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Abstract: To understand the survival processes in Pacific saury during the early life stages, growth 
histories were compared between individuals that died and those that survived under laboratory 
conditions.  The morphology of Pacific saury drastically changed by 40 days after hatching (DAH) 
under 20 ºC, and during this period most individuals reached the juvenile stage (40 mm knob length 
(KnL)).  From hatch to this period, high levels of mortality were observed.  The back-calculated growth 
rates analyzed from otolith microstructure were compared among individuals that died and those that 
survived this period of metamorphosis.  Growth rates of individuals that died were significantly lower 
since 1 DAH than surviving individuals.  Factors contributing to mortality are considered to be 
cumulative effects of their delayed growth and other unfavorable body conditions (growth dependent 
survival).   The body size (40 mm KnL) that is currently used to estimate the recruitment is concluded 
to be valid for evaluating the recruitment in the field. 
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Abstract  To understand the survival processes in Pacific saury during the early life stages, growth 17 

histories were compared between individuals that died and those that survived under laboratory 18 

conditions.  The morphology of Pacific saury drastically changed by 40 days after hatching (DAH) 19 

under 20 ºC, and during this period most individuals reached the juvenile stage (40 mm knob length 20 

(KnL)).  From hatch to this period, high levels of mortality were observed.  The back-calculated growth 21 

rates analyzed from otolith microstructure were compared among individuals that died and those that 22 

survived this period of metamorphosis.  Growth rates of individuals that died were significantly lower 23 

since 1 DAH than surviving individuals.  Factors contributing to mortality are considered to be 24 

cumulative effects of their delayed growth and other unfavorable body conditions (growth dependent 25 

survival).  The body size (40 mm KnL) that is currently used to estimate the recruitment is concluded 26 

to be valid for evaluating the recruitment in the field. 27 

Keywords  Growth dependent survival • Metamorphosis • Pacific saury • Survival 28 
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Introduction 37 

The Pacific saury Cololabis saira (Brevoort) is an important pelagic commercial fish.  Although the 38 

stock is currently at a high level （Tian et al., 2003: Annual catches of Pacific saury in Japan have 39 

fluctuated from 572,000 metric tons (t) in 1958 to 63,000t in 1969 with an annual average of about 40 

257,000t over the last half century）, landings in Japan and the body size distribution of catch have 41 

fluctuated from year by year (Fukushima et al., 1990; Watanabe et al., 1997).  To determine the factors 42 

causing the fluctuations, at first we need to get information about the life history, age and growth, and 43 

reproduction process.  Hotta (1964) and Kosaka (2000) outlined the life history, and sampling continues 44 

to clarify details of the life history.  However reasons for the dramatic fluctuations in the stock are still 45 

not clear, this being partly due to the broad distribution of this species in the northwestern Pacific (Hubbs 46 

and Wisner, 1980). 47 

The sampling of eggs, larvae, and juveniles using plankton nets has also continued since the 1950’s. 48 

For nearshore Japan, many studies have been carried out on the growth and survival of Pacific saury in 49 

the early life stages (Watanabe et al.; 1988, 1997, 2003), and it is estimated that the body size when 50 

high levels of mortality stabilize is approximately 40 mm knob length (KnL: a special unit of body length; 51 

detailed below).  In addition, catch efficiency of Pacific saury larger than this size by existent sampling 52 

gears show much fluctuation presumably due to gear avoidance.  Thus, currently the abundance of 40 53 

mm KnL is used as an index of the recruitment for each cohort.  Nonetheless minimal evidence has been 54 

obtained to examine how differences in growth between individuals that fail to survive and individuals 55 

that are able to survive metamorphosis in the field. 56 
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The cause of early life mortality of fish is due to various incremental factors，and predation is generally 57 

the final factor (Bailey and Houde, 1989).  To clarify these factors, comparison of the growth rate 58 

between individuals that survive and those that die during the period of high mortality (generally related 59 

to metamorphosis) is one potential method.  In the case of Japanese anchovy, the growth rates analyzed 60 

by otolith microstructure have directly been compared between larvae from the stomach contents of 61 

predators and otoliths from the larvae taken by sampling nets in the field, and consequently, the 62 

growth-selective predation hypothesis has been proposed (Takasuka et al., 2003).  However, this is only 63 

a rare case, for most fish species including Pacific saury, non-surviving larvae and juveniles have not 64 

been sampled in the field, and therefore comparison of the growth rates between non-surviving and the 65 

surviving individuals has not been carried out.  During the period of metamorphosis, high mortality due 66 

to dramatic changes of the body is often observed (e.g. Tanaka et al., 1989).  Metamorphosis was 67 

