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Abstract 
 
Working memory is central to the complex cognitive functions that are involved 

in goal-directed behavior. At the core of working memory research, the 

question remains how and in what format information is retained in the brain. 

Immense progress has been made using neuroimaging to determine the 

location of information maintenance using experiments with sensory features, 

however, it remains unclear how more abstract stimuli are stored. 

 

The aim of this dissertation is to uncover the neural underpinnings of working 

memory during abstract quantity processing. Specifically, I conducted three 

functional magnetic resonance imaging (fMRI) studies to address the question 

of which brain regions represent the abstract quantity content. We found 

parametric working memory representation of auditory, visual and vibrotactile 

frequencies distributed across sensory, posterior parietal, and prefrontal 

cortices. Additionally, the numerosity-specific information is represented in the 

prefrontal cortex. 

 

These results provide novel insights into how the brain maintains information 

in working memory and give support to the view that mental representations 

are distributed across the cortex depending on whether they are maintained as 

sensory-specific or abstract features. 

  



 

Zusammenfassung 

Das Arbeitsgedächtnis spielt eine zentrale Rolle bei komplexen kognitiven 

Funktionen, die für zielgerichtetes Verhalten notwendig sind. Eine zentrale 

Frage in der Arbeitsgedächtnisforschung ist, wie und in welcher Form 

Informationen im Gehirn gespeichert werden. Mit Hilfe von bildgebenden 

Verfahren konnte die Neurowissenschaft große Fortschritte erreichen, um 

festzustellen, an welchem Ort sensorische Stimuli festgehalten werden. 

Allerdings ist weiterhin unklar, wie abstrakte Stimuli verarbeitet werden.  

Das Ziel dieser Dissertation ist, die neuronalen Prozesse zu entschlüsseln, die 

dem Arbeitsgedächtnis von abstrakter Mengenverarbeitung zu Grunde liegen.  

Insbesondere habe ich drei fMRT Studien durchgeführt um die Frage zu 

beantworten, welche Hirnregionen abstrakte Mengen repräsentieren. Wir 

fanden parametrische Arbeitsgedächtnisrepräsentationen von auditorischen, 

visuellen und taktilen Frequenzen über sensorische, posterior parietale und 

präfrontale Teile der Großhirnrinde verteilt. Des Weiteren wird numerische 

Information im präfrontalen Cortex repräsentiert. 

Diese Resultate liefern neue Erkenntnisse darüber, wie das Gehirn 

Informationen im Arbeitsgedächtnis speichert.  

Sie bestätigen die Sichtweise, dass mentale Repräsentationen über die 

Großhirnrinde verteilt festgehalten werden. Weiterhin zeigen sie, dass dies 

abhängig davon ist, ob es sich um sensorische oder abstrakte Merkmale 

handelt.  
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1 Introduction 

Human beings differ from other animals in their capacity to learn, reason, make 

decisions, and successfully carry out multiple goals. A central aspect of these 

cognitive functions is the retention of information over short periods of time. 

This capacity to briefly maintain information that is currently not present in the 

environment is referred to as working memory (WM) (Baddeley, 2012). WM is 

significant for performing more complex executive functions such as reasoning, 

problem solving and numerical cognition. To get to the root of such complex 

functions, psychologists and more recently neuroscientists have spent the 

better part of a century trying to uncover the behavioral and neural substrates 

of WM. 

WM is enabled by a series of processes that make information available for a 

later use. The information received from the environment is first encoded to a 

format to be used in WM. This information is then retained for a short period 

of time. Finally, the information is retrieved – and potentially manipulated – to 

be used in a goal directed behavior (Baddeley, 2012). The neuronal 

underpinnings of encoding, manipulation and retrieval processes have been 

examined together or separately in numerous studies (for a review, see 

D’Esposito & Postle, 2015). Encoding converts the percept into a format that 

can be stored in the brain, whereas retrieval refers to re-accessing the 

information from the memory when needed (Melton, 1963). The core WM 

function, maintenance, refers to the storage of the necessary information. The 

information could either be stored in sensory format or alternatively be in an 
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abstract, independent manner. There is currently much debate about how this 

maintenance function is implemented in the brain. Relatedly, extracellular 

recordings in non-human primates (NHP) have revealed activity patterns of 

neurons in the prefrontal cortex (PFC) which is identified as the main brain 

region for WM maintenance (Fuster & Alexander, 1971; Kubota & Niki, 1971; 

for a review see Goldman-Rakic, 1995). Challenging the theory that the PFC is 

the central region in the WM maintenance, sensory recruitment theory posits 

that the WM information is maintained in the same sensory areas that encode 

the memoranda in the first place (Ester et al., 2009). WM research gained 

significant insights with the development of multivariate pattern analysis 

(MVPA) methods, which aim to access the information content of the activation 

patterns across the brain (c.f. Haynes, 2015). With these analysis methods, 

“state-based” models of WM gained more evidence to support the notion that 

sensory systems carry content-specific WM information (review D’Esposito and 

Postle, 2015). More recently, the accumulation of evidence supporting both 

sides of the debate has led to a hybrid account of WM representations that are 

distributed across the cortical hierarchy (Lee and Baker, 2016; Christophel et 

al., 2017). This account suggests that where the information is maintained 

depends on how abstract the retained feature is (Christophel et al., 2017). In 

the distributed account, sensory features are likely to be represented in a 

sensory format. So far, MVPA studies have mainly tested neuronal 

underpinnings of WM using sensory-specific features of stimuli (Christophel et 

al., 2017). Therefore, investigation of the underlying maintenance mechanisms 
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of WM with more abstract features is lacking and will provide significant 

information for the research.  

Among abstract features that are retained in WM to be used for a goal, 

quantitative information is interesting to investigate as it can be encoded both 

symbolically and non-symbolically (Piazza et al., 2006) as well as at different 

levels of abstraction. Think of a biker riding his bike in traffic. He would feel a 

vibration under his hands coming from the turning wheels. He would also see 

cars passing by or ahead of him on the road. While biking, he could represent 

the vibration of the bike as a pure sensation or his speed - a continuous 

frequency. Moreover, if he has time, he can count the cars and know exactly 

how many of them are seen ahead. If he does not have enough time, he can 

eyeball the number of cars, yielding an estimate instead of an exact number. 

Therefore, stimuli with quantitative features can be represented on a gradient 

from a pure sensory format to a highly abstract number format, symbolically or 

non-symbolically. It follows that the investigation of quantity information 

maintenance in WM would lead to a multi-faceted understanding of its 

underlying mechanisms. 

In this PhD dissertation, I present an investigation into the neural correlates of 

WM maintenance using abstract quantities as memoranda. Using a well-

established WM paradigm – the delayed match-to-sample task (DMTS) – while 

recording fMRI, I address the question of how abstract quantities are 

represented in the human brain during WM retention.  
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1.1 The underlying mechanisms of working memory maintenance 

Investigation of WM requires an understanding of how WM functions as well 

as how the neuronal underpinnings enable the process. To this end, cognitive 

psychologists have developed models to describe the inner workings of short-

term information retention, i.e. WM.  

 

1.1.1 Models of working memory 

The most prominent model of WM to date is the multicomponent model of 

WM (Baddeley & Hitch, 1974; see Baddeley, 2012 for an updated version). For 

different cognitive models of WM beyond the scope of this thesis, see Atkinson 

and Shiffrin (1968), Baddeley and Hitch (1974) and Cowan (1999). The 

multicomponent model (Baddeley & Hitch, 1974) suggests that information 

that is set to be used in a short time period is stored in our memory by multiple 

mechanisms, which are controlled by a central attentional component. In 

particular, it is proposed that visual information is maintained as a visually and 

spatially retained image, while auditory information, whether verbal or not, is 

maintained by an articulation-based phonological loop (Baddeley, 2012). The 

different components in WM storage of auditory and visuospatial information 

are supported by different sensory processing mechanisms. They can work 

together without interfering with the processes of the other component. The 

episodic buffer combines different storage dimensions. This buffer makes 

information that is integrated from different modalities available to conscious 
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awareness. Lastly, the central executive is the component that controls the 

other systems of the WM system and regulates information processing. The 

central executive encodes, updates, and binds the information entering WM 

and directs attentional control to the needed component because the 

processing capacity of WM is limited (Baddeley, 2012). While the 

multicomponent model explains how WM functions, it does not provide any 

information about the neuronal mechanisms enabling WM.  

 

1.1.2 The neuronal underpinnings of working memory 

Apart from models explaining the functions of WM, neuroscientists also 

investigate its neural correlates by examining the circuitry that is engaged in 

WM processes. In this regard, the first significant findings for the underlying 

brain mechanisms of WM came from electrophysiology studies on NHP, which 

found sustained neuronal activity during the retention period (Fuster & 

Alexander, 1971; Kubota & Niki, 1971). Connecting the neural mechanisms to 

memory maintenance, prefrontal neurons were shown to have memory fields, 

where the same neuron always codes for the same location (Funahashi et al., 

1989). Combining the findings from extracellular recordings from NHPs and 

human univariate fMRI and positron emission tomography research, Goldman-

Rakic proposed that the PFC is central to WM information retention (Goldman-

Rakic, 1995). Further evidence for content-specificity of cell activity in the PFC 

came from WM tasks with quantities such as frequency (Romo et al., 1999) and 

numerosity (Nieder et al., 2003). NHP electrophysiology studies of parametric 
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WM have shown that cell spiking activity varies monotonically with the 

memorized frequency (for a review see Romo and de Lafuente, 2013). 

Additionally, numerosity WM research found that spike activity of the PFC 

neurons is tuned to numerosity-specific content during WM retention (for 

review see Nieder, 2016).  

Following NHP studies, human fMRI studies using MVPA methods have 

revealed results that seemingly contradict earlier findings on WM. Importantly, 

MVPA is able to detect patterns of activity content distributed across brain 

regions; the patterns of activity specific to a certain cognitive content (Peacock 

and Postle, 2012). A number of MVPA fMRI studies found that during the WM 

retention period, content-specific information about the memorized stimulus 

can only be decoded from posterior parietal and primary sensory areas, but not 

from the PFC (D’Esposito & Postle, 2015). Predominantly using visual stimuli as 

to-be-remembered samples, MVPA studies have shown primary sensory and 

posterior parietal regions to reflect content-specific WM representations for 

several stimulus features such as color (Serences, 2009; Christophel et al., 

2012), orientation (Harrison & Tong, 2009) and motion (Riggall & Postle, 2012). 

These findings are commensurate with sensory recruitment theory, which 

proposes that the same systems and representations responsible for the 

perception of information also contribute to short term maintenance of that 

information (Pasternak & Greenlee, 2005; for review see D’Esposito & Postle, 

2015).  
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More recently, the distributed account of WM provided a synthesis of these 

two seemingly contradictory theories of the neuronal mechanisms of WM (Lee 

& Baker, 2016; Christophel et al., 2017). According to Christophel and 

colleagues (2017), instead of one dedicated system or location for WM 

maintenance, WM representations are distributed across the cortical 

hierarchy. According to this account, the PFC maintenance and sensory 

recruitment theories could be seen as compatible with the multicomponent 

model of WM, having a modular maintenance area in the brain. However, the 

distributed account of WM seems to be incompatible with the suggestion that 

there is a designated maintenance location in the brain (Lee & Baker, 2016; 

Christophel et al., 2017). In particular, the distributed account of WM proposes 

that the location where WM information is retained depends on the level of 

abstraction or the functional use of that information (Christophel et al. 2017). 

Namely, if a sensory feature of the information is used for the behavioral goal, 

information is maintained in a sensory-specific format and likely in the sensory 

areas of the brain. In contrast, more abstract stimulus properties are retained 

in higher cognitive brain regions in a modality and format independent, 

abstract form (Christophel et al., 2017). Abstract quantity information, which 

can be represented in different formats according to the functional need, is the 

optimal feature to test whether WM representations are distributed across the 

cortex. As tokens of abstract quantities, I used frequency and approximate 

numerosity for memorized content.  
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1.2 Parametric working memory research 

In introducing the uses of quantities in research on the neural correlates of 

WM, I will provide an overview of parametric WM research. First, I will start 

with unimodal and multimodal NHP studies, which were the pioneers of 

neuronal research of WM using non-symbolic quantities as memoranda. Next, 

I will go on to explain non-invasive human studies of parametric WM. In doing 

so, I will point out directions for future work on the topic.  

