
UNIVERSITAT POLITÈCNICA DE CATALUNYA
(UPC) - BARCELONATECH

FACULTAT D’INFORMÀTICA DE BARCELONA (FIB)

MASTER IN INNOVATION AND RESEARCH IN
INFORMATICS (MIRI)

DATA SCIENCE

Scheduling policies for Big Data workflows

FINAL MASTER THESIS (FMT)

2018-2019 | SPRING SEMESTER

Author:
Ramon AMELA MILIAN
(ramela@bsc.es)

Supervisor:
Dra. Rosa M. BADIA SALA

(rosa.m.badia@bsc.es)

HTTP://WWW.UPC.EDU/
HTTP://WWW.UPC.EDU/
HTTP://WWW.FIB.UPC.EDU/
HTTP://MASTERS.FIB.UPC.EDU/MASTERS/MASTER-HIGH-PERFORMANCE-COMPUTING
HTTP://MASTERS.FIB.UPC.EDU/MASTERS/MASTER-HIGH-PERFORMANCE-COMPUTING
HTTPS://WWW.FIB.UPC.EDU/EN/STUDIES/MASTERS/MASTER-INNOVATION-AND-RESEARCH-INFORMATICS/CURRICULUM/SPECIALIZATIONS/DATA-SCIENCE

ii

iii

Choose a job you love, and you will never have to
work a day in your life.

Anonymous

v

Dedication

To all my friends, for sharing with me the journey that got me
here. Specially to those who have sustained me during my
peak stress periods during this master thesis and the last burn
out session, thank you very much Marta, Cristian, Fanny, big
Pol, Virginia, Joan, Laia, Joana, bourgeois Laia, small Pol, Javi,
Josep, Sara, Jordi, Nil and many others.

To my parents, who have always encouraged me to follow my
dreams, no matter how stupid they were, and have always
supported me, specially when failing. Also thanks to teach me
how important is honesty in all areas of life.

Special thanks to you, Josep, for being you and being always
there. We are a team, bro.

Wholeheartedly,
Ramon Amela Milian

vii

Declaration of Authorship

I hereby declare that, except where specific reference is made to the work of others, this
Master’s thesis has been composed by me and it is based on my own work. None of the
contents of this dissertation have been previously published nor submitted, in whole or in
part, to any other examination in this or any other university.

Signed:

Date:

ix

Acknowledgements

I gratefully thank my supervisor Rosa M. Badia Sala for letting me participate in the
projects that have made possible the redaction of this master thesis.

I would also like to thank all my colleagues, current and former members of the Work-
flows and Distributed Computing team from the Barcelona Supercomputing Center (BSC) for their
comments through the learning process of this Master’s thesis: Pol Alvarez, Javier Alvarez,
Cristian Ramón Cortés, Sergio Rodriguez, Raul Sirvent, Marc Dominguez, Salvi Sola, Marta
Bertan, Hatem Elshazly, Nihad Mammadli, Jorge Ejarque, Francesc Lordan, Francisco Javier
Conejero and Daniele Lezzi.

Special thanks to Marta Guindó Martinez for introducing me to the GWAS world and
for the infinite patience when everything crushed, crushes and will crush.

Last but not least, thanks to Riccardo Tosi and Riccardo Rossi for the discussions about
Multilevel Montecarlo, on the fly convergence checking and potential asynchronous execu-
tion strategies.

xi

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) - BARCELONATECH

Facultat d’Informàtica de Barcelona (FIB)

MASTER IN INNOVATION AND RESEARCH IN INFORMATICS (MIRI)

Data Science

Abstract
Scheduling policies for Big Data workflows

by Ramon AMELA MILIAN

While data workflows have some solutions in the market that scale to tens of thousands
of cores and are really stable, there are not clear both scalable and stable solutions for arbi-
trary task flows. Scheduling big and heterogeneous workflows is a big challenge. More
precisely, it has been proven to be an NP-hard problem. Nevertheless, the advances in
the algorithm designs, the runtime parallelization strategies, the available computational
resources and the reduction of network latencies has made possible to attack this kind of
research subjects in the last years.

The aim of this master thesis is to both give the programmer some guidelines to change
the user code in order to achieve good scalabilities with tasked based programming models
and to give to the COMPSs runtime scheduler the capability to handle a high amount of
tasks and resources in order to scale out big executions.

Keywords: Big Data, HPC, Distributed Computing, Workflows, COMPSs, PyCOMPSs

HTTP://WWW.UPC.EDU/
http://www.fib.upc.edu/
HTTP://MASTERS.FIB.UPC.EDU/MASTERS/MASTER-HIGH-PERFORMANCE-COMPUTING
https://www.fib.upc.edu/en/studies/masters/master-innovation-and-research-informatics/curriculum/specializations/data-science

xiii

Contents

Dedication v

Declaration of Authorship vii

Acknowledgements ix

Abstract xi

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 1
1.3 Objectives . 2

1.3.1 Detailed Objectives . 2
1.4 Document Structure . 2

2 State of the art 3
2.1 Genomic workflows . 3
2.2 Multilevel Monte Carlo . 3
2.3 Workflow managers . 4

3 COMPSs overview 7
3.1 COMPSs Runtime . 9
3.2 Interaction with external libraries . 9
3.3 Scheduling infrastructure . 10
3.4 Python persistent workers . 10
3.5 Methods’ polymorphism . 11
3.6 Profiling . 12

