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Abstract In this paper we propose for the first time an iterative approach of
the Smoothed Particle Hydrodynamics (SPH) method. The method is widespread
in many areas of science and engineering and despite its extensive application it
su↵ers from several drawbacks due to inaccurate approximation at boundaries and
at irregular interior regions. The presented iterative process improves the accuracy
of the standard method by updating the initial estimates iterating on the residuals.
It is appealing preserving the matrix-free nature of the method and avoiding to
modify the kernel function. Moreover the process refines the SPH estimates and
it is not a↵ected by disordered data distribution. We discuss on the numerical
scheme and experiments with a bivariate test function and di↵erent sets of data
validate the adopted approach.

Keywords Kernel based methods · Smoothed Particle Hydrodynamics · Iterated
residuals · Accuracy · Convergence

1 Introduction

On the last decades mesh-free methods have become a valid alternative to mesh-
based due to various advantages in many di↵erent areas providing numerical solu-
tions without using any mesh in the problem domain [8,9,13,14,18]. The Smoothed
Particle Hydrodynamics (SPH) is a popular approach for the representation of
physical models dealing with nodes located in the problem domain, avoiding the
numerical overhead of handling explicit mesh topology. The method was originally
developed for solving astrophysical problems [15,24] and nowadays spans many ar-
eas of science and engineering due to its capabilities of handling complex evolution
problems as well as modeling complicated physics in a relatively simple manner
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[2–4,20,25,27,28,31,32]. However the method su↵ers from several drawbacks due
to inaccurate approximation at boundaries and at irregular interior regions. Many
techniques have been devised to alleviate these problems and some of these have
been documented in [1,5,6,21–23] and in the references therein. In this paper we
discuss for the first time on sources of enhancement in accuracy of the discrete
approximation by iterating on the residuals.The iterative refinement provides ac-
curate estimates preserving the matrix-free nature of the method furnishing the
values of a function via a sum based directly on the given data. The method was
introduced in [10,11] for moving least-square approximation and it is appealing
in SPH framework because no changes on the kernel function need [21–23], avert-
ing to lead unphysical results such as negative density or negative energy that can
give rise to breakdown of the entire computation in simulating some problems [19].
Moreover, in convergence it improves the SPH estimates and it is not a↵ected by
disordered data distribution. The di�culties associated with the solution of lin-
ear systems required in improving the SPH accuracy, as many times occurs [12,
22,23], are also successfully avoided. This occurence is a computational burden
expecially for time-evolving simulations often coupled with the ill-conditioning of
the system matrix for some specific problems.With the aim to address numerical
features of the method we propose some numerical simulations conducted on grid-
ded and scattered data sets.The remainder of the paper is as follows. In Section
2 we present a review of the standard formulation. In Section 3 we describe the
iterative strategies and in the next Section numerical simulations for function re-
covery problems are proposed. In Section 4 some discussions on the errors versus
the number of data are reported with the standard SPH as initial estimates. In
Section 5 the conclusions and the future work are shortly summarized.

2 SPH standard formulation

In this section we briefly discuss on the standard SPH method based on the ideas
from distribution theory for approximating a function with a delta distribution
representation [19]. The method is founded on the kernel approximation of a func-
tion f : ⌦ ⇢ Rd ! R, for d � 1, defined as

< fh(x) >=

Z

⌦

f(⇠)K(x, ⇠;h)d⌦. (1)

at x = (x(1)
, ..., x

(d)), ⇠ = (⇠(1), ..., ⇠(d)) 2 ⌦ and K(x, ⇠; h) is the kernel function

such that

lim
h!0

K(x, ⇠; h) = �(x, ⇠).

with � the delta Dirac function and h the smoothing length, localizing its influence
in ⌦. The kernel is required to be su�ciently smooth, symmetric and normalized
to unity so that the error of the kernel approximation can be estimated as second
order of accuracy, or of first order of consistency [19,20]. The Gaussian kernel
function is a common choice

