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Abstract 

The actual level of water demand is the driving force behind the hydraulic dynamics in water distribution systems. Consequently, 
it is crucial to estimate it as accurately as possible in order to result in reliable simulation models. In this paper, a copula-based 
multivariate analysis has been proposed and used for demand prediction for given return period. The analysis is applied to water 
consumption data collected in the water distribution network of Palermo (Italy). The approach showed to produce consisted 
demand patterns and to be a powerful tool to be coupled with water distribution network models for design or analysis problems. 
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1. Introduction 

Urban development is creating new problems for the management of water distribution systems, which are called 
upon to respond to a growing drinking water demand, which is also highly variable in space and time. The general 
goal for any water utility is to supply constantly water to all customers of good quality and under sufficient pressure 
[1,2]. The reliability of the water distribution system of that utility depends on the combination of different factors 
that play an important role in the design and management of the system: water demand variability, size and 
maintenance of pipes, volumes of urban reservoirs. The development of powerful computers made hydraulic 
engineers able to simulate the behavior of water supply systems for almost any scenario. However, the accurate 
prediction of pressures, flows and water quality parameters depends strongly on the quality of the input data. Data 
needed to simulate the behavior of water distribution network, such as pipes friction coefficients, nodal demands, 
and their temporal variation contain uncertainty, consequently affect our confidence in the outcome of the 
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simulation. There has been agreement in the literature that uncertainties in nodal demands and their variation with 
time is one of the main source of error responsible for discrepancies between measured and model simulated flows 
and pressures. 

Residential water demand is one of the most difficult parameters to determine when modeling drinking water 
distribution networks. The simulation of a water distribution system is often carried out by assuming averaged 
values, both in space and in time, of water demands: the spatial averaged values are obtained by clustering the water 
consumption of users afferent each node of the network, the time averaged values are obtained as the mean of the 
instantaneous values of the nodal demands. The simulation results obtained by considering these simplifications 
could be not much reliable for the hydraulically disadvantages zones of the network. Therefore, water demand 
modeling has been a very active field of study. Researchers have been above all interested in domestic water 
consumption by households that is the principal rate of the total volume supplied by the water distribution system in 
urban regions, often equal to 75% [3]. The prediction of water demand can be done on different time scales: short- 
and long-term forecasting of the municipal water demand is essential to water utilities for system planning, design, 
and asset management. Short-term forecasting is useful for operation and management of existing water supply 
systems within a specific time period, whereas long-term forecasting is important for system planning, design, and 
asset management. The detailed modeling of the hydraulic behavior of drinking water distribution systems could be 
get by implementing a domestic water demand modeling in one of the several software programs recently developed. 
Until today stochastic models for instantaneous residential water demand (for references see section 2.1) have been 
used to obtain realistic demand patterns for the hydraulic distribution network solvers. Several basic parameters 
related to the residential water usage are necessary to apply these models, such as the frequency, duration and 
intensity statistics of the demand pulses. This methodology shows a limit in authors’ opinion: it neglects the 
statistical dependence of the parameters characterizing the consumption process. Many approaches are used in 
hydrology to develop statistical multivariate analysis. Among methodologies present in literature, the method based 
on the copula, recently introduced in hydrology, is applied in this paper. 

This study has two objectives: (1) to propose a procedure based on a multivariate statistical analysis of the main 
features of the water consumption process at domestic level; (2) to define a more realistic demand patterns with a 
given return period. The present paper is organized as in the following: in section 2, a brief review of the studies 
concerning with demand modeling and multivariate statistical analysis is introduced; in section 3, the case study to 
which the procedure is applied is presented; in section 4, the multivariate analysis of the consumption process and 
the resulting demand patterns is described; finally, in section 5, the conclusions of this paper are drawn. 

2. Literature review 

2.1. Urban water demand modeling 

Qi and Chang [4] and House-Peters and Chang [5] present an overview of water demand prediction models on 
various time scales. The time scale for any prediction model is dictated by the purpose for which the prediction 
model is to be used [6]. Most of the researches on water consumptions carried out in the past started from the need to 
quantify the global demand, by means of long-term forecasting [7,8,9,10], and to fix a suitable rate structure [11]. 
New reasons to better characterize the domestic water consumption have lately come out: the need to assure water 
volumes demanded by costumers and to supply them with sufficient pressure and good quality, have stand out 
among these [12,13,14,15]. The many approaches proposed to forecast short- and long-term municipal water 
demands in the past few decades might be grouped into five categories: the regression analysis, the time series 
analysis, the computational intelligence approach, and the stochastic model. 

