

Technische Universität München
Lehrstuhl für Kommunikationsnetze

Prof. Dr.-Ing. Wolfgang Kellerer

Master’s Thesis
Backward Compatible Multi-Path Routing

Author: Miñano Belvis, Víctor
Matriculation Number: 03714016
Supervisors: Babarczi, Péter
 Casademont, Jordi
Begin: 30. October 2018
End: 30. April 2019

 ii

With my signature below, I assert that the work in this thesis has been composed by
myself independently and no source materials or aids other than those mentioned in the
thesis have been used.

München, 30.04.2019
------------------------------- -------------------------------
 Place, Date Signature

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of the license, visit http://creativecommons.org/licenses/by/3.0/de

Or

Send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California 94105, USA.

München, 30.04.2019
------------------------------- -------------------------------
 Place, Date Signature

 iii

Abstract
This project studies the behaviour of multipath routing compared to single path routing
in order to demonstrate the different benefits that multipath offers.

For this purpose, it have been implemented routers that have 2 routing tables with the
capability of storing in one these routing tables the primary next hop for a destination
through the shortest path which is calculated by the Open Shortest Path First (OSPF)
algorithm, as well as storing a secondary next hop calculated by the Ideal Multipath
Routing Expedient (IMRE) algorithm in order to have different paths for the same
destination. Besides matching on the destination address, the routers select between the
primary and secondary tables based on the Time To Live (TTL) field of the IP header.
The end-system can change the forwarding path immediately upon it senses the
degradation of the current path by sending the packets with a different TTL value,
without waiting for the slow convergence of OSPF to the changed topology.

This multipath behaviour is measured for 3 different use cases. First use case measures
the throughput and transmission time when transmitting a file in an ideal scenario where
there are no other transmissions at the same time. Second use case performs the
measurements for the same transmission as before but when there is a transmission that
makes 2 links of the shortest path to be overloaded in order to check the load balancing
capability of multipath routing. Finally, the third use case studies the behaviour of
multipath routing when there is a failure in a link during the transmission and checks
its failure resilience characteristic.

Furthermore, I have studied the paths provided by the IMRE algorithm with a specific
TTL match rule. I have demonstrated that in this architecture some TTLs might result
in loops, hence, the set of available TTLs for the end-system has to be selected with
care.

 iv

Contents
Chapter 1 . Introduction .. 6

Chapter 2 . Background .. 8

2.1. State-of-the-art ... 8

2.2. Protocols used .. 10

2.3. Software used ... 12

Chapter 3 . Implementation .. 19

3.1. Routers’ behaviour ... 19

3.2. Creating the Docker images ... 20

3.3. First topology ... 23

3.4. TCP scripts ... 31

3.5. Abilene topology .. 39

Chapter 4 . Results ... 42

4.1. Use cases results ... 42

4.2. Issues with the routing algorithm ... 51

Chapter 5 . Conclusions ... 56

5.1. Conclusions about the measurements .. 56

5.2. Conclusions about the loops in the paths ... 57

5.3. Future work .. 57

Appendix A. Multi-socket-TCP sender code ... 59

Appendix B. Multi-socket-TCP receiver code ... 65

Appendix C. Paths from “ubuntu-1” to “ubuntu-2” in Abilene topology 71

Appendix D. Paths from “ubuntu-2” to “ubuntu-1” in Abilene topology 74

List of Figures ... 78

List of Tables .. 80

 v

Abbreviations ... 81

Bibliography ... 82

Chapter 1. Introduction

 6

Chapter 1.

Introduction

The traffic on the Internet is increasing more and more every year and thus, applications
demand for more and more improvements in the way the data is exchanged between
end-users. Multipath can improve this by using the different available paths in the
network in the most efficient way. Many networked applications can take benefit of
having access to multiple paths between end-users.

Multipath allows the transmission between two end-users to be carried out through
different paths at the same time, and thus, making use of the whole capacity of the
network. Multipath routing offers many advantages such as load balancing, failure
resilience and better transmission throughput since it can be used the whole capacity of
the network. However, in practice these carrier networks are not widely deployed
because they could need architectural changes such as the application of shim headers,
the deployment of middleboxes, and hence, the lack of backwards compatibility.

Nowadays, routing protocols are deployed to perform single path routing. In this type
of routing, the routers store in their routing tables the next hop to reach a destination.
However, the connection between two end-users may present different paths. By using
these single path routing protocols, the whole transmission between two end-users will
be carried out through the same path and ignore the others.

The aim of this project is to design an architecture with the ability to perform multipath
routing. This architecture has to remain compatible with single path and thus, keeping
the backwards compatibility. For this purpose, it is going to be developed and
implemented a multipath routing architecture by extending the Open Shortest Path First
(OSPF) protocol with the ability to choose between two next hops based on the value
of the Time To Live (TTL) value of the IP header.

The idea is to design a router with the ability of having two routing tables with different
next hops to the same destination, and implement the corresponding forwarding rules
in order to forward an entering packet through the corresponding path depending on the
TTL value of the IP header.

Furthermore, it is also necessary to programme a script that has to be run in the end-
users and has to perform this multipath behaviour in order to check all the benefits

Chapter 1. Introduction

 7

previously said. As the end-users are the ones that choose the TTL value, by
implementing this architecture, it is also given more freedom to the end-user.

In Chapter 2 it is explained the background of the project. It is explained the state of
the art of this topic, as well as the software used for the implementation.

In Chapter 3 all the implementation process is described in detail and the steps followed
to reach the final architecture. Furthermore, it is also explained how the multipath script
has been programmed and how it works. This script has also to perform the
measurements of the network.

In Chapter 4 all the results of the measurements are shown and commented in order to
demonstrate the benefits of multipath.

Finally, in Chapter 5 it is given the conclusions of the project and the future work.

Chapter 2. Background

 8

Chapter 2.

Background

In this chapter is explained the state-of-the-art of the multipath topic and different
important investigations that have been done so far. Furthermore, it is also explained
the way the multipath architecture of this project is going to be carried out, as well as
the most important protocols and the software used.

2.1. State-of-the-art
Although multipath routing offers many benefits such as load balancing, failure
resilience and better throughput, it is not widely deployed since it can present scalability
problems and the lack of backwards compatibility.

However, there are many researches that have study the multipath behaviour for
different applications and in different ways [1][2][3][4][7]. Among these works, I am
going to highlight 2 of them, which I considered an important baseline for this project.

2.1.1 Deflection routing [1]

In this research the authors’ approach is to build an architecture where end-devices set
tags to select a path different from the shortest path. Their goal is to find a design that
provides the benefit of the source routing but that addresses their associated problems.

In their approach it is not necessary for the end-user to specify which route to take. The
end-user just has to be provided by a small number of possible paths and then it can
select one among them. The end-users can then test different paths without knowing
the routes to which they correspond.

Their approach is based on deflection routing in which routers forward packets off the
shortest path when this path is not available. Routers generate these routes by using tags
as hints to deflect the packets to neighbours that are not in the shortest path.

The result of their work is to provide end-systems with a high level of path diversity
that allows them to avoid undesirable locations within the networks. This scheme is

Chapter 2. Background

 9

scalable and compatible with Internet Service Providers (ISP) policies because it
derives from the deployed internet routing.

They make two contributions. The first one is the use of end-system tags to select path
diversity. The second one is the design of routing deflections.

2.1.2 Dynamic Route Computation Considered Harmful [2]

This work sets out a different approach to reduce routing convergence. The authors
assume that changes in the topology are less frequent than changes in the status of a
link. They aim to separate the routing computation from the failure handling.

They propose computing paths on the deployed topology. As they assume that the
changes in the topology are much less frequent than changes in the link state, there can
be calculated a great variety of routes and thus, they assume that the number of
alternative routes calculated is enough to mask failures. When there is a failure in a link
(the link state changes to down), the packets can be sent through another path that is
not affected by the failure.

Their approach relies on conventional mechanisms to perform packet forwarding, but
decouples the route selection process from routers. This means that the route selection
process is performed in the end-hosts by just changing some bits of the header. End-
devices have to implement application-level failure recovery. They also have to detect
endpoint-based failure. To select the path they monitor the availability and quality of
paths and use this to inform their choice.

2.1.3 Conclusions

I wanted to detail these papers since I think both have some important clues for my final
architecture. They both propose a system where it is given freedom to the end-user since
it is able to decide which path select among different paths. This path selection is made
by simply changing some bits of the header or by using tags.

In my approach I am going to use this principle to design a scalable architecture. I am
going to let the end-user to select the path(s) to transmit the data by just changing the
TTL value of the IP header.

Another important clue extracted from the papers is that they both propose calculating
the different paths from the already-calculated shortest path.

In my design, I am going to use a software that provides the Open Shortest Path First
(OSPF) algorithm to calculate the shortest path. This shortest path will be the primary
path for every router. The secondary path will be calculated based on this shortest path
by using another algorithm called Ideal Multipath Routing Expedient (IMRE)
algorithm.

Chapter 2. Background

 10

With these two mechanisms: the selection of the path depending on the TTL value and
the way of calculating the different paths, my architecture will be scalable and
backwards compatible.

2.2. Protocols used
In the introduction of the project, as well as in the state-of-the-art part, I have mention
two important protocols that I am going to use throughout this thesis and I consider
important to explain.

2.2.1 Transmission Control Protocol (TCP)

The most used protocol on the Internet is TCP. TCP is a connection oriented protocol.
It uses flow and error control mechanisms at transport layer and thus, it is a reliable
transport protocol.

TCP ensures that the data will reach the destination without errors. Additionally, it also
ensures that the data sent is received in the same order that it was transmitted. TCP uses
IP addresses and port numbers to identify to which connection the payload belongs to.
TCP also permits monitoring the data flow in order to avoid the saturation of the
network.

2.2.1.1 Control plane

TCP splits the byte stream sent in smaller segments and transmits them over the
underlying IP protocol. The IP header has the source and destination IP addresses. In
order to identify to which connection the payload belongs to, apart from the IP
addresses, it is also necessary to use source and destination port numbers.

In order to establish a TCP connection, the hosts go through the 3-way handshake which
is a three-step method that requires both hosts to exchange SYN and ACK packets
before the data is started to be sent.

The 3-way handshake works in the following way:

• The client sends a SYN data packet to the server
• The server must have open ports that can accept and initiate new connections.

When it receives the SYN packet, it answers by sending a SYN/ACK packet
• Finally, the client responds with an ACK packet

After this procedure, the connection is established, and the data can be transmitted.

When the data transmission is completed and the client wants to close the connection,
it sends a segment with the FIN flag enabled and enters in a FIN-WAIT state. While
the client device is in FIN-WAIT state, it can continue receiving and processing data

Chapter 2. Background

 11

from the server device, but it does not send more data. When the server also finishes its
transmission, it also sends the segment with the FIN flag enabled. The client then replies
with an ACK and both devices finish the connection.

Figure 2.1 shows all this TCP procedure from establishing the connection, the data
transmission, and the end of the connection.

Figure 2.1. TCP connection

2.2.1.2 Data plane

TCP assigns a sequence number to each byte of the data stream in order to ensure the
reliable and in-order delivery of the byte stream. The sequence number is included
inside the TCP header. To allow the reliable transmission, the receiver sends
acknowledgments back to the sender. These acknowledgements specify the following
sequence number that the receiver is expecting to receive.

TCP also has a congestion window which dynamically adapts the sending rate of a TCP
connection in order to use the whole capacity of the network. In each TCP segment, the
receiver specifies the amount of bytes that can store in its buffer for that connection.

