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Abstract 

This article studies the life cycle of the well-organized mesoscale convective systems (MCSs) that 

affect Catalonia and surrounding regions, using a weather radar composite with sophisticated 

corrections and lightning data over a full period of five years. Nearly 350 MCSs were identified 

and analysed for the 2012-2016 period after applying size and duration criteria to 438,000 radar 

composites. MCSs are responsible for the majority of flood events in the region of interest and in 

many other areas around the world. We have analysed the main radar parameters and lightning 

properties, looking for differences between the systems depending on the season of the year. 

Autumn and spring show the highest frequency of MCSs, but there are considerable differences 

between their properties for the two seasons. More specifically, lightning activity, maximum 

reflectivity and duration are higher in autumn than in winter, although the total accumulated 

rainfall may be lower. This higher convective activity is associated with the warmer sea surface 

temperature of the Mediterranean and a large number of cyclones that affect the region of analysis. 
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precipitation regime 

 

1. Introduction 

The Mediterranean region is characterised by a complex topography, which interacts with the 

global atmospheric circulation inducing regional patterns that have a key role in heavy rainfalls 

and convective activity (Michaelides et al. 2018). For instance, Alpine lee cyclogenesis explains 

the highest frequency of cyclones in the Mediterranean and the severe weather and heavy rainfalls 

associated to some of them (Campins et al. 2011; Jansà et al. 2014). Although thunderstorms peak 

of activity is during summer (Galanaki et al. 2018), favoured by orography and the presence of 

thermal lows inland (Jansà et al. 2014), the period from September to November records more 

organised convective events thanks to the higher sea surface temperature and the synoptic 

framework that carries wet air from the Atlantic (Insua-Costa et al. 2018). Thunderstorms are 

usually local in summer, showing a clear link to the diurnal cycle and short trajectories. In late 

summer and autumn, when they are organised into convective systems, this dependence is minor, 

and they show longer trajectories, usually towards the East (Galanaki et al. 2018). Mesoscale 

Convective Systems are one example of this kind of structures, usually associated to the vicinity of 

a low pressure (Rigo and Llasat 2007); Campins et al. 2007). 

Many authors have analysed mesoscale convective systems (hereafter, MCSs), from 

different points of view and using different sources (e.g. weather radar, satellites, numerical 

weather prediction and so on), in order to understand the important role this type of structures 

plays in many latitudes around the world. In this sense, Doswell III et al. (1996), Gray and 

Marshall (1998), or Schiesser et al. (1995) found that MCSs are the convective precipitation 

structure that is most frequently associated with floods at mid-latitudes, mainly due to the high 

degree of organisation, which allows the structure to be maintained for a longer period of time and 

to become more extensive. Moreover, MCSs are an important link between atmospheric 

convection and larger-scale atmospheric circulation, as was reported by Houze (2004). This 

relationship is caused mainly by the strong updrafts that can be observed inside the systems, 

reaching the tropopause in most cases, and acting as a regulator for heat in the atmosphere. The 

high degree of organization that convection can reach inside these systems means that severe 

weather (straight-line winds, hail or tornadoes) and heavy rainfalls can be produced (Palucki et al. 
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2011, Steiger et al. 2007, Zheng et al. 2013, Punkka and Bister 2015, Schiesser et al. 1995, 

Schenkman et al. 2011). Parker and Johnson 2000 reported that one of the most significant features 

of MCSs is their extended life (more than 3 hours and even up to 24 hours in some episodes). The 

long duration of MCSs was numerically analysed by Lane and Moncrieff (2015) and Moncrieff 

and Lane (2015), who simulated MCSs in order to find the key features that justified these long life 

cycles. They found that upshear-propagating and downshear-propagating played a determinant 

role. Another analysis of the high persistence of some MCSs was carried out by Coniglio et al. 

(2007), who identified vertical shears in a very deep layer as the main element associated with the 

duration, based on an analysis of a high number of vertical soundings. Finally, Peters and 

Schumacher (2015) added a new important aspect to support the long duration of an MCS: the 

presence of a strong cold pool on the surface, which is generated by the outflow of the first cells 

and supported by the outflow from later convection (Roux 1988), creating an interaction with the 

surrounding air that can provide the necessary conditions for convective activity to be maintained. 

