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Abstract

This paper is concerned with numerical solution of fluid-structure inter-
action (FSI) problems involving an incompressible viscous flow and an elastic
structure. A semi-implicit partitioned method with second-order temporal
accuracy is proposed. The method separates the pressure term of the fluid
equations and strongly couples it to the structure, while the remaining fluid
terms and the geometrical nonlinearities are treated explicitly. A second-
order projection method is used to solve the fluid equations and also as a
framework for the FSI coupling. Particular attention is paid to the boundary
conditions for fluid equations and the accuracy of the fluid pressure on the
common interface. The proposed coupling method retains the second-order
accuracy for fully-coupled nonlinear FSI problems. Extensive numerical tests
are carried out on a number of benchmark FSI problems and the second-order
temporal accuracy for all the variables of interest (fluid velocity and pressure,
and structural displacement) is demonstrated.
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1. INTRODUCTION

Fluid-structure interaction (FSI) refers to problems with bilateral inter-
action between a fluid flow and a moving or deforming structure. Fluid flow
exerts surface forces on the structure which causes its deformation. The
movement of the solid boundary, in return, alters the flow field. A very wide
range of applications is cited for FSI, from study of blood flow inside the
cardiovascular system (e.g. [1, 2]), to the study of vortex-induced vibration
of submerged structures in offshore engineering (e.g. [3, 4]).

A popular class of numerical methods to solve FSI problems is called par-
titioned methods. These methods use separate solvers for fluid and structural
sub-problems and adopt a coupling technique to account for the interaction
of the domains. One of the strong advantages of the partitioned methods is
the possibility to use the most adapted and well-validated numerical meth-
ods for each sub-problem. Moreover, it allows using previously developed and
optimized fluid and structural solver codes [5, 6]. Partitioned methods are
generally divided into explicit (or loosely coupled) and implicit (or strongly
coupled) techniques. Explicit partitioned methods solve the fluid and struc-
tural equations in sequence and only once per time step. These methods do
not satisfy the exact equilibrium conditions on the interface, which causes
instability issues in a range of FSI problems (the so-called added-mass insta-
bility) [7, 8]. Implicit methods, on the other hand, use coupling iterations
between fluid and structural solvers to enforce the equilibrium condition on
the interface. These methods are stable for problems with strong added-
mass effect, however, their computational cost is generally high due to the
repetitive solution of the governing equations at each time step [5, 6].

In a partitioned method, the equilibrium conditions on the interface are
applied as boundary conditions on each sub-problem, through a decompo-
sition method. Dirichlet-Neumann decomposition is a classical and widely
used method in partitioned solution of FSI problems (see e.g. [9, 10, 11]). The
name of the method indicates that a Dirichlet boundary condition is used
for the fluid equations and a Neumann boundary condition for the structure.
Therefore, the fluid equations are solved for a known displacement of the
solid, while the structural equations are solved for a known stress on the
interface. This is a simple decomposition and it is consistent with the most
common numerical methods for fluid and structural equations. There is a
more recent class of Robin-based decomposition methods that use a Robin
boundary condition for the fluid and either a Robin or Neumann boundary
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condition for the structure [12, 13, 14]. Robin-based methods are gaining
popularity as they allow a loosely-coupled and yet added-mass-free FSI cou-
pling. However, they require using an especial fluid solver capable of handling
a Robin boundary condition. Thus they might not be readily usable with
some of the most common fluid solvers. In this work we use a Dirichlet-
Neumann decomposition for its advantages of simplicity and consistency.

Instability in loosely coupled methods with Dirichlet-Neumann decompo-
sition is caused by the added-mass effect. The added-mass instability is, in
principle, independent of the time step size or the particular discretization
method used for each sub-problem solver. It is rather inherent to the cou-
pling method and it has a particularly strong effect in FSI problems with
incompressible flow and similar densities of fluid and solid [7, 8]. It is argued
that the fluid pressure term is the main contributor to the added-mass ef-
fect and its explicit coupling would cause instability issues [7]. This was the
main motivation for a new category of partitioned methods, first proposed
by Fernandez et al. [15], and called semi-implicit methods. In a semi-implicit
coupling method, the fluid pressure term is segregated and strongly coupled
to the structure, while the remaining fluid terms are only loosely coupled.
Segregation of the pressure term could be naturally achieved by using a clas-
sical Chorin-Temam projection method [16]. Strong coupling of the fluid
pressure and structural deformation eliminates the added-mass instability is-
sue, while loose coupling of the remaining fluid terms helps avoiding excessive
computational cost [15].

A similar semi-implicit method was proposed by Breuer et al. [17] where
the geometrical nonlinearities are also coupled implicitly. Astorino et al. [18]
improved the stability of the method in [15] by using a specific Robin treat-
ment of the explicit part of the coupling derived from Nitsche’s method. An
enhanced semi-implicit method was proposed by Naseri et al. [19, 20]. Nu-
merical tests showed that the accuracy of the method in a practical problem
is very similar to a fully implicit partitioned method, while its computational
cost is remarkably smaller [20]. The application of the method was extended
to turbulent flow [21, 22] and non-Newtonian fluids [23]. Other similar semi-
implicit methods are presented in [24, 25] which use a characteristic-based
split (CBS) scheme instead of Chorin-Temam projection method. It should
be noted that these semi-implicit methods are different from the methods
in [26, 27, 28]–which are also sometimes called semi-implicit. In the methods
in [26, 27, 28], the location of the interface is treated explicitly (extrapolated
in time) and the fluid mesh is moved once in a time step, however, the fluid

3



and structural equations are solved completely at each coupling iteration (i.e.
only the geometrical nonlinearities are treated explicitly).

Semi-implicit coupling techniques rely on a projection method to solve
the fluid equations and segregate the pressure term. The fluid pressure term
is then strongly coupled to the structure via coupling iterations. Thus, the
projection method does not only serve to solve the fluid equations but also as
a framework for the FSI coupling. The semi-implicit methods in [15, 18, 20]
have used a first-order Chorin-Temam projection method, while [24] have
used a first-order CBS scheme for this purpose. Therefore, the overall tem-
poral accuracy of these methods is at most one. Methods in [17, 25] have
used apparently second-order pressure splitting schemes, but no error analysis
(neither analytical nor numerical) was presented to show that a second-order
temporal accuracy was actually achieved for a FSI solution. Extending tem-
poral accuracy of projection methods to higher orders is not straightforward,
as discussed in [29, 30, 31]. Although it is relatively easy to achieve second-
order accuracy for velocity, fluid pressure remains only first-order accurate
for many projection methods in the literature [29, 30, 31]. Considering that
the fluid pressure is a main acting force on the structure, second-order accu-
racy for pressure is essential to achieve a second-order FSI solution. More-
over, mesh-conforming FSI solution methods require solving the Arbitrary
Lagrangian–Eulerian (ALE) form of the Navier-Stokes equations on a mov-
ing mesh. A method for solving the fluid equations on a dynamic grid and
evaluating the geometrical terms arising from the ALE formulation does not
necessarily preserve the order of accuracy of the method on a fixed grid (see
e.g. [32]). Furthermore, if the FSI coupling technique is not properly de-
signed, the second-order accuracy for the coupled problem is not guaranteed,
even though each sub-problem possessed such accuracy.

