
Hardware Synthesis for Asynchronous Communications Mechanisms

Kyller Gorgônio

Federal University of Campina Grande

Embedded Systems and Pervasive Computing Lab.

Campina Grande, Brazil

kyller@dee.ufcg.edu.br

Jordi Cortadella

Universitat Politcnica de Catalunya

Department of Software

Barcelona, Spain

jordicf@lsi.upc.edu

Abstract

Asynchronous data communication mechanisms (ACMs)
have been extensively studied as data connectors between
independently timed concurrent processes. In this work an
automatic method for synthesis of re-reading ACMs is in-
troduced. This method is is oriented to the generation of
hardware artifacts. The behavior of re-reading ACMs is for-
mally defined and the correctness properties are discussed.
Then it is shown how to generate the ACMs specifications
and how they can be translated into a proper hardware im-
plementation. Verilog has been used as the target language
to describe the hardware being synthesized.

1. Introduction

After satisfying design requirements on data, maximiz-

ing asynchrony is one of the most important issues when

designing communication schemes between asynchronous

processes. This task becomes more difficult when the traf-

fic between the processing elements increases. An Asyn-
chronous Communication Mechanism (ACM) is a scheme

which manages the data transfer between two processes

not necessarily synchronized for this purpose. The general

scheme of an ACM is shown in Figure 1. A shared memory

is used to transfer data and a set of variables is used to con-

trol the access to the memory. The data being transferred

consists of a stream of items of the same type. The writer

and reader processes are single-threaded loops, and at each

iteration of one of them, a single data item is transferred to

or from the ACM.

Classical semaphores can be used to protect write and

read operations on a shared memory. However, if data items

are large this approach does not provide a minimum locking

between the writer and the reader [5]. This is because the

time needed to perform the data access operations depends

on the size of the data items. Single-bit unidirectional con-

trol variables allows the reduction of synchronization con-

trol to the reading and writing of them by extremely simple

atomic actions [7]. Unidirectional variables are those that

can only be modified by one of the processes. This provides

a maximum asynchrony in particular, if the setting, reset-

ting and referencing of control variables can be regarded as

atomic events.

Shared
memory

Control
variables

ACM

Writer Reader

datadata

Figure 1. ACM with shared memory and con-

trol variables

ACMs are classified according to their overwriting and

re-reading policies [7, 8]. Overwriting occurs when the

ACM is full of data that has not been read before and the

producer discards some of the existing data items in the

buffer. Re-reading occurs when all data in the ACM has

already been read by the consumer and it is allowed to re-

read some item. In this way, any combination of those is

allowed. Table 1 shows such a classification. RRBB de-

notes an ACM that only allows re-reading. On the other

hand, the OWBB scheme allows only overwriting. Finally,

the OWRRBB scheme allows both re-reading and overwrit-

ing while the BB scheme does not allow any of them.

No re-reading Re-reading
No overwriting BB RRBB
Overwriting OWBB OWRRBB

Table 1. Classification of ACMs

The choice of which class of ACM to use is based on

data requirements and timing restrictions [5, 7]. For the

re-reading class, it is more convenient to re-read the item

International Conference of the Chilean Computer Science Society

1522-4902/08 $25.00 © 2008 IEEE

DOI 10.1109/SCCC.2008.21

135

from the previous cycle. For overwriting, either the newest

or the oldest item in the buffer can be overwritten [1, 7, 9].

Overwriting the newest item [9] attempts to provide the best

continuity of data, which can also be achieved with a buffer

of significant size. Overwriting the oldest item is based on

the assumption that newer data is always more relevant than

older.

One possible hazard in a binary unidirectional control

variable is associated with metastability, which may happen

when a control variable is modified and referenced about

the same time by two asynchronous processes [4, 6]. A

metastable binary variable may stay at an analogue value

approximately midway between logic values 0 and 1 for an

indefinite period of time, and it will eventually “resolve” to

one of them non-deterministically. In practice, the effects

of metastability can be minimized by adding a chain of flip-

flops to the design reducing the probability of metastability.

ACM algorithms operate correctly if their control variables

are resolved before use.

1.1. An introductory example

Now consider an RRBB ACM with three data cells. The

single-bit control variables ri and wi, with i ∈ {0, 1, 2},
are used to indicate which cell each process must access.