Traditional regression analyses were normally carried out based on statistical estimation of the relationship 
between water demand and some explanatory variables (i.e., independent variables), such as socioeconomic factors, 
and assumed that the relationships will continue in the future. Such a regression analysis approach can then be 
applied for both short- and long-term analyses when a training dataset is available [8, 16, 17, 18, 19, 20, 21, among 
others]. Time series analysis in water demand forecasting is based on a statistical abstraction of the various trends 
that inherently contribute to the change of water demand over time. A time series model may inevitably include a 
long-term trend component, a cyclical component, and a short-term variance component. The time series analysis 
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has been extensively used for short-term water demand forecasting [1,9,10,22,23,24,25,26,27,28,29,30,31,32,33]. 
The computational intelligence models, including artificial neural networks (ANN), fuzzy logic, and agent-based 
models, are mathematically suited to simulate complex systems. For example, the ANN were developed for short-
term water demand forecasting [34,35,36,37,38,39,40]. ANNs have been offered as effective alternatives to 
traditional linear modeling approaches because of their ability to explicitly analyze nonlinear time series events. 
ANNs have been proposed as an improved method for short-term forecasting of peak daily [36,41] and hourly [42] 
water demand. 

The above-mentioned researches deal with water demand modeling at a big spatial scale (e.g. entire network 
level). At a domestic service level, water demand is sporadic, characterized by sudden demand pulses, and tends to 
have a stochastic character [13,14], especially when considering time scales on the order of seconds. Therefore, 
several stochastic models for domestic demand determination were developed. These models include the Poisson 
Rectangular Pulse model [13,14,15,43,44], the Neyman-Scott Rectangular Pulse model [45] and some more [46]. 

2.2. Multivariate statistical analysis 

The copula function is a new analysis method well-known in the theory of probabilistic metric space before and 
recently introduced by De Michele and Salvadori [47] in hydrology. The copula function permits separate 
investigation of the marginal properties and interdependence structures of variables. Therefore, it synthesizes the 
dependence structure of the variables in the purest and most essential form [48] without assuming that variables are 
normal or have the same marginal distributions. The application of copulas in simulations of multivariate data, 
extreme value analysis and modeling dependence structure is becoming popular in hydrological analysis [47, 48, 49, 
50, 51, 52]. A historical review and a discussion of major developments in the theory and application of copulas can 
be found in Schweizer [53] and Kotz [54]. While there is a multitude of bivariate copula, the class of multivariate 
copulas is still quite restricted. As matter of fact, building higher-dimensional copulas is generally recognized as a 
difficult problem. The idea of constructing a multivariate dependence model from bivariate copulas as building 
blocks called pair-copulas goes back to the paper of Joe [55]. He gave the construction of the first pair-copula in 
terms of distribution functions. 

Bedford and Cooke [56,57] realized that there were a significant number of possible pair-copulas constructions 
(PCC), thus they organized them in graphical way by sequentially designing trees which identify the bivariate 
copula densities needed to make up a d-dimensional density. It involves only products of bivariate copulas. Since 
the trees are intrinsically related they called these distributions regular vines (R-vines). Their primary interest was to 
use vines in the modeling of large networks so they restricted themselves to the case of Gaussian pair-copulas. Aas 
et al. [58] were the first to recognize that this construction principle can be extended by using arbitrary pair-copulas, 
since the construction principle has no restriction on the choice of pair-copulas. Vine copulas are flexible models for 
multivariate dependencies which specify a factorization of the copula density into a product of conditional bivariate 
copulas. The class of regular vines is still very general and embraces a large number of possible pair-copula 
decompositions; it includes two simple tree structures, such as line trees and star trees, the first one corresponds to 
D-vines, while the second one corresponds to C-vines. 

3. The case study 

The multivariate statistical analysis described in the next section have been applied to water consumption data 
obtained monitoring eight dwellings located in Palermo (Italy) during the entire 2007. The customers that took part 
in the consumption monitoring program have been selected according to the following characteristics: family with at 
least two members; family members of 4-70 years old; one electric household appliance at least (dishwasher or 
washing-machine); negligible outdoor consumptions; cooperation. The selected eight families were the only that 
agreed to take part in the consumption monitoring program. Instrument packs to monitor domestic water use were 
installed on the service line of the secure indoor locations in each of the eight dwellings. The instrument package 
included a data logger, 4-20 mA impulse sensor. Data loggers were coupled with an input sensor inserted between 
the base and register head of a multi-jet water meter. The water meter had Q1 = 15 l/h, Q2 = 22.5 l/h, Q3 = 1500 l/h, 
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Q4 = 5000 l/h. The input sensor monitored revolutions of a magnet fixed to a positive displacement nutating disc in 
the measuring chamber of the meter. At each consumption of 0.5 liters, the sensor transmitted a signal to the data 
logger. Consumptions recorded at each user were reported in a text file where six fields were stored: day, month, 
year, hour, minute and second at which a use with a volume of 0.5 l occurs. Water demands were downloaded 
connecting the data logger to a portable pc. 