In point of fact, there are few second-order time accurate methods among
other types of implicit and explicit partitioned methods in the literature.
Farhat et al. [33] proposed a second-order loosely coupled partitioned method
for FSI problems in aeroelasticity. This method is explicit so it is not suitable
for strong added-mass problems. Nobile et al. [27] reported up to fourth-order
time-accurate implicit partitioned methods. In some versions of the proposed
method, the location of the interface is extrapolated in time (explicit treat-
ment of geometrical nonlinearities). Liu et al. [28] proposed a second-order
technique based on a combined field method with explicit treatment of the
interface location. The method was shown to be stable regardless of the mass
ratio. Oyekole et al. [34] proposed a second order partitioned method based
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on a Robin boundary condition for the fluid. The structural inertia term
is included in the Robin boundary condition for the fluid which makes the
scheme stable for strong added-mass cases.

In this work, we propose a semi-implicit partitioned FSI method that is
second-order accurate in time. This is, to the best of our knowledge, the
first semi-implicit partitioned FSI method with a demonstrated second-order
accuracy. A projection method is used to segregate the fluid pressure term,
which is then strongly coupled to the structure via coupling iterations. In
order to obtain second-order accuracy in a FSI solution, four important steps
are taken:

i) Presenting an incremental projection method and discretization in time
that actually yields second-order accuracy for fluid pressure, as well as
velocity.

ii) Deriving specific projection-consistent boundary conditions for all fluid
boundaries including the interface with the solid.

iii) Developing an ALE scheme on a moving grid and evaluating the arisen
geometrical terms with second-order accuracy.

iv) Properly coupling the fluid and structural solvers in order to retain the
second-order accuracy for a coupled nonlinear FSI problem.

The second-order accuracy of the method for realistic nonlinear FSI problems
is demonstrated through rigorous numerical tests. Three widely distinct FSI
test cases are studied and an analysis is made to show the second-order rate
of convergence of the error.

The remaining of this paper is organized as follows. In section 2 the
governing equations for each sub-problem and the coupling conditions are
presented. Section 3 describes the proposed numerical method, while numer-
ical tests are presented in section 4. Section 5 summarizes and concludes the
article.

2. GOVERNING EQUATIONS

In this section, the governing equations for each sub-problem domain and the
coupling conditions on the interface are presented. The fluid and structural
domains are referred to as Ωf (t) ⊂ R3 × (0, T ) and Ωs(t) ⊂ R3 × (0, T ) re-
spectively, as they both vary in time t ∈ (0, T ). The fluid-structure interface
is the shared boundary of the domains, denoted by Γ(t) = ∂Ωf (t) ∩ ∂Ωs(t).
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2.1. Fluid equations

The unsteady flow of an incompressible viscous fluid is governed by the
Navier-Stokes equations. An Arbitrary Lagrangian-Eulerian (ALE) formula-
tion of these equations in a moving domain is given by:

∂u

∂t
+ c · ∇u =

1

ρf
∇ · σf (1)

∇ · u = 0 (2)

where u is the fluid velocity and ρf the fluid density. Vector c is the ALE
convective velocity c = u−w, which is the fluid velocity relative to a domain
moving with a velocity w. The stress tensor σf is defined for a Newtonian
fluid as:

σf = −pI + 2µfγ (3)

where p is the fluid pressure, I the unit tensor, µf the dynamic viscosity of
the fluid and γ the strain rate tensor given by:

γ =
1

2
(∇u +∇uT ) (4)

2.2. Structural equations

The structural domain is governed by the nonlinear elastodynamics equation:

ρs
∂2d

∂t2
= ∇ ·P (5)

where d stands for the structural position with respect to the reference con-
figuration, and the structural density is shown by ρs. The tensor P is the
first Piola-Kirchhoff tensor, which is related to the Cauchy stress tensor σs

by:

P = JσsF
−T (6)

where F is the deformation gradient F = ∇d and J its determinant (J =
det(F)).

The FSI method is presented for a general structure, however, for the
numerical tests, different simplified structural models are considered which
are described for each test case in section 4.
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2.3. Coupling conditions

The coupling conditions apply at the interface Γ and account for the inter-
action of the domains. They are derived from the kinematic and dynamic
equilibrium between the domains, which yield to the following conditions on
a non-slip type interface:

uΓ =
∂dΓ

∂t
(7)

σsnΓ = σfnΓ (8)

for any x ∈ Γ, where nΓ is the unit normal vector on the interface. Equa-
tion (7) represents the equality of the velocities of the fluid and the structure
on the interface to assure the kinematic equilibrium. Equation (8) represents
the equality of the traction on the interface for dynamic equilibrium.

3. NUMERICAL METHOD

In this section, the temporal discretization of the governing equations and
the FSI coupling method are presented. This time-discretized set of equa-
tions are independent of the choice for spatial discretization, which could
be carried out using either a finite-volume or a finite-element method. The
spatial discretization methods used for the numerical tests are described in
Appendix 1.

3.1. Fluid solver

Using a second-order central scheme around the mid-time-step point tn+1/2

for the transient term of the momentum equation, a second-order time-
discretized form of the Eq. (1) and (2) reads:

un+1 − un

∆t
= −(c · ∇u)n+1/2 +

µf
ρf
∇2un+1/2 − 1

ρf
∇pn+1/2 (9)

∇ · un+1 = 0 (10)

for any x ∈ Ωn+1
f , and a proper set of boundary conditions:
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un+1
Γ =

∂dn+1
Γ

∂t
on Γn+1

un+1
∂D

= ub on ∂DΩn+1
f

∂un+1

∂n
|∂N = 0 on ∂NΩn+1

f

(11)

where ∂D and ∂N represent, respectively, the Dirichlet and Neumann fluid
boundaries, n is the normal unit vector and ub is the assigned velocity on
the boundary. The boundary condition on the fluid-structure interface Γn+1

comes from the kinematic equilibrium condition and is applied as a Dirichlet
boundary condition for the fluid equations (Eq. (11)1).

We use an incremental pressure-correction projection method, similar
to [35, 36], to solve the momentum equation. Thus, an intermediate ve-
locity is evaluated using the last known pressure field. Unlike the original
projection method of Chorin-Temam [16], this method does not impose a for-
mal first-order splitting error. We use an explicit Adams-Bashforth method
for the convective term and a Crank-Nicolson method for the diffusive term.
Therefore, the intermediate velocity field, u∗, is evaluated as:

u∗ − un

∆t
= −[

3

2
(c · ∇u)n − 1

2
(c · ∇u)n−1] +

µf
2ρf

(∇2u∗ +∇2un)− 1

ρf
∇pn−1/2

(12)
This velocity field is then projected onto a space of divergence-free vector
fields:

u∗ = un+1 +
∆t

ρf
∇φn+1 (13)

∇ · un+1 = 0 (14)

where φn+1 is a scalar field obtained by:

∇2φn+1 =
ρf
∆t
∇ · u∗ (15)

Substituting Eq. (13) into Eq. (12) and comparing it to Eq. (9), the
equation to recover the fluid pressure at the mid-time step is obtained as:
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pn+1/2 = pn−1/2 + φn+1 − µf∆t

2ρf
∇2φn+1 (16)

Pressure at the new time station tn+1 could be evaluated by a second-
order extrapolation from half-time levels:

pn+1 =
3

2
pn+1/2 − 1

2
pn−1/2 (17)

Pressure at tn+1 is not used in the discretized fluid equations but it is needed
to evaluate the fluid force on the structure at the new time step.

