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1. Introduction

Recently Witten found a remarkable connection between perturbative N = 4 Super Yang-

Mills theory and the topological B model on the super Calabi-Yau space CP 3|4 [1].1 In-

terpreting perturbative amplitudes in terms of a D-instanton expansion in the topological

theory, the conjecture offers a deeper understanding of well-known field theory results. At

tree level, after stripping out the color information, Yang-Mills theory is effectively super-

symmetric and therefore Witten proposal provides a new, suggestive approach to study YM

amplitudes. In particular some seemingly accidental properties of scattering amplitudes,

like the holomorphicity2 of the MHV Parke-Taylor formula [11]

C(1+, . . . , p−, . . . , q−, . . . , n+) = ign−2(2π)4δ4

(

∑

i

λai λ̃
ȧ
i

)

〈λp, λq〉
4

∏n
i=1〈λi, λi+1〉

, (1.1)

receive a new elegant interpretation in terms of localization over certain subloci of the

target space CP 3|4. More precisely, according to the conjecture the l loop contribution to

the N = 4 SYM n gluon scattering amplitude is localized in twistor space on an algebraic

curve of degree and genus given by

d = q − 1 + l

g ≤ l (1.2)

where q is the number of negative helicity external legs.

For instance, the holomorphicity of (1.1) allows to check that the MHV amplitudes,

once transformed to twistor space, are indeed supported on d = 1 genus zero curves in

CP 3 (the body of the supermanifold CP 3|4)

C̃(λi, µi) = ign−2

∫

d4x

n
∏

i=1

δ2(µiȧ + xaȧλ
a
i )f(λi) . (1.3)

1Recent related works can be found in [2]–[10].
2Up to the delta-function of momentum conservation.

– 1 –
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A priori one would expect a tree YM amplitude with q negative gluons to receive

contributions not only from d = q − 1 genus zero curves but also from all possible de-

compositions in disconnected curves Ci of degree di such that
∑

i di = q − 1. An explicit

calculation of the connected contribution to all the googly amplitudes C(+,+,−,−,−)

has been performed in [4] by integrating over the moduli space of connected curves with

genus zero and degree 2. Surprisingly the result correctly reproduces the known amplitudes

without any additional contribution from disconnected configurations.

In [2] the limit of totally disconnected configuration, that is q−1 curves of degree 1, has

been considered. A particular class of Feynman diagrams (MHV tree diagrams) was built

in which each vertex corresponds to a d = 1 genus zero curve and the contribution of each

vertex is the MHV Cn(−,−,+, . . . ,+) amplitude suitably extended off-shell. The vertices

are joined using the scalar propagator 1/p2. Quite amazingly this set of totally disconnected

configurations is also enough to reproduce all the googly amplitudes and likely all the

tree YM amplitudes [2, 8]. On the string theory side, the advantage of the disconnected

prescription is that we can avoid integrating over the moduli space of connected curves

and therefore drastically simplify the task of computing tree YM amplitudes. On the other

hand, from the field theory point of view, the simplicity of the MHV prescription offers a

very efficient way to calculate multi-gluon tree amplitudes.3 A proof4 of the equivalence of

connected and disconnected prescriptions has been presented in [7]. The MHV formalism

has been also successfully extended to YM coupled to fundamental fermions [9].

In this note we present some preliminary considerations on gravity amplitudes follo-

wing some suggestions in [1]. The closed string sector of the B model on CP 3|4 should

presumably describe N = 4 conformal supergravity, which at tree level reduces to confor-

mal gravity. Ordinary gravity amplitudes would be related not to the closed sector of the

B model on CP 3|4 but to that of a yet unknown topological twistor string theory which

probably describes N = 8 supergravity. Even though the correct framework for studying

gravity has not been established, some preliminary indications on localization of tree level

gravity amplitudes can be given. Some initial analysis of the MHV case was already given

in [1]. The crucial difference with respect to YM is that the n graviton MHV amplitude is

not holomorphic in the spinor helicity variables in Minkowski space. This non holomorphic

dependence is nonetheless very simple, namely polynomial. The polynomial dependence

implies that MHV gravity amplitudes are supported again on d = 1 curves, but now with

a multiple derivative of a delta-function, as we review in the next section.

It is natural to investigate if this behavior persists for non-MHV cases. In section 2

we check the simplest non trivial case, namely the googly amplitude M(+,+,−,−,−).

Constructing a suitable differential operator which annihilates the amplitude, we verify

that this is supported on a connected degree 2 curve of genus zero. This is similar to what

happens for the corresponding googly YM amplitude, with the difference that we now have

a derivative of a delta-function support.