2.2.2 Open Shortest Path First (OSPF) Protocol

OSPF a link-state routing protocol described in RFC 2328. It uses the Dijkstra algorithm
to calculate the shortest path between 2 nodes. It uses the “cost” as the metric value
which takes into account different parameters such as the bandwidth and link
congestion. OSPF builds a link state data base (LSDB) identical for all the routers in
the same area.

Chapter 2. Background

 12

Some of the most important characteristics of OSPF are the following:

• It is a classless protocol. This means that supports Variable Length Subnet Mask
(VLSM) and Classless Inter-Domain Routing (CIDR).

• It has a fast convergence since it quickly propagates network changes.
• It is scalable. It works well in small, as well as in large network sizes. It supports

a hierarchical system since routers can be grouped into areas
• It is secure. It supports Message Digest 5 (MD5) authentication. When this

feature is enabled, the routers only accept encrypted routing updates from the
routers with the same pre-shared password

2.2.3 Conclusions

TCP protocol has been chosen for the architecture because it is needed a reliable
protocol for the transmission in order to preserve the integrity of the file transmitted.

OSPF protocol has to be used because the IMRE algorithm reads the OSPF LSDB in
order to have a global view of the topology and calculate the secondary paths. The
IMRE algorithm is explained in Section 2.3.5.

2.3. Software used
In this section it is explained the software utilised to carry out the project.

2.3.1 GNS3

The software employed to simulate the topologies is GNS3 (Graphical Network
Simulation 3). GNS3 is an open source, free network software emulator which is used
to emulate, configure, test and troubleshoot virtual and real networks.

Last versions of GNS3 support devices from multiple network vendors such as Cisco
virtual switches, Cisco ASAs, Brocade vRouters, Cumulus Linux switches, Docker
instances, HPE VSRs, multiple Linux appliances and many others [9]. Furthermore,
GNS3 offers no limitation on the number of devices supported. The only possible
limitations are in the CPU and memory of the hardware that runs it.

GNS3 emulates the hardware of a device and runs real images in the virtual device, so
it can be used to design complex networks and do simulations about them. Since it runs
real images, it is necessary to have the images of the devices to be simulated.

GNS3 offers on his official website different appliances that have and already
configured image and can be used to emulate a device.

Chapter 2. Background

 13

For the realization of this project it is needed an image for the routers and another image
for the hosts.

2.3.1.1 GNS3 Architecture

GNS3 consists of two software components [10]:

• Client part: The GNS3-all-in-one software (GUI)
• Server part: The GNS3 virtual machine (VM)

The GNS3-all-in-one is the graphical user interface (GUI) where the topologies can be
created.
When the topologies are created, the devices are hosted and run by a server process.
The options for the server part are the following:

• Local GNS3 server: run on the same PC where the GUI is installed.
• Local GNS3 VM: run on the same PC using virtualization software such as

VMware or Virtualbox.
• Remote GNS3 VM: run remotely using VMware ESXi or in the cloud.

For this project I chose to host the devices on the GNS3 VM using VMware which is
the recommended option.

2.3.2 Docker

Docker is an open platform that can be used for developing, shipping and running
applications by using containers. Containers offer so many benefits since they are
flexible, lightweight, interchangeable, portable, scalable and stackable. Containers are
run directly in the kernel of the host by running an image [11].

An image is a read-only template with instructions for creating a container. To build an
image it is necessary to create a file called Dockerfile which contains a simple syntax
for defining the steps to create the image with the necessary packages and run it.

A container is a runnable instance of an image. By using the Docker API or the CLI, a
container can be created, started, stopped, moved, or deleted. When a container is
deleted, all the changes that have been performed in it disappear. Therefore, when you
want to make the changes permanent, you have to save the container into an image
which can be run again in another container.

In this project, the images needed to be run using the containers are two: one for the
hosts and other for the routers.

Chapter 2. Background

 14

2.3.3 iptables

“iptables” is a command line utility used to configure the Linux kernel firewall.
“iptables” can be used to inspect, modify, forward, redirect, or drop IP packets. It can
be used to modify and mark the packets and thus, affecting packet forwarding.

“iptables” contains five built-in tables: raw, filter nat, mangle, security. Each table
contains a number of chains. The chains contain rules that specify the corresponding
action that has to be performed with a packet that matches.

With “iptables” command, the user can modify these chains and rules. Therefore, this
is an important feature to modify the routers behavior.

When a packet is received on any of the interfaces, it goes through the chains of the
tables. The order that the packet follow is show in Figure 2.2. [12].

Figure 2.2. iptables routing and packet filtering process [12]

Chapter 2. Background

 15

2.3.3.1 Chains

There are five built-in chains [13]:

• PREROUTING: for altering packets in the moment they arrive before making
any routing decisions.

• INPUT: for altering packets that are destined to local sockets.
• OUTPUT: for altering packets that are generated locally.
• FORWARD: for altering packets that are routed through the box.
• POSTROUTING: for altering packets that go into the network after all routing

decisions have been made.

Despite these are built-in chains, the user can also create their own chains.

2.3.3.2 Tables

The built-in tables that iptables contain are listed below. The built-in chains that each
table contain are also given [13].

• raw table: raw table filters the packets before any other table. It is used mainly
to configure the exemptions from connection tracking. The built-in chains it
contains are: PREROUTING and OUTPUT.

• filter table: it is the default table. The built-in chains it contains are: INPUT,

FORWARD and OUTPUT.

• nat table: it is used for network address translation. The built-in chains it
contains are: PREROUTING, INPUT, OUTPUT and POSTROUTING.

• mangle table: it is used for special alterations of packets. The built-in chains it

contains are: PREROUTING, OUTPUT, INPUT, FORWARD and
POSTROUTING.

• security table: it is used for Mandatory Access Control (MAC) networking

rules. This table is called after the filter table. The built-in chains it contains are:
INPUT, OUTPUT and FORWARD.

2.3.4 FRR (Free Range Routing)

FRR is a routing software package for Linux and Unix platforms. It is similar to
Quagga, but contains several extensions to provide the best routing protocol stack
available. It provides TCP/IP based routing services with support for routing protocols
such as BGP, IS-IS, LDP, OSPF, PIM, and RIP.

A device with FRR installed acts as a dedicated router. It offers an interactive user
interface for each routing protocol and supports common client commands. There are

Chapter 2. Background

 16

two user modes: the normal mode and the enable mode. In normal mode the user can
only view system status, whereas in enable mode the user can change the system
configuration.

2.3.4.1 FRR architecture

FRR is a suite of daemons that work together to build the routing table. There is a
daemon for each routing protocol. Besides there is another daemon called Zebra which
acts as an intermediary between the other daemons and the kernel. Figure 2.3 shows the
FRR architecture.

Since each daemon runs independently, if there is a failure in a daemon, it does not
affect the others. Therefore, the FRR architecture allows high resiliency and flexibility.
This modularity makes it easy to implement new protocols, so it is also extensible.

All these daemons can be managed through an user interface called “vtysh” which also
provides the ability to configure all the daemons by using a single configuration file.

Figure 2.3. FRR architecture [14]

2.3.4.2 OSPF daemon

As previously said, OSPF is a link-state routing protocol described in RFC 2328. ospfd
(OSPF daemon) must get the information from zebra, therefore, zebra must be running
before invoking ospfd. The ospfd configuration is done in the configuration file
“ospfd.conf”.

2.3.4.3 OSPF API

OSPF API is contained in the OSPF daemon. It provides retrieval of the link-state
database (LSDB) of the OSPF daemon by allowing external application to obtain a copy
of this database which includes router and network link-state advertisements (LSAs).
When a new LSA arrives at the OSPF daemon, the application is informed by the API

Chapter 2. Background

 17

module by sending a message and thus, the application is always synchronized with the
LSDB.

OSPF API also allows the origination of own opaque LSAs which are distributed in a
transparent way to the other routers.

OSPF API architecture

Figure 2.4 shows the OSPF API architecture. The OSPF core module executes the
OSPF protocol which discovers neighbours and exchange neighbour state. The opaque
module allows the exchange of opaque LSAs between routers. These opaque LSAs can
be generated by modules like MPLS-TE module or the API server module. The API
server module listens to connections from external applications that want to
communicate with the OSPF daemon and can handle multiple clients at the same time.

The client external application links against the OSPF API client library which
establishes a socket connection with the API server module and uses this connection to
get the LSAs and originate opaque LSAs.

Figure 2.4. OSPF API architecture [15]

2.3.5 IMRE algorithm

All the information about the IMRE algorithm is extracted from [5]. IMRE is a
labelling-based routing scheme. One of its most important features is that is compatible
with existing link-state routing protocols such as OSPF. It offers alternative paths as
short as possible to a destination host. It uses the TTL field of the IP header to label the
packets that are going to be sent through one path or the another.

Having multiple paths to reach a destination has benefits such as more reliable
connection, better utilization of the network and providing connections with different

Chapter 2. Background

 18

properties. On the other hand, it presents the disadvantage of requiring more routing
table entries and computing power.

IMRE retrieves the LSDB information of the OSPF daemon of FRR through the OSPF
API client. With this information it has a global view of the topology and the shortest
paths calculated by the OSPF daemon which are stored in the routers. Making use of
this information it executes the algorithm in order to calculate the following shortest
path. Then the OSPF shortest path is stored in a primary routing table of the routers,
and the following shortest path calculated by the IMRE algorithm is stored in a
secondary routing table of the routers.

Chapter 3. Implementation

 19

Chapter 3.

Implementation

In this chapter all the steps to configure the software and build the topology are
explained.

3.1. Routers’ behaviour
The most important thing for the topology to work in the desired way, is the routers’
behaviour. Routers are in charge of storing the routing tables and taking the forwarding
decisions.

Figure 3.1 shows the global view of how the routers should work. This figure is based
on a figure of [5], but it has been slightly modified in order to adapt it to this project.

Figure 3.1. Global view of router behaviour [5]

First of all, 2 additional routing tables are added to each router. These routing tables are
“imreprime” and imresec”. Afterwards, the rules for marking the packets are created
with the command “iptables”. Then the forwarding rules depending on the mark of the
packet are created with the command “ip rule”.

Chapter 3. Implementation

 20

The FRR block executes the OSPF algorithm to calculate the shortest path. It also has
a global view of the protocol area. As all the routers in the topology that I am going to
create are going to be in the same area, each router is going to have a global view of the
topology.

The IMRE block, reads the OSPF daemon LSDB through the OSPF API that FRR
offers. It stores the shortest path calculated by the OSPF daemon into the “imreprime”
routing table of the router. Furthermore, it calculates the following shortest path to the
same destination, and stores this secondary next hop it in the “imresec” routing table of
the router.

With all this configuration, when a packet enters in the router, it examines its TTL value
and marks the packet with the corresponding value. Then the router checks the next hop
in “imresec” or “imreprime” depending on the mark of the packet. Finally, it forwards
the packet to the corresponding next hop.

As said in Chapter 2, this router configuration, as well as the whole design of the
topology, is going to be performed with the GNS3 software. By using this software, I
am going to build the topology, emulate the devices and obtain the results is GNS3.

Therefore, the first step is to install both GNS3 and the GNS3 VM. They both can be
downloaded from the GNS3 official webpage.

The way I implemented all this procedure is explained in the next sections.

3.2. Creating the Docker images
Before being able to build the topologies, it is necessary to create the device images.
GNS3 offers in its webpage different appliances of devices that can be used.
Unfortunately, I found it challenging to install in them the rest of the software needed.
Due to these limitations I decided not to use these appliances, but to make my own
images.

A good solution that I found is to create Docker images and run them in the Docker
containers.