 

1.2.1 Extracellular recordings in nonhuman primates  

The first experiments combining extracellular recordings with psychophysical 

measurements made use of flutter stimuli (Werner & Mountcastle, 1965; 

Mountcastle et al., 1967; for a review see Romo & Salinas, 2003). In the 

pioneering studies of Mountcastle and colleagues, NHPs are required to 

compare two flutters separated from each other by a time delay. A flutter is a 

sense of vibration at a frequency between 5 Hz and 50 Hz (Mountcastle et al., 

1967). The task requires the subject to compare the perception of the second 

stimulus to the memory trace left by the first one. The studies investigated the 

neuronal underpinnings of flutter encoding and retention (Mountcastle et al., 

1990).  Crucially, this task enables the study of where and how the vibrotactile 

frequency is retained in the brain while participants keep the first frequency in 

memory. Moreover, the task is a parametric WM task in the sense that the 

subject has to remember a scalar analog value of the flutter stimulus, a 
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continuous parameter (Romo et al., 1999). In their seminal study, Romo and 

colleagues (1999) also used the vibrotactile variant of this task and recorded 

from single cells in monkey PFC. This revealed that the firing rates of the right 

prefrontal neurons during WM maintenance are parametrically modulated as 

a monotonic function of the remembered frequencies (for review see Romo & 

de Lafuente, 2013). These findings were also replicated in single and population 

cell recordings in other studies (Brody et al., 2003; Barak et al., 2010; Hernández 

et al., 2010). Brody and colleagues (2003) extended the findings of monotonic 

encoding of the memorized stimulus with a time component. They found that 

in addition to the parametric coding, firing rates of most neurons in the inferior 

convexity of the PFC also systematically varied with time. Later, Barak and 

colleagues (2010) continued this line of research with cell population analysis 

and showed that the frequency sensitivity of the population state varied over 

delay period. That is, although sensitivity to memorized frequency decreases 

around 600 ms after stimulus presentation, it starts to increase after that time 

point until the end of the delay period. Additionally, testing frequency-selective 

activity in the primary somatosensory cortex, Salinas and colleagues (2000) 

showed that the neurons in the primary somatosensory cortex (S1) respond to 

the stimulus during perception but do not show any significant content-specific 

activity during retention. The combined results suggest that parametric tactile 

WM information is maintained in prefrontal brain regions instead of primary 

sensory ones (Romo & de Lafuente, 2013).  

19



 

To assess whether this parametric representation in the PFC is specific to the 

tactile domain, investigation was extended to the auditory modality. In the 

auditory domain, neural firing rates in the ventral premotor cortex (PMC) have 

also been shown to reflect the remembered auditory frequency. The firing rate 

of PMC neurons are similarly parametrically increasing or decreasing as a 

monotonic function of the remembered frequency (Lemus et al., 2009a). In 

parallel to tactile studies, auditory WM representations were also investigated 

in the primary auditory area (A1) (Lemus et al., 2009b). Lemus and colleagues 

found that A1 was exclusively associated with sensory processes: neuronal 

activity did not vary with memorized frequency when acoustic flutter stimuli 

were memorized, extending conclusions from tactile WM studies to the 

auditory domain.  

Parametric WM representations in the frontal regions for both tactile and 

auditory modalities led to a research question regarding the supramodality of 

these representations. Vergara and colleagues (2016) addressed the question 

of whether there is a supramodal code for parametric WM representation. In 

particular, they investigated whether the same neurons encode tactile and 

auditory parametric WM regardless of sensory modality, and if so, how. In an 

auditory-tactile cross-modal DMTS task, NHPs had to memorize the frequency 

of either an auditory flutter or a tactile vibration and compare it to a test 

stimulus either of the same or a different sensory modality (Vergara et al., 

2016). The study demonstrated that the firing rate of neurons in a substantial 

part of the pre-supplementary motor area (pre-SMA) uses the same parametric 

20



 

code while representing WM information for both tactile and auditory 

frequencies. That is to say, frequencies are represented independently of their 

sensory modality, by a supramodal parametric WM code in the pre-SMA. This 

supramodality is argued to be an indicator that a quantity representation is an 

abstract one since the representation format is not modality dependent and 

not a sensory one (Vergara et al., 2016). Research on NHPs raised the question 

of whether the same mechanisms could also be found in humans.  

 

1.2.2 Non-invasive human studies 

Since humans and NHPs are similar in their ability of discriminate frequencies 

(Romo et al., 1999), paradigms from NHP research can be used in work with 

humans. Our understanding of how scalar analog values are represented in WM 

has been extended by using these same paradigms with 

electroencephalography (EEG) and magnetoencephalography (MEG) in 

humans (Spitzer et al, 2010; Spitzer and Blankenburg, 2011; von Lautz et al., 

2017; Ludwig et al., 2018). In line with NHP findings, human EEG studies also 

show that brain activity during the retention period in the right lateral PFC is 

modulated as a monotonic function of the memorized frequency. More 

specifically, the upper beta signal (20 – 25 Hz) is source-localized to the right 

inferior frontal gyrus (rIFG) (Spitzer & Blankenburg, 2011). In a similar vein, a 

recent MEG study (von Lautz et al., 2017) revealed that beta power in the rIFG 

monotonically increases with the remembered frequency, whereas gamma 

power monotonically decreases. 
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Parallel to NHP research, nvestigation has been extended to multiple 

modalities in human EEG (Spitzer & Blankenburg, 2012; von Lautz et al., 2019). 

Spitzer and Blankenburg (2012) presented participants with DMTS tasks using 

visual, tactile and auditory frequencies. In comparison to typical NHP 

experiments, human volunteers performed three separate WM tasks, each of 

them within a particular sensory modality. As in the findings of tactile 

parametric WM, in all three sensory modalities, upper beta oscillation in the 

right lateral PFC was parametrically modulated by the remembered frequency. 

Collectively, these results indicate supramodal frequency representations in 

the rIFG during the WM retention period in humans just as in NHPs (c.f. Spitzer 

and Haegens, 2017). 

Until recently, human fMRI studies of parametric working memory have been 

performed with univariate analysis (Preuschhof et al., 2006; Kostopoulos et al., 

2007; Spitzer et al., 2014). In line with NHP and human EEG/MEG results, they 

found sustained BOLD activity in the ventrolateral PFC (vlPFC), PMC, and S2. 

Although the results of univariate fMRI studies agree with the NHP and human 

EEG/MEG studies, it remains unclear whether such an encoding is content-

specific.  

Recently, to address this question, parametric WM research has been extended 

with an fMRI MVPA study using a vibrotactile WM task (Schmidt et al., 2017). 

The aim of this study was to identify brain regions that show spatially 

distributed activity patterns of vibrotactile WM. In agreement with the earlier 

NHP and human findings, they found frequency-specific information in the rIFG, 
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SMA and bilateral PMC. Here, the multivariate findings of frequency-specific 

information for tactile WM provided MVPA research with questions to address 

on parametric WM using multiple modalities. However, one should note that 

MVPA fMRI findings do not give any indication of the neuronal signal those 

brain areas carry. Contrary to NHP and EEG/MEG studies that measure the 

activity of neurons or neuron populations (Singer, 1999), fMRI measures the 

blood oxygen level dependent (BOLD) contrast (Logothetis, 2003). In studies 

related to cognitive functions of the brain, the stimulus-induced hemodynamic 

response in BOLD contrast is measured, which is not only related to neural 

activity but also to circulatory and metabolic changes (Logothetis, 2003). The 

hemodynamic response is also delayed by around two seconds, slowly reaching 

a plateau after six to 12 seconds and returning to baseline with the same timing 

(Logothetis, 2003). However, unlike pairwise classification techniques, support 

vector regression (SVR) analysis depicts the distributed brain activities brain 

reflecting a parametric change in the memorized content instead of a 

categorical change, albeit indirectly (Kahnt et al., 2011). Therefore, MVPA 

reflects brain activity showing parametric content. 

 

1.3 Approximate numerosity research 

In addition to parametric WM studies, neural correlates of quantity 

representations during retention have been investigated for a different 

presentation format, namely numerosity. In this sense, approximate 

numerosities, which like frequencies are non-symbolic, are ideal for 
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researching their WM mechanisms in parallel to the established parametric 

WM literature. To allow a better understanding of approximate numerosities, I 

will review the literature on the neural correlates of approximate numerosity 

perception and point out the potential gaps in our present knowledge.  

 

1.3.1 Approximate number system 

Numbers of objects can be perceived by humans in different formats (Piazza et 

al., 2006). Whereas counting and most algebraic operations rely on language 

or symbolic representations of precise numbers, the ability to quantify amount, 

size, length or other analog stimulus properties can be performed non-

symbolically, independently of language (Dehaene et al., 1992; Spitzer et al., 

2014b). The cognitive system underlying such non-symbolic representations of 

numerosity has been termed the approximate number system (ANS) (Gallistel 

& Gelman, 1992; Dehaene, 2011).  

While numerosity is a discrete stimulus property, the ANS performs an 

approximation of a given numerosity and thereby estimates an analog 

property. In contrast to the symbolic mental representation of numbers as 

categories, the ANS representation is argued to resemble representation of 

analog scalar values; e.g. frequencies, stimulus length, intensity (Dehaene, 

1997; Piazza et al., 2004; Piazza et al., 2006; Nieder and Dehaene, 2009; Piazza, 

2010, Spitzer et al., 2014a). Approximations of numerosities are used when 

counting or an immediate recognition of a numerosity is not possible. 
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Specifically, it has been shown that very small numbers can be effortlessly 

identified without counting and are thus represented as discrete values, a 

phenomenon which is known as subitizing (Kaufman et al., 1949). If the number 

of items exceeds the subitizing threshold, counting is required to determine the 

exact amount. When there is insufficient time for counting, the ANS is thought 

to approximate the quantity in a fast and efficient manner.  

The functional anatomy of the ANS has been extensively characterized by 

substantial research on NHPs and humans (for reviews see Eger, 2016; Nieder 

2016; Knops, 2017). The dominant theory in ANS research proposes a 

frontoparietal network comprised of vlPFC and the intraparietal sulcus (IPS) in 

the PPC to be involved in the approximation of quantities (Dehaene et al., 2003; 

Piazza et al., 2004; 2007; Cantlon et al., 2006; 2009; Jacob and Nieder, 2009; 

Nieder, 2012; 2016; Knops and Wilmes, 2014). Specifically, in NHPs, the tuning 

curves of neurons in the PFC and in the PPC respond to certain numerosities 

(Nieder and Miller, 2004; Nieder and Merten, 2007). These findings suggest 

that the fronto-parietal network encodes estimated numerosities during 

perception. 

Interestingly, in humans, it appears that the IPS serves as the principal host of 

the ANS system (Dehaene et al., 2003; Eger et al., 2009 for reviews see Knops, 

2017 and Eger 2016). fMRI investigation demonstrates that the IPS responds to 

perceived numerical stimuli (Jacob and Nieder, 2009; Eger et al., 2009). 

Additionally, the IPS has been shown to be partially format independent (Arabic 

numerals vs. sets of dots) in coding numerosities (Eger et al., 2009; for a review 
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see Knops, 2017). The IPS is not the only region related to the ANS. Piazza and 

colleagues (2006) revealed a right lateralized frontoparietal network consisting 

of right intraparietal cortex, right dorsolateral PFC (dlPFC) and right premotor 

cortex (PMC) for numerosity estimation in humans. Moreover, it has been 

shown in NHP studies that numerosity is first extracted in the IPS and then 

amplified in the PFC (Nieder, 2016; Eger, 2016). Hence, the research so far 

suggests that there is a dedicated fronto-parietal numerosity network in the 

brain, in which the IPS is the first region to process the number information 

(Eger, 2016).   

