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Abstract

The relationship between alternations in cardiac contractions, known as alternans, and the dynamics of
intracellular calcium has been proven in several studies. In this paper, we will study a simple model two-
variable model that sets the conditions for alternans due to refractoriness in calcium release. To perform this
study, a theoretical background on dynamical systems will be provided, specially focused on the geometrical
point of view and the use of Poincaré maps. A second chapter of theoretical background will focus on
bifurcation theory and the main types of local bifurcations will be reviewed. The goal of this is to have
enough knowledge to perform a complete study of the model while understanding the biological part of it
and, eventually, link period doubling bifurcations to cardiac alternans.
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Previa

1. Previa

Calcium alternans have been related to cardiac fibrillations, one of the main causes of heart attacks. The
purpose of this thesis is double: on one hand to gain enough theoretical knowledge about dynamical
systems to be able to make a good study of a simple model, and to analyze a model of calcium alternans,
understanding the biological processes and concepts that are related to it.

In the first chapter, from a really low level, a dynamical systems theory course is written. The first
sections are dealt briefly, and as the study goes on, the geometrical point of view becomes central. The
goal of the first chapter is to learn about Poincaré maps, how are they related to periodic orbits and their
behaviour.

In the second chapter we focus on the study of local bifurcations, first by understanding what happens
qualitatively at the system when they occur, and later we deal with the most common types of bifurcations
of equilibria and periodic orbits.

The third chapter is about the study of the minimal model of calcium alternans due to refractoriness
of RyR2. Giving first the concepts needed to understand it, the model is built, and with MatLab software
it is analysed to test, mainly, how Poincaré maps can be useful for period doubling bifurcations.
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Dynamical Systems

2. Dynamical Systems

2.1 First-order systems of ODEs

We consider a system of first-order ODEs of the form

dx

dt
= ẋ = f (x) (2.1.1)

where x(t) ∈ Rn is a vector function of an independent variable, usually time, and f : U → Rn is a smooth
function defined on some subset U ⊆ Rn. We may regard (2.1.1) as describing the evolution in continuous
time t of a dynamical system with finite-dimensional state x(t) of dimension n. In our case, because the
vector field f does not depend explicitly on time, the system is called autonomous and we have that solutions
are invariant under translations in time: if x(t) is a solution, then so is x(t + t0) for any constant t0 ∈ R.
Other types of ODEs can be put in the form (2.1.1):

• Non-autonomous systems. They have the form

ẋ = f (x , t) (2.1.2)

They describe systems governed by laws that vary in time. They can be rewritten as autonomous if
we consider the new variable y = (x , s) ∈ Rn+1, with s = t, then we get

dy

ds
= f (y)

Note that even if the system has a solution like f (x∗, t) = 0, the rewritten system does not have
that constant solution for y .

• Higher-order ODEs. Systems with higher order derivatives such as ẍ(t), x ′′′(t), etc; can be rewritten
as first order systems by the introduction of derivatives as new dependent variables. For example,
with the system

dx2

d2t
= ẍ(t) = f (x , ẋ)

This can be rewritten as a first-order system for z = (x , y) ∈ R2n with y(t) = ẋ(t) as

ẏ = f (x , y)

2.2 Existence and Uniqueness of solutions

The vector field f generates a flow φt : U ⊆ Rn → Rn, where φt(x) = φ(x , t) is a smooth function
defined for all x ∈ U and t ∈ I = [a, b] ⊆ Rn and φt(x) is a solution to (2.1.1) because

d

dt
(φ(x , t))

∣∣
t=τ

= f (φ(x , τ))

The flow, for autonomous systems, satisfies the following properties:

2



1. φ0 = id

2. φt+s(x) = (φt ◦ φs)(x) = φ(φ(x , s), t)

An initial value problem (IVP) for (2.1.1) consists of solving the ODE given an initial condition for
x(t), x0 ∈ Rn a constant vector:

ẋ = f (x)

x(0) = x0
(2.2.1)

Since we work with autonomous systems, there is no loss of generality in imposing the initial condition at
t = 0 rather than some other time t0. In this case, we seek a solution φ(x0, t) such that φ(x0, 0) = x0.
The flow φ(x0, ·) : I ⊆ R → Rn defines a solution curve, trajectory or orbit of (2.1.1) based at x0. 1

We have that φ(x0, t) maps the initial data x0 to the solution at time t and it’s important to remark that
it is not defined for all t ∈ R, x0 ∈ Rn unless solutions exist globally. The second property of the flows
means that solving the ODE for time t + s is equivalent to solving it for time s then for time t. Moreover,
the flow depends on both the initial and final time, not just their difference, and satisfies

3. φt,s ◦ φs,r = φt,r

To state the fundamental local existence and uniqueness theorem for IVPs, due to Picard and Lindlof,
we will need to describe what a manifold is though it will not be the main topic on this study of dynamical
systems. Roughly speaking, a manifold is a topological space that locally resembles Euclidean space near
each point, that is, each point of an n-dimensional manifold has a neighbourhood that is homeomorphic
to Rn [1]. In particular, we will deal with differentiable manifolds which are topological spaces with a
globally defined differential structure. However, in discussing submanifolds of solutions such as the stable
manifolds, we will usually be able to work with copies of real Euclidean spaces defined locally by graphs.

Theorem 2.2.1. Local existence and uniqueness Let U ⊂ Rn be an open subset of real Euclidean space
(or of a differentiable manifold M), let f : U → Rn be a continuously differentiable (C 1) map and let
x0 ∈ U. Then there is some constant c > 0 and a unique solution φ(x0, ·) : (−c , c) → U satisfying the
differential equation ẋ = f (x) with initial condition x(0) = x0. [2]

Two main remarks should be done about this theorem:

• Solutions of IVPs need not exist for all times because it is only a local existence theorem, it only
assures the existence of a solution for sufficiently small times next to the initial time. Even for
arbitrarily smooth functions f the solution of a nonlinear IVP may fail to exist for all times, like if
f (x) grows faster than a linear function of x . In fact, we could easily make up vector fields f : U → Rn

such that the solution x(t) leaves any subset U ⊂ Rn in finite time.

• Actually, f only needs to be Lipschitz, thus we can deal with piecewise linear functions. However,
solutions need not be unique if f is not Lipschitz continuous. If f (x) is only assumed to be a
continuous function of x , then solutions for (2.2.1) always exist due to Peano Existence’s Theorem,
but may fail to be unique.

1For first-order systems we only need to impose data for x(t). For higher order systems, we would need to impose initial
data for the same number of derivatives as the order of the system.
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2.2.1 Fixed points and stability

Fixed points, also called equilibrium solutions, zeroes or steady state solutions are an important class
of solutions of an ODE. They are x∗ ∈ Rn defined by

f (x∗) = 0 (2.2.2)

Thus, the ODE has the constant solution x(t) = x∗.

An equilibrium is said to be stable (or Liapunov stable) if small perturbations of the solution decay,
or at least remain bounded, for all time. That is, for every neighbourhood V of x∗ ∈ U, there is a
neighbourhood V1 ⊂ V such that every solution x(x0, t) with x0 ∈ V 1, is defined and lies in V for all
t > 0. If, in addition, V1 can be choosen to that x(t)→ x∗ as t →∞ then x∗ is said to be asymptotically
stable. Usually, asymptotically stable fixed points are called sinks and unstable fixed points (those which
are not stable) are known as sources.
If we work with the flow of the ODE, we get that equilibria solutions satisfy

φt(x∗) = φ(x∗, t) = x∗

which explains why equilibria are sometimes referred as fixed points of the flow map. Moreover, we can
state precise definitions of stability in terms of the flow: an equilibrium x∗ is stable if for every ε > 0
there exists δ > 0 shuch that if |x − x∗| < δ then |φt(x) − x∗| < ε for all t ≥ 0. Also, an equilibrium
is asymptotically stable if its stable and there exists η < 0 such that if |x − x∗| < η then φt(x) → x∗ as
t →∞.
Thus, stability means that the solutions which start sufficiently close to equilibrium remain arbitrarily
close for all t ≥ 0, while asymptotic stability means that in addition, nearby solutions approach the
equilibrium as t →∞. Stability does not imply asymptotic stability since nearby solutions might oscillate
about an equilibrium without decaying toward it. Also, it is not sufficient for asymptotic stability that all
nearby solutions approach the equilibrium, because they could make large excursions before approaching
the equilibrium, which would violate the definition of stability [3].
Note that these notions of stability are local, they only relate to the behaviour of solutions near the fixed
point x∗. Even if such solutions remain bounded for all time, other solutions may not exist globally.

One way to figure out the stability of a fixed point is by using Lyapunov functions. The method relies
on finding a positive definite function V : U → R, the Lyapunov function, which decreases along solution
curves of the ODE.

Theorem 2.2.2. [4] Let x∗ be a fixed point for (2.1.1) and V : W → R be a differentiable function
defined on some neighbourhood W ⊆ U of x∗ such that:

1. V (x∗) = 0 and V (x) > 0 if x 6= x∗

2. V̇ (x) ≤ 0 in W \ {x∗}

Then x∗ is stable. Moreover, if

3. V̇ (x) < 0 in W \ {x∗}

then x∗ is asymptotically stable.
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In the state of the theorem, we have used

V̇ (x) =
n∑

j=1

∂V

∂xj
ẋj =

n∑
j=1

∂V

∂xj
fj (x)

If we can choose W = U = Rn in case (3), then x∗ is said to be globally asymptotically stable and
we can conclude that all solutions remain bounded and approach to x∗ as t → ∞. Thus, the stability of
equilibria and boundedness of solutions can be tested without explicitly solving the ODE. However, there
are no general methods for finding suitable Lyapunov functions.
For problems with multiple equilibria, there is an alternative to finding local Lyapunov functions and it is
finding a compact hypersurface S ⊂ Rn such that the vector field is directed inward everywhere on S . If
such surface exists, then any solution starting on or the inside of S can never leave the interior of S and
thus, it must remain bounded for all time. Thus, the local existence theorem becomes global when we
work on compact manifolds instead of open spaces like Rn.

Going back to the existence of solutions, if we want solutions that exist globally in time, we need to add
conditions to the theorem (2.2.1). In fact, the only way in which global existence can fail is if the solution
escapes to infinity, i.e., it blows-up. The extension of solutions implies that we can extend a solution of the
ODE as long as it remains bounded, and by the ODE we have that the derivative ẋ(t) remains bounded if
the solution x(t) does so too.

Theorem 2.2.3. [5] The differential equation ẋ = f (x), x ∈ M, with M a compact manifold, and f ∈ C 1,
has solution curves defined for all t ∈ R.

Thus, the flows on spheres and tori are globally defined because there is no way in which solutions
can escape such manifolds. On the other hand, the local theorem can be extended to show that solutions
depend on initial conditions:

Theorem 2.2.4. [6] Let U ⊆ Rn can be open and suppose f : U → Rn has a Lipschitz constant K . Let
y(t) and z(t) be solutions to ẋ = f (x) on the closed interval [t0, t1]. Then, for all t ∈ [t0, t1]

|y(t)− z(t)| ≤ |y(t0)− z(t0)|eK(t−t0)

However, these continuous dependence does not preclude the exponentially fast separation of solutions,
like the one that happens near a saddle point. Note that the local exponential divergence (or contraction)
of trajectories may be different in different directions and is measured by the Lyapunov exponent of the
system.

2.3 Linear systems of ODEs

An IVP for a homogenous, autonomous, first-order linear system of ODEs has the form

ẋ = f (x) = Ax

x(0) = xo
(2.3.1)

5
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where A is a n × n matrix with constant coefficients and x0 ∈ Rn. It has a unique global solution, given
explicitly by

x(x0, t) = etAx0 (2.3.2)

where t ∈ (−∞,∞) and the matrix exponential is the convergent series defined as

etA = I + tA +
1

2
t2A2 + ... +

1

n!
tnAn + ...

The matrices etA verify

1. et1Aet2A = e(t1+t2)A

2. d
dt etA = AetA

3. det(etA) = etr(A)t

A general solution to ẋ = Ax can be obtained by linear superposition on n linearly independent
solutions {x1(t), ..., xn(t)}

x(t) =
n∑

j=1

cj xj (t)

where the n unknown constants cj are to be determined by the initial conditions.
If A has n linearly independent eigenvectors vj , j = 1 ÷ n, then we may take as a basis for the space of
solution the vector valued functions

xj (t) = eλj tvj

where λj is the eigenvalue associated with vj . For complex eigenvalues without multiplicity, λj = αj ± iβj

having eigenvectors Re(vj )± iIm(vj ) we may take

xj = eαj t(Re(vj )cos(βj t)− Im(vj )sin(βj t)

xj+1 = eαj t(Re(vj )cos(βj t) + Im(vj )sin(βj t)

as the associated pair of real linearly independent solutions.
We denote the fundamental solution matrix having these n solutions for its columns as

X (t) = [x1(t), ..., xn(t)] (2.3.3)

The columns xj (t) of X (t) form a basis of the space of solutions of ẋ = Ax . Thus, we have that

etA = X (t)X (0)−1 (2.3.4)

The system ẋ = Ax may also be solved by first finding an invertible transformation T which diagonalizes
A, or at least puts it into Jordan normal form. Then, the system becomes

ẏ = Jy

where J = T−1AT and x = Ty . Now, the exponential etA may be computed as

etA = TetJT−1

6



It is important to note that if vj is an eigenvector belonging to a real eigenvalue λj of A, then vj is also
an eigenvector belonging to the eigenvalue eλj of eA. Moreover, if span{Re(vj ), Im(vj )} 2 is an eigenspace
belonging to a complex conjugate pair of eigenvalues λj , λj , then it is also an eigenspace belonging to

eλj , eλj .

The matrix etA can be understood as a mapping from Rn to Rn: given any point x0 in Rn, x(x0, t) =
etAx0 is the point at which the solution based at x0 lies after time t. Thus, etA defines a flow on Rn

generated by the vector field Ax , defined on Rn,and it can be thought of as the set of all solutions to
ẋ = Ax . In this set, those solutions which lie in the linear subspaces spanned by the eigenvectors play a
special role. These subspaces are invariant under etA and in particular, if vj is a real eigenvector of A, and
hence of etA, then a solution based at a point cj vj ∈ Rn remains on span{vj} for all time. Similarly, the
two-dimensional subspace spanned by Re(vj ), Im(vj ) when vj is a complex eigenvector, is invariant under
etA [7].

As a recap, the eigenspaces of A are invariant subspaces for the flow. The subspaces spanned by
eigenvectors can be divided into three classes:

• The stable subspace, E s = span{v1, ..., vns}. Where v1, ..., vns are the ns generalized eigenvectors
whose eigenvalues have negative real parts.

• The unstable subspace, E u = span{u1, ..., unu}. Where u1, ..., unu are the nu generalized eigenvec-
tors whose eigenvalues have positive real parts.

• The center subspace, E c = span{w1, ..., wnc}. Where w1, ..., wnc are the nc generalized eigenvectors
whose eigenvalues have null real parts.

The names reflect the facts that solutions lying on E s are characterized by exponential decay (either
monotonic or oscillatory), those lying on E u are characterized by exponential growth and those lying in E c

by neither. In the absence of multiple eigenvalues, these latter either oscillate at constant amplitude (if
λ, λ = ±iβ) or remain constant (if λ = 0). When there are multiple eigenvalues for which algebraic and
geometric multiplicities differ, then one may have growth of solutions in E c .

2.3.1 Stability of solutions

Considering the linear system ẋ = Ax , we will classify their solutions in: unstable, stable or asymptotically
stable. These definitions are global when we talk about linear systems and become only local when the
system has non-linear terms.

Theorem 2.3.1. [8] Stability of linear systems with constant terms.The system ẋ = Ax is:

1. Asymptotically stable ⇔ All eigenvalues of A have strictly negative real part.

2. Stable ⇔ All eigenvalues of A have negative or zero real part.

2Given a vector space V over a field K , the span of a set S of vectors is defined to be the intersection W of all subspaces
of V that contain S .
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3. Unstable ⇔ There’s an eigenvalue with positive real part or an eigenvalue with zero real part and its
algebraic and geometric multiplicities differ.

2.4 Non-linear systems of ODEs

We now consider a non-linear system

ẋ = f (x) (2.4.1)

and the initial value problem associated

ẋ = f (x)

x(0) = x0
(2.4.2)

Since we cannot give a general formula analogous to the one for the linear case we need to find a different
approach to solve, or at least understand the behaviour, of non-linear ODEs. A good place to start the
study is by finding the fixed points of f , also referred as stationary solutions.

2.4.1 Linear stability analysis

Suppose that we have a fixed point x∗, so that f (x∗) = 0, and we want to characterize the behaviour of
solutions near x∗. We do this by linearizing (2.4.1) at x∗. Consider x ∈ Rn near x∗ ∈ Rn. Then,

x = x∗ + δx δ � 1 (2.4.3)

With this new point, we can rewrite (2.4.1) as

dx∗

dt
+

d(δx)

dt
= f (x∗ + δx)

As we have that f : Rn → Rn, we get for i = 1÷ n

d(δxi )

dt
= fi (x∗1 + δx1, ..., x∗n + δxn)

Now we can compute the Taylor expansion for each fi , i = 1÷ n, and obtain

d(δxi )

dt
= fi (x∗) +

n∑
j=1

dfi

dxj

∣∣∣∣
x∗
δxj

Note that the Jacobian matrix of f is exactly what we are writing on the second term of the right side, so
we have

d(δx)

dt
' f (x∗) + Df (x∗)δx (2.4.4)

where Df (x∗) is a matrix with constant coefficients. Since we are only considering a linearization around
the fixed point, higher derivatives are not taken into consideration when using the Taylor expansion and,
therefore, we do not have an equality at (2.4.4) but a semiequality. However, for now we will take the

8



expression as an equality because it’s easier to work with. Thus, if we take into account that f (x∗) = 0,
we have that the linearization of the system around a fixed point x∗ has the equation

d(δx)

dt
= Df (x∗)δx (2.4.5)

which is a linear system and its solutions are of the form δx(t) = etDf (x∗)δx(0) having the following
properties [9]:

• If we use as an initial condition a point δx(0) which position compared to x∗ is given by an eigenvector
of Df (x∗) associated to an eigenvalue of strictly positive real part, λ+: δx(0) = vλ+ ; then ||δx(t)||
increases along the direction given by v+ and the system goes away from x0. Those eigenvectors give
the unstable or dilatant directions.

• If we use as an initial condition a point δx(0) which position compared to x∗ is given by an eigenvector
of Df (x∗) associated to an eigenvalue of strictly negative real part, λ−: δx(0) = vλ− ; then ||δx(t)||
decreases along the direction given by v− and the system goes to x0. Those eigenvectors give the
stable or contractant directions.

• The eigenvalues of null real part are problematic. In this case, the nonlinear terms may cause the
growth or decay of perturbations from equilibrium and the behaviour of solutions of the nonlinear
system near the equilibrium may differ qualitatively from that of the linearized system.

When an equilibrium x∗ of (2.4.1) is such that Df (x∗) has no eigenvalues with zero real part, x∗ is called
hyperbolic. For a hyperbolic equilibrium, all solutions of the linearized system grow or decay exponentially
in time, as we have already seen. According to the Hartman-Grobman theorem, if x∗ is hyperbolic, then the
flows of the linearized and nonlinear system are topologically equivalent near the equilibrium. In particular,
the stability of the nonlinear equilibrium is the same as the stability of the equilibrium of the linearized
system.

Theorem 2.4.1. Hartman-Grobman [10]. If Df (x∗) has no zero or purely imaginary eigenvalues then
there is a homeomorphism h defined on some neighbourhood U of x∗ in Rn locally taking orbits of the
nonlinear flow φt of (2.4.2), to those of the linear flow etDf (x∗) of the linearization. The homeomorphism
preserves the sense of orbits and can also be chosen to preserve parametrization by time.