The first step to create Docker images is to create a file called “Dockerfile” which
contains all commands needed to build the image. Docker builds the image by reading
the instructions from this file.

When creating a Docker image, all the packages to be installed can be defined in the
“Dockerfile”. Packages can be also installed after creating the image, but there must be
created a copy of this new image if you want the new packages to remain and do not be
lost when stopping the container.

Chapter 3. Implementation

 21

3.2.1 Docker image for hosts

In order to build the Docker image for the hosts, I added the basic needed packages in
the “Dockerfile”. These packages include the commands for testing or changing the
routing rules.

The content of the “Dockerfile” I used to create the images is the following:

FROM ubuntu:14.04
RUN apt-get update && apt-get install -y nmap \
 sudo psmisc nano wget lsb \
 net-tools iputils-ping iproute2 iptables udhcpc ethtool

As it can be seen, the image will have the Operating System (OS) Ubuntu 14.04. I chose
this OS because it is easy to install FRR on it and all the necessary packages can be
installed on it.

The networking packages installed are the following:

• net-tools: needed to assign the IP addresses to the interfaces, as well as adding
the routes,

• iputils-ping: needed to test the connection from one device to other,
• iproute2: package needed to add the routes and the rules for marking the

packets,
• iptables: needed for the forwarding rules,
• udhcpc: it is useful to assing automatically an IP address to an interface,
• ethtool: useful to check the link speed.

When having created the “Dockerfile”, next step is to build the image by running the
following command:

 docker build [OPTIONS] PATH | URL | -

And in this case:

sudo docker build -t ubuntu .

Where “-t” option allows you to add a name for the image. In this case I chose the name
“ubuntu” since it is the OS chosen for the image. The point at the end of the command
indicates the path where the “Dockerfile” is. In this case I run the command in the
location where actually the file was.

Once the image is created, it can be added to GNS3 and will be available for building
the topologies.

Chapter 3. Implementation

 22

3.2.2 Docker image for routers

The router image has to include the same packages as the host image but, in addition,
it has to include the FRR software and the IMRE algorithm. So, taking as a base image
the one previously created, both FRR and IMRE have to be installed and saved a new
copy of the new image with FRR installed.

To run the image in a new container it has to be executed the following command:

 docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

And in this case:

 docker run -i -t ubuntu:latest /bin/bash

Where “-i” option makes the image run in interactive mode, and “-t” option allocates a
pseudo-TTY. “ubuntu:latest” is the image created for the host where “latest” is a tag
that indicates that it has to run the latest version created for that image name.

3.2.2.1 FRR and IMRE installation

As said in Chapter 2, IMRE algorithm gets the LSDB information of the OSPF daemon
of FRR through the OSPF API client. For this purpose, IMRE uses the FRR original
files that can be downloaded from the FRR official webpage Error! Reference source n
ot found., but with a modified “ospfclient” file used to access the needed information.

Therefore, to install both FRR and IMRE it is necessary the FRR files with the modified
“ospfclient” file, as well as, the files that contain the IMRE algorithm.

To copy files or directories from the GNS3 VM to a container or vice versa, it can be
used the “docker cp” command:

 docker cp [OPTIONS] CONTAINER:SRC_PATH DEST_PATH|-

docker cp [OPTIONS] SRC_PATH|- CONTAINER:DEST_PATH

Where “CONTAINER” is the identification number of the container. To check the
identification number of the containers that are running, it can be used the “docker ps”
command.

When the container has the required files, the following step is to install FRR. It can be
followed the steps that are indicated on its webpage. Once FRR is installed, the router
is prepared to act as a dedicated router with the FRR and IMRE capabilities.

Next step is to store this new configuration into a new Docket image using the “docket
commit” command:

 docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]

Chapter 3. Implementation

 23

Where “CONTAINER” is the container id that you want to store in a new image.
“REPOSITORY” is the name for this new image. In this case, I chose the name “frr-
ubuntu” for this router image.

Now this image can be also added to GNS3 and thus, we have one “ubuntu” image for
hosts and one “frr-ubuntu” image for routers.

3.3. First topology

First of all, I decided to create a simple topology with 3 routers and 2 hosts. The
objective of building such a simple topology is to check if FRR and IMRE work
properly. Another aim is to install the forwarding rules in the routers with “iptables”
and check if the packets follow its corresponding path depending on its TTL value.

The tasks for this aim are the following:

• Create the simple topology with 3 routers and 2 hosts.
• Add 2 new routing tables in the routers: primary and secondary.
• Introduce the forwarding rules [8].
• Run FRR and IMRE in the routers.
• Check that the paths stored in the routers are correct.
• Study the behaviour of the topology.

The topology designed can be seen in Figure 3.2.

Figure 3.2. Simple topology

Once the topology is created, next step is to add the routing tables. The routing tables
have to be added to the file “rt_tables” which is in the path “/etc/iproute2/rt_tables”. As
IMRE suggests, the primary routing table is “imreprime” and the secondary routing
table is “imresec”:

 echo 15 imresec >> /etc/iproute2/rt_tables
 echo 10 imreprime >> /etc/iproute2/rt_tables

Chapter 3. Implementation

 24

Next step is setting the forwarding rules. I used the forwarding rules that IMRE
suggests. These rules have been created on the “mangle” table of the “PREROUTING”
chain and indicate that when the packet TTL value is “1***000”, where * can be 0 or
1, are marked with value “1”, and marked with value “2” in the rest of cases. Packets
marked with value “1” must follow the secondary routing table, whereas packets
marked with value “2” must follow the primary routing table. Table 3.1 shows this
behaviour. The TTL of the packets that match the matching rule, and are forwarded
through the secondary path, is decreased by a constant

Destination	 TTL	 Mark	 Action	
r 1 *** 0000 1 Forward to imresec; TTL- Constant
r * *** **** 2 Forward to imreprime; TTL- -

Table 3.1. Forwarding rules

And hence, the TTL values that match these forwarding rules are the ones shown in
Table 3.2. The binary digits represented in red are the ones that change.

Binary	value	 Decimal	value	
1000 0000 128
1001 0000 144
1010 0000 160
1011 0000 176
1100 0000 192
1101 0000 208
1110 0000 224
1100 0000 240

Table 3.2. Matching TTL values

To add the matching rules to mark the packets I used “iptables”:

 iptables -t mangle -A PREROUTING -m u32 --u32 "5&0x8F=0x80" -j MARK -
-set-mark 1
 iptables -t mangle -A PREROUTING -m u32 ! --u32 "5&0x8F=0x80" -j MARK
--set-mark 2

Then, I set the forwarding rules depending on this mark with the command “ip rule”:

 ip rule add fwmark 1 table imresec prio 1000
 ip rule add fwmark 2 table imreprime prio 1001

FRR uses the daemon configuration files to configure the network. Zebra daemon reads
from the “zebra.conf” file the IP addresses of each interface. OSPF daemon reads from
the “ospfd.conf” file all the OSPF configuration which has to include the network of
each router interface and their area. The daemon configuration files are in the directory
“/etc/frr”.

For example, in this simple topology the content of “zebra.conf” of router “frr-ubuntu-
1” is the following:

Chapter 3. Implementation

 25

-*- zebra -*-
hostname R1

!interfaces
interface eth0
 ip address 10.0.0.1/24

interface eth1
 ip address 10.1.0.0/24

interface eth2
 ip address 10.3.0.1/24

!end interfaces

log file /tmp/zebrad.log

And the content of “ospfd.conf” of “frr-ubuntu-1” is the following:

! -*- ospf -*-
hostname ospfd-R1

!interfaces
interface eth0
 ip ospf network point-to-point

interface eth1
 ip ospf network point-to-point

interface eth2
 ip ospf network point-to-point

!end interfaces

router ospf
 ospf router-id 10.0.0.1

!transit networks
 network 10.0.0.0/24 area 0.0.0.0
 network 10.1.0.0/24 area 0.0.0.0
 network 10.3.0.0/24 area 0.0.0.0
!transit networks end

log file /tmp/ospfd.log

Once the configuration files are created and stored in “/etc/frr”, FRR can be run. To run
it, the best way is to run each daemon separately. As OSPF daemon needs Zebra daemon
to be running, the first daemon to run is the Zebra daemon. To run zebra, the next
command has to be executed in each router:

Chapter 3. Implementation

 26

 /usr/lib/frr/zebra -d -f /etc/frr/zebra.conf

Where -d option indicates that it has to be run in daemon mode, and -f option is used to
indicate the path where the configuration file is.

When the Zebra daemon is running, it can be run now the routing protocol daemons. In
this case it is only necessary the OSPF daemon:

 /usr/lib/frr/ospfd -a -d -f /etc/frr/ospfd.conf

Where -a option enables the OSPF API server.

After executing the previous commands, FRR has to be running and the OSPF daemon
calculates the shortest paths in every router and stores it in the main routing table. Next
step now is to run the IMRE algorithm to calculate the secondary paths and store both
the shortest path and the secondary path in the “imreprime” and “imresec” routing
tables respectively.

As said in Chapter 2.3.5, IMRE algorithm gets the LSDB information of the OSPF
daemon through the OSPF API. It includes a modified “ospfclient” file that gets this
information and runs the algorithm [5]. So, what has to be done to run this algorithm is
to run this “ospfclient” file with the following command:

 /frr/ospfclient/ospfclient --hostname localhost --strun /ST/st-demo --stfile
/outputs/multipath.lgf --undofile /outputs/multipath.undo -d -i /run/frr/ospfclient.pid

Where “--strun” option indicates the path where the IMRE algorithm is stored.

“--stfile” indicates the path where the current topology has to be stored in LEMON
graph format [16]. This file is used by the IMRE algorithm to calculate the secondary
paths.

“--undofile” indicates the path where it has to be stored a file with the necessary
commands to delete the routes that are added to the routing tables. When running the
IMRE algorithm, all the current routes are deleted and new ones are stored. In order to
delete the routes added previously, this file is necessary.

“-i” option indicates the path to store the process identification number (pid).

After all this procedure, all the routers have to be properly configured with the routing
protocols and the forwarding rules. Figure 3.3 (a) and (b) show the “imreprime” and
“imresec” routing tables of the router “frr-ubuntu-1”. It can be seen that the routes have
been correctly stored.

Chapter 3. Implementation

 27

(a) “imreprime” routing table

(b) “imresec” routing table

Figure 3.3. “frr-ubuntu-1” routing tables

3.3.1 First topology check

When finished the configuration of all the devices, next step is to check if the network
behaves the desired way. The tasks that have been followed to perform this verification
are the following:

• Send a ping from host “ubuntu-1” to the host “ubuntu-2” with TTL different to
“1***000” and check with Wireshark if it follows the primary path.

• Send a ping form host “ubuntu-1” to the host “ubuntu-2” with TTL equal to
“1***000” and check with Wireshark if it follows the secondary path. One value
equal to “1***000” is for example “128” which in binary is “1000000”.

3.3.1.1 Ping through primary path

First of all, a Wireshark has to be listening in network between routers “frr-ubuntu-1”
and “frr-ubuntu-2”. Afterwards, to send the ping from the host “ubuntu-1” to the host
“ubuntu-2” I used the command “ping”:

 ping 10.2.0.2 -c 1 -t 127

Figure 3.4 shows a screenshot of the console of “ubuntu-1” with the ping outcome.
Figure 3.5 shows the ping in Wireshark. It can be seen that the ping has been successful
and has follow the correct path.