One of the conclusions of Lane and Moncrieff (2015) and Moncrieff and Lane (2015), 

which coincides with Parker and Johnson (2004)’s work, is that the duration of an MCS varies 

depending on two main factors: (1) the degree of organisation of the convection at micro and 

mesoscale into the precipitation system, and (2) the relative position of the main convective 

region, considering the precipitation system’s path. In this sense, many authors have presented 

different classifications based on weather radar imagery and on the initial classifications of 

Maddox (1980), Houze Jr et al. (1990), Bluestein and Jain (1985) or Bluestein et al. (1987). The 

first ones are those proposed by Schiesser et al. (1995) and Parker and Johnson (2000). With more 

or less similar methodologies and radar data, they defined three main modes, depending on the 

position of the stratiform area: leading stratiform (LS), trailing stratiform (TS), and parallel 

stratiform (PS). Moreover, other authors have added other modes, such as: the cluster mode or 

non-linear system, defined as an MCS without a clear convection organisation (CLU, Rigo and 

Llasat 2007, Zheng et al. 2013); the quasi-stationary mode (cells start in the upstream of their 

predecessors and repeat the same trajectory, affecting the same region at all times, Schumacher 

and Johnson 2005); the training line mode, or a linear system with cells moving in parallel 

according to the line of convective activity (Schumacher and Johnson 2005); the line without 

stratiform precipitation (NS, Zheng et al. 2013 or Rigo and Llasat 2007); or a convective region 

embedded in the stratiform area (Zheng et al. 2013). Other classifications that are less common in 
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the bibliography are those presented by Makowski et al. (2013), who defined 5 modes: symmetric 

leading line-trailing stratiform (LL-TS); asymmetric LL-TS, leading stratiform; symmetric 

evolving to asymmetric, and unclassified. Pope et al. (2009) carried out a cluster analysis of 

satellite imagery, considering the duration (short or long-lived MCSs), and the direction of 

propagation (from the west or from the east). 

Furthermore, the electrical activity inside MCSs shows a high degree of variability, which 

depends, among other factors, on the type of organisation (Parker et al. 2001). For instance, the 

aforementioned authors observed peaks of positive cloud-to-ground (CG) flashes during early and 

dissipating stages of the LS life cycle. On the contrary, PS do not have any stages with significant 

positive CG flash rates. Moreover, Makowski et al. (2013) found that only 21 %  of the flashes 

detected in MCSs were a CG type, and only 13 %  of them had positive polarity. They also 

observed the highest level of total lightning activity in the initial stage and a peak of CG during the 

last stage. The last aspect of note is the high correlation between the starting time of the flashes and 

the reflectivity cores in the radar imagery, and the cloud tops of -52 C in the Infrared satellite 

images. This key aspect was also observed in Steiger et al. (2007) and Lund et al. (2009). The latter 

also described the different electrical behaviour depending on the region of the MCS where the 

discharges were produced: ahead of the convective line; in the convective line; in the transition 

zone; and in the stratiform region. They therefore identified a clear link between electrification and 

graupel areas detected by weather radar. Mecikalski and Carey (2017) showed that in MCSs the 

peak of the intra-cloud flash initiation occurs at lower altitudes than in squall lines and at much 

lower heights than in supercells. They explained this by the lower strength of the MCSs updraft. 

The final characteristic associated with MCS is the possibility that they will produce highly 

efficient precipitation, because the conditions associated with the convection organisation create 

an environment prone to producing a high ratio of large rainfall amounts from the input water ux 

(Doswell III et al. 1996). Precipitation efficiency is controlled by certain environmental factors 

(Market et al. 2003) with the best correlation factor (negative) found in the case of the CIN (that is, 

convective inhibition). On the other hand, the CAPE presents low values of correlation with 

precipitation efficiency. 

As an example of the magnitude (size and duration) of MCSs, Roca et al. (2014) used 

satellite data to show that in the tropic regions, MCSs last for nearly 12 hours, while they travel 

around 250 km. Also using satellite data, Gray and Marshall (1998) found that in the UK the 
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maximum MCS activity took place in June, across mean areas of 25,000 km2, and occurring 

mainly at night (1800 to 2400 UTC) but being more active in the early morning (0000 to 0600 

UTC). Finally, Parker et al. (2001) used a radar network to observe that in Finland the MCSs 

mostly occurred in July (and they were also the most intense). They were only observed during the 

warm season, with an average duration of 10.8 hours, and with a high correlation with the diurnal 

cycle. 

