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Abstract 13 

14 

BACKGROUND: Previous research on a biotrickling filter for the removal of high loads of H2S 15 

showed that accumulation of elemental sulfur (S0) when dealing with high H2S concentrations 16 

could lead to reactor clogging. Since S0 can also serve as substrate for sulfur-oxidizing bacteria, 17 

this study investigates the biological oxidation of S0 as a remediation strategy.  18 

RESULTS: Results indicated that S0 biological oxidation inside a clogged biotrickling filter 19 

occurred at a comparable rate as those reported for stirred tank reactors. When biologically-20 

produced dried and powdered S0 was manually added as substrate in stirred tank reactor 21 

experiments, significantly lower S0 oxidation rates were found compared to those for freshly, in-22 

situ produced biological S0. It was speculated that either the powdered S0 particle size or the 23 
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surface properties hindered S0 bioavailability even in a well stirred environment.  Respirometric 1 

experiments with the same powdered S0 and acetone-dissolved S0 confirmed that biological 2 

oxidation of S0 was basically limited by the solid S0 bioavailability. 3 

CONCLUSIONS: Therefore, results showed that S0 oxidation basically depends on S04 

bioavailability and that S0 volumetric oxidation rates as high as 3.48 mmols SO4
2- h-1 L-1 can be 5 

achieved inside a clogged biotrickling filter probably due to the high biomass retention capacity. 6 

Overall, the results indicate that biological oxidation of S0 can be considered a suitable strategy 7 

for S0-clogged bioreactors unclogging.  8 

9 

10 

Key words: elemental sulfur, hydrogen sulfide, biotrickling filter, sulfur oxidizing bacteria, 11 

fuel gas. 12 
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Introduction 1 

Removal of Reduced Sulfur Compounds (RSC) such as hydrogen sulfide (H2S) 2 

from waste or energy-rich gases has been traditionally carried out by means of physico-3 

chemical systems, such as selective absorption or adsorption processes. Such 4 

technologies are based on the high affinity for H2S of amine-based absorbents or ferric-5 

based adsorbents.1, 2  6 

However, both the high operating costs of the ad/absorbents’ regeneration and 7 

the increasing interest in energy recovery from such gaseous effluents, due to the rising 8 

of energy prices, have speed up the development of biological systems that can improve 9 

the existing technologies for some desulfurization applications. 10 

The oxidative side of the sulfur cycle and, more specifically, the oxidation of 11 

RSC as energy source carried out by sulfur-oxidizing bacteria (SOB) has been 12 

intensively studied by several authors3,4 as well as its application for water or gas 13 

treatment technologies.5,6 H2S removal occurs by an initial absorption and dissociation 14 

into an aqueous phase (Eqs. 1 and 2) “which is pH dependent since H2S is a weak acid 15 

(pKa1: 6.9; pKa2 =12.92, at 25ºC)”7 and the subsequent biologically catalyzed oxidation 16 

to elemental sulfur (S0) or sulfate depending on oxygen availability (Eqs. 2, 3 and 4):317 

H2S (g)  H2S (aq)    (absorption)   (1)18 

H2S (aq)  H+ + HS-    (dissociation)   (2) 19 

HS- + 0.5 O2 (aq)  S0 + OH-   (biological reaction)  (3) 20 

HS- + 2 O2 (aq)  SO4
2- + H+   (biological reaction)  (4) 21 

Bioreactors for the treatment of low concentrations of H2S are nowadays 22 

commonly used at solid wastes and wastewater treatment plants8,9, livestock farming1023 
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and other industrial facilities.5 In such applications, H2S is biologically oxidized to 1 

sulfate by SOB according to Eq. 4 since bioreactors generally operate in presence of 2 

excess oxygen. In this situation, the most common operational difficulty comes from 3 

excess media acidification that leads to a pH drop down to toxic levels for biomass.11, 12  4 

However, when high H2S concentrations must be treated, like in the sweetening 5 

of energy-rich gases which typically contain some few thousands ppmv of H2S1, only 6 

some biotechnological processes have been developed and just a few of them are 7 

already commercially available.138 

One of the main difficulties when treating high H2S concentrations is the 9 

capability to supply enough oxygen for the complete biological oxidation of H2S to 10 

sulfate due to a limited O2 mass transfer capability. Different approaches to deal with 11 

this limitation have been used. Buisman et al.14 developed a process consisting of an 12 

initial absorption column and a subsequent stirred biological reactor operated under 13 

alkaline pH and S0 producing (oxygen limited) conditions.2 Further developments of 14 

this system have been recently published when treating H2S loads of up to 340 g H2S m-15 