3An explicit example of the power of this method has been given in [2], where a simpler form of

Cn(−,−,−,+, . . . ,+), previously computed in [12], was obtained.
4Modulo subtleties regarding the choice of the contour of integration.

– 2 –
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This does not exclude a priori the presence of disconnected contributions. In section 3

we comment on the possibility of a MHV decomposition of gravity amplitudes. Note

that even without knowing the underlying string theory, having a MHV-like diagrammatic

expansion would dramatically simplify the calculation of gravity amplitudes, which are

notoriously complicated and in many cases not known in closed form.

The vertices are built using the MHV prescription for YM and the KLT relations,

which in general express closed string amplitudes as a sum of products of open string

amplitudes, in the field theory limit [13]. Differently from the gauge theory case it is not

possible to construct MHV gravity diagrams using only holomorphic vertices. The only dia-

grams which can be built using holomorphic vertices correspond to amplitudes of the form

Mn(+,−, . . . ,−). As in YM these are known to vanish. Using the completely disconnected

prescription we verify that the MHV diagrams for M(+,−,−,−) and M(+,−,−,−,−)

sum to zero. More problematic is an MHV construction for the other gravity amplitudes.

Already the first not vanishing googly amplitude M(+,+,−,−,−) involves a non holo-

morphic 4 vertex. The naive application of the MHV prescription of [2] to this amplitude

seems to fail. In particular the result is not covariant. It is not clear to us whether this

failure is due to the special features of gravity (e.g., lack of conformal invariance) which

may lead to the non equivalence of connected and disconnected prescriptions. If this were

the case one should sum over both connected and disconnected configurations in the cor-

responding string theory. Another possibility would be that our off-shell extension needs

to be modified.

2. A googly graviton amplitude

Starting from the observation that a closed string vertex operator factorizes into the prod-

uct of two open string vertices, Kawai, Lewellen and Tye [13] were able to derive a set

of formulas relating closed string amplitudes to open string ones. In the low-energy limit

these formulas imply a similar factorization of gravity amplitudes as products of two gauge

theory amplitudes.

By direct use of the KLT relations it has therefore been possible [14] to obtain compact

expressions for several tree-level gravity amplitudes, which would have been much more

difficult to compute diagrammatically, considering the complexity of perturbative gravity.

A nice review of this topic is given in [15].

Following [14] we denote the amplitude for n external gravitons with momenta

p1, . . . , pn and helicities h1, . . . , hn by M(1h1, . . . , nhn). Similarly to the gluon case, the

amplitude vanishes if more than n−2 gravitons have the same helicity. The first non trivial

amplitude describes the scattering of 2 gravitons with one helicity and n−2 gravitons with

the opposite one. The amplitude with q = 2 negative helicity gravitons is called maximally

helicity violating (MHV), whereas the amplitude with q = n−2 negative helicity gravitons

is called “googly”.

In spinor helicity formalism the momentum of a massless particle is expressed in terms

of a (1/2, 0) and a (0, 1/2) commuting spinors (“twistors”), λa and λ̃ȧ (a, ȧ = 1, 2)

paȧ = λaλ̃ȧ . (2.1)

– 3 –
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Following custom we will use the abbreviated notation for the contraction of two spinors

〈ij〉 = εabλ
a
i λ

b
j and [ij] = ε

ȧḃ
λ̃ȧi λ̃

ḃ
j .

The explicit expression in the MHV case of n = 5, q = 2 gravitons is [14]

M(1−, 2−, 3+, 4+, 5+) = −4i (8πGN )
3
2

〈12〉8
∏4

i=1

∏5
j=i+1〈ij〉

E(1, 2, 3, 4) (2.2)

where E(1, 2, 3, 4) = 1
4i ([12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41]). This amplitude is of the form

M(1−, 2−, 3+, 4+, 5+) =
∑

α=1,2

Rα(λi)Pα(λ̃i) (2.3)

where the R’s are rational functions and the P ’s are polynomials. Even though (2.3) is

not holomorphic in λ as (1.1), it splits in two parts, each of them displaying a simple

polynomial dependence on λ̃. This generalizes to all MHV gravity amplitudes. As already

shown in [1], the twistor transform of

A(λi, λ̃i) = i(2π)4δ4

(

∑

i

λai λ̃
ȧ
i

)

M(1−, 2−, 3+, 4+, 5+) (2.4)

yields5

Ã(λi, µi) = i

∫

d4x

∫

d2λ̃1

(2π)2
· · ·

d2λ̃5

(2π)2
ei

∑5
i=1 λ̃

ȧ
i (µiȧ+xaȧλ

a
i )M(λi, λ̃i)

= i
∑

α=1,2

Rα(λi)Pα

(

i
∂

∂µiȧ

)
∫

d4x
5
∏

i=1

δ2(µiȧ + xaȧλ
a
i ) . (2.5)

The twistor transformed amplitude is thus supported on a curve of degree d = 1 and genus

g = 0, via a polynomial in derivatives of the delta function.