Initially the reader is pointing at cell 0, r0 = 1 and r1 =
r2 = 0, and the writer is pointing at cell 1, w1 = 1 and

w0 = w2 = 0. The shared memory is initialized with some

data. This configuration is shown in Figure 2.

cell 1
(empty)(new data)

cell 0 cell 2
(empty)

reader

writer

{r0=1
r1=0
r2=0

{w0=0
w1=1
w2=0

Figure 2. Execution of RRBB ACM with 3 cells

The writer first accesses the shared memory and then ad-

vances to the next cell, but only if the reader is not pointing

at it. A possible trace for the writer is 〈wr1wr2wr0wr1〉,
where wri denotes “write data on cell i”. The reader first

advances to the next cell if the writer is not there and then

performs the data transfer, otherwise it re-reads the current

cell. A possible trace for the reader is 〈rd0rd1rd1rd2〉.

In an RRBB ACM, no overwriting and allowing re-

reading imply the following behavior:

• The writer first accesses the shared memory and then

advances to the next cell, but only if the reader is not

pointing at it;

• The reader first advances to the next cell if the writer is

not there and then performs the data transfer, otherwise

it re-reads the current cell.

1.2. ACMs properties

In general, and depending on how the read and write

traces interleave, coherence and freshness properties must

be satisfied.

Coherence is related to mutual exclusion between the

writer and the reader. For example, a possible trace for

this system is 〈wr1wr2rd0 · · · 〉. After the writer executing

twice, the next possible action for both processes is to ac-

cess cell 0. This introduces the problem of data coherence

when the reader and the writer are retrieving and storing

data on the same memory locations.

Freshness is related to the fact that the last data record

produced by the writer must be available for the reader. On

the ACMs studied in this work, the reader always attempts

to retrieve the oldest data stored in the shared memory that

has not been read before. This means that the freshness

property imposes a specific sequencing of data, i.e. the

data is read in the same order that it is written. Depend-

ing on the ACM class, some data may be read more than

once or may be missed. However, the sequence should

be preserved. For the example above, one possible trace

is 〈wr1rd0wr2rd1rd1 · · · 〉. Note that at the moment the

reader executes the first rd1 action, the writer has already

executed a wr2. This means that there is some new data

on cell 2. But the reader is engaged to execute rd1 again,

which violates freshness.

With a correct interleaving, both processes will avoid ac-

cessing the same data cell at the same time, the writer will

not be allowed to overwrite unread data, and the reader will

have the possibility of re-reading the most recent data only

when there is no unread data in the ACM. For the example

above, a correct trace is 〈wr1rd0rd1wr2rd1wr0rd2wr1〉.
Observe that the sub-trace rd1wr2rd1 does not contradict

the fact that the reader only re-reads any data if there is no

new one available. This is because after the first rd1 there

is no new data, then the reader prepares to re-read and from

this point it will engage on a re-reading regardless the ac-

tions of the writer.

It is easy to note that any implementation that takes into

account the use of binary control variables will be specific

for ACMs of a certain size. For instance, in the example

above 6 control variables are required. If the size increases

to 4, another 2 variables are required. This means that

more variables are needed when the size of the ACM grows,

136

which becomes to be more complex to be correctly imple-

mented by a human. And for overwriting ACM classes it

is necessary to have more control variables, and it is even

more difficult to correctly deal with all of them.

In previous work a Petri net based method for the auto-

matic synthesis of ACMs was presented [2]. That method

receives as input a functional specification consisting of the

ACM class its size. As output, it produces the C++ source

code implementing the ACM as a shared memory with all

the control needed.

In the current work that method is extended to support

the generation of Verilog HDL source code. The specifics of

the Verilog language are taken into account and it is shown

how to obtain the ACM source code having only its func-

tional specification as start point. On Section 2 the behav-

ior expected from a hardware implementation of RRBBs

ACMs is formally introduced. On Section 3, the basic de-

sign of those ACMs is introduced in the form of block di-

agrams and finite state machines, it is shown how RRBBs

ACMs of any size can be synthesized. This design is used

on Section 4 to outline a procedure for the automatic gen-

eration of Verilog code of RRBBs ACMs. Finally, on Sec-

tion 5 the conclusions and future works are discussed.

2. Abstract model for RRBB ACMs

Previously the RRBB ACM has been formally specified

as a transition system. However, that specification is ade-

quate for the synthesis on software systems [2]. For this

reason, in the current work, that specification has been ex-

tended to support hardware synthesis. An ACM state is de-

fined by the data items available for reading. For each state,

σ defines the queue of data stored in the ACM. More specif-

ically, σ is a sequence a0a1 · · · aj−1aj , with j < n, where

n is size of the ACM. The data item aj is the last written

data, and a0 is the next data to be retrieved by the reader.