3 h-1.1516 

Bailón16 developed a biotrickling filter system able to treat 900 ppmv of H2S 17 

(about 24 g H2S m-3 h-1) where oxygen was supplied forcing the recirculation flow 18 

through an air bubble column. 19 

A similar approach was studied by Fortuny et al.17 where two lab-scale 20 

prototypes were tested and compared for the treatment of up to 10,000 ppmv of H2S 21 

(more than 300 g H2S m-3 h-1). The system viability and robustness was proved despite 22 

accumulation of S0 onto the packing material when too low O2/H2S supply ratios were 23 

used was observed, which would eventually lead to pressure drop, loss of active 24 

volume, reduced EBRT, etc. 25 
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However, it is well known that SOB not only grow on sulfide oxidation but can 1 

also use S0 according to Eq.5: 3, 18, 192 

 S0 + 3/2 O2 +  H2O   SO4
2- + 2 H+  (biological reaction)  (5) 3 

Several authors have studied the mechanism of S0 oxidation by Thiobacilli.18-204 

Janssen et al.21, 22 investigated the properties and stability of biological S0 particles. 5 

Tichy et al.23 studied the utilization of biological S0 for bioleaching purposes. However, 6 

all these studies were conducted in liquid-phase, homogeneously-stirred reactors, where 7 

S0 particles are much more biologically available than would be inside a clogged, 8 

packed bed reactor.  9 

Since oxidation of accumulated S0 in a biotrickling filter reactor was already 10 

reported as being the responsible for keeping the system biologically active during gas-11 

phase shutdowns24, the aim of this study was to investigate the biological oxidation of 12 

S0, combined with the usually applied strategy of S0 wash out, when trying to recover a 13 

S0-clogged biotrickling filter. If in such a system sulfide supply can be discontinued for 14 

a period of time but oxygen supply and liquid recirculation are kept on, SOB will be 15 

forced to switch to S0 oxidation thus leading to reactor unclogging. 16 

Materials and methods 17 

Biotrickling filter reactor experiments 18 

In-situ S0 oxidation was investigated in a lab-scale biotrickling filter reactor 19 

(BTFR) with an ancilliary unit for oxygen supply (Fig. 1). HD-QPAC® (Lantec 20 

Products Inc., CA, USA ) with a 4 × 4 mm (0.16” × 0.16”) grid opening cut to tightly fit 21 

inside the reactor was used as packing material. Metered amounts of H2S, N2 and air 22 
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using digital mass flow controllers (Bronkhorst, The Netherlands) were used to simulate 1 

a controlled biogas inflow. Mineral medium (MM) containing (g L-1):  NH4Cl, 1; 2 

KH2PO4, 0.12; K2HPO4, 0.15; CaCl2, 0.02; MgSO4·7H2O, 0.2; trace elements25, 1 ml L-3 

1, and NaHCO3 as inorganic carbon source were continuously fed. Liquid phase was 4 

continuously renewed by automated timing of the MM supply, bicarbonate supply and 5 

the liquid purge, using 3 different peristaltic pumps (Fig. 1). 6 

Continuous monitoring of the H2S concentration in the outlet gas phase was 7 

performed using an electrochemical H2S sensor (Sure-cell, Euro-Gas Management 8 

Services LTD, UK). On-line liquid phase monitoring included pH, oxidation-reduction 9 

potential (ORP) and dissolved oxygen (DO) measurements. A pH control by HCl or 10 

NaOH addition and a level control by liquid purge regulation were also installed. 11 

Sulfate and thiosulfate concentrations were measured using an ICS-1000 Ion 12 

Chromatography system with an IonPac AS9-HC column (Dionex Corporation). 13 

The experiments were carried out after more than a year operating at an inlet 14 

H2S concentration of 2,000 ppmv (55.6 g H2S m-3h-1), an EBRT of 180 s, a controlled 15 

pH range of 6-6.5 and excess oxygen supply. In the currently described experiment with 16 

the BTFR, an average hydraulic retention time (HRT) of 26 ± 2 h was used. 17 

Prior to S0 oxidation, the reactor was forced to produce and accumulate S0 for a 18 

period of 6 weeks during which the O2/H2S supplied ratio was stepwise, weekly 19 

decreased from 23.6 down to 1.5  (v v-1), with a maximum applied loading rate (LR) of 20 