defined using the full completion of fins and morphometric ratio change (Kendall et al., 1984).  In this 68 

study, we observed the metamorphosis process, and then the growth rates were compared between 69 

individuals that died and those that survived (growth dependent survival) by otolith microstructure 70 

analysis.  Using the above results, we verified whether the criterion of body size (40 mm KnL) as an 71 

index of recruitment is appropriate for estimates of abundance or not.  The research assesses the: (1) 72 

growth and survival processes in the early life stage, (2) processes of morphological change, and (3) 73 

growth comparison of individuals that survived and those that died during the high level mortality 74 

periods. 75 

76 
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Methods 77 

78 

Egg collection 79 

80 

Fertilized eggs of the Pacific saury, attached to drifting brown algae, were collected by RV ‘Tankai’ 81 

offshore of Kushiro, Hokkaido Prefecture on August 5, 2004 (1
st
 Batch: 1B) and RV ‘Asama’ in 82 

Kumano-nada, Mie Prefecture, Pacific Ocean, Japan on March 4 (2
nd

 Batch: 2B), April 21–23 (3
rd

 Batch: 83 

3B), and April 25 (4
th

 Batch: 4B), 2005.  The eggs were kept in plastic bags containing 10 liters of 84 

ambient seawater (17 ºC) with oxygen and then transported to Hokkaido National Fisheries Research 85 

Institute, Fisheries Research Agency, Akkeshi by vehicle and plane.  The eggs were stocked and then 86 

incubated with running seawater (exchange rate of 120 % / day) in 500 liters black colored polyethylene 87 

circular tanks or a 20,000 liters green color painted concrete rectangular tank at temperatures of 88 

approximately 17 ºC until hatching. 89 

90 

Rearing of larvae 91 

92 

Hatched larvae (initial stock density of batches 1–4 were 0.9, 2.5, 5.0, and 2.9 inds. / liter, respectively) 93 

were reared in the same tank at a temperature of approximately 20°C, which has been shown to produce 94 

the best growth and survival for Pacific saury (for larvae and juvenile (Oozeki and Watanabe, 2000), and 95 

from larvae to adult (Tsuzaki, 2000a, b, 2001a, b)).  Illumination of the tank was via natural daylight and 96 
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light intensity was reduced by covering the tank with a black plastic sheet.  The fish were fed to almost 97 

satiation (rotifers Brachionus spp. and Artemia sp. nauplii: two times a day (08:00–09:00, 15:00–16:00)，98 

frozen copepods (Miyabi No. 1 (300–700µm), and No. 2 (1000–1500µm): JCK Co. Ltd): three times a 99 

day (08:00–09:00, 11:00–12:00, 15:00–16:00)，and artificial feed (Otohime A, B1, and B2: Marubeni 100 

Nishiin Feed Co., well mixed): 15–22 times a day (depending on their appetite using a self feeding 101 

machine) during 06:00–17:00).  Details of the feeding and environmental conditions are shown in Table 102 

1. From 08:00 to 09:00, the bottom of the tanks was cleaned, dead individuals collected, and then the103 

water temperature was measured. 104 

105 

Sampling of fish 106 

107 

Samples of over 20 individuals were collected randomly every 5 days from 0 to 40 days after hatching 108 

(DAH), and then 20–30 individuals were collected randomly at 10 days intervals, twice on 50 and 60 109 

DAH.  The sampling was undertaken at feeding time when the fish could be caught easily without 110 

causing excess stress.  During feeding, when the fish were swimming at the surface of the tank, is a 111 

period when they are least wary. 112 

The samples were preserved in 80% ethanol after being anaesthetized with FA-100 (Dainippon 113 

Pharma)(50–100ppm). Knob length (KnL: a special unit of body length represented by the length 114 

from the anterior edge of the lower jaw to the posterior edge of the silver flesh which is protruded on the 115 

base of the tail fin; the measurement with least bias for Pacific saury (Kimura, 1956)) were measured to 116 
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7 

the nearest 0.1mm.  According to Oozeki et al. (1991), for fish preserved in 80 % ethanol we used a 117 

correction factor of 1.08 for fish smaller than 9.9 mm KnL and 0.98 for those larger than 10.0 mm KnL. 118 

Body weight (BW) of the individuals was measured to the nearest 0.01g.  In addition, their total length 119 

(TL), head length (HL), pre-anal length (PAL), eye diameter (ED), lower jaw length (LJL), body depth 120 