 

1.3.2 Numerosity working memory 

The ANS literature is primarily focused on perception. Indeed, only a few NHP 

studies have investigated WM representations of approximate quantities (for a 

review see Nieder, 2016). In line with results from ANS perception studies, a 

fronto-parietal network consisting of the PFC and IPS is shown to exhibit 

numerosity-selective activity during WM (Jacob et al., 2018). Furthermore, the 

frontoparietal cortex has been found to code for the memorized numerosity in 

a supramodal fashion (Nieder, 2012). Unlike parametric WM, the neurons 

coding for numerosity use a labeled line code tuned to preferred numerosities 

(Nieder, 2012), instead of a summation code that varies monotonically with the 

remembered frequency (Romo et al., 1999). Interestingly, in contrast to 

perception, PFC is more closely linked to numerosity during WM delay (Nieder 

et al., 2002; Nieder et al., 2003; Nieder and Miller, 2004). In particular, a greater 
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proportion of numerosity selective neurons in the lateral PFC exhibit stronger 

tuning to numerosity than those in the IPS during WM retention (Nieder and 

Miller, 2004; Tudusciuc and Nieder, 2009; Nieder, 2016).  Moreover, neurons 

in the IPS respond to numerosity earlier than those in the PFC, and the latency 

of IPS neurons is shorter (Nieder and Miller, 2004). Thus, the results indicate a 

numerosity information flow from the IPS to lateral PFC (Nieder and Miller, 

2004). 

To the best of my knowledge, only a single study has focused on the WM 

representation of numerosity in humans, although some approximate 

numerosity perception studies have used WM-related paradigms during ANS 

perception studies (e.g., Eger et al., 2009). Spitzer and colleagues (2014) probed 

the oscillations underlying multimodal WM representations by training 

participants to estimate numerosity from sequential auditory, visual and tactile 

stimuli. They identified strong and long-lasting alpha oscillations in the PPC 

reflecting WM load. Moreover, in line with NHP results, beta-band activity in 

the right PFC shows numerosity-selective modulation, indicating numerosity 

representations during WM retention (Spitzer et al., 2014). Therefore, NHP 

studies and the sole human EEG study both suggest that lateral PFC encodes 

numerosity information in WM. However, the small number of studies on 

numerosity WM and the lack of fMRI experiments represent a gap in the 

literature regarding the location of brain regions coding for numerosity in WM. 

Importantly, the spatial specificity of fMRI could provide significant insights in 

investigating the location of numerosity WM mechanisms.  
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1.4 Aims of the thesis 

The primary goal of the work presented in this thesis was to extend the fMRI 

MVPA research on parametric WM to multiple modalities and other quantity 

formats. To this aim, together with my colleagues, I conducted fMRI MVPA 

experiments addressing the following questions: First, in a unimodal and 

bimodal MVPA analysis, I searched for auditory WM representations in the 

brain and asked whether there are brain areas carrying information in both 

tactile and visual domains. Second, with a cross-modal task, I tested for brain 

regions carrying modality independent WM representations for the 

frequencies in visual and tactile sensory modalities. Finally, I investigated brain 

regions underpinning content-specific representations for a higher level 

abstract quantity: numerosity.  

Based on the empirical evidence I collected, I argue that the WM 

representations are distributed through the cortical hierarchy. I present 

evidence that that the quantity information that can be represented in both 

sensory-specific and abstract format will be carried in sensory regions for 

modality-dependent representations and in higher cortical regions for modality 

and format independent representations. 
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2 Summary of Experiments 

In this chapter, I summarize the three empirical studies that form this 

dissertation. In all of the studies a DMTS paradigm is used that is adapted to 

the needs and research question of the particular study. In the first two 

experiments, frequencies are used as memoranda, whereas the last study uses 

tactile numerosities as memoranda. In all of the studies, fMRI data was 

acquired and analyzed with a searchlight MVPA method. We used an SVR 

procedure in this analysis.  

 

2.1 Study 1: Parametric auditory versus tactile working memory 

The NHP and human EEG and MEG studies probing neural correlates of 

parametric WM (Spitzer et al., 2011; 2012; Vergara et al., 2016; von Lautz et al., 

2017; for a review on NHP research see Romo & de Lafuente, 2013) were 

extended to multivariate analysis methods in vibrotactile stimuli (Schmidt et 

al., 2017). In the vibrotactile WM experiment, the DMTS paradigm that was well 

established in NHPs (for a review see Romo and Salinas; 2003) and humans (cf. 

Spitzer et al., 2010; Spitzer and Blankenburg; 2011; 2012; von Lautz et al., 2017) 

were used. Further extending the investigation into another sensory domain, 

we conducted an auditory WM experiment collecting human fMRI data. We 

then compared the results of the auditory WM experiment to an earlier tactile 

WM dataset (Schmidt et al., 2017). Therefore, we searched the unimodal and 

bimodal frequency-specific representations of WM. In this regard, we explored 
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the multimodal aspects of parametric WM in addition to the modality-

dependent aspects. We thereby investigated whether the vibrotactile WM 

decoding found in the PFC (Schmidt et al., 2017) in contrast to a large body of 

visual WM MVPA studies (Serences et al., 2009; Christophel et al., 2012; 

Harrison and Tong, 2009; Riggall and Postle, 2012) was due to the difference in 

sensory modality. Another plausible explanation would be that the discrepancy 

is a result of the quantitative, abstract nature of frequency stimuli.  

In Study 1, we conducted a DMTS task with auditory flutters as to be 

remembered stimuli. Study 1 used the same paradigm that is used in the 

vibrotactile WM decoding study (Schmidt et al., 2017). In this way, we could 

directly compare the results of Study 1 to the earlier vibrotactile findings 

(Schmidt et al., 2017). Similar to the tactile WM study, the experimental design 

of the auditory WM study comprised the presentation of two sequential 

auditory flutter samples followed by a retro-cue indicating the to-be-

remembered frequency. A constant 1 kHz auditory mask accompanied the 

retro-cue. The retro-cue paradigm was useful in dissociating WM related 

activity from sensory residuals (Harrison and Tong, 2009). As in the earlier 

paradigm, four different auditory frequencies were presented as memoranda 

equally often in a randomized order. Following a 12 second retention period, 

two test stimuli were presented in a two-alternative forced choice task. One of 

the two test stimuli was identical to the sample frequency. The alternative foil 

was determined with a Weber-Fechner function. I collected 20 human fMRI 

datasets during this WM task.  
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In line with the earlier experiment, we used whole brain searchlight MVPA to 

depict the spatially distributed activity patterns carrying frequency-specific 

WM content. To this end, we employed a whole brain searchlight protocol, 

which is an assumption free analysis testing whole brain voxel by voxel for 

parametric WM representations (Kriegeskorte et al., 2006). To compare the 

findings of this study with earlier findings from recent parametric working 

memory MVPA studies, we employed the support vector regression (SVR) that 

the earlier tactile WM study used instead of a widely used pairwise 

classification method. The method was employed because SVR predicts the 

value of a variable continuously rather than a single specific class label. Thus, a 

linear ordering of values is expected in a successful decoding (Kahnt et al., 

2011). 

I found a fronto-parietal network comprising right IFG, SMA and bilateral PMC 

in the PFC and the IPL, the bilateral SPL in the posterior parietal cortex (PPC), 

and the PCC exhibiting auditory parametric representations during WM 

retention. Also, clusters in the bilateral superior temporal gyrus (STG) 

extending into the association auditory areas (TE3, as identified in Morosan et 

al., 2005) in the temporal cortex showed frequency-selective activity patterns. 

An additional conjunction analysis across vibrotactile WM data (Schmidt et al., 

2017) revealed that prefrontal areas, right IFG, SMA and bilateral PMC code 

frequency information for not only auditory but also tactile stimuli. 

Interestingly, the results of our conjunction analysis not only agree with the 

MVPA data described earlier but also with earlier parametric WM studies of 
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NHP and human EEG (Vergara et al., 2016; Spitzer and Blankenburg, 2012). 

Therefore, our results suggest a shared prefrontal network of parametric WM 

for multiple modalities. Additionally, the content-specific information in the 

auditory and posterior parietal areas hints at modality specific representations 

in those brain regions. 

 

2.2 Study 2: Visual tactile cross-modal working memory 

Study 1 extended the vibrotactile fMRI MVPA research into another sensory 

domain. In Study 2, we further investigated the multimodal nature of 

parametric WM with a visual-tactile cross modal WM task. In this task, 

participants did not only do a visual-visual or a tactile-tactile task, rather the 

design allowed us to compare the sample stimulus in one modality to a test 

stimulus in the other one. Our aim was to test whether PFC, and especially rIFG, 

carries modality independent frequency-specific WM representations. The 

cross-modal nature of the task enabled us to further investigate whether these 

regions use a generalized multivariate WM code across both sensory 

modalities. We managed this by making sure that the participants did not know 

which modality to compare the memorized content with. Thus, they were 

encouraged to use abstract quantity representations instead of sensory-

specific ones.  

To this end, we again conducted a DMTS task in which a visual flicker and a 

vibrotactile stimulation were simultaneously presented as sample frequencies. 
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The presentation of two samples was followed by a retro-cue to indicate the 

frequency in which modality was to be remembered. Visual and tactile masks 

were also applied to disentangle the memory related activity from perceptual 

residues (Harrison & Tong, 2009; Sperling, 1960). A six second delay period was 

followed by a single visual or tactile test frequency for participants to judge 

whether the test frequency was higher or lower than the remembered sample. 

The interesting aspect of the experiment was that the sensory modality of the 

test frequency did not match the modality of the sample in half of the trials. As 

a result, the participant could not form a sensory-specific representation 

already in the retention period to compare with the test stimulus. The order of 

trials was randomized. This ensured that the participants did not know whether 

they would compare the sample frequency within its original modality or not. 

Twenty participants were scanned while performing the WM task. For the sake 

of consistency and comparability, we used the same whole brain searchlight 

MVPA with an SVR classifier that we used in Study 1. In this study, we addressed 

two questions. We first asked whether memorized tactile and visual 

frequencies were represented in the same brain regions. If that were the case, 

the second question addressed was: would the neural substrates of memorized 

tactile and visual frequencies rely on a modality independent WM code? We 

hypothesized that the frontal regions found in Study 1, i.e. rIFG and SMA, would 

also represent visual and tactile frequencies irrespective of sensory modality.  

In line with the results of Study 1, a conjunction analysis across visual and tactile 

frequencies revealed a fronto-parietal network consisting of rIFG and pre-SMA 
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in the PFC and IPL, IPS, SPL in the PPC, and PCC. Additionally, we found bilateral 

PMC carrying parametric visual WM information. Our findings not only agree 

with Study 1, the frontal regions coding for both visual and tactile frequencies 

are also in line with the earlier NHP and human EEG/MEG literature (Vergara et 

al., 2016; Spitzer et al., 2012). Furthermore, similar to the auditory frequency 

WM findings in Study 1, we found frequency specific visual and tactile WM 

representations in their respective sensory areas. It is important to note that in 

both Study 1 and 2 the sensory areas coded for the frequencies in their 

respective modalities. These results indicate a modality dependent frequency 

representation in sensory brain regions.  

In addition to within-modality and conjunction analysis, we also conducted a 

cross-modal classification analysis on the data from Study 2. The aim was to 

test for a modality-independent WM code for frequency representations. 

However, our cross-modal classification analysis did not yield any significant 

results for either tactile-to-visual or visual-to-tactile decoding. These results 

were unexpected as NHP and human EEG studies found a supramodal 

parametric WM code in the PFC (Vergara et al., 2016; Spitzer and Blankenburg, 

2012). However, the relatively coarse spatial resolution of fMRI data might lead 

to a lack of access to the information by MVPA that can be easily picked up at 

the level of single neurons (Ester et al., 2016; see also Leavitt et al., 2017). 

All in all, Study 2 agreed with the results of Study 1 and together they suggest 

a common fronto-parietal network for frequency representations in all three 

modalities and modality dependent WM coding in sensory brain regions. This 

34



 

agrees with the account of distributed WM in which the higher cognitive brain 

regions maintain higher level information (Lee and Baker, 2016; Christophel et 

al., 2017).  

 

2.3 Study 3: Working memory of approximate numerosities 

After our investigation of modality independent parametric WM, we naturally 

took our investigation to a more abstract quantity format, namely numerosities 

(see Nieder, 2017). In Study 3, we aimed to discover the brain regions 

representing approximate numerosity information. As with parametric WM 

studies, we hypothesized that we would find numerosity-specific information 

in the PFC.  