204.5 g H2S m-3 h-1. Subsequently, sulfide supply was stopped and air supply increased 21 

back to the usually applied value during normal operation (20% v v-1). A 50% higher air 22 

flow supply than that normally used was also tested during the period of accumulated S023 

oxidation. 24 



7

Previous research on the BTFR had shown that a high trickling liquid velocity 1 

(TLV) favored sulfate production through a better use of the supplied oxygen inside the 2 

packed bed and did not have a significant effect on accumulated S0 wash down.263 

Therefore, two different TLV were also applied during the experiment; 3.8 m h-1, the 4 

usually applied for normal operation, and 17 m h-1, a value higher than those usually 5 

applied in biological reactors (< 10 m h-1).276 

Discontinuous stirred tank reactor experiments 7 

In order to compare the different bioavailability of S0 inside a BTFR and in an 8 

homogeneous stirred reactor, dried (60ºC, 48 h) powdered biological S0 collected from 9 

the BTFR was fed into a 1.5 L discontinuous stirred tank reactor (DSTR) with biomass 10 

initially obtained from the same BTFR (see Table 1 for S0 main properties; Citometry 11 

Unit, Scientific Services of the University of Barcelona, Spain). 12 

A series of different runs were carried out either with S0 or hydrogen sulfide 13 

(H2S(g) 99%) supplied via a digital mass-flow controller (Bronkhorst, NL). After each 14 

reactor run, biomass was recovered through centrifugation (10,000 rpm, 15 min) and 15 

resuspension into fresh MM to be used in the next reactor run. 16 

An overview of the operating conditions for the different reactor runs is given in 17 

Table 2. All reactor runs were performed under excess DO conditions (> 5 mg O2 L-1). 18 

Additionally, concentrated NaHCO3 (3 g C L-1) was supplied to avoid carbon limitation. 19 

A stirring rate of 400 rpm was used. 20 

DO concentration and reactor temperature were continuously monitored by an 21 

oxi340i electrode (WTW, Germany). Daily measurements of sulfate and thiosulfate 22 

were performed as described above. Also, daily measures of biomass and S023 
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concentrations were carried out as described by van den Bosch et al.15 and Gohering 1 

and Helbing28, respectively. 2 

pH acidification was controlled by automated addition of NaOH 1 M at a pH set-3 

point of 7. The same MM as described above was used. 4 

Respirometric experiments 5 

Difference in bioavailability of powdered, dried biological S0 and acetone-6 

dissolved biological S0 was also studied in respirometric experiments where the oxygen 7 

uptake rate (OUR) on biological oxidation of S0 was assessed in an LFS respirometer, a 8 

continuously aerated bioreactor without continuous liquid inputs nor outputs where the 9 

oxygen concentration is measured in the liquid phase and the substrate is fed by 10 

pulses.2911 

The same MM composition as previously described was used in the respirometer 12 

that consisted of an 0.3 L well-mixed vessel continuously supplied with air (15 ml min-13 

1) through a digital mass-flow controller (Bronkhorst, NL) and with a controlled 14 

temperature of 25ºC.  A detailed description of the used instrumentation can be found 15 

elsewhere.30 pH was automatically controlled at 7.00  0.01 as previously described.2916 

Both the same abovementioned dried, powdered S0 (Table 1) and an acetone 17 

saturated S0 solution (17 M S0) were used as substrates in different runs (Table 3).  18 

Run 1B consisted of a second S0 pulse addition 3.7 h after beginning of run 1A. Prior to 19 

substrate addition in run 1B, also 20 mg C-HCO3
- L-1 were added to avoid carbon 20 

limitation. 21 

The fundamentals of the OUR calculation can be found elsewhere.31,32 However, 22 

the experimental procedure consisted of an initial calculation of the endogenous oxygen 23 

uptake rate (OUREND) and global oxygen transfer coefficient (kLa) according to 24 
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Guisasola et al.29, using active and washed biomass collected from the BTFR. Upon 1 

pulse addition of either solid, powdered S0 or acetone-dissolved S0, the DO profiles 2 

were registered and exogenous OUR (OUREX) profiles calculated. 3 

Possible negative effects of acetone on biological activity or experimental setup 4 

response were tested, as well as chemical oxidation of dissolved S0.  5 

Results and discussion 6 

BTFR S0 oxidation 7 

A sulfur mass balance was carried out from the ionic sulfur species measurement 8 