Remark 1. The last term in the pressure recovery equation (Eq. (16)) was
missed in some projection methods, however, it is essential for retaining the
second-order accuracy for pressure up to the boundary. It was first introduced
(in a slightly different form) in [37]. A common practice in the literature is to
use a uniform Neumann boundary condition (zero normal gradient) for the
Poisson’s equation for φ (Eq. (15)). Without the last term of Eq. (16), the
Neumann boundary condition for the scalar field φ transmits to the pressure
itself and creates an artificial boundary layer which degrades the accuracy.
Interested readers are advised to consult [29, 31] for some analyses. The
boundary conditions in the present work are further discussed in the next
section.

Remark 2. A common inaccuracy in many methods in the literature is omit-
ting the extrapolation of pressure (Eq. (17)) and evaluating pn+1 by Eq. (16).
However, that would not be consistent with the central time discretization
at Eq. (9). If the pressure at Eq. (16) were considered to be at time tn+1

instead of tn+1/2, it will always carry a first-order error due to the time lag.

3.2. Boundary conditions

In this section the boundary conditions for the predicted velocity u∗ and
the scalar field φ are described in detail. We recognize three regions of the
boundary with different boundary conditions, as in Eq. (11). The first region
is the fluid-structure interface Γ. The boundary condition for velocity comes
from the kinematic equilibrium on the interface (Eq. (11)1). Using a second-
order backward difference scheme it reads:

un+1
Γ =

∂dn+1
Γ

∂t
=

3dn+1
Γ − 4dnΓ + dn−1

Γ

2∆t
on Γn+1 (18)
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which is a Dirichlet boundary condition for velocity. However, there is no
specific boundary condition for pressure. A common approach is to use a uni-
form Neumann boundary condition (zero normal gradient on the boundary)
for pressure. Such a boundary condition would create an artificial boundary
layer near the interface that would degrade the accuracy. Numerical tests
in [29, 31] demonstrate the artificial boundary layer and the loss of accuracy
on a wall boundary.

In this work we use a zero normal gradient boundary condition for the
scalar field φ:

n · ∇φn+1|Γ = 0 on Γn+1 (19)

which is a very convenient boundary condition for the Poisson equation
(Eq. (15)). However, because of the last term in the pressure recovery equa-
tion, Eq. (16), the Neumann boundary condition is not transmitted to the
pressure itself and the artificial boundary layer is avoided. This is essential
to achieve a second-order accuracy for pressure up to the boundary.

For the predicted velocity field, we derive a boundary condition consistent
with Eq. (13):

u∗Γ = un+1
Γ +

∆t

ρf
∇φn+1|Γ (20)

Dividing Eq. (20) into its components using the normal and tangential unit
vectors on the boundary, n and τ , we get:

n · u∗|Γ = n · un+1|Γ +
∆t

ρf
n · ∇φn+1|Γ (21)

τ · u∗|Γ = τ · un+1|Γ +
∆t

ρf
τ · ∇φn+1|Γ (22)

Considering boundary conditions (18) and (19), and using an explicit extrap-
olation for the gradient term, the boundary conditions for predicted velocity
are obtained as:

n · u∗|Γ = n · ∂d
n+1
Γ

∂t
|Γ

on Γn+1

τ · u∗|Γ = τ · ∂d
n+1
Γ

∂t
|Γ +

∆t

ρf
τ · (2∇φn −∇φn−1)|Γ

(23)
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Similar boundary conditions are used for other fluid boundary regions
with a Dirichlet boundary condition for velocity (∂DΩn+1

f in Eq. (11)), in-
cluding stationary walls and flow inlets with a known velocity. Equations (23)
are modified to use the assigned velocity in place of the interface velocity (e.g.
ub = 0 for stationary walls).

The third fluid boundary region is where a Neumann boundary condition
is used for velocity (referred to as ∂NΩn+1

f in Eq. (11)). Pressure on the
boundary could be specified by a Dirichlet boundary condition (e.g. an
outlet with a known discharge pressure) or left without any specific boundary
condition (e.g in openings and vents with unknown pressure). In case of a
Dirichlet boundary condition for pressure, an equivalent Dirichlet condition is
applied on the scalar field φ. In the case that no physical boundary condition
is specified for pressure, a zero normal gradient boundary condition is used
for φ. Therefore, the set of boundary conditions are as follows:


∂un+1

∂n
|∂N = 0

on ∂NΩn+1
f

φn+1 = φb or n · ∇φn+1|∂N = 0

(24)

Again a consistent boundary condition for the predicted velocity is de-
rived. Getting normal derivative of Eq. (13) and applying condition (24)1, it
reads:

∂u∗

∂n
|∂N =

∆t

ρf

∂

∂n
∇φn+1|∂N on ∂NΩn+1

f (25)

Depending on the type of boundary condition for φ (conditions (24)2),
the normal or tangential component of the right hand side term in Eq. (25)
might be zero. The non-zero components of the derivative of the gradient are
evaluated on the boundary and the consistent boundary condition (Eq. (25))
is applied on the predicted velocity field.

Remark 3. It should be mentioned that similar consistent boundary condi-
tions for simpler boundary of an stationary wall (Dirichlet boundary condi-
tion for velocity) were proposed in [38, 29].
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3.3. Dynamic mesh

We use a conforming mesh technique, which means the fluid mesh moves to
adapt to the new location of the interface. A parallel moving mesh technique,
based on radial basis function interpolation method [39], is used to move the
fluid grid in accordance to the new location of the interface and define the
discretized fluid domain at the new time step Ωn+1

f .
The method uses the known displacement on the interface to evaluate

an interpolated value for the interior vertices of the fluid grid. A great
advantage of this method is that it does not need the connectivity of the
mesh elements and can be applied to both structured and unstructured grids.
The interpolated displacement δr at a grid vertex xv is evaluated as:

δr(xv) =
nv∑
i=1

γiϕ(||xv − xi||) (26)

where nv is the number of nodes on the interface xi, and ϕ is the radial basis
function. The Wendland C2 function [40] is used for ϕ since it preserves
good quality of the dynamic mesh, specially near the moving interface. The
weight coefficients γi are evaluated using the known displacements on the
interface nodes

δr(xi) = δd(xi) i = 1, 2, ..., nv (27)

for xi ∈ Γ. Therefore, the size of the system of equations to obtain the weight
coefficients is limited to the number of known points nv.

Surface velocities are evaluated according to the space conservation law
(SCL) which guarantees no volume is lost while moving the grid. For any
control volume in the fluid domain, the SCL is stated as:

∂v

∂t
−
∫
cs

w · dA = 0 (28)

where v and cs stand, respectively, for the volume and the boundary surface
of a control volume. As before, w is the domain velocity and A is the area
vector pointing outward.