The size of the ACM is given by its number of cells, i.e.

the maximum number of data items the ACM can store at a

certain time.

The data queue σ must also express if the processes are

accessing the ACM or not. This is done by adding flags to

the a0 and aj items. aw
j indicates that the writer is starting

to store a new data item. aw′

j indicates that it has finished

writting the new data but has not released the cell yet. In

both cases the data is not available for reading. Finally, aj

indicates that the item is available for reading and that the

writer is ready to receive a new request. Similarly, ar
0 indi-

cates that the reader has started consuming data a0, ar′

0 in-

dicates that the reader has finished but has not released the

cell yet, and a0 indicates that the reader is ready to receive

a new request.

Observe that σ can be interpreted as a stream of data

that is passed from the writer (on the left) to the reader (on

the right). There are six events that change the state of the

ACM:

1. rdr : reader receives a request to read a new data;

2. rdb: reading a data item begins;

3. rde: reading a data item ends;

4. wrr : writer receives a request to write a new data;

5. wrb: writing a data item begin;

6. wre: writing a data item ends.

The notation 〈σi〉
e
−→ 〈σj〉 denotes the occurrence of

event e from state 〈σi〉 to state 〈σj〉, whereas 〈σ〉
e
−→ ⊥ is

used to denote that e is not enabled in 〈σ〉.
In RRBB ACMs, the reader is required not to wait when

starting an access to the ACM. In the case there is no new

data in the ACM, the reader will re-read some data that was

read before.

The writer can add data in the ACM until it is full. In

such case, the writer is required to wait until the reader re-

trieves some data from the ACM. The reader always tries

to retrieve the oldest non-read data and, if all data in the

ACM has been read before, then it attempts to re-read the

last retrieved data item.

Definition 1 formally captures the behavior of RRBB

ACMs. Rules 1-4 model the behavior of the writer. Rules 5-

9 model the behavior of the reader.

Definition 1 (RRBB transition rules) The behavior of an
RRBB ACM is defined by the following set of transitions (n
is the number of cells of the ACM and the cells are num-
bered from 0 to n− 1):

1. 〈σ〉
wrr
−−→ 〈σaw〉

2. 〈σaw〉
wrb
−−→ 〈σaw′

〉

3. 〈σaw′

〉
wre
−−→ 〈σa〉 if |σ| < n

4. 〈σaw′

〉
wrb(a)
−−−−→ ⊥ if |σ| = n

5. 〈aσ〉
rdr
−→ 〈arσ〉

6. 〈arσ〉
rdb
−→ 〈ar′

σ〉

7. 〈ar′

σ〉
rde
−→ 〈σ〉 if |σ| > 0 ∧ σ �= bw

8. 〈ar′

〉
rde
−→ 〈a〉

9. 〈ar′

bw〉
rde
−→ 〈abw〉

137

Rule 1 models the start of a write action for a new data

item a and signaling that it is not available for reading (aw).

Rule 2 models the completion of the write action, however

the item is not released for reading yet. Rule 3 models the

act of making the new data available for reading. Finally,

rule 4 represents the blocking of the writer when the ACM

is full (|σ| = n).

Rule 5 models the beginning of a read action retriev-

ing data item a and indicating that it is being read (ar).

Rule 6 models the completion of the read operation but the

accessed cell is not released yet. Rules 7 to 9 model the

reader releasing the cell and preparing to receive a new re-

quest. On Rule 7, a is removed from the buffer when other

data is available. On the other hand, rules 8 and 9 model the

action of releasing a cell release when no more data is avail-

able for reading. In this case, the data is not removed from

the buffer and is available for re-reading. This is necessary

due to the fact that the reader is required not to be blocked

even if there is no new data in the ACM.

It is important to observe that in the state 〈arbw〉 the next

element to be retrieved by the reader will depend on the or-

der that events wre(b) and rde(a) occur. If the writer deliv-

ers b before the reader finishes retrieving a, then b will be

the next data to be read. Otherwise, the reader will prepare

to re-read a.

3. Design for RRBB ACMs

In this Section the design of a 3-cells RRBB ACM will

be discussed. This design is for an specific number of cells.