Figure 3.4. "ubuntu-1" console with the ping through the primary path

Chapter 3. Implementation

 28

Figure 3.5. Wireshark showing the ping through the primary path between

routers “frr-router-1” and “frr-router-2”

3.3.1.2 Ping through secondary path

In this case, Wireshark has to be listening in the link between “frr-router-1” and “frr-
router-3” in order to verify that the packet follows the secondary path. Afterwards, to
send the ping from the host “ubuntu-1” to the host “ubuntu-2” I used again the “ping”
command but establishing a TTL of 128.

 ping 10.2.0.2 -c 1 -t 128

Figure 3.6 shows a screenshot of the console of “ubuntu-1” with the ping outcome
where it can be seen that the ping was unsuccessful. Figure 3.7 shows the ping in
Wireshark where it can be seen that the packets try to follow the expected path, but it
only shows the ping request but not the response.

Figure 3.6. "ubuntu-1" console with the unsuccessful ping through the secondary

path

Chapter 3. Implementation

 29

Figure 3.7. Wireshark showing the unsuccessful ping through the secondary path

between routers “frr-router-1” and “frr-router-3”

It has to be found why this problem happens. So, in order to get more information about
this problem, it has to be repeated the ping, but this time with Wireshark listening, on
the one hand, in the link between routers “frr-router-3” and “frr-router-2”; and on the
other hand, in the link between routers “frr-router-2” and “ubuntu-2”.

It can be observed in Figure 3.8 that between “frr-router-3” and “frr-ubuntu-2” there is
the ping request. However, in Figure 3.9 it can be seen that the ping request never
arrives to the link between “frr-router-2” and “ubuntu-2”.

So, it can be concluded that “frr-router-2” is dropping the packet.

Figure 3.8. Wireshark showing the unsuccessful ping through the secondary path

between routers “frr-router-3” and “frr-router-2”

Chapter 3. Implementation

 30

Figure 3.9. Wireshark showing the unsuccessful ping through the secondary path

between router “frr-router-2” and host “ubuntu-2”

The reason of this behaviour is that every router has activated reverse path filtering by
default. When this functionality is activated, the routers expect to receive the packets
through the shortest path which in this case is in the primary path. Therefore, when “frr-
router-2” receives any packets through an interface that it does not expect, it drops the
packets.

A solution is to deactivate the reverse path filtering in every interface setting to “0” the
values that are in the “rp_filter” file:

 sudo sysctl -w 'net.ipv4.conf.all.rp_filter=0'

sudo sysctl -w 'net.ipv4.conf.default.rp_filter=0'
sudo sysctl -w 'net.ipv4.conf.<INTERFACE NAME>.rp_filter=0'

Once the reverse path filtering is deactivated, it can be checked again the behaviour of
the routers when sending the ping with a TTL of 128.

Figure 3.10 shows the “ubuntu-1” console showing that the ping now has been
successful. In Figure 3.11 it can be observed that the ping request goes through the
secondary path as expected, but the response goes through the primary path. This
happens because the default TTL value for “ubuntu-2” is 64 and thus, the packets follow
the primary path. This is something to take into account when programming the code
to do the measurements.

Figure 3.10. "ubuntu-1" console with the successful ping through the secondary

path

Chapter 3. Implementation

 31

(a)

(b)

Figure 3.11. Wireshark showing the successful ping through the secondary path
between routers “frr-router-1” and “frr-router-3” (a); and between routers “frr-

ubuntu-1” and frr-ubuntu-2 (b)

3.3.1.3 Conclusions of first topology results

On the one hand, it has been verified that the multipath behaviour is possible and works
the desired way. On the other hand, it has been observed that reverse path filtering has
to be disabled to make the topology work properly. Furthermore, it has also been
observed that the replies of the ping have always followed the primary path. This is
something to take into account when programming the code for the measurements in
order to put the correct forwarding rules.

3.4. TCP scripts
Once verified that the network behaves with the multipath capabilities, the script to do
the measurements can be done. The idea is to check how multipath behaves compared
to having a normal single path connection.

The task to be performed in the code are the following:

Chapter 3. Implementation

 32

• Create a script which establish various TCP socket connections that follow

different paths from the sender to the receiver
• Check failure resilience with the simple topology
• Create a normal TCP socket connection from the sender to the receiver

Final measurements will be performed in a more complex topology.

3.4.1 Multi-socket TCP script

As previously said, the aim is to programme a script that establish different socket
connections that follow different from the sender to the receiver. For this purpose, each
socket will be connected to the same IP address but to different port. The idea is to
assign a different TTL value to each port so that each socket follows a different path.

It has to be done a code for the sender and another for the receiver with the
corresponding mechanisms to behave the desired way and take the benefit of multipath.

3.4.1.1 Multi-socket-TCP sender script

I have programmed the code for the sender to send the data using the different paths at
the same time.
The way of using the code through the console is by executing the following command:

 sender_multi_tcp_threads.py <filename> <receiver_IP> <log_file_name>

The code starts by reading the name of the file that has to be sent to the receiver, as well
as the IP address of the receiver. It also reads the name of a log file where the results
will be stored.

Then it reads the data of the file and calculates the amount of data that has to be sent
through each socket depending on the number of sockets:

data_per_socket=
total_data

number_of_sockets

Afterwards, the sockets and a thread per socket are created. The threads are created to
send the data through each socket in parallel. Each socket calls the function “send_data”
which has to receive a socket, the port of the socket, the number of the socket, and the
beginning and the end of the data that has to be sent through the socket.

 Thread(target = send_data, args = (socket_list[i], port_list[i], i, data_begin,
data_end))

Where “socket_list” a python dictionary which contains the list of sockets created.
“port_list” is a python dictionary which contains the list of port numbers related to the
socket number. In this case “i” is the number of the socket that has just been created.

Chapter 3. Implementation

 33

The “send_data” function first connects the socket to the receiver IP address and the
corresponding port of that socket:

 data_socket.connect((receiver_IP, port))

Then it sets the timeout of the socket to 1 second and the transmission begins. When
the timeout is reached, the amount of data sent is checked.

If there has been data transmitted means that the socket is working properly. So, in that
case, the variable that stores the amount of data that has already been sent through the
socket is incremented in the amount of data sent during the last timeout. Furthermore,
the value of the throughput in that moment is stored in a log file. This log file is
important to analyse the final measurements.

When the total amount of data sent through the socket is equal to the amount of data
that the socket had to transmit, then the socket stops transmitting the data and checks
which of the sockets that still have not finish the transmission is the one with less
throughput. Then it makes the port of that socket with less throughput to send the data
with the TTL value of the socket that has just finished the transmission. By doing this,
that socket will increment its throughput.

On the other hand, when the timeout is reached and no data has been sent means that
there has been a failure in any link of the path that that socket follows. When this failure
is detected, it is called the function “change_ttl” which assigns a different TTL value to
the port of that socket. In this way, there is failure resilience.

When the transmission is finished, the socket is closed.

Figure 3.12 in next page shows the flow diagram of the code.

Appendix A shows the whole code for the sender.

Chapter 3. Implementation

 34

Figure 3.12. Multi-TCP-sockets sender flow diagram

Chapter 3. Implementation

 35

3.4.1.2 Multi-socket-TCP receiver script

Although the code for the sender and receiver present many similarities, they are
different. The code for the receiver receives the data through different paths at the same
time and has to process and reorganise it.

The way of using the code through the console is similar to the sender. The following
command has to be executed:

 receiver_multi_tcp_threads.py <filename> <receiver_IP>

In this case, the code starts reading the name that the user wants for the file received. It
also reads the IP address of the receiver, that is, its own IP address.

Then it creates the sockets and binds them to the same ports as the sender:

socket_list[i].bind((receiver_IP, port_list[i]))

Where “socket_list” a python dictionary which contains the list of sockets created.
“port_list” is a python dictionary which contains a list port numbers. These port
numbers are the ones used for the connection with the sender. In this case “i” is the
number of the socket that just has been created.

It is also created a temporal file for each socket. In this file each socket is going to store
the data that they are receiving.

Then the threads are created to receive the data through each socket in parallel. In this
case, each socket calls the function “receive_data” which has to receive as arguments
just a socket and the number of that socket.

Thread(target = receive_data, args = (socket_list[i], i)))

The “receive_data” function first accepts the socket connection with the sender. When
accepting this connection, it is received a new socket object which is the one that is
going to be used to receive the data. It is also received the address bounded to the socket
on the other end of the connection. This address has the IP address of the sender and
the port number that the receiver is going to use to communicate with the sender:

conn, addr = data_socket.accept()

Where “conn” now stores this new socket and “addr” stores the address of the sender.
Now that it is known the port that receiver has to use, the forwarding rules are assigned.
In this way, to each of these ports is assigned a TTL value that is going to be used in
the transmission.

Then the timeout is set to 1 second and the socket starts to receive the data:

 data = conn.recv(PAYLOAD_SIZE)

Chapter 3. Implementation

 36

When the socket receives an amount of data equal to “PAYLOAD_SIZE”, this data is
stored in the temporal file that corresponds to that socket. Furthermore, a variable that
controls the amount of data received is incremented in the total amount of data received.
This variable is useful when we want to change the TTL value assigned to the port of
the socket with worse throughput. Then the socket continues receiving data.

When the timeout is reached, it is checked if there has occurred an exception or not. If
there is no exception, that means that the transmission is being carried out properly and
the socket continues receiving data.

On the contrary, if there is an exception, it means that there has been a failure in any
link of the path that the socket follows. In this case, it is called the function “change_ttl”
and a different TTL value to the port of that socket is assigned. Therefore, there is
failure resilience.

When there is no more data to receive, the socket stops receiving data and checks which
of the sockets that still have not finish the data reception is the one with less throughput.
Then it makes the port of that socket with less throughput to send the data with the TTL
value of the socket that has just finished the transmission, and thus, the throughput of
that socket is incremented. And afterwards, the socket is closed.

When all the sockets have finished the data reception and stored the data they have
receive in their corresponding temporal files, it is called the function
“check_to_write()” which reads the data from the different temporal files in order (first
the data of the file used by the socket 1, then the one used by the socket 2…) and stores
the data in the final received file which is an exact copy of the file that the sender has
sent.

Figure 3.13 in next page shows the flow diagram of the code.

Appendix B shows the whole code for the receiver.

Chapter 3. Implementation

 37

Figure 3.13. Multi-TCP-sockets receiver flow diagram

Chapter 3. Implementation

 38

3.4.2 Single-socket-TCP script

In order to do the comparison between the behaviour of multipath and single path, it is
also necessary a script that uses a single path. This script has to open a normal TCP
socket connection and send all the data through that socket.

Unlike the sockets in the multipath script, the socket in this script does not change the
TTL and thus, it is always transmitting through the primary path.

3.4.2.1 Single-socket-TCP sender script

The way of using the code through the console is very similar as the one used in the
multi-socket scripts. It has to be executed the following command:

 sender_single_tcp.py <filename> <receiver_IP> <port_number>

The code starts by reading the name of the file that has to be sent to the receiver, as well
as the IP address of the receiver and the port number for the connection.

Then it connects the socket to the receiver IP address and the port:

 data_socket.connect((receiver_IP, port))

Afterwards, it reads the data of the file, sets the timeout to 1 second and starts
transmitting. This timeout is useful to have a control of the data that is being sent every
second.

When all the data is transmitted, the socket closes and the script ends.

3.4.2.2 Single-socket-TCP receiver script

In this case, the way of executing the code is similar to the one used for the sender:

 receiver_single_tcp.py <filename> <receiver_IP> <port_number>

The code starts by reading the name of the file that is going to be received, as well as
the IP address of the receiver and the port number for the connection. This IP address
is its own address since it is the receiver.