(basically sulfate since thiosulfate and sulfite concentrations were under detection 9 

levels) and the sulfide LR and removal efficiency (RE) (Fig. 2). Since S0 tends to 10 

accumulate inside the reactor, S0 production was calculated by subtraction as previously 11 

reported.21 According to the balance, during the S0 accumulation period (days 148 to 12 

192) a total amount of 56 g S-S0 were produced from the 151 g S-H2S removed. As it 13 

can be seen in Figure 2, there was some S0 production from the very beginning, but it 14 

was not until high LR were applied (LR  87 g H2S m-3 h-1; O2/H2S  5; day 178 15 

onwards) that S0 accumulation really increased. Also, RE > 99% was sustained except 16 

for the last LR increase (LR= 204.5 g H2S m-3 h-1, days 185 to 192) when the RE 17 

dropped down to 93  1%. The drop in LR was mainly caused by mass-transfer 18 

limitation, as previously reported during the application of very similar LR24, since no 19 

thiosulfate formation was detected, indicating very low or no sulfide accumulation that 20 

would have been chemically oxidized to thiosulfate.21 

As soon as sulfide supply was stopped and the air flow risen, the sulfate 22 

production rate significantly increased up to a maximum value of 223 mg S-SO4
2- h-123 
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(3.48 mmols SO4
2- h-1 L-1 packed bed) between days 193 to 199, clearly showing the 1 

capacity of the system to oxidize the accumulated S0 in a very similar rate than those 2 

reported for stirred reactors (3.5 mmols SO4
2- h-1 L-1).213 

On day 199 the TLV was set to 17 m h-1 in order to increase the oxygen supply 4 

to the packed bed. Contrary to what was expected, the sulfate production rate decreased, 5 

due to an important wash out of solids that went straight to the reactor purge. Previous 6 

results26 had shown that increasing the TLV (in the range of 0.5 to 19 m h-1) could not 7 

be expected to directly improve solids wash down on the studied system. However, 8 

most probably the high amount of accumulated S0 after day 192 and the fact that the 9 

TLV was directly increased from a low value up to almost the maximum previously 10 

tested velocity did result in a severe solids (S0 and biomass) wash out. As a 11 

consequence, a decrease in the total amount of accumulated solids (S0 and biomass) 12 

caused a reduction in the sulfate production rate. 13 

Furthermore, not only S0 oxidation is greatly dependent on the presence of the 14 

highly bio-available fine S0 particles23, 33, but S0 oxidation has also been reported to be 15 

mainly a superficial process which has S0 particles surface colonization as a 16 

prerequisite.33 It can be speculated that the washed out solids greatly consisted of the 17 

free-S0 particles and the superficial layers of S0 and biomass of the biofilm, since they 18 

were the most exposed to the shear force of the trickling liquid. Therefore, it is tempting 19 

to say that both the decrease in highly bio-available fine S0 particles and in biomass 20 

were the main cause for the sudden sulfate production rate slowdown from day 199 21 

onwards. Further changes on the trickling liquid velocity or oxygen supply flow rate did 22 

not have any effect on sulfate production, which kept slightly decreasing until the end of 23 

the experiment (Fig. 2).  24 
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According to the sulfur balance, only 6 days after starting the S0 oxidation 1 

period, 57% of the accumulated S0 had been oxidized, which is a similar value to the 2 

31-46.5% range reported by Tichý et al.23 as being the percentage of highly bio-3 

available S0 usually found in biologically produced S0. It took 23 days of sulfide 4 

starvation for all the accumulated S0 to be oxidized. 5 

Results show that even if S0 accumulates inside a packed bed reactor, it can 6 

easily be further oxidized to sulfate if sulfide is not present. Furthermore, the time-scale 7 

for the S0 biological oxidation is not out of consideration as a possible packed bed 8 

regeneration method, although it will most probably considerably change among 9 

different situations (packing properties, amount of accumulated S0, oxygen supply 10 

capacity of the system and biomass content among others).  11 

From these results it is not possible to elucidate whether S0 oxidation only takes 12 

place once sulfide is completely consumed or whether both S0 and sulfide oxidation 13 

occur simultaneously. However, what the results clearly show is that from day 148 to 14 