Time rate of change of volume is equal to the sum of volumes swept by
each face of a control volume. In this work we evaluate the domain velocity at
each face, wf , based on the volume swept by that face. With a second-order
backward discretization it reads:

12



wn+1
f =

3

2
(
δv

A∆t
nf )

n+1 − 1

2
(
δv

A∆t
nf )

n (29)

where A is the surface area, nf unit normal vector of the face, ∆t time step
and δv the volume swept by the face at one time step (see Figure 1).

A

B
C

Face at tn

Face at tn+1

Control volume at tn

Volume
swept δvn+1

δr(A)

δr(B)

δr(C)

Figure 1: Volume swept (δv) by each face of an arbitrarily shaped polyhedral. The
displacement of each vertex is shown by δr.

More detailed description of the dynamic mesh method could be found
in [39, 20]. In the remaining of this paper, we will use the notation M to
refer to the mesh movement step:

(Ωn+1
f ,wn+1) =M(dn+1

Γ ) (30)

3.4. Structural solver

Structural equations are discretized in time using a second-order Newmark
method. Defining the structural velocity v = ∂d

∂t
, we update the velocity and

displacement of the structure as:

vn+1 = vn +
∆t

2ρs
[∇ ·P(dn+1) +∇ ·P(dn)] (31)

dn+1 = dn + ∆tvn +
∆t2

4ρs
[∇ ·P(dn+1) +∇ ·P(dn)] (32)

In this work we use the structural solver as a black-box module. Any
structural solver with a second order temporal accuracy could be used. In
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the remaining of this paper, we use the notation S to refer to the structural
solver as a function of surface stress on the interface:

dΓ = S(σΓ) (33)

where dΓ is the location of the interface and σΓ is the surface stress on the
interface exerted by the fluid σΓ = σf (p,u)|ΓnΓ.

3.5. Coupled problem

We present a semi-implicit FSI coupling method in which only the pressure
term of the fluid is strongly coupled to the structure. The remaining fluid
terms as well as the dynamic mesh step are evaluated only once per time
step. Using a projection method for fluid equations allows us to effectively
segregate the pressure term and couple it implicitly to the structure. Strong
coupling of the fluid pressure and structural deformation provides for the sta-
bility of the method for FSI problems with strong added-mass effect. Loose
coupling of the remaining terms helps to avoid excessive computational cost.

The complete FSI solution method from time step tn to tn+1 is as follows:

step 0: extrapolation of dΓ from previous time steps:

d̃n+1
Γ = 2.5dnΓ − 2dn−1

Γ + 0.5dn−2
Γ (34)

step 1: moving the fluid mesh (explicitly coupled):

(Ωn+1
f ,wn+1) =M(d̃n+1

Γ ) (35)

step 2: ALE convection-diffusion equation (explicitly coupled):

u∗ − un

∆t
= −[

3

2
(c · ∇u)n − 1

2
(c · ∇u)n−1] (36)

+
µf
2ρf

(∇2u∗ +∇2un)− 1

ρf
∇pn−1/2 in Ωn+1

f

step 3: fluid pressure and structural equations (implicitly coupled, solved
iteratively):

nΓ · u∗Γ = nΓ · (
3dn+1

Γ − 4dnΓ + dn−1
Γ

2∆t
) on Γn+1 (37)
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τ Γ·u∗Γ = τ Γ·(
3dn+1

Γ − 4dnΓ + dn−1
Γ

2∆t
)+

∆t

ρf
τ Γ·(2∇φn−∇φn−1)|Γ on Γn+1

(38)

∇2φn+1 =
ρf
∆t
∇ · u∗ in Ωn+1

f (39)

pn+1/2 = pn−1/2 + φn+1 − µf∆t

2ρf
∇2φn+1 in Ωn+1

f (40)

pn+1 =
3

2
pn+1/2 − 1

2
pn−1/2 in Ωn+1

f (41)

σn+1
Γ = σf (p

n+1,u∗)|ΓnΓ on Γn+1 (42)

dn+1
Γ = S(σn+1

Γ ) on Γn+1 (43)

step 4: velocity correction (explicitly coupled):

un+1 = u∗ − ∆t

ρf
∇φn+1 in Ωn+1

f (44)

un+1
Γ =

3dn+1
Γ − 4dnΓ + dn−1

Γ

2∆t
on Γn+1 (45)

Every time step starts with predicting the location of the interface by
means of an extrapolation from previous time steps. The fluid mesh is then
moved to adapt to the predicted location of the interface (step 1). Therefore,
the geometrical nonlinearities are treated explicitly. The convection-diffusion
equation in step 2 is also solved only once per time step. Step 3 is the implicit
part of the coupling in the above algorithm where fluid pressure is strongly
coupled to the structural deformation. Equations in step 3 are solved to-
gether (iteratively). This step provides for the stability of the method for
FSI problems with strong added-mass effect. Note that the current struc-
tural deformation dn+1

Γ is used in Eq. (37) and (38), while it is evaluated in
Eq. (43), which shows the implicit coupling between the equations in step 3.
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A Newton-Krylov method with approximated Jacobian [20] is used to carry
out the coupling iterations in step 3.

As seen in the Eq. (37) and (38), the kinematic equilibrium on the in-
terface is applied on the predicted velocity field (in a corrected consistent
manner) during the coupling iterations. The predicted velocity is also used
to evaluate the shear stress term in Eq. (42). When the convergence is
achieved for the iterative process in step 3, the velocity field is corrected
using the converged field φn+1 and the coupling condition is applied on the
final velocity (step 4).

3.6. Temporal accuracy

An error analysis is required to evaluate the temporal accuracy of the
proposed method in a FSI problem. Analytical and numerical analysis could
be used for this purpose. Analytical energy and error estimates have been
used in some previous studies to evaluate stability and order of convergence
of FSI methods (e.g. [14, 34]). However, these analyses were limited to a
simplified linear system of equations (Stokes equations for fluid and a lower
dimensional, linear elastic model for structure). The non-linear term in fluid
equations represents an important physical aspect and also changes the math-
ematical characteristics of the governing equations. The non-linear term in
solid equations has a similar importance. Evaluating the error bound and
convergence rate of numerical methods applied to realistic FSI problems nor-
mally rely on numerical experiments.

In this study numerical tests are carried out on three widely used FSI
test cases to demonstrate the second-order accuracy of the proposed method.
For that purpose, test solutions are carried out using increasingly larger time
steps and their error is evaluated at a certain point in time. The spatial grid
is kept constant for all the test solutions. In the lieu of an exact solution,
reference numerical results are generated for each test case, using a very
small time step size and identical spatial grid. Test solutions are compared
to the reference solution to evaluate the error for each variable. The errors
with respect to the reference solution are evaluated at each spatial point and
presented in both L2 and L∞ norms. The temporal order of accuracy is
determined by evaluating the slope of the graph of error against time step
size, in a logarithmic scale.