To make the data more comparable to parametric WM studies, we kept the 

experimental design – including the WM delay period – as similar as possible to 

the one used in Study 1, apart from using four numerosities instead of 

frequencies. To prevent fusion of the single pulses together in the pulse 

sequences, however, we had to use longer stimuli in Study 3. Additionally, to 

dissociate the stimulus numerosity from stimulus duration or frequency we 

used four different stimulus durations in total. In this way we aimed to mitigate 

the confounds for the WM representations that depend on other quantitative 

or sensory features of the stimuli such as rhythms, sound patterns or duration. 

We recorded fMRI data from 30 participants while they performed the 

numerosity WM task. As before, we used the same multivariate analysis 
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method to preserve the comparability of results. Using this method, we aimed 

to localize brain regions maintaining approximate number WM content. Based 

on previous studies (e.g., Spitzer et al., 2014a; Nieder, 2016; Uluç et al., 2018; 

Wu et al., 2018), we hypothesized that the content would be represented in 

frontal regions, specifically the right PFC.  

The SVR MVPA analysis revealed numerosity-specific WM responses in the left 

PMC, left middle frontal gyrus (MFG), left superior frontal gyrus (SFG) extending 

into bilateral supplementary motor areas (SMA), right SFG extending to the 

right frontal pole and right MFG extending into the pars triangularis of the right 

IFG. As in Studies 1 and 2, Study 3 also agreed with NHP studies showing 

numerosity selective neuronal activity in the PFC. Additionally, we found 

activation of similar brain regions, i.e. rIFG, SMA and left PMC, to frontal regions 

of the modality independent parametric WM network in Studies 1 and 2. To 

conclude, all three studies combined gave us more evidence for the distributed 

nature of WM mechanisms. Using the most abstract quantity among the three 

studies, we found only brain areas in the PFC coding for numerosity WM.  
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3 General Discussion 

The goal of my empirical work in the current dissertation was to investigate 

how abstract numerical quantities are represented in the human brain during 

WM retention. Here, this question was addressed by three fMRI decoding 

studies using a delayed discrimination paradigm that has been well-established 

in WM research (Mountcastle et al., 1990; Romo & de Lafuente, 2013; Nieder, 

2016).  

Extending earlier parametric WM studies (Romo & de Lafuente, 2013; Spitzer 

& Blankenburg, 2012; Schmidt et al., 2017), Studies 1 and 2 investigated which 

brain regions carry frequency information that is presented in auditory, visual 

and tactile sensory modalities (Wu et al., 2018; Uluç et al., 2018). This was done 

by testing for content specific, spatially distributed activity patterns across the 

whole brain from the data that was acquired during either an auditory or a 

visual-tactile cross modal WM task. First, the data was analyzed within a 

sensory modality. Then, the results were compared across modalities to test 

for a shared mechanism maintaining content-specific WM information for all 

modalities. More specifically, Study 1 addressed the questions of the auditory 

modality specific aspects of frequency representations. Additionally, in 

conjunction with an earlier collected dataset (Schmidt et al., 2017), this study 

set out to identify brain regions encoding not only auditory but tactile 

parametric memoranda (Uluç et al., 2018). In a further investigation, in Study 

2, we tested whether there was a supramodal mechanism coding for 

frequencies in an abstract manner independent of the sensory modalities (Wu 
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et al., 2018). To this aim we used a cross modal visual-vibrotactile frequency 

DMTS task to decode frequency representations. Additionally, we conducted a 

cross modal whole brain decoding on the collected fMRI data to search for a 

supramodal parametric code. In Study 3, as a natural next step, we continued 

our research in a more abstract quantity format, namely approximated 

numerosities. Study 3 examined which brain regions carried numerosity-

selective information during WM maintenance to see if they matched the 

regions showing parametric WM representations (Uluç et al., under review). 

Again, we performed a whole brain MVPA searchlight analysis with a SVR 

procedure to differentiate between four memorized tactile numerosities. 

Collectively, our findings indicated distributed representations of WM 

memoranda maintained across the cortical hierarchy (for a detailed discussion 

see Lee & Baker, 2016 and Christophel et al., 2017). Specifically, we found 

sensory modality-dependent information in sensory cortices for frequency-

specific content. On the other hand, frequency-specific WM content was 

represented by a shared fronto-parietal network for auditory, visual and tactile 

modalities. Furthermore, the same frontal regions, especially right IFG, SMA 

and PMC, carried both numerosity and frequency memoranda. Here, I will 

argue that the WM representations of abstract quantities are not found in one 

brain region, but rather distributed across a network. Also, there is a prefrontal 

network for the retention of abstract quantities that is independent of sensory 

modalities or the presentation format of the quantity information. I will argue 

that this network is a part of a whole brain WM system engaging brain regions 
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depending on the functional use of the to-be-remembered information. On this 

account, I will first discuss the brain regions that are shared by both parametric 

and numerosity WM representations. In this sense, I will explore whether there 

is an abstract quantity code in WM retention independent of format and 

modality. Additionally, I will address the question of whether modality 

dependent frequency representations in sensory areas and modality 

independent representations in prefrontal and parietal regions show that WM 

information can be maintained in different representation formats. 

 

3.1 Abstract quantity codes in frontal brain regions 

Our major finding in all three studies is that a frontal network comprised of 

right IFG, SMA and PMC shows content-specific brain activity for WM 

representations of quantities (Uluç et al., 2018; Wu et al., 2018., Uluç et al., 

under review). Here, the frontal network is shared by not only multiple sensory 

modalities but also multiple formats for presenting quantities, i.e. frequencies 

and numerosities, in all three studies. Said frontal brain regions have also been 

found in parametric WM studies, the majority of which are NHP and human 

EEG/MEG studies (Romo and de Lafuente, 2013; Vergara et al., 2016; Spitzer 

and Blankenburg, 2011; 2012; von Lautz et al., 2017; see also the fMRI MVPA 

study on vibrotactile WM Schmidt et al., 2017). Additionally, numerosity WM 

studies of NHPs and human EEG have also shown that same brain regions carry 

numerosity-specific information (Spitzer et al., 2014a; for a review of NHP 

studies see Nieder, 2016).  
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The major findings of our three studies provide compelling evidence for the 

distributed account of WM. In an account that suggests that sensory cortices 

encode low-level sensory information and higher cognitive regions represent 

more abstract, categorical WM content, a frontal network coding for abstract 

quantities is expected (Christophel et al., 2017). As the values can be 

represented in a modality and presentation format independent manner, the 

stimuli are likely stored as abstract quantities (Nieder, 2016; Vergara et al., 

2016; Walsh, 2003). In this sense, the stimuli that are used in our studies, i.e. 

scalar (Romo et al., 1999) and analog (Dehaene, 1992) quantities, are derived 

from different sensory modalities and presented in different formats. The 

quantities that are in different sensory modalities and presentation formats 

permits the possibility of brain forming abstract representations, hence 

enabling us to address the question of higher level representations.  

NHP and human EEG studies also used these abstract quantities to investigate 

a supramodal code in WM encoding. The notable gap in these EEG and NHP 

studies is that they cannot provide a spatially fine-grained whole brain 

approach to discover the locations of WM representations in the brain. 

Parametric WM research with fMRI MVPA has so far only used vibrotactile 

frequencies, hence more investigation in other modalities and different 

quantity presentation formats was needed. As a first step, our results thereby 

extend the frontal network that is discovered for vibrotactile WM in human 

fMRI (Schmidt et al., 2017) to auditory, visual and visual-tactile cross modal 

tasks. Later, the investigation has been taken to another format of presentation 

40



 

to be tested in not only different modalities but different types of abstract 

quantities. To this end, we performed a delayed discrimination task with 

approximate numerosities as to-be-remembered samples. Additionally, there 

are very few numerosity WM studies even in NHP neurophysiology or human 

EEG (Nieder, 2016., Spitzer et al., 2014a) and univariate analysis methods that 

depict overall mean activation instead of the combinatorial aspects of voxel 

activity has been used (for discussion of multivariate vs. univariate analysis see 

Haynes, 2015; also Hebart & Baker, 2018). Therefore, we provided spatially 

finer grained, whole brain human fMRI results in a multivariate analysis format. 

The difference of multivariate analysis techniques to univariate ones is that 

multivariate techniques are sensitive to multidimensional representations, 

unlike univariate analyses that identify magnitudes of activity in the brain 

(Peacock and Postle, 2012; Davis et al., 2014). In particular, multivariate 

techniques are sensitive to the combinatorial aspects of voxel activity (Haynes, 

2015). In contrast, univariate analysis methods test for the mean activation of 

single voxels (Davis et al., 2014). Therefore, MVPA analysis makes it possible to 

address content-based processing (Haynes, 2015). However, fMRI and the 

BOLD contrast are indirect measures and represent the activity of large scale 

neural populations. Therefore, it is difficult to relate such changes to direct 

neural codes. Thus, caution should be taken when interpreting these results in 

the neuronal level (Haynes, 2015).  

Moreover, the cross-modal classification analysis we conducted between 

tactile and visual frequencies did not yield any significant results. The lack of 
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results can be interpreted as distinct mechanisms of frequency maintenance 

for different sensory modalities. The NHP and EEG studies, however, provide 

evidence against this interpretation (Spitzer and Blankenburg, 2012; Vergara et 

al., 2016). Furthermore, fMRI lacks the spatial resolution to enable decoding of 

the state of a given small populations that might carry the supramodal code 

that NHP and EEG studies have picked up on (Serences, 2016). But, this 

explanation does not eliminate the possibility of distinct mechanisms for 

memorizing frequencies in different sensory modalities. 

To be more specific, the shared network for both parametric and numerosity 

WM does not necessarily show that the code is a result of the same modality 

and format independent neural code. In fact, it was shown that the neural 

codes for numerosity and parametric WM are different in nature (Nieder, 

2017). More specifically, frequencies are represented in a summation code 

where the neuronal activity varies with the memorized frequency in a 

monotonic function. In contrast, the neurons responding to numerosities use a 

labeled line code, where a neuron that is tuned to a certain numerosity has a 

maximum discharge rate at that particular numerosity (Nieder, 2017). 

However, it should be noted that the results are replicated in a human EEG 

study. As NHP are also extensively trained, both frequency and numerosity 

information might have been already categorized (Nieder, 2017) and hence the 

activity of neurons might relate to categorical representations of quantities. 

Humans, having not been trained as much, might not use other strategies and 

representations than the established categories. Moreover, it is also noted 
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that, in NHPs, as much as the neural code could be different for the different 

value formats, the difference might stem from the different demands of the 

different WM tasks (Nieder, 2017). Indeed, network simulations propose 

summation codes in a comparison tasks, and labeled line code in match-to-

sample tasks (Verguts, 2007). Hence, our results show similar networks for 

parametric and numerosity WM, provide more reason to explore the 

numerosity and parametric WM with tasks that have the same task demands 

in NHPs in these areas.  

 

3.2  Modality independent parametric working memory codes within 

fronto-parietal network 

Diverging from the numerosity WM results (Uluç et at., under review) in Study 

3, parametric WM representations in both Study 1 and 2 were distributed 

across the cortex also in IPL, IPS and PCC for auditory, visual and tactile 

frequencies (Uluç et al., 2018; Wu et al., 2018). The results of Studies 1 and 2 

show modality independent representations in the parietal regions resulting in 

a fronto-parietal network for parametric WM (Wu et al., 2018). However, the 

results regarding parietal regions in the modality independent fronto-parietal 

network that we found in Studies 1 and 2 do not extend to show any 

numerosity-specific content. The lack of content-specific representations in the 

PPC during numerosity WM opens a number of questions as to whether they 

represent abstract quantity content.  
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A possible explanation for the said difference in representation in the PPC could 

stem from the different mechanisms in the maintenance of numerosities and 

frequencies. As evidence for this hypothesis, numerosity and parametric WM 

studies found different neuronal codes in NHP studies for WM maintenance of 

these different quantity formats (labeled line codes for numerosities and 

summation code for frequencies). However, as explained above, the different 

task demands might favor different types of codes (Nieder, 2017).  Thus, it is 

not possible to conclusively propose that the different results for frequency and 

numerosity maintenance in the PPC is due to different codes or neuronal 

mechanisms in WM representation.  

