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Abstract In this paper we propose for the first time an iterat. = ppr ach of
the Smoothed Particle Hydrodynamics (SPH) method. The met. ~d is - .espread
in many areas of science and engineering and despite its extensive . ~plication it
suffers from several drawbacks due to inaccurate approximati. ~ at bov 1daries and
at irregular interior regions. The presented iterative process “mpro.  che accuracy
of the standard method by updating the initial estimates iteratin, on the residuals.
It is appealing preserving the matrix-free nature of the metnod and avoiding to
modify the kernel function. Moreover the process refines th. SPH estimates and
it is not affected by disordered data distribution. V¢ «. s on the numerical
scheme and experiments with a bivariate test function = «d different sets of data
validate the adopted approach.

Keywords Kernel based methods - Smoothed Partic’» Hydrodynamics - Iterated
residuals - Accuracy - Convergence

1 Introduction

On the last decades mesh-free methc is have . .come a valid alternative to mesh-
based due to various advantages in - 1an* diffr rent areas providing numerical solu-
tions without using any mesh in th prc. 'em fomain [8,9,13,14,18]. The Smoothed
Particle Hydrodynamics (SPH) < a popu.ar approach for the representation of
physical models dealing with r odes . -ated in the problem domain, avoiding the
numerical overhead of handlir | ~xplicit mesh topology. The method was originally
developed for solving astrop .ysic . problems [15,24] and nowadays spans many ar-
eas of science and engineering 7 .e to its capabilities of handling complex evolution
problems as well as moc :line co.. plicated physics in a relatively simple manner
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[2-4,20,25,27,28,31,32]. However the method suffers from several drawbacks due
to inaccurate approximation at boundaries and at irregular interior regions. Many
techniques have been devised to alleviate these problems and some of these have
been documented in [1,5,6,21-23] and in the references therein. In this paper we
discuss for the first time on sources of enhancement in accuracy of the discrete
approximation by iterating on the residuals.The iterative refinement provides ac-
curate estimates preserving the matrix-free nature of the method furnishing th.
values of a function via a sum based directly on the given data. The method v ~s
introduced in [10,11] for moving least-square approximation and it is appealing
in SPH framework because no changes on the kernel function need [21-23], wer -
ing to lead unphysical results such as negative density or negative energy t* at ¢ .n
give rise to breakdown of the entire computation in simulating some problems . 1.
Moreover, in convergence it improves the SPH estimates and it is not .dectec by
disordered data distribution. The difficulties associated with the solu ion of 1 n-
ear systems required in improving the SPH accuracy, as many times oc re 12,
22,23], are also successfully avoided. This occurence is a compu’atior-' burden
expecially for time-evolving simulations often coupled with the ill ~o- ditic 1ing of
the system matrix for some specific problems.With the aim to . 1dress » .merical
features of the method we propose some numerical simulations cona.. “ted on grid-
ded and scattered data sets.The remainder of the paper is . follows In Section
2 we present a review of the standard formulation. In Sec.'~n 5 describe the
iterative strategies and in the next Section numerical simulatio. - for function re-
covery problems are proposed. In Section 4 some discus. -ns on the errors versus
the number of data are reported with the standard SPH a. ‘nitial estimates. In
Section 5 the conclusions and the future work are sh rv., marized.

2 SPH standard formulation

In this section we briefly discuss on the standard SPh method based on the ideas
from distribution theory for approximat’.g a “inction with a delta distribution
representation [19]. The method is founs »d on th kernel approzimation of a func-
tion f: 2 C R* - R, for d > 1, define? as

< () >= Jf F(E) \(x, & h)de2. (1)

at x = (M, ., 2D e = (€D . XD) e 2 and K(x,&; h) is the kernel function
such that

lir K(x,& h) = 0(x,€).

with ¢ the delta Dirac f acti m and h the smoothing length, localizing its influence
in §2. The kernel is req.’ e . to ' e sufficiently smooth, symmetric and normalized
to unity so that the ~~=or or " : kernel approximation can be estimated as second
order of accuracy, or of fi st order of consistency [19,20]. The Gaussian kernel
function is a comm. n choic .

—( Hﬁfhxl\z )2.

K(x,& h) = aae (2)
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The kernel clearly decays when x moves away from & and with the dimensional
constant ag = 1/(hy/7)? it satisfies the unity requirement [19]. Moreover, it is
infinitely differentiable, radial and strictly positive definite function on R? for any
d [10]. This function will be taken into consideration as kernel from now on.

N
fr(x) =D F(&)K(x, €55 h)de;, (3
j=1
where d{2; is the measure of the subdomain {2; associated to each data site §;. The
standard method does not yield to satisfactory results throughout and the p7.tic'e
approximation is not according with the second order of accuracy as cla’ aed n
the kernel approximation due to the accuracy of the kernel approximation no. al-
ways preserved in the discrete particle counterpart.This is evident with aata reax
the boundary of the problem domain or with a scattered data distribi tion wh -h
provide an unbalanced contribution to the summations [19,20]. With t. ~ o2’ to
improve the accuracy we introduce an iterative scheme [10,11] in apprevimating
via SPH, which is not affected by data distribution, preserving ‘he mat ix-free
nature of the standard method and without changes on the kerr ~1 functic .. In the
next section we discuss on the notions distinguishing the improvea »proach.