4 Implementations 13
4.1 GWAS . 13

4.1.1 Application characteristics . 13
4.1.2 Binary complexity . 15

4.1.2.1 Heterogeneous Task Requirements 15
4.1.2.2 Heterogeneous Binary Invocations 16

4.1.3 Intelligent Workflow Execution . 17
4.1.4 Pipeline refactor . 18
4.1.5 Merge refactor . 20
4.1.6 Containerization . 20
4.1.7 Cloud execution . 21

4.2 MLMC . 22
4.2.1 Monte Carlo algorithm overview . 22
4.2.2 Multilevel Monte Carlo algorithm overview 23
4.2.3 Convergence criteria . 24
4.2.4 Description of the algorithms . 25

xiv

4.2.5 Improvements . 26
4.2.5.1 Tree merge . 26
4.2.5.2 Batch design . 27
4.2.5.3 Full stack deployment . 28

4.3 Runtime improvements . 30
4.3.1 Problem diagnosis . 30
4.3.2 Implementation proposed . 32

5 Results and evaluation 35
5.1 Experimental Setup . 35
5.2 Scheduling performance . 36
5.3 Dynamic scheduling with different tasks’ constraints evaluation of the GAWS

workflow . 39
5.4 Scheduling and application improvements in the GWAS code 40
5.5 Scalability . 42

5.5.1 Strong Scaling . 42
5.5.2 Weak Scaling . 44

5.6 Portability . 45
5.6.1 Cloud computing . 45
5.6.2 HPC . 46

5.7 Scheduling and workflow improvements in the MC workflow 46

6 Conclusions and Future work 49

Bibliography 51

Appendices 57

A GWAS 59
A.1 Dockerfile . 59
A.2 Docker generation . 62
A.3 Singularity build file . 63
A.4 Singularity generation . 63

B MC 65
B.1 MLMC poster . 66

C Scheduling improvements 67
C.1 Scheduler auxiliar structures . 67
C.2 Scheduler main function . 67
C.3 Scheduler auxiliar calls . 69

xv

List of Figures

3.1 PyCOMPSs overview . 7
3.2 Sample task annotation . 8
3.3 Sample call to synchronization API . 8
3.4 PyCOMPSs Task life-cycle . 9
3.5 Version handling with PyCOMPSs . 11

4.1 GWAS DAG . 14
4.2 Task annotations with different CPU and memory constraints 16
4.3 Binary wrapper to homogenise binary invocations 17
4.4 Execution trace of an execution showing all the tasks and only the last phase

merging tasks . 18
4.5 Main workflow task duration . 19
4.6 Shorter task’s duration . 19
4.7 Resulting workflow after pipeline regrouping 20
4.8 Merge strategies . 20
4.9 Cloud setup for the execution of GUIDANCE with COMPSs. 21
4.10 Sequential MC algorithm . 25
4.11 CMLMC algorithm . 26
4.12 Initial Multilevel Montecarlo dependency graph 26
4.13 Batched Multilevel Montecarlo dependency graph 27
4.14 Convergence check of the batched Multilevel Montecarlo 28
4.15 Final batched Montecarlo dependency graph 29
4.16 7920 simulations MC execution with 15 MN IV worker nodes 30
4.17 30000 simulations MC execution with 15 MN IV worker nodes 31
4.18 Original COMPSs ready scheduler . 31
4.19 Asynchronous scheduling structures update 33
4.20 Asynchronous scheduling structures update 34

5.1 Execution trace of the same application with the old and the new scheduler . 36
5.2 Zoom on the execution trace of the same application with the old and the new

scheduler . 37
5.3 Duration of the tasks when executing with the old and the new scheduler . . 37
5.4 Elapsed time between tasks when executing with the old and the new scheduler 38
5.5 Amount of executing tasks with the old and the new scheduler 38
5.6 GWAS executions using COMPSs. (a) Separated steps with static constraints.

(b) Separated steps with dynamic constraints. (c) Merged steps with static
constraints. (d) Merged steps with dynamic constraints. 40

5.7 Execution trace with all the scheduling improvements unless the multithread-
ing one and all the GWAS improvements unless the merging of the fine tasks. 41

5.8 Execution traces comparing the execution shown in Figure 5.7 with only par-
tial improvements and the one including all the improvements in the sched-
uler and the GWAS workflow . 41

xvi

5.9 Execution traces comparing the execution shown in Figure 5.7 with only par-
tial improvements and the one including all the improvements in the sched-
uler and the GWAS workflow with two times the amount of inputs in the
third level . 42

5.10 Execution traces comparing the execution shown in Figure 5.7 with only par-
tial improvements and the one including all the improvements in the sched-
uler and the GWAS workflow with two times the amount of inputs in the
third level and twice the amount of available resources 42

5.11 Execution traces of GWAS with 300 inputs in the first input level, 2 in the
second and, 8 in the third one with 1200, 2400, and 4800 cores respectively
(25, 50, and 100 nodes). 43

5.12 Execution traces corresponding to the three executions performed to state the
weak scaling . 45

5.13 Execution trace of the cloud execution . 45
5.14 Execution trace of a MC execution with 8000 samples and synchronous con-

vergence checking and 15 worker nodes . 46
5.15 Execution trace of a MC execution with 51000 samples and asynchronous con-

vergence checking and 29 worker nodes . 47

xvii

List of Tables

5.1 Summary of the executions used to demonstrate the improvements achieved 43
5.2 Strong scaling analysis with 1200, 2400, and 4800 cores (25, 50, and 100 nodes

respectively). 44
5.3 Weak scaling analysis with 1200, 2400, and 4800 cores (25, 50, and 100 nodes

respectively). 44

xix

List of Abbreviations

API Application Programming Interface
COMPSs COMP Superscalar
CPU Central Processing Unit
DAG Directed Acyclic Graph
FPGA Grahical Processing Unit
GPU Field Programmable Gate Array
GWAS Genome Wide Association Study

xxi

Glossary

CPU
The Central Processing Unit (CPU) is the part of the computer that contains all the ele-

ments required to execute the instructions of software programs. Its main components are
the main memory, the Processing Unit (PU) and the Control Unit (CU). Modern computers
use multi-core processors, which are a single chip containing one or more cores.