It should be noted that the global error contains both spatial and tempo-
ral components and behaves, in general terms, as O(∆xa + ∆tb), where ∆x
and ∆t are the spatial grid size and time step, respectively. The powers a and
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b are, respectively, the asymptotic orders of spatial and temporal accuracy.
In order to evaluate the asymptotic order of temporal accuracy, the spatial
component of the error must be kept considerably smaller than the temporal
component to make sure it does not affect the error analysis results. When
the errors are evaluated with respect to an exact (analytical) solution (Xe),
it means the spatial grid should be sufficiently fine to assure a small spatial
error. Ideally one may have ∆x � ∆tb/a so that the error could be approx-
imated as O(∆tb). In our numerical tests, reference numerical results (Xr)
are used instead of an exact solution, due to the lack of exact solution for
the realistic problems considered. The reference solution is obtained using
a certain spatial and temporal grid size (∆xr and ∆tr), thus itself contains
an error with respect to the exact solution, εr = Xr − Xe. Test solutions
(Xt) are obtained by using different (and increasingly larger) time step sizes
but an identical spatial grid. Therefore, In comparing the test results to the
reference results, the error due to the spatial discretization is discarded since
it is identical for the test and reference solutions.

To further clarify the aforementioned explanation, let us assume the
global error (with respect to the exact solution) to be of the form O(∆xa +
∆tb) = O1(∆xa) + O2(∆tb). We expect a = b = 2 for the method in this
work. The error of the reference solution with respect to the exact solution is
then εr = O1(∆xar) +O2(∆tbr). Similarly, the error (with respect to the exact
solution) of the test solutions using test time step size ∆t and identical spa-
tial grid is εt = O1(∆xar)+O2(∆tb). When we compare the test results to the
reference results and evaluate the error with respect to the reference solution,
the error for each test solution becomes ε = Xt − Xr = O2(∆tb) − O2(∆tbr),
because the spatial error is identical for test and reference solutions. In the
numerical tests, we have used a much smaller time step size for the reference
results (∆tr � ∆t). Therefore, the error with respect to the reference solu-
tion becomes ε ≈ O2(∆tb). Thus, by evaluating the error with respect to the
reference solution, for different time step sizes, one is able to appropriately
asses the temporal accuracy of the method. In the numerical tests, graphs
of error against time step size (ε − ∆t) are presented that show a slope of
two, which suggest a second-order temporal accuracy according to the above
explanation.

It should be also noted that our numerical tests would have revealed a
mixed error term of the form O(∆x∆t). If there existed such a term in the
global error (in this work it would be O1(∆x2) +O2(∆t2) +O3(∆x∆t)), the
error with respect to the reference solution would become ε = O2(∆tb) −
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O2(∆tbr) + O3(∆xr∆t) − O3(∆xr∆tr). Since we have kept the spatial grid
constant for the analysis, and the fact that lower order error is the dominant
term, we would have ε ≈ O3(∆t). This means the slope of the error graphs
in the numerical tests would become unity and reveal if a mixed error term
existed in the solution.

4. NUMERICAL TESTS

In this section, numerical results on benchmark FSI problems are presented
to study the accuracy of the proposed method. Three FSI test cases are
considered, as well as a test case that contains only fluid flow. The three
FSI cases vary widely, featuring an internal flow contained by a deformable
membrane, an external flow over a blunt body with rigid-body motion, and
a cavity flow with a deformable bottom. Obtained results are compared to
experimental and numerical results from the literature in order to validate
the solution method. An error analysis is provided for each test case that
demonstrates second-order temporal accuracy of the solution.

4.1. Lid-driven cavity (only fluid flow)

As the first numerical test case, we study the flow inside a classical lid-driven
cavity at Re = 400. The problem is a 1m × 1m cavity with the lid moving
at a constant velocity of u1 = 1m/s. The fluid density and viscosity are
ρf = 1.0 kg/m3 and µf = 0.0025 Pa.s, respectively. All the walls are rigid
and there is no fluid-structure interaction.

A classical 31×31 mesh is used to solve the problem. A finer grid of 61×61
is also used for comparison. Spatial discretization is carried out using a finite
volume method with a second-order central scheme. Figure 2 compares the
steady state solution for horizontal velocity on the vertical mid-line (x = 0.5),
against the classical results of Kim and Moin (1985) [38]. The steady state
was reached after roughly 30 seconds (t > 30s). As seen in figure 2, the
results obtained by the coarse and fine mesh are almost indistinguishable
and they agree very well with those of Kim and Moin (1985) [38].

To evaluate the temporal accuracy of the method, four different time step
sizes are used to solve the problem from t = 0 till t = 1s and the error is
evaluated at t = 1s. The time step ranges from 5× 10−4 to 4× 10−3s. In the
lieu of an exact solution, reference results are generated using a much smaller
time step size of ∆t = 5 × 10−5s. The reference time step size is an order
of magnitude smaller than the smallest test time step. The spatial grid is
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Figure 2: Horizontal component of velocity on the vertical mid-line of a lid-driven cavity
(NO FSI) in the steady state.

kept constant for the tests. The error with respect to the reference solution
is evaluated at every grid point and presented in both L2 and L∞ norms in
figure 3, on a logarithmic scale. A solid line with a slope of two (∆t2) is also
plotted to compare the slope of the error graphs. A slope of two of the error
graphs means the rate of convergence of the error by time step size is two,
i.e. a second-order accuracy.

As seen in figure 3, both velocity and pressure are clearly second-order
accurate. To monitor closely the error of the pressure on the domain bound-
aries, the error on the boundaries is evaluated separately and plotted in fig-
ure 3. It demonstrates that the proposed method solves the fluid equations
with a second-order accuracy up to the domain boundary.

4.2. Driven cavity with deformable bottom

Numerical tests are carried out on a benchmark problem studied in [8, 41],
among others. The test case is a 2-D driven cavity of 1m × 1m with a
flexible bottom wall. The top boundary of the cavity is moving with an
oscillatory speed of u(t) = 1 − cos(ωt) m/s, with ω = 2π/5. There are two
openings of 0.1m length on the sidewalls that allow the fluid to enter to and
exit from the domain. Figure 4(left) shows a schematic description of the
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Figure 3: Variation of relative error inside the domain and on the boundaries by time step
size, driven cavity case (NO FSI). Left: L2 norm; Right: L∞ norm.

problem. The fluid density and viscosity are ρf = 1.0 kg/m3 and µf = 0.01
Pa.s, respectively. The flexible structure at the bottom has a thickness of
h = 0.05m, the structural density is ρs = 5 kg/m3 and the Young modulus
E = 250 N/m2.
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x
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Figure 4: Driven cavity with flexible bottom. Left: schematic view of the domain and
problem setup; Right: contour plot of horizontal velocity u1(m/s) inside the deformed
domain at t = 7s.

The flexible bottom is modeled as an Euler-Bernoulli beam, governed by
the following equation:

ρsA
∂2d

∂t2
+ EI

∂4d

∂x4
= q(x, t) (46)

where d = [0, y, 0]T in a Cartesian coordinate (x, y, z), A is the cross section
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area of the beam, I the second moment of area, and q is the load per unit
length.

A 100 × 100 spatial grid with refinement near the bottom wall is used
to solve the problem. Spatial discretization is carried out using a finite vol-
ume method with a second-order central scheme. The structure is a thin
membrane so the fluid mesh elements on the interface are also used as the
computational grid for the structural equations. Thus, the structural grid
nodes match the fluid mesh on the interface and there is no need for inter-
polation of parameters between the domains. Figure 4(right) shows the flow
field inside the domain with structural deformation at the bottom, at t = 7s.