The first study to characterise MCSs from weather radar based on a climatology in a part of 

the Mediterranean basin was carried out by Rigo and Llasat (2007). They observed that nearly half 

of the 57 MCSs analysed presented a linear organisation (predominantly NS), while the rest were 

identified as CLU. Their mean area was about 25,000 km2, and as in the UK (Gray and Marshall 

1998) the maximum reflectivity was 47 dBz, with a top height 12 km. The highest frequency was 

achieved between 12 UTC and the early afternoon, and the usual displacement was towards E-NE. 

Moreover, they observed the presence of cyclones associated with some of the systems. However, 

this study was carried out with a single C-band weather radar and the cases were selected based on 

different thresholds imposed on the precipitation field on the surface. As a result, many episodes 

could have been missed because of different casuistic factors such as: (1) the rainfall produced by 

the MCSs was over the sea; (2) radar volume data were not available (totally or partially), making 

it impossible to track the structure; (3) episodes where the MCSs had a trajectory larger than the 

radar coverage; (4) poor quality images due to anomalous effects on the radar. 

Knowledge on MCSs in the Mediterranean area is crucial to improve their forecasting and 

nowcasting. In effect, more that 50 %  of the heavy rainfall events recorded in Catalonia are 

produced by MCSs (Rigo and Llasat 2007), and this kind of system has been responsible for most 

of the catastrophic floods produced in different parts of the Mediterranean (Llasat et al. 2016). The 

first MCS identified in this region thanks to the satellite images took place during an October 1982 

flood event that affected the eastern part of the Iberian Peninsula, producing 400 mm of rainfall in 

a period of 6 hours (Riosalido et al. 1988). Afterwards, the installation of radar networks made it 

possible to characterise the role played by these systems in specific events, like the June 2000 

Montserrat event that affected the northeast of Spain, causing 220 mm of rainfall in 3 hours (Llasat 

2001); the September 2002 Gard event in the southeast of France, with over 600 mm of rainfall 

(Milelli et al. 2006); or the November 2011 Genoa event in the northwest of Italy with near 200 

mm of rainfall in less than 1 hour (Silvestro et al. 2012). 
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Following this framework, the final objective of this article is to improve our knowledge of 

the general and seasonal features of MCSs, and their potential relationship with different 

meteorological conditions. With this goal in mind, the present paper analyses all the MCSs that 

developed in Catalonia between 2012 and 2016, considering a large coverage of radar data thanks 

to the radar network, continuity of the radar imagery for the whole period, and the use of lightning 

data. The paper has been divided in the following sections: presentation of the data used and the 

area of study, analysis methodology, results and their synthesis in the conclusions. 

 

2. Data used and area of study 

Catalonia is a region of 32,000 km2 located in the northeast of the Iberian Peninsula. The complex 

topography (with heights over 3,000 m in the north, and the Littoral and Pre-littoral mountain 

ranges parallel to the coast), and the influence of the warm Mediterranean Sea favour a 

heterogeneous climate. The air masses that arrive to the region interact with local factors, 

producing localised phenomena (from severe weather events to snow, droughts and flash floods) 

that are very complex to forecast. These conditions also affect the meteorological structures and 

the complexity of MCSs, as shown in Rigo and Llasat (2007) or Martín et al. (2007). Fig. 1 shows 

the area of study and how radar coverage has changed in the present analysis in comparison to the 

first study (see also Table 1). 

 

Figure 1: Location of the Region of Interest and the study coverage for the 1996-2000 period with 

the AEMET radar (left) and the radar coverage of the SMC network used for the present study 

(2012-2016). Black dots show the radar positions: BCN, AEMET radar (placed in Corbera 

municipality); the rest of the radars belong to the SMC network, PBE, Puig Bernat (Vallirana); 

PDA, Puig d’Arques (Cruïlles, Monells and Sant Sadurní de l’Heura); CDV, Creu del Vent 

(Montmaneu); and LMI, La Miranda (Tivissa). 

 

Version Old Current  

Time resolution 10’ 6’  

Spatial res. 2x2 km2 1x1 km2 

Total area covered 172,000 km2 292,000 km2 
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Set used Discrete (57 cases) 

(1996-2000) 5 y 

Continuous (2012-2016) 5 y  

Corrections Doppler (ground clutter 

removal) 

Advanced (EHIMI) Trapero et al. 

(2009) Corral et al. (2009) 

Table 1: Main differences between the old analysis (Rigo and Llasat 2007) and the current one. 