Core
A core is an individual processor that actually executes program instructions. Current

single chip CPUs contain many cores and are referred as multi-processor or multi-cores.

Node
A compute node refers to a single system within a cluster of many systems.

Framework
Framework stands for a set of standardized concepts, practices or criterias used to face a

given problem. Specifically, it defines a set of programs, libraries, languages, and program-
ming models used jointly in a project.

Workflow
A workflow is composed of tasks and dependencies between tasks. Workflows are com-

monly represented as graphs, with the nodes beeing tasks and the arrows representing the
dependencies. Somehow, tasks must represent an action that must be done (i.e. the ex-
ecution of a binary), and the dependencies must represent the requirements that must be
satisfied to be able to execute the task (i.e. the machine availability or the required data).

Binary
A file containing a list of machine code instructions to perform a list of tasks.

Parallelization
Separation of a program in small independent processes that can run simultaneously.

Runtime
Metaprogram that controls a program in execution time.

Granularity
Average task duration time.

1

Chapter 1

Introduction

1.1 Motivation

While data workflows have some solutions in the market that scale to tens of thousands
of cores and are really stable [1], there are not clear both scalable and stable solutions for
arbitrary task flows. Scheduling big and heterogeneous workflows is a big challenge. More
precisely, it has been proven to be an NP-hard problem [2]. Nevertheless, the advances in
the algorithm designs [3], the runtime parallelization strategies [4], the available computa-
tional resources [5] and the reduction of network latencies [6] has made possible to attack
this kind of research subjects in the last years.

The Workflows and Distributed Computing group of the BSC treats this kind of problems
through COMPSs [compss] [7], a task based programming model trying to minimize the
modifications in the code between a sequential and a distributed execution. This is achieved
through decorator definitions following the OpenMP [8] philosophy. Even if its runtime
has demonstrated to be more efficient than Spark with task based applications [9], compli-
cated DAGs with a big amount of resources have reached the current limit of the COMPSs
scheduling capabilities.

There are different approaches to confront the problem. The first one is to improve the
runtime system in such a way that, given a certain DAG, the performance obtained is as
good as possible. On the other hand, it is possible to change the user code in such a way
that the generated DAG has more potential parallelism and the granularities obtained fits
better the characteristics of the used framework.

1.2 Context

The current project is conducted as the Final Master Thesis in the Master of Innovation and
Research in Informatics - High Performance Computing (MIRI - HPC) offered by the Universi-
tat Politecnica de Catalunya (UPC) [10] and has been funded by the Barcelona Supercomputing
Center (BSC) [11].

The project has been developed as a junior research engineer in the Workflows and Dis-
tributed Computing group [12] of the Computer Science department at the BSC. The main goal
of this group is to ease the development of applications in clusters through the COMP Su-
perscalar (COMPSs) [compss] programming model.

In addition, the projects into which the project has been done were in collaboration with
the Computational Genomics group [13] of the BSC and CIMNE [14] International Centre for
Numerical Methods in Engineering.

2 Chapter 1. Introduction

1.3 Objectives

This master thesis aims to show how performance can be improved both modifying
the applications and improving the scheduling systems, trying to reach the best possible
performance for a given application.

1.3.1 Detailed Objectives

The following points summarize the main goals of the project:

O1 Include new features and optimize the code and task definitions in a GWAS work-
flow

O2 Design a good methodology to implement a MLMC application

O3 Introduce improvements in the scheduler to scale as well as possible both when
increasing the resources and the amount of tasks in the DAG

In both cases they did the scientific contribution, well defining the workflows to exectute
and coding the functionalities to be done in each one of the tasks. My contribution has
consisted in studying the workflows, and proposing and implementing the way the tasks are
called In the following chapters the precise contributions due to any author will be described
as clearly as possible.

1.4 Document Structure

The rest of the document is organized as follows. Chapter 2 gives an overview of the cur-
rent state of the art of GWAS workflows, MLMC distributed excutions and Analytic work-
flows, describing the most used technologies and comparing them to what is supported
in the most common Workflow Managers. Chapter 3 introduces the COMPSs program-
ming model, describing its main features before our contribution. Chapter 4 introduces the
workflows and contributions done in this master thesis. Chapter 5 accurately describes our
contribution to provide the reader a closer look of the solutions that we have chosen to face
each specific challenge. Chapter 6 evaluates the obtained results and the performance of
our proposal. Chapter 7 provides a brief summary of the thesis and, finally, in Chapter 8 we
discuss the conclusions and state the guidelines for the future work.

3

Chapter 2

State of the art

In this section, the state of the art of all the subjects treated in the document are presented.

2.1 Genomic workflows

A straightforward solution to execute genomic workflows in supercomputing infrastruc-
tures is by directly attacking the queue manager. Job Arrays are essentially a collection of
batch jobs that must have the same initial options (e.g., number of processes, wall-clock
time). Thus, the users define genomic workflows as one job array per workflow step. On
the one hand, Job Arrays are built directly on top of queue systems (i.e., SLURM, LSF, PBS)
providing a very low overhead. For instance, SLURM Job Arrays [15] can submit millions
of tasks in milliseconds. However, on the other hand, the users must manually define each
job array and the dependencies between them to preserve the full workflow. Moreover, the
requirements of each job array (workflow step) are homogeneous for all its tasks. Advanced
users may dynamically modify the requirements of each job array job, but it is not a com-
mon practice.