K(x, ⇠; h) = ↵de
�(

k⇠�xk2
h

)2
. (2)
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The kernel clearly decays when x moves away from ⇠ and with the dimensional
constant ↵d = 1/(h

p
⇡)d it satisfies the unity requirement [19]. Moreover, it is

infinitely di↵erentiable, radial and strictly positive definite function on Rd for any
d [10]. This function will be taken into consideration as kernel from now on.

fh(x) =
NX

j=1

f(⇠j)K(x, ⇠j ;h)d⌦j , (3)

where d⌦j is the measure of the subdomain ⌦j associated to each data site ⇠j . The
standard method does not yield to satisfactory results throughout and the particle
approximation is not according with the second order of accuracy as claimed in
the kernel approximation due to the accuracy of the kernel approximation not al-
ways preserved in the discrete particle counterpart.This is evident with data near
the boundary of the problem domain or with a scattered data distribution which
provide an unbalanced contribution to the summations [19,20]. With the goal to
improve the accuracy we introduce an iterative scheme [10,11] in approximating
via SPH, which is not a↵ected by data distribution, preserving the matrix-free
nature of the standard method and without changes on the kernel function. In the
next section we discuss on the notions distinguishing the improved approach.

3 Iterative corrective scheme

The corrective method is based on the idea to iteratively generate approximate

solutions f (n)
h (x) making corrections on the SPH approximant defined in (3) with

the SPH approximations of the di↵erence between the function and f

(n�1)
h (x) on

the same data sites

f

(n)
h (x) = f

(n�1)
h (x) +R

(n�1)(x) (4)

where

f

(0)
h (x) = fh(x) and R

(n�1)(x) =
NX

j=1

[f(⇠j)� f

(n�1)
h (⇠j)]K(x, ⇠j ;h)d⌦j . (5)

A question on the convergence of the approximations f

(n)
h (x) arises and a fun-

damental result is provided assessing the convergence to the interpolant Ph(x)
generated as linear combination of the same kernel functions. To this aim we pro-

ceed by adopting the algebra notation for the f

(n)
h (x) and Ph(x) and we write

fh(x) = K(x)⌦f (6)

where

KT (x) =

0

BB@

K(x, ⇠1; h)
K(x, ⇠2; h)

. . .

K(x, ⇠N ; h)

1

CCA ,⌦ =

0

BBB@

d⌦1

d⌦2

. . .
d⌦N

1

CCCA
, f =

0

BBB@

f(⇠1)
f(⇠2)

...
f(⇠N )

1

CCCA
. (7)
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The vector K(x) and the diagonal matrix ⌦ also feature the interpolant

Ph(x) = K(x)⌦c (8)

defined by enforcing the constraints

Ph(⇠i) = f(⇠i) i = 1, ..., N. (9)

The unknown vector c is obtained by solving the linear system

Ac = f (10)

with associated matrix

A =

0

BBB@

K(⇠1, ⇠1; h) K(⇠1, ⇠2; h) ... K(⇠1, ⇠N ; h)
K(⇠2, ⇠1; h) K(⇠2, ⇠2; h) ... K(⇠2, ⇠N ; h)

...
K(⇠N , ⇠1; h) K(⇠N , ⇠2; h) ... K(⇠N , ⇠N ; h)

1

CCCA

0

BBB@

d⌦1

d⌦2

. . .
d⌦N

1

CCCA
.

By assuming K(x, ⇠i; h) strictly definite positive and ⇠i 6= ⇠j , i 6= j, we are sure
that the data interpolation admits solution without no restriction on the distribu-
tion of the data except for being pair-wise distinct [7,10,11].
A convergence result is provided by the following theorem which guarantees the

convergence of {f (n)
h (x)} to Ph(x) without assumptions for the data distribution.