Moreover, ANS perception studies in both NHP and humans do find numerosity 

selective activity in the PPC (for reviews, Nieder, 2016; Eger, 2016). Notably, 

during approximate number perception the regions carrying information were 

the frontoparietal regions comprising LPFC and IPS and IPL (Eger et al., 2009). 

However, the numerosity-selective activity during retention was observed in 

the prefrontal neurons rather than the neurons in the PPC (Nieder et al., 2003). 

On the other hand, one should note that the earlier parametric WM studies 

have not found frequency-selective brain activity in the PPC either (Romo & de 

Lafuente 2013; Vergara et al., 2016; Spitzer and Blankenburg, 2011; 2012; 

Schmidt et al., 2017). However, our studies with both within-modality and 

cross-modal tasks have found a frontoparietal network shared by visual, tactile 

and auditory modalities. The discrepancy between the earlier parametric WM 

studies and our studies could be due to the nature of the task. In Study 1, the 
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auditory flutters could also be represented in terms of auditory rhythm as well 

as a pure frequency. In the Study 2 on the other hand, the task is essentially a 

cross-modal comparison task. Therefore, the task itself is harder and requires 

vivid representations. In line with this interpretation, it has been shown that 

the higher level information activated the regions in the PFC during WM 

retention while the lower level context activated the regions in the PPC (Nee 

and Brown, 2013). 

Additionally, ANS perception studies with spatially and temporally distributed 

stimuli found stimulus specific perceptual representations in the PPC for 

spatially distributed stimuli but not for temporally distributed ones (Cavdaroglu 

& Knops, 2018). Hence, the null findings of numerosity memory content in the 

PPC might be a result of the presentation of numerosity stimuli temporally 

instead of simultaneously (Cavdaroglu & Knops, 2018). A similar numerosity 

discrimination task with spatially distributed stimuli could provide more 

informative results in this discussion. 

 

3.3 Modality dependent parametric working memory codes within sensory 

cortices 

The account of distributed nature of WM mechanisms for information 

maintenance (Lee and Baker, 2016; Christophel et al., 2017) is further 

strengthened by our findings in the Studies 1 and 2 (Wu et al., 2018; Uluç et al., 

2018). In Study 3 we used a numerosity that is represented in a more abstract 
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fashion than the ones in the Studies 1 and 2. In Study 3, the design ensured that 

participants were not to using the same physical patterns or frequencies but 

only the approximated numerosity as the WM content. In the earlier two 

studies, though, vibration or auditory or visual flutter stimuli could also be 

represented as more sensory features. Thus, in addition to numerosity- and 

frequency- specific WM representations in the frontal brain regions and 

parametric WM information in posterior parietal areas, we found frequency 

representations in auditory, visual and tactile sensory areas for the respective 

sensory modalities of presented stimuli (Uluç et al., 2018; Wu et al., 2018). 

Here, the important aspect of our findings is that the frequency-specific 

representations was decoded from the sensory region of the respective 

stimulus modality. It should be noted that the modality dependent parametric 

representations in sensory cortices are very much in line with the sensory 

aspects of frequency stimuli (Nieder, 2017). Nieder (2017) proposes that the 

frequencies are relatively sensory properties of stimuli whereas the numerosity 

is an abstract and absolute. Therefore, the findings of Studies 1 and 2 suggest 

that the information was represented not only in the PFC as an abstract 

magnitude but also in sensory cortices, complemented with sensory aspects of 

the stimuli (see Figure 1 for a schematic summary our findings on the 

topography of WM of abstract quantities). These representations are modality 

specific as frequency representations of one sensory modality is decoded only 

in the respective sensory area. All results of parametric WM experiments 

considered, the frequency representations during WM retention are shown to 
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be distributed across the brain and represented in different levels of 

abstraction.  

 

Figure 1: Topography of brain regions that exhibit content-specific activity for different types 

of abstract quantities. Findings of activations in the visual, auditory and somatosensory cortices 

provide evidence for modality-specific sensory representations. The IPS, IPL and precuneus 

exhibited parametric contents in tactile, visual and auditory modalities. The PFC retains 

information about content-specific representations for all sensory modalities as well as 

approximate numerosities.  

 

Importantly, the results of Study 1 and 2 showing WM representations in 

primary sensory areas are in contrast with the findings from NHP and human 

EEG/MEG studies (Romo & Salinas, 2003; Lemus et al., 2009a; Spitzer & 

Blankenburg, 2012; von Lautz et al., 2017). A possible explanation for this 

divergence might come from different task needs in the NHP and human 

studies. In the NHP electrophysiology WM studies, the training period is quite 

long making the task rather automatic and resulting in more categorical 

representations than in the tasks with human participants (Serences, 2016). 

The result is that the NHPs, when presented with the to-be-remembered 
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stimulus, use already formed categories rather than getting help from the 

sensory aspects of the presented stimulus (Serences, 2016). In contrast, human 

participants – having been subjected to less training than the well-trained NHPs 

– have less chance to form preconceived categories. Thus, human subjects are

expected to use more of other forms of representations during a WM task 

(Serences, 2016). 

Additionally, one should also note Studies 1 and 2 showed content-specific 

information in higher sensory areas, not in primary sensory areas. To give more 

detail, NHP studies are limited in their area of investigation while the 

searchlight decoding studies test the whole brain for the content-specific 

activity patterns. In this sense, the NHP studies recording single cell activities 

were mainly focused on the primary sensory areas in parametric WM research. 

As a result, they did not find any frequency selective spike activity in those 

primary sensory regions (Lemus et al., 2009a; Lemus et al., 2010). On the other 

hand, the whole brain searchlight MVPA revealed parametric WM 

representations not in primary but higher sensory areas (Wu et al., 2018; Uluç 

et al., 2018). Indeed, neural activity in the secondary somatosensory cortex has 

been shown to monotonically decrease or increase with the remembered 

frequency in early stages of the retention period (Hernández et al., 2010). 

Therefore, the findings of NHP electrophysiology studies may stem from the 

distinct spatial localizations of their recordings. However, despite the spatial 

limitations of NHP studies in terms of recording areas, human EEG/MEG studies 

have not also found any frequency-specific activation in sensory regions 
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(Spitzer et al., 2010; Spitzer & Blankenburg, 2012; von Lautz et al., 2017). 

Hence, the lack of evidence in other studies cannot be reduced to only the 

location of recording. There are, however, other possible explanations for this 

discrepancy.   

A possible explanation for the difference between human EEG and fMRI 

findings could be that the information is stored not by a summation code but 

by distributed firing patterns in sensory cortices. However, it should be noted 

that we use SVR to search for WM representations in the brain. SVR, as opposed 

to pairwise classifications methods that search for individual categories, treats 

the WM content as a continuous variable. Therefore, SVR MVPA also helps 

uncover parametric representations in the brain.  

Contrary to the findings of human EEG/MEG studies, we found frequency 

information in sensory cortices during WM retention in our studies. The 

discrepancy between human EEG/MEG and fMRI MVPA results can be 

explained with a difference in analysis methodology and the different brain 

signals they measure. Human EEG/MEG studies employ univariate analysis 

methods reporting a mean activation level (e.g., Spitzer & Blankenburg, 2012; 

von Lautz et al., 2017). On the other hand, fMRI MVPA studies are sensitive to 

the combinatorial aspects of voxel activity, thereby enabling the identification 

of spatially distributed activity patterns (Haynes, 2015). Earlier MVPA WM 

studies (Serences et al., 2009; Christophel et al., 2012; Harrison & Tong, 2009; 

Riggall & Postle, 2012) decoded WM information from primary sensory areas, 

while electrophysiology studies (Lemus et al., 2009b; Salinas et al., 2000) did 
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not find content-selective activity in these regions, reflecting the 

aforementioned differences between the studies and their design. 

To sum up, we found representations of quantity distributed across the brain, 

at different levels for different memorized features (see Figure 1 for a summary 

schematic of all results). Specifically, we identified frontal regions representing 

abstract quantity memoranda for multiple modalities and presentation 

formats. Significantly, the structures found as a main combinatory finding of all 

three studies are commensurate with findings from NHP studies (for reviews 

see Romo & de Lafuente, 2013; Nieder, 2016) and are also consistent with 

EEG/MEG studies (cf. Spitzer and Blankenburg, 2012; Spitzer et al., 2014; von 

Lautz et al., 2017) from both the parametric and numerosity WM domain. That 

our results span different value formats hints at a shared prefrontal WM 

network for abstract quantities. Additionally, the WM representations of 

frequencies were found in the PPC for multiple modalities but not for 

numerosity. This indicates an additional aspect of frequencies in the PPC that 

temporally presented numerosities do not share. Last, we found modality 

dependent representations in the sensory regions for frequencies. 

3.4 Limitations 

It should be noted that although we use a more sensitive analysis method for 

the fMRI data, we are still restricted by the limitations of the scanning method 

in terms of its resolution and the signal it measures. As one single voxel might 

include more than a million neurons, the information we can decode might be 
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underestimated at the voxel level (Haynes, 2015). Additionally, different 

regions of the brain might have different number of neuronal populations 

exhibiting a specific code, which would be overlooked by the multivariate 

analysis. Hence the sensitivity of the analysis might be different in distinct brain 

regions (Haynes, 2015).  

Moreover, the signal that fMRI measures is not a direct neural signal but a by-

product of the BOLD contrast, which can be affected also by circulatory and 

metabolic changes. Hence, the conclusions driven from the results of fMRI 

related analyses are not conclusively about the neural signal, but they are 

merely indications at a larger scale (Logothetis, 2003). 

Moreover, since the non-invasive techniques do not give any information on 

the actual neuronal code, we cannot conclusively suggest a modality and 

format independent WM code for abstract quantities. We have shown that 

both numerosities and frequencies are represented in a parametric fashion. 

However, we cannot conclude that the regions showing WM representations 

in different modalities and different formats use the same neuronal code in 

doing so. On the contrary, it should be noted that our cross modal decoding 

analysis did not yield any significant results in Study 2. This might be the result 

of different neuronal codes reflecting numerosity and frequency memoranda. 

On the other hand, it should be noted that the it is prefrontal regions that are 

subserving representations of frequencies in multiple modalities as well as. The 

neurons in the PFC have very fine-grained sampling patterns (Serences, 2016). 

Therefore, the reason we did not have significant cross-classification results 
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might be a matter of sampling. In conclusion, although NHP and human EEG 

studies have shown supramodal code for frequency maintenance (Spitzer & 

Blankenburg, 2012; Vergara et al., 2016), our method so far falls short of 

revealing supramodal representations in the brain. An interesting avenue for 

future work would be a replication of the experiment with smaller voxel size 

and testing for cross-modal decoding to see if smaller sampling affects the 

results. 

 

3.5 Outlook 

The empirical work presented in this dissertation was designed to investigate 

the neural correlates of WM representing abstract quantities. In doing so, we 

sought to test the distributed nature of WM representations in the brain. We 

started with fMRI MVPA research on parametric WM in different sensory 

modalities. Although the parametric WM research is exhaustively explored in 

the earlier literature and in our studies, the research in numerosity WM has 

been rarely explored before and there are still gaps in our understanding. As an 

obvious next step, the neural correlates of numerosity WM in other sensory 

modalities should be investigated. This way, more parallels between the 

parametric WM studies can be built and we can gain a more thorough 

understanding of the similarities and differences in WM mechanisms of both 

abstract quantities. Additionally, a parallel in lack of PPC findings between the 

study on the ANS perception for temporally versus spatially distributed stimuli 

and our numerosity WM study calls for further investigation in this field with 
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spatially distributed stimuli. To investigate this, a visual or tactile WM study 

with spatially distributed stimuli (e.g. visual dots or tactile pins presented at the 

same time) is required. This extension would provide more insights into the 

discrepancy between the numerosity and frequency WM representations that 

we found in the PPC. 