(BD), and head depth (HD) were measured, and also their fin rays (pectoral (P1), pelvic (P2), anal (A), 121 

dorsal (D), and caudal (C)) were counted for each sample.  Thereafter the otoliths were extracted under a 122 

stereomicroscope. 123 

124 

Growth analysis 125 

126 

The left (primarily) or the right (if the left one was lost or broken) otolith was mounted on a glass slide 127 

using epoxy enamel.  The mounted otolith was allowed to set for over 24 hours.  Thereafter, the 128 

proximal side of the otolith was polished with lapping films of grit sizes of 1, 3, and 9 µm.  Since the 129 

posterior otolith radius is more suitable for back-calculation of KnL (Oozeki and Watanabe, 2000), the 130 

number of otolith increments and the otolith increment widths were measured for the posterior part. 131 

The image data for measuring the number of otolith increments and the otolith increment widths were 132 

obtained using a light microscope (400–1000 x) with a camera connected.  They were analyzed on a 133 

monitor of a computer using image-analyzing software (Adobe Photoshop 7.0).  These measurements 134 

were repeated at least three times by different researchers without knowledge of the previous results. 135 

These data were adopted when two or more counts agreed.  The first growth increment for Pacific saury 136 
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has been reported to begin at 4 to 6 days before hatching (Watanabe and Kuji, 1991): 4–5, mean 4.81; 137 

Suyama et al. (1996), middle North Pacific Ocean: mean 6.1, western North Pacific Ocean: mean 5.6; 138 

Oozeki and Watanabe (2000): mean 6.37) and posterior radius of hatching check are 20–35 μm (Watanabe 139 

et al. (1988), about 27µm; Watanabe and Kuji, (1991), 31µm; Suyama et al. (1996), 25.8 ± 3.9µm 140 

(western North Pacific Ocean); Suyama (2002), 28.1 ± 5.0µm (middle North Pacific Ocean)).  Therefore, 141 

we measured the width of the hatching check as 20–35µm distant from the center of the focus and 142 

counted the daily growth increments to the last distinct increment (posterior radius).  KnL and daily 143 

growth rate at each age were back-calculated by the biological intercept method (Campana 1990) in order 144 

to obtain the growth trajectories and histories of individual larvae.  Average KnL on 0 DAH was 7.33 145 

mm. 146 

147 

Numerical value analysis 148 

149 

Death of Pacific saury were recorded daily during the experiment.  Daily instantaneous mortality rate 150 

(IMR) were derived (Ricker 1958) at 5 day intervals.  Mortality rates were calculated using the 151 

following equation. 152 

IMR = (LnNi – LnNi+1) / 5 153 

where Ni, Ni+1 are the number of survivors at the first date of time intervals.  Specific mortality rates 154 

(SMR) were calculated as IMR x 100. 155 

In order to calculate the morphometric variation at 5 mm KnL intervals, the morphometric characters 156 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 9 

(TL, HL, PAL, ED, LJL, BD, and HD) per KnL of Pacific saury were made on 1000 data chosen 157 

randomly from the available samples.  This operation was repeated 1000 times (Bootstrap method), and 158 

the mean value of the morphometric character per KnL composition was estimated for each 5 mm KnL 159 

interval.  This calculation involved the use of Microsoft Excel software.  Morphometric variations 160 

(MV) among 5 mm KnL intervals (e.g. 10.0–14.9, 15.0–19.9 mm) were calculated using the following 161 

equation.   162 

MV = ((MC / KnL)i - (MC / KnL)i+1) / Σ(MC / KnL) / n 163 

where MC is the morphometric character, (MC / KnL)i, (MC / KnL)i+1 are the mean values of 5mm KnL 164 

size intervals i and i+1, respectively.  n is the number of 5 mm KnL size intervals. 165 

 166 

Statistical analysis 167 

 168 

One-way ANOVA was used to detect differences in the growth speed among surviving and dead 169 

individuals.  If the variances determined were heteroscedastic as shown by a Fmax-test, the values were 170 

log transformed.  When a significant difference was detected, Scheffe’s test was used for comparisons 171 

thereafter.  The level of significance was set at 1%. 172 

 173 

Results 174 

 175 

Growth and survival processes 176 
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177 

Growth of larval and juvenile Pacific saury is shown in Fig. 1.  Their KnL at 20, 40, and 60 DAH was 178 