However it is not difficult to extend it to support an arbi-

trary ACM size. The general structure for an ACM hard-

ware implementation is introduced by the block diagram

on Figure 3. The ACM is composed by three modules:

i)writer module; ii)reader module and iii) shared memory

module. On Figure 3 the basic architecture of the ACM

is shown. Besides clock and reset signals, there are

a number of input and output signals whose purpose is to

provide communication between the writer and reader pro-

cesses. Specifically, the writer process can send a request

signal (w req) to the ACM, the new data (w data[]) to

be written and receive an acknowledgment signal (w ack)

as response to this request. On the other hand, the reader

process can send a request signal (r req) and receive as

response a new data item (r data[]) and an acknowledg-

ment signal (r ack).

Each module of the ACM communicates with the others

using proper internal signals. For instance, when the writer

module receives a request, indicated by w req=1, it first

makes a request to the shared memory module setting req
to 1 and then it waits for the ack signal. After receiving

the ack, it forwards the signal to the writer process using

the wire w ack and then it checks if the reader module is

accessing the next cell by setting sel rd[] to the value

of the next cell and checking the value of the input signal

res rd. In the negative case, the new data is released for

reading and the writer module prepares to read the next cell.

Otherwise it waits until the reader is not pointing to the next

cell any more. The behavior of the reader is similar to the

behavior of the writer, except by the fact the if the writer

module is pointing to the next cell, the reader prepares to

re-read the current cell.

The writer module is detailed in the block diagram of

Figure 4. The control variables of the writer are imple-

mented by the flip-flops named wr0, wr1 and wr2 on the

left side of the diagram. Each flip-flop implements one con-

trol variables and they are one-hot encoded, meaning that

one of them, and only one, must have value set to 1 at any

time. At each clock tick, the writer engine updates the val-

ues of the control variables if necessary.

The reader module, which is shown in the block diagram

of Figure 5, has access to the control variables of the writer

through a multiplexor. It is basically equal to the writer

module. The main difference is that it receives data from the

shared memory module and returns this data to the reader

process. Observe that in both cases, a module “asks” the

other if a cell is being accessed or not by setting the value

of the select signal properly. The answer comes by the cor-

responding result signal. In any case, the result is only per-

ceived after passing through two sequential flip-flops clock

signals, which requires two clock signals. This is necessary

in order to minimize the probability of metastability prob-

lems since the access to the control variables is not con-

trolled by any mutual exclusion mechanism.

Finally, the engine of each module are defined as Fi-

nite State Machines (FSM). In Figure 6 the behavior of the

writer is modeled. Initially the writer is on idle state ready

to access the cell number 1, state labeled idle1. It is al-

ready pointing to cell 1 and the next cell has been selected

(sel=2). When a writing request is received (ereq=1) the

state changes to init1, and a request is made to the shared

memory module (req=1). When the request is executed

(ack=1) the state changes to end1, the received data is re-

turned to the calling process and the engine checks if the

reader is accessing the next cell by testing !rd. If the reader

is not accessing that cell, then the writer advances to it up-

dating its own control variables, sends an acknowledgment

signal to the served process and checks one cell ahead for

the reader. This is indicated by addr=2, w1=0, w2=1,

eack=1 and sel=0. This cycle repeats until the writer

returns to the state idle1.

The reader module works on the same way as the writer

module. The FSM of the reader engine is shown in Fig-

ure 7. The main difference compared to the writer FSM on

Figure 6 is that in order to finish a data access action, while

the writer blocks if the reader is pointing to the next cell,

138

Figure 3. The ACM block diagram

Figure 4. The writer block diagram

the reader does not block. Instead, it returns to the state in

which it is ready to access the same cell it has just read.

In other words, it prepares to re-read the current cell and

the values of the control variables are not modified. Note

the arcs with conditions !wr and wr starting from any state

label endN with N={0,1,2}. These arcs indicate that the

status of the writer does not block the reader. The mech-

anism to access the control variable of the writer module

is the same and it communicates with the shared memory

module in the same way as the writer.

Finally, on Figure 8 it is shown the FSM for the shared

memory module. This module is actually responsible for

executing read and write operations in the communication

buffer, while the reader and writer modules control where

these operations are done. The shared memory module

communicates with both writer and reader modules. It re-

ceives a request from the writer, a data to be stored and the

address to store the data. After saving the data it returns

an acknowledgment indicating termination of the action. It

also receives a request and an address from the reader, and

returns the data requested and an acknowledgment signal.

Observe that writer and read operations can be handled con-

currently.

From Figures 6 and 7 it is easy to observe that each FSM

139

Figure 5. The reader block diagram

Figure 6. The writer finite state machine

presents a basic structure that is repeated into the entire

model. This happens due to the fact that the control over

each ACM cell is exactly the same, differing only on the

Figure 7. The reader finite state machine

addresses they control the access to. For instance, we can

be observe that the writer FSM can be easily obtained from

the FSM module shown in Figure 9.