Before the next result, we will need to define two type of manifolds

• Local Stable Manifold

W s
loc (x∗) = {x ∈ U| φt(x)→ x∗ as t →∞, and φt(x) ∈ U for all t ≥ 0} (2.4.6)

• Local Unstable Manifold

W u
loc (x∗) = {x ∈ U| φt(x)→ x∗ as t → −∞, and φt(x) ∈ U for all t ≤ 0} (2.4.7)

where U ⊂ Rn is a neighbourhood of the fixed point x∗. The invariant manifolds W s
loc and W u

loc provide
nonlinear analogues of the flat stable and unstable eigenspaces E s , E u of the linearization. In fact, as we
can see in the next theorem, W s

loc , W u
loc are tangent to E s and E u at x∗.

9
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Theorem 2.4.2. Stable Manifold Theorem for a Fixed Point [11]. Suppose that ẋ = f (x) has a
hyperbolic fixed point x∗. Then there exist local stable and unstable manifolds W s

loc , W u
loc , of the same

dimension ns , nu as those of the eigenspaces E s , E u of the linearized system at x∗, and tangent to E s , E u

at x∗. W s
loc , W u

loc are as smooth as the function f .

Note that we have not yet said anything about a center manifold, tangent to E c at x∗ and only have
dealt with hyperbolic cases in which E c does not exist. This is because nonhyperbolic cases will be dealt
with later, on the second chapter.

The local invariant manifolds have global analogues W s , W u obtained by letting points in W s
loc flow

backwards in time and those in W u loc flow forwards:

W s(x∗) =
⋃
t≤0

φt(W s
loc (x∗))

W u(x∗) =
⋃
t≥0

φt(W u
loc (x∗))

(2.4.8)

Existence and uniqueness of solutions of (2.4.2) ensure that two stable (or unstable) manifolds of distinct
fixed points x∗1 , x∗2 cannot intersect nor can W s

loc (x∗) (or W u(x∗)) intersect itself. However, intersections
of stable and unstable manifolds of distinct fixed points or the same fixed point can occur and, in fact, are
a source of much of the complex behaviour found in dynamical systems.

2.4.2 Phase space

Very few nonlinear systems of ODEs are explicitly solvable. Therefore, rather than looking for individual
analytical solutions it’s best to try to understand the qualitative behaviour of their solutions.
We may represent the solutions of ẋ = f (x) by solution curves or trajectories x(t) in the phase space
Rn. These trajectories are integral curves of the vector field f , meaning that they are tangent to f at
every point. The existence-uniqueness theorem implies that if the vector field f is smooth, then a unique
trajectory passes through each point of phase space and that trajectories cannot cross. We may visualize
f as the steady velocity field of a fluid that occupies phase space and the trajectories as particles paths
of the fluid. In the fluid analogy, φt may be interpreted as the map that takes a particle from its initial
location at time 0 to its location at time t.

One way to organize the study of dynamical systems is by the dimension of their phase space. In one
or two dimensions, the non-intersection of trajectories strongly restricts their possible behaviour: in one
dimension, solutions can only increase or decrease monotonically to an equilibrium or to infinity; in two
dimensions, oscillatory behaviour can occur. In three dimensions complex behaviour, including chaos, is
possible.

2.4.3 1D Case

Consider the autonomous non-linear system

dx

dt
= ẋ = f (x) (2.4.9)

10



Figure 1: Phase portrait. Image from [3]

with x ∈ R and f : R→ R. We think of t as time, x as position and ẋ as velocity. We can draw the graph
of f (x) and use it to sketch the vector field on the x-axis. Imagine that a fluid is flowing along the real
line with a local velocity f (x). The flow is to the right where f (x) > 0 and to the left where f (x) < 0. To
find the solution to the ODE starting form an arbitrary initial condition x0, we place an imaginary particle
(phase point) at x0 and watch how it is carried along by the flow. As time goes on, the phase point
moves along the x-axis according to some function x(t), called trajectory based at x0, and it represents the
solution of the ODE starting at the initial condition x0. A picture that shows all the qualitatively different
trajectories of the system is called phase portrait. The appearance of the phase portrait is controlled by
the fixed points x∗, defined by f (x∗) = 0, that represent the equilibrium solutions. Also, we can see the
stability of the fixed points by seeing whether the arrows point towards the fixed point (stable fixed point)
or they point in the opposite direction (unstable fixed point).

Example 1 [3]. For the system ẋ = x2 − 1 the phase portrait would be the one on Figure 1.

In this example all small disturbances to x∗ = −1 will decay, but a large disturbance that sends x to the
right of x = 1, will not decay but will be repelled to infinity. Thus, we have that x∗ = −1 is locally stable.

Example 2 [3]. We consider the system ẋ = k − x
c . There’s only one fixed point, x∗ = kc , so if we

sketch the phase portrait we get what shows on Figure 2:

The flow is always towards x∗ so we say that x∗ is asymptotically stable since it’s approached from all
initial conditions.
In this case we can also sketch x(t) as can be seen on Figure 3. To do so, we start a phase point at the
origin and imagine how it would move. The flow carries monotonically the phase point towards x∗ and its
speed, ẋ , decreases linearly as it approaches the fixed point, therefore x(t) is increasing and concave down.

11
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Figure 2: Phase portrait. Image from [3]

Figure 3: Solution portrait. Image from [3]
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For the phase line, the linearization about a fixed point can be thought as δ̇ = f ′(x∗)δ + O(δ2), where
δ(t) = x(t)− x∗. When f ′(x∗) = 0 the O(δ2) terms are not negligible and non linear analysis is needed to
determine stability. But when f ′(x∗) 6= 0, the linearization is:

δ̇ = δf ′(x∗) (2.4.10)

and this shows that the perturbation δ(t) grows exponentially if f ′(x∗) > 0 and decays if f ′(x∗) < 0. The
magnitude of f ′(x∗) plays the role of an exponential growth or decay rate, and its inverse determines the
time required for x(t) to vary significantly in the neighborhood of x∗.

Fixed points dominate the dynamics of first order problems. Trajectories either approach a fixed point
or diverge to infinity, and those are the only things that can happen for a vector field on the real line.
The reason is that trajectories are forced to increase or decrease monotonically, or remain constant, never
reversing direction. Thus, a fixed point is regarded as an equilibrium solution and the approach to it is
always monotonic (overshoot and damped oscillations can never happen in a first order system). For the
same reason, undamped oscillations are impossible. Hence, there are no periodic solutions to ẋ = f (x) and
this reflects the fact that this ODE corresponds to a flow on a line. 3

2.4.4 2D Case

In the bidimensional case a dynamical system is of the form

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
(2.4.11)

If we consider a small perturbation close to a fixed point x∗ = (x∗1 , x∗2 )

x = x∗ + δx = (x∗1 + δx1, x∗2 + δx2)

then we can linearize the system (2.4.11) around x∗

δ̇x1 = f1(x∗1 + δx1, x∗2 + δx2)

δ̇x2 = f2(x∗1 + δx1, x∗2 + δx2)

that with Taylor’s expansion becomes

δ̇x1 = f1(x∗1 , x∗2 ) +
∂f1

∂x1

∣∣∣∣
x∗
δx1 +

∂f1

∂x2

∣∣∣∣
x∗
δx2

δ̇x2 = f2(x∗1 , x∗2 ) +
∂f2

∂x1

∣∣∣∣
x∗
δx1 +

∂f2

∂x2

∣∣∣∣
x∗
δx2

Using Dij = ∂fi
∂xj

∣∣∣∣
x∗

, we have

˙δx1 = D11δx1 + D12δx2

˙δx2 = D21δx1 + D22δx2

3Note that if we are dealing with a circle rather than a line we could eventually return to the starting place.
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which is exactly the same as
d

dt

(
δx1

δx2

)
=

(
D11 D12

D21 D22

)(
δx1

δx2

)
To determine the spectrum of D, we compute the characteristic polynomial P(λ)

Det(D − λI ) =

∣∣∣∣D11 − λ D12

D21 D22 − λ

∣∣∣∣
= (D11 − λ)(D22 − λ)− D12D21

= λ2 − (D11 + D22)λ+ D11D22 − D12D21

which gives
P(λ) = λ2 − Tr(D)λ+ Det(D) (2.4.12)

We can now consider all the possible cases for the roots of this polynomial [9].

2.4.4.1 Different real roots and non null

The characteristic polynomial can be factorized in the form:

P(λ) = (λ− λ1)(λ− λ2) (2.4.13)

and the matrix is diagonalizable. Any initial condition δx(0) can be decomposed in a basis formed by the
eigenvectors v1, v2 associated to the eigenvalues λ1, λ2 respectively.

δx(0) = α1v1 + α2v2

where α1, α2 are two real constants. The linear behaviour with time of δx(t) is then given by

δx(t) = α1eλ1v1 + α2eλ2v2

Depending on the signs of λ1, λ2 we can have the following behaviours:

1. Both roots have the same sign. Then the fixed point is called a node and its representation can be
seen in Figure 4 and Figure 5. The node is stable when the two roots are negative and it is unstable
when they are positive. The red lines are the directions given by the eigenvectors. The blue curves
are examples of trajectories in the phase space.

2. The roots have opposite signs. Then the fixed point is call a saddle node and it is always unstable.
The representation can be seen in Figure 6, where the red lines are the directions given by the
eigenvectors. The blue curves are examples of trajectories in the phase space.

2.4.4.2 Complex conjugate roots

The characteristic polynomial cannot be factorized in R. The complex conjugate eigenvalues can be written
as

λ1 = σ + iω

λ2 = σ − iω

14



Figure 4: Stable node. Image from [9]

Figure 5: Unstable node. Image from [9]
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Figure 6: Saddle point. Image from [9]

with σ and ω reals. There is a change of coordinates that allows to write the system as

ẏ1 = σy1 + ωy2

ẏ2 = −ωy1 + σy2

The solutions of the system for an initial condition y 0 are

y1(t) = eσt(y 0
1 cosωt + y 0

2 sinωt)

y2(t) = eσt(−y 0
1 sinωt + y 0

2 cosωt)
(2.4.14)

The cos(ω)t and sin(ω)t parts of the solution lead to oscillations with time. Such oscillations exist only
when the imaginary part of the eigenvalues, ω, is different from 0. Concerning the stability of the fixed
point, it is determined by the eσt function, which is defined by the real part of the complex conjugate
eigenvalues. Thus, the real part of the eigenvalues determine the stability of the fixed point. We have two
cases:

1. σ 6= 0. Then the fixed point is called a spiral. It is stable for σ < 0 and unstable for σ > 0. The
representation can be seen in Figure 7 where the blue curves are examples of trajectories in the phase
space and the unstable spiral has the same figure but with reverse arrows.

2. σ = 0. The fixed point is called a center. The stability of the fixed point cannot be determined by
a linear analysis: the nonlinearities will determine if the point is stable or unstable. These points can
be named neutrally stable. A representation can be found in Figure 8.

2.4.4.3 Double non-null root

We have λ1 = λ2 and the characteristic polynomial is P(λ) = (λ− λ1)2. We have two possibilities:

16



Figure 7: Stable spiral. Image from [9]

Figure 8: Center. Image from
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Figure 9: Stable star node. Image from [9]

Figure 10: Stable degenerated node. Image from [9]

1. The matrix is diagonalizable. Then, the fixed point is a star node. It can be stable or unstable
depending on wheter the sign of λ1 is positive (then is unstable) or if it is negative (then is stable).
In Figure 9 can be found a representation, where all lines going to the origin are trajectories; the
representation for the unstable star node is the same with reversed arrows.

2. The matrix is no diagonalizable. Then, the matrix can be transformed to its Jordan form and the
solutions are

y1(t) = (y 0
1 + y 0

2 t)eλ1t

y2(t) = y 0
2 eλ1t

(2.4.15)

The fixed point is then a degenerated node. Depending on the sign of λ1, it is stable if it is negative
or unstable otherwise. A stable degenerated node is represented in Figure 10, where the blue curves
are examples of trajectories in the phase space. The representation of the unstable node is obtained
by reversing the arrows.
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Figure 11: Summary for 2D. Image from [9]

2.4.4.4 Summary of the 2D case

In the two-dimensional case, the eigenvalues of the matrix can be deduced from the trace (T ) and the
determinant (∆) of the matrix. As the characteristic polynomial of the Jacobian matrix is

P(λ) = λ2 − Tλ+ ∆ (2.4.16)

and its roots are given by

λ± =
T

2
±
√

T 2

4
−∆ when

T 2

4
> ∆

λ± =
T

2
± i

√
∆− T 2

4
when

T 2

4
< ∆

(2.4.17)

We can gather all the previous cases in the Figure 11, where the hatched part of the plane corresponds to
the stable fixed points. In conclusion, in 2D, one fixed point is stable if T is negative and ∆ is positive,
where T = Trace(Df (x∗)) and ∆ = Det(Df (x∗)).

2.4.5 Higher dimensions Case

In the case of higher dimensions, the eigenvalues are still roots of the characteristic polynomial and it is
necessary to determine the sign of the real part of all the eigenvalues, λi , to determine the stability of the
fixed point. It has been said that if all eigenvalues verify Re(λi ) 6= 0, the fixed point is called hyperbolic .
The dynamics deduced from the linearization are an accurate representation of the true nonlinear dynamics
if the fixed point is hyperbolic. These cases are robust because their dynamics is not modified by small
perturbations of the model.
Hyperbolic fixed point or not, the general rule is [9]:

• If one (or more) eigenvalue has the real part strictly positive, the fixed point is unstable.
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• If all eigenvalues have the real part strictly negative, then the fixed point is stable.

• If all the eigenvalues have the real part non-positive but at least one has null real part, the linearization
of the system does not allow to deduce the dynamics around the fixed point, non-linear terms
determine the stability of the system.

2.5 Linear and nonlinear maps

We have seen that the linear system ẋ = Ax gives rise to the flow map etA : Rn → Rn when etA is an
n × n matrix. Now, for fixed t = τ we consider B = eτA, a constant matrix, and the difference equation

()xn+1 = Bxn (2.5.1)

(2.5.1) is the discrete dynamical system obtained from the flow of ẋ = Ax .
Similarly, the flow of a nonlinear system, φt(x)

∣∣
t=τ

gives rise to a nonlinear map G (x) and the difference
equation

xn+1 = G (x) (2.5.2)

2.5.2 is the discrete dynamical system obtained from the flow of ẋ = f (x). In this case, if φt(x) is
smooth, then G (x) is smooth map and has an smooth inverse, that is, it is a diffeomorphism.

A fixed point for discrete dynamical system is defined as

Bx∗ = x∗ for linear maps

G (x∗) = x∗ for nonlinear maps
(2.5.3)

in this case, xn = x∗ for all n. An orbit of a map is a sequence of points {xi}i≥−∞ defined by the difference
equations (2.5.1) and (2.5.2). In the case of linear maps, any initial point generates a unique orbit due
to the fact that B has no zero eigenvalues. In both cases, if the maps are invertible, then its orbits exist
forward and backward in time [12].
The stable, unstable and center spaces for linear maps are defined the same way as for linear vector fields:

• Stable space E s is the span of the ns generalized eigenvectors whose eigenvalues have modulus < 1.
It is a contraction space.

• Unstable space E u is the span of the nu generalized eigenvectors whose eigenvalues have modules
> 1. It is an expansion space.

• Center space E c is the span of the nc generalized eigenvectors whose eigenvalues have modulus
= 1. It is a non transformation space.

If there are no multiple eigenvalues, then the contraction and the expansion are bounded by geometric
series, that is, there exist constants c > 0, α < 1 such that for n ≥ 0

|xn| ≤ cαn|x0| if x0 ∈ E s

|x−n| ≤ cαn|x0| if x0 ∈ E s

20



If multiple eigenvalues occur, then the contraction (or the expansion) need not to be exponential. However,
an exponential bound can still be found if |λi | < 1 for all eigenvalues. In spite of problems caused
by multiplicities, if B has no eigenvalues of unit modulus, the eigenvalues alone serve to determine the
stability of the system. In this case, x = 0 is a hyperbolic fixed point and, in general, if x∗ is a fixed
point for G and DG (x∗) has no eigenvalues of unit modulus, then x∗ is called a hyperbolic fixed point.
The linearization theorem of Hartman-Grobman and the invariant manifold results apply to maps just as for
flows, and global stable and unstable manifolds are defined as for flows too, by taking unions of backward
and forward iterates of the local manifolds.

It is important to remark that flows and maps differ crucially in that, while the orbit φt(p) of a flow is
a curve in Rn, the orbit {G n(p)} of a map is sequence of points. Thus, while the invariant manifolds of
flows are composed of the unions of solution curves, those of maps are unions of discrete orbit points [12].

G n(p) means the nth iterate of p under G . Thus, if there is a cycle of k distinct points pj = G j (p0),
for j = 1 ÷ n and G k (p0) = p0, we have a periodic orbit of period k . The stability of such an orbit is
determined by the linearized map DG k (p0) which by the chain rule is

DG k (p0) = DG (G k−1(p0))...DG (G (p0))DG (p0)

Stability of the linear map
The linear system (2.5.1) has the unique fixed point x∗ = 0. The behaviour of the linear map is governed by
the eigenvalues and eigenvectors of B. In general, the stability type of the fixed point x = 0 is determined
by the magnitude of the eigenvalues of B. If |λi | > 1 for all eigenvalues we have a source; if |λi | < 1 for
all eigenvalues we have a sink; and if |λi | > 1 for some eigenvalues and |λi | < 1 for the others, we have
a saddle point. If |λi | = 1 for any eigenvalues then a norm is preserved in the directions vi associated to
those eigenvalues (unless they are multiple with nontrivial Jordan blocks). If an even number of eigenvalues
have negative real parts, the map is orientation preserving while if an odd number have negative real parts
it reverses orientation [12].

2.6 Asymptotic behaviour and structural stability

In this section, first we will define various limit sets which represent asymptotic behaviour of certain classes
of solutions and then we will discuss the equivalence relations. Most of the definitions will be general, but
our aim focus will concentrate on two-dimensional flows and maps.

2.6.1 Asymptotic behaviour

We define an invariant set S for a flow φt(x) or map G on Rn as a subset S ⊂ Rn such that

φt(x) ∈ S (or G (x) ∈ S) for x ∈ S for all t ∈ R (2.6.1)

Examples for stable and unstable manifolds would be a fixed point or a periodic orbit. However, the
nonwandering set is the most important set to study the long-term behaviour. Fixed points and closed orbits
represent the stationary or repeatable behaviour and a generalization of these sets is the nonwandering set.
A point p is called nonwandering for the flow φt (respectively the map G ) if for any neighbourhood U of
p, there exists arbitrarily large t (respectively n > 0) such that φt(p)∩U 6= ∅ (respectively G n(U)∩U 6= ∅).
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The nonwandering set Ω is set of all such points p. Thus, a nonwandering point lies on or near orbits
which come back within a specified distance of themselves. Fixed points and periodic orbits are clearly
nonwandering. However, not all invariant sets consist of nonwandering points [13].