16.1 ± 1.90, 39.3 ± 4.31, and 65.9 ± 10.51 (mean ± SD), respectively.  The number of dead individuals 179 

until 9 DAH could not be counted accurately because of their small and weak bodies which decomposed 180 

rapidly.  Consequently, specific mortality rates (SMR) (% / day) are shown using data from individuals 181 

that died from 10–60 DAH (Table 2).  After 10 DAH, a high mortality rate usually started from 11 DAH, 182 

and continued until 20 DAH (the highest mean SMR time interval: 15–19 DAH).  Then the mortality 183 

rate stabilized, however it increased again and continued until 33 DAH (the second highest mean SMR 184 

time interval: 25–29 DAH).  After 40 DAH, the SMR decreased drastically.  Such a mortality process 185 

pattern was observed regardless of the different batches of eggs and rearing conditions.  Therefore this 186 

process probably reflects changes in internal physiological factors during the early life history of Pacific 187 

saury. 188 

189 

Metamorphosis 190 

191 

Relationships between DAH and number of fin rays are shown in Fig. 2. In the case of the caudal (C) 192 

and dorsal (D) fins, notable increases were observed 0–5 DAH.  Such increases were also observed for 193 

the anal (A) fin 0–10 DAH, pectoral (P1) fin 5–10 DAH, and pelvic (P2) fin 20–30 DAH.  Almost all 194 

them had already reached their stable ray number by 40 DAH (D: 12–15, A: 18–21, P1: 12–16, P2: 6, C: 195 

19–21 as detailed by Nakabo (2000), and Nakaya et al. (2007)). Relationships between KnL and percent 196 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11 

that had reached a stable number for each fin rays are shown in Table 3.  By 15.0–19.9 mm KnL the 197 

number of D rays had already reached a stable number.  P1 and P2 rays reached the stable number of 198 

rays during 20.0–24.9 mm KnL.  By 35.0–39.9 mm KnL the number of A and C rays was stable.  All 199 

fin rays reached the stable number before reaching 40.0 mm KnL. 200 

Fig. 3 shows the relationships between DAH and the proportion of total length (TL), head length (HL), 201 

pre-anal length (PAL), eye diameter (ED), lower jaw length (LJL), body depth (BD), and head depth 202 

(HD) to KnL.  Morphometric variations (MV) among 5 mm KnL intervals are shown in Fig. 4.  For all 203 

body proportions, the highest two MV values were observed by the KnL size range 35.0–39.9mm KnL, 204 

after that the MV showed less fluctuation.  Over 40 mm KnL, fluctuations in body proportions tended to 205 

be more gradual. 206 

  Before 39 DAH, the larvae swam only near the surface in the daytime, and were not observed to form 207 

schools in the tank.  After 39 DAH, they swam not only near the surface but also in the middle to near 208 

bottom sections of the tank, and were observed to form a school. 209 

210 

Comparison of growth between survived and dead individuals 211 

212 

During 10–60 DAH, two periods of high mortality were observed.  We compared the back-calculated 213 

growth rate among dead individuals during these periods (the highest mean SMR time interval: 15–19 214 

DAH (D1)，the second highest mean SMR time interval: 25–29 DAH (D2)), and surviving individuals 215 

collected at 60 DAH (SV) using otolith microstructure analysis (Fig. 5).  As a result, there were 216 
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significant differences (One-way ANOVA, P<0.01) among them since 1 DAH.  Although no significant 217 

difference was observed between D1 and D2 (Scheffe’s test, P=0.82), there were significant differences 218 

(Scheffe’s test, P<0.01) between SV and D1, D2 since 1 DAH.  These (D1, D2) lower growth continued 219 

until death. 220 

221 

Discussion 222 

223 

Natural mortality rates of fish are generally highest in early life.  Fishes may die from many causes 224 

(endogenous factors (maternal effects: e.g. Solemdal (1997)) such as insufficient endogenous nutrition 225 

and physical disorders, and exogenous factors such as poor-nutrition, disease, and unfavorable 226 

environmental conditions), nonetheless predation is usually the critical agent for mortality (Houde, 1997). 227 

In general, the mortality rate is high until the end of metamorphosis and after that tends to be more 228 

gradual.  Metamorphosis was defined using the full completion of fins and morphometric ratio change 229 

(Kendall et al., 1984).  In this study, we observed the development of fin rays and the relative growth of 230 

each body part.  The first inflection point was observed at 5–9 DAH (<10 mm KnL).  This point 231 

corresponds to the period when a change of nutrition from endogenous to exogenous occurs (20°C: 232 