Further research will benefit from a shift in focus from using different 

modalities to different value formats. This shift will provide a more general 

understanding of magnitudes and how they are processed in WM. In this 

context, research on different magnitude formats such as duration, speed and 

intensity (cf. Wimmer et al., 2016; von Lautz et al., 2019) would be beneficial 

not only to understand WM mechanisms and the distributed nature of WM that 

has been revealed so far. Additionally, a potentially fruitful future approach 

would be to combine tasks with different presentation formats, to enable a 

cross-classification analysis across formats. Another beneficial step would be to 

conduct intracranial EEG or 7T fMRI studies on quantity WM for finer grained 

data acquisition.   
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Abstract 

Estimated numerosity perception is processed in an approximate number system 

(ANS) that resembles the perception of a continuous magnitude. The ANS consists of 

a right lateralized frontoparietal network comprising the lateral prefrontal cortex 

(LPFC) and the intraparietal sulcus. Although the ANS has been extensively 

investigated, only few studies focus on the mental representation of retained 

numerosity estimates. Specifically, the underlying mechanisms of estimated 

numerosity working memory (WM) is unclear. Besides numerosities, as another form 

of abstract quantity, vibrotactile WM studies provide initial evidence that the right 

LPFC takes a central role in maintaining magnitudes. In the present fMRI MVPA study 

in numerosity WM, we designed a delayed-match-to-numerosity paradigm to test 

what brain regions retain approximate numerosity memoranda. In line with 

parametric WM results, our study found numerosity-specific WM representations in 

the right LPFC as well as in the supplemental motor area and the left premotor cortex 

extending into the superior frontal gyrus, thus bridging the gap in abstract quantity 

WM literature. 



Significance Statement 

While the perception of approximate numerosities has been extensively 

investigated, research into the mnemonic representation during working 

memory (WM) are relatively rare. Here, we present the first study to localize 

WM information for approximate numerosities using functional magnetic 

resonance imaging (fMRI) in combination with multivariate pattern analysis 

(MVPA). Extending beyond previous accounts that used either a priori brain 

regions or electrocorticography (EEG) with poor spatial resolution and 

univariate analysis methods, we employed an assumption-free, time-resolved, 

whole-brain searchlight MVPA approach to identify brain regions which code 

approximate numerosity WM content. Our findings, in line with previous work, 

provide preliminary evidence for a higher level, modality- and format-

independent abstract quantitative WM system which resides within the right 

lateral PFC. 



Introduction 

Humans can tell whether a hundred people are a larger group than fifty 

people quite precisely without counting. This ability to quantify amount, size, 

length or other analog stimulus properties can be performed non-symbolically, 

independent of language (Dehaene et al., 1992; Spitzer et al., 2014b). Indeed, 

human babies and several animals are able to approximate a variety of 

quantities (Nieder, 2005; Piazza et al., 2007, Piazza and Izard, 2009, Nieder and 

Dehaene, 2009), suggesting a common elemental mechanism, which has been 

termed the approximate number system (ANS; Gallistel and Gelman, 1992; 

Dehaene, 2011). 

While numerosity is a discrete stimulus property, the ANS allows an 

approximation of numerosity, resulting in an analog estimation. Thus, in 

contrast to the symbolic mental representation of numbers as classes or 

categories, it has been hypothesized that the ANS representation resembles 

that of continuous quantities or magnitudes such as intensities, lengths, or 

frequencies (Piazza et al., 2004; Nieder and Dehaene, 2009; Spitzer et al., 

2014a). In support of this, neural representations underlying both the ANS and 

continuous quantities have been shown to be supramodal, implying a 

representation abstract in nature (Piazza et al., 2006; Spitzer and Blankenburg, 

2012; Spitzer et al., 2014; Vergara et al., 2016). Moreover, small numbers can 

be effortlessly identified without counting, known as subitizing (Kaufman et al., 

1949). Thus, these numbers are represented as discrete values. If the number 

of items exceeds the subitizing threshold, counting is required to determine the 



exact amount. When there is insufficient time for counting, the ANS 

approximates the quantity in a fast and efficient manner. 

The functional anatomy of the ANS has been extensively characterized in 

both human and non-human primates (NHP). A frontoparietal network 

comprising the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal 

cortex (PPC), specifically the intraparietal sulcus (IPS), is involved in 

approximating quantities during perception (Dehaene et al., 2003; Piazza et al., 

2004; 2007; Cantlon et al., 2006; 2009; Jacob and Nieder, 2009; Knops and 

Wilmes, 2014). Moreover, the estimated numerosity network has been shown 

to be right lateralized (Piazza et al., 2006; Dehaene, 2016). The frontoparietal 

network comprised the right DLPFC, IPS and additionally the right premotor 

cortex (PMC) confirming right hemisphere dominance for numerosity 

estimation (Piazza et al., 2006). Particularly in estimated numerosity 

perception, the IPS has been shown, using both univariate and multivariate 

analyses of fMRI data, to exhibit stronger numerosity-selective responses than 

the PFC (Dehaene et al., 2003; Eger et al., 2009). 

The ANS literature is primarily focused on perception with relatively few 

NHP studies extending to investigate working memory (WM) representations 

of approximate quantities (see Nieder, 2016). As short-term maintenance of 

information is critical for higher-order cognitive functions such as decision 

making and reasoning, it is crucial to investigate beyond perception to the 

maintenance of approximate quantities in WM. In line with results from 

perception studies of the ANS, neurons in the frontoparietal network were 

found, specifically in the PFC and IPS, to exhibit numerosity-selective activity 



during WM (Jacob et al., 2018). Furthermore, supramodal coding of numerosity 

memoranda in the frontoparietal cortex has been identified (see Nieder, 2017). 

Interestingly, in contrast to perception, the proportion of numerosity selective 

neurons and their tuning strength to numerosity have been more prominent 

than the ones in the PPC during WM retention. Moreover, neurons in the PFC 

remained selective and discriminated numerosities better than neurons in the 

PPC during the WM delay (Nieder and Miller, 2004; Tudusciuc and Nieder, 

2009; Nieder, 2016). 

To the best of our knowledge, only a single study has focused on the WM 

representation of numerosity in humans, although some approximate 

numerosity perception studies used WM-related paradigms (e.g., Eger et al., 

2009). Spitzer and colleagues (2014) probed the oscillations underlying 

multimodal WM representations by training participants to estimate 

numerosity from sequential auditory, visual and tactile stimuli. They identified 

strong and long-lasting alpha oscillations in the PPC reflecting WM load 

whereas, in line with NHP results, beta-band activity in the right PFC showed 

numerosity-selective modulation. 

Nevertheless, whole-brain research regarding the localization of 

numerosity memoranda in humans is lacking. To this end, we designed a tactile 

delayed-match-to-numerosity (DMTN) task in combination with whole-brain, 

searchlight, multivariate-pattern analysis (MVPA) of human fMRI data (e.g., 

Christophel, 2012; Schmidt et al., 2017; Uluç et al., 2018). Using this analysis 

approach, we localized brain regions maintaining approximate number content 

in WM. As per previous studies (e.g., Spitzer et al., 2014a; Nieder, 2016), we 



hypothesized that the content would be represented in frontal regions, 

specifically the right PFC. 



Material and methods 

Participants 

 38 healthy volunteers participated in the study. The data of four 

participants was excluded due to low performance levels (≤ 60%) resulting in 

data from 34 participants (age: 25.53 ± 5.43 mean years ± SD, 19 females) being 

further analyzed. All were right handed according to the Edinburgh Handedness 

Inventory with an index of 0.82 ± 0.14 (mean ± SD; Oldfield, 1971). The 

experimental procedure was approved by the local ethics committee and is in 

accordance with the Human Subject Guidelines of the Declaration of Helsinki. 

All participants provided written informed consent before the experiment and 

were compensated for their participation. 

Stimuli 

 Tactile stimuli consisted of trains of square-wave electric pulses (200 μs) 

delivered via a pair of surface-adhesive electrodes attached to the participant’s 

left wrist. A constant current neurostimulator (DS7A, Digitimer Ltd.) was used 

to deliver the stimuli. Subjects reported tactile sensations radiating to the 

thumb, index, and middle finger, verifying stimulation of the median nerve. 

Individual sensory thresholds were determined for each participant. The 

stimulus intensity was then adjusted to a target value of approximately 200% 

of the sensory threshold (mean: 6.42 mA, SD: 1.20 mA). 

A to-be-remembered stimulus sequence comprised either 7, 9, 11, or 13 

pulses. In order to dissociate stimulus length and perceived pulse frequency 

(spacing of tactile pulses) from the numerosity of pulses, the duration of the 

stimulus varied, and the inter-pulse-intervals were randomized. To this end, we 



defined four stimulus durations (960, 1020, 1080 and 1140 ms). Each duration 

was subdivided into 60 ms slots, resulting in 17, 18, 19 and 20 slots, 

respectively. The temporal distribution of the pulses was then randomized 

across the slots (see Figure 1A for illustrative stimuli). Within each run, each 

numerosity was presented in a short (17 or 18) and a long (19 or 20) duration 

resulting in 24 different numerosity-duration pairings (4 numerosities x 2 

durations/run x 3 uncued numerosities). The different durations were balanced 

across runs. This stimulus design ensured that participants had to memorize the 

stimulus numerosity since they could not use the temporal density of the pulses 

or the stimulus length as WM memoranda to solve the task.  

Task 

We employed a DMTN paradigm in which participants remembered the 

estimated numerosity of a stimulus. Each trial began with the presentation of 

two pulse sequences with different numerosities. Next, a retro-cue (“1” or “2”) 

indicated which of the two numerosities had to be remembered. To ensure the 

dissociation between perceptual processes and the memory-related activity, a 

mask consisting of the longest duration (1140 ms) with a pulse in each of the 

20 slots, was applied simultaneously with the onset of the retro-cue. Following 

a 12 s retention phase, two test stimuli were presented and a two-alternative 

forced-choice was given. Neither of the test stimuli were identical to the 

encoded stimulus, however, one had the same numerosity while the duration 

and the frequency were different. This ensured that participants used the 

approximated numerosity of the stimulus instead of some other stimulus 

feature to correctly match the test with the remembered stimulus. The 



numerosity of the alternative stimulus was 3 pulses ± the target stimulus. To 

ensure that the number of pulses in each stimulus was above the general 

subitizing threshold of 4 (Lechelt, 1975; Philippi et al., 2008; Schmidt et al., 

2014), the lower alternative stimulus for the lowest to-be-remembered 

numerosity (7), was set to five. After the second target stimulus, participants 

had 1.5 s to indicate, via button-press with their right middle or index finger, 

which of the two stimuli had the same numerosity as the encoded stimulus (see 

Figure 1B for experimental design). Furthermore, the response mapping was 

counter-balanced across participants. In total, a trial lasted 21 s and an 

experimental run, consisting of all possible stimulus pairings presented equally 

often (12 pairings x 4 presentations = 48 trials) in a randomized order, with 

inter-trial intervals of 1.5 or 3.5 s, lasted 18.7 minutes. Four experimental runs 

were collected for each participant, resulting in a total recording time of 74.8 

minutes. 

 Prior to the fMRI experiment, each participant was familiarized with the 

timing and structure of the task by performing up to two experimental runs 

outside the scanner.  



 

Figure 1. Sample pulse sequences and experimental paradigm A. Sample Stimuli. Pulse 
sequences of 7, 9, 11 and 13 were used as experimental stimuli. For each numerosity, there 
were four different durations (960, 1020, 1080 and 1140 ms), where each duration was sub-
divided into 60 ms slots. The distribution of pulses to slots was randomized for each stimulus 
presentation. The first and the last slot of each stimulus always contained a pulse. The stimuli 
displayed are for illustrative purposes. B. Experimental paradigm. A delayed-match-to-
numerosity task was employed, where two sample stimuli and a mask were presented 
consecutively. A visual retro-cue presented simultaneously with the mask indicated which of 
the numerosities should be retained for the 12 s delay. After the delay, participants performed 
a two-alternative forced-choice, indicating which of the two test stimuli had the same 
numerosity as the cued stimulus. The response period was 1.5 s. Please note that the stimulus 
duration and inter-stimulus-interval changed depending on the stimulus duration, but the 
onset of each event was locked to coincide with the onset of an image acquisition. 