Now we move to the googly amplitude, which is obtained by switching the λ’s and the

λ̃’s in (2.2)6

M(1+, 2+, 3−, 4−, 5−) = [M(1−, 2−, 3+, 4+, 5+)]∗ =
∑

α=1,2

P ∗α(λi)R
∗
α(λ̃i) =

= (8πGN )
3
2

(

〈12〉〈34〉[12]8

[12][13][15][24][25][34][35][45]
+

〈23〉〈41〉[12]8

[13][14][15][23][24][25][35][45]

)

. (2.6)

This amplitude obeys for each i = 1, . . . , 5 a homogeneity condition

(

λai
∂

∂λai
− λ̃ȧi

∂

∂λ̃ȧi

)

M = −2hiM (2.7)

where hi = ±2 is the helicity of the i-th graviton.

5The twistor transform coincides with a Fourier transform in signature + + −−, where λ and λ̃ are

independent and real. As far as tree-level amplitudes are concerned one can always switch signatures by

Wick rotation.
6In Lorentz signature this amounts to a parity transformation since λ̃ = ±λ̄.

– 4 –
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The transform to twistor space of

A(λi, λ̃i) = i(2π)4δ4

(

∑

i

λai λ̃
ȧ
i

)

M(1+, 2+, 3−, 4−, 5−) (2.8)

would be

Ã(λi, µi) = i
∑

α=1,2

P ∗α(λi)

∫

d4x

∫

d2λ̃1

(2π)2
· · ·

d2λ̃5

(2π)2
ei

∑5
i=1 λ̃

ȧ
i (µiȧ+xaȧλ

a
i )R∗α(λ̃i) . (2.9)

The homogeneity condition in twistor space reads
(

λai
∂

∂λai
+ µiȧ

∂

∂µiȧ

)

Ã = (−2hi − 2)Ã . (2.10)

This can be obtained from (2.7) by replacing λ̃ȧ with i ∂
∂µȧ

and −i ∂

∂λ̃ȧ
with µȧ.

According to (1.2), we expect Ã to be supported on a d = 2, g = 0 curve in twistor

space. Since the λ̃ dependence of (2.6) is through rational functions, it is not easy to

perform explicitly the twistor transform and check this conjecture. Witten proposed an

alternative way to avoid this cumbersome computation [1]. This method is based on the

introduction of operators which control if a set of given points lies on a common curve

embedded in twistor space. These operators are algebraic in the (λ, µ) space, while they

are differential once transformed back to the (λ, λ̃) space.

The relevant operator for the n = 5, q = 3 case is

Kijkl = εIJKLZ
I
i Z

J
j Z

K
k Z

L
l (2.11)

where ZI
i are homogeneous coordinates in CP 3, namely ZI

i = (λ1
i , λ

2
i , µi1, µi2), for the i-th

graviton (i = 1, . . . , 5). To go to the (λ, λ̃) space, one simply replaces µiȧ with −i ∂

∂λ̃ȧi
. We

introduce the notation

{ij} = εȧḃ
∂2

∂λ̃ȧi ∂λ̃
ḃ
j

. (2.12)

The differential operator in (λ, λ̃) space is thus expressed as

Kijkl = 〈ij〉{kl} − 〈ik〉{jl} − 〈jl〉{ik} + 〈il〉{jk} + 〈kl〉{ij} − 〈jk〉{li}. (2.13)

If the amplitude is supported on a d = 2, g = 0 curve through a delta function, then

one expects that KijklA(λ, λ̃) = 0. This is indeed what happens for the n = 5, q = 3

tree-level gluon amplitude, as verified in [1]. What we are actually going to prove for the

graviton amplitude is that

KijklKi′j′k′l′A = 0 . (2.14)

This means that we still have a localization on a d = 2, g = 0 curve but now via a

derivative of the delta function. This is somewhat similar to what happens in the 1-loop

gluon amplitude.