Regarding the GWAS workflows, the implementation presented in this master thesis is to
my knowledge the one using larger scale systems. In addition, the code has proven its utility
since there are already accepted papers that are using it [16]. Other GWAS implementations
can be found in the literature, like the one presented in [17] based on NextFlow and on the
Common Workflow Language (CWL) [18]. Although the authors claim to use HPC systems,
according to the numbers given in the article, the number of CPUs used in the executions do
not exceed a ten. Other workflows presented in the same paper use 192 cores. GWASpro [19]
is a web server for the analyses of large-scale genome-wide association studies. While the
article claim that the server uses around 1000 CPU cores, nor detailed information about the
implementation is given, neither information about the efficiency achieved.

2.2 Multilevel Monte Carlo

The sequential codes from which we started working of the the Monte Carlo (MC) and
Multilevel Monte Carlo (MLMC) algorithms [20], allow to compute statistical analysis of
scalar and field Quantity of Interests (QoI). This quantity arise from the solution of a stochas-
tic problem. MLMC presents some issues that will be further discussed that are overcome
by the Continuation Multilevel Monte Carlo (CMLMC) algorithm, firstly introduced in [21].

Even if MC [22] is a really old and well known algorithm, multilevel approaches are
much more recent [23]. In addition, the way the different moments are computed in the
version presented in the previous paragraph are highly suitable to be paralellized.

4 Chapter 2. State of the art

2.3 Workflow managers

Conversely, task-based frameworks can be used as workflow managers to provide a
richer set of features. However, this solution requires the applications to be developed
specifically for them, and the system administrators to install the full framework stack.

On the one hand, some frameworks force the users to explicitly define the workflow by
means of a recipe file or a graphical interface.

FireWorks [24, 25] defines complex workflows using recipe files in Python, JSON, or
YAML. It focuses on high-throughput applications, such as computational chemistry and
materials science calculations, and provides support arbitrary computing resources (includ-
ing queue systems), monitoring through a built-in web interface, failure detection, and dy-
namic workflow management.

Taverna [26, 27] is a suite of tools to design, monitor, and execute scientific workflows.
It provides a graphical user interface for the composition of workflows that are written in
a Simple Conceptual Unified Flow Language (Scufl) and executed remotely by the Taverna
Server to any underlying infrastructure (such as supercomputers, Grids or cloud environ-
ments). Similarly, Kepler [28, 29] also provides a graphical user interface to compose sci-
entific frameworks by selecting and connecting pertinent analytical components and data
sources. Furthermore, workflows can be easily stored, reuse and shared across the commu-
nity. Internally, Kepler’s architecture is actor-oriented to allow different execution models
into the same workflow.

Also, Galaxy [30, 31] is a web-based platform for scientific analysis focused on accessi-
bility and reproducibility of workflows across the scientific community. The users define
scientific workflows through the web portal and submit their executions to a Galaxy server
containing a full repertoire of tools and reference data.

On the other hand, other frameworks implicitly build the task dependency graph from
the user code. Some opt for defining a new scripting language to manage the workflow.
These solutions force the users to learn a new language but make a clear differentiation
between the workflow’s management (the script) and the processes or programs to be exe-
cuted.

Swift [32, 33] is a parallel scripting language developed in Java and designed to ex-
press and coordinate parallel invocations of application programs on distributed and paral-
lel computing platforms. The users only define the main application and the input and out-
put parameters of each program, so that Swift can execute the application in any distributed
infrastructure by automatically building the data dependencies. Nextflow [34] enables scal-
able and reproducible scientific workflows using software containers. It provides a fluent
DSL to implement and deploy scientific workflows but allows the adaptation of pipelines
written in the most common scripting languages.

Other frameworks opt for defining some annotations on top of an already existing lan-
guage. These solutions avoid the users from learning a new language but merge the work-
flow annotations and its execution in the same files.

2.3. Workflow managers 5

Dask [35] is a library for parallel computing in Python. Dask follows a task-based ap-
proach being able to take into account the data-dependencies between the tasks and exploit-
ing the inherent concurrency. Dask has been designed for computation and interactive data
science and integration with Jupyter notebooks. It is based on the dataframe data-structure
that offers interfaces to NumPy, Pandas, and Python iterators. Dask supports implicit, sim-
ple, task-graphs previously defined by the system (Dask Array or Dask Bag) and for more
complex graphs, the programmer can relay in the delayed annotation that supports the
asynchronous executions of tasks by building the corresponding task-graph. Dask-jobqueue
is an interface to execute Dask in large clusters while still supporting interactivity. However,
the elasticity needs to be indicated by the programmer in the code. While Dask is very pop-
ular in data-science, the authors of this paper are not aware of its application to other areas.

Parsl [36] provides an intuitive way to build implicit dataflows by annotating "apps"
in Python codes. In Parsl, the developers annotate Python functions (apps) and Parsl con-
structs a dynamic, parallel execution graph derived from the implicit linkage between apps
based on shared input/output data objects. Parsl then executes apps when dependencies
are met. Parsl is resource-independent, that is, the same Parsl script can be executed on a
laptop, cluster, cloud, or supercomputer.

Since COMPSs [37] is the solution chosen in this project, a more extended presentation
is done in the following chapter.