 

The preliminary analysis (Rigo and Llasat 2007) was based on identifying MCSs through 

the volume scans carried out by the C-band radar belonging to the Spanish Weather Agency 

(AEMET) and the Catalan Water Agency’s rain gauge network, which provided 5-min data for 

specific cases. This study was completed by running the algorithm over a continuous radar data set 

of composite images provided by the Meteorological Service of Catalonia (SMC). Table 1 shows 

the main differences between both radar data sets. The sample of MCSs analysed for the 

1996-2000 period was based on selected cases associated with heavy rainfall. On the other hand, 

the sample analysed in this study is made up of all the 6-min radar images for the 2012-2016 

period, and consists of around 438,000 radar composites. This helps to identify all the MCS cases 

that occurred within the area covered by the radar network, even those that did not produce large 

amounts of rainfall in Catalonia. 

The preliminary study (Rigo and Llasat 2007) that covered the 1996-2000 period was 

based on one C-Band radar, while we have used a composite of a network of four C-Band radars in 

the current study. The use of a composite guarantees better coverage and makes it possible to 

reduce the effects of factors such as path attenuation, beam blockage, the variability of the rainfall 

profile below the first PPI and beam overshooting. These errors are not too significant with respect 

to detecting MCSs, but in some cases they could affect the life cycle analysis of these structures, as 

shown in Rigo and Llasat (2005). The new volume scans have provided an extension of the area of 

analysis and higher quality near-surface reflectivity estimates, and have also introduced an 

improvement in space and time resolutions. The reflectivity observations used in this analysis are 

processed with a chain of quality control (Table 2 summarizes them). The corrected volumes are 

the operational data used in weather surveillance tasks in the SMC, because of the high quality of 

the product. In order of evaluating the accuracy of the data, the quantitative precipitation 

estimation generated from surface precipitation estimates is compared with the AWS rainfall 

measurements, by means of the bias. The results from the period 2012-2016 show values of this 
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skill score moving between 0.4 and 1.7, with a certain seasonal influence (better values are 

obtained generally in summer, and the worst ones in winter). The lightning data was provided by 

the Lightning Location System (LLS) of the SMC (XDDE). The LLS is composed of four 

detectors, working in VHF and LF frequencies, which makes it possible to register both 

intra-cloud (IC) and cloud-to-ground (CG) flashes separately. Both types of flashes are integrated 

in a common database, which includes many fields with information about each of the electrical 

discharges. The spatial location is lower than 1 km and the detection efficiency exceeds 90 %  

inside the area covered by the four detectors, and the results are poorer the farther the stroke is 

from the LLS. More information on the LLS and lightning detection can be found in Farnell et al. 

(2017). 

 

Correction Description  

Signal stability Correction of radar rainfall measurement stability using mountain returns, 

comparing the distribution average and current ground clutter echo maps (Sempere 

Torres et al. 2003). 

Ground clutter 

identification and 

reconstruction 

Identification of non-meteorological echoes (ground and sea clutter) is based on the 

fuzzy-logic algorithm of Berenguer et al. (2006). The reflectivity field in these areas 

is reconstructed using neighbours in the horizontal and in the vertical 

(Sánhez-Diezma et al. 2001)  

Vertical profile of 

reflectivity (VPR) 

Use of the VPR for improving the estimation of the rain rate at surface (Franco et al. 

2006)  

Table 2: Sophisticated corrections applied to the radar volumes. 

 

Two different types of temperature were used to evaluate the area where the MCS grew in 

the area of analysis. The first one, Sea Surface Temperature (SST), was provided by the Group for 

High Resolution Sea Surface Temperature (GHRSST) Multi-scale Ultra-high Resolution (MUR) 

SST data were obtained from the NASA EOSDIS Physical Oceanography Distributed Active 

Archive Center (PO.DAAC) at the Jet Propulsion Laboratory, Pasadena, CA 

(http://dx.doi.org/10.5067/GHGMR-4FJ01). The median daily value for the pixels close to the 

Catalan Coast was calculated for the period of analysis. On the other hand, the Land Surface 

Temperature (LST) median daily value for the automatic weather stations (AWS) of the SMC 

network (XEMA) are placed less than 10 km far to the coastal line. We have selected only values 
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of LST and SST close to the coastal line so that their observations are comparable. Another type of 

data that could be used in the study is the atmospheric sounding from the Barcelona station. 