140

Figure 8. The shared memory finite state ma-

chine

Figure 9. FSM writer module

More specifically, in order to obtain the FSM of the 3-

cell RRBB ACM described previously, it is only needed to

instantiate a number n of modules like the one on Figure 9

and connect them properly. Since this module express all

the control needed for one ACM cell, the total amount of

modules needed corresponds to the size of the ACM. So,

for the 3-cell RRBB above, three modules are needed. To

instantiate a module for the jth cell it is necessary to gener-

ate an FSM of the module and replace all occurrences of I, J
and K properly. Note that I, J and K represent the number

of the previous, the current and the next cell respectively.

And they must be replaced by j − 1, j and j + 1 respec-

tively.

Finally it is necessary to connected the modules ob-

tained. This is easily done by just connecting the output

arc labeled !rd of the jth module to the input arc labeled

!rd of the (j + i)th module. Obverse that the we are con-

sidering the operation (j + 1) as ((j + 1) mod n), where

n is the ACM size. After these two simple steps the FSM

on the RRBB ACM is generated.

The same procedure can be used to obtain the FSM for

the reader process. The FSM module for the reader is shown

in Figure 10.

Figure 10. FSM reader module

4. Verilog code synthesis

To complete the hardware synthesis for RRBB ACMs

introduced on this work, it is necessary to point out how to

obtain an artifact, that can be synthesized into a physical

hardware, from the set of FSMs presented on Section 3. On

this Section it will be outlined how to obtain a Verilog code

for RRBB ACMs.

The block diagrams described on Section 3 ca be used to

generate a set of templates for RRBBs ACMs of any size. It

is only necessary to take care to setup correctly the datatype

to be transmitted and the size of the ACM. Note that in the

ACM module this size does not appear explicitly, however

the signal sel[] depends on it. More specifically, this sig-

nal should have log2n−1 wires, if n is the size of the ACM.

On the reader and the writer modules, besides that, it is also

necessary to instantiate a number of flip-flops correspond-

ing to the size of the ACM. Each flip-flop will corresponds

to a binary variable that controls the access to an specific

cell. Also, all wires should be correctly connected. Since

this is almost static, it will not be addressed here.

The main problem is on the synthesis of the code that

controls the access to to the shared memory. This is en-

capsulated in the writer engine and reader engine modules.

These are described by the FSMs introduced in Section 3.

The Verilog code generation uses the simple idea of get-

ting each FSM module used to build the writer engine or

the reader engine and generate a piece of Verilog code from

141

a template that is equivalent to the FSM module. For the

writer, its FSM module is mapped into the into the follow-

ing piece of Verilog code:

1 s t a t e [IDLE J] : begin
2 i f (e r e q) begin
3 eack <= 1 ’ b0 ;

4 r e q <= 1 ’ b1 ;

5 s t a t e [IDLE J] <= 1 ’ b0 ;

6 s t a t e [INIT J] <= 1 ’ b1 ;

7 end
8 end
9 s t a t e [INIT J] : begin

10 i f (ack) begin
11 r e q <= 1 ’ b0 ;

12 d a t a <= e d a t a ;

13 s t a t e [INIT J] <= 1 ’ b0 ;

14 s t a t e [END J] <= 1 ’ b1 ;

15 end
16 end
17 s t a t e [END J] : begin
18 i f (! rd) begin
19 c e l l J <= 1 ’ b0 ;

20 c e l l J +1 <= 1 ’ b1 ;

21 s e l <= J +2;

22 eack <= 1 ’ b1 ;

23 addr <= 1 ;

24 s t a t e [END J] <= 1 ’ b0 ;

25 s t a t e [IDLE J +1] <= 1 ’ b1 ;

26 end e l s e begin
27 s t a t e [END J] <= 1 ’ b1 ;

28 end
29 end

So, for each FSM module instantiated, the corresponding

Verilog code template above should also be instantiated. To

proceed with this step, it is necessary to take care of replac-

ing the Js properly. In the above, the J should be replaced

by the number j of the jth cell. Note that J+1 should be re-

placed by ((j +1) mod n) and J+2 by ((j +2) mod n),
where n is the size of the ACM. The source code obtained

implies two things:

1. All states of the FSM are enumerate and there is an

state array that is one-hot encoded to indicate the cur-

rent state;

2. There is a case statement in which the code above is

inserted.