Since the set of wandering points is open, Ω is closed and it must contain the closure of the set of
fixed points and periodic orbits. Wandering points correspond to transient behaviour, while long-term or
asymptotic behaviour corresponds to orbits of nonwandering points.
A point p is an ω-limit point of x if there are points φt1(x), φt2(x), ... on the orbit of x such that
φti (x)→ p when ti →∞. A point q is an α-limit point if such a sequence exists with φti (x)→ q when
ti → −∞. For maps G the ti are integers. The α-limit and ω-limit sets, α(x) and ω(x), are the sets
of α and ω limit points of x . A closed invariant set A ⊂ Rn is called attracting set if there is some
neighbourhood U of A such that φt(x) ∈ U for t ≥ 0 and φt(x) → A as t → ∞ for all x ∈ U. The
set ∪t≤0φt(U) is the domain of attraction of A (the stable manifold A). An attracting set ultimately
captures all orbits starting in its domain of attraction. A repelling set is defined analogously, replacing t
by −t. Domains of attraction of disjoint attracting sets are necessarily nonintersecting and separated by
the stable manifolds of nonattracting sets.
In many problems we are able to find a ”trapping region”, a closed connected set D ⊂ Rn such that
φt(D) ⊂ D for all t > 0. For this, it is sufficient to show that the vector field is directed everywhere inward
the boundary of D. In this case, we can define the associated attracting set as A =

⋂
t≥0 φt(D). For maps,

a closed set A is an attracting set if it has some neighbourhood U such that G n(U) → A as n → ∞. As
in the case of flows, if D is a trapping region such that G (U) ⊂ U, then the associated attracting set is
A =

⋂
n≥0 G n(D) [13].

We note that we have not specified that an attractor should be persistent with respect to small
perturbations of the vector field or map, this will be dealt in the following subsection.

2.6.2 Structural stability

Given a map F ∈ C r (Rn) we first need to specify what is meant by a perturbation G of F [14]. If
F ∈ C r (Rn) r , k ∈ Z+ k ≤ r and ε > 0, then G is a C k perturbation of size ε if there is a compact set
K ⊂ Rn such that F + G on the set Rn − K and for all (i1, ..., in) with

∑n
m=1 ik = i ≤ k we have that

| ∂ i

∂x i1
1 ...∂x in

n

(F − G )| < ε

Note that F and G can be either maps or vector fields.

Given two maps F and G , we consider them C k equivalent, with k ≤ r , if there exists a C k diffeomor-
phism h such that h ◦F = G ◦ h. When k = 0 we call the equivalence topological. This definition implies
that h takes and orbit {F n(x)} to an orbit {G n(x)}, something that also applies when instead of working
with maps we deal with vector fields. Two C r vector fields f and g are said to be C k equivalent if there
exists a C k diffeomorphism h which takes orbits φf

t (x) of f to orbits φg
t (x) of g preserving orientation but

not necessarily parametrization by time. In general, the parametrization cannot be preserved because the
periods of closed orbits in flows can differ, altough if it does preserve parametrization by time, then h is
called a conjugation. The definition of equivalence implies that for any x and t1 then there is a t2 such
that

h(φt
f
1(x)) = φt

g
2 (h(x))

Now we can state the definition of structurally stable. A map F ∈ C r (Rn) (or a vector field f ) is
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Figure 12: The phase portraits are homeomorphic. Image from [15]

structurally stable if there is an ε > 0 such that all C 1 perturbations of F (or f ) are topologically
equivalent to F . It’s important to remark that structural stability implies that the phase portrait of one
system and its perturbation are homeomorphic as can be seen in Figure ??. However, this equivalence does
not distinguish among nodes, improper nodes and foci though it can distinguish between sinks, saddles and
sources if the equivalence relation is type C 0.

Example 2.6.1. [14] Consider the two dimensional linear differential equation

ẋ = Ax x ∈ R2 (2.6.2)

and the map
x 7→ Bx x ∈ R2 (2.6.3)

Suppose that A has no eigenvalues with zero real part and that B has no eigenvalues of unit modulus. We
want to see that if these conditions hold, then both systems are structurally stable.

Consider a small perturbation of (2.6.2) such as follows:

ẋ = Ax + εf (x)

where f (x) has support in the same compact set. Since A is invertible, we can use the Implicit Function
Theorem and say that the equation

Ax + εf (x) = 0

has a unique solution x∗ = 0 + O(ε) near x = 0 for sufficiently small ε. Moreover, since the matrix of the
linearized system

ζ̇ = [A + εDf (ẋ)]ζ

has eigenvalues which depend continuously on ε, no eigenvalues can cross the imaginary axis if it remains
small respect to the magnitude of the real parts of the eigenvalues of A. Thus, the perturbed system has a
unique fixed point with eigenspaces and invariant manifolds of the same dimensions as those of the initial
system, and which are ε-close locally in position and slope to the unperturbed manifolds.

Similar observations apply to the discrete system and a corresponding small perturbation. However, in
both cases the problem lays on finding a homeomorphism which takes orbits of the linear system to those
of the perturbed, nonlinear, one. In the particular case of discrete systems, the goal is to prove that such
homeomorphism makes the diagram in Figure 13 commute:
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Figure 13: Diagram to be commutative by the existence of h. Image from [14]

An important note in order to particularise structurally stable systems is that a vector field (or a map)
that has a non-hyperbolic fixed point cannot be structurally stable. That is because if the linearized
matrix is noninvertible, a small perturbation can remove it; alternatively, if the matrix has only imaginary
eigenvalues, then the small perturbation can turn the point into a hyperbolic sink, a saddle or a source.
Same argument holds for periodic orbits, which leads us to state an important conclusion:

Theorem 2.6.2. [14] In order to be structurally stable, a system needs to have all fixed points and closed
orbits hyperbolic. However, this condition alone does not guarantee structural stability.

To summarize, we say that a system is structurally stable if any sufficiently close system has the same
qualitative behaviour. However, it can be extremely complex to determine since it is not a generic property,
that is, we can find structurally unstable systems which remain unstable under small perturbations. It is
also important to note that the definition is relative to the class of systems considered, and that we have
used C 1 ε perturbations by C r vector fields on Rn.

2.7 Periodic Orbits

2.7.1 Periodic Orbits

A periodic orbit is a special type of solution which repeats itself in time. Formally, given a dynamical
system

ẋ = f (x) x ∈ Rn (2.7.1)

a non-constant solution x(t) is periodic if there exists a constant T > 0 such that x(t) = x(T + t) ∀t ∈ R.
The image of the periodicity interval [0, T ] under x(t) in the state space Rn is called the periodic orbit.

In arbitrary dimensions, there are several techniques to prove analytically that a periodic orbit exists
though the most important are only useful for a planar vector field.

For any dimension, we will just talk about gradient systems.

A gradient system is a dynamical system of the form: ẋ = −∇V (x) for a given function V (x) ∈ Rn.
Only with this assumption, we can state

Theorem 2.7.1. [16] Gradient systems cannot have periodic orbits.
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Proof. Suppose that γ : t → x(t) is a periodic orbit of the gradient system ẋ = −∇V (x) with period T .
Then

0 = V (x(T ))− V (x(0)) =

∫ T

0

dV

dt
dt =

∫ T

0
∇V · ẋdt = −

∫ T

0
||ẋ ||2dt < 0

Second equality holds by Barrow’s Rule, the third one by the chain rule and the last one because it is a
gradient system.

A similar idea is behind the next result:

Theorem 2.7.2. [17] If a dynamical system ẋ = V (x) has a Lyapuno-like function V (x), ie, V (x) is
monotonically decreasing along trajectories, there cannot be any periodic orbit.

The proof is analogous to the previous one.

The following results are specific for the plane, which will be the focus later on.

Two-Dimensional Flows

The fact that solution curves are one dimensional, make the range of solution types on the plane rather
limited. Systems on two manifolds other than R2 one more complicated and are beyond the purpose of
this text.

Hence, suppose we are given

ẋ = f (x , y)
ẏ = g(x , y)

(x , y) ∈ U ⊂ R2

with f and g sufficiently smooth. The first step to study the system is to seek fixed points, that is, find
solutions to f (x , y) = 0 = g(x , y).

Linearizing the system at (x∗, y∗) with α = (α1,α2) and F = (f , g), we get(
α̇1

α̇2

)
=

(
δf
δx (x∗, y∗) δf

δy (x∗, y∗)
δg
δx (x∗, y∗) δg

δy (x∗, y∗)

)(
α1

α2

)
↔ α̇ = DF (x∗, y∗)α

If the eigenvalues of the matrix DF (x∗, y∗) have non-zero real parts, then the solution α(t) =
etDF (x∗,y∗)α(0) not only yields local asymptotic behaviour, but, by Hartman’s theorem and the stable
manifold theorem also provides the local topological structure of the phase portrait.

After locating the fixed points and studying their stability we want to ascertain whether it has any
periodic orbits. The following theorem is a good strategy to explore that.

Theorem 2.7.3. Dulac’s criterion [16]. Let R be a simply connected region in R2 and a dynamical system
given by

ẋ = f (x , y)
ẏ = g(x , y)

with f and g ∈ C 1 in R. Suppose that there exists h(x , y) ∈ C 1(R) so that ∇ · h(fex + gey ) has a
finite sign in R (it does not change). Then the dynamical system cannot have any periodic orbits in R.
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Proof. Let’s suppose that the dynamical system has a periodic orbit γ contained in R and let be A the
area enclosed by it. Since R is simply connected, A lies entirely in R. By Green’s theorem:∫∫

A
∇ · h(fex + gey ) dx dy =

∮
γ

h(fex + gey ) · n dl

where n is the outward normal to γ.

The left side of the expression is different from zero because of the sign-definiteness. However, the
right side is zero because (fex + gey ) is tangent to γ. Therefore we have a contradiction and therefore it
does not exist γ ∈ R.

Corollary 2.7.4. Bendixson’s criterion. If on a simply connected region R ⊆ R2 the expression ∂f
∂x + ∂g

∂y
is not identically zero and does not change sign, then the dynamical system has no closed orbits lying
entirely in D.

In addition, to fixed points and closed orbits, for planar flows all the non wondering possible sets fall
into three classes:

• fixed points

• closed orbits

• the unions of fixed points and the trajectories connecting them

The latter are named heteroclinic orbits when they connect distinct points and the homoclinic orbits
when they connect a point to itself. The closed paths formed of heteroclinic orbits are called homoclinic
cycles and the fixed points contained in them must all be saddle points (if they are hyperbolic) because
sinks and sources have wondering points in their neighborhoods [18].

Note that the homoclinic orbit is not a periodic orbit because it takes an infinite amount of time to reach
the fixed point. Homoclinic orbits and heteroclinic cycles (several heteroclinic trajectories forming a loop)
can act as attractors (or repellers) for other trajectories or as divisors between regions of separated dynamics.
It is also possible that isolated closed orbits, not containing fixed points, act as attractors/repellers. Such
orbits are called limits cycles.

Thus, in two-dimensional flows the global structures of solution curves are generally far richer than
those of one-dimensional systems, in which periodic orbits cannot occur and the fixed points are ordered
and necessary connected to their immediate neighbours and only to them.

2.7.2 Index Theory

Another useful approach to figure out whether a planar system has periodic orbits or not, is index theory.
First we consider the general idea of the index: given a planar flow, we draw a simple closed curve C
not passing through any equilibrium points and consider the orientation of the vector field at a points
p = (x , y) ∈ C . Letting p traverse C counter clockwise, the vector (f (x , y), g(x , y)) rotates continuously
and, when it returns to the original position, it must have rotated through an angle 2πk for some k ∈ Z.
The integer k is the index of the closed curve C and it can be shown that it is independent of the form
of C in the sense that it is determined solely by the character of the fixed points inside C [18].

Intuitively, one can consider the index of a curve as the number of times the vector field rotates in
counter clockwise fashion when traversing the curve once.
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The index satisfies a number of elementary topological properties [16]

1. when C and C ′ are two closed curves that can be continuously deformed into each other (without
moving the curve over one of the fixed points of the vector field) then IC = IC ′ .

2. If C does not enclose any fixed points, then IC = 0.

3. The index is unchanged when the direction of the vector field is reversed.

4. If C is a trajectory of the system, then IC = 1.

The index of a fixed point Ix∗ is defined as the IC of the curve that endorses only x∗ and is independent
of the choice of curve.

An important lemma related is the following:

Lemma 2.7.5. [16] If a closed curve C encloses n fixed points x∗1 , ..., x∗n then

IC = Ix∗1 + ... + Ix∗n

Lemma 2.7.6. [18] The following are true:

1. The index of a sing, a source of a center is +1.

2. The index of a hyperbolic saddle point is −1.

3. The index of a closed orbit is +1

4. Inside any closed orbit C there must be at least one fixed point. If all the fixed points within C are
hyperbolic, then there must be one odd number (2n + 1) of which n are saddles and n + 1 either
sinks or sources.

These can be used to rule out the existence of closed orbits because we have seen that if the vector
field has no fixed points there cannot be any periodic orbits. Furthermore, if the system has only one fixed
point, it cannot be hyperbolic, it has to be a sink, a source or a center.

2.7.3 Stability

We have seen ways to figure out whether there are, or not, periodic solutions for a given dynamical system.
Now we wonder about the stability of those solutions. First, it is important to note that the definition of
stability used for fixed points no longer applies. This discrepancy between stabilities is not avoidable as we
will see now.

Consider an autonomous system
ẋ = f (x)
x(0) = p

(2.7.2)

that has a periodic solution ϕ(t) with period T . The linearized system in the neighbourhood of the
T -periodic solution is given by

ẋ = A(t)x , A(t + T ) = A(t) t ∈ R (2.7.3)
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with A(t) = fx (ϕ(t)). If φ(t) is the fundamental matrix solution of this equation 4 reducing to Id when
t = 0, then the Floquet multiplier matrix 5 is M = φ(T ).

If all eigenvalues of M were less than one in modulus, we could easily infer asymptotic stability like the
one that works for fixed points. However, the following statement is always true:

Proposition 2.7.7. [19] For an autonomous system, M has always at least one eigenvalue equal to one.

Proof. Differentiating the equation dψ
dt = f (ψ(t)) with respect to t we get d

dt = A(t) dψ
dt , ie, ξ(t) = δψ

δt is
a solution to the linearized system (2.7.3). Therefore, it has a representation ξ(t) = φ(t) · C for C ∈ Rn

constant, and we can assume that φ(0) = I so C = ξ(0).

Since this solution is T -periodic, evaluation at t = T shows that Mc = C , that is, the Floquet matrix
M has 1 as eigenvalue, with a corresponding eigenvector C = ξ(0) = ψ̇(0) = f (ψ(0)) which is tangent to
the orbit at the point ψ(0).

Let the T -periodic solution ψ(t) determine the orbit γ, so

γ = {x |x = ψ(t) for some t}

Given some choice of norm ||.||, the distance between two points is d(x , y) = ||x − y || and the distance
from a point to a set S is:

d(x , S) = inf
y∈S

d(x , y)

Definition 2.7.8. The periodic solution ψ with orbit δ is orbitally stable if given ξ > 0 there exists a δ > 0
such that d(φ(t, x), γ) < ξ ∀t > 0 and ∀x such that d(x , y) < δ. It is orbitally asymptotically stable if it
is orbitally stable and d(φ(t, x), γ)→ 0 as t →∞.

There exist two main ways to determine the stability of a periodic orbit: Floquet Theory (some of
whose concepts have already been used in this section) or Poincaré Maps (which involve the use of maps,
seen former in this chapter).

2.8 Poincaré Maps

2.8.1 Floquet Theory

An analytical approach to determine the stability of a periodic orbit is based on the Floquet theorem.
Previous to that, we need to consider some theory about linear systems with periodic coefficients. It is
important to remark that not all solutions of a periodic system have to be periodic.

Stability of a periodic solution x∗ manifests itself in the way neighboring trajectories behave. A trajectory
that stands from the perturbed initial vector y = x∗0 + δx∗0 will, after one period T , be displaced by

δx∗(T ) = φ(T ; x∗0 + δx∗0 )− φ(T ; x∗0 )

To first order, this displacement is given by:

δx∗(T ) =
∂φ(T ; x∗0 )

∂x0
· δx∗0

4φ(t) is a matrix-valued function whose columns are linearly independents solutions of the system
5will be defined later on
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It is clear that the matrix
∂φ(T ;x∗0 )

∂x0
determines whether initial perturbations from the periodic orbit decay

or grow. This matrix is called the monodromy matrix. Some properties of the flow φ are useful to find
another representation of the matrix. Since φ satisfies the autonomous equations the monodromy matrix
is the same as Φ(T ) where Φ(t) is the fundamental matrix solution for the linearized equation about the
periodic orbit x∗(t):

Φ̇ = Df (x∗)Φ with Φ(0) = Id

So we have that the monodromy matrix of a periodic solution with a T period and initial value x∗0 is [20]:

Φ(T ) =
∂φ(T ; x∗0 )

∂x0

Now, we need to define the logarithm of a non-singular matrix. This definition is based on the series
expansion about the origin of the complex function ln(1 + z).

Lemma 2.8.1. [19] Lec C be a constant, non singular matrix (real or complex). There exists a matrix D,
called the logarithm of C , such that eD = C .

Proof of this is seen with the Jordan form of C and since the details are not relevant for this text, it
will be skipped.

As with ordinary logarithm in the complex plane, D is not uniquely defined. In general, even if C is
real, D will be complex. However, it is possible to show that if C is real, then C 2 has a real logarithm
matrix.

We are considering the system ẋ = A(t)x with A(t + T ) = A(t) and we can state the following about
it:

Theorem 2.8.2. Floquet’s Theorem [19]: Let A be continuous and T -periodic. Then if Φ is any
fundamental matrix solution of the system, there exists a matrix P defined where A is, and periodic there
with period T and a constant matrix Q such that

Φ(t) = P(t)eQt

Proof. Let Ψ(t) = Φ(T + t). Then Ψ(t) is also a fundamental matrix solution to the system. It is clear
(and easy to see) that there exists a non-singular, constant matrix M such that φ(T + t) = φ(t)M. The
matrix M is called Floquet multiplier matrix. Since M is non-singular, we can find Q such that eTQ = M
with T , the period. Now consider the matrix P(t) defined ∀t by the formula

P(t) = Φ(t)e−Qt

It only remains to see that P(t) is periodic with period T :

P(T + t) = φ(t + T )e−Q(t+T ) = φ(t)Me−QT e−Qt = φ(t)e−Qt = P(t)

Some remarks need to be done about this theorem:

1. The theorem does not require that T is the least period of A.

2. If the fundamental matrix Φ is chosen so that it reduces to Id at t = 0, then M = Φ(T ).

3. Suppose A(t) is real. The Floquet multiplier matrix M can then also be chosen real, but the matrices
P and Q of the theorem will need to be complex in general.
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Stability of periodic orbits

Since Φ(0) = Id we have Φ(T ) = eQT and the behaviour of solutions in the neighbourhood of x∗(t)
is determined by the eigenvalues of the constant matrix eQT . These eigenvalues ρ1, ..., ρn are called the
Floquet (or characteristic) multipliers and each complex number λj such that ρj = eλj T is called the
characteristic exponent of the closed orbit.

The multiplier associated with perturbations along x∗(t) is always unity; let this be ρn. The moduli of
the remaining (n − 1) determine the stability of x∗(t). Although the matrix Q is not determined uniquely
by the solutions of the linearized system, the eigenvalues of eQT are uniquely determined. However, to
compute this eigenvalues we still need a representation of eQT and this can only be obtained by generating
a set of n linearly independent solutions to form Φ(t). This is generally difficult analytically [20].

About the behaviour of solutions related to the remaining values of the module of the eigenvalues there
are three options:

• if all the remaining eigenvalues have their module strictly less than one, then the orbit is stable.

• if at least one of the remaining eigenvalues has its module strictly greater than one, then the periodic
orbit is unstable.

• if all the eigenvalues have modulus equal or minus to one and at least one is strictly equal to one,
then linear stability analysis is not conclusive.

2.8.2 Poincaré maps

A more geometrical view to discuss the stability of closed orbits are Poincaré Map, which seek a geometric
depiction of the trajectories in a lower dimensional space.