Then it binds the socket to its IP address and the port that the user has indicated.

data_socekt.bind((receiver_IP, receiver_port))

Afterwards, it accepts the socket connection with the sender. When this connection is
accepted, it receives a new socket object which is the one that is going to be used to
receive the date. It also receives the address bounded to the socket on the other end of

Chapter 3. Implementation

 39

the connection. This address contains the IP address of the sender, as well as the port
number that the receiver needs for the communication with the sender:

conn, addr = data_socket.accept()

Where “conn” is the new socket and “addr” is the address of the sender. Then, the socket
starts to receive data.

The socket is continuously receiving data and writing it in the output file. It receives
data until the end of the data is reached. Then, the socket closes and the script ends.

3.5. Abilene topology
Once the scripts are created and the routers work the desired way, it is finally the time
to take the measurements from a more complex network in order to have more realistic
outcomes. It is going to do the measurements for the three different the use cases.

The topology chosen to do these measurements is the Abilene topology which can be
seen in Figure 3.14. This topology is interesting because it has many links and many
possible paths.

Figure 3.14. Abilene topology [1]

Therefore, the next step is to build this topology in GNS3 and perform the
measurements. Figure 3.15 shows this topology in GNS3. The speed of each link is
10Mb/s. Next to the links it can be seen a number which represents it cost. This cost
numbers have been taken from [1]. The costs are used by the OSPF algorithm to
calculate the routes and store them in the routers. In this case, I added manually the cost
values into the OSPF daemon configuration file in order to have a topology similar to
the one implemented in [1].

Chapter 3. Implementation

 40

In order to perform the measurements, in the topology it has been added 2 hosts:
“ubuntu-1” and “ubuntu-2”. “ubuntu-1” is connected to router “frr-ubuntu-1”, whereas
“ubuntu-2” is connected to router “frr-ubuntu-6”. It has been chosen these routers to
connect the hosts in order to have multiple paths between them. The measurements are
going to be carried out from host “ubuntu-1” to host “ubuntu-2”.

As commented in Chapter 2, these measurements are going to be performed to study
the behaviour of the network for the following 3 use cases:

1. Normal transmission
2. Transmission limiting the bandwidth of some links of the shortest path
3. Transmission deleting a link of the shortest path

For each use case, it will be measured the throughput for a normal connection with one
TCP socket that follows the shortest path, and also for a connection with various TCP
sockets which follow different paths.

The first use case will show which method is better in ideal conditions where there are
not any interruptions when transmitting, nor other transmission at the same time. This
use case is studied in Section 4.1.1.

The second use case will check if multipath behaves better than single path when having
the shortest path overloaded. This use case is studied in Section 4.1.2.

The third use case will check if multipath can detect a link failure and uses an alternative
path to send the data, and thus, not having interruptions in the transmission. This use
case is studied in Section 4.1.3.

In Appendix C all the different paths from “ubuntu-1” to “ubuntu-2” are shown for each
TTL value.

In Appendix D all the different paths from “ubuntu-2” to “ubuntu-1” are shown for each
TTL value.

Chapter 3. Implementation

 41

Figure 3.15. Abilene topology in GNS3

Chapter 4. Results

 42

Chapter 4.

Results

This chapter is divided into two sections. First section shows the results of the
measurements made for the different use cases.

Second section shows the issues that I found out while carrying out the measurements
related to the paths.

4.1. Use cases results
Next sections show the results of the measurements for the different use cases. The
results are measured by sending the same file. It is measured the transmission time that
it takes for sending the whole file, as well as the bytes that have been sent until a certain
time. Therefore, the curves that show these bytes sent, grow until the amount of bytes
sent is equal to the length of the file transmitted.

These measurements have been done for 4 sockets. I considered 4 different paths
enough to study the multipath behaviour in the above topology.

The transmission is performed from host “ubuntu-1” to host ubuntu-2” (see Figure
3.15).

The TTL value of each socket has been chosen after knowing which TTL follows each
path. In a real application this is not possible, so one the further improves of the code
programmed could be to make the application to check the different TTL possibilities
and afterwards do the TTL election. But for this study this is not necessary.

The measurements will be carried out for the transmission of 2 different files in order
to have more outcomes to analyse. The size of each file transmitted are shown in Table
4.1.

Chapter 4. Results

 43

File	Name	 Size	

sample-video.mp4	 514,832,018 bytes (490.98 Megabytes)

sample-video2.avi	 220,514,438 bytes (210.30 Megabytes)
Table 4.1. Transmitted files size

4.1.1 Use Case 1: Ideal Transmission

The first use case is a transmission in ideal conditions where there are not any
interruptions when transmitting, nor other transmission at the same time. Therefore, the
transmission can take the whole bandwidth.

4.1.1.1 Bigger file transmission in use case 1

In this section are shown the results when transmitting the file “sample-video.mp4”
which has a size of 514,832,018 bytes (490.98 Megabytes).

Method Transmission time

Multipath 55.56 seconds

Single path 45.1 seconds
Table 4.2. Use Case 1. Bigger file transmission time

Figure 4.1. Use Case 1. Comparison of the bigger file transmitted using

multipath and single path

Table 4.2 shows the total transmission time needed to send the bigger file from host
“ubuntu-1” to host “ubuntu-2”.

Figure 4.1 shows the graphic comparing the bytes sent in both methods.

0

100

200

300

400

500

600

0 20 40 60

M
eg

ab
yt

es
 se

nt

seconds

Use Case 1

multipath

single path

Chapter 4. Results

 44

It can be observed in the outcomes of this use case that when using single path to
transmit the file the transmission time is a bit smaller than using multipath and hence,
its throughput is better.

4.1.1.2 Smaller file transmission in use case 1

In this section are shown the results when transmitting the file “sample-video-2.avi”
which has a size of 220,514,438 bytes (210.30 Megabytes).

Method Transmission time

Multipath 21.52 seconds

Single path 16.05 seconds
Table 4.3. Use Case 1. Smaller file transmission time

Figure 4.2. Use Case 1. Comparison of the smaller file transmitted using

multipath and single path

Table 4.3 shows the total transmission time needed to send the smaller file from host
“ubuntu-1” to host “ubuntu-2”.

Figure 4.2 shows the graphic comparing the bytes sent in both methods.

It can be observed the same as when transmitting the bigger file: when using single path
to transmit the file, the transmission time is a bit smaller than using multipath and hence,
its throughput is better.

4.1.1.3 Use Case 1 conclusions

It can be observed that, in this use case, when transmitting whatever of the two files,
single path transmits the file faster and hence, it offers a better throughput. The reason

0

50

100

150

200

250

0 5 10 15 20

M
eg

ab
yt

es
 se

nt

seconds

Use Case 1

multipath

single path

Chapter 4. Results

 45

of this behaviour is that the multipath code introduces some extra processes that the
host has to handle and thus, making the transmission slower.

This outcome may be improved by improving the code.

4.1.2 Use Case 2: Reduced bandwidth transmission

The way decided to measure this use case is opening an additional transmission between
routers “frr-ubuntu-3” and “frr-ubuntu-5” (see Figure 3.15) that belong to the shortest
path. This makes the two links between these routers to be overloaded. Figure 4.3 shows
the links that are overloaded (represented in red colour) when this new transmission is
opened between the mentioned routers.

Figure 4.3. Overloaded links in Use Case 2

A traditional routing protocol calculates the shortest path and stores it in the routers and
thus, all the transmission from one sender to one receiver are performed through that
path. As this path is supposed to be the best, the probability of that path to be overloaded
is high.

In this use case it is measured what happens when transmitting through an overloaded
path and compare which method is better: multipath or single path.

4.1.2.1 Bigger file transmission in use case 2

In this section are shown the results for use case 2 when transmitting the file “sample-
video.mp4” which has a size of 514,832,018 bytes (490.98 Megabytes).

Chapter 4. Results

 46

Method Transmission time

Multipath 67.79 seconds

Single path 239.26 seconds
Table 4.4. Use Case 2. Bigger file transmission time

Figure 4.4. Use Case 2. Comparison of the bigger file transmitted using

multipath and single path

Table 4.4 shows the total transmission time needed to send the bigger file from host
“ubuntu-1” to host “ubuntu-2”.

Figure 4.4 shows the graphic comparing the bytes sent in both methods.

It can be clearly observed that the transmission time when transmitting by using
multipath is more or less the same as in the previous use case; whereas when
transmitting by using single path the delay of the transmission is very high compared
to the previous use case.

4.1.2.2 Smaller file transmission in use case 2

In this section are shown the results of use case 2 when transmitting the file “sample-
video-2.avi” which has a size of 220,514,438 bytes (210.30 Megabytes).

Method Transmission time

Multipath 22.05 seconds

Single path 83.81 seconds
Table 4.5. Use Case 2. Smaller file transmission time

0

100

200

300

400

500

600

0 50 100 150 200 250

M
eg

ab
yt

es
 se

nt

seconds

Use Case 2

multipath

single path

Chapter 4. Results

 47

Figure 4.5. Use Case 2. Comparison of the smaller file transmitted using

multipath and single path

Table 4.5 shows the total transmission time needed to send the smaller file from host
“ubuntu-1” to host “ubuntu-2”.

Figure 4.4 shows the graphic comparing the bytes sent in both methods.

The behaviour of multipath compared to single path when transmitting the smaller file
in this use case is exactly the same as when transmitting the bigger file: it can be clearly
observed that the transmission time when transmitting by using multipath is more or
less the same as in the previous use case; whereas when transmitting by using single
path the delay of the transmission is very high compared to the previous use case.

4.1.2.3 Use Case 2 conclusions

Although the shortest path is supposed to be the best and the fastest, this assumption
does not take into account that this path can be overloaded and could have more delays
than other paths.

For this reason, it can be seen in previous outcomes for use case 2 that the throughput
in this use case when transmitting whatever of the two files is much better for multipath
and the file is transmitted faster. By using multipath, the end-users have the advantage
of deciding which path to use. When they experience that a path is slower than others,
the path can be changed by just changing the TTL value.

4.1.3 Use Case 3: Removing a link during transmission

The last measurement is performed by removing a link while the connection is being
carried out. The link that is going to be removed during the transmission is the one
between “frr-ubuntu-4” and “frr-ubuntu-5” (see Figure 3.15).

0

50

100

150

200

250

0 20 40 60 80

M
eg

ab
yt

es
 se

nt

seconds

Use Case 2

multipath

single path

Chapter 4. Results

 48

In this use case it has been considered a static topology where there are no routes
recomputation when there is any change in the state of the topology like a change in the
state of a link.

This assumption has its baseline in the “Dynamic Route Computation Considered
Harmful” paper [2] which was explained in Section 2.1.2. In that paper, the authors
discuss that the route recomputation has an important impact in the topology
throughput. Besides, they assume that topology changes are far less frequent than status
changes. This assumption is supported by a study done in [6] where failures with time-
to-repair longer than 24 hours were 3.7% of all failures.

Furthermore, in the static topology, the effect of the failure resilience will be shown
more clearly for the multipath case.

In the other use cases this assumption was not necessary since there were no changes
in the topology and thus, neither in the link states.

Figure 4.6 shows the topology with a red cross in the link that is going to be removed
during the transmission.

Figure 4.6. Link to be removed in Use Case 3

4.1.3.1 Bigger file transmission in use case 3

In this section are shown the results for use case 3 when transmitting the file “sample-
video.mp4” which has a size of 514,832,018 bytes (490.98 Megabytes).

The link is removed when the transmission is in the second 20.