A four steps process was used to transform the raw input signals into archived residential water consumptions: 
Step 1 involves data retrieval; Step 2 involves data correction (signal repeated removing, putting water demand 
reading in chronological order) and water uses separation; in step 3, leaks and ultra-low demands were censored; in 
step 4, the volume of each pulse was uniformly distributed over the duration of the pulse. A sparse matrix collected 
flow values (l/sec) having as number of columns the seconds in a day and as number of rows the days during which 
consumption data were recorded (changing for each user). 

4. Consumption data analysis 

In this paper the vine copula method has been used to build the 3-D copula for the main variables of domestic 
water consumption: the total daily volume, Vd; the daily peak coefficient, Kp, expressed as the ratio between the 
maximum consumption in a given time step, Vmax, and the total daily volume; and time to peak, Tp. As first step of 
the analysis, the related marginal distributions (FVd, FKp, FTp) and the transformed variables (V, K, R), approximately 
uniformly distributed in [0, 1], were identified for the triplets (Vd , Kp, Tp). The related marginal distribution of each 
variable was obtained by fitting several distribution functions to the empirical CDF and by carrying out a K-S test ad 
goodness-of-fit test in order to choose the best distribution. All the three variables (Vd, Kp, Tp) show a good fitting 
with the GEV distribution. The parameters of the GEV marginal distributions for user 1 are showed in Table 1. 

Table 1. Parameters of the GEV marginal distributions of (Vd , Kp, Tp) for user 1 

  k 

FVd GEV -0.23 0.17 0.37 

FKp GEV 0.37 0.04 0.13 

FTp GEV 0.45 0.08 0.37 

 
As second step, the statistical dependence between the three variables (V, K, T) was evaluated by estimating the 

Kendall’s k rank correlation of each couple of variables V-K, V-T and K-T. For user 1, V-K and V-T showed a 
negative correlation, with Kendall’s k values equal to -0.42 and -0.12, respectively; only the pairwise K-T had a 
positive correlation, with k equal to 0.07. Furthermore, the correlation was higher for V-K and V-R, and lower for 
K-T. Then, the vine copula method was used to build the 3-D copula for the variables (V, K, R). In the three-
dimensional case there are no differences between a C- or a D-vine, only the ordering of variables can be changed. 
Fig. 1 shows the possible schemes for composing a 3-D vine copula. In the second tree, the two conditional CDF 
values are calculated for all triplets (V, K, R). 

 

 

Fig. 1. Possible structures of a 3-D vine 
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These “conditioned observations”, which are again approximately uniformly distributed in [0, 1], are then used to 
fit another bivariate copula, e.g. CKR |V, CVK |R or CVR |K. Considering the 3-D vine structure of Fig. 1a) the full 
density function cVKR of the three-dimensional copula is thus given by: 

vr,cvk,cvr,F,vk,Fcrk,v,c RVKVV|RV|KV|KRVKR
 (1) 

Combining the bivariate copulas, as in Eq. (1), and substituting the marginal distribution functions FVd, FKp and 
FTp yields the three-dimensional distribution function of (Vd, Kp, Tp). The full density function fVdKpTp of the 
distribution of each triplet (Vd, Kp, Tp) is then given by: 

pTpKdVRVKVV|RV|KV|KRppdTKV tfkfvfvr,cvk,cvr,F,vk,Fct,k,vf
ppdppd

 (2) 

According to Eq. (1) and (2), three bivariate copulas need to be fitted to derive the building blocks of the 3-D 
vine copula (e.g. in Fig. 1a, the CKV, CRV and CKR|V bivariate copula). The maximum likelihood estimation method 
(MLE) was adopted to fit a copula from each family investigated for each pair of variables: the copula showing the 
highest log-likelihood value was selected as best fitting. The copula families investigated include Normal, Student, 
Gumbel, Frank, Clayton, BB1, BB6, BB7, BB8 and their rotated version. All the possible schemes of 3-D vine 
copula showed in Fig. 1 were built. The log-likelihood and the Akaike’s Information Criterion (AIC) values were 
evaluated for each of the three vine copula schemes built for identifying the best fitting vine copula model for the 
analyzed dataset. Table 2 shows copula families, parameters and the Kendall’s k rank correlation of the bivariate 
copula composing the three 3-D vine copula built for user 1 together with the related log-likelihood and AIC values. 
The best fitting 3-D vine, having the higher log-likelihood value and the lower AIC value, is that showed in Fig. 1a. 