187 the supplied sulfide was rapidly and effectively oxidized whereas S0 oxidation, if 15 

simultaneously occurring, took place at a much lower rate since S0 accumulated. This 16 

means that S0 production was much faster than sulfate production (S0 oxidation), which 17 

has already been reported in literature.19, 3418 

DSTR S0 oxidation 19 

An overview of the results for the different reactor runs is given in Table 4, 20 

where the specific maximum sulfate production rates were calculated using the average 21 

biomass concentration during the maximum sulfate production rate. Run 4 data belong 22 

to the oxidation of the freshly, in-situ produced S0 after sulfide supply shutdown. 23 

The results will be discussed in detail in the following sections. 24 
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Oxidation of externally fed S01 

As shown in Figure 3, when a pulse of dried, powdered S0 was fed into the 2 

stirred reactor, an initial low S0 oxidation rate was observed followed by a fast sulfate 3 

production phase and a final slowdown till complete stop. Both the measured and 4 

calculated S0 concentrations are plotted, since the lack of an homogeneous S0 sludge 5 

inside the DTSR due to S0 sticking to the reactor wall (as previously reported)21 did not 6 

always allow a quantitative S0 concentration monitoring, although qualitatively 7 

providing useful information. 8 

Run 1 (Fig. 3A) showed the slowest sulfate production (S0 oxidation) rate and 9 

biomass growth rate, with both values representing less than a 20% of the rates for run 3 10 

(Fig. 3B). Sulfate production rate for run 2 was very similar to that obtained for run 3 11 

(Table 4). 12 

The difference between results from run 1 and runs 2 and 3 probably relied in 13 

biomass adaptation to the DSTR conditions, since run 1 was performed with biomass 14 

directly taken from the BTFR where it grew as a biofilm instead of as a free cell 15 

suspension. Also, it is possible that the lower S0 initial concentration played a role due 16 

to the previously mentioned dependence between sulfur oxidation and sulfur-surface 17 

availability. 23, 33 Therefore, runs 2 and 3 were considered as more representative of the 18 

powdered, dried S0 oxidation capacity of the studied biomass consortium when grown 19 

as a free cell suspension. In order to compare the results from the biotrickling filter 20 

reactor and the DSTR reactor, maximum volumetric sulfate production rates were 21 

calculated (Table 4). Maximum volumetric sulfate oxidation rates from runs 2 and 3 22 

were about three times smaller than those reported by Janssen et al. (3.5 mmols SO4
2- h-23 

1 L-1) 21 or the observed in the BTFR experiment (3.48 mmols SO4
2- h-1 L-1). 24 
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Both the experiment performed by Janssen et al.21 and the BTFR experiment 1 

previously described studied biological oxidation of freshly produced S0, although in 2 

different types of reactors. However, runs 1 to 3 were performed with externally added, 3 

dried, powdered S0 as substrate. It is tempting to suggest that the slower S0 oxidation 4 

rates observed in runs 2 and 3 were caused by a low substrate bioavailability, which in 5 

turn could have been caused by different reasons. On the one hand, is has been 6 

previously reported that biological S0 oxidation is basically a surface-dependent process 7 

in terms of both available surface and surface biological colonization33, which was 8 

initially non-existent on the externally added S0. 9 

On the other hand, according to the particle size characterization (Table 1) 24% 10 

of the S0 particles were smaller than 1 m and 69% smaller than 10 m. Janssen et al.2211 

reported that S0 producing bacteria form S0 globules that are deposited inside or outside 12 

the bacterial cell, with diameters of up to 1 m. Therefore, with 76% of the added S013 

with a particle size bigger than 1 m, it can be speculated that S0 particle size was, at 14 

least, partially responsible for the low S0 oxidation rates observed.  15 

Moreover, it has been stated that biological S0 particles are covered by an 16 

extended proteinic polymer layer that normally confers them hydrophilic properties.3517 

However, upon S0 drying it may be very possible that those hydrophilic properties are 18 

changed or partially lost, therefore reducing S0 bioavailability. 19 

Oxidation of in-situ, freshly-produced S020 

In order to confirm if externally added S0 bioavailability was negatively 21 

influencing S0 oxidation, biological oxidation of fresh, in-situ produced S0 was studied 22 

in run 4.  23 
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During the first 5.7 days of run 4, 39.2 mg S-H2S L-1 h-1 were supplied while a DO 1 

concentration above 5 mg L-1 was ensured. Sulfide oxidation mainly led to S0 formation 2 