Method Transmission time

Multipath 58.58 seconds

Single path -
Table 4.6. Use Case 3. Bigger file transmission time

Chapter 4. Results

 49

Figure 4.7. Use Case 3. Comparison of the file bigger transmitted using

multipath and single path

Table 4.6 shows the total transmission time needed to send the smaller file from host
“ubuntu-1” to host “ubuntu-2”.

Figure 4.7 shows the graphic comparing the bytes sent in both methods.

It can be observed in these outcomes that in the multipath case, the transmission
continues and last more or less the same as the previous use cases; whereas for the
single path case, the transmission is stopped when the link is removed.

4.1.3.2 Smaller file transmission in use case 3

In this section are shown the results in use case 3 when transmitting the file “sample-
video-2.avi” which has a size of 220,514,438 bytes (210.30 Megabytes).

The link is removed when the transmission is in the second 7.

Method Transmission time

Multipath 19.56 seconds

Single path -
Table 4.7. Use Case 3. Smaller file transmission time

0

100

200

300

400

500

600

0 20 40 60 80

M
eg

ab
yt

es
 se

nt

seconds

Use Case 3

multipath

single path

Chapter 4. Results

 50

Figure 4.8. Use Case 3. Comparison of the smaller file transmitted using

multipath and single path

Table 4.7 shows the total transmission time needed to send the smaller file from host
“ubuntu-1” to host “ubuntu-2”.

Figure 4.8 shows the graphic comparing the bytes sent in both methods.

It can be observed that in this use case, when transmitting the smaller file, happens the
same as when transmitting the bigger file: in the multipath case, the transmission
continues and last more or less the same as the previous use cases; whereas for the
single path case, the transmission is stopped when the link is removed.

4.1.3.3 Use Case 3 conclusions

It can be seen in previous outcomes for the use case 3 that when using multipath, the
transmission continues even when there is a failure in a link. On the contrary, the single
path transmission is dropped when there is a failure in one of the links of the shortest
path.

Hence, using multipath has not cuts in the transmission when there are other possible
paths to continue transmitting the data.

4.1.4 Comparison of multipath in the 3 use cases

Figure 4.9 shows a comparison of the measurements shown previously but only in the
multipath case when transmitting the bigger file, whereas Figure 4.10 shows the
comparison of the measurements when transmitting the smaller file. It is interesting to
compare the behaviour of multipath in the different use cases in order to check if the
load balancing or link failure affect the throughput of the transmission.

Although it can be observed that the worst result, when transmitting whatever of the
two files, was for the use case 2 where the primary path was overloaded, this difference

0

50

100

150

200

250

0 5 10 15 20 25

M
eg

ab
yt

es
 se

nt

seconds

Use Case 3

multipath

single path

Chapter 4. Results

 51

is not very significant and hence, it can be said that multipath is not affected by the state
of the links in the network since it can change the path to transmit the data.

Therefore, it can be seen that multipath can adapt to the state of the network in that
moment and transmit through a different path when a path is overloaded or there has
been a failure.

Figure 4.9. Comparison of multipath in the 3 use cases when transmitting the

bigger file

Figure 4.10. Comparison of multipath in the 3 use cases when transmitting the

smaller file

4.2. Issues with the routing algorithm
When performing the measurements in the Abilene topology, I found out some
unexpected issues related to the routing algorithm and the forwarding rules.

0

100

200

300

400

500

600

0 20 40 60 80

M
eg

ab
yt

es
 se

nt

seconds

Multipath Use Cases

Use Case 1

Use Case 2

Use Case 3

0

50

100

150

200

250

0 5 10 15 20 25

M
eg

ab
yt

es
 se

nt

seconds

Multipath Use Cases

Use Case 1

Use Case 2

Use Case 3

Chapter 4. Results

 52

I experienced that certain TTL values produced loops in the path the packets follow
from the sender to the receiver, more often than it was expected in the theoretical
algorithm design. The loops were not infinite loops, so the transmission could continue.
However, these loops result in an unexpected behaviour that has some impact in the
transmission time, and thus, the throughput.

Although all the loops are very similar and have more or less the same impact in the
throughput, they could be classified into 3 different groups:

• Secondary – Primary loops: loops that happen when a router deflects a packet
through its secondary next hop and the following router forwards the packet
through its primary next hop which is the previous router.

• Secondary – Secondary loops: loops that happen when a router deflects a

packet through its secondary next hop and the following router also deflects the
packet through its secondary next hop which is the previous router.

• Primary – Secondary – Primary loops: these loops are the worst I found since

they traverse the same link three times. They happen when a router deflects a
packet through its secondary next hop which is the previous router, and hence,
this router has to send again the packet through its primary path returning the
packet for second time to the same router.

In next sections it is analysed the probability of having these loops when transmitting
from host “ubuntu-1” to host “ubuntu-2” and vice versa.

4.2.1 Loops from host “ubuntu-1” to host “ubuntu-2”

Table 4.8 shows the number of TTL values that experience each kind of loop and the
total number of TTLs that are considered not a good choice for the transmission.
Furthermore, it is shown which TTL value experiences each type of loop.

The TTL values that have been considered for this research are the ones from 127 to
255. The reason is that the interesting thing about multipath is having different good
paths. Packets with TTL value equal or less 127 will always follow the primary path.
Therefore, a good TTL value for the primary path is one equal or less 127 (there are
other values higher than 127 that also follow the primary path), and the other TTL
chosen should follow a different path and thus, values higher 127 have to be chosen.

Chapter 4. Results

 53

Kind of loop Number of
TTLs

TTL value

Secondary - Primary 3 129, 144, 145

Secondary - Secondary 14 146, 147, 162, 163, 178, 179, 194,
195, 210, 211, 226, 227, 242, 243

Primary - Secondary - Primary 7 132, 148, 164, 196, 212, 228, 244

Total 24
Table 4.8. Types of loops from host “ubuntu-1” to host “ubuntu-2”

As the considered TTL values are those from 127 to 255, there are 129 possible values
to choose. Therefore, the percentage of choosing a wrong value is the amount of wrong
values divided by the total number of values:

𝑊𝑟𝑜𝑛𝑔_𝑇𝐿𝐿𝑠
𝑇𝑜𝑡𝑎𝑙_𝑇𝑇𝐿𝑠 =

24
129 ≅ 19%

Hence, the possibility of choosing a wrong TTL is 19%.

In order to explain this behaviour clearer, following figures show each kind of loop.
These figures show the path that is followed when selecting the TTL value 129, 146
and 132. When the router deflects the packet through the secondary next hop, the link
is displayed in blue colour, whereas if the router forwards the packet through the
primary next hop, the link is displayed in red colour. When the router is about to deflect
the packet though the secondary next hop, it decreases the TTL value of the packet with
a constant determined by the IMRE routing algorithm. This decrement is also shown in
the figures inside a rectangle. It is also shown the current TTL in each hop at the end of
the arrow of the links.

Chapter 4. Results

 54

Figure 4.11. Secondary – Primary loop

Figure 4.12. Secondary – Secondary loop

Figure 4.13. Primary – Secondary – Primary loop

Chapter 4. Results

 55

4.2.2 Loops from host “ubuntu-2” to host “ubuntu-1”

Table 4.9 shows the number of TTL values that experience each kind of loop and the
total number of TTLs that are considered not a good choice for the transmission.
Furthermore, it is shown which TTL value experiences each type of loop. Again, the
TTL values that have been considered for this research are the ones from 127 to 255.

Kind of loop Number of

TTLs
TTL value

Secondary - Primary 1 128

Secondary - Secondary 8 130, 147, 163, 179, 195, 211, 227,
243

Primary - Secondary - Primary 8 129, 145, 161, 177, 193, 209, 225,
241

Total 17
Table 4.9. Types of loops from host “ubuntu-2” to host “ubuntu-1”

The percentage of choosing a wrong value is the amount of wrong values divided by
the total number of values:

𝑊𝑟𝑜𝑛𝑔_𝑇𝐿𝐿𝑠
𝑇𝑜𝑡𝑎𝑙_𝑇𝑇𝐿𝑠 =

17
129 ≅ 13%

Hence, the possibility of choosing a wrong TTL is the 13%.

Chapter 5. Conclusion

 56

Chapter 5.

Conclusions

The aim of the project was to build a multipath routing architecture able to transmit
through different paths while remaining compatible to single path.

Multipath offers many advantages such as failure resilience, load balancing, and better
throughput. However, it is not widely deployed.

This project contributes to verify all these benefits while keeping the backwards
capability.

Throughout this project, it has been verified that the architecture designed is able to
perform multipath routing by sending the packets through the best paths and thus,
making use of the whole capacity of the network.

5.1. Conclusions about the measurements

The measurements made demonstrate that multipath is able to adapt to the network
requirements and transmit a file in a more efficient manner.

Although in the measurements of an ideal transmission single path has had a better
throughput, this difference was not very significant and can be associated to the extra
processes that the multipath code has to deal with.

Furthermore, it has been demonstrated that when the primary path is overloaded,
multipath can adapt to this circumstance and transmit through the better path in that
moment. In this case, the throughput using multipath was much higher than using single
path.

Finally, it has been also verified that when a link failure occurs, multipath continues the
transmission without any penalty in the throughput by just changing the path, whereas
TCP is not able to continue transmitting. This behaviour has been measured in a static
topology where there are no routes recomputation when the topology changes.

Chapter 5. Conclusion

 57

5.2. Conclusions about the loops in the paths

When building the topology and checking the paths, it has been experienced some
unexpected loops in some paths when using certain TTL values. The probability of
choosing a bad path is also calculated. However, this calculated value cannot be taken
as a general rule, since more measurements in different topologies and between
different end-devices should be performed in order to have a more general rule about
this loop behaviour.

These loops are related to the forwarding rules the IMRE algorithm used to calculate
the secondary next hops. Although these loops appear in some TTL values, it has been
demonstrated that this is a good algorithm which offers several good paths to reach a
destination.

This loop-behaviour could be avoided by making the application check the different
TTLs before the transmission. In order to keep full control over the network and speed
up the convergence process, the network operator can also provide a set of good TTL
values to the end hosts, which can be used for data transmission.

It has also been verified that the forwarding rule used offers many good different paths
despite the loops. It might also be avoided by choosing a different forwarding rule.

5.3. Future work
As previously said, throughout this project it has been demonstrated that it is possible
to build a multipath architecture while maintaining backward compatibility. Therefore,
this project contributes to demonstrate the benefits when using multipath.

However, the multi-socket-TCP code programmed can be improved in various aspects:

• Selecting the TTL values dynamically instead of using pre-configured values.
• The way of changing the TTL when a path is worse than others (overloaded

path) can be improved in order to detect earlier that a path is slower than others.
• The best way I found to send the packets through the different sockets at the

same time was using threads. However, there are other ways to do this and
maybe it could be programmed in a more efficient way.

Concluding, the code may be improved to work more efficiently.

On the other hand, this project has also contributed to check the IMRE algorithm. It has
been demonstrated that this algorithm and the forwarding rules offer different good
paths between end-users. However, it has been experienced that when using certain
TTL values, there are some loops in the path. Therefore, a future work is to keep
studying this algorithm and if different forwarding rules offer better behaviour.

Chapter 5. Conclusion

 58

A dynamic selection of the TTL values after checking the good values could also solve
the problem of the possibility of choosing a wrong TTL value.