However, this information has not been analysed because of the difficutly of comparing these 

observations with the LST and SST, the information is only limited to the central coast of 

Catalonia, being difficult to compare with the LST and SST, analysed for a line of more than 300 

kilometres. 

 

3. Methodology 

The methodology lies in a new approach to identify MCSs, inspired by Rigo and Llasat (2007), but 

modified based on the authors’ experience in the operational field and the computer requirements 

to analyse near 500,000 composite radar images. Then, the MCSs are identified based on the 

following criteria: 

 The minimum echo threshold for precipitating areas is 12 dBZ. 

 Convective rainfall implies reflectivity values equal to or higher than 35 dBZ. We have 

used this threshold instead of the 43 dBZ of Rigo and Llasat (2007) because one of the 

effects of the corrections shown in table 2 is the enforcement of the convective areas. We 

have tested the threshold comparing the areas identified using the 43 dBZ over uncorrected 

imagery and correlating with the detected using different thresholds in the corrected 

volumes. 

 The MCS precipitation structure area is larger than 10,000 km2. This criterion is applied 

during the whole period in which the system is classified as MCS. The life cycle of the 

structure is longer, but for the rest of the time the structure will be catalogued as multicell. 

 The structure has to be identified in the radar composite for a period of at least 3 hours. 

A strict area criterion has been selected because we are interested in the analysis of large 

structures, which are the cause of most of the main floods in Catalonia in the last years (Rigo and 

Llasat 2007). Besides, we have tried to use criteria similar to those of the previous analysis, in 

order to obtain results that could be comparable. For each one of the precipitating structures that 

verified spatial conditions, certain features were recorded: date of the image, the position of the 

reflectivity-weighted centroid, the total area, the maximum and mean reflectivity (Zmax and 

Zmean, respectively), and the %  of convective precipitation. The centroids are calculated 
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similarly as in Rigo and Llasat (2004), this is: = /c i i ii i
x x Z Z   and = /c i i ii i

y y Z Z  , 

where 
iZ  is the reflectivity of the i pixel. In total, MCSs were found in 40,082 radar composites. 

Additionally, a time criterion was also applied to guarantee a certain continuity for the MCSs 

detected and to avoid any confusion with-non MCS structures. The time condition is applied by 

means of tracking the precipitating structures along their whole trajectory. The tracking procedure 

considers the distance between the centroids of two consecutive radar composites, which must be 

less than 35 km, in order to identify the structure as the same one (Fig. 2). This condition can result 

in interruptions to life cycles, in cases of merging/splitting, because the centroids of the structures 

can change their position for many kilometres. However, given our findings, these processes 

generally mark the beginning or the end of the life cycle of an MCS, and they do not affect the 

normal evolution of this type of structures. There are other tracking procedures, such the 

overlapping of the areas between two imagery (see, for instance Kolios and Feidas 2013, Morel 

and Senesi 2002a and Morel and Senesi 2002b), but the results of the analysis for 5 cases were 

similar (not shown). In total, a set of 342 different MCSs were identified for the period of study 

(2012-2016, around 68 MCSs/year). All the MCS considered in this analysis had the whole life 

cycle inside the covered area, while those that partially occurred inside the area of study were 

manually removed. 

 

Figure 2: Example of MCS tracking. The dots size correlates with the area, while the colour 

indicates the observation time (yellow: 12, light orange: 13, orange: 14, dark orange: 15, light red: 

16, red: 17). 

 

4. Results 

Once the MCS data set has been obtained and characterised (i.e. the parameters of section 3, as 

well as the duration, trajectory and the start and end times), this section presents some statistics to 

characterise MCS features in the area of study, including the effect of seasonality and time of day. 

To sum up the analyses, Figure 3 shows the beginning and end points of the trajectories of all the 

MCSs identified during the period of study. The western and southwestern areas of the region are 

where most of the MCSs started, while the eastern and northeastern areas are where most of the 

trajectories came to an end. The areas of initiation are associated with regions where convection 
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triggers, generally in form of isolated cells. When there are the necessary atmospheric conditions, 

the thunderstorms merge across a line forming the Mesoscale Convective System. There are two 

main patterns of generation of MCS. The first one, occurring in the western portion of the analysis 

domain, is strongly influenced by the topography and the sea-land interaction, has a clear influence 

of the topography and the sea-land interaction, at the time of developing the triggering line. On the 

contrary, the main cause of the line in the case of the southern structures is a cyclone placed at the 

East of Catalonia. In this last case, the maritime influence is the main developing factor of the 

MCS. In both cases, the systems travel across the Catalan territory and dissipate after several hours 

of activity. 