Let γ be a periodic orbit of a flow φt in Rn arising from a non-linear vector field f (x). We take a local
cross section Σ ⊂ Rn of dimension (n− 1). The hypersurface Σ need not to be planar but must be chosen
so that the flow is everywhere transverse to it. This means f (x) · n(x) 6= 0 ∀x ∈ Σ where n(x) is the unit
normal to Σ at x . We denote the point where γ intersects Σ by p and let U ⊆ Σ be some neighbourhood
of p. 6

Definition 2.8.3. The first return or Poincaré map P : U → Σ is defined for a point q ∈ U by P(q) = φτ
with τ = τ(q) is the time taken for the orbit φt(q) based at q to first return to Σ.

Note that usually τ depends on q and need not to be equal to T = T (p) the period of γ. However,
τ → T as q → p.

It is obvious that p is a fixed point for the map P and it reflects the stability of γ for the flow φt .
In particular, if p is hyperbolic and DP(p) the linearized map, it has ns eigenvalues with modulus less
than one and nu with modulus greater than one; and ns + nu = n − 1. Moreover, dim(W s(p)) = ns and
din(W u(p)) = nu for the map [21]. Since the orbits of P lying in W s and W u are formed by intersections
of orbits of φt with Σ, the dimensions of W s(γ) and W u(γ) are each one greater than those for the map.
This figure can easily be seen in the sketches of Figure 14.

6If there are multiple intersections of γ with Σ, then Σ can be shrinked until there is only one left.
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Figure 14: The Poincaré map. (a) The cross section and the map; (b) a closed orbit. Image from [21]

Poincaré maps and orbit stability

Let x∗(t) = x∗(t + T ) be a solution lying on the closed orbit γ based at x(0) = p ∈ Σ. Linearizing about
γ we get:

ξ̇ = DF (x∗(t))ξ (2.8.1)

with DF (x∗(t)) a n × nT -periodic matrix. We have seen that if X (t) is a fundamental solution matrix of
that system then it can be written as:

X (t) = Z (t)etR ; Z (t) = Z (t + T )

with X ,Z and R n× n matrices. Furthermore, if we choose X (0) = Z (0) = Id then X (T ) = eTR and the
behaviour of solutions in the neighbourhood of γ is determined by the eigenvalues of eTR (this is essentially
Floquet theory). Choosing the basis appropriately so that the last column of eTR is (0, ..., 0, 1)T , the matrix
DP(p) of the linearized Poincaré map is simply the (n− 1)× (n− 1) matrix obtained by deleting the n-th
row and column of eTR . Thus, the first n − 1 Floquet multipliers λ1, ...,λn−1 are the eigenvalues of the
Poincaré map.

Although R is not uniquely determined by the solutions of (2.8.1) the eigenvalues of eTR are. However,
to compute these eigenvalues it is still necessary a representation of eTR and this can only be obtained by
actually generating a set of n linearly independent solutions to form X (t). Usually, this is a difficult task
and requires perturbation methods or the use of special functions.

Periodic forced oscillations

[21] An alternative way in which a flow gives rise to a map is in non-autonomous are periodically forced
oscillations.

Consider a system

ẋ = f (x , t) (x , t) ∈ Rn × R
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Figure 15: he Poincaré map for forced oscillations. (a) A periodic orbit of period T and the fixed point p
= P(p); (b) a subharmonic of period 2T. Image from [21]

where f (, t) = f (, t + T ) is periodic of period T in t. The system can be rewritten as:

ẋ = f (x , θ)

θ̇ = 1
(x , θ) ∈ Rn × S1 (2.8.2)

The phase space is the manifold Rn × S1, where the circular component S1 = R(modT ) reflects the
periodicity of the vector field f in θ. For this problem we can define a global cross section:

{Σ = (x , θ) ∈ Rn × S1|θ = θ0}

Since all solutions cross Σ transversely, the Poincaré Map P : Σ→ Σ, if defined globally, is given by:

P(x0) = π ◦ φT (x0, θ0)

where θt : Rn × S1 is the flow of (2.8.2) and π denotes the projection onto the first factor. Note that the
time T is the same for all x ∈ Σ. That is, P(x0) = x(x0, T + θ0) where x(x0, t) is the solution of (2.8.2)
based at x(x0, θ0) = x0. The Poincaré map for forced oscillations is illustrated in Figure 15.

The Poincaré map can also be obtained as a discrete dynamical system arising from the flow ψ(x , t) of
the time-dependent vector field of ẋ = f (x , t). Since f is T − periodic , we have that ψ(x , nT ) ≡ ψn

T (x)
and the map P(x0) = ψT (x0) is an example of a discrete dynamical system.

It is important to note that P may not be globally defined but is usually defines for some subset U ⊂ Σ
such that P : U → Σ.

Again, it is clear that a fixed point p of P corresponds to a periodic orbit of period T for the flow.
Thus, a periodic point of period k > 1 (Pk (p) = P(P(P(...(p)...))) = p but PJ(p) 6= p forj = 1÷ (k−1))
corresponds to a subharmonic of period kT and such periodic points must always come in sets of k :
p0, ..., pk−1 such that P(pi ) = pi+1, i = 0 ÷ (k − 2) and p0 = P(pk−1). This also applies for the
autonomous case.

Poincaré Sections

[22] We have seen that a Poincaré Map has only one intersection between a periodic orbit γ and a
hypersurface Σ. We consider a Poincaré section the points of intersection when Σ has not been shrinked.
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Figure 16: Poincaré section of a 3D-fow. Image from [22]

Figure 17: Poincaré map for a periodic orbit. Image from [22]

For example, with a 3D flow, instead of studying it directly we can consider its intersection with a plane,
as can be seen in Figure 16.

In this case, the points of intersection correspond with {ẋ3 < 0|x3 ∈ Γ} and the height h is chosen so
that Γ continually crosses Σ. The Poincaré section P is P = {P0, P1, P2} and is a continuous mapping T
of the plane Σ into itself: Pk+1 = T (Pk ) = T (T (Pk−1)).... Thus, we have that every point determines
the next one.

The main purpose of the Poincaré section is to reduce a continuous flow to a discrete-time mapping
though the time interval from point to point does not have to be constant. It is useful because some
geometric properties of the flow are conserved in the Poincaré section, such as dissipation or attraction,
reducing the study of the stability of a periodic orbit to the sudy of a fixed point, as we have already seen.

We classify three types of flow:

• Periodic: the flow is a closed orbit.

P0 is a fixed point of the Poincaré Map: P0 = T (P0) = T 2(P0)... as can be seen in Figre 17.

We can analyze the stability: to first order a Poincaré Map can be described by a matrix M 7 defined
in a neighbourhood of P0:

Mij =
∂Ti

∂xj

∣∣∣∣
P0

7M is the Floquet Matrix
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Figure 18: Poincaré section of a quasiperiodic flow with irrational ratio. Image from [22]

M describes how a point P0 + δ moves after one intersection of the Poincaré Map. The Taylor
expansion about the fixed point is:

Ti (P0 + δ) ' Ti (P0) +
∂Ti

∂x1

∣∣∣∣
P0

· δ1 +
∂Ti

∂x2

∣∣∣∣
P0

· δ2 i = 1, 2

and, knowing that T (P0) = P0, we have

T (P0 + δ) ' P0 + Mδ

Therefore,
T (T (P0 + δ)) ' T (P0 + Mδ) ' T (P0) + M2δ ' P0 + M2δ

By induction it is straight forward to see that

T m(P0 + δ) = P0 + Mmδ

holds and thus, the stability depends on the properties of M. We can assume, if not directly, we can
make the necessary transformations to make the following hold, that δ is an eigenvector of M. Then,

Mmδ = λmδ

where λ is the corresponding eigenvalue. Therefore, a periodic map is unstable if one of the eigen-
values of M crosses the unit in the complex plane.

• Quasiperiodic flows: consider a 3D flow with two fundamental frequencies: f1 and f2. The flow is
like a torus. The points of intersection of the flow with Σ are a closed curve C . The form of the
resulting Poincaré section depends on the ratio f1

f2
:

– Irrational f1
f2

: the closed curve C appears continuous, as can be seen in Figure 18.

The trajectory on the torus T 2 never repeats itself exactly. The curve is not traversed continu-
ously but T (C ) = ’finite shift along’ C.

– Rational f1
f2

: there are finite number of intersections (points) along C and the trajectory repeats
itself after n1 revolutions and n2 rotations. The Poincaré section is periodic with period

n1

f1
=

n2

f2
(2.8.3)

where n1 is the number of points contained, that is, Pi = T n1(Pi ). A representation can be
seen in Figure 19.
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Figure 19: Poincaré section of a quasiperiodic flow with rational ratio. Image from [22]

• Aperiodic flows: such flows may no longer lie on reasonable simple curves and can even be point
clouds. In these cases, it becomes useful to define a coordinate x that falls roughly along this curve
and study the iterates. This is what we have already seen, first return maps. Such maps are of the
form

xk+1 = f (xk ) (2.8.4)

where iterations converge to x = x∗ which is where the identity map xk+1 = xk intersects f (x).
Thus, x∗ is a fixed point of f and its stability is determined by |f ′(x∗)|.

Summary

Consider an n-dimensional continuous vector field and an (n − 1) dimensional surface Σ chosen so that
the flow is always transverse to Σ. Let the successive intersections in a given direction of the solution x(t)
with Σ be denoted by xi . The Poincaré Map xi+1 = g(xi ) determines the (i + 1)-th intersection of the
trajectory with Σ from the i-th intersection.

A periodic orbit of an autonomous vector field corresponds to a fixed point xj of this Poincaré Map as
g(xj ) = xj . The stability of those orbits correspond to the stability of the fixed point of the map, that can
be easily described considering its linearization:

ξi+1 = Dg(xj )ξi

If all eigenvalues of Dg have modulus less than unity, then xj (and the corresponding periodic orbit)
is asymptotically stable. If any eigenvalues of Dg have modulus greater than unity, then xj (and the
corresponding periodic orbit) is unstable. The stability properties of a periodic orbit are independent of the
cross section Σ. If xj is stable then it is an attractor of the Poincaré Map and the corresponding periodic
orbit is an attractor of the vector field.

Since the definition of the Poincaré Map relies on knowledge of the flow of the differential equation,
Poincaré maps cannot be computed unless general solutions of these equations are available. However,
perturbation and averaging methods can be used to approximate the map in appropriate cases.

2.9 Limit Cycles

2.9.1 Limit cycles

We consider a two-dimensional dynamical system such:

ẋ(t) = f (x(t)) f : Rn → Rn (2.9.1)
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Figure 20: Type of limit cicles. Image from [23]

With f smooth function.

We have seen that a trajectory of the system is a function x(t) with values in Rn which satisfies the
differential equation. Such trajectory is called closed (or periodic) if it is not constant but returns to its
starting point. An orbit is the image of a trajectory and a closed orbit is the image of a closed trajectory.
Thus, a limit cycle is a cycle which is the limit set of some trajectory.

More intuitively, consider a dynamical system in R2 that has a trajectory which traces out a closed curve
C . If this happens, the solution x(t) = (x(t), y(t)) will be geometrically realized by a point which goes
round and round C with a certain period T . Thus, if there is such a closed curve, the nearby trajectories
must behave something like C . The possibilities are (Figure 20):

• Stable limit cycle: the trajectories spiral in toward C .

• Unstable limit cycle: the trajectories spiral away from C .

• Semi-stable limit cycle: the trajectories both spiral towards and away from the curve C .

A last possibility for the behaviour of the trajectories around a closed curve C is that they also are
closed curves. Then the curve C is not a limit cycle but a neutrally stable center, since it does not fit the
idea of a limit cycle being where trajectories end up.

The main tool used to show that a planar dynamical system has stable limit cycle is the Poincaré-
Bendixson theorem.

2.9.2 Poincaré-Bendixson theorem

Before stating the theorem, some fundamental concepts need to be list. Let ẋ(t) = V (x) be a dynamical
system and consider a trajectory γ : t → x(t). We have defined a positive limit point as a point for which
exists a sequence {ti}i≥1 such that n →∞ limn→∞ x(tn) = a, and it is been defined the ω − limit set as
the set of all the positive limit points of that trajectory. The importance of the w-limit set lies in the fact
that trajectories in a bounded region of the plane will spiral inward to ω− limit set. The following theorem
is a necessary previa for our purpose.

Theorem 2.9.1. [24] The sets α(γ) and ω(γ) 8 are closed and invariant. If γ+ (forward part of γ) is
bounded then w(γ) is compact, connected and non-empty. Moreover, the distance between x(t) and w(γ)
goes to zero as t →∞.

8α− limit set is the set of all negative limit points.
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Figure 21: Illustration of the hypotheses of the Poincaré-Bendixson Theorem. Image from [23]

Using the concept of ω − limit set (and α− limit set) we can formally define limit cycles:

Definition 2.9.2. A limit cycle γ of a dynamical system in the plane is a periodic orbit which is the α− or
w− limit set of a trajectory γ′ other than γ. If a limit cycle γ is the ω− limit set of every other trajectory in
a neighborhood of γ, γ is said to be an stable limit cycle. Likewise, if γ is the α− limit set of neighbouring
trajectories, γ is said to be an unstable limit cycle.

Theorem 2.9.3. Poincaré-Bendixson [16].Let R be a region of the plane closed and bounded (ie, com-
pact). Consider a dynamical system ẋ = V (x)inR where the vector field V ∈ e1 at least. Assume that R
has no fixed points of V and that there exists a trajectory γ of V starting in R which stays in R for all
future times. Then, either γ is a closed orbit or v asymptotically approaches a closed orbit; ie, there exists
a limit cycle in R.

More formally, if γ+ is contained in a compact subset of the plane which contains no fixed points, ω(γ)
will be the desired periodic orbit.

An alternative and more straight-forward statement of the theorem would be: ”A non-empty compact
ω− or α− limit set of a planar flow, either contains at least one equilibrium point or it is a limit cycle”.

The theorem strongly appeals to intuition, the hypotheses are illustrated in the Figure 21.

If we start on one of the boundary curves, the solution will enter R, since the velocity vector points
into the interior of it. As time goes on, the solution can never leave R, the only thing it can do as t →∞
is either approach a critical point, which is not there by hypothesis, or spiral in towards a closed trajectory.
Thus there is a limit cycle inside R.

The hard part of the Poincaré-Bendixson Theorem consists of finding a suitabe trajectory γ. However,
there are a number of special cases in which this is easier in practice: define a trapping region to be any
region R of the plane which is positively invariant under the flow of V : φt(R) ⊂ R ∀t > 0. Then, if R is
a trapping region every trajectory of V starting in R stays in it for all future times. To check that R is a
trapping region is enough to verify that on the boundary of R, V is everywhere pointing inward. Practically
speaking, one proceeds by construction an annular region R in the plane so that on the boundary of R the
vector field points into R.

Proposition 2.9.4. [16] R will always be annular, ie it will contain at least one hole.

Proof. We will use index theory. Denote the outer boundary of R, C : since the vector field is pointing
inward on C , the index Ic = +1. Hence C has to enclose a given number of fixed points with total index
1. These fixed points have to be excised from R so the Poincaré-Bendixson Theorem can be used, which
means that the domain cannot be simply connected.

Note that there exists a time-reversed version of the Poincaré-Bendixson Theorem, in the sense that if
the backward trajectory γ− = {x(t), y(t))|t ≤ 0} is contained in a compact subset R of the plane which
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contains no fixed points, then α(γ) is a limit cycle in R. If an annular region such that the vector field
points outwards of it, then this version of the theorem can be applied.

The theorem sets that in two dimension systems, the only possible asymptotic behaviours for non-
conservative systems are stationary solutions (fixed points) and periodic solutions (limit cycles) [25]. In
fact, limit cycles can only exist in non-conservative systems because for conservative ones, closed orbits
correspond to centers and there are an infinity of then nested into each other. It is also important to
mention that the amplitude of closed orbits is fixed by the initial condition, while in the case of limit cycles,
the form and amplitude of the oscillation have nothing to do with the initial condition.

Proposition 2.9.5. [23] Critical point criterion. A closed trajectory has a critical point in its interior.

If we turn this statement around, we see that it is a criterion for non-existence: it says that if a region
R is simply connected (ie, it has no holes) and has no critical points, then it cannot contain only limit
cycles. For if it did, the criterion says there would be a critical point inside the limit cycle, and this point
would also be in R since it has no holes. It is important to remark the difference between this theorem,
which says that limit cycles enclose regions which do contain critical points, while the Poincaré-Bendixson
Theorem seems to imply that limit cycles tend to be in regions without critical points. The difference is
that these latter regions always contain a hole, so the critical points are in there.

Limitations of the Poincaré-Bendixson Theorem. The theorem essentially rules out chaos in the
plane, as we will see further on. This turns out to be a highly non-generic result which does not hold
for other configuration spaces or other types of dynamical systems, such as discrete ones, or higher order
systems.
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Bifurcations

3. Bifurcations

Dynamical systems usually have parameters present in the defining systems of equations and as these
parameters may vary, changes can occur in the qualitative structure of the solutions for certain parameter
values. These changes are called bifurcations and the parameters values are called bifurcation values.

In parameter regions consisting of structurally unstable systems the detailed changes in the topological
equivalence class of a flow can be exceedingly complicated. Therefore, we will focus on bifurcations of
individual equilibria and periodic orbits, a part of the theory which is quite complete. Since the analysis
of such bifurcation is generally performed by studying the vector field near the bifurcating (degenerate)
equilibrium point or closed orbit, and bifurcation solutions are found in a neighbourhood of that limit set,
these bifurcations as considered local. Global bifurcations, are those characterized by a lack of transversality
between the stable and unstable manifolds of periodic orbits and equilibria will not be treated because are
out of the scope of this text.

3.1 Bifurcation problems

3.1.1 Definition

[26] Poincaré firsts describes the splitting of equilibrium solutions in a family of differential equations as
bifurcation. Let

ẋ = fµ(x) x ∈ Rn µ ∈ Rk (3.1.1)

be a system of differential equations depending on µ ∈ Rk . Then, the equilibrium solutions of (3.1.1)
are given by x∗ ∈ Rn that satisfy fµ(x∗) = 0. As µ varies, the Implicit Function Theorem implies that
these equilibria are described by smooth functions of µ away from those points at which Dx fµ has a zero
eigenvalue. The graph of each of these functions is a branch of equilibria of the system (3.1.1).

At an equilibrium point (x0,µ0) where Dx fµ has a zero eigenvalue, several branches of equilibria may
come together and the point is considered a bifurcation point.

Bifurcations of equilibria produce changes in the topological type of a flow, but those are not the only
kinds of changes that can happen in the topological equivalence class of flows. Thus, the more formal
definition of bifurcation is:

Definition 3.1.1. A value µ0 of (3.1.1) for which its flow is not structurally stable is a bifurcation value
of µ.

This definition leads to very difficult technical questions and not all of them have relevance for appli-
cations of the theory. Because of this, we will examine only some of the qualitative features of a system
but we will not only deal with bifurcations of equilibria. Another remark on the definition to be made is
that a point of bifurcation does not need to represent a change in the topological equivalence class of a
flow. However, arbitrary perturbations do give topologically distinct flows.

Given a system (3.1.1) an important and useful tool to study is the bifurcation diagram. It shows in
the (x ,µ) product space the invariant set of the system. These invariant sets can be fixed points; periodic
orbits are often represented in terms of some measure of their amplitude. Another option is to draw the
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bifurcation set, the place in the µ− space that corresponds to systems for which structural stability breaks
down in specific ways.