To evaluate the temporal accuracy of the method, the problem is solved
using four different time step sizes ranging from 5×10−4 to 4×10−3s. Refer-
ence results are obtained using a much smaller time step of ∆t = 5× 10−5s.
The spatial grid is kept constant for the tests. The simulations are carried
out from t = 0 until t = 1s, and the error is evaluated at t = 1s. The error
is evaluated at every grid node and presented in both L2 and L∞ norms.

Figures 5 and 6 represent the variation of the relative error with time
step size ∆t in logarithmic scales. Figure 5 represents the error of fluid ve-
locity and pressure inside the fluid domain, while Figure 6 represents the
error of fluid pressure and structural deformation on the fluid-structure in-
terface. Results demonstrate a clear second-order temporal accuracy for all
the variables of interest in both L2 and L∞ norms.

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0.001  0.01

||e
rr

o
r|

| 2

∆t (s)

pressure

velocity

∆t
2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0.001  0.01

||e
rr

o
r|

| ∞

∆t (s)

pressure

velocity

∆t
2

Figure 5: Variation of relative error inside the fluid domain by time step size, driven cavity
with flexible bottom. Left: L2 norm; Right: L∞ norm.

4.3. Wave propagation in a 2-D deformable channel
This test case is to simulate the propagation of pressure waves inside a 2D
straight channel with elastic walls. The problem is similar to blood flow
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Figure 6: Variation of relative error on the fluid-structure interface by time step size,
driven cavity with flexible bottom. Left: L2 norm; Right: L∞ norm.

inside large arteries and was studied, among others, in [42, 14, 43, 44]. The
problem represents a strong added-mass effect, as the densities of the fluid
and the structure are very similar and the domain is slender.

The initial fluid domain is [0, L]× [0, R0], where L = 6cm is the length of
the channel and R0 = 0.5cm is its height. The top boundary is an elastic wall
interacting with the fluid, while the bottom boundary is a slip wall (axis of
symmetry). Fluid pressure is specified at both inlet and outlet boundaries,
while Neumann boundary condition is used for velocity. Pressure at the
outlet boundary is set to zero while the inlet pressure represents a time-
dependent pulse:

Pinlet(t) =

{
Ppulsesin(πt/tpulse) 0 ≤ t ≤ tpulse
0 t > tpulse

where Ppulse = 2000Pa and tpulse = 0.005s are, respectively, the amplitude
and duration of the pressure pulse.

The deformable wall is modeled using the generalized string model [45]:

ρsh
∂2d

∂t2
− Eh

2(1 + ν)

∂2d

∂x2
+

Eh

1− ν2

d

R2
0

+ α0ρsh
∂d

∂t
− α1Eh

2(1 + ν)

∂3d

∂x2∂t
= q(x, t)

(47)
where the solid density is ρs = 1100kg/m3, the Young modulus E = 7.5 ×
104N/m2, the wall thickness h = 0.1cm, the Poisson ratio is ν = 0.5, and the
damping parameters α0 = 1 and α1 = 0.001. Fluid density and viscosity are
ρf = 1000kg/m3 and µf = 0.0035Pa.s, respectively. The system is at rest at
t = 0 and the simulations are carried out till t = 0.015s.
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Three different spatial and temporal grid resolutions (table 1) are used
to solve the problem, in order to ensure the grid independency of the results.
Fluid mesh is refined near the top boundary (F-S interface) using a hyperbolic
function. The boundary nodes for the fluid mesh coincide with the grid nodes
for the solid domain, thus there is no need for further interpolations between
the domains.

Table 1: Three grid resolutions used for deformable channel case.

Mesh name No. of nodes time step
length height ∆t (s)

coarse 100 20 2e-5
medium 150 30 1e-5

fine 200 40 5e-6

Figure 7 depicts the location of the interface at t = 0.015s, evaluated
using the three grid resolutions mentioned in table 1. As seen in the figure 7,
the results with medium and fine meshes are almost indistinguishable, which
means the mesh convergence is achieved.
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Figure 7: Displacement of the elastic boundary at t = 0.015s, evaluated with different grid
resolutions.

Figure 8 contains contour plots of pressure at three different instants,
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demonstrating the propagation of the wave inside the channel. The deforma-
tion of the channel wall (although small) is also visible in the figure. Despite
the fluid being incompressible, the pressure wave propagates with a finite
velocity, which is an important feature of this problem.

Figure 8: Propagation of pressure wave inside the deformable channel, contour plots of
pressure at t = 0.005s, t = 0.01s and t = 0.015s.

To evaluate the accuracy of the results and verify the presented numerical
methodology, a comparison to other numerical results in [43, 44] has been
carried out. Figure 9 shows the location of the interface at t = 0.015s eval-
uated with the medium mesh and ∆t = 1× 10−5s, together with the results
from Fernandez et al. [43] and Li et al. [44]. As seen in the figure, our results
agree fairly well with those of the other reports. There is a slight difference
between the three sets of results which is acceptable considering they use
different discretizations and FSI coupling techniques. It is worth to mention
that results in [43] are evaluated using a first-order method and a very small
time step ∆t = 1 × 10−6s. Results of simulations with different time step
sizes (and different spatial mesh) are also reported in [43] to show the con-
vergence to a limiting solution (similar to figure 7). These results show that
convergence is achieved at ∆t = 1 × 10−6s and for larger time steps there
is a considerable discrepancy (see section 4.1 in [43]). However, our method
provides time-step-independent results for ∆t = 1 × 10−5s (figure 7). This
fact highlights the advantage of using higher-order methods. Unfortunately
in [44] the time step size for this test case is not mentioned.

To evaluate the temporal accuracy of the method, the problem was solved
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Figure 9: Displacement of the elastic boundary at t = 0.015s, comparison with numerical
results at [43, 44].

with four different time step sizes between 5× 10−5 to 4× 10−4s. Reference
results were generated using ∆t = 5× 10−6s, which is an order of magnitude
smaller than the smallest test time step size. The spatial grid is kept constant
for the analysis. The error for each time step size was evaluated and is
presented in figures 10 and 11. These results demonstrate a clear second-
order temporal accuracy for all the variables of interest, in both L2 and L∞
norms.
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Figure 10: Variation of relative error in the fluid domain by time step size, elastic channel
case. Left: L2 norm; Right: L∞ norm.
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Figure 11: Variation of relative error on the fluid-structure interface by time step size,
elastic channel case. Left: L2 norm; Right: L∞ norm.

4.4. Vortex-induced vibration of a circular cylinder

For this test case, the fluid flow over an elastically-mounted cylinder is solved
in order to study the structural vibration due to the flow vortices. Vortex-
induced vibration (VIV) is an important class of FSI problems with a wide
range application. The cylinder is elastically mounted and it can move as a
rigid-body around its reference position. Due to the vortex-shedding over the
blunt body, the flow exerts an oscillating force on the cylinder, which causes
it to vibrate. Generally, the vortex-shedding over an elastically-mounted
cylinder occurs at the same frequency as for a fixed cylinder (the Strouhal
frequency). However, there is a certain range of Reynolds number where the
vortex-shedding frequency changes to match the natural structural frequency
of the cylinder. This range of Reynolds number is called lock-in region as
the vortex-shedding no longer occurs at the Strouhal frequency, but at the
natural frequency of the solid.