 

Number naming test assessing countability 

 Subsequent to the fMRI session, we applied a number naming task to 

ensure that participants were unable to count the number of pulses employed 

in the stimulus set. Participants were asked to try to count the number of 

pulses. The stimuli ranged from 1 to 15 pulses with 5 different duration and 



temporal pulse distribution combinations of each numerosity tested, resulting 

in 75 trials. The counting test was performed after fMRI data acquisition so as 

to prevent biasing the participants towards counting the pulses in the main 

experiment. 

To ensure that the presented numerosities were above participants’ 

subitizing thresholds, we calculated the mean performance for each 

numerosity across participants and calculated each average estimated 

numerosity. We then compared the slope of accuracy for estimating 

numerosities with earlier studies that calculated subitizing thresholds for tactile 

stimuli (Lechelt, 1975; Philippi et al., 2008; Spitzer et al., 2014a). We performed 

a linear trend analysis using linear regression to determine whether the 

distance between the true and estimated numerosity scales with increasing 

true numerosity in a linear fashion.  

fMRI data acquisition and pre-processing 

 fMRI data were acquired in 4 runs, with a Siemens 3 T Tim Trio MRI scanner 

(Siemens, Erlangen) equipped with a 32-channel head coil. In each run, 565 

images were collected (T2*-weighted gradient-echo EPI: 37 slices; ascending 

order; 20% gap; whole brain; TR = 2000 ms; TE = 30 ms; 3 x 3 x 3 mm³; flip angle 

= 70°; 64 x 64matrix). After the last functional run, a high-resolution structural 

scan was recorded using a T1-weighted MPRAGE sequence (1 x 1 x 1 mm³; 

TR = 1900 ms; TE = 2.52 ms; 176 sagittal slices).  

fMRI data preprocessing was performed using SPM12 (Wellcome Trust 

Centre for Neuroimaging, Institute for Neurology, University College London, 

London, UK). Functional images were slice-time corrected and spatially 



realigned to the mean image. In order to conserve the spatiotemporal structure 

of the fMRI data for the multivariate analyses, no smoothing or normalization 

was performed. For the univariate control analysis, functional images were 

normalized to MNI-space and smoothed with an 8 mm FWHM kernel. 

First Level Finite Impulse Response Models 

 A time-resolved, multivariate searchlight analysis (Kriegeskorte et al., 

2006, Schmidt et al., 2017) was used to identify brain regions encoding 

memorized numerosity information. First, a general linear model (GLM) with a 

set of finite-impulse-response (FIR) regressors was fit to each participant’s data 

to obtain run-wise parameter estimates of each WM content (numerosity value 

of 7, 9, 11 or 13). A single FIR regressor was estimated for each fMRI image or 

2 s time bin (1 TR), thus, the 20 s trial was divided into 10 time bins. We 

additionally included the first five principal components accounting for the 

most variance in the cerebrospinal fluid (CSF) and white matter signal time 

courses respectively (Behzadi et al., 2007), and six head motion regressors, as 

regressors of no interest. Hence, the GLM model comprised a total of 228 beta 

estimates: (4 numerosities x 10 time bins + 5 CSF regressors + 5 white matter 

regressors + 6 motion regressors) x 4 runs + 4 constants. Moreover, the data 

was filtered with a high-pass filter of 128 s. The resulting parameter estimates 

were used for the MVPA performed with The Decoding Toolbox v. 3.52 (TDT) 

(Hebart et al., 2015). 

 

 



Multivariate Pattern Analysis 

For the decoding of memorized numerosity information, a searchlight-

based multivariate analysis using a support vector regression (SVR) approach 

was performed with the computational routines of LIBSVM (Chang and Lin, 

2011), as implemented in TDT. SVR MVPA (see Kahnt et al., 2011 for more 

discussion; Schmidt et al., 2017) considers the variable of interest (memorized 

numerosity) as a continuous data vector with multiple independent variables 

(multi-variate BOLD activities) as opposed to the commonly used support 

vector machine approach that treats the variable of interest as a categorical 

object. This means that the SVR MVPA approach seeks a linear continuum for 

the numerosities in which their distance is proportional to the distances of the 

rank order. 

We analyzed each time bin independently by implementing a searchlight 

decoding analysis with a spherical searchlight radius of 4 voxels. For a given 

voxel, z-scaled parameter estimates (across samples) corresponding to each 

WM condition were extracted from all voxels within the spherical searchlight 

for each run. This yielded 16 pattern vectors (4 WM contents x 4 runs), each 

corresponding to the BOLD activity pattern for a specific WM condition of a 

functional run. We then fitted a linear function to these pattern vectors such 

that the multivariate distribution for the different numerosities follows a linear 

mapping of numerosities. The z-scaled parameter estimates were entered into 

an SVR model with a fixed regularization parameter c that was set to 1.  

We used a leave-one-run-out cross-validation scheme for the subject-

level decoding analysis. The SVR classifier was trained on three runs (12 pattern 



vectors) and tested on the data of the independent fourth run (4 pattern 

vectors) for how well it predicted the values of the remaining run. The 

allocation of training and test runs was iterated so that each of the four 

functional runs was used as a test run once, resulting in four cross-validation 

folds. The prediction performance from each cross-validation fold was reported 

by a Fisher’s z-transformed correlation coefficient between the predicted and 

the actual numerosity information estimate. The mean prediction accuracy 

across cross-validation folds was assigned to the center voxel of the searchlight, 

and the center of the searchlight was moved voxel by voxel through the brain, 

resulting in a whole-brain prediction accuracy map. Consequently, we obtained 

one prediction accuracy map for each time bin for each participant, where the 

prediction accuracy reflects how well a linear ordering according to the 

associated numerosities could be read out from the locally distributed BOLD 

activity pattern at a given voxel location and time.  

Next, prediction accuracy maps were normalized to MNI space and 

smoothed with an 8 mm FWHM kernel. They were then entered into a second-

level, repeated measures ANOVA analysis with subject and time (time bins) as 

factors. To assess which brain regions exhibit WM content-specific activation 

patterns during the delay period, we computed a t-contrast across the 6 time 

bins corresponding to the 12 s WM delay (time bins 3-8). The results are 

presented at p < 0.05 family-wise error correction (FWE) at the cluster level 

with a cluster-defining threshold of p < 0.001. Cytoarchitectonic references are 

based on the SPM anatomy toolbox where possible (Eickhoff et al., 2005). 

Presented images, e.g. surface projections with applied color scales were 



created using MRIcron version9/9/2016 (McCausland Center for Brain 

Imaging). 

Control analyses 

In the first control analysis, we examined whether the decoded 

numerosity information during WM retention was specific to WM or could be 

assigned to perceptual residues. To this aim, we defined a second, first-level 

model with FIR regressors for the non-memorized stimulus. We then 

implemented the identical searchlight decoding procedure as the main 

analysis. Thus, this control analysis tested for the presence of numerosity 

information of the non-memorized stimulus.  

Next, we conducted a parametric univariate analysis to ensure that the 

decoded information in the main analysis is not due to the modulation of mean 

activity level. To this end, we fitted a standard GLM with 4 HRF-convolved 

regressors: one regressor to capture WM processes, a parametrically-

modulated regressor for the numerosity content of the WM memoranda as 

well as 8 (4 numerosities x 2 (sample, test)) additional parametrically-

modulated regressors for each sample and test stimulus. First-level baseline 

contrasts for the parametric effect of memorized numerosity were forwarded 

to a second-level one-sample t-test.  

Finally, to test the specificity of the SVR analysis to the parametric order 

of the four numerosities, we performed exhaustive whole-brain SVR searchlight 

analyses for all possible permutations of numerosity labels. In order to achieve 

this, we computed distance rank order as a sum of the absolute difference of 

adjacent ranks (e.g., 11, 13, 7, 9 numerosity, is distance 5 (|3-4|+|4-1|+|1-2|) 



for all possible permutations of the numerosity-order. Then, the permutations 

were grouped according to their distance from the original rank order. We used 

12 instead of 24 permutations as the distances of rank order permutations are 

symmetric. Including the permutation with the correct linear order, the 12 

permutations are aggregated into five classes depending on their distance from 

the correct linear order. Then, for each permutation analysis, we extracted the 

prediction accuracies of the group-peak voxels that are defined in the original 

analysis. For statistical assessment, we calculated the mean prediction accuracy 

across related time bins (WM time bins 3-8) for each peak voxel for each 

distance group (Figure 3B).  

Results 

Behavioral performance 

Participants (n=34) performed with 65.36 ± 3.29% (mean ± SD) accuracy 

in the demanding DMTN task across the four experimental runs (see Figure 2A). 

To test whether the behavioral performance differed for the four numerosity 

values, we performed a one-way repeated measures ANOVA with four levels, 

one for each numerosity. This test revealed a significant main effect 

(F(3,135)=7.52, p<0.001). Post-hoc t-tests (Bonferroni-corrected for multiple 

comparisons) between performances were significant for numerosity values 7 

and 13 and 9 and 13 (p < 0.05/6; see Figure 2A). This is expected because we 

did not control for the Weber-Fechner effect except for the lowest numerosity 

(which we did due to subitizing concerns). As a result, as the numerosity 

increases, it becomes more difficult to differentiate between the sample and 



alternative stimuli, thus resulting in a lower performance for high numerosities 

(Fechner, 1966) but is unlikely to affect WM processing. 

Behavioral performance on number naming test assessing countability 

 To test whether participants were able to count the numerosities 

employed in the current study, participants performed an additionally number 

naming test. Previous research in tactile numerosity indicated the subitizing 

threshold for comparable stimuli to be 4 pulses (Lechelt, 1975; Philippi et al., 

2008; Spitzer et al., 2014a). The approximation of the subitizing threshold 

identified in the present study is in line with these reports (Figure 2B). As 

expected, participants’ perceptual accuracy decreased with increasing 

numerosity and performance decreased to 50% when more than 3 pulses were 

presented. Similarly, the distance between the true and estimated numerosity 

increased with increasing numerosities (p < 0.001, linear trend analysis) (Figure 

2C).  

 

Figure 2. A. Mean rate of correct responses across participants (n = 34) for different 
numerosities in main WM DMTN task. The figure shows that the WM performance decreases 
with increasing numerosity. Error bars represent standard deviation (SD). Asterisks indicate 
statistical significance for pair-wise t-tests, Bonferroni corrected for multiple comparisons (p < 
0.05/6). B. Mean performance across subjects for estimated numerosity in number naming task 
(mean ± SD). C. True numerosities vs. mean numerosity estimations (error bars show SD).  
 



Multivariate mapping of regions that code numerosity as WM content 

The time-resolved, searchlight-based multivariate regression analysis was 

performed to identify brain regions representing estimated numerosity 

memoranda. The SVR MVPA analysis for the WM retention period revealed 

numerosity-specific responses in the left PMC, left middle frontal gyrus (MFG), 

left superior frontal gyrus (SFG) extending into bilateral supplementary motor 

areas (SMA), right SFG extending to the right frontal pole and right MFG 

extending into the pars triangularis of the right IFG. Results are reported at p < 

0.05, FWE-corrected at the cluster level with a cluster-defining threshold of p < 

0.001 (Figure 3 and Table 1).   

 

 

 



 

Figure 3. A. Brain regions coding information for the memorized estimated numerosities. Group 

level results of a t-contrast testing the 12 s WM delay for above chance prediction accuracy. 

Brain regions carrying information about memorized scalar magnitudes are: IFG = inferior 

frontal gyrus, MFG = middle frontal gyrus, PMC = premotor cortex, SMA = supplementary motor 

area, SFG = superior frontal gyrus.  B. Results of the label-permutation tests. 5 bars are shown 

for each brain region, respectively. Each bar displays the mean prediction accuracy estimated 

from the distance to correct order groups. The shade of the bar color, ranging from black to 

white, depicts the different distance to correct ordering. Black bars indicate the mean 

prediction performance of the group with the correct linear order, while white bars represent 

the mean prediction accuracy derived from the most linearly unordered data. Brain regions 

tested for label permutation are: IFG = inferior frontal gyrus, MFG = middle frontal gyrus, PMC 

= premotor cortex, SMA = supplementary motor area, SFG = superior frontal gyrus.  Error bars 

indicate standard error of the mean. 