For instance, for the 3-cell RRBB ACM, the state enu-

meration is done by:

1 parameter IDLE 0 =0 , INIT 0 =1 , END 0=2 ,

2 IDLE 1 =3 , INIT 1 =4 , END 1=5 ,

3 IDLE 2 =6 , INIT 2 =7 , END 2 =8;

and the case statement is defined by:

1 case (1 ’ b1)

2 CASE BODY GENERATED FROM FSM

3 endcase

Observe that line 2 should be replaced by the proper case

statements. The source code obtained for the reader engine

is similar to the one obtained to the writer, and its generation

follows the same idea. Many details related to the target

programming language have been omitted here, but they are

not crucial to the comprehension of the approach.

The procedure described above has been implemented 1

and used to generate a number of RRBBs ACMs of dif-

ferent size. The code synthesized has been submitted to

1.000.000.000 simulation cycles and, in all cases, no vio-

lations of freshness and coherence properties were encoun-

tered.

5. Conclusions and future work

On this work the hardware synthesis problem for re-

reading asynchronous communications mechanisms has

been addressed. The method presented here is based on the

use of modules to the generation of FSMs specifications for

each ACM process.

Firstly, the behavior of RRBB ACMs was formally de-

fined and the basic properties they must satisfy were dis-

cussed. Then the basic design of an RRBB ACM was de-

scribed. The main block diagrams were introduced and the

FSMs specifying the control engine of each process were

defined. Then it has been shown how to obtain a procedure

that can be used to generate the FSM engines for RRBBs

ACMs of any size. And, finally, it has been introduced how

to translate the block diagrams and FSMs into Verilog code

that can be used to generate hardware or for simulation pur-

poses.

The method above has been implemented and made

available for public download. A different number of ACMs

have been generated and in all cases coherence and fresh-

ness has been analyzed through simulation. However, the

method lacks a formal proof of its correctness, even there

are strong evidences of it.

This work extends previous ones [3, 2] by adding sup-

port for hardware synthesis. This is done in two ways.

First, the formal behavior of RRBBs ACMs is extend to

consider hardware implementations and not only software

implementations. Second, the automatic procedure for gen-

erating Verilog code of RRBBs ACMs is defined and imple-

mented.

Next steps to complete automation of ACMs generation

includes the support for the generation of the overwriting

ACM policies. And the presentation of a formal proof of

1See ACMgen tool at http://sourceforge.net/project/
acmgen/.

142

its correctness. Also, a number of interesting applications

demonstrating its usefulness need to be introduced.

Acknowledgments

The authors benefited from extensive discussions with

Alex Yakovlev and Fei Xia and wish to express out their

gratitude.

References

[1] J.-P. Fassino. THINK: vers une architecture de systèmes
flexibles. PhD thesis, École Nationale Supérieure des

Télécommunications, Dec. 2001.

[2] K. Gorgônio, J. Cortadella, and F. Xia. A compositional

method for the synthesis of asynchronous communication

mechanisms. In J. K. an Alex Yakovlev, editor, ICATPN,

number 4546 in LNCS, pages 144–163. Springer-Verlag

Berlin Heidelberg, 2007.

[3] K. Gorgônio, J. Cortadella, F. Xia, and A. Yakovlev. Automat-

ing synthesis of asynchronous communication mechanisms.

Fundamenta Informaticae, 78(1):75–100, June 2007.

[4] L. Kleeman and A. Cantoni. On the unavoidability of

metastable behavior in digital systems. IEEE Transactions
on Computers, 36(1):109–112, 1987.

[5] L. Lamport. On interprocess communication — parts I and II.

Distributed Computing, 1(2):77–101, 1986.

[6] L. R. Marino. General theory of metastable operation. IEEE
Transactions on Computers, 30(2):107–115, 1981.

[7] H. R. Simpson. Protocols for process interaction. IEE Pro-
ceedings on Computers and Digital Techniques, 150(3):157–

182, May 2003.

[8] F. Xia, F. Hao, I. Clark, A. Yakovlev, and G. Chester. Buffered

asynchronous communication mechanisms. In Proceedings of
the Fourth International Conference on Application of Con-
currency to System Design (ACSD’04), pages 36–44. IEEE

Computer Society, 2004.

[9] A. Yakovlev, D. J. Kinniment, F. Xia, and A. M. Koelmans.

A fifo buffer with non-blocking interface. TCVLSI Technical
Bulletin, pages 11–14, Fall 1998.

143