The main interest is to identify kinds of bifurcations that appear in different problems. It would be
desirable to have a classification of them that enlisted characteristics of each one. For example, parts of a
classification by the number of parameters in the problem, the dimension of the phase space and symmetries
or other special properties of the system, has been developed for global bifurcations but that has not been
extended to local bifurcations.

The classification schemes are based in the theory of transversality in differential topology. The transver-
sality theorem implies that when two manifolds of dimensions k and l meet in a n-dimensional space, then
(in general) their intersection will be a manifold of dimensions (k + l − n). If k + l < n then one does not
expect intersections at all9. The dimension formula can be expressed also in terms of codimension: the
codimension of an l-dimensional submanifold of n-space is (n− l). Then intersection of two submanifolds
Σ1, Σ2 generally satisfies (n− l) + (n− k) = 2n− (l + k) = n− (l + k − n). Therefore, the codimension
of Σ1 ∩ Σ2 is the sum of the codimensions if the intersection is transversal. To apply this to bifurcation
theory we do it the following way: the goal is to study bifurcations that occur in general in k-parameter
families (3.1.1). We get to this by formulating a collection of transversality conditions that are met by
most families at bifurcation value µ0. At µ0, some of the conditions for structural stability will be violated
and it will determine the type of bifurcation.

Example10: Consider a two parameter system:

ẋ = fµ(x), x ∈ Rn,µ ∈ Rk

with a bifurcation value µ0 at which fµ has a nonhyperbolic equilibrium p. It can be studied the linearization
of fµ at p and the way the vector field changes for µ near µ0. Transversality leads us to believe that the set
of equilibria of the system in the (x ,µ) space will form a smooth two-dimensional surface M. By checking
linearizations of fµ at the equilibria in M, a transversality condition that can be stated is that no linearization
of fµ has a zero eigenvalue of multiplicity greater than two, and that any equilibrium which does, has a

Jordan normal form with the block

[
0 1
0 0

]
. To state this, the map of M into the space of matrices nxn

which associates to (x ,µ) ∈ M the Jacobian derivative Dx f µ at (x ,µ) needs to be defined. In this space,
there are submanifolds which correspond to various combinations of eigenvalues on the imaginary axis.
Because M has dimension two its image under the map will generally meet only those submanifolds of
matrices whose codimension is at most two. The set of matrices with a Jordan form having just one block[

0 1
0 0

]
forms a submanifold of codimension two. We can list the normal forms of the Jacobian derivatives

Dx f µ evaluated at bifurcation points (x0,µ0) of codimensions one and two:

• Codimension one

– Simple zero eigenvalue: Dx fµ =

[
0 0
0 A

]

– Simple pure imaginary pair: Dx fµ =

[0 −ω
ω 0

]
0

0 A


9Stated as in chapter 3 of Guckenheimer and Holmes, 1983

10Extracted from chapter 3 of Guckenheimer and Holmes, 1983
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• Codimension two

– Double zero nondiagonalizable: Dx fµ =

[0 1
0 0

]
0

0 A



– Simple zero + pure imaginary pair: Dx fµ =


0 −ω 0
ω 0 0
0 0 0

 0

0 A



• Two distinct pure imaginary pairs: Dx fµ =




0 −ω1 0 0
ω1 0 0 0
0 0 0 −ω2

0 0 ω2 0

 0

0 A


In each case, A is a matrix (n−1)x(n−1) or (n−2)x(n−2) or what is appropriate, all of whose eigenvalue
have non-zero real parts.

The codimension of a bifurcation will be the smallest dimension of a parameter space which contains
the bifurcation in a persistent way. An unfolding of a bifurcation is a family which contains the bifurcation
in a persistent way.

3.1.2 Center Manifolds

For the system ẋ = f (x) near a fixed point x∗ we have seen by Hartman’s Theorem that if none of the
eigenvalues of the Jacobian Df (x∗) has a real part zero, then the behaviour is determined by its linearized
system ẏ = Df (x∗)y with y = x − x∗. If there are eigenvalues with zero real parts, then the study of the
flow can be quite complicated, nonlinear terms are expected to play a role and the behaviour could change
accordingly. Since stability, and the lack of it, of fixed points is indicated precisely by the real part of the
eigenvalues, we are going to see how these eigenvalues pass the imaginary axis, as the parameter changes.

We know, by the Stable Manifold Theorem that the structure of the system near a hyperbolic fixed
point does not change when nonlinear terms are added. However, if there is any eigenvalue with zero real
part, we expect some qualitative changes in the property when certain parameter changes, which points
out the importance of the following theorem that is illustrated in Figure 22:

Theorem 3.1.2. Centre Manifold Theorem [27]: Given ẋ = f (x), x ∈ Rn, f ∈ C r and suppose f (0) = 0.
Suppose Df (0) has eigenvalues in sets σu with Re(λ) > 0, σs with Re(λ) < 0 and σc with Re(λ) = 0;
and corresponding generalized linear eigenspaces E u, E s and E c respectively. Then there exists unstable
and stable manifolds W u, W s of the same dimension as E u, E s and tangential to E s and E u at x = 0;
and an invariant centre manifold W c tangential to E c at x = 0 11.

In general, locally Rn = W c ⊕W u ⊕W s with the approximate governing equations on each manifold:

ẋ = g(x) on W c

ẏ = By on W s (stable directions)
ż = Cz on W u (unstable directions)

11The full proof was first published by Kelley at 1968
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Figure 22: Behaviour on W c depends on nonlinear terms, behaviour off W c is dominated by exponential
contraction in the E s direction. Image from [27]

where g(x) is quadratic (or higher order) in x , all eigenvalues of B have negative real parts, and all
eigenvalues of C have positive real parts.

The dynamics on W c depend on nonlinear terms, is usually much slower and determines the dynamics
of the whole system in the long term.

Now we want to approximate or compute the center manifold [28]. Suppose that after a change of
coordinate, the hyperplane (x , 0) is spanned by E c and (0, y) by E s , then the center manifold is tangential
to y = 0 at (0, 0) and we can assume that

W c = {(x , y)|y = h(x), h(0) = 0, Dh(0) = 0}

In this coordinate, th system can be written as

ẋ = Ax + f1(x , y) , ẏ = Cy + f2(x , y)

with A with all eigenvalues with real part zero and C with non-zero real part eigenvalues. Also, fi , contains
only nonlinear terms. So, on the center manifold W c , ẋ = Ax + f1(x , h(x)) and ẏ can be calculated on
W c in two ways: directly from the ẏ equation or by differentative y = h(x) as:

ẏ = Ch(x) + f2(x , y) and ẏ =
d

dt
h(x) = Dh(x)ẋ = Dh(x)[Ax + f1(x , h(x))]

Expanding h as a Taylor series (note that the constant and linear terms vanish) the two equations for ẏ
provide two different polynomials and the coefficients of different monomials can be equaled to determine
the coefficients of the Taylor expansion.

To summarize, for a specific problem the general procedure to calculate the center manifold is:

1. Change the system into normal form, so that the linearized system is a diagonal matrix.

2. Identify the center manifold E c of the linearized system, which is the linear space spanned by the
eigenvectors associated with the zero eigenvalues.

3. Parameterize the center manifold: it is easier to start with E c and then go on with W c .
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4. Determine the coefficients in the parameterization by differentiation on both sides.

As we have dealt with it, the center Manifold Theorem does not allow working with parameters. To
include their effect and hence to treat bifurcations, we extend the idea of center manifold with the apparently
trivial equation µ̇ = 0:

ẋ = Ax + f1(x , y ,µ)
ẏ = Cy + f2(x , y ,µ)
µ̇ = 0

Thus, we can parameterize the center manifold as y = h(x ,µ). Also, we add one more dimension and
we can work in a neighbourhood of both (x , y) = (0, 0) in phase space and µ = 0 in parameter space,
where µ = 0 is the value at which the bifurcation occurs. The Center Manifold Theorem gives the motion
on the stable and unstable manifolds, W s and W u in y , and there is a nc + 1 dimensional manifold (where
nc is the dimension of x) valid for |x | and |µ| small [29].

If coordinates are chosen so that the central motion is in normal form, the extended centre manifold
can be parameterized by y = h(x ,µ) with h(0, 0) = 0 and Dh(0, 0) = 0. Then ẋ = Ax + f1(x , h(x ,µ),µ)
typical behaviour is sketched in the (x ,µ) plane in bifurcation diagrams. By convention, dotted lines are
used to show unstable solutions and continuous lines for stable ones.

3.1.3 Normal Forms

We want to explore the idea of introducing successive coordinate transformations to simplify the analytic
expression of a bifurcation problem 12 [30]. Suppose we have a system:

ẋ = f (x) (3.1.2)

with an equilibrium at x∗ = 0. We want to find x = h(y) with h(0) = 0 that transforms (3.1.2) in
something as simple as possible. In the y -coordinates, we have

Dh(y)ẏ = f (h(y)) or ẏ = (Dh(y))−1f (h(y)) (3.1.3)

We expect (3.1.3) to be linear; formally it would mean trying to find a sequence of coordinate trans-
formations by iterating to remove terms of increasing degree from the Taylor series at the origin. The
normal form procedure systematizes these calculations without, however, giving the strongest results in all
classes. When the procedure is applied to a hyperbolic equilibrium, one gets the formal part of Hartman’s
linearization Theorem.

Assume that Df (0) has distinct eigenvalues λ1, ...,λn and that an initial linear change of coordinates
has diagonalized Df (0). Then (3.1.2) becomes

ẋ1 = λ1x1 + g1(x1, ..., xn)
ẋ2 = λ2x2 + g2(x1, ..., xn)

. or ẋ = Λx + g(x)

.

.
ẋn = λnxn + gn(x1, ..., xn)

(3.1.4)

12This has been used in the previous section, now we want to ’formalize’ the work.
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where gi vanish to second order at the origin. We would like to find a coordinate change h of the form
identity plus higher order terms, which has the same property of (3.1.3): non-linear terms vanish to higher
order than those of g . If k is the smallest degree of a non-vanishing derivative of gi , we seek h of the form

x = h(y) = y + P(y)

with P a polynomial of degree k , so that the lowest degree of the nonlinear terms in the transformed
equation (3.1.3) is k + 1. Thus,

ẏ = (I + DP(y))−1f (y + P(y))

We would like to expand this expression, retaining only terms of degree k and lower. If the terms of
degree k of gi are g k

i , we have:

ẏ = λi yi + λi Pi (y) + g k
i (y)−

n∑
j=1

∂Pi

∂yi
λj yj

Knowing that (I + DP)−1 = I − DP, modulo terms of degree k and higher. Thus, we are seeking for P
that satisfies:

−g k
i (y) = λi Pi (y)−

∑
j

∂Pi

∂yj
λj yj = λi Pi (y)−

∑
j

ajλj Pi = (λi −
∑

j

ajλj )Pi

So, P can be found if none of the sums λi −
∑

j ajλj is zero when an are non-negative integers with∑n
j=1 aj = k. If there is no equation λi −

∑
j ajλj = 0 which is satisfied for non-negative integers aj with∑

j aj ≥ 2, then the equation can be linearized to any desired algebraic order.

For bifurcation theory, we focus in equilibria with zero real part eigenvalues. There, the linearization
problem cannot be solved and there are non-linear resonance terms in f which cannot be removed by
coordinate changes. We need to remember that the solvability depends only on the linear part of the
vector field and that the problem can be reduced to a sequence of linear equations to be solved. The result
is a Taylor series for the vector field with only the essential resonant terms.

Let’s demote L = Df (0)x the linear part of (3.1.2) at x = 0, then L induces a map ad L on the linear
space Hk of vector fields whose coefficients are homogeneous polynomials of degree k [30]. The map is
defined:

ad L(y) = [Y , L] = DLY − DYL

where [.,.] is:

[Y , L]i =
n∑

j=1

(
∂Li

∂Yj
y j − ∂Y i

∂yj
Lj )

Theorem 3.1.3. [30] Let ẋ = f (x) be a C r system of differential equations with f (0) = 0 and Df (0)x = L.
Choose a complement Gk for ad L(Hk ) in Hk , so that Hk = ad L(Hk ) + Gk . Then there is an analytic
change of coordinates in a neighbourhood of the origin which transforms the system ẋ = f (x) to ẏ =
g(y) = g (1)(y) + ... + g (r)(y) + Rr with L = g (1)(y) and g (k) ∈ Gk for 2 ≤ k ≤ r and Rr = o(|y |r ).

Proof. We use induction and assume that ẋ = f (x) has been transformed so that the terms of degree smaller
than s lie in the complementary subspace Gi , 2 ≤ i < s. We then introduce a coordinate transformation
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of the form x = h(y) = y + P(y), where P is a homogeneous polynomial of degree s whose coefficients
are to be determined. Substitution then gives the equation

(I + DP(y))ẏ = f (1)(y) + f (2)(y) + ... + f (s)(y) + Df (0)P(y) + o(|y |s)

The terms of degree smaller than s are unchanged by this transformation, while the new terms of degree
s are

f (s)(y) + DLP(y)− DP(y)L = f (s)(y) + ad L(P)(y)

where L(y) = f (1)(y). Clearly a suitable choice of P will make

f s(y) + ad L(P)(y)

lie in Gs as desired.

The proof, that can be found at Guckenheimer and Holmes, can be used to implement the calculations
of normal forms in examples. We have neglected higher order terms because we do not just want to derive
the normal forms of vectors fields with specific linear parts L but general non-linear points. However, the
successive transformations introduce additional higher-order terms at each stage, all of which must be
retained if specific coefficients of the terms in a given normal form are to be computed.

3.2 Local Bifurcations

3.2.1 Equilibria bifurcations

We will start dealing with the simple bifurcation of equilibria which depends on a single parameter.

The saddle-node

Consider a system of equations
ẋ = fµ(x) (3.2.1)

x ∈ Rn and µ ∈ R and fµ smooth. Suppose that there is an equilibrium at (x0,µ0) that has a zero
eigenvalues for the linearization. Usually, this eigenvalue will be simple and the center manifold theorem
let us reduce the study of the bifurcation problem to one which has x ∈ R. Moreover, we can find a
two-dimensional center manifold Σ ⊂ Rn × R passing through (x0,µ0) such that:

1. The tangent space of Σ at (x0,µ0) is spanned by an eigenvector of eigenvalue 0 for Dfµ0(x0) and a
vector parallel to the µ-axis.

2. For any r <∞, Σ ∈ C r if restricted to a small enough neighbourhood of (x0,µ0).

3. The vector field of (3.2.1) is tangent to Σ.

4. There is a neighbourhood U of (x0,µ0) in Rn × R such that all trajectories contained entirely in U
for all time lie in Σ.

If we restrict (3.2.1) to Σ, we get a one-parameter family of equations of the one-dimensional curves
Σµ in Σ obtained by fixing µ. This one-parameter family is our reduction of the bifurcation problem. We
can also formulate the tranversality conditions for the system, when n = 1:
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Figure 23: Phase portraits for x = µ+ x . Image from [31]

a)
∂fµ0
∂µ

∣∣∣
x0

6= 0 The implicit function theorem then implies that the equilibria of the system form a curve

which will be tangent to the line µ = µ0.

b)
∂2fµ0
∂x2

∣∣∣
x0

6= 0 This means that the curve of equilibria has a quadratic tangency with µ = µ0 and

locally dies to one side of this line.

Besides these two condition, we have established that f also satisfies:

c) f (x0,µ0) = 0

d)
∂fµ0
∂x

∣∣∣
x0

= 0

With this, we can conclude that the local phase portraits are topologically equivalent to:

ẋ = ±(µ− µ0)± (x − x0)2

Bifurcation diagram
The saddle-node bifurcations are the basic mechanism by which fixed points are created and destroyed. As
µ is varied, two fixed points move towards each other and collide, mutually annihilating. If we consider the
problem: ẋ = µ + x2 we can plot the phase portraits (ẋ vs x) depending on the value of µ23: the fixed
points are the solutions of ẋ = 0

x∗ =

{
0 µ = 0

±
√
−µ µ < 0

Thus, we have:

The bifurcation diagram for the saddle-node bifurcation ẋ = µ+ x2 is sketched in Figure ??.

The transcritical

Saddle-node bifurcations are important because all bifurcations of one-parameter families at equilibrium with
a zero eigenvalue can be perturbed to them. Thus, one expects that all the zero eigenvalues bifurcations
will be saddle-nodes. If they are not, it is often because the formulation restricts the context in order to
prevent them from occurring. The transcritical bifurcation is a way to avoid a saddle-node by manipulating
the setting of the problem.

It is usually assumed that there is a trivial solution from which bifurcation is to occur, and therefore
fµ(xo) = 0, ∀µ so that x0 is an equilibrium for all parameters values. Since saddle-node families contain
parameter values for which there are no equilibria near the point of bifurcation, the situation is qualitatively
different. The appropriate transversality conditions for the system are:
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Figure 24: Bifurcation diagram for a saddle-node bifurcation. Image from [32]

a)
δ2fµ0
∂µδx

∣∣∣
x=0
6= 0

b)
∂2fµ0
δx2

∣∣∣
x0

6= 0

Besides these two condition, we have established:

c) f (0,µ) = 0

d)
∂fµ0
∂x

∣∣∣
x0

= 0

With this, we can conclude that the local phase portraits are topologically equivalent to:

ẋ = µx ± x2

Bifurcation diagram
The transcritical bifurcation is the basic mechanism by which fixed points are never destroyed and exchange
stability when they cross the bifurcation point. That is, both before and after the bifurcation, there is an
stable fixed point and an unstable one. Where they collide, they switch stabilities and the stable becomes
the unstable one and vice versa.

If we consider the problem:

ẋ = µx − x2

we can plot the phase portraits depending on the value of µ (Figure 25): the fixed points are the solutions
to ẋ = 0.

x∗ =

{
0 ∀µ ∈ R
µ ∀µ ∈ R

Thus, we have:

The bifurcation diagram for the transcritical bifurcation ẋ = µx − x2 is:
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Figure 25: Phase portrait for ẋ = µx − x . Image from [33]

Figure 26: Bifurcation diagram for a transcritical bifurcation. Image from [34]

The Pitchfork

Systems that include symmetries do not have saddle-node bifurcations. In one dimension, a differential
equation is symmetric with respect to x if f (−x) = −f (x). Thus, the equivariant vector fields are those
that have fµ as an odd function of x and all of them have an equilibrium at 0.

The transcritical bifurcation cannot happen in these systems because fµ cannot satisfy
∂2fµ0
∂x2 6= 0, but if

we replace this by the condition
∂3fµ0
∂x3 6= 0 we get the pitchfork bifurcation: at the point of bifurcation the

stability of the trivial equilibrium changes and a new pair of equilibria appear. We can state the appropriate
transversality conditions:

a)
∂2fµ0
∂xδµ

∣∣∣
x=0
6= 0

b)
∂3fµ0
∂x3

∣∣∣
x=0
6= 0

Besides these two condition, we have established:

c) f (−x ,µ) = −f (x ,µ)

d)
∂fµ0
∂x

∣∣∣
x=0

= 0

With this, we can conclude that the local phase portraits are topologically equivalent to:

ẋ = µx ± x3
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Figure 27: Phase portraits for ẋ = µx − x3. Image from [33]

Figure 28: Bifurcation diagram for a supercritical Pitchfork bifurcation. Image from [35]

Bifurcation diagram The pitchfork bifurcation is the mechanism for problems with a symmetry and
with fixed points that either appear or disappear in pairs. Depending on the sign of the cubic term, the
bifurcation can be called supercritical (if the cubic term is negative) and the effect is stabilizing; or it can
be called subcritical if the cubic term is positive and, therefore, destabilizing.