7

Chapter 3

COMPSs overview

COMPSs is a task-based programming model that aims to make easier the development
of parallel applications, targeting distributed computing platforms. It relies on the power
of its Runtime to exploit the inherent parallelism of the application at execution time by de-
tecting the task calls and the data dependencies between them.

As shown in Figure 3.1, the COMPSs Runtime allows applications to be executed on
top of different infrastructures (such as multi-core machines, grids, clouds or containers)
without modifying a single line of the application’s code. Thanks to the different connec-
tors, the Runtime is capable of handling all the underlying infrastructure so that the users
only define the tasks. It also provides fault-tolerant mechanisms for partial failures (with
job resubmission and reschedule when task or resources fail), has a live monitoring tool
through a built-in web interface, supports instrumentation using the Extrae [38] tool to gen-
erate postmortem traces that can be analyzed with Paraver [39] [40], has an Eclipse IDE, and
has pluggable cloud connectors and task schedulers.

Moreover, since the COMPSs Runtime is written in Java [41], Python [42] syntax is sup-
ported through a binding. This Python binding is supported by a Binding-commons layer
which focuses on enabling the functionalities of the Runtime to other languages (currently,
Python [43] and C/C++ [44]). It has been designed as an API with a set of defined functions.
It is written in C and performs the communication with the Runtime through the JNI [45].
In this master thesis both Java and Python versions has been used. Nevertheless, consid-
ering its more compact format, PyCOMPSs has been chosen to present the examples in the
overview.

FIGURE 3.1: PyCOMPSs overview

8 Chapter 3. COMPSs overview

Regarding the programmability, Tasks are identified by the programmer using simple
annotations in the form of Python decorators, which indicate that invocations of a given
method will become tasks at execution time. The @task decorator also contains informa-
tion about the directionality of the method parameters specifying if a given parameter is
read (IN), written (OUT) or both read and written in the method (INOUT).

Figure 3.2 shows an example of a task annotation in Python. The parameter c is of type
INOUT, and parameters a, b, and MKLProc are set to the default type IN. The directionality
tags are used at execution time to derive the data dependencies between tasks and are ap-
plied at an object level, taking into account its references to identify when two tasks access
the same object. Furthermore, the priority tag is a hint for the PyCOMPSs’ scheduler that
will force to execute the tasks with this tag earlier, always respecting the data dependencies.

Additionally to the @task decorator, the @constraint decorator can be optionally de-
fined to indicate some task hardware or software requirements. Continuing with the previ-
ous example, the task constraint ComputingUnits shows to the Runtime how many CPUs
are consumed by each task execution. The available resources are defined by the system
administrator in a separated XML configuration file. Other constraints that can be defined
refer to processor architecture, memory size, etc.

1 @constraint(ComputingUnits="$ComputingUnits")
@task(c=INOUT, priority=True)

3 def multiply(a, b, c, MKLProc):
os.environ["MKL_NUM_THREADS"]=str(MKLProc)

5 c += a * b

FIGURE 3.2: Sample task annotation

A tiny synchronization API completes the PyCOMPSs syntax. As shown in Figure 3.3,
the API function compss_wait_on waits until all the tasks modifying the result’s value
are finished and brings the value to the node executing the main program. Once the value
is retrieved, the execution of the main program code is resumed. Given that PyCOMPSs is
used mostly in distributed environments, synchronizing may imply a data transfer from a
remote storage or memory space to the node executing the main program. It is important
to realize that when coding with COMPSs in Java, this API is no needed since the code is
instrumented with Javassist [46].

1 for block in Data:
presult = word_count(block)

3 reduce_count(result, presult)
finalResult = compss_wait_on(result)

5

FIGURE 3.3: Sample call to synchronization API

3.1. COMPSs Runtime 9

3.1 COMPSs Runtime

The COMPSs Runtime handles the execution of the applications in the computing in-
frastructure. The computing infrastructure is composed of several heterogeneous nodes,
and the execution is orchestrated following the master-worker paradigm, where the main
program is started on the master node and tasks are offloaded to worker nodes. In the most
general case, the node allocating the master node will also allocate a worker node.

FIGURE 3.4: PyCOMPSs Task life-cycle

As depicted in Figure 3.4, the Runtime first builds a task graph adding a new node to it
every time a task is invoked in the application’s code. The directionality of the parameters is
used to detect the data dependencies between the new task and previous ones. Secondly, the
scheduler will analyze the generated graph in a particular way to execute all the workload
among the available resources. We must highlight that this analysis is highly dependent to
the different scheduler implementations, but the Runtime provides information about all the
data locations so that they can exploit the data locality. Eventually, when a task is scheduled
to a given resource, the required objects and files are transferred between different memory
spaces to guarantee that tasks have available their parameters before execution. Finally, the
task is executed in the worker resource and, when specified by the synchronization API, the
results are gathered back to the master resource (where the main code is running).

Only concerning the PyCOMPSs binding, when a transfer between different memory
spaces is required, the binding serializes and writes the object to disk using the standard
library Pickle. The transfer between different resources is then delegated to the Runtime.

Finally, the available Computing Units that each resource can offer to the Runtime
is configurable. More specifically, this allows to oversubscribe the amount of work that
a resource can receive; meaning that the Runtime can create more threads than the real
amount of CPUs that the resource has.

3.2 Interaction with external libraries

The PyCOMPSs Runtime supports the execution of multi-threaded tasks using the con-
straint interface. The number of cores assigned to a multi-threaded task can be indicated
by the programmer in the ComputingUnits constraint tag. The PyCOMPSs scheduler can

10 Chapter 3. COMPSs overview

assign several cores to a given multi-threaded task. On the other hand, although support
for tasks that use several nodes has been added recently, in this work we only consider tasks
executing inside a single node.