Nakaya et al., 2009).  The second inflection point was observed at about 30 DAH, and most of the fin 233 

rays were completely formed before 40 DAH (over 40 mm KnL).  Consequently, the second inflection 234 

point (about 30 DAH) was considered to be the end of the metamorphosis period for this species.  We 235 

directly examined the growth process between surviving and dead individuals of larval and juvenile 236 
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Pacific saury in laboratory conditions by otolith microstructure analysis, and observed significant 237 

differences among them already at 1 DAH.  Though newly hatched Pacific saury can survive for 5–10 238 

days (50% mortality period) without feeding in 10–25C (Nakaya et al., 2009), if larvae of Pacific saury 239 

can not encounter appropriate environmental conditions by 5–9 DAH, their survival rate may be low in 240 

the field as they will become more prone to predation.  Survival in this species in the early life stage may 241 

be determined soon after hatching, although predation effects should also be considered further for 242 

precise evaluations of natural mortality rates. 243 

The relationship between growth rates and larval duration (to metamorphosis) has been a focus of study 244 

especially for a variety of coral reef fishes (Victor, 1986; Victor and Wellington, 2000; McCormick et al., 245 

2002; Shima and Findlay, 2002) and for flatfishes (Hovenkamp, 1992; Bertram et al., 1997) that are 246 

characterized by settlement through metamorphosis. Takasuka et al. (2004) suggested that a growth 247 

selective survival mechanism might apply to pelagic fish (Japanese anchovy), and our present results are 248 

consistent with their study.  In general, the critical period for fishes is species specific, and in cold water 249 

species, tends to be long and gradual (e.g. in Japanese anchovy Engraulis japonicus: the growth and 250 

developmental rate-dependent mortality occurred at 50–60 days (Takahashi and Watanabe, 2004), and in 251 

Atlantic cod Gadus morhua, growth selective mortality occurred at 41–80 days (Meekan and Fortier, 252 

1996)).  On the other hand, the period of warm water species tends to be short (e.g. in bluefish 253 

Pomatomus saltatrix at 10–15 days (Hare and Cowen, 1997), at 0–5 days in the common coral wrasse 254 

Halichoeres bivittatus (Searcy and Sponaugle, 2001), at 7–10 days in damselfish Stegastes partitus 255 

(Wilson and Meekan, 2002), and within 2 weeks of hatching was crucial for survival to recruitment in 256 
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Pacific bluefin tuna Thunnus orientalis (Tanaka et al., 2006)).  The present study suggests that the body 257 

conditions and environmental conditions at the start of the feeding period in Pacific saury may be more 258 

related to survival than for other warm water species reported previously.  We could compare directly 259 

between individuals that died during the metamorphosis period and the surviving individuals, and thus, 260 

obtained evidence that growth dependent survival strategy occurs in Pacific saury.  Maternal effects and 261 

the environmental conditions (variance in feed and temperature conditions) at the start of the feeding 262 

period might be closely related to survival during the metamorphosis period (e.g. Houde, 1997).  263 

Hereafter we need to further study the relationships between maternal effect and the growth-survival for 264 

larval and juvenile stages. 265 

According to Watanabe and Kuji (1991), Pacific saury starts schooling behavior when they attain 266 

45–50 mm KnL.  The density of juveniles after mass mortality can be used as a quantitative index of the 267 

recruiting cohort, therefore the 40 mm KnL juvenile density has been used as an index of recruitment.  268 

The present study found that the high rate of mortality stabilized after 40mm KnL for Pacific saury 269 

under non-predation conditions.  Therefore, we consider that using density of 40 mm KnL of Pacific 270 

saury collected by net is valid for estimating the wild recruitment amount. 271 

 272 
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Fig. 1  Relationships between days after hatching (DAH) and knob length (KnL) of Pacific saury. 382 

Open circles and closed squares show the individual score and mean value at each date, respectively. 383 

Fig. 2  Relationships between days after hatching (DAH) and number of fin rays for each fin of Pacific 384 

saury.  Open circles and closed squares show the individual scores and the mean value at each date, 385 

respectively.  The stable number of rays for each fin is shown with oblique lines area and / or dashed 386 

lines. 387 

Fig. 3  Relationships between days after hatching (DAH) and relative length of body parts (% KnL) of 388 

Pacific saury.  Open circles and closed squares show the individual scores and the mean value at each 389 

date, respectively. 390 

Fig. 4  Morphometric variation (MV) in early life stage of Pacific saury among 5 mm KnL size intervals. 391 

Fig. 5  Relationships between days after hatching (DAH) and estimated knob length (KnL) using otolith 392 

microstructure data for three kinds of individuals (dead individuals during their periods (15–19 DAH 393 

(D1)，25–29 DAH (D2)) and surviving individuals collected at 60 DAH individuals (SV)) of Pacific 394 

saury.  Vertical lines show the standard deviation (SD). 395 
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Table. 1  Feeding and rearing conditions at each batch
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