(clearly visible by a whitish turbidity increase), although some thiosulfate and sulfate 3 

were also produced (Fig. 4A). According to the sulfur balance, an average 77.5% of the 4 

supplied H2S was oxidized (30.4 mg S-H2S L-1 h-1), either as S0 (76%), sulfate (15%) or 5 

thiosulfate (9%) and the rest would have accumulated as dissolved sulfide or stripped 6 

through the gas phase.  7 

Thiosulfate and S0 formation under such oxidizing conditions clearly indicated 8 

an insufficient biological sulfide oxidation capacity that probably allowed sulfide 9 

accumulation (not measured). Sulfide accumulation was probably the cause for the slow 10 

decrease of biomass concentration observed during the first 6 days of run 4 (Fig. 4B), 11 

since sulfide becomes biologically toxic already at very low concentrations (5-30 mg L-12 

1; < 5 mg L-1).21, 34 Once sulfide accumulates in an oxidizing environment, it is 13 

chemically oxidized mainly to thiosulfate, although some chemical formation of S0 has 14 

also been reported.2115 

However, in this case S0 was the main product as well as sulfate, indicating that 16 

complete biomass inhibition did not actually occur. Probably both biological and 17 

chemical processes contributed to sulfide oxidation during this phase. 18 

One day after the sulfide supply was shutdown (day 7), biomass and sulfate 19 

concentrations started increasing while S0 and thiosulfate decreased, which indicated a 20 

fast biological activity recovery (Fig. 4). Once more the sulfur balance did not 21 

quantitatively fit the S0 measurements but qualitatively they did show a clear S022 

concentration decrease, which was also visible by a decrease in the reactor turbidity. 23 

Table 4 shows that the maximum volumetric sulfate production rate (calculated 24 

after day 9 of operation when thiosulfate concentration was already negligible) from run 25 
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4 was much higher than those for run 2 or 3 and actually was very similar to the value 1 

reported by Janssen et al.21 or the value obtained from the BTFR experiment. Hence, it 2 

was hypothesized that the fresh, in-situ produced S0 properties (particle size and surface 3 

characteristics) facilitated S0 bioavailability and oxidation compared to dried sulfur 4 

properties. 5 

Therefore, these results show that SOB S0 oxidation capacity might not be so 6 

different between freshly formed S0 accumulated into a biotrickling filter or inside a 7 

homogeneous stirred reactor. Similar volumetric S0 oxidation rates can be obtained even 8 

if S0 bioavailability would a priori seem to be much lower in a partially-clogged packed 9 

bed reactor. A possible explanation could rely on the higher biomass accumulation 10 

capacity of packed bed reactors making up for the lower substrate bioavailability 11 

compared to stirred systems. Therefore, similar volumetric oxidation rates can be 12 

achieved.13 

Respirometric S0 oxidation 14 

S0 biological oxidation was studied in different respirometric runs with a 15 

powdered, S0 water-suspension and acetone-dissolved (readily available) S0. Results 16 

from a run with the S0 water-suspension (run 1A and 1A+1B) and one with acetone-17 

dissolved S0 (run 2) are shown in Table 5, where the expected oxygen consumption was 18 

calculated according to the stoichiometry from Eq. 5 and only using 91% of the added 19 

substrate since it has been stated that 9% of the available electrons are estimated to be 20 

required for CO2 fixation.3621 

Experimental runs performed with addition of pure acetone (the same volume as 22 

the acetone-dissolved S0 pulses) showed no increase or decrease in biological activity 23 

due to acetone addition. Only a small and temporary sharp increase of DO concentration 24 
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was observed and taken into account for OUR calculations. Also, chemical oxidation of 1 

acetone-dissolved S0 was negligible. 2 

All experiments were carried out under exactly the same conditions of air 3 

supply, agitation, temperature and initial biomass concentration. However, the 4 

powdered S0 runs were performed with a much higher substrate initial concentration 5 

due to S0 handling issues and because a reduced substrate bioavailability was already 6 

expected. Still, after the first powdered S0 addition only a very small OUR increase was 7 

observed and it rapidly reached a plateau at an average OUR of 0.011  0.001 mg O2 L-1  8 

h-1 (Fig. 5). After about 3 hours at the same average OUR, a second powdered, water-9 

suspended S0 pulse was added, and another small OUR increase up to a new plateau 10 

average value of 0.023  0.001 mg O2 L-1 h-1 was observed (Fig. 5).  11 

This indicated that the first plateau was not a real maximum OUR due to 12 

biological oxidation velocity limitation but a substrate availability-limited maximum 13 