Before this work, the cores were assigned blindly to the tasks. The performance results
observed were relatively poor when running numerical applications, such as those using the
NumPy [47] or SciPy [48] libraries that link to the Intel R©MKL library [49]. It has been shown
that, by default, Intel R©MKL tends to occupy the entire node when the multi-threading is
enabled. Not considering this fact can result in a heavy oversubscribing. In addition, each
task can be executed in several NUMA sockets. This fact increases the amount of transfers
between the different NUMA-nodes, decreasing the performance dramatically. Knowing
that this behavior can be found in other libraries, the problem has been solved in a general
way.

We have modified the PyCOMPSs task executor in such a way that it is currently able
to bind multi-threaded tasks to specific computing units of the infrastructure. This fact,
combined with the capability to define the nodes’ virtual amount of computing units, allows
the user to achieve the desired rate of oversubscribing. However, this is not done blindly:
the PyCOMPSs Runtime distributes the tasks evenly between the different NUMA sockets,
avoiding at the maximum the transfers between memory spaces.

3.3 Scheduling infrastructure

PyCOMPSs Runtime has been extended with a scheduling infrastructure that supports
pluggable scheduling policies. Almost all the tests presented in this paper are based on a
data locality scheduler that takes into account the node that stores the data accessed by the
tasks. More precisely, a task will have a score equal to the amount of input data present in a
given node.

Defining a new score policy is enough to change the scheduler behavior. It will prior-
itize the tasks with the highest score for a given combination of resource, implementation,
and data. In addition to the data locality score, three more policies have been defined: First In
First Out (FIFO), Last In First Out (LIFO) and data locality with priority to tasks with a shared
edge in the dependency graph with the finished task (FIFOData). In this last policy, there
are two different scenarios. In the case where there are tasks freed by the job that has just
finished, one of them is scheduled in First In First Out order; even before treating the tasks
that are already free. Otherwise, data locality is considered between all the available tasks.
The first two policies (LIFO, FIFO) have served to probe the robustness of the scheduling
system. The third one can be seen as a relaxation of the data locality scheduler to lighten the
amount of needed comparisons to schedule a task.

The available schedulers allow the users to configure the execution depending on the
expected load. This master thesis tries to optimize the way the different schedulers are
coded internally without changing its current behavior.

3.4 Python persistent workers

In previous Runtime versions, COMPSs was enhanced with a persistent Java worker,
meaning that a Java worker process was started at the beginning of the application execu-
tion, communicating with the master to get information about the tasks to be executed and

3.5. Methods’ polymorphism 11

data transfers to be performed. However, every time a Python task was invoked, a new
Python interpreter was launched. This process has been enhanced with the implementation
of Python persistent workers.

More in detail, the PyCOMPSs worker module has been modified on top of the Python’s
built-in multiprocessing library. When the application execution begins, the primary worker
process in each worker node spawns a set of processes that will be responsible for executing
the tasks. These processes are kept alive during the whole application execution and com-
municate with the Java persistent worker through pipes. The messages that they exchange
include information about the task execution requests, job parameters, and computation re-
sults. This feature improves the overall performance by reducing the overhead of deploying
a new Python interpreter per task. Besides, modules loaded by previous tasks are already
present in the interpreter and do not need to be reloaded.

3.5 Methods’ polymorphism

GPUs have demonstrated that can sometimes achieve better performance than CPUs.
In fact, it is not always easy to decide whether it is better to use one architecture or the
other [50]. Also, FPGAs are gaining some momentum. In this context, projects with the
primary focus of interest on heterogeneous architectures are arising [51]. Hence, it seems
reasonable to think that, in both HPC and Big Data contexts, we are going towards environ-
ments with heterogeneous architectures.

@implement(source_class="matmul_objects_MKL", method="multiply")
2 @constraint (ComputingUnits="${ComputingUnitsKNL}", ProcessorName="KNL")
@task(c=INOUT)

4 def multiplyKNL(a, b, c, MKLProcXeon, MKLProcKNL):
os.environ["KMP_AFFINITY"]="disabled"

6 os.environ["MKL_NUM_THREADS"]=str(MKLProcKNL)
c += a * b

8

@constraint (ComputingUnits="${ComputingUnitsXEON}", ProcessorName="XEON")
10 @task(c=INOUT)

def multiply(a, b, c, MKLProcXeon, MKLProcKNL):
12 os.environ["MKL_NUM_THREADS"]=str(MKLProcXeon)

c += a * b
14

FIGURE 3.5: Version handling with PyCOMPSs

PyCOMPSs can manage those cases by providing support for the definition of differ-
ent versions of the same method for different architectures. The programmer can use the
@implements decorator to indicate that a method implements the same behavior than an-
other. Figure 3.5 shows an example of polymorphism, which together with the @constraint
decorator allows to indicate to the Runtime that some tasks can only be executed in a given
set of computing resources. In fact, using polymorphism and tasks’ constraints, the users
can define CPU, GPU or FPGA versions of the same task.

Internally, at the beginning of the execution, the Runtime will blindly execute any of the
available versions that can run in a given resource in order to obtain an execution profile per
version. Afterwards, the Runtime is capable to use the profiled information to choose the
implementation with the lowest execution time.

12 Chapter 3. COMPSs overview

3.6 Profiling

PyCOMPSs generates postmortem traces under demand using Extrae [38]. These files can
be explored with Paraver [39] [40], obtaining visual information to make easier the code
performance fine tuning.

Some specific PyCOMPSs events have been added in order to differentiate the different
steps done by the master and the workers. More precisely, it is possible to see the different
actions performed by a worker each time that a task is executed.