Theorem 1. The {f (n)
h (x)} converges to Ph(x) for a given set of distinct data

sites if and only if kI�Ak2 < 1 .
Proof .
We want to prove that {f (n)

h (x)} can be expressed as linear combination of the
same kernel functions interested in fh(x), but with di↵erent coe�cient factors

f

(n)
h (x) = K(x)⌦[

nX

k=0

(I�A)k]f . (11)

We proceed by induction on n. For n = 0 the (11) is verified by taking into account
the relation (6).
Now we suppose it holds for k = n. Let consider

f

(n+1)
h (x) = f

(n)
h (x)+R

(n)(x) = f

(n)
h (x)+

NX

j=1

[f(⇠j)� f

(n)
h (⇠j)]K(x, ⇠j ;h)d⌦j =

= f

(n)
h (x) +

NX

j=1

f(⇠j)K(x, ⇠j ;h)d⌦j �
NX

j=1

f

(n)
h (⇠j)K(x, ⇠j ;h)d⌦j .
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In algebra notation

f

(n+1)
h (x) = K(x)⌦[

nX

k=0

(I�A)k]f +K(x)⌦f �K(x)⌦A[
nX

k=0

(I�A)k]f =

= K(x)⌦[
nX

k=0

(I�A)k + I�A
nX

k=0

(I�A)k]f =

= K(x)⌦[I+ (I�A)
nX

k=0

(I�A)k]f = K(x)⌦[I+
nX

k=0

(I�A)k+1]f =

= K(x)⌦[
n+1X

k=0

(I�A)k]f .

Therefore, by remembering that [16]

lim
n!1

nX

k=0

(I�A)k = A�1

{f (n)
h (x)} converges to Ph(x) if and only if kI�Ak2 <1.

Thus, the convergence condition is valid for uniform and for scattered data sites
too.

In the following the fundamental computational steps are underlined.

Algorithm

Input {⇠j , f(⇠j)}Nj=1, {d⌦j}Nj=1,x, tolerance tol, maxlevel

1. Compute the vector K(x) based on the distance between the evaluation point
and the data sites

2. Compute the interpolation matrix A based on the distance between the data
sites

3. f

(0)
h (x) =

NX

j=1

f(⇠j)K(x, ⇠j ;h)d⌦j

4. sj = f(⇠j)

5. Repeat for all levels n > 0

(a) sj = sj �
NX

i=1

Ajisi
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(b) R

(n�1)(x) =
NX

j=1

sjK(x, ⇠j ;h)d⌦j

(c) f

(n)
h (x) = f

(n�1)
h (x) +R

(n�1)(x)

until ||R(n�1)(x)||2 < tol or n=maxlevel

4 Numerical validation

In this section we discuss on the numerical results to assess the iterative approach.
Gridded, Halton[17], Sobol[29] and random data sites, denoted as ⌅G, ⌅H , ⌅S

and ⌅R respectively, are considered in the square domain ⌦ = [0, 1]2. The random
data are generated with the function rand of MATLAB c� and in Fig. 1 we show ⌅R

in our simulations with N=289. Moreover, M=1600 evaluation points are picked
up in ⌦ to validate the proposed approach. The results are collected by increasing

Fig. 1 N=289 random data sites (⌅R) generated with the function rand of MATLAB c�.

the data and the iteration number and the root-mean-square-error (RMSE)

RMSE =

vuuuut

MX

i=1

|f (n)
h (xi)� f(xi)|2

M

. (12)

is used in the validation. We discuss here on the results obtained with the following
test function taken from the scattered data literature [26,30]

f(x(1)
, x

(2)) =
sin(2⇡x(1)) cos(2⇡x(2))

2
. (13)

In the Tables 1, 2, 3 and 4 the RMSEs are reported for a di↵erent number of
data and iterations. Good improvements in the approximation are observed and
depicted in Fig. 2 in loglog plots increasing the iterations from 10 to 1000.
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Moreover, in Fig. 3 we report the convergence behavior for the test function (13)
compared with the interpolant at N=289 data in ⌅G, ⌅H ,⌅S and ⌅R respectively
by adopting a logarithmic scale for the y-axis. Both the Maximum Absolute Error
(MAE)

MAE = max
1iM

|f (n)
h (xi)� f(xi)|, (14)

and the RMSEs give evidence that the major improvements are reached with few
iterations.