A series of VIV simulations are carried out to numerically reproduce the
experimental results of Anagnostopoulos and Bearman [46]. A rectangular
fluid domain is considered around a circular cylinder with a diameter D.
The size of the domain is chosen based on previous experience of the authors
and guidance from other VIV studies in the literature. Figure 12 depicts the
layout of the domain and the problem setup. The flow enters the domain with
a uniform velocity U∞, while the pressure is set to zero at the outlet. For the
sake of computational efficiency, the ALE formulation and the dynamic mesh
is limited to a circular zone around the cylinder with a diameter of 6D. The
mesh is not moving at the rest of the domain and an Eulerian formulation is
used. The cylinder motion is constrained to the cross-flow direction only, as
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Figure 12: Schematic view of the domain and problem setup for the VIV test case.

The rigid-body motion of the cylinder is modeled as a system of spring
and damper:

m
∂2d

∂t2
+ c

∂d

∂t
+ kd = q(t) (48)

where d = [0, y, 0]T , y being the vertical location of the center of the cylinder.
The cylinder mass is shown by m, c is the damping coefficient, k the spring
stiffness, and q(t) stands for the vertical component of the time-variant forces
exerted on the cylinder by the fluid flow. The natural frequency of the vi-

bration system is fn = 1
2π

√
k
m

. Table 2 shows the definition of the relevant

non-dimensional numbers for this problem and their respective values. All
non-dimensional numbers are equal to those of the experiments [46]. The
Reynolds number varies between 90 to 140 and the associated reduced ve-
locity between 5.01 to 7.80. The variable l in the definition of mass ratio is
the length of the cylinder.

To assess the grid-independency of the results, three different grids are
used to solve the problem at Re=110, which lies in the lock-in zone as seen
later. Table 3 contains the information of the mesh and three representative
values of the results, i.e. the normalized amplitude of the vibrations A∗ =
ymax/D, vortex-shedding frequency f , in non-dimensional form fD/U∞, and
the mean drag coefficient Cd. The mean drag coefficient is the time average
of the instantaneous drag coefficient Cd from t = 1000s until t = 5000s,
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Table 2: Relevant non-dimensional numbers of the VIV problem and their value.

Name Definition Value
Reynolds (Re) ρfU∞D/µf 90-140
Reduced velocity (Ur) U∞/(fnD) 5.01-7.80
Mass ratio ρfD

2l/2m 0.00427

Damping ratio c/2
√
km 0.0012

where a periodic solution exists. The drag coefficient itself is defined as
Cd = FD

1
2
ρfU2

∞D
, where FD is the drag force defined as the x-component of the

total force applied on the solid boundary FD = nx ·
∫

Γ
σfnΓdΓ.

Table 3: mesh-independency of VIV results at Re=110.

Mesh name No. of cells A∗ fD/U∞ Cd
coarse 7195 0.417 0.165 1.43

medium 13685 0.408 0.163 1.53
fine 27091 0.410 0.163 1.56

Results in Table 3 show that the medium and fine grids yield similar
results. We have used the medium mesh to conduct further simulations, for
the sake of both accuracy and computational efficiency. Grid-independence
study at one Reynolds number is sufficient for this test case because the
range of studied Reynolds number is small (90≤ Re ≤140).

Figure 13 demonstrates contour plots for pressure inside the domain at
two different instants while the cylinder is locked-in (Re = 110) and un-
dergoes large-amplitude vibrations. The structure of the wakes and vortices
could be seen at the rear of the cylinder. Results of the simulations for the
range of Reynolds number in table 2 are presented in figure 14, along with
experimental data from [46] and other numerical results from [47, 48, 25].
The compared results are the normalized amplitude of the vibrations (A∗),
and the vortex-shedding frequency divided by the natural frequency of the
structure (f/fn).

It is seen in figure 14 that the lock-in phenomenon is well captured. For
Reynolds numbers Re < 95 and Re > 115 the vortex shedding occurs at the
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.

Figure 13: Contour plots of pressure (color legend in Pa) inside the domain at two instants
while the cylinder undergoes large-amplitude vibration. a: cylinder approximately at
the equilibrium point (y = 0); b: cylinder approximately at the maximum displacement
(y = −0.4D)

Strouhal frequency (frequency of vortex-shedding over a fixed cylinder at the
same Reynolds number). In this range of Reynolds number, the amplitude
of the vibration is small. The lock-in region is at 95 < Re < 115, where
the amplitude of the vibration is significantly larger. In the lock-in zone,
the vortex shedding no longer occurs at the Strouhal frequency, but at the
natural frequency of the cylinder.

Results in figure 14 agree fairly well with the experimental and numerical
results from the literature. Different numerical results in the figure differ
fairly amongst each other, which is due to the use of different numerical
methods and complexity of the problem. Assessing the present results, it is
seen that the predicted amplitude of vibration is smaller than the experiments
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Figure 14: Comparison of the VIV simulation results against experimental and numerical
results from the literature. Up: normalized amplitude of vibration; Down: vortex-shedding
frequency divided by natural frequency of the cylinder.

but similar to other numerical results. Moreover, there is a slight shift of the
location of the lock-in zone, i. e. numerical lock-in region starts and ends
at lower Reynolds numbers than its experimental counterpart. This shift is
seen in other numerical results as well [47, 48, 25]. The discrepancies may
originate from the 3D effects in the experiments, as also noted in [47]. In
the experimental study, the authors mention that no end plates were used
on the cylinder [46]. This would possibly introduce some 3-D effects that a
2-D simulation like the current work is not able to capture. Moreover, the
Reynolds number is close to the region of transition to 3-D (transition to
3-D occurs at about Re=180 for a fixed cylinder). Therefore, it is possible
that the Reynolds number locally exceeded the transition range and some
3-D effects were introduced.

Similar to the previous test cases, we have used four time step sizes,
ranging from 8×10−3 to 1×10−3s, and a much smaller time step of 1×10−4s
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for the reference results. The variation of the error by time step size is
presented in figures 15 and 16. These results are similar to the previous test
cases and further confirm the second-order accuracy of the method.
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Figure 15: Variation of relative error in the fluid domain by time step size, VIV case. Left:
L2 norm; Right: L∞ norm.
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Figure 16: Variation of relative error on the fluid-structure interface by time step size,
VIV case. Left: L2 norm; Right: L∞ norm.

5. CONCLUSIONS

A second-order semi-implicit method for partitioned solution of fluid-structure
interaction problems is proposed. The method uses a second-order projection
method to solve the fluid equations and also as a framework for the FSI cou-
pling. The fluid pressure term is effectively segregated using the projection
method and is strongly coupled to the structure via Newton iterations. Im-
plicit treatment of the fluid pressure provides for the stability of the method
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for FSI problems with strong added-mass effect. The remaining fluid terms
and the geometrical nonlinearities (moving mesh) are treated explicitly and
thus evaluated only once per time step.

An ALE formulation with a conforming mesh technique is used to solve
the fluid flow in a moving domain. A dynamic mesh technique based on
radial basis function interpolation method is used to adapt the fluid mesh
to the structural displacement. The geometrical terms arisen from the ALE
formulation are evaluated with a second-order temporal accuracy. Consistent
boundary conditions are developed for the intermediary fields encountered
when solving the fluid equations with a projection method. Particular atten-
tion is paid to second-order accuracy of the fluid pressure up to the moving
boundary.