Finally, the dependency graph generated can be plotted at the end of the computation or
be explored on runtime with the monitor.

13

Chapter 4

Implementations

The main objective of this chapter is to present the workflows that has been optimized
and lately used to test the performance improvements in the scheduler.

4.1 GWAS

The first application treated was mainly implemented by the Computational Genomics
group at BSC [52]. It is a genome-wide association study. The exact procedure is still not
published since the final results are still being generated. Thus, no further details about the
exact content of the tasks are given in this memory. Indeed, it has no fully sense to deeply
explain the content of the tasks since it is not my contribution at all. Instead, the way this
tasks were called has been modified.

Nevertheless, it has to be noted that all the contributions done are agnostic from the
exact application and could be applied to any kind of scientific workflow having similar
characteristics to the ones described in this memory. This fact gives more strength to the
contributions done since they can be applied elsewhere without any problem. Hence, the
key points and common problems has been identified and solved as generally as possible.

Although the dependency graph of the application is not really complicated, the exe-
cuted workflow is quite complex and difficult to debug for two main reasons:

1. It is not possible to have small debug executions
With small datasets, some parts of the workflow are not useful since they rely on sta-
tistical studies that are not valid with a small population. Hence, the application must
be debugged in production environments.

2. There is a big amount of different binaries implied
A wide range of binaries are used in the workflow. This fact, combined with the pre-
vious point, makes really difficult to detect why some binaries get stuck at some point
given the amount of files and data involved.

In the following subsections, the main characteristics of the application are described as
long as the related contributions done in this master thesis.

4.1.1 Application characteristics

The first step was to really understand how the workflow behaved. Figure 4.1 shows a
simplified representation of the DAG executed that already contains all the important infor-
mation necessary to understand the application morphology. Not being able to have debug

14 Chapter 4. Implementations

executions, it became crucial to understand the different steps of the application. The appli-
cation has three different input levels, which are the points of the workflow in which new
input files are added. It is a simplification since, for instance, if several inputs are defined
at the beginning (the red ones), the results are combined at the end. Nevertheless, we can
consider that the different workflows depending on each of the red files are independent.

FIGURE 4.1: GWAS DAG

The workflow will have the following size depending on the amount of inputs:

1. Red inputs
There will be as many DAGs as input red files.

2. Yellow inputs
For each one of the red inputs, a variable amount of chunks is created. Each one of the
chunks must perform some operations with each yellow input. Hence, considering Ni

the amount of chunks for the red input file i, the total amount of yellow pipelines will
be

∑
iNi · j where j is the amount of input files in the second level.

3. Blue/purple inputs
In the next step, each output of the previous pipeline must do some computations
with the new inputs. Considering that there are k inputs at this point, the amount of
pipelines of the third kind is

∑
iNi · j · k.

In fact, the key point here is that both the input and generated files are pretty big, so the
interest is to make as many chunks as possible. On the other side, having too small chunks
make the results incorrect, so there is a lower bound in the chunk size. Even with this bound,
the amount of chunks is quite big. Depending on the i, Ni goes from 51 to 252. Furthermore,
the amount of input files in the first level goes from 1 to 25. Finally, the amount of inputs in
the last step can be as big as wanted.

4.1. GWAS 15

4.1.2 Binary complexity

As it has been previously said, the application is strongly binary based. More precisely,
the following binaries have some use all along the workflow:

• SHAPEIT [53]

• Eagle [54]

• Impute [55]

• Minimac3 [56]

• Minimac4 [57]

• snptest [58]

• PLINK [59]

• QCTool [58]

• BCFTools [60]

• SAMTools [61]

• GTool [62]

• 4 different custom scripts in R [63]

• 3 different custom java functions

Although the exact function of each binary is not important regarding the contribution
done in this master thesis, the binaries calls has been added to allow the lecturer understand
its heterogeneity and complexity. Indeed, the amount of different functionalities orches-
trated is pretty high. In addition, in the elaboration of this thesis, some binary version have
been upgraded. This fact has implied changes both in the installations (compilation and
dependency handling of the new versions) and the related code that was relying of concrete
version formats.

4.1.2.1 Heterogeneous Task Requirements

The different binaries of the workflow can have different hardware and software require-
ments. In general, this requirements are related to the amount of memory needed depending
on the input. On change applied to the workflow is to put some of the constraints as global
variables in such a way that they can be changed depending on the execution without need-
ing to recompile the Java code. For instance, Figure 4.2 shows two different tasks from the
workflow’s annotated interface that have different CPU and memory requirements. The an-
notation to the phasingBed task indicates that any invocation to phasingBed will require
48 cores and 50.0 GB of memory. In production runs, a specific configuration file is exported
depending on the used inputs to optimise the available resources as well as possible.

16 Chapter 4. Implementations

During this master thesis, both the constraints definitions and the configuration files
used in the diferent production executions has been coded.

1 @Method(declaringClass = "guidance.GuidanceImpl")
@Constraints(computingUnits = "${snptestCU}",

3 memorySize = "${snptestMem}")
void snptest(

5 ...
);

7

@Method(declaringClass = "guidance.GuidanceImpl")
9 @Constraints(memorySize = "6.0")
void qctoolS(

11 ...
);

13

FIGURE 4.2: Task annotations with different CPU and memory constraints

4.1.2.2 Heterogeneous Binary Invocations

There are three main reasons that make the parametrisation of the binaries very com-
plex. First, the file formats accepted by each binary are usually different because binaries
are developed by different institutions and there is no standard file format. Although the
differences are not significant (i.e., compression, number of columns, column order), the in-
put files must be adapted before each binary execution.