If we consider the problem:
ẋ = µx − x3

We can plot the phase portraits depending on the value of µ (Figure 27): the fixed points are the
solutions to ẋ = 0

x∗ =

{
0 ∀µ ∈ R
±√µ ∀µ > 0

Thus, we have:

The bifurcation diagram for the Pitchfork bifurcation ẋ = µx − x3 is sketched in Figure 28.

Hopf bifurcations

Consider now a system ẋ = fµ(x) with a parameter value µ0 and an equilibrium p(µ0) at which Dfµ0 has
a simple pair of pure imaginary eigenvalues, ±iω, ω > 0, and no other eigenvalues with zero real part.

Because the Dfµ0 is invertible, we can use the Implicit function Theorem to assure that for each µ near
µ0 there will be an equilibrium p(µ) near p(µ0) which varies smoothly with µ. However, the dimensions
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of stable and unstable manifolds of p(µ) can change if the eigenvalues of Df (p(µ)) cross the imaginary
axis at µ0. This qualitative change in the local flow needs to be in phase portraits and fixed points are not
useful to do so.

We want to understand what goes on in a bifurcation problem involving an equilibrium that has pure
imaginary eigenvalues. We can do it by studying linear systems that have the same change, for example:

ẋ = µx − ωy
ẏ = ωx + µy

that has solutions (
x(t)
y(t)

)
= eµt

(
cosωt − sinωt
sinωt cosωt

)(
x0

y0

)
We can study the solutions depending on the parameter:

• µ < 0: solutions spiral into origin

• µ = 0: solutions are periodic

• µ > 0: solutions spiral away from the origin

Using the normal form theorem we can change the system and get the Taylor series of degree 3, that
expressed in polar coordinates is:

ṙ = (dµ+ ar 2)r

θ̇ = (ω + cµ+ br 2)

where there are periodic orbits from the nonzero solutions of ṙ = 0. If a and d are not zero, these solutions
lie along the parabola µ = −ar2

d meaning that the surface of periodic orbits has a quadratic tangency with
its tangent plane µ = 0 in R2 × R.

Theorem 3.2.1. [36] Suppose that the system ẋ = fµ(x), x ∈ Rn, µ ∈ R has an equilibrium (x0,µ0) at
which the following properties are satisfied:

1. Dx fµ0(x0) has a simple pair of pure imaginary eigenvalues and no other eigenvalues with zero real
parts.

2. ∂
∂µ(Re(λ(µ))

∣∣∣
µ=µ0

= d 6= 0

Then (1) implies that there is a smooth curve of equilibria (x(µ),µ) with x(µ0) = x0. The eigenvalues
λ(µ), λ̄(µ) of Dx fµ0(x(µ)) which are imaginary at µ = µ0 vary smoothly with µ. If, moreover, (2) holds,
then there is a unique 3-Dimensional center manifold passing through (x0,µ0) in R2 × R and a smooth
system of coordinates for which the Taylor expansion of degree 3 on the center namifold is given by:

ẋ = (dµ+ a(x2 + y 2))x − (w + cµ+ b(x2 + y 2))y
ẏ = (ω + cµ+ b(x2 + y 2))x + (dµ+ a(x2 + y 2))y

If a 6= 0, there is a surface of periodic solutions in the center manifold which has quadratic tangency
with the eigenspace λ(µ0), λ̄(µ0) agreeing to second order with the the paraboloid µ = −( a

d )(x2 + y 2)

If a < 0, then these periodic solutions are stable limit cycles; while, if a > 0, the periodic solutions are
repelling.

50



For large systems, the computation of the normal form and the cubic coefficient, that determines the
stability, can be a hard task. In a two-dimensional system of the form(

ẋ
ẏ

)
=

(
0 −ω
ω 0

)(
x
y

)
+

(
f (x , y)
g(x , y)

)
with f (0) = g(0) = 0 and Df (0) = Dg(0) = 0, the normal form calculation yields [36]:

a =
1

16
[fxxx + fxyy + gxxy + gyyy ] +

1

16w
[fxy (fxx + fyy )− gxy (gxx + gyy )− fxx gxx + fyy gyy ]

when using this formula on systems of dimension greater than two, the quadratic terms that appear in the
center manifold calculations can affect the value of a. The value cannot be found by just projecting the
system of equations onto the eigenspace of ±iω, but it must approximate the center manifold at least to
quadratic terms.

Supercritical Hopf bifurcation

The simplest case with a bifurcation with two purely imaginary eigenvalues, the center manifold at µ = 0
is two dimensional and the extended center manifold is three dimensional. The canonical example is a
supercritical Hopf bifurcation given by:

ẋ = µx − ωy − x(x2 + y 2)
ẏ = ωx − µy − y(x2 + y 2)

that in polar coordinates is

ṙ = µr − r 3

θ̇ = ω + br 2

There are three parameters:

1. µ: controls the stability of the fixed point at the origin.

2. ω: gives the frequency of the infinitesimal oscillations.

3. b: determines the dependence of frequency on amplitude for layer amplitude oscillations.

The phase portraits look like the ones of the Figure 29, depending on the value of µ: when µ < 0 the
origin is a stable spiral whose sense of rotation depends on the sign of ω. For µ = 0 the origin is still a
stable spiral but a very weak one. Finally, for µ > 0 there is an unstable spiral at the origin and a stable
circular limit cycle at r =

√
µ.

The behaviour of the eigenvalues during the bifurcation is studied with the Jacobian of the system

in Cartesian coordinates, which is

(
µ −ω
ω µ

)
and has eigenvalues µ ± iω. As the parameter is varied, a

stationary point changes its stability and a periodic orbit is created with the opposite stability.

The bifurcation diagram for a supercritical Hopf bifurcation is sketched in figure 30.
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Figure 29: Supercritical Andronov-Hopf bifurcation in the plane. Image from [37]

Figure 30: Hopf bifurcation: when µ increases, the stable focus becomes unstable, and a periodic solution
called limit cycle appears. Image from [38]
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Figure 31: Subcritical Andronov-Hopf bifurcation in the plane. Image from [37]

Figure 32: Supercritical Hopf bifurcation. Image from [39]

Subcritical Hopf bifurcation

The subcritical case is more dramatic because after the bifurcation, the trajectories jump to a distant
attractor, that can be a fixed point, a limit cycle, infinity or (in 3 and higher dimensions) a chaotic
attractor. Consider the system:

ṙ = µr + r 3 − r 5

θ̇ = ω + br 2

The cubic term is destabilizing and makes trajectories go away from the origin. The phase portraits,
depending on the value of µ, are like the ones in Figure 31. For µ < 0 there are two attractors, a stable
limit cycle and a stable fixed point at the origin; between them lies an unstable cycle. As µ increases, the
unstable cycle closes around the fixed point until µ = 0, when a bifurcation occurs and the unstable cycle
shrinks to zero amplitude and engulfs the origin, rendering it unstable. For µ > 0, the large-amplitude limit
cycle becomes the only attractor and the origin is a repellor.

The bifurcation diagram for a subcritical Hopf bifurcation can be seen in Figure 32.
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Degenerate Hopf bifurcation

Given that linearization does not provide a distinction between subcritical and supercritical Hopf bifurcation
because in both cases a pair of eigenvalues moves from the left to the right half-plane, and that the analytical
criterian can be to difficult to use; a quick way to know which type of bifurcation we are dealing with is to
use numeric methods.

If a small, attracting limit cycle appears immediately after the fixed point goes unstable, and if its
amplitude shrinks back to zero as the parameter is reversed, the bifurcation is most likely supercritical.

Also, a degenerate case of Hopf bifurcation can happen: this degenerate case typically arises when a
non-conservative system becomes conservative at the bifurcation point. Then the fixed point becomes a
nonlinear center, rather than the weak spiral that happens at a Hopf bifurcation.

3.2.2 Periodic orbits and Map bifurcations (codimension one)

We will deal with the simplest bifurcations of periodic orbits. It is important to remark that when dealing
with them, the computations are way more difficult because before an extensive analysis of the bifurcation
itself can be done, the equations have to be integrated near the periodic orbit to find the Poincaré return
map. In this brief study, the aim is to focus on the geometric aspects of these bifurcations.

There are three ways in which a fixed point p of a discrete mapping f : Rn → Rn may fail to be
hyperbolic:

• Df (p) has an eigenvalue +1.

• Df (p) has an eigenvalue −1.

• Df (p) has a pair of complex eigenvalues λ, λ̄ with |λ| = 1.

Map bifurcation

The bifurcation theory for fixed points with eigenvalue 1 is completely analogous to the bifurcation theory
for equilibria with eigenvalue 0. The generic one parameter family has a two-dimensional center manifold
on which it is topologically equivalent to the saddle-node family defined by the map: fµ(x) = x +µ±x2. If
constraint conditions are added, the resultant bifurcation is topologically equivalent to fµ(x) = (1+µ)x±x2,
the transcritical bifurcation. If the problem has a symmetry, we get the equivalent for the Pitchfork
equations, defined by the map: fµ(x) = (1 +µ)x ± x3. The behaviour can be seen in the Figure 33, Figure
44 and Figure 35.

Although bifurcation diagrams of the three bifurcations look the same as their analogous for differential
equations, two remarks should be make:

1. Bifurcations are only local for maps, because convergency does not work the same way.

2. Another bifurcation could happen along the stable fixed point as µ further increases or decreases.

Period doubling bifurcation

Bifurcations with eigenvalue −1 do not have an analogue for equilibria, are associated with flip or period
doubling bifurcations. We can use the center manifold theorem to reduce the problem to one-dimensional
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Figure 33: Saddle-node (tangential) bifurcation. Image from [40]

Figure 34: Transcritical bifurcation. Image from [40]

Figure 35: Pitchfork bifurcation. Image from [40]
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mappings fµ where µ ∈ R. If 0 is an equilibrium of eigenvalue −1 of fµ0 : R→ R, then the Taylor expansion
is:

fµ0(x) = −x + a2x2 + a3x3 + R3(x) with R3(x) = o(|x3|)

We know, by the Implicit function theorem, that there is a smooth curve (x(µ),µ) of fixed points in the
plane that passes through (0,µ0). Thus, besides a change of stability, there are changes in the dynamical
behaviour that need to be dealt with. If we compose fµ0 with itself

f 2
µ0

(x) = x − (2a2
2 + 2a3)x3 + R̃3(x)

It is clear that f 2
µ0

has eigenvalue +1 and we expect fixed points of f 2
µ near (0,µ0) which are not fixed

points of fµ. These points are periodic orbits of period 2. Also, because f 2
µ0

(x) has no quadratic term we
expect the bifurcation to behave like a pitchfork bifurcation. However, the new orbits that appear are not
fixed points but period two orbits. We can sum up this reasoning in the following theorem:

Theorem 3.2.2. [41] Let fµ : R → R be a one-parameter family of mappings such that fµ0 has a fixed
point x0 with eigenvalue −1. Assume

(
∂f

∂µ

∂2f

∂x2
+ 2

∂2f

∂x∂µ
) =

∂f

∂µ

∂2f

∂x2
− (

∂f

∂x
− 1)

∂2f

∂x∂µ
6= 0 at (x0,µ0) (3.2.2)

a = (
1

2
(
δ2f

δx2
)2 +

1

3
(
δ3f

δx3
)) 6= 0 at (x0,µ0) (3.2.3)

Then there is a smooth curve of fixed points of fµ passing through (x0,µ0), the stability of which
changes at (x0,µ0). There is also a smooth curve γ passing through (x0,µ0) so that γ − {(x0,µ0)} is a
union of hyperbolic period 2 orbits. The curve γ has quadratic tangency with the line R× µ0 at (x0,µ0).

The quantity (3.2.2) is the µ-derivative of f ′ along the curve of fixed points and it is the non-degeneracy
condition. In (3.2.3) the sign of a determines the stability and direction of bifurcation of the orbits of period
2. If a > 0, the orbits are stable, otherwise they are unstable.

Thus, a normal form for a period doubling bifurcation would be

fµ(x) = −(1 + µ)x + x3 (3.2.4)

A representation of fµ, f 2
µ and the bifurcation diagram can be found in Figure 36.

A final remark needs to be made about the relationship of a return map P with eigenvalue −1 at
an equilibrium p, to the continuous flow around the corresponding orbit. The trajectories of P alternate
from one side of p to the other along the direction of the eigenvector to −1. This means that the two-
dimensional center manifold for the periodic orbit is like a Mobius band around its center line. This means
that is not possible to have period doubling bifurcations in orientable two-dimensional manifold, but in
flows of dimension 3 and higher.

A period doubling bifurcation corresponds to the creation or destruction of a periodic orbit with double
the period of the original orbit. As in the case of Pitchfork bifurcations, it can be classified in whether
the bifurcation creates or destroys the periodics orbits: for a continuous family fµ, a period-doubling is a
bifurcation by which a τ -periodic orbit O0,µ looses its stability as the parameter µ crosses the critical value
µc of µ and at which point either:

• a stable 2τ -periodic orbit emerges: we have a supercritical period doubling bifurcation.
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Figure 36: The flip bifurcation for equation (3.2.4). (a) Graphs of f µ(x); (b) graphs of f 2
µ (x); (c) the

bifurcation diagram. Image from [41]
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Figure 37: Period doubling for maps: evolution with parameters with continuous lines representing stable
orbits and bigger gaps between dots meaning less dimensions of stability. Image from [42]

• an unstable 2τ -periodic orbit coalesces with O0,µ and is destroyed: we have a subcritical period
doubling bifurcation.

In a geometric point of view, for period doubling, the characterization of the bifurcation is that the
parameter-dependent eigenvalue crosses the unit circle at −1 along the real line. In dimension 1, λµ =
f ′µ(x0) is the only eigenvalue of the linearized map at x0 and crosses −1 from above so that |λµ|−1 increases
and x0 becomes more repelling. In greater dimensions, an eigenvalue of the linearized map crosses −1 from
above. Then, if all the other eigenvalues of the linearized map at x0 have norm different than one, for µ
close enough to µc , there is a µ-dependent one-dimensional center manifold.

One dimensional case
For a map in one dimension, in the neighbourhood of (O0,µc = (0, 1) the generic normal form for the
bifurcation is:

fµ = −µx ± x3

when the sign is +, the bifurcation is supercritical; when is −, the bifurcation is subcritical. This normal
form is valid if fµ is invertible on the corresponding interval. In particular, the formula cannot contain the
next period doubling in a meaningful way. The bifurcation diagrams are sketched in Figure 37, Figure 38.

In dimension 1, the center manifold is simply the local part of the full phase space near the bifurcating
orbit. It only remains to compute the criticality type, that is, whether the bifurcation is supercritical or
subcritical. As we have seen before, by using the Taylor expansion of degree 3, we can obtain a formula
for the quantity a, that defines the stability and direction of bifurcation. In dimension 1,

a =
1

2
f ′′(x)2 +

1

3
f ′′′(x)
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Figure 38: Period doubling for differential equations: description for two parameters, one below, one above
the bifurcation with continuous lines representing stable orbits and bigger gaps between dots meaning fewer
dimensions of stability. Image from [42]

and if it is positive, the bifurcation is supercritical. Otherwise, the bifurcation is subcritical, if a 6= 0. When
a = 0, higher order terms are necessary to determine stability.

Bifurcation diagram

When the quantity a = 0 we can have that the bifurcation is marginal for all orders, in which case, if
not flat term breaks the degeneracy, the fixed point x0 = fµc (x0) is the common end point of two segments
of period two that are exchanged by fµc .

We plot three options of period doubling bifurcation, including the marginal case in Figure 39.

It is important to remark that the bifurcation theory regarding period doubling is only local and it can
hardly be extended globally.

Secondary Hopf bifurcation

The last option we have in bifurcations of periodic orbits are those that have a pair of conjugate complex
eigenvalues with unit modulus. Even though there are quite some similarities with Hopf bifurcations, we
can find quasiperiodic behaviour and more subtle analysis is needed to understand this. First, a remark
about polar coordinate transformation needs to be made.

Consider the transformation f : R2 → R2, where the origin is an equilibrium and Df (0) is the matrix:(
cos2πθ −sin2πθ
sin2πθ cos2πθ

)
Our purpose is to find the normal form for the bifurcation and to do so we need to simplify the higher
order terms of the Taylor series of f . If we use the transformation and see (x , y) as complex, then the

eigenvectors of Df (0) are

(
1
−i

)
and

(
1
i

)
with eigenvalues e2πiθ and e−2πiθ and coordinates z and z̄ ,
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Figure 39: Period doubling from supercritical to subcritical through the degenerate marginal case that can
provide all configuration by deformation of the period doubling orbits curve: only the most three basic
cases have been represented here. Image from [42]

respectively. It can be shown that when θ is irrational, the normal forms of f are analogues of the normal
forms for the Hopf bifurcation for flows 13. However, if θ is rational then there are additional resonant terms
and the denominator of θ determines the lowest degree at which these terms can appear. The bifurcation
structures associated with fixed points that are the third and fourth roots of unity are special and will not
be considered in the following theorem because their study is way more complex than the aim of this paper.
If we leave those roots apart, we can state the following analysis of Hopf bifurcations for periodic orbits,
also known as secondary Hopf bifurcations.

Theorem 3.2.3. Let fµ:R2 → R2 be a one parameter family of mappings which has a smooth family of
fixed points x(µ) at which the eigenvalues are complex conjugatesλ(µ), λ̄(µ). Assume:

|λ(µ0)| = 1 but λj (µ0) 6= 0 for j = 1, 2, 3, 4 (3.2.5)

d

dµ
(|λ(µ0)|) = d 6= 0 (3.2.6)

Then there is a smooth change of the coordinates h so that the expression of hfµh−1 in polar coordinates
has the form

hfµh−1(r , θ) = r(1 + d(µ− µ0) + ar 2), θ + c + br 2) + higher-order terms (3.2.7)

(Note: λ complex and 3.2.6 imply |arg(λ)| = c and d are nonzero). If, in addition

a 6= 0

13The demonstration of this can be seen in section 3.5 of Guckenheimer and Holmes, 1983.
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Then there is a two-dimensional surface Σ (not necessarily infinitely differentiable) in R2 × R having
quadratic tangency with the plane R2 × µ which is invariant for f . If Σ

⋂
(R2 × µ) is larger than a point,

then it is a simple closed curve.

The theorem is very similar to the one for Hopf bifurcations of equilibria, here the sign of a and d
also determine the direction and stability of the bifurcating periodic orbits. A general read would say that
something that resembles the limit cycles of the Hopf theorem, appear in the phase portrait of fµ. These
are simple closed curves which bound the basin of attraction or repulsion of a fixed point. Also, if b 6= 0,
there is a complicated pattern of periodic and quasiperiodic behaviour inside Σ. To be able to study this,
global bifurcations need to be examined, and that is not in the goal of the paper.