 

Figure 3: Start (black dots) and end (crosses) points of the trajectories of all MCSs detected during 

the period of analysis. 

 

4.1. Climatic analysis 

The results show the correlation between when the MCSs occur and the time of day (Fig. 4, left). 

This is associated with the diurnal cycle, with a clear increase in the number of observations after 

1200 UTC, reaching their peak at 1900 UTC. These results coincide with those obtained by Nesbitt 

and Zipser (2003), who analysed a set of MCSs using the Tropical Rainfall Measuring Mission 

(TRMM) satellite measurements, and with Parker and Johnson (2000), who analysed 88 linear 

MCSs observed by radar. By using the tracking procedure it is possible to determine the duration 

of each of the 342 MCSs detected during the period of analysis. Then, we have defined the 

duration of a MCS as the time between the initial and the last time when the structure is detected as 

system. As observed in Fig. 4 (right) and in Table 3, most of them lasted between 4 and 8 hours (55

% ), with a median duration of 6.8 hours. It is important to clarify that we have only considered 

those systems with the whole life cycle inside the covered area. Around 11 %  lasted more than 15 

hours, and it is possible that in some cases the MCSs lasted even longer, but were outside the radar 

coverage during part of their life cycle. In any case, these values strongly agree with other 

climatologies, e.g. Punkka and Bister (2015). The median values are similar to those observed in 

the other European analyses presented in Section 1, but slightly lower. For instance, the median 

area for the whole period obtained in this study is 22,600 km2, lower than the near 25,000 km2 

obtained by other authors. However, as with the duration, it is possible that some MCSs had part of 
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their trajectory out of the range of coverage of the radars network. On the other hand, maximum 

reflectivity shows median values higher than other analyses. This could be associated with two 

factors: (1) reflectivity is estimated near ground surface, instead of the usual 1 km height, or (2) the 

systems are more intense than in other regions. 

 

Figure 4: Left: Distribution of the relative frequency of the time of the day for which each MCS is 

identified, time in UTC (local time is one hour more in winter and two more in the summer). Right: 

Distribution of the absolute frequency of MCS duration (in hours) 

 

Parameter Q10 Q25 Q50 Q75 Q90 

Area
median

 (km
2

) 15,300 18,300 22,600 28,600 40,800 

Area
Max

 (km
2

) 21,300 25,700 32,600 46,200 65,600 

Z
Max

 (dBZ) 44.5 49.5 56.0 62.0 66.0 

Distance (km) 262.2 412.3 655.7 1077.6 1875.6 

Duration (h) 4.1 4.9 6.8 10.2 15.2 

Table 3: Summary of the different parameters associated with the life cycle of the whole set of 

MCSs detected during the analysed period. 

 

Regarding the direction of the MCSs, Fig. 5 (left) shows that most of the systems have 

trajectories from west to east or from WSW to NE. In other words, their directions of propagation 

were from NNE to SSE, while practically no MCSs moved from east to west. Considering the 

results obtained in Rigo and Llasat (2007), where a clear relationship was found between some of 

the MCSs identified and closed cyclones at a surface level (Campins et al. 2000), the similarity in 

direction for most of the cyclone paths observed in the region (see Fig. 5, right) confirms the link 

between both types of meso-meteorological structures. 

 

Figure 5: Left: Direction of the trajectories for the MCS data set. Right: median number of 

cyclones per year and possible cyclone paths for the subjective database (1992-1995) (source: 

Campins et al. 2000) 
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Finally, Fig. 6 shows how two particular seasons present higher numbers of systems, 

coinciding with the transitions between cold (from December to February) and warm (from June to 

August) seasons. We then defined the CO-WA season as the transition from Cold to Warm 

(mainly covering the months of March and April), which comprised 26.5 %  of cases, and the 

WA-CO season as the transition from Warm to Cold (from September to November), comprising 

27.4 %  of cases. One of the most interesting climatological conditions during both of these phases 

of the year is that the SST and LST reach similar values coinciding with the season. As a result, the 

maximum activity of MCS in the region is reached when the contrast between SST and LST is 

lower. 