OUR value. Since solid S0 oxidation is a surface-dependent process, it is assumed that 14 

powdered S0 bioavailability was limiting biological activity after the first pulse and that 15 

was the reason why upon addition of a second S0 pulse the OUR slightly increased due 16 

to presence of more available substrate. However, it is then very plausible to think that 17 

the second maximum OUR observed was also result of a limited substrate biological 18 

availability and not a maximum biological oxidation rate. 19 

Indeed, about 3 hours after the second pulse the OUR started increasing up to a 20 

maximum value of 0.038  0.02 mg O2 L-1 h-1 reached 24 hours after starting the 21 

experiment (Fig. 5). After 40 hours the experiment was stopped, although the initial 22 

OUREND (taken as 0 mg O2 L-1 h-1 in Fig. 5) had not been reached yet. According to Eq. 23 

5 and to the amount of consumed oxygen and expected oxygen consumption (Table 5), 24 

the substrate had not been completely depleted yet.25 
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Why did the OUR further increase without addition of any more substrate has 1 

not been fully elucidated yet. It has been reported that oxidation of large sulfur particles 2 

resulted in their abrasion and breaking into smaller particles,23 which in turn are faster 3 

oxidized.33 This might explain the observed progressive increase in the maximum OUR 4 

over S0 oxidation. Another possibility is that a slight biomass growth occurred after 5 

more than 12h of experiment (Figure 5) and it caused the slight increase of the OUR. 6 

The OUR profile from run 2 is also shown in Figure 5. Substrate depletion was 7 

much faster, not only because the total amount of added substrate was smaller (Table 3) 8 

but also due to a significantly higher maximum OUR (Table 5). This is a clear 9 

indication that S0 bioavailability was the limiting factor in runs 1A and 1B. 10 

According to the current knowledge of S0 biological oxidation, exogenous S011 

(assumed to be in the form of S8 rings) must be initially converted (dissolved) to highly 12 

reactive linear S0 to be transported through the outer or inner (depending on the 13 

reference) cell membranes for oxidation.37, 38 Therefore, both available S0 surface and S014 

particles surface characteristics should influence exogenous S0 biological oxidation. It is 15 

then assumable that the difference on surface characteristics between fresh, in-situ16 

produced S0 particles and externally added dried, powdered S0 particles would also 17 

influence S0 oxidation. 18 

From a reactor operation point of view, it would be interesting being able to 19 

maximize S0 bioavailability in case of reactor clogging, where probably part of the S020 

will still keep the freshly produced S0 properties but part of it will get dry due to 21 

channeling of the liquid and gas flows.  22 
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Conclusions 1 

Accumulation of S0 turns out to be the main operational problem in a 2 

biotrickling filter treating high loads of H2S if not properly operated. Hence, biological 3 

oxidation of S0 has been studied and compared under three different circumstances.  4 

Oxidation of accumulated S0 inside the biotrickling filter reactor revealed that 5 

contrary to what could be expected into a clogged, non-homogeneous packed bed 6 

reactor, volumetric S0 oxidation rates comparable to those obtained for stirred tank 7 

reactors could be achieved. The high biomass accumulation capacity of a packed bed 8 

reactor might be responsible for it. Above all, the results showed that using the SOB 9 

capacity to oxidize accumulated S0 under sulfide starvation can be considered as a 10 

possible mechanism for reactor recovery once accumulation of excessive S0 has led to 11 

reactor clogging. 12 

S0 oxidation experiments in a stirred tank reactor showed that biological 13 

oxidation of dried, powdered S0 particles occurs at a much slower rate than oxidation of 14 

freshly, in-situ produced biological S0 particles. It is speculated that the particles size or 15 

the surface chemical properties of dried, powdered S0 particles limited S0 bioavailability 16 

even in a well stirred environment. This confirmed that the main rate limiting factor of 17 