 

 

 

 

Table 1. SVR MVPA results for tactile numerosity WM task 

Anatomical label and MNI coordinates of brain areas depicting memorized numerosity 

information during WM. All results are reported at pFWE-Cluster < 0.05 with a cluster-defining 



threshold of p < 0.001. Mean prediction accuracy over the delay period is reported. Areas were, 

where possible, identified using the SPM anatomy toolbox (Eickhoff et al., 2005). IFG = inferior 

frontal gyrus, MFG = middle frontal gyrus, PMC = premotor cortex, MI = primary motor cortex, 

SMA = supplementary motor area, SFG = superior frontal gyrus.   

 

  Peak MNI coordinates   

Cluster size Anatomical region X Y Z z-score Prediction 
accuracy 

4557 Left PMC/MI -50 2 52 4.78 0.082 

 Left SFG -28 0 60 7.74 0.146 

 SMA -6 10 74 4.48 0.114 

1342 Right SFG 32 50 10 4.17 0.135 

 Right IFG (pars triangularis) 60 24 2 4.17 0.075 

 Right MFG 40 50 30 3.69 0.069 

 

Control analyses 

 To test, if the identified decoded information is indeed specific to the 

memorized numerosity representation, we applied the same searchlight 

procedure to the non-memorized numerosity stimulus. This analysis did not 

reveal any clusters with above-chance prediction accuracy at pFWE-Cluster < 0.05. 

 Additionally, we conducted a univariate parametric analysis to test 

whether the decoding results could be due to differences in activation strength 

between WM contents. A second level t-test revealed no significant voxels at 

pFWE-Cluster < 0.05, thus providing evidence for the multivariate nature of the 

numerosity representations identified in this study rather than the modulation 

of univariate mean activity.     

 Finally, we performed label-permutation tests in order to ensure the 

specificity of the linear ordering of stimuli in the SVR MVPA. Higher prediction 

accuracies were expected when the activation patterns in a given brain region 

represented the correct order of the four numerosity labels, and it was 



expected to decrease with the distance from the correct ordering. As expected, 

the prediction accuracy during WM was the highest for the true-labelled data 

and decreased with increasing distance from the correct ordering (Figure 3B). 

  



Discussion 

The current study, to our knowledge, is the first to identify brain regions 

that code approximate numerosity WM content using human neuroimaging 

methods. Thus, this study extends the extensive literature on ANS perception 

to the maintenance of mental representations which can be used for higher-

order cognitive functions. We employed a well-established, whole-brain, 

searchlight, DMTN paradigm to identify representations of tactile approximate 

numerosity memoranda. Specifically, we employed an SVR technique, which in 

contrast to support vector machines, treats the retained WM content as a 

continuous variable and thus predicts the ordering of content along the 

variable, rather than a singularly specific class label. Consequently, an above-

chance prediction accuracy in a brain region means that the content-specific 

activation patterns follow a linear ordering according to the associated 

numerosity. Our searchlight analysis identified a distributed network spanning 

the left PMC, bilateral SFG, bilateral SMA and right MFG extending into right 

IFG. Therefore, these regions contain linearly-ordered, multivariate WM 

representations of the numerosities.  

Our results are in line with previous numerosity WM studies in NHPs and 

human EEG which have established the central role of the PFC. Indeed, previous 

uni- and multimodal studies have identified content-specific representations in 

the PFC (Nieder and Miller, 2004; Tudusciuc and Nieder, 2009; Nieder, 2016; 

Spitzer et al., 2014a; Jacob et al., 2018). More specifically, in humans, 

parametric modulation of upper-beta oscillations in the right lateral PFC has 

been shown to reflect analog numerosity estimation which has been derived 



from discrete sequences, both within and between stimulus modalities (Spitzer 

et al., 2014a). Thus, the numerosity representations in the PFC are likely to be 

supramodal in nature. However, those studies used either electrophysiological 

recordings from an a priori brain region or EEG and have employed univariate 

data analysis methods. The present study extends the literature on numerosity 

WM in two ways: firstly, to whole-brain fMRI data, and secondly to multivariate 

data analysis methods, specifically the SVR MVPA. The benefits of multivariate 

over univariate analysis methods have been well-established (e.g., Haynes, 

2015). Multivariate analysis techniques are sensitive to the combinatorial 

aspects of voxel activity, thereby enabling the identification of spatially 

distributed representations (e.g., Haynes, 2015; Hebart and Baker, 2018). Thus, 

our results agree with and extend the previous NHP and human EEG numerosity 

WM findings to whole-brain, spatially distributed activity patterns, suggesting 

that estimated numerosity WM content is maintained in the LPFC (Nieder et 

al., 2002; Nieder and Miller, 2003; 2004; Tudusciuc and Nieder, 2009; Nieder, 

2016; Spitzer et al., 2014a).  

It should be noted that we used temporally distributed tactile numerosity 

stimuli as the WM memoranda, namely the numerosity was presented as a 

sequence of pulses. Evidence exists for potential differences in perceptual 

processing of spatially- and temporally-distributed numerosities, where 

spatially-distributed stimuli appear to be processed in parietal regions while 

temporarily-distributed stimuli do not (Cavdaroglu and Knops, 2018). In line 

with the finding of Cavdaroglu and Knops (2018), we used temporally 

distributed stimuli and did not find any evidence of WM representations in 



posterior regions. On the other hand, our results also agree with numerosity 

WM findings in NHPs that suggest frontal rather than parietal coding for spatial 

numerosity stimuli during WM retention (for review, see Nieder, 2016). A 

future direct comparison of our results with spatial numerosity stimuli is 

necessary to test for differences determined by the stimulus types. 

Moreover, while the literature relating to numerosity WM is limited, there 

is extensive work exploring the WM representation of abstract quantities more 

generally. Specifically, the frequency discrimination task has been 

systematically explored in a multitude of modalities with a wide range of 

methods (e.g., Romo et al., 1999; Spitzer at al., 2010; Lemus et al., 2009; Spitzer 

& Blankenburg, 2011; 2012; Fassihi et al., 2014; Vergara et al., 2016; von Lautz 

et al., 2017; Schmidt et al., 2017; Wu et al., 2018; Uluç et al., 2018). Numerosity 

and frequency share several traits, particularly they are both abstract 

magnitudes which may be represented in a supramodal fashion (Spitzer and 

Blankenburg, 2012; Vergara et al., 2016; Nieder, 2016; Miller, 2003). However, 

whether their underlying WM representations are maintained by a shared 

network has yet to be explored. The present study provides an initial step 

towards resolving this question by providing the first evidence that frequency 

and numerosity WM representations are maintained in overlapping brain 

regions. We identified numerosity-specific WM content in the right IFG, SMA 

and left PMC which is in agreement with results from frequency studies also 

using an fMRI-MVPA approach in humans (Schmidt et al., 2017; Wu et al., 2018; 

Uluç et al., 2018). Uni- and multimodal research in both NHPs and humans has 

identified frequency-specific content in the right LPFC and SMA thereby 



suggesting the WM representations are modality independent in nature (e.g., 

Romo et al., 1999; Hernandez et al., 2002; 2010; Barak et al., 2010; Spitzer et 

al., 2010; Spitzer & Blankenburg, 2011; 2012; Vergara et al., 2016; Schmidt et 

al., 2017; Wu et al., 2018). However, the explicit relationship between 

frequency and numerosity still needs to be explored, particularly with respect 

to the underlying neural codes of numerosity and frequency representations 

(see Nieder, 2017).   

Additionally, we identified numerosity-specific content in the left PMC. 

Previous findings from frequency WM fMRI-MVPA studies identified abstract 

quantity information in the PMC (Schmidt et al., 2017; Wu et al., 2018; Uluç et 

al., 2018). Moreover, the dorsal PMC has been shown to represent abstract 

numerical rules, such as comparison and calculation (Gruber et al., 2001; Eger 

et al., 2003; Nieder, 2005). This is in line with the present task which required 

the comparison of numerical quantities, suggesting representation of task-

relevant, numerosity-specific information to be used in numerical comparison. 

In summary, the data at hand is in line with the suggestion of a domain 

general, abstract magnitude processing system. This abstract processing 

system can be identified by multivariate WM representations of tactile 

numerosity stimuli within the right PFC. Taken together with previous findings 

which found WM representations of tactile frequency (Spitzer et al., 2010; 

Spitzer and Blankenburg, 2012; Spitzer et al., 2014a; Schmidt et al., 2017; Wu 

et al., 2018), visual flicker frequency (Spitzer and Blankenburg, 2012; Spitzer et 

al., 2014a; Wu et al., 2018), and auditory frequency (Spitzer and Blankenburg 

2012, Uluç et al., 2018), and the reports of number coding (Nieder et al., 2002; 



Nieder and Miller, 2003; 2004; Tudusciuc and Nieder, 2009; Nieder, 2016) in 

the PFC, the present study provides additional evidence suggesting that the PFC 

is capable of representing both analog quantities as well as parametric stimulus 

properties as frequencies. Thus, we provide preliminary evidence for a higher 

level, modality- and format-independent abstract quantitative WM system 

which resides within the PFC.  
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Legends 

Figure 1. Sample pulse sequences and experimental paradigm A. Sample 

Stimuli. Pulse sequences of 7, 9, 11 and 13 were used as experimental stimuli. 

For each numerosity, there were four different durations (960, 1020, 1080 and 

1140 ms), where each duration was sub-divided into 60 ms slots. The 

distribution of pulses to slots was randomized for each stimulus presentation. 

The first and the last slot of each stimulus always contained a pulse. The stimuli 

displayed are for illustrative purposes. B. Experimental paradigm. A delayed-

match-to-numerosity task was employed, where two sample stimuli and a mask 

were presented consecutively. A visual retro-cue presented simultaneously 

with the mask indicated which of the numerosities should be retained for the 

12 s delay. After the delay, participants performed a two-alternative forced-

choice, indicating which of the two test stimuli had the same numerosity as the 

cued stimulus. The response period was 1.5 s. Please note that the stimulus 

duration and inter-stimulus-interval changed depending on the stimulus 

duration, but the onset of each event was locked to coincide with the onset of 

an image acquisition. 

 

Figure 2. A. Mean rate of correct responses across participants (n = 34) for 

different numerosities in main WM DMTN task. The figure shows that the WM 

performance decreases with increasing numerosity. Error bars represent 

standard deviation (SD). Asterisks indicate statistical significance for pair-wise 

t-tests, Bonferroni corrected for multiple comparisons (p < 0.05/6). B. Mean 

performance across subjects for estimated numerosity in number naming task 

(mean ± SD). C. True numerosities vs. mean numerosity estimations (error bars 

show SD).  

 

Figure 3. A. Brain regions coding information for the memorized estimated 

numerosities. Group level results of a t-contrast testing the 12 s WM delay for 

above chance prediction accuracy. Brain regions carrying information about 

memorized scalar magnitudes are: IFG = inferior frontal gyrus, MFG = middle 

frontal gyrus, PMC = premotor cortex, SMA = supplementary motor area, SFG 

= superior frontal gyrus.  B. Results of the label-permutation tests. 5 bars are 

shown for each brain region, respectively. Each bar displays the mean 

prediction accuracy estimated from the distance to correct order groups. The 

shade of the bar color, ranging from black to white, depicts the different 

distance to correct ordering. Black bars indicate the mean prediction 

performance of the group with the correct linear order, while white bars 

represent the mean prediction accuracy derived from the most linearly 



unordered data. Brain regions tested for label permutation are: IFG = inferior 

frontal gyrus, MFG = middle frontal gyrus, PMC = premotor cortex, SMA = 

supplementary motor area, SFG = superior frontal gyrus.  Error bars indicate 

standard error of the mean. 

 

Table 1 

Anatomical label and MNI coordinates of brain areas depicting memorized 

numerosity information during WM. All results are reported at pFWE-Cluster < 0.05 

with a cluster-defining threshold of p < 0.001. Mean prediction accuracy over 

the delay period is reported. Areas were, where possible, identified using the 

SPM anatomy toolbox (Eickhoff et al., 2005). IFG = inferior frontal gyrus, MFG 

= middle frontal gyrus, PMC = premotor cortex, MI = primary motor cortex, SMA 

= supplementary motor area, SFG = superior frontal gyrus.   
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