3 Iterative corrective scheme

The corrective method is based on the idea to iters " ~lv gencrate approximate

solutions f}(Ln)(x) making corrections on the SPH appr. <i' 1ant defined in (3) with

the SPH approximations of the difference betwee. .“e fu. <tion and f,(lnfl)(x) on
the same data sites

W (x) = [0V (%) + 5T (x) (4)
where
N
O(x) = fr(x) and R"Y(x)= Z[f(w— D (€K (x, €53 h)d2;. (5)

A question on the convergence « [ the ap, soximations f,i")(x) arises and a fun-
damental result is provided as ess.-o the convergence to the interpolant P (x)
generated as linear combination of the »ame kernel functions. To this aim we pro-

ceed by adopting the algebr . noi ition for the f}(Lm(x) and P, (x) and we write

J (%) = K(x)Qf (6)
where
K(j ’g 7h) d.Ql f(El)
K700 — | KC j'si;m),ﬂ " =T @
K(x,€ 5 h) 4y F(En)
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The vector K(x) and the diagonal matrix €2 also feature the interpolant

Py (x) = K(x)Qc (8)

defined by enforcing the constraints

Pn(&)=f(&) i=1,..,N. V)

The unknown vector c is obtained by solving the linear system

Ac=f (.0)

with associated matrix

K(£1a€1§h) K(£17€2§h) K(€17£N§h) df
K(£2751§h) K(£27£25h) K(£27£N;h) «

K(Ex, €13 1) K(Ex EaiB) .. K(En Exih) ) N df2n

By assuming K(x, &;; h) strictly definite positive anc , ,/ €..¢ # j, we are sure
that the data interpolation admits solution without no e ¢riction on the distribu-
tion of the data except for being pair-wise distinc '7.10, '1].

A convergence result is provided by the following 1 ec. "m which guarantees the
convergence of {f(">( )} to Pp(x) without as: .. ~+iow~ for the data distribution.

Theorem 1. The {f(n)( )} converges to Pp(x) for a given set of distinct data
sites if and only if |[I— A2 < 1.

Proof.

We want to prove that {f,gn)(x)} car be v mre sed as linear combination of the
same kernel functions interested in f,(x) but with different coefficient factors

() (x) :K(x)!LLZ(I - A)fL. (11)

k=0

We proceed by induction on 7 .+ vn = 0 the (11) is verified by taking into account
the relation (6).
Now we suppose it holds for » - n. Let consider

z

A = A0+ RN < S (x Z — I (€)K€ 1)dR2

N
)+ Lf(é JK(x, €55 h)de2; — Zf(") YK(x, €55 h)de;.

Jj=1
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In algebra notation

n

U (x) = Kx)QD (I - A)ME + K(x)0Qf — K(x)QA| Z(I -

k=0

n

=Kx)Q)D) (I-A)F+1- Ai(I — A

k=0

—K()QI+ (- A4)> (I~

k=0

Therefore, by remembering that [16]

lim Y (I-A)* =

n

n— o0

{f,(l")(x)} converges to Py (x) if and only if |[I — A2 <.

Thus, the convergence condition is valid for uniform. ...

too.

In the following the fundamental computational ste, s «. ~ underlined.

Algorithm

k=0

O

“~» scattered data sites

Input {§,, f(.fj)}évzl, {dﬂj}é\rzl,x, to! rance t. I, maxlevel

1. Compute the vector K(x) based ¢ 1 the a..' wnce between the evaluation point

and the data sites

2. Compute the interpolation v itrix A Lased on the distance between the data

sites

3. (0) Zf
4. 85 = f(Eg)

5. Repeat for all lev 1. n >

N
(a) sj=8;—=>_+.°

—— -
=1

b ds;
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N
(b) R M (x) = s;K(x,&;;h)de
j=1

(© £7(x) = £V () + RO (x)

until ||[R™ Y (x)|]2 < tol or n=maxlevel

4 Numerical validation

In this section we discuss on the numerical results to assess the iterative appro~ch.
Gridded, Halton[17], Sobol[29] and random data sites, denoted as = 1, Eg, . 7s
and = respectively, are considered in the square domain 2 = [0, 1]2. TL ran om
data are generated with the function rand of MATLAB® and in Fig | we ~how Zg
in our simulations with N=289. Moreover, M=1600 evaluation p \in*, are picked
up in {2 to validate the proposed approach. The results are colle ted by ir _reasing
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Fig. 1 N=289 random data sites (£g) gene' ‘ted with he function rand of MATLAB®O.

the data and the iteration number nd *.e rr ot-mean-square-error (RMSE)

2
J 2 M e = £ )
RMS™, = \| &= i (12)

is used in the validation. We a. uss here on the results obtained with the following
test function taken from che scatiered data literature [26,30]

_ sin(2rz ™M) cos(2rz?)