– 5 –
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A useful simplification in checking (2.14) is achieved by using the manifest Poincaré

invariance of both K and A(λ, λ̃). The Lorentz transformations are given by SL(2,R) ×

SL(2,R), with the first SL(2,R) acting on the λ’s and the second one on the λ̃’s. Transla-

tions act on the µ’s as µiȧ → µiȧ + xaȧλ
a
i . It is thus possible to fix two points in twistor

space Zi, Zj to convenient values: λi and λj can be fixed by use of SL(2,R) plus a scaling

allowed by (2.10), whereas µiȧ and µjȧ are fixed by the translations.

We can choose for example to fix Z3 = (1, 0, 0, 0) and Z4 = (0, 1, 0, 0). This means

λ3 = (1, 0), λ4 = (0, 1) and µ3 = µ4 = (0, 0). The delta function of momentum conservation

enforces

λ̃ȧ3 = −
∑

j=1,2,5

λ1
j λ̃

ȧ
j

λ̃ȧ4 = −
∑

j=1,2,5

λ2
j λ̃

ȧ
j . (2.15)

By substituting (2.15) in (2.6) we obtain a “fixed” amplitude Afix, which is function only

of λi, λ̃i with i = 1, 2, 5. We find that the dependence of Afix on the λ̃’s is only through

the bilinears a ≡ [12], b ≡ [15] and c ≡ [25]. The crucial property of Afix is that
(

a
∂

∂a
+ b

∂

∂b
+ c

∂

∂c

)

Afix = 0 . (2.16)

This follows directly from the observation that the original amplitude (2.6) is homogeneous

of degree 0 in the antiholomorphic bilinears. Since (2.15) is linearly homogeneous in the

λ̃’s, the fixed amplitude is still homogeneous of degree 0 in a, b, c.

After fixing Z3 and Z4, (2.13) can also be expressed in terms of a, b and c. Defining

an operator Ô ≡ (a ∂
∂a

+ b ∂
∂b

+ c ∂
∂c

+ 1) we find

K1234 = −
∂

∂a
Ô

K1345 = −
∂

∂b
Ô

K2345 = −
∂

∂c
Ô

K1235 = −

(

λ2
5

∂

∂a
− λ2

2

∂

∂b
+ λ2

1

∂

∂c

)

Ô

K1245 = −

(

− λ1
5

∂

∂a
+ λ1

2

∂

∂b
− λ1

1

∂

∂c

)

Ô . (2.17)

These are the only independent operators up to permutations. Since Afix is homogeneous

of degree zero, ÔAfix = Afix, and it follows that no component of K annihilates the

amplitude.

However from (2.17) it can be seen that KijklA
fix is homogeneous of degree -1 in

a,b, and c for every i, j, k, l, and thus it will be annihilated by the operator Ô. From this

observation we conclude

KijklKi′j′k′l′A
fix = 0 (2.18)

for any choice of i, j, k, l and i′j′k′l′.

– 6 –
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3. Disconnected MHV decomposition

So far we have investigated the possibility for a twistor transformed gravity amplitude to

be localized on connected curves whose degree and genus are given by (1.2). In the gauge

theory context of [1], a certain string interpretation suggests that also disconnected curves

may play a role in the computation of amplitudes, and that a connected contribution

might be decomposed into disconnected pieces. An amplitude supported on a degree 2

curve can, for example, receive contributions from configurations with two disconnected

degree 1 curves. Although one expects a contribution from all the possible decompositions,

in [2] it was shown that tree-level gauge theory amplitudes can be obtained by taking the

completely disconnected configuration only. Inspired by what happens in the gauge theory,

we try to check if a similar decomposition holds for gravity as well.

In this section we present the 3 and 4 graviton vertices given by the (+,−,−) and

(+,+,−,−) MHV amplitudes and we try to apply this procedure to some simple gravity

amplitudes, including the n = 5 googly one studied in section 2.

3.1 The (+,−,−,−) and (+,−,−,−,−) amplitudes

Amplitudes of the type M(1+, 2−, . . . , n−) should correspond to the twistor space dia-

grams in figure 1. As already stated, these are known to vanish. Each CP 1 represents

a (+,−,−) vertex, figure 2. This vertex is obtained by suitably extending the vanishing

(+,−,−) graviton amplitude off-shell. This is formally given by the square of the corres-

ponding gluon amplitude7 [13]. The off-shell extension of the twistor λp corresponding to

3− 4−
(n−1)−

n−− + − + − +

1+

2−
− + − +

i−
(i+1)−

(n−1)−
n−

1+

2−

Figure 1: Two disconnected configurations contributing to Mn(1+, 2−, . . . , n−).

