.0001 0.0442

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 108 2.091 <0.0001 0.048

PID_CD8TCRPATHWAY 52 2.038 0.0004 0.0485

BIOCARTA_NKT_PATHWAY 29 1.983 0.0008 0.0498

PID_CD8TCRDOWNSTREAMPATHWAY 64 2.049 0.0005 0.0503

KEGG_TYPE_I_DIABETES_MELLITUS 23 2.063 <0.0001 0.0517

PID_IL12_2PATHWAY 60 2.127 <0.0001 0.0525

PID_IL12_STAT4PATHWAY 31 1.97 0.002 0.0539

SIG_BCR_SIGNALING_PATHWAY 46 1.983 0.0028 0.0546

REACTOME_COSTIMULATION_BY_THE_CD28 _FAMILY 55 1.998 0.0024 0.055

PID_TCR_PATHWAY 64 1.947 0.002 0.0562

KEGG_CELL_ADHESION_MOLECULES_CAMS 113 1.956 0.0027 0.0562

KEGG_GRAFT_VERSUS_HOST_DISEASE 19 1.986 <0.0001 0.0574

KEGG_CHEMOKINE_SIGNALING_PATHWAY 188 1.949 0.0017 0.0576

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA _PRODUCTION 34 1.957 0.0055 0.0598

KEGG_NATURAL_KILLER_CELL_MEDIATED _CYTOTOXICITY 127 1.936 0.0027 0.0613

KEGG_AUTOIMMUNE_THYROID_DISEASE 32 1.929 0.0016 0.0637

KEGG_CYTOKINE_CYTOKINE_RECEPTOR _INTERACTION 264 1.919 0.0019 0.0686

KEGG_ALLOGRAFT_REJECTION 17 1.905 0.0029 0.0702

REACTOME_CHEMOKINE_RECEPTORS_BIND _CHEMOKINES 55 1.911 0.0056 0.0715

BIOCARTA_IL12_PATHWAY 21 1.906 0.0013 0.0722

REACTOME_CD28_DEPENDENT_PI3K_AKT _SIGNALING 21 1.892 0.0028 0.0752

ST_T_CELL_SIGNAL_TRANSDUCTION 44 1.895 0.0086 0.076

BIOCARTA_TH1TH2_PATHWAY 17 1.881 0.0029 0.0817

REACTOME_GENERATION_OF_SECOND _MESSENGER_MOLECULES 20 1.866 0.0004 0.0924

PID_CD40_PATHWAY 31 1.847 0.0114 0.0925

PID_IL2_1PATHWAY 55 1.847 0.0096 0.0952

BIOCARTA_DC_PATHWAY 22 1.859 0.0063 0.096

REACTOME_TCR_SIGNALING 44 1.854 0.0085 0.098

PID_FCER1PATHWAY 61 1.851 0.0087 0.0983

BIOCARTA_LAIR_PATHWAY 17 1.847 0.0055 0.0984
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