S0 biological oxidation is S0 bioavailability. 18 

The limited bioavailability of dried, powdered S0 particles was finally proven in 19 

respirometric experiments which revealed much lower maximum OUR for dried, 20 

powdered S0 oxidation than for acetone-dissolved S0. Moreover, maximum OUR for 21 

powdered S0 biological oxidation was substrate-limited and not kinetically limited 22 

under the tested conditions. 23 
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Tables:1 

Table 1: Powdered biological S0 properties. 2 

3 

Elemental composition S N C H 

% (dry weight) 88  1 0.97  0.01 2.9  0.1 0.43  0.01 

Particle size distribution < 1 m < 10 m < 40 m < 60 m 

% sample volume 24.1 69.0 99.1 99.999 

Particle size fraction distribution < 10 % < 25 % < 50 % < 95 % 

Particle diameter ( m) 0.236 1.124 4.703 29.28 

4 

5 
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Table 2: Overview of the initial conditions for the different DSTR runs. 1 

2 

Run Number 1 2 3 4 

Substrate S0 S0 S0 H2S 

Load  (mg S-H2S L-1 h-1) - - - 39.3 

S0 pulse (mg L-1) 298 1222 1128 - 

Biomass (mg N L-1) 20.3 18.5 16.2 21.2 

Inoculum origin BTFR Run 1 Run 2 Run 3 

3 

4 

5 
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Table 3: Overview of the respirometric experimental conditions. 1 

2 

Run 1A 1B 2 

Substrate powdered S0 powdered S0 dissolved S0

Pulse 
(mg S L-1) 24.7 26.28 2.81 

(mM S) 0.77 0.82 0.09 

Biomass (mg N L-1) 22.0 22.0 22.0 

HCO3
- (mg C L-1) 40 + 20 40 

3 

4 
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Table 4: Overview of the results for the different DSTR runs. 1 

2 

Run Number 1 2 3 4 

Maximum volumetric 

sulfate production rate 

mg S-SO4
2- h-1 L-1 7.20 34.09 35.31 108.69 

mmol SO4
2- h-1 L-1 0.23 1.07 1.10 3.40 

Specific maximum sulfate 

production rate 
mg S-SO4

2- h-1 mg Naver.-1 0.48 1.69 1.77 2.87 

Biomass growth rate mg N h-1 0.11 na 0.66 0.55 

3 

4 
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Table 5: Overview of the respirometric results with powdered, water-suspended S0 and 1 

acetone-dissolved S0. 2 

3 

Run 1A 1A+1B 2 

Maximum OUR mg O2 L-1 h-1 0.673 1.395 3.548

Measured O2 consumption mg O2 - 15.06 1.02 

Expected O2 consumption mg O2 - 20.87 1.15 

4 

5 
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Figures 1 

Figure 1: 2 
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Figure 1: Schematic of the biotrickling filter reactor. 1: Main reactor; 2: Air supply 7 

compartment; 3: Gas inlet; 4: Gas outlet; 5: HCO3
- supply; 6: Gas monitoring; 7: MM supply; 8: 8 

Recirculation pump; 9: pH control; 10: Liquid monitoring; 11: Air supply; 12: Level control; 9 

13: Liquid purge. 10 

11 
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Figure 2: 1 
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Figure 2: Sulfur mass balance in the biotrickling filter reactor. The thick dashed line separates 5 

the S0 accumulation period (left side) from the S0 oxidation period (right side). The thin dashed 6 

lines separate periods with different O2/H2S supplied ratios during S0 accumulation (days 148 to 7 

192) and different O2 supply or trickling liquid velocity periods during S0 oxidation (days 192 to 8 

215). 9 

10 
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Figure 3: 1 
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Figure 3 Sulfur balance for runs 1 (A) and 3 (B)  in the DSTR with measured sulfate and S05 

concentrations as well as calculated S0 concentrations from sulfate production. 6 

7 
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Figure 4: 1 
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Figure 4 Sulfur balance (A) and biomass concentration (B) during run 4 in the DSTR. The 5 

dashed vertical line indicates sulfide supply shutdown. Calculated S0 concentration based on 6 

sulfate production and sulfur mass balance is only represented from sulfide supply shutdown 7 

onwards. 8 

9 
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Figure 5: 1 

2 

3 

Figure 5 OUR profiles from the two consecutive powdered, water-suspended S0 pulses are 4 

represented on the upper horizontal axis (additions indicated by the gray dashed arrows). The 5 

acetone-dissolved S0 pulse is represented on the lower horizontal axis (addition indicated by the 6 

solid black arrow). 7 
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