7The general KLT factorization formula relating closed and open string amplitudes reads Mclosed
n ∼

∑

p,p′ M
close
n (p)M̃close

n (p′)eiπF (p,p′) where p and p′ are different orderings of the n external legs. In the

– 7 –
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+

− −
1+

2−

p−

Figure 2: The (+,−,−) graviton vertex.

2− 3−

4−

− +

4−

− + − +

1+ 1+ 1+

3− 2− 4− 2−

3−
p p p

Figure 3: The MHV diagrams contributing to the M(1+, 2−, 3−, 4−) graviton amplitude.

an off-shell momentum p has been given in [2] and amounts to defining

λpa =
paȧη

ȧ

[λ̃p, η]
(3.1)

where ηȧ is an arbitrary spinor. The normalization factor is needed in order to have a

consistent on-shell limit, and it can be dropped if the amplitude is homogeneous in the λp.

The off-shell extension of the 3 graviton amplitude is therefore

M3 =

(

〈2, p〉4

〈1, 2〉〈2, p〉〈p, 1〉

)2

. (3.2)

In this section we start focusing onM(1+, 2−, 3−, 4−). This is computed using the MHV

diagrams shown in figure 3.

The contribution of the first graph is given by

〈2p〉8

(〈12〉〈2p〉〈p1〉)2
1

p2

〈34〉8

(〈p3〉〈34〉〈4p〉)2
=

φ6
1

φ2
2φ

2
3φ

2
4

〈12〉〈34〉2

[12]
(3.3)

where we have used λpa = −λ1aφ1 − λ2aφ2 = λ3aφ3 + λ4aφ4, with φi = λ̃iȧη
ȧ. The

remaining two diagrams are obtained by appropriately permuting the external labels. Using

momentum conservation in the form of
∑4

i=1〈yi〉[iz] = 0 (where λy and λ̃z are arbitrary

spinors), the final result can be arranged as

M(1+, 2−, 3−, 4−) =
φ6

1

φ2
2φ

2
3φ

2
4

(

〈12〉〈34〉 + 〈13〉〈42〉 + 〈14〉〈23〉

)

〈42〉

[13]
. (3.4)

This vanishes by virtue of the Schouten identity 〈ij〉〈kl〉 + 〈ik〉〈lj〉 + 〈il〉〈jk〉 = 0 which is

valid for any four spinors.

n = 3 case the phase factor eiπF (p,p′) drops out yielding Mclosed
3 ∼Mclose

3 M̃close
3 . In the α′ → 0 limit this

translates to a similar relation between gravity and gauge theory amplitudes.

– 8 –
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− +

p q

2−

−

1+

+ − +

3−

5−

4−

p q
2−

3− 1+ 4−

5−

+ −

Figure 4: Two of the fifteen MHV diagrams contributing to the M(1+, 2−, 3−, 4−, 5−) graviton

amplitude.

Moving now to M(1+, 2−, 3−, 4−, 5−) we need to consider graphs of the type given

in figure 4. The first diagram gives

φ6
1

φ2
2φ

2
3φ

2
4φ

2
5

〈12〉〈45〉(〈34〉φ4 + 〈35〉φ5)
6

[12][45](〈13〉φ1 + 〈23〉φ2)4
(3.5)

where we have extended both λpa and λqa off-shell using the same spinor ηȧ. This dia-

gram yields 12 contributions once one takes into account all inequivalent exchanges of the

negative helicity external gravitons. The second graph gives

φ6
1

φ2
2φ

2
3φ

2
4φ

2
5

〈23〉〈45〉(〈12〉φ2 + 〈13〉φ3)
4

[23][45](〈14〉φ4 + 〈15〉φ5)2
(3.6)

and 2 other terms obtained by permutations. Imposing momentum conservation, with some

computer assistance one can verify that the sum of the 12 contributions coming from (3.5)

and the 3 contributions coming from (3.6) vanishes as expected.

We stress here the holomorphicity of (3.2), which is the only vertex appearing in this

kind of graphs.