Appendix A

 59

Appendix A. Multi-socket-TCP sender
code

sender_multi_tcp_threads.py

import socket # Import socket module
import time
import sys
import math
import os
from threading import Thread

NUMBER_OF_SOCKETS = 4

def change_ttl(socket_number):

 global port_list
 global ttl_list
 global ttl_socket

 count = 0

 i = socket_number + 1

 if i == NUMBER_OF_SOCKETS:
 i = 0

 ttl_temp = ttl_socket[socket_number]

 while count < NUMBER_OF_SOCKETS - 1:

 if ttl_socket[i] is not None:
 ttl_socket[socket_number] = ttl_socket[i]
 break

 i = i + 1

 if i == NUMBER_OF_SOCKETS:
 i = 0

Appendix A

 60

 count = count + 1

 if ttl_socket[socket_number] == None or ttl_temp == ttl_socket[socket_number]:
 for i in range (0, NUMBER_OF_SOCKETS):
 ttl_socket[i] = ttl_list[i]

 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags ACK ACK --
dport %s -j TTL --ttl-set %s' % (port_list[socket_number], ttl_socket[socket_number]))
 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags FIN FIN --
dport %s -j TTL --ttl-set %s' % (port_list[socket_number], ttl_socket[socket_number]))

 print("Now ttl of socket ", socket_number, "is: ", ttl_socket[socket_number])

def send_data(data_socket, port, socket_number, data_begin, data_end):

 global data
 global ttl_list
 global ttl_socket
 global first
 global total_sent
 global all_sockets_total_sent

 while True:
 try:
 data_socket.connect((receiver_IP, port))
 break
 except socket.error:
 pass

 data_socket.settimeout(1)
 start_socket_time = time.time()

 while total_sent[socket_number] < data_end - data_begin:

 try:
 # SEND
 sent = data_socket.send(data[data_begin + total_sent[socket_number]:
data_end])

 all_sockets_total_sent += sent

 current_time = time.time() - start_time #Time from the beginning of the
transmission
 current_socekt_time = time.time() - start_socket_time
 log.write('Socket ' + str(socket_number) + "\t" + str(round(current_time,2)) + '
seconds\t' + str(round(all_sockets_total_sent,2)) + ' Bytes\n')
 total_sent[socket_number] += sent

 except socket.timeout:

Appendix A

 61

 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags ACK
ACK --dport %s -j TTL --ttl-set %s' % (port_list[socket_number],
ttl_socket[socket_number]))
 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags FIN FIN
--dport %s -j TTL --ttl-set %s' % (port_list[socket_number],
ttl_socket[socket_number]))

 ttl_socket[socket_number] = None
 change_ttl(socket_number)
 time.sleep(0.1)

 socket_time[socket_number] = time.time() - start_socket_time
 sent_per_socket[socket_number] = 'Sent per socket ' + str(socket_number) + ': ' +
str(total_sent[socket_number]) + '. In: ' + str(round(socket_time[socket_number],2)) +
' seconds'
 print('Sent per socket ' + str(socket_number) + ': ' + str(total_sent[socket_number])
+ '. In: ' + str(round(socket_time[socket_number],2)) + ' seconds')

 data_socket.close()
 print("Close socket ", socket_number)

 total_sent_copy = total_sent

 total_sent_aux = total_sent_copy[0]
 min_thoughput_index = 0

 for i in range (1, NUMBER_OF_SOCKETS):

 if total_sent_copy[i] < total_sent_aux:
 total_sent_aux = total_sent_copy[i]
 min_thoughput_index = i

 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags ACK ACK --
dport %s -j TTL --ttl-set %s' % (port_list[min_thoughput_index],
ttl_socket[min_thoughput_index]))
 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags FIN FIN --
dport %s -j TTL --ttl-set %s' % (port_list[min_thoughput_index],
ttl_socket[min_thoughput_index]))

 ttl_socket[min_thoughput_index] = ttl_socket[socket_number]

 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags ACK ACK --
dport %s -j TTL --ttl-set %s' % (port_list[min_thoughput_index],
ttl_socket[min_thoughput_index]))
 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags FIN FIN --
dport %s -j TTL --ttl-set %s' % (port_list[min_thoughput_index],
ttl_socket[min_thoughput_index]))

 print("changed ttl of socket ", min_thoughput_index)

Appendix A

 62

if __name__ == '__main__':

 # Process command line args
 try:
 filename = sys.argv[1]
 receiver_IP = socket.gethostbyname(sys.argv[2])
 log_file_name = sys.argv[3]

 except IndexError as TypeError:
 exit('Usage: ./sender.py <filename> <receiver_IP> <log_file_name>')

 os.system('iptables -t mangle -F POSTROUTING') # Remove all possible
POSTROUTING rules

 socket_list = {} # List to store the sockets
 port_list = {}
 ttl_list = {}

 ttl_socket = {}

 socket_time = {}

 ttl_list[0] = 127
 ttl_list[1] = 160
 ttl_list[2] = 131
 ttl_list[3] = 130
 ttl_list[4] = 161
 ttl_list[5] = 128
 ttl_list[6] = 127
 ttl_list[7] = 160
 ttl_list[8] = 131
 ttl_list[9] = 161

 for i in range(0, NUMBER_OF_SOCKETS):
 ttl_socket[i] = ttl_list[i]

 port = 12345 # First port that is used

 # Open file to read its bytes
 try:
 file_in = open(filename, 'rb')
 except:
 exit("Could not open " + filename)

 # Store the bytes of the file
 data = file_in.read()
 file_in.close()

 data_length = len(data)
 data_per_socket = math.ceil(data_length / NUMBER_OF_SOCKETS)

Appendix A

 63

 # Open file to store logs
 log = open(log_file_name, 'w')

 first = False
 processes = []
 total_sent = [0] * NUMBER_OF_SOCKETS
 all_sockets_total_sent = 0
 sent_per_socket = {}
 start_time = time.time()

 # Create all the sockets
 for i in range (0, NUMBER_OF_SOCKETS):

 data_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Create
TCP socket
 data_socket.setblocking(False)

 socket_list[i] = data_socket # Store in the socker buffer the socket with its
corresponding port and ttl

 port_list[i] = port + i

 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags ACK ACK
--dport %s -j TTL --ttl-set %s' % (port_list[i], ttl_socket[i]))
 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags FIN FIN --
dport %s -j TTL --ttl-set %s' % (port_list[i], ttl_socket[i]))

 print('Socket ', i, ' connected to IP ', receiver_IP, ' through port ', port_list[i])

 data_begin = int(data_per_socket * i)

 if i == NUMBER_OF_SOCKETS - 1:
 data_end = data_length
 else:
 data_end = int(data_per_socket * i + data_per_socket)

 print("Data to be sent through socket ", i, ": ", data_end - data_begin)
 processes.append(Thread(target = send_data, args = (socket_list[i], port_list[i], i,
data_begin, data_end)))

 print ('\nCreated all sockets correctly\n')

 for proc in processes:
 proc.start()

 print("\nSTART SENDING DATA\n")

 for proc in processes:
 proc.join()

Appendix A

 64

 total_time = time.time() - start_time

 log.write('\n')

 for i in range(0, NUMBER_OF_SOCKETS):
 log.write(sent_per_socket[i])
 socket_list[i].close()
 print("Close socket ", i)

 print("\nTOTAL TIME:", round(total_time,2))

 log.write('\n----------- END of Transmission -----------\n')
 log.write('Total time: ' + str(round(total_time,2)) + '\n')
 log.close()

 for i in range(0, NUMBER_OF_SOCKETS):
 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags ACK ACK
--dport %s -j TTL --ttl-set %s' % (port_list[i], ttl_socket[i]))
 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags FIN FIN --
dport %s -j TTL --ttl-set %s' % (port_list[i], ttl_socket[i]))

 sys.exit("----------- END of Transmission -----------")

Appendix B

 65

Appendix B. Multi-socket-TCP
receiver code

receiver_multi_tcp_threads.py

import socket
import time
import sys
import math
import os
from threading import Thread

PAYLOAD_SIZE = 4096
NUMBER_OF_SOCKETS = 4

def change_ttl(socket_number):

 global destination_port_list
 global ttl_list
 global ttl_socket

 count = 0

 i = socket_number + 1

 if i == NUMBER_OF_SOCKETS:
 i = 0

 ttl_temp = ttl_socket[socket_number]

 while count < NUMBER_OF_SOCKETS - 1:

 if ttl_socket[i] is not None:
 ttl_socket[socket_number] = ttl_socket[i]
 break

 i = i + 1

 if i == NUMBER_OF_SOCKETS:
 i = 0

Appendix B

 66

 count = count + 1

 if ttl_socket[socket_number] == None or ttl_temp == ttl_socket[socket_number]:
 for i in range (0, NUMBER_OF_SOCKETS):
 ttl_socket[i] = ttl_list[i]

 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags ACK ACK --
dport %s -j TTL --ttl-set %s' % (destination_port_list[socket_number],
ttl_socket[socket_number]))
 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags FIN FIN --
dport %s -j TTL --ttl-set %s' % (destination_port_list[socket_number],
ttl_socket[socket_number]))

 print("Now ttl of socket ", socket_number, "is: ", ttl_socket[socket_number])

def check_to_write():

 global received_file
 global received_file_part

 for i in range (0, NUMBER_OF_SOCKETS):

 file = open('temp' + str(i), 'rb')
 data = file.read()
 file.close()

 received_file.write(data)

 received_file_part[i].close()
 os.remove("temp" + str(i))

 print("Stored data received from socket ", i, ". Size: ", len(data))

def receive_data(data_socket, socket_number):

 global destination_port_list
 global ttl_socket
 global first
 global total_received

 while True:
 try:
 conn, addr = data_socket.accept() # Establish connection with client.
 break
 except socket.error:
 pass

 print('Socket ', socket_number, ' connected to IP ', addr[0], ' through port ', addr[1])

Appendix B

 67

 socket_connection_list[socket_number] = conn
 destination_port_list[socket_number] = addr[1]

 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags ACK ACK --
dport %s -j TTL --ttl-set %s' % (destination_port_list[socket_number],
ttl_socket[socket_number]))
 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags FIN FIN --
dport %s -j TTL --ttl-set %s' % (destination_port_list[socket_number],
ttl_socket[socket_number]))

 timeout_set = False

 while True:

 try:
 data = conn.recv(PAYLOAD_SIZE)

 if not timeout_set:
 timeout_set = True
 conn.settimeout(2)

 if not data:
 break

 received_file_part[socket_number].write(data)

 total_received[socket_number] += len(data)

 except socket.timeout:
 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags ACK
ACK --dport %s -j TTL --ttl-set %s' % (destination_port_list[socket_number],
ttl_socket[socket_number]))
 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags FIN FIN
--dport %s -j TTL --ttl-set %s' % (destination_port_list[socket_number],
ttl_socket[socket_number]))

 ttl_socket[socket_number] = None

 change_ttl(socket_number)

 time.sleep(0.1)

 received_file_part[socket_number].close()
 socket_list[socket_number].close()
 print("Close socket ", socket_number)

 total_received_copy = total_received

 total_received_aux = total_received_copy[0]
 min_thoughput_index = 0

Appendix B

 68

 for i in range (1, NUMBER_OF_SOCKETS):

 if total_received_copy[i] < total_received_aux:
 total_received_aux = total_received_copy[i]
 min_thoughput_index = i

 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags ACK ACK --
dport %s -j TTL --ttl-set %s' % (destination_port_list[min_thoughput_index],
ttl_socket[min_thoughput_index]))
 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags FIN FIN --
dport %s -j TTL --ttl-set %s' % (destination_port_list[min_thoughput_index],
ttl_socket[min_thoughput_index]))

 ttl_socket[min_thoughput_index] = ttl_socket[socket_number]