 

Figure 6: Evolution of the daily average of Sea Surface Temperature (SST)(solid line) and Land 

Surface Temperature (LST)(dotted line) for the Catalonia region, considering median daily values 

(2012-2016 period). Shaded areas show the 10-90%  percentiles for the SST (light grey) and LST 

(dark grey). Monthly distribution of MCSs thorough the year (green histogram). Brown area 

indicates the warm season and blue one shows the cold season. 

 

4.2. Seasonal behaviour 

As mentioned above, the transition seasons of CO-WA and WA-CO produced the highest level of 

MCS activity. In this section, we analyse the behaviour of the systems detected in both seasons to 

illustrate their similarities and differences. We have applied a Pearson’s Chi-squared test to the 

variables, obtaining values of the p-value over 0.05 in all the cases, which means that all of them 

are statistically significant. In this sense, the comparison of the life cycle of the systems observed 

in both phases present similar patterns, as shown in Fig. 7. In both examples, the shape of the 

systems was practically the same, and in agreement with the conceptual model presented in Houze 

Jr et al. (1989). In the examples in Fig. 7, the areas of convection, which grow by vapour 

deposition in the mesoscale updrafts, can be clearly differentiated, with vertical developments 

easily exceeding 6 km, and strong gradients of reflectivity (with a peak of over 45 dBZ). On the 

contrary, the stratiform zones, which develop from the advection of ice particles moving from the 

tops of the convective region (Biggerstaff and Listemaa 2000), with low values of reflectivity 

(below 30 dBZ), do not reach 4 km. As in the model shown in Houze Jr et al. (1989), there are 

echoes over the 4 km., but these do not reach the 25 dBZ, in a similar way as shown in figure 4 of 
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that analysis or figure 5 of Biggerstaff and Listemaa (2000). 

 

Figure 7: Cross sections parallel to the movement of the system, for two different MCSs registered 

in the CO-WA (left) and WA-CO (right) seasons, for the different stages of the life cycle (from top 

to bottom: developing, early mature, maturity, and dissipation) 

 

Fig. 8 shows the predominant direction of the paths. It can be observed how, in the case of 

the CO-WA season, the main direction is from west to east, while in the case of the WA-CO 

systems the predominant direction is from SSW to NNE. However, the number of trajectories from 

north and NNW is notably higher in the case of the CO-WA season. These differences between the 

WA-CO and CO-WA seasons are more clearly visible in Table 4. It can be seen how, except in the 

case of the average area, all the parameters (maximum area, maximum reactivity, distance covered 

and duration) indicate higher intensity and strength for systems registered during the WA-CO 

season. For instance, quantile 50 of the MCSs of the WA-CO season is 7.5 dBZ higher than the 

CO-WA season. This result agrees with the larger number of cases of floods during autumn (see, 

for instance Llasat et al. 2005). Larger values of reflectivity are not directly related with the 

occurrence of floods, but they help. In this sense, a high value of reflectivity is an indicator of a 

heavy rain rate. Then, according to Doswell III et al. (1996), it is more probable that floods occur 

when the rainfall rate is elevated for a long time period. This phenomenon can be produced more 

easily by MCS than other rainfall systems. 

 

Figure 8: Direction of the trajectories of the CO-WA data set (top) and the WA-CO data set 

(bottom) MCS 

 

Parameter-CoWa Q10 Q25 Q50 Q75 Q90 

Area
median

 (km
2

) 15,900 17,800 22,900 28,400 43,300 

Area Max  (km
2

) 20,800 26,400 32,500 46,500 65,300 

Z Max  (dBZ) 40.0 45.1 50.5 55.4 61.1 

Distance (km) 268.6 390.9 677.9 1,039.9 1,787.9 

Duration (h) 4.2 5.5 6.8 10.1 15.5 
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Parameter-WaCo Q10 Q25 Q50 Q75 Q90 

Area
median

 (km
2

) 15,000 17,700 21,900 33,400 45,300 

Area
Max

 (km
2

) 21,500 24,400 38,200 56,600 71,200 

Z
Max

 (dBZ) 49.5 54.0 58.0 61.0 65.2 

Distance (km) 252.4 431.9 792.2 1,329.6 2,508.6 

Duration (h) 4.2 5.3 7.8 11.8 15.1 

Table 4: Same as table 3, but for the two data sets: CO-WA (top) and WA-CO (bottom) 

 

5. Precipitation regimes and lightning activity 

The precipitation regimes in the region vary depending on the season of the year, with a notable 

connection the weather conditions, modulated partially by the Sea Surface Temperature (Fig. 6). 