Second, many binaries do not generate the output files when there is no content to write
on them. This can cause cascading failures when being part of a static workflow since, typi-
cally, the output files of one binary are input files of another one.

Third, binaries may alter their behaviour depending on the provided command line ar-
guments. Although this is not a problem itself, having executions of the same binary with a
different number of parameters is, because application users want to invoke the same task
definition regardless of the number of arguments.

Another example of this behaviour is the different merging operations to be done at the
end. Depending on the ones that are added by the user, the call to the R scripts have a dif-
ferent amount of parameters.

In addition, it has to be noted that scientists are not necessarily computer science experts.
Thus, it is a common practice to rely on state of the art software packages to perform specific
operations efficiently. For instance, a workflow orchestrated in Python or Java can execute
filtering and merging operations in the native language, imputations or associations using
binary tools (written in C or C++), and generate plots using R.

To hide this heterogeneity a Binary Wrapper has been used. As shown in Figure 4.3,
first, the wrapper parses the input parameters and builds the command line arguments;
allowing to switch between different binary calls inside the same task definition. Second,
checks the input files and re-formats them if necessary; allowing the task definition to accept

4.1. GWAS 17

any input file format. Next, executes the binary command and, finally, checks the output
files; generating any missing output file to prevent cascade failures. In order to avoid later
failures, the correct headers for each type of binary are added when needed.

This encapsulation acts as an interface to design the workflow orchestration entirely in
the same language, freeing the scientists from dealing explicitly with inter-language issues
(such as binary spawning, and process input and output redirection).

The different Binary Wrappers can be encapsulated in a library as a set of building blocks
and offered to the final programmer that defines the workflows. This methodology provides
a unified interface that simplifies the definition of the workflows, while the complexity of
the different components and its orchestration is performed behind the scenes. Even if this
has not been done in this master thesis, the demonstration of the usefulness of this approach
has been probed and will be taken into account in future developments.

FIGURE 4.3: Binary wrapper to homogenise binary invocations

Regarding this aspect, the main contribution of this master thesis has been in the argu-
ments parsing, pre and post process. Even if the binary calls were defined by the scientific
experts, the changes in the binary versions and the addition of new functionalities have
implied lots of changes in this envelope binary code.

4.1.3 Intelligent Workflow Execution

At this point, it is important to justify why a task based approach has been chosen in-
stead of choosing a data centered framework.

As presented at the beginning of this section, applications composed by different analy-
sis steps where different data-set are partially analysed against different input files has been
considered. Each analysis step requires a different number of jobs, and each job can have
different resource constraints and duration depending on the size of the analysed data-set
and the size and complexity of the chromosome. This implies that the execution of the differ-
ent partial analysis is unbalanced and the execution has to wait for the larger computation
in each step. Implementing the different binary executions as tasks allows the runtime to
detect the data dependencies between the different partial analysis. Hence, the application

18 Chapter 4. Implementations

can advance with the partial analysis from other steps that depend on these tasks without
having to wait until the whole step is completed. The runtime can detect if the analysis
of different steps can run in parallel allowing to interleave executions from these steps to
balance executions and increase performance. Figure 4.4 shows the execution traces of the
same execution. In the superior trace, all the tasks are presented. In the lower one, only the
merging tasks are shown. Even if the merge is the step done in the last part of the study, it
can be seen that the merging is performed during all the execution.

FIGURE 4.4: Execution trace of an execution showing all the tasks and only
the last phase merging tasks

Furthermore, when looking at the duration of the tasks in Figure 4.5 we see a clear het-
erogeneity. Scheduling the tasks dynamically it is possible to better fill the gaps without the
need to predict this stochastic durability in advance. This kind of graph show all the execu-
tion threads in the vertical axis. The horizontal axis is the execution time. The different taks
are put in the graph depending on the thread that executed them and the elapsed execution
time. In this case there are 4900 threads and the right limit corresponds to 4 minutes, that
are 240 seconds.

4.1.4 Pipeline refactor

Looking at the heterogeneity on the duration of the tasks, the whole workflow has been
called into question. Hence, the duration of the tasks has been deeply studied. Figure 4.6
shows the tasks that last from 0 to 13 seconds. It can be seen that there is a large group of
tasks than last less than two seconds. Considering the amount of resources to handle, this is
a really small granularity that may not well fit the optimum characteristics for COMPSs.

The original code of the workflow was developed considering as many tasks as possible
in order to tune the exact granularity. This fact, theoretically, should allow to better fill the

4.1. GWAS 19

FIGURE 4.5: Main workflow task duration

FIGURE 4.6: Shorter task’s duration

available resources. Nevertheless, too small tasks can be imply scheduling problems when
growing the amount of computational capabilities.

Hence, the granularity of the different tasks has been studied. Given that in the second
and third pipelines almost all the time is due to the main functionality, it has been decided
to merge all the pipeline in a single task when all the tasks must be executed. Figure 4.7
shows squares indicating the different tasks that have been encapsulated in single remote
calls.

It is important to realize that it is possible to launch parts of the workflow depending
on the input configuration file. This improvement does not prevent from launching partial
execution of the unified pipelines. Instead, when launching partial executions the tasks are
called independently to allow stopping the pipelines exactly at the desired point.

20 Chapter 4. Implementations

FIGURE 4.7: Resulting workflow after pipeline regrouping

(A) Sequential merge (B) Tree merge

FIGURE 4.8: Merge strategies

4.1.5 Merge refactor

Regarding the merging process of the different tasks, in the original code it was done
in a sequential way as shown in Figure 