.
iz ) ; (13)
In the Tables 1, 2, 3 and the RMSEs are reported for a different number of
data and iteratir~s. . - _ improvements in the approximation are observed and

depicted in Fir. 2 in | glog plots increasing the iterations from 10 to 1000.
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Moreover, in Fig. 3 we report the convergence behavior for the test function (13)
compared with the interpolant at N=289 data in Z¢, Zg,=s and =g respectively
by adopting a logarithmic scale for the y-axis. Both the Maximum Absolute Error
(MAE)

MAE = masx |/ (x:) = f(xi)] (14)

<1

and the RMSEs give evidence that the major improvements are reached with few
iterations.

Table 1 RMSEs with Z¢. Function test (13).

Anyhow, we rem~rk v..

N SPH iteration
10 100 1000
9 0.2478 0.2319 0.1476  0.1601
25 0.2268  0.1207 0.0483  0.0255
81 0.1550 0.0350 0.0154 0.0110
289 0.0823 0.0203 0.0106 0.0083
1089 0.0501 0.0172 0.0097 0.0078
4225 0.0407 0.0168 0.0093 0.0076
16641 0.0392 0.0162 0.0090 0.0072
Table 2 RMSEs with =g. Function test (13).
N SPH iteration
10 100 TJ0
9 0.2499 0.2541 0.25.» 0.2.'8
25 0.2360 0.1697 0.098Y  uv."R67
81 0.1488 0.0335 " N160 1.0116
289 0.0850 0.0220 u..'ls  ..0083
1089 0.0494 0.0163 0.005.  0.0055
4225 0.0421 0.0155 0.0062 0.0034
16641  0.0395 0.017. 0073  0.0045
Table 3 RMSEs with =g. Function t st (1.,
N S 'h iteration
T "0 100 1000
9 0.2 27 0.2688  0.2507  0.2570
25 0.2731 0.1765 0.0850  0.0396
81 07048 0.0590 0.0192  0.0102
28¢ 0.u.°' 0.0214 0.0104 0.0076
10,9 0.0601 0.0165 0.0070  0.0039
495 0.0 25 0.0157 0.0080 0.0047
1664, 0 398 0.0143 0.0056 0.0027

* . better accuracy is reached at the cost of an increased
computational effort i "lated to the iterations number on the residuals.
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Table 4 RMSEs with =Zx. Function test (13).

N SPH iteration
10 100 1000
9 0.2467 0.2366  0.2202 0.2034
25 0.2403 0.2124 0.1796  0.1459
81 0.1300 0.0441 0.0348 0.0317
289 0.1016  0.0287 0.0134 0.0100
1089 0.0757  0.0197 0.0101 0.0063
4225 0.0623  0.0197 0.0090 0.0056
16641  0.0685 0.0247 0.0151 0.0114
10° 10°
. SPH o’ #H
o It#10 e t#10
o o [t#100 Et #100
3 It #1000 — #1000
L o w
(2] 2 a (2] °
= =
o el o e R P
10 N 10 —
(a) (o)
10° 10°
=-SPH « SPH
— It #10 —e It#10
o It #100 o It#100
— 1t #1000 10 o — It #1000
o
=10°
o
10 103
10 N 10'4L N
(c) (d)

Fig. 2 RMSEs versus number of d¢  sites for the standard SPH and the iterative method
with 10,100,1000 iterations. Functic 1 tesv,"?) (a) ZE¢g; (b) Z; (¢) Es; (d) Eg.

In summary the SPH method, . “dely used in the applications with the advantage
to overcome the spatial top logical connections of the grid based methods, can
be iteratively improvea M - ccur .cy. In convergence, the proposed iterative proce-
dure provides more 2~~ura.. v sults than those obtained with the standard one,
preserving the mes’ -free . ture of the method and the matrix-free feature of the
computational proc »ss, wit' out changes on the kernel function and requirements
on data locations The - .putational demanding is an important point to address,
considering th ¢ it inc =ases applying the iterative scheme, but the numerical sim-
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Fig. 3 Convergence for the iterated SPH and RBF inte: ~lant . ith N=289 for the function
test (13) MAEs and RMSEs for (a) Z¢; (b) Em;(c) Eg; (V) 2~

ulations suggest us that a satisfying accuracy is ge. ~rally reached with not many
iterations and further studies need along this direction.

5 Conclusions

In this paper we present a novel S " r ethc 1 via residual iteration. The method
improves the standard one preser ving ti. " .atrix-free nature of the SPH method
and indipendently by the data .. ‘ribution. We illustrate results on the conver-
gence and on the accuracy giving eviac "ce of better results than SPH ones. Many
experiments are conducted w’.n « e aim to address the basic features of the method
which works with gridded a 1 sc' ctered data sets. The results encourage to proceed
in applying the method #'so 1. “he approximation of derivatives and in applying
it for modeling the evol- tior in time of transient phenomena.
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