A stability formula, giving an expression for the coefficient a in the normal form (3.2.7) can be obtained
in the same way as for flows [41]. Assuming that the bifurcating system (restricted to the center manifold)
is in the form (

x
y

)
7−→

[
cos c − sin c
sin c cos c

](
x
y

)
+

(
f (x , y)
g(x , y)

)
with eigenvalues λ, λ̄ = e±ic , one obtains

a = −Re
[

(1−2λ)λ̄2

1−λ ξ11ξ20

]
− 1

2
|ξ11|2 − |ξ02|2 + Re(λ̄ξ21)

where
ξ20 = 1

8 [(fxx − fyy + 2gxy ) + i(gxx − gyy − 2fxy )]
ξ11 = 1

4 [(fxx + fyy ) + i(gxx + gyy )]
ξ02 = 1

8 [(fxx − fyy + 2gxy ) + i(gxx − gyy + 2fxy )]

and

ξ21 =
1

16
[(fxxx + fyyy + gxxy + gyyy ) + i(gxxx + gxyy − fxxy − fyyy )]
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Figure 40: Diagram of the human heart showing the valves, arteries and veins. The white arrows show the
normal direction of blood flow. Image from [44]

Stability of intracellular calcium in cardiac myocytes

4. Stability of intracellular calcium in cardiac my-
ocytes

4.1 Introduction

The heart is a hollow muscular organ located in the thoracic cavity wrapped in a sac: the pericardium.
The inside of the heart is formed by four cavities, two auricles and two ventricles, and it has four valves,
two atrio-ventricular valves and two sigmoid valves (Figure 40). The heart wall is made of three layers: the
inner endocardium, the middle myocardium and the outer epicardium. The right cavities pump the blood
from the systemic circulation to the pulmonary circulation, and the left ones pump the blood from the
other direction, this is possible because the myocardium, that is the cardiac muscle, allows the contractions
of the auricles and ventricles. This contractions need to have a specific sequence and with an appropriate
interval in order to keep the heart working properly. This coordination is achieved by the conduction system
of the heart that is able to create and transmit electric impulses that control this activity. Anomalies of this
conduction can be the cause of serious health problems that can end up in arrhythmias and even death. [43]
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Figure 41: Action potential of a contractile cardiac cell. Image from [46]

4.1.1 Cardiac electrophysiology

Cardiac myocytes are the most common cells on the heart wall and are about 80-100 µm long and have a
diameter of 10 to 20 µm. They are encapsuled by a thin membrane. The outer membrane encapsules a
small volume that is known as the intracellular space and where there is a compartment called sarcoplasmic
reticulum (SR). In the cell membrane there ion channels that allow only specific ions to pas through, and only
under certain conditions [45]. Cardiac myocytes have a resting potential and the property of excitability, and
typically require an impulse from another myocardial cell to depolarize. The action potential of contractile
cells is divided into several phases [46] as it can also be seen in Figure 41:

• Phase 4: the membrane remains essentially at rest at about -90 mV until excited. Leaky potassium
channels, IK , maintain the cell at resting potential trough the outward movement of potassium ions.

• Phase 0: Depolarisation occurs in an adjacent cell and the threshold potential is met. Fast voltage-
gated sodium channels, INa open and sodium ions enter the cell rapidly.

• Phase 1: The first stage of repolarisation, potassium ions leave the cell via trancient K + channels,
IKto .

• Phase 2: inward movement of calcium ions via voltage gated L-type channels, ICaL prolongs repo-
larisation.

• Phase 3: Completion of repolarisation. Outward movement of potassium ions via Ik channels returns
the membrane to its resting potential.

Besides excitability, which we have seen as action potential, cardiac myocytes have another three
physiological properties: refractoriness, conductivity and automatism. Refractoriness, in this context, is
the time needed after each beat for the heart to regain its ability to become excitable again. It starts
with phase 0 and ends with phase 3. Automatism is the feature that some specialized heart cells have to
excite themselves in a rhythmic way. These cells, that are not myocytes but autorhythmic cells, have a
higher resting potential (-70mV ) that it is not stable during phase 4. Finally, conductivity is the property
that cardiac myocytes have to channel the spur coming from the surrounding autorhythmic cells to close
structures around them [43].
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Figure 42: Ca2+ transport in ventricular myocytes. Inset shows the time course of an action potential, Ca2+

transient and contraction measured in a rabbit ventricular myocyte at 37◦C . NCX, Na+/Ca2+ exchange;
ATP, ATPase; PLB, phospholamban; SR, sarcoplasmic reticulum. Image from [47]

4.1.2 Calcium and contraction

Cardiac excitation-contraction coupling is the process from the electrical excitation of the myocyte to the
contraction of the heart, that travels from the sino atrial node along the atria and ventricles and propels
blood out. Ca2+ is essential in cardiac electric activity and is the direct activator of the myofilament
that cause contraction. During the cardiac action potential, calcium ions enter the cell the depolarization-
activated Ca2+ channels as inward Ca2+ current, ICa, which contributes to the action potential plateau as
can be seen in the figure below:

Ca2+ entry triggers Ca2+ release from the sarcoplasmic reticulum (SR). The change in the concentration
of calcium at the SR affects the opening probabilities of the calcium sensitive ryanodine receptors (RyR2),
that when are opened, release calcium from the SR into the cytosol. The combination influx and release
raises the free intracellular Ca2+ concentration ([Ca2+]i ), allowing it to bind to the myofilament protein
troponin C, which then switches on the contractile machinery. For relaxation to occur, [Ca2+]i must
decline, allowing Ca2+ to dissociate from troponin. This requires Ca2+ transport out of the cytosol by
four pathways involving SR Ca2+-ATPase, sarcolemmal Na+/Ca2+ exchange, sarcolemmal Ca2+-ATPase
or mitochondrial Ca2+ uniport. Either the RyR2 channels get inactivated or the calcium levels close to
the RyR2 decrease. Eventually, the concentration of calcium returns to its basal value, ready to produce
another transient. [47]
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Figure 43: Calcium fluxes at the junctional space. Image from [48]

4.1.3 Calcium and alternans

A cardiac alternans is a disturbance in the normal rhythm of the heart characterized by beat-to-beat
alternations in the duration of the excited phase of the transmembrane potential, that is, in the action
potential duration (APD) and in the concentration of cytosolic calcium because it initiates the contraction.
[48] Several studies have been done on the relation between calcium and the presence of alternans, for
example, Alvarez-Lacalle et al showed that depending on the kinetics of the RyR2, alternans may appear
due to either SR load alternations, to a slow recovery of RyR2 from inactivation, or to a combination of
both [49].

These results show that RyR2 refractoriness is a key to the presence of cardiac alternans. The goal
of this chapter is to study a model that has been developed by [48] and that is able to reproduce cardiac
alternans with just the essential elements, so we get a qualitative understanding on the dependence of the
onset of alternans with parameters involved in RyR2 kinetics and SR release.

4.2 Model

In most whole cell models, because of the differences of concentration of calcium in the SR and the
cytosol, the cell is splitted into different compartments. In our case, we will consider four compartments:
cytosol, sarcoplasmic reticulum, subsarcolemma close to the cell membrane, and the junctional area close
to the region of the membrane with L-type calcium channels (LCCs). The calcium concentration in each
compartment will be ci ,cSR , cS and cj respectively. We are going to reduce the dynamics of calcium to a
minimal model that is able to reproduce calcium alternans and yet let us test its universal features due to
RyR2 refractoriness in whole-cell calcium models. We need to follow several steps [48]:

• Decoupling of the dynamics of calcium at the junctional space from that of calclium at the
other compartments. The behaviour of calcium at the junctional space follows the diagram of
fluxes in Figure 43. We can describe how the concentration of calcium at the junctional area changes
as

dcj

dt
= ICaL + ISR − Idiff (4.2.1)
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The SR release current is given by

ISR = grel PO(cSR − cj )

where grel is the conductance of the RyR2 channels and PO the fraction of RyR2 channels that are
in the open state.

The diffusive current
Idiff = (cj − ci )/τdiff

is proportional to the calcium concentration difference between two compartments.

Finally, ICaL, the L-type calcium current, is an inward current that depends on the transmembrane
voltage and calcium concentration.

To decouple the calcium dynamics at the junctional space from the other compartments we fix the
concentrations of calcium at SR (cSR), and at the cytosol (ci = c0). Thus, we exclude the possibility
of alternans due to SR calcium alternations.

• Simplification of the LCC type current. We will consider the L-type calcium current as an external
stimulus that introduces a fixed amount of calcium during a given time.

ICaL =

{
I max
CaL , if mod(t, Tperiod ) ≤ ∆T = 10ms

0, if mod(t, Tperiod ) > ∆T = 10ms
(4.2.2)

The L-type current described this way corresponds to the current through a LCC channel next to a
cluster of RyR2 receptors, that matches what happens at the local level of the Calcium Release Unit
where a cluster of RyR2 controls the release of calcium.

With this, we can revisit equation (4.2.1) and apply the changes, to get

dcj

dt
= ICaL(t) + grel PO(CSR − cj )−

(cj − c0)

τdiff
(4.2.3)

where the dynamics of junctional calcium is only coupled to the dynamics of the RyR2 through the fraction
of open RyR2 channels PO .

• Simplification of the dynamics of the RyR2. The RyR2 channels consider transitions among four
states: one open (O), one closed (C) and two inactivated (I1, 2). The dynamics of this gating are
represented in Figure ??, and are given by the probability rate equations

dPC

dt
= kimPI1 − ki cj PC − kac2

j PC + komPO (4.2.4)

dPO

dt
= kac2

j PC − komPO − ki cj PO + kimPI2 (4.2.5)

dPI1

dt
= komPI2 − kac2

j PI1 − kimPI1 + ki cj PC (4.2.6)

dPI2

dt
= ki cj PO − kimPI2 − komPI2 + kac2

j PI1 (4.2.7)
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Figure 44: Representation of RyR2 gating dynamics. The four markovian states of the RyR2 are O (open),
I1 and I2 (inactivated), and C (close). The respective rates for transitions between states are represented.
The recovery time is defined as τ = 1

kim
. Image from [48]

This group of four equations can be simplified using the fact that it possesses two invariant manifolds
[48] that allow us to work with a two dimensional system for p and q defined through

PC = pq

PO = q(1− p)

PI1 = p(1− q)

PI2 = (1− q)(1− p)

Thus, equations (4.2.4) - (4.2.7) become

dp

dt
= kom(1− p)− kac2

j p (4.2.8)

dq

dt
= kim(1− q)− ki cj q (4.2.9)

Equation (4.2.8) introduces the nature of calcium-induced calcium-released of calcium transient,
while equation (4.2.9) dictates the possibility of inactivation of the RyR2.

An alternative way to express q is
q = PC + PO

where q is the fraction of RyR2 that are in the close or open state, that is, that have recovered from
inactivation.

We have three equations, (4.2.3), (4.2.8) and (4.2.9) that define a three dimensional nonautonomous
dynamical system for the junctional calcium concentration and the state of the RyR2. We can reduce it
even more by considering that the opening of the RyR2 occurs almost instantaneously at the time scales
of recovery. Thus, we consider that dp/dt ' 0 is in a quasisteady state, and

p ' kom

kom + kac2
j

(4.2.10)
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and therefore

PO = q(1− p) ' q
kac2

j

kom + kac2
j

(4.2.11)

We can now get a two dimensional system by combining (4.2.3), (4.2.9) and (4.2.11) that is

dcj

dt
= ICaL(t) + grel q

kac2
j

kom + kac2
j

(cSR − cj )−
cj − c0

τdiff
(4.2.12)

dq

dt
= kim(1− q)− ki cj q (4.2.13)

These two equations represent a basic model that includes all relevant physiological information needed
to test and study the appearance of calcium alternans disconnected from SR alternation and homeostatic
effects [48].

Table 1 has the usual values for the parameters in these equations, though there is controversy about
the order of magnitude of grel and ki . To avoid dealing with problematical values, we will eliminate some
parameters by normalizing the junctional calcium concentration cj by

√
kom/ka and time by τ = 1/kim.

Parameter Dimensional Non dimensional

RyR2 inactivation ki = 0.5mM−1 ms−1 γ = ki/kim

√
kom/ka = 25

RyR2 recovery from inactivation kim = 0.002ms−1

RyR2 activation ka = 12mM−2 ms−1

RyR2 closing kom = 0.12ms−1

SR calcium concentration cSR = 500µM cSR/
√

kom/ka = 5

Cytosolic calcium concentration c0 = 0.1µM c0/
√

kom/ka = 0.001

Maximal L-type calcium current conductance ICaLmax = 50µM ms−1 ICaLmax

√
ka/kom/kim = 25

RyR2 channel conductance grel = 0.556ms−1 α = grel/kim = 278

Diffusive time between dyadic and cytosolic spaces τdiff = 2ms β = 1/kimτdiff = 250

Table 1: Standard values of the parameters in Eqs. 4.2.12 and 4.2.13, taken from Ref. [48]
Thus, the model we will study is

dcj

dt
= ICaL(t) + αq

(
c2

j

1 + c2
j

)
(cSR − cj )− β(cj − c0) (4.2.14)

dq

dt
= 1− q − γcj q (4.2.15)

with adimensional parameters α, β and γ.

4.3 Analysis of the model

We will work with the nonautonomous system:

dcj

dt
= ICaL(t) + αq

(
c2

j

1 + c2
j

)
(cSR − cj )− β(cj − c0) (4.3.1)

dq

dt
= 1− q − γcj q (4.3.2)
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where the parameters have been adimensionalized and we have that they are related to different features
of the dynamics:

• α is related to the release strength of the RyR2

• β is related to diffusion

• γ is related to the relevance of the inactivation (or termination process) of the receptor.

Our goal is to leave all parameters fixed but ICaL, and then study the equilibria, the stability of that
equilibria, the periodic solutions and the bifurcation that happens at certain values. To do so, we will
use the bifurcation diagram and will use Poincaré Maps to get a better understanding of what happens at
certain values of the T : period . Most of the work will be done numerically using MatLab, but if analytic
study is possible, it will be performed. We will specify the details of the numerical methods that MatLab
uses to solve systems of ODEs and all codes used will be on Appendix A. To write the codes [50] has been
used.

4.3.1 Nullclines and fixed points

We start by finding the nullclines analytically and their corresponding trajectories in the phase space. The
nullclines correspond to

dcj

dt
= f (q, cj , ICaL) = 0

dq

dt
= g(q, cj ) = 0 (4.3.3)

and give the following curves

q1 =
β(cj − c0)− ICaL

α(cSR − cj )

(
1 + c2

j

c2
j

)
q2 =

1

1 + γcj

The curve q1 sets the excitability threshold and q2 the termination of release. We know that the equilibria
will be those points where nullclines cross. We can find a polinomyal for cj which will have as roots the
fixed points of the system when we choose the parameters. The polynomial is:

p(cj ) = βγc4
j + (β−βγc0 +γICaL +α)c3

j + (βγ−βc0 + ICaL−αcSR)c2
j + (β−βγc0 +γICaL)cj −βc0 + ICaL

It is not a practical expression to work with, but it is easy to use in MatLab to check whether the fixed
points are correct or not.
Once we have found the fixed points, we will want to find their stability. As we have seen on chapter 1, we
do that by checking the sign of the real part of the eigenvalue of the Jacobian of the system evaluated at
said point. The Jacobian can be found analytically, though in the codes has been calculated by MatLab,
and is:

Df (cj , q) =

(
∂f1
∂cj

∂f1
∂q

∂f2
∂cj

∂f2
∂q

)
=

(
αqcj

(1+c2
j )2 (2cSR − 3cj − c3

j )− β c2
j α

1+c2
j

(cSR − cj )

−γq −1− γcj

)
We will get the eigenvalues with the code that is available at the Appendix A.
We consider the discretized model, where we fix ICaL to a constant value in order to study the behaviour
of the system when it is zero and when ICaL = 25. If we plot the nullclines for both values of ICaL in phase
space, we get Figure 45 and Figure 46.
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Figure 45: Nullclines with ICaL = 0

Figure 46: Nullclines with ICaL = 25
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For ICaL = 25 the curves intersect at

p25 = [0.120, 0.249]

It’s clear in the phase diagram that the point is stable, but if we check the eigenvalues of the Jacobian of
the system at this point, we get

(λ1,λ2) = (−4.731, −171.128)

Both eigenvalues are real and strictly negative, so we check that the fixed point for ICaL = 25, p25, is an
stable equilibrium.
For ICaL = 0 the curves intersect at

p0 = [0.001, 0.975]

The point is an attractor as can be seen in the phase diagram, but again, we can check the eigenvalues of
the Jacobian of the system at this point and get

(λ1,λ2) = (−1.025, −247.273)

Since, as with the previous case, both eigenvalues are real and strictly negative, we confirm that the point
is an stable equilibrium.
When we ”turn-off” the LCC and do not give the system a peak of calcium, that is, we set ICaL = 0,
the fixed point is located at low values of cj . However, when we turn it back on, the fixed point changes
position and moves to lower values of q and larger values of cj . Moreover, the flow on the phase space
also changes.
To further analyze the behaviour of solutions, it is helpfull to plot the phase portrait (Figure 47 and
Figure48). We have used two models in the MatLab codes, one discretized and one with ICaL as a forced
periodic function. To be able to understand how the phase portrait changes with and without the presence
of active LCC, we will plot the phase diagram as we have done for the nullclines, with the discretized model
for ICal = 0 and ICaL = 25.
Now we can see the behaviour of the solutions and how it changes when we turn on the LCC. First, during
a brief period of time, the nullclines with ICaL = 25 determine the flow. The final point when ICaL closes
can end up at the right or at the left of the nullcline q1. If to the right, then the solution goes away before
returning to the fixed point (a calcium transient). On the other hand, if the final point is on the left of the
nullcline there is a short return to the stable fixed point.
Suppose that the system starts at the position of the fixed point when ICaL = 0. When the LCC is turned
on, the system will move from this point and assuming that the inactivation is slow compared with the
time scale in which ICaL is acting, we can consider q constant during this first stage. Then, if we integrate
the equation (4.3.1) is possible to compute an estimation of the threshold value of qthr above which the
trajectory crosses the nullcline q1 [48]

qthr =
β2

4ICaLαcSR

1 +

(
2π

4 + β∆t
τ

)2
 (4.3.4)

The existence of this limiting value makes the dependence of the trajectory with q very nonlinear. During
alternans, one has to expect that the crossing of the nullcline happens only at non-consecutive beats. In
one beat the number of recovered RyR2s is at a high value of q, a value large enough so the trajectory
starting at that point crosses the excitability threshold. If the period is not large enough, however, by the
time the next stimulation arrives, the number of recovered RyR2s q is at a much lower value than before.
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Figure 47: Phase portrait when ICaL = 0

Figure 48: Phase portrait when ICaL = 25
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Figure 49: Phase diagram for cj when ICaL has a Tperiod = 1.92

Then, in this case, the nullcline q1 is further to the right in phase space and the time is too short to increase
the calcium level beyond the nullcline. The system, consequently, returns to the fixed point, resulting in a
short transient. At the next beat, however, the value of q has recovered enough so as to cross the threshold
generating 2:1 alternans.

4.3.2 Phase diagrams

Let’s try to understand more the behaviour of calcium transients and alternans. We can solve the nonau-
tonomous model and see the solutions for cj , q and how they look like. We have considered the periodic
ICaL with a period Tperiod = 1.92 which gives a standard calcium transient.
As we can see in Figure 49 and Figure 50, both solutions are clearly periodical, and if we plot one on top
of the other (Figure 51), we see that the periodicities match. LCC triggers the calcium-induced calcium-
release opening of the RyR2 that results in a sharp increase in the level of junctional calcium. Upon the
closing of the LCC, the release of calcium finishes due to the inactivation of the RyR2 opening. The variable
q drops, closing the release and calcium is then diffused away, getting back to the basal level fixed in the
model at c0.
If we now focus on the trajectories (Figure 52), we see that they complete the whole calcium transient, as
we expected.
If we change the Tperiod to Tperiod = 1.01 we find a 2:1 period doubling bifurcation with alternation of the
strength in the calcium transient from one beat to the next, as we can see in Figure 53 and Figure 54
Now we see how the waves have the double amount of waves in the same time, because we have a period
doubling bifurcation due to the appearance of cardiac alternans. If we plot the trajectories (Figure 55), we
clearly see that now we have two different trajectories, a big one and at the next beat, a smaller one.
If, at a given beat, the number of recovered RyR2, q, is large, then, given the nonlinear relation between
the calcium release strength and the number of recovered RyR2, release is also very large. However, this
drives the inactivation of the receptors in the cluster, i.e., q drops dramatically for this release. Provided
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Figure 50: Phase diagram for q when ICaL has a Tperiod = 1.92

Figure 51: Evolution as of a function of time of normalized junctional calcium and RyR2 recovey variable
for a pacing of the LCC at Tperiod = 1.92
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Figure 52: Trajectories that complete calcium transients

Figure 53: Phase diagram for cj when ICaL has a Tperiod = 1.01
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Figure 54: Phase diagram for q when ICaL has a Tperiod = 1.01

Figure 55: Trajectories with cardiac alternans

76



Figure 56: Bifurcation diagram when γ = 50

that the recovery from inactivation is slow enough, at the next beat the number of recovered receptors
is low. This produces a small release and also small inactivation with q not dropping as much as in the
previous beat. At the next beat the receptors are then fully recovered, starting the same process all over
again. The release depends linearly on q and it is only through the nonlinearity of the calcium-induced
calcium-release process that a nonlinear interaction is generated [48].