3.2 The googly amplitude

We now come to the investigation of disconnected contribution

1+

2+ 3−

q−

Figure 5: The

(+,+,−,−) gravi-

ton vertex.

to M(1+, 2+, 3−, 4−, 5−). In the construction of the MHV graphs

one also needs here the 4 graviton vertex depicted in figure 5. The

expression for the 4 graviton amplitude was first obtained in [14] and

is given by

M(1+, 2+, 3−, q−) =
〈3q〉8

〈12〉〈13〉〈1q〉〈23〉〈2q〉〈3q〉

[3q]

〈12〉
. (3.7)

One immediately notices that this expression is not holomorphic and

this is in strong contrast with the 3 graviton vertex (3.2) and all the

gluon MHV vertices. Naively, an off-shell extension of (3.7) would require a redefinition

of λ̃ȧ whenever it appears in an internal line. Hermiticity suggests to take the complex

conjugate of (3.1) so to have

λ̃pȧ =
paȧξ

a

〈λp, ξ〉
(3.8)
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Figure 6: Two of the nine MHV diagrams contributing to the M(1+, 2+, 3−, 4−, 5−) graviton

amplitude.

where ξ = η∗. Using this prescription one gets for the first graph in figure 6

φ6
1

φ2
3

〈13〉〈45〉7[45]

〈25〉〈24〉[13](〈25〉φ2 − 〈54〉φ4)(〈24〉φ2 + 〈54〉φ4)(〈25〉φ5 + 〈24〉φ4)2
(3.9)

and for the second graph

1

φ2
3φ

2
4(φ3φ̃3 + φ4φ̃4)

〈34〉(〈15〉φ1 + 〈25〉φ2)
7([15]φ̃1 + [25]φ̃2)

〈15〉〈25〉〈12〉2 [34](〈12〉φ2 + 〈15〉φ5)(〈25〉φ5 − 〈12〉φ1)
(3.10)

where φ̃i = λiaξ
a. The factor φ3φ̃3 + φ4φ̃4 = [λ̃p, η]〈λp, ξ〉 comes from the normalization

of (3.1) and (3.8) which does not cancel in this case. One can get all the other seven graphs

by permutation of the external labels as usual. The expected result for this amplitude is

given in (2.6), which some computer algebra showed not to match with the one following

from (3.9) and (3.10). Moreover, the result depends on η. Therefore the prescription seems

to fail in this case. We are aware of the fact that the heuristic proof of covariance given

in [2] might not be generalizable in the presence of non holomorphic vertices.

4. Conclusion

In this note we have explored the possibility of extrapolating the twistor construction of [1]

to ordinary gravity. We have checked that the simplest non-trivial gravity quantity, namely

the 5 graviton googly amplitude, confirms the expectations of [1] and is indeed supported

on a connected degree 2 curve in twistor space, just as the corresponding amplitude in

the gauge theory.8 There are however important differences between the two. In the

simplest, MHV case, these stem from the fact that gravity amplitudes contain extra delta-

function derivatives in twistor space variables, or equivalently they are not holomorphic in

Minkowski space variables. It is clearly desirable to confirm that such behavior persists for

further, non MHV graviton amplitudes.

In a complementary approach to the computation presented in section 2, we have

further tried calculating tree-level graviton amplitudes by using MHV subamplitudes as

vertices (computed from the gauge theory quantities by using the KLT relations, and

suitably continuing them off-shell), in the spirit of the prescription given in [2] for gauge

theories. Although it is possible that such a generalization might be feasible in principle,

it is clear from our results that novel ingredients are necessary to correctly reproduce

non-trivial gravity amplitudes.

8The computation does not exclude additional contributions coming from disconnected, lower degree

curves.
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We nevertheless consider it encouraging that the (+,−,−,−) and (+,−,−,−,−) gravi-

ton amplitudes vanish when computed from MHV vertices. We are aware that these are

very special cases. Indeed, (+,−, . . . ,−) amplitudes involve only trivalent MHV vertices,

which are holomorphic even in the graviton case. Unfortunately, the four-valent graviton

MHV vertex is not holomorphic. We believe that this non-holomorphicity is an important

reason for the failure of the MHV prescription to correctly reproduce the 5 graviton googly

amplitude discussed in this note.

We must emphasize that the twistor string theory underlying an eventually successful

version of such a construction might have nothing to do with the one of [1], or even there

might be no such theory at all. Indeed, the closed string sector of the model of [1] is

expected to be a kind of instanton expansion around N = 4 self-dual superconformal

gravity. General Relativity is most definitely not conformally invariant, and therefore it

should be related to a different model. The computation in section 2 seems to suggest that

there could be some localization in twistor space, and the disconnected prescription could

provide an explicit and computable “instanton” expansion around some “self-dual” theory.

In this respect, we think that the non-holomorphicity of higher MHV vertices could provide

a hint about which could be the right theory to expand around.
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