 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags ACK ACK --
dport %s -j TTL --ttl-set %s' % (destination_port_list[min_thoughput_index],
ttl_socket[min_thoughput_index]))
 os.system('iptables -t mangle -A POSTROUTING -p TCP --tcp-flags FIN FIN --
dport %s -j TTL --ttl-set %s' % (destination_port_list[min_thoughput_index],
ttl_socket[min_thoughput_index]))

 print("changed ttl of socket ", min_thoughput_index)

if __name__ == '__main__':

 # Process command line args
 try:
 filename = sys.argv[1]
 receiver_IP = socket.gethostbyname(sys.argv[2])

 except IndexError as TypeError:
 exit('Usage: ./receiver.py <filename> <receiver_IP>')

 os.system('iptables -t mangle -F POSTROUTING') # Remove all possible
POSTROUTING rules

 socket_list = {} # List to store the sockets
 socket_connection_list = {}
 port_list = {}
 destination_port_list = {}
 ttl_list = {}

 ttl_socket = {}

 ttl_list[0] = 127
 ttl_list[1] = 160
 ttl_list[2] = 131
 ttl_list[3] = 176

Appendix B

 69

 ttl_list[4] = 144
 ttl_list[5] = 146
 ttl_list[6] = 132
 ttl_list[7] = 176
 ttl_list[8] = 127
 ttl_list[9] = 160

 for i in range(0, NUMBER_OF_SOCKETS):
 ttl_socket[i] = ttl_list[i]

 port_base = 12345 # First port that is used

 # Open file to write the file
 received_file = open(filename, 'wb')

 received_file_part = {}
 file_seqnum = 0

 total_received = [0] * NUMBER_OF_SOCKETS
 processes = []

 print ('Waiting for the sender\n')

 for i in range (0, NUMBER_OF_SOCKETS):

 data_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Create
TCP socket
 data_socket.setblocking(False)

 socket_list[i] = data_socket # Still don't have connection (2 missing values at this
point, but it doesn't matter)

 port_list[i] = port_base + i

 socket_list[i].bind((receiver_IP, port_list[i])) # Bind to the port
 socket_list[i].listen(5) # Now wait for client connection.

 received_file_part[i] = open("temp" + str(i), 'wb')
 processes.append(Thread(target = receive_data, args = (socket_list[i], i)))

 for proc in processes:
 try:
 proc.start()
 except KeyboardInterrupt:
 print("caught keyboard interrupt, exiting")

 for proc in processes:
 proc.join()

 check_to_write()

Appendix B

 70

 received_file.close()

 for i in range(0, NUMBER_OF_SOCKETS):
 socket_connection_list[i].close()
 print("Close socket ", i)

 for i in range(0, NUMBER_OF_SOCKETS):
 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags ACK ACK
--dport %s -j TTL --ttl-set %s' % (destination_port_list[i], ttl_socket[i]))
 os.system('iptables -t mangle -D POSTROUTING -p TCP --tcp-flags FIN FIN --
dport %s -j TTL --ttl-set %s' % (destination_port_list[i], ttl_socket[i]))
 #os.system('iptables -t mangle -F POSTROUTING') # Remove all possible
POSTROUTING rules

 sys.exit("----------- END of Transmission -----------")

Appendix C

 71

Appendix C. Paths from “ubuntu-1”
to “ubuntu-2” in Abilene topology

Links in red colour represent the primary next hop, whereas links in blue represent the
secondary next hop.

Shortest path. TTL ∈ [6, 127], [133, 143], [149, 159], [165, 175], [181, 191], [197,
207], [213, 223], [229, 239], [245, 255]

Appendix C

 72

TTL = 128

TTL = 130

TTL = 131

Appendix C

 73

TTL = 160, 176, 192, 208, 224, 240

TTL = 161, 177, 193, 209, 225, 241

	

Appendix D

 74

Appendix D. Paths from “ubuntu-2”
to “ubuntu-1” in Abilene topology

Links in red colour represent the primary next hot, whereas links in blue represent the
secondary next hop.

Shortest path. TTL ∈ [6, 127], [133, 143], [149, 159], [165, 175], [181, 191], [197,
207], [213, 223], [229, 239], [245, 255]

Appendix D

 75

TTL = 131

TTL = 132, 148, 164, 180, 196, 212, 228, 244

TTL = 144

Appendix D

 76

TTL = 146

TTL = 160

TTL = 162, 178, 194, 210, 226, 242

Appendix D

 77

TTL = 176, 192, 208, 224, 240

List of Figures

 78

List of Figures

Figure 2.1. TCP connection ... 11
Figure 2.2. iptables routing and packet filtering process [12] 14
Figure 2.3. FRR architecture [14] .. 16
Figure 2.4. OSPF API architecture [15] ... 17
Figure 3.1. Global view of router behaviour [5] .. 19
Figure 3.2. Simple topology ... 23
Figure 3.3. “frr-ubuntu-1” routing tables ... 27
Figure 3.4. "ubuntu-1" console with the ping through the primary path 27
Figure 3.5. Wireshark showing the ping through the primary path between routers “frr-

router-1” and “frr-router-2” ... 28
Figure 3.6. "ubuntu-1" console with the unsuccessful ping through the secondary path

 ... 28
Figure 3.7. Wireshark showing the unsuccessful ping through the secondary path

between routers “frr-router-1” and “frr-router-3” ... 29
Figure 3.8. Wireshark showing the unsuccessful ping through the secondary path

between routers “frr-router-3” and “frr-router-2” ... 29
Figure 3.9. Wireshark showing the unsuccessful ping through the secondary path

between router “frr-router-2” and host “ubuntu-2” ... 30
Figure 3.10. "ubuntu-1" console with the successful ping through the secondary path

 ... 30
Figure 3.11. Wireshark showing the successful ping through the secondary path

between routers “frr-router-1” and “frr-router-3” (a); and between routers “frr-
ubuntu-1” and frr-ubuntu-2 (b) .. 31

Figure 3.12. Multi-TCP-sockets sender flow diagram ... 34
Figure 3.13. Multi-TCP-sockets receiver flow diagram .. 37
Figure 3.14. Abilene topology [1] .. 39
Figure 3.15. Abilene topology in GNS3 .. 41
Figure 4.1. Use Case 1. Comparison of the bigger file transmitted using multipath and

single path .. 43
Figure 4.2. Use Case 1. Comparison of the smaller file transmitted using multipath and

single path .. 44
Figure 4.3. Overloaded links in Use Case 2 ... 45
Figure 4.4. Use Case 2. Comparison of the bigger file transmitted using multipath and

single path .. 46
Figure 4.5. Use Case 2. Comparison of the smaller file transmitted using multipath and

single path .. 47
Figure 4.6. Link to be removed in Use Case 3 ... 48
Figure 4.7. Use Case 3. Comparison of the file bigger transmitted using multipath and

single path .. 49

List of Figures

 79

Figure 4.8. Use Case 3. Comparison of the smaller file transmitted using multipath and
single path .. 50

Figure 4.9. Comparison of multipath in the 3 use cases when transmitting the bigger
file .. 51

Figure 4.10. Comparison of multipath in the 3 use cases when transmitting the smaller
file .. 51

Figure 4.11. Secondary – Primary loop ... 54
Figure 4.12. Secondary – Secondary loop ... 54
Figure 4.13. Primary – Secondary – Primary loop .. 54

List of Tables

 80

List of Tables

Table 3.1. Forwarding rules ... 24
Table 3.2. Matching TTL values .. 24
Table 4.1. Transmitted files size .. 43
Table 4.2. Use Case 1. Bigger file transmission time .. 43
Table 4.3. Use Case 1. Smaller file transmission time .. 44
Table 4.4. Use Case 2. Bigger file transmission time .. 46
Table 4.5. Use Case 2. Smaller file transmission time .. 46
Table 4.6. Use Case 3. Bigger file transmission time .. 48
Table 4.7. Use Case 3. Smaller file transmission time .. 49
Table 4.8. Types of loops from host “ubuntu-1” to host “ubuntu-2” 53
Table 4.9. Types of loops from host “ubuntu-2” to host “ubuntu-1” 55

Abbreviations

 81

Abbreviations

CIDR Classless-Interdomain Routing
GNS3 Graphical Network Simulator 3
GUI Graphical User Interface
FRR Free Range Routing
IMRE Ideal Multipath Routing Expedient
ISP Internet Service Provider
LSA Link State Advertisement
LSDB Link State Data Base
MAC Mandatory Access Control
MD5 Message Digest 5
OS Operating System
OSPF Open Shortest Path First
PID Process IDentification number
TCP Transport Control Protocol
TTL Time To Live
VLSM Variable Length Subnet Mask
VM Virtual Machine

Bibliography

 82

Bibliography

[1] Xiaowei Yang and David Wetherall. Source Selectable Path Diversity via
Routing Deflections. In Proc. ACM SIGCOMM, pp. 159-170, 2006, Pisa, Italy.

[2] Matthew Caesar, Martín Casado, Teemu Koponen, Jennifer Rexford, Scott
Shenker. Dynamic Route Computation Considered Harmful. ACM SIGCOMM
Computer Communication Review, Volume 40, Number 2, pp. 66-71, April
2010.

[3] Murtaza Motiwala, Megan Elmore, Nick Feamster and Santosh Vempala. Path
Splicing. SIGCOMM’08, August 17–22, pp. 26-38, 2008, Seattle, Washington,
USA.

[4] Christoph Paasch. Improving Multipath TCP. PhD Thesis, October 30, 2014,
Belgium.

[5] Lajos Zongor. Building a measurement environment for multi-path routing (in
Hungarian), Project report, Budapest University of Technology and Economics,
2018.

[6] A. Markopoulou, G. Iannaconne, S. Bhattacharrya, C.-N. Chuah, Y. Ganjali and
C. Diot. Characterization of failures in an operational IP backbone network. In
IEEE/ACM Trans. Networking, vol. 16, no 4, pp 749-762, August 2008.

[7] Sébastien Barré, Christoph Paasch, Olivier Bonaventure. MultiPath TCP: From
Theory to Practice. 10th IFIP Networking Conference (NETWORKING), May
2011, Valencia, Spain. Springer, Lecture Notes in Computer Science, LNCS-
6640 (Part I), pp.444-457, 2011, NETWORKING 2011.

[8] Bert Hubert, Gregory Maxwell, Remco van Mook, Martijn van Oosterhout, Paul B
Schroeder, Jasper Spaans. Linux Advanced Routing & Traffic Control HOWTO. Revision
1.1, 2002−07−22.

[9] The official guide and reference for GNS3, https://docs.gns3.com, [Online],
Accessed: 2019.04.20.

[10] Getting Started with GN3,
https://docs.gns3.com/1PvtRW5eAb8RJZ11maEYD9_aLY8kkdhgaMB0wPCz8a
38/index.html, [Online], Accessed: 2019.04.20.

[11] Docker documentation, https://www.docs.docker.com, [Online], Accessed:
2019.04.20.

[12] https://wiki.archlinux.org/index.php/Iptables, [Online], Accessed: 2019.04.20.
[13] Iptables manual page, https://jlk.fjfi.cvut.cz/arch/manpages/man/iptables.8,

[Online], Accessed: 2019.04.20.

Bibliography

 83

[14] FRRouting User Guide, http://docs.frrouting.org, [Online], Accessed:
2019.04.20.

[15] OSPF API Documentation, http://docs.frrouting.org/projects/dev-
guide/en/latest/ospf-api.html, [Online], Accessed: 2019.04.20.

[16] LEMON: A C++ Library for Efficient Modeling and Optimization in Networks,
http://lemon.cs.elte.hu. [Online], Accessed: 2019.04.20.