4.3.3 Bifurcation diagram and Poincaré Map

Now we get back to [48]. We see that they found that for γ = 50 a clear period doubling bifurcation
appears in the model. We are going to plot the bifurcation diagram for q, because it will be easier to
understand at sight, and study the bifurcation with the help of Poincaré maps. If we check Figure 56 we
can see that around Tperiod = 180 a branch bifurcates. We could plot a closer bifurcation diagram to
get a better view and we see how a solution splits in two. To check that it is actually a period doubling
bifurcation, we sould have to plot a Poincaré section for a value of Tperiod higher than the bifurcation value
along with the solution q, and repeat the plotting for a value lower than the bifurcation value.
The study of the bifurcation when γ is 50 is well detailed in [48]. In order to gain a better understanding
of the bifurcations in the model and how Poincaré maps are useful to understand them, we are going to
set γ = 25 again, and by repeating the simple analysis should be performed, we will try to understand the
dynamics of q. Again, we plot a bifurcation diagram of q as a function of the Tperiod to see how the period
orbits behave. The result is in Figure 57. Now we do not see the bifurcations,
we can clearly see two branches, but they never collide. This is probably because we are dealing with
a subcritical period doubling, where Tperiod ∈ (0.85, 1.40) approximately. There is an interval of Tperiod

where we have 3 branches, around Tperiod ∈ (0.60, 0.80) and for lower values of Tperiod we see two branches
and a cloud of points, which indicates that we will probably find quasiperiodic behaviour.
First, we are going to plot the bifurcation diagram again, but focusing on the bifurcating points. We will
start with the interval where the period doubling occurs, that is, Tperiod ∈ (1.20, 1.50)
We can see at Figure 58 that the bifurcation point is around Tperiod = 1.37. We can plot Poincaré maps
for values of Tperiod higher, where we expect to see a single point because is a periodic orbit, for lower
values, where we expect to see two points because the orbit has bifurcated in two, and at the bifurcation
value we expect to see quasiperiodic behaviour. Also, we will plot the solution of q to be able to see how
it behaves against time (Figure 60).
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Figure 57: Bifurcation diagram when γ = 25

Figure 58: Bifurcation diagram
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Figure 59: Poincaré map for Tperiod = 1.25

Figure 60: Solution of q when Tperiod = 1.25
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Figure 61: Poincaré map for Tperiod = 1.37

As expected, for values of Tperiod lower than the bifurcation value, we see two points in the Poincaré map
(Figure 59) because we have a doubled period orbit when we plot the solution of q.
At the bifurcation value, we see how the Poincaré map (Figure 61) does not show one or two points, but
a form of points. That is quasiperiodic behaviour, as can be seen in the plot of q (Figure 62).
Finally, the Poincaré map for Tperiod = 1.50 represents a point (Figure 63), which fits the simple periodic
solution of q (Figure 64).

We can now repeat this study, now for the interval of Tperiod where a third branch appears. We will take
Tperiod ∈ (0.65, 0.80) and study the Poincaré maps and behaviour of solutions at the low and high part of
the interval, and at an approximate value of the bifurcation value. To be able to be more specific with the
values of Tperiod , we repeat the bifurcation diagram for this section.
Now we can see how, what resembles a branch, merges to one of the branches we already had in Figure
65. We can say that the bifurcation value is approximately Tperiod = 0.74, so we are going to plot Poincaré
maps and the solution of q for higher, lower and that exact value to see the behaviour.
As we have three branches in the bifurcation diagram, we see that the wave of q is triple periodic (Figure
67), and we can see that on the Poincaré map because we have 3 points (Figure 66).
For the bifurcation value we have quasiperiodic behaviour again as can be seen in both the Poincaré map
and the plot of q (Figure 68 and Figure 69).
For a higher value than the bifurcation value, we had two branches on the bifurcation diagram, and that
is exactly what represents the Poincaré map with the two points (Figure 70), and can also be seen on the
double waves of the phase diagram of q (Figure 71).

Finally, we can check the lowest values of Tperiod at the bifurcation diagram, Tperiod ∈ (0.15, 0.60). At a
certain value, almost simultaneously, two branches disappear, while a cloud of points remains.
We can choose, Tperiod = 60 because all branches are still alive, and see that there is still a triple wave for
q (Figure 73. As Tperiod decreases, the behaviour looses its periodicity and becomes quasiperiodic because
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Figure 62: Solution of q when Tperiod = 1.37

Figure 63: Poincaré map for Tperiod = 1.50
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Figure 64: Solution of q when Tperiod = 1.50

Figure 65: Bifurcation diagram
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Figure 66: Poincaré map for Tperiod = 0.65

Figure 67: Solution of q when Tperiod = 0.65
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Figure 68: Poincaré map for Tperiod = 0.74

Figure 69: Solution of q when Tperiod = 0.74
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Figure 70: Poincaré map for Tperiod = 0.85

Figure 71: Solution of q when Tperiod = 0.85
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Figure 72: Bifurcation diagram

we have a cloud of points. Eventually, for Tperiod = 20 there is no quasiperiodic behaviour but just a pulse
that fades because the spike of ICaL is not enough to start the periodic behaviour of q. It’s important to
remark that when the two branches dissapear, the behaviour declines to a stationary state quickly. We plot
the solution q for some values of Tperiod as a prove of this reasoning in Figure 74 to Figure 77.

Figure 73: Solution of q when Tperiod = 0.60

86



Figure 74: Solution of q when Tperiod = 0.50

Figure 75: Solution of q when Tperiod = 0.47

Figure 76: Solution of q when Tperiod = 0.43
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Figure 77: Solution of q when Tperiod = 0.20

4.4 Conclusions

We have worked with a simplified model of calcium release that reproduces calcium alternans due to
refractoriness because of inactivated states of the RyR2. The model can be considered as a reduction of a
whole cell-model where the calcium concentration in each compartment corresponds to average values on
the cell and where alternation appears. Mathematically, alternans are period doubling bifurcations of the
calcium transient, and along them, different transitions to higher order periodicities appear as the value
Tperiod decreases.
We have studied the behaviour of q and seen that there is a strong nonlinear dependence of calcium release
with the level of recovered receptors, which is linked to the excitable gap defined by the nullclines of the
model. There is a critical value of the number of recovered receptors that leads to a large calcium release,
which gives rise to an on/off process. Close to this critical value, the system easily transits from release to
non-release events, leading to high order periodicity.
It has been impossible to determine properly and without a doubt the type of bifurcations for the model
when γ = 25. That is because the transitions are to difficult to understand just with a MatLab solver, and
probably continuation methods and specific software is necessary to make a more relevant study.
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5. Conclusions

The model analyzed in the third chapter has very interesting transitions when it bifurcates. It is out of
scope to further analyze those transitions, but it’s important to remark that just with MatLab software
is not possible to get good results. While the two first chapters, and the ODE course of the degree,
have given a great background to study the model, more analytical knowledge is required to get a better
understanding of how periodic solutions of the model behave, and why and how they change period. It is
probably because chaos is involved at some level, so further analysis should be done.
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A. MATLAB Codes

A.1 Model

1 %MODEL
2 function system = model(t, y)
3 T=1.44; %Period
4 I=0; %L−type calcium current conductance
5 if(mod(t,T)<0.02)
6 I = 25.; %maximal L−type calcium current conductance
7 end
8 a = 278; %strenght release of the RyR2 (adimensional)
9 b = 250; %difussion (adimensional)

10 g = 25; %relevance of the inactivation of the receptor (adimensional)
11 csr = 5; %SR calcium concentration
12 c0 = 0.001;%cytosolic calcium concentration
13 system = [I + a*y(2)*y(1)ˆ(2)/(1+y(1)ˆ(2))*(csr − y(1)) − b*(y(1) − c0); 1 − y(2) ...

− g*y(1)*y(2)];
14

15 %y(1) = cj (calcium concentration at the junctional space
16 %y(2) = q (fraction of RyR2 that have recovered from inactivation)

A.2 Discretized Model

1 %MODEL DISCRETIZED
2 function system = modeldis(t, y)
3 I = 25; %L−type calcium current conductance
4 a = 278; %strenght release of the RyR2 (adimensional)
5 b = 250; %difussion (adimensional)
6 g = 25; %relevance of the inactivation of the receptor (adimensional)
7 csr = 5; %SR calcium concentration
8 c0 = 0.001;%cytosolic calcium concentration
9 system = [I + a*y(2)*y(1)ˆ(2)/(1+y(1)ˆ(2))*(csr − y(1)) − b*(y(1) − c0); 1 − y(2) ...

− g*y(1)*y(2)];
10

11 %y(1) = cj (calcium concentration at the junctional space
12 %y(2) = q (fraction of RyR2 that have recovered from inactivation)

A.3 ModelT

1 function system = modelT(t,y)
2 global T;
3 I=0; %L−type calcium current conductance
4 if(mod(t,T)<0.02)
5 I = 25.; %maximal L−type calcium current conductance
6 end
7 a = 278; %strenght release of the RyR2 (adimensional)
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8 b = 250; %difussion (adimensional)
9 g = 25; %relevance of the inactivation of the receptor (adimensional)

10 csr = 5; %SR calcium concentration
11 c0 = 0.001;%cytosolic calcium concentration
12 system = [I + a*y(2)*y(1)ˆ(2)/(1+y(1)ˆ(2))*(csr − y(1)) − b*(y(1) − c0); 1 − y(2) ...

− g*y(1)*y(2)];
13 end

A.4 Fixed Points

1 function [fp] = FixedPoints(I, g)
2 syms cj q;
3 a = 278;
4 b = 250;
5 csr = 5;
6 c0 = 0.001;
7

8 eq1 = I + a.*q.*cjˆ(2)/(1+cjˆ(2)).*(csr − cj) − b.*(cj − c0)==0;
9 eq2 =1 − q − g.*cj.*q==0;

10

11 eqns = [eq1,eq2];
12 vars = [cj q];
13 [solcj, solq]=solve(eqns, vars);
14 scj = vpa(solcj);
15 sq = vpa(solq);
16 n = size(solcj);
17 FP = [];
18 for i=1:n
19 if abs(imag(scj(i)))<0.00001 && abs(imag(sq(i)))<0.00001
20 if real(scj(i))>0 && real(sq(i))>0
21 FP = vertcat(FP,[real(scj(i)) real(sq(i))]);
22 end
23 end
24 end
25 fp = FP;
26 end

A.5 Vector Field

1

2 %vector field
3

4 function vectorfield(deqns, xval, yval, t)
5 if nargin == 3;
6 t=0;
7 end
8

9 m = length(xval);
10 n = length(yval);
11 x1 = zeros(n, m);
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12 y1 = zeros(n, m);
13 for a=1:m
14 for b=1:n
15 pts = feval(deqns, t, [xval(a);yval(b)]);
16 x1(b, a) = pts(1);
17 y1(b, a) = pts(2);
18 end
19 end
20 arrow = sqrt(x1.ˆ2+y1.ˆ2);
21 quiver(xval, yval, x1./arrow,y1./arrow,.5,'black');
22 axis tight;

A.6 Nullclines

1 %Plot nullclines and fixed points
2 clear all;
3

4 dlgtitle = 'Input';
5 prompt = {'Enter I:'};
6 dims = [1 35];
7 definput = {''};
8 userInput = inputdlg(prompt,dlgtitle,dims,definput);
9

10 I = str2double(userInput(1));
11 g = 25;
12 a = 278;
13 b = 250;
14 csr = 5;
15 c0 = 0.001;
16

17

18

19 A = Fixedpoints(I,g)
20 [m, n] = size(A); %m es num de fixed points
21

22 cj=[0:0.01:2];
23

24 q1=1./(1+g.*cj);
25 q2=(b*(cj−c0)−I).*(1+cj.ˆ2)./(a*cj.ˆ2.*(csr−cj));
26

27 fig=figure(1);
28 p1=plot(cj,q1,'r','LineWidth',3);
29 hold on;
30 p2=plot(cj, q2,'g','LineWidth',3);
31 vectorfield(@modeldis, 0:.1:2.5, 0:.05:1);
32 hold on;
33 for i=1:m
34 p3=plot(A(i,1),A(i,2),'*','LineWidth',5);
35 end
36 axis([0 2 0 1]);
37 hold off;
38 lgd=legend([p1 p2],'q1','q2');
39 lgd.FontSize = 14;
40 xlabel('C j')
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41 ylabel('q')
42 title(sprintf('Nullclines with I {CaL}=%d',I));
43

44 savePath=sprintf('/figures/nullclines %d.jpg',I);
45 saveas(fig,[pwd savePath],'jpeg');

A.7 Stability Fixed Points

1 %Stability Fixed Points
2 clear all;
3

4 dlgtitle = 'Input';
5 prompt = {'Enter I:'};
6 dims = [1 35];
7 definput = {''};
8 userInput = inputdlg(prompt,dlgtitle,dims,definput);
9

10 I = str2double(userInput(1));
11 g = 25;
12 a = 278;
13 b = 250;
14 csr = 5;
15 c0 = 0.001;
16 FP = Fixedpoints(I,g);
17 syms cj q;
18 DF = jacobian([I + a*q*cjˆ(2)/(1+cjˆ(2))*(csr − cj) − b*(cj − c0), 1 − q − ...

g*cj*q], [cj;q]);
19 [n, m] = size(FP);
20 for i=1:n
21 disp('eigenvalues for fixed point ')
22 fp = [FP(i, 1) FP(i, 2)]
23 B = subs(DF, [cj q], fp);
24 disp('are ')
25 eigen = eig(B)
26 end

A.8 Phase Portrait

1 clear all;
2 %Phase portrait
3

4 dlgtitle = 'Input';
5 prompt = {'Enter I:'};
6 dims = [1 35];
7 definput = {''};
8 userInput = inputdlg(prompt,dlgtitle,dims,definput);
9

10 I = str2double(userInput(1));
11 g = 25;
12 a = 278;
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13 b = 250;
14 csr = 5;
15 c0 = 0.001;
16 warning off MATLAB:divideByZero
17 vectorfield(@model, 0:.1:2.5, 0:.05:1);
18 hold on
19 for y1=0:0.4:2
20 for y2=0:0.2:1
21 [ts, ys]= ode45(@model, [0 10], [y1 y2]);
22 plot (ys(:,1), ys(:,2))
23 plot (ys(end,1), ys(end,2),'*')
24

25 end
26 end
27 axis([0 2 0 1])
28 fsize = 15;
29 set(gca, 'xtick', [−1:1:5], 'FontSize', fsize)
30 set(gca, 'ytick', [−1:1:5], 'FontSize', fsize)
31 xlabel('C j(t)', 'FontSize', fsize)
32 ylabel('q(t)', 'FontSize', fsize)
33

34

35

36 cj=[0:0.01:2];
37 q1=1./(1+g.*cj);
38 q2=(b*(cj−c0)−I).*(1+cj.ˆ2)./(a*cj.ˆ2.*(csr−cj));
39 figure(1)
40 plot(cj,q1,'LineWidth',3);
41 hold on;
42 plot(cj,q2,'g','LineWidth',3);
43 axis([0 2 0 1]);
44 hold off;
45

46 title(sprintf('Phase Portrait with I {CaL}=%d',I));
47

48 savePath=sprintf('/figures/phasePortrait %d.jpg',I);
49 saveas(figure(1),[pwd savePath],'jpeg');

A.9 Phase Diagrams

1 clear;
2 [t,y] = ode45(@model,[0 20],[0.8; 1]);
3

4

5 %Phase diagram for cj
6 fig1 = figure(1);
7 plot(t*500,y(:,1),'r','LineWidth',3);
8 title('Phase diagram for C j');
9 xlabel('Time t');

10 ylabel('C j');
11 lgd=legend('c j');
12 lgd.FontSize = 14;
13 axis([0 10000 0 3]);
14
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15 %Phase diagram for q
16 fig2 = figure(2);
17 plot(t*500,y(:,2),'b','LineWidth',3);
18 title('Phase diagram for q');
19 xlabel('Time t');
20 ylabel('q');
21 lgd=legend('q');
22 lgd.FontSize = 14;
23 axis([0 10000 0 3]);
24

25

26 %Solution Curves
27 fig3 = figure(3);
28 plot(t*500,y(:,1),'−o',t*500,y(:,2),'−o')
29 title('Solution of the model with ODE45');
30 xlabel('Time t');
31 ylabel('Solution');
32 lgd=legend('c j','q');
33 lgd.FontSize = 14;
34

35

36 saveas(figure(1),[pwd '/figures/phaseDiagramsCj.jpg'],'jpeg');
37 saveas(figure(2),[pwd '/figures/phaseDiagramsQ.jpg'],'jpeg');
38 saveas(figure(3),[pwd '/figures/phaseDiagramsSol.jpg'],'jpeg');

A.10 Bifurcation Diagram

1

2

3 %para diferentes valores de T, me guardo los ultimos 10 valores de qi(end) y entonces
4 %dibujo contra T
5 %Bifurcation diagram
6 clear all;
7 global T;
8 A = [];
9 for i=1:180

10 iT=i+30;
11 T = iT/100;
12 [ts, ys] = ode45(@modelT,[0:0.01:1000],[0.8; 1]);
13 q = ys(:, 2);
14 n=size(q);
15 qi=1+iT*10:iT:n−iT;
16 A(i, 1)= iT;
17 A(i, 2)=q(qi(end));
18 for j=1:10
19 A(i, 1+j) = q(qi(end − j));
20 end
21 end
22 [f, h] = size(A);
23 fig = figure(1);
24 hold on;
25 for s=1:f
26 plot(A(s, 1), A(s, 2:h), '*');
27 end
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28 hold off;
29 %saveas(fig, 'bifurcationdiagram.jpg')

A.11 Poincaré Section

1 clear all;
2 global T; %value between 0 and 2
3

4 dlgtitle = 'Input';
5 prompt = {'Enter T:'};
6 dims = [1 35];
7 definput = {''};
8 userInput = inputdlg(prompt,dlgtitle,dims,definput);
9

10 T = str2double(userInput(1));
11

12 [t, y] = ode45(@modelT,[0:0.01:1000],[0.8; 1]);
13 iT= T*100; %period value between 62 and 200
14

15 % cj = y(:,1);
16

17 % Poincar Map for q
18 fig=figure(2);
19 q = y(:,2);
20 n=size(q);
21 qi=1+iT*10:iT:n−iT;
22 qj=1+iT*11:iT:n;
23 plot(q(qi), q(qj),'*');hold on
24 plot(q(qi(end)), q(qj(end)),'r*')
25 plot(q(qi(end−1)), q(qj(end−1)),'r*')
26 plot(q(qi(end−2)), q(qj(end−2)),'r*')
27 title('Poincare Map for q');
28 xlabel('q i')
29 ylabel('q {i+1}')
30

31 savePath=sprintf('/figures/poincareSection %.1f.jpg',T);
32 saveas(fig,[pwd savePath],'jpeg');
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