Second-order accuracy of the method for fully coupled non-linear FSI
problems is demonstrated through rigorous numerical tests. Three FSI test
cases are considered, including internal flow contained by a deformable mem-
brane, external flow over an elastically-mounted blunt body, and cavity flow
with deformable bottom wall. Simulation results are validated against exper-
imental and numerical results from the literature. Different time step sizes
are used to solve the problems and the error is evaluated with respect to
a reference numerical solution. Second-order temporal accuracy for all the
variables of interest (fluid velocity and pressure, and structural displacement)
is clearly demonstrated.
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7. Appendix 1. Integral form of the equations and the spatial
discretization

In the paper the governing equations are presented in their differential
form and the semi-discretization of the equations in time is described, in-
dependent of the choice for discretization in space. This time-discretized
equations could then be used with different spatial discretizations. For the
sake of completeness, the spatial discretization method used in this work and
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the integral form of the conservation equations are described here. We only
explain the discretization for the fluid equations in ALE form, as the struc-
tural equations are used in their standard Lagrangian form. This annex is
complementary to the main text and follows the same notation and nomen-
clature. The subscript f used in the main text to refer to the fluid properties
is dropped here (e.g. ρf in the main text is simply shown by ρ here).

We use a finite-volume method with collocated mesh arrangement for
space discretization. This method is based on the discretization of the com-
putational domain into a finite number of non-overlapping control volumes
(CVs). Each CV has an associated grid node P located at its centroid where
the equations are solved. Each CV has a volume v, surrounded by a control
surface s, which consists of an arbitrary number of well-defined neighbouring
faces. Quantities associated to a grid node (or cell center) are indicated by
capital subscripts (e.g. P or N), while the values at the faces are indicated by
lower-case subscripts (e.g. pn to refer to the face located between cell nodes
P and N). The area vector of a face is referred to as Apn (Apn = Apnnpn
where Apn is the surface area of the face and npn is the normal vector point-
ing outwards). In this work we use an ALE method on a moving mesh which
means the shape and volume of the CVs are varying in time (v = v(t) and
s = s(t)). Therefore, the equations of conservation of mass and momentum
are integrated over time-varying CVs. The integral form of the governing
equations are as follows:

d

dt

∫
v

ρdv +

∫
s

ρ(u−w) · dA = 0 (49)

d

dt

∫
v

ρudv +

∫
s

ρu(u−w) · dA =

∫
s

σ · dA (50)

The time change of the CV is taken into account in both mass and momen-
tum equations. The change of volume of each CV is present in the transient
terms (first term in both equations) while the movement of the surface of
the CV is reflected as additional mass and momentum fluxes (second term
in both equations).

This set of equations have an extra unknown which is the velocity of
the domain (w). Another conservation law to close the system is the space
conservation law (see section 3.3), which guarantees the conservation of space
(volume) in the moving domain:
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d

dt

∫
v

dv −
∫
s

w · dA = 0 (51)

Comparing Eq. (49) and (51) (and assuming incompressibility) we realize
that the equation of conservation of mass on the moving domain is identical
to that equation in a fixed domain:∫

s

ρu · dA =
∑
pn∈s

ṁpn = 0 (52)

where ṁpn is the mass flux at the face pn and the summation
∑

pn∈s is over all
the faces of the CV. Surface integrals at the faces are approximated using the
mid-point rule, evaluating the mass flux at a given face as ṁpn = ρpnupn ·Apn,
where the density and velocity are evaluated at the centroid of the face (here,
the density is constant as we consider incompressible flow).

The momentum equation is solved using a projection method as described
in section 3.1 (Eq. (12)–(16)). The ALE convection-diffusion equation for the
predicted velocity field is discretized in time using the second-order method
in Eq. (12). In the finite volume method used in this work, the volume
integrals are evaluated at their own associated time levels:

1

∆t
(

∫
vn+1

ρu∗dv −
∫
vn
ρundv) =

−[
3

2

∫
sn
ρun(un −wn) · dA− 1

2

∫
sn−1

ρun−1(un−1 −wn−1) · dA]

+
µ

2
(

∫
sn+1

∇u∗ · dA +

∫
sn
∇un · dA)−

∫
sn−1/2

pn−1/2dA

(53)

which is a consistent second-order discretization of the ALE convective-
diffusive equation on a moving mesh. The intermediate mesh sn−1/2 for the
pressure term is obtained as an average between sn and sn−1:

∫
sn−1/2

pn−1/2dA =
∑
pn∈s

pn−1/2
pn An−1/2

pn =
∑
pn∈s

1

2
pn−1/2
pn (An

pn + An−1
pn ) (54)
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The convective term is evaluated as some of the fluxes on the faces:∫
s

ρu(u−w) · dA =
∑
pn∈s

(ṁpn − ṁmeshpn)upn (55)

where ṁmeshpn refers to the additional mass flux due to the movement of the
face:

ṁmeshpn = ρpnwpn ·Apn (56)

which will be evaluated using the space conservation law. The velocity on the
face centroid to evaluate the mass flux is obtained using a distance-weighted
average between the velocities at the grid nodes on either side of the face:

ṁpn = ρ
uNδxP + uP δxN
δxP + δxN

·Apn (57)

where δxP and δxN are the distance between the face centroid and the grid
nodes P and N , respectively. The convected velocity on the face is evaluated
using a symmetry-preserving scheme which is a non-weighted central scheme

upn =
uP + uN

2
(58)

as in [49, 50]. The diffusive term is also evaluated on the faces as:∫
s

∇u · dA =
∑
pn∈s

∇upn ·Apn (59)

and the gradients are evaluated using the neighbouring grid node values.
The approximations in equations (57)–(59) and their relation with the overall
discretization are similar to the case of a constant domain problem (Eulerian
form) and are described in more details in our previous works [50, 51].

The space conservation law (Eq. (51)) is used to evaluate the additional
fluxes due to the mesh velocity in order to be used in the momentum equation
(Eq. (50), (53) and (55)). In the discretized form, the change of volume of
the CV could be represented by the sum of the volumes swept by the faces
of that CV. A first-order discretization of this equation reads:

vn+1 − vn

∆t
=
∑
pn∈s

δvn+1
pn

∆t
(60)
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which is used, for example, in [17, 20]. In this equation δvn+1
pn indicates the

volume swept by the face pn (as in figure 1). Thus, the additional flux in

the momentum equation could be approximated as ṁn+1
meshpn

= ρ
δvn+1

pn

∆t
, which

is first-order in time (see e.g. [17, 20]).

Alternatively, a second-order discretization of this equation is used in the
current work:

3vn+1 − 4vn + vn−1

2∆t
=
∑
pn∈s

3δvn+1
pn − δvnpn

2∆t
(61)

which uses the information of the swept volume by face pn in the two consec-
utive time steps to obtain second-order accuracy. Thus, the additional flux
in the momentum equation is approximated by

ṁn+1
meshpn

= ρ
3δvn+1

pn − δvnpn
2∆t

(62)

to be used in Eq. (55).
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