In this sense, the winter season shows a smaller proportion of convective rainfall than the rest of 

the year, while the higher values of this percentage are registered generally in the summer, with 

brief but very intense rainfall events (Llasat et al. 2016). These characteristics are also observed in 

the nature of the precipitation structures shown by the weather radar (Rigo and Llasat 2016 or Rigo 

et al. 2010). In the case of MCSs, the percentage of convective precipitation (the rainfall associated 

with echoes exceeding 35 dBZ) has a median value of 25 %  for the whole set of MCSs. However, 

when comparing both seasons we can see how the MCSs registered during WA-CO presented 

larger areas of convective rainfall (27 % ), ahead of the CO-WA MCSs (20 % ). This is coherent 

with the distribution of convective precipitation observed in Barcelona from the 1-min rainfall rate 

series at the Fabra Observatory (Llasat 2001). It is mainly explained by the warmer SST during the 

WA-CO than for the CO-WA, which favours instability at low levels and a greater water vapour 

content. As shown in Fig. 9, the total estimated precipitation obtained from the weather radar 

network reached similar values for both seasons, but higher values of total lightning (TL) were 

recorded during the WA-CO season. This difference can be summarised in the median values of 

the NTL/QPE rate, with a value of 57.7 flashes/mm in the case of CO-WA systems, in comparison 

with the 786.6 flashes/mm registered in the case of the WA-CO MCSs. Another factor that helps 

the instability and also the organization of the systems is the presence of a cyclone in the vicinity of 

the region, mainly in the south-eastern sector. The number of cyclones reaches its maximum in 

autumn, as it is shown for instance in Campins et al. (2011). 
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Figure 9: Comparison between the MCSs in CO-WA and WA-CO seasons in terms of total 

amount of rainfall (left) and total lightning strikes (right). 

 

6. Conclusions 

The possibility of accessing a large database with highly accurate corrections of radar volumes has 

allowed us to carry out a complete analysis of Mesoscale Convective Systems in Catalonia. We 

wanted to find out if it was possible to get highly qualitative information on MCSs, obtaining a 

continuous database of radar imagery (2012-2016), from which 342 MCSs were retrieved. 

Moreover, two main periods with the highest number of MCSs have been identified, which 

coincide with the transition between cold and warm seasons, and vice versa. The second step in the 

research was to analyse a number of MCS features, including seasonal variability. In this sense, the 

cross-section of MCSs along their entire life cycle presents strong similarities between both main 

seasonal periods. However, it is important to remark the significant differences with respect to 

some magnitudes, such as the area, distance covered, total duration and the intensity of maximum 

precipitation (estimated using radar reflectivity), with higher values in the case of the WA-CO 

season. Moreover, these autumn cases (WA-CO) showed a higher percentage of convective 

precipitation, with a larger number of total strikes as well as higher TL/QPE rates. 

It was also possible to associate some of the MCS behaviour with meteorological 

conditions. In this sense, the main trajectories of the systems (mainly from west to east or from 

WSW to ENE) are similar to the cyclone paths observed in the same region. Besides this, the sea 

surface temperature (SST) of the Mediterranean Sea close to the region of analysis seems to play 

an important role in the mechanisms of the MCSs, with many cases occurring when the SST was 

similar to land surface temperature. Finally, MCS was more active when the SST was higher than 

land temperature. 

To sum up, using a radar network and reflectivity radar composites with continuous 

information and a larger coverage allowed us to improve our knowledge on Mesoscale Convective 

Systems in the western Mediterranean. Although large convective systems may happen 

throughout the year, the most active systems are observed during the autumn, and are the cause of 

larger rainfall accumulations in the region, coinciding with higher values of total lightning strikes. 
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1. The first climatological analysis of radar features for more than 300 Mesoscale Convective 

Systems in the NW of Mediterranean is presented. 

 

2. The combination between a C-Band radars network and a Lightning Location System 

(LLS) guarantees the correct identification of precipitation features.  

 

3. The transition seasonal periods Cold-Warm and Warm-Cold shows the maxima MCS 

frequency. 

 

4. MCS’s produced in autumn are more active and long lasting that those produced in spring.  

 

5. Sea surface temperature (SST) plays an important role in MCS occurrence and activity.  
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