Table 2. Copula families, parameters and Kendall’s k of the building blocks of the 3-D vine copula constructed for user 1 

 3-D vine Fig. 1a  3-D vine Fig. 1b  3-D vine Fig. 1c 

Log-likelihood 106.31  79.22  105.60 

AIC -204.63  -148.44  -201.20 

 CVK CVR CKR|V  CVK CKR CVR|K  CVK CKR CVR|K 

Family copula* 33 40 5  40 10 5  33 10 40 

par 0.17 -3.24 2.83  -3.24 1.80 0.97  -0.17 1.80 -4.49 

par2 0.00 0.96 0.00  0.96 0.90 0.00  0.00 0.90 -0.90 

Kendall’s k bivariate copula -0.08 -0.51 0.29  -0.51 0.22 0.11  0.08 0.22 -0.58 

*5 = Frank copula; 10 = BB8 copula; 33 = rotated Clayton copula (270 degrees); 40 = rotated BB8 copula (270 degrees) 
 
After the identification of the best fitting 3-D vine copula model, the analysis focused on the identification of the 

triplets related to a given return period. The multivariate return period of the triplets (V, K, R) was assessed by 
means of the copula’s Kendall distribution function KC(t) approach proposed by Salvadori et al. [59]. According to 
this, the return period TKEN3 is given by: 

KEN3

1
CKEN3

C
KEN3 T1

μ1Kt
tK1

μT   (3) 

where  is the mean inter-arrival time expressed in years (in the case of daily event,  = 1/365). 
The copula’s Kendall distribution function KC(t): I→I is defined as: 

trk,v,CPtKC   (4) 
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where t  I is the probability level. 
According to Eq. (4), after fixing the design return period TKEN3, the corresponding probability level tKEN3 can be 

assessed by means of the inverse of the copula’s Kendall distribution function KC(t). In 3-D this corresponds to an 
iso-surface, i.e. all triplets (v, k, r) on this surface have the same copula value equal to tKEN3. Kc(t) allows at 
calculating the probability that a random point (v, k, r) in the unit cubic space has a smaller or larger copula value 
than a given critical probability level t = tKEN3. The Kendall distribution function is an univariate representation of 
multivariate information as it is the CDF of the copula’s iso-surface. Therefore, Kc(t) turns out to be an essential tool 
for calculating a copula based return period for multivariate events [60]. 

A numerical evaluation based on a sample of 1,000,000 points simulated from the 3-D vine copula was carried 
out to calculate the inverse of Kc(t), as no closed form exists for the cumulative distribution function of the 3-D vine 
copula adopted in this analysis (for more details see Salvadori et al. [59]). Two return period were set, TKEN3 = 2 

years and TKEN3 = 5 years. According to Eq. (4) and the numerical evaluation of Kc(t), the related tKEN3 values were 
calculated and resulted equal to 0.522 and 0.695, respectively. Thus, from the iso-surface corresponding to C(V, K, 
R) = tKEN3, 1,000 triplets (V, K, R) were sampled and the corresponding 1,000 triplets (Vd, Kp, Tp) having iso 
probability were obtained by the inverse marginal distribution. As final step of the analysis, a pattern was 
statistically assigned to each triplet (Vd, Kp, Tp) taking into account the historical series of consumption. A mass 
curve (Huff curve) was obtained for each recorded daily consumption pattern as representation of the normalized 
time versus the normalized cumulative water consumption from the beginning of the day. Then, the Huff curve of 
the recorded daily consumption pattern that minimized the following objective function [61] was assigned to each 
statistical triplet (Vd, Kp, Tp): 

2

h isto ricald

max

lstatisticad

max

V
V

V
VS   (5). 

The patterns have been finally processed and the percentiles for given return period have been estimated (Fig. 2). 
The two patterns are similarly shaped: peaks are preserved in the beginning of the morning confirming that this user 
is typical of working families that are not often at home during the afternoon. The percentiles are consistent 
demonstrating that the analysis carried out can be efficiently used for water distribution networks simulation. 

 

 
 (a) (b) 

Fig. 2. Water demand percentiles: (a) 2-years return period; (b) 5-years return period 

5. Conclusions 

The interest in domestic water demand modeling comes from the wish for reaching two main objectives: to 
analyze the domestic consumption process to aid systems management; to define demand patterns at given return 
period to aid systems design. Under this point of view, the present paper proposed a statistical methodology for the 
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definition of water consumption patterns based on return period and multivariate probabilistic approach. The method 
tried to avoid the usual assumption of a constant water demand pattern for network simulation. It is based on a 
multivariate statistical analysis: a 3-D vine copula was built for the main features of the consumption process at 
domestic level. The water demand was predicted for given return period by means of patterns that was statistically 
generated taking into account the historical series of consumption to which the methodology was applied. The 
analysis of the percentiles of the water demand for given return period showed that the proposed approach produced 
consisted demand patterns and will be a powerful tool to be coupled with water distribution network models for 
design or analysis problems. 
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