Table 1 RMSEs with ⌅G. Function test (13).

N SPH iteration
10 100 1000

9 0.2478 0.2319 0.1476 0.1601
25 0.2268 0.1207 0.0483 0.0255
81 0.1550 0.0350 0.0154 0.0110
289 0.0823 0.0203 0.0106 0.0083
1089 0.0501 0.0172 0.0097 0.0078
4225 0.0407 0.0168 0.0093 0.0076
16641 0.0392 0.0162 0.0090 0.0072

Table 2 RMSEs with ⌅H . Function test (13).

N SPH iteration
10 100 1000

9 0.2499 0.2541 0.2389 0.2348
25 0.2360 0.1697 0.0989 0.0567
81 0.1488 0.0335 0.0160 0.0116
289 0.0850 0.0220 0.0118 0.0083
1089 0.0494 0.0163 0.0085 0.0055
4225 0.0421 0.0155 0.0062 0.0034
16641 0.0395 0.0157 0.0073 0.0045

Table 3 RMSEs with ⌅S . Function test (13).

N SPH iteration
10 100 1000

9 0.2527 0.2688 0.2507 0.2570
25 0.2381 0.1765 0.0850 0.0396
81 0.1948 0.0590 0.0192 0.0102
289 0.0981 0.0214 0.0104 0.0076
1089 0.0601 0.0165 0.0070 0.0039
4225 0.0425 0.0157 0.0080 0.0047
16641 0.0398 0.0143 0.0056 0.0027

Anyhow, we remark that a better accuracy is reached at the cost of an increased
computational e↵ort related to the iterations number on the residuals.
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Table 4 RMSEs with ⌅R. Function test (13).

N SPH iteration
10 100 1000

9 0.2467 0.2366 0.2202 0.2034
25 0.2403 0.2124 0.1796 0.1459
81 0.1300 0.0441 0.0348 0.0317
289 0.1016 0.0287 0.0134 0.0100
1089 0.0757 0.0197 0.0101 0.0063
4225 0.0623 0.0197 0.0090 0.0056
16641 0.0685 0.0247 0.0151 0.0114

(a) (b)

(c) (d)

Fig. 2 RMSEs versus number of data sites for the standard SPH and the iterative method
with 10,100,1000 iterations. Function test(13) (a) ⌅G; (b) ⌅H ; (c) ⌅S ; (d) ⌅R.

In summary the SPH method, widely used in the applications with the advantage
to overcome the spatial topological connections of the grid based methods, can
be iteratively improved in accuracy. In convergence, the proposed iterative proce-
dure provides more accurate results than those obtained with the standard one,
preserving the mesh-free nature of the method and the matrix-free feature of the
computational process, without changes on the kernel function and requirements
on data locations. The computational demanding is an important point to address,
considering that it increases applying the iterative scheme, but the numerical sim-
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(a) (b)

(c) (d)

Fig. 3 Convergence for the iterated SPH and RBF interpolant with N=289 for the function
test (13) MAEs and RMSEs for (a) ⌅G; (b) ⌅H ;(c) ⌅S ; (d) ⌅R.

ulations suggest us that a satisfying accuracy is generally reached with not many
iterations and further studies need along this direction.

5 Conclusions

In this paper we present a novel SPH method via residual iteration. The method
improves the standard one preserving the matrix-free nature of the SPH method
and indipendently by the data distribution. We illustrate results on the conver-
gence and on the accuracy giving evidence of better results than SPH ones. Many
experiments are conducted with the aim to address the basic features of the method
which works with gridded and scattered data sets. The results encourage to proceed
in applying the method also in the approximation of derivatives and in applying
it for modeling the evolution in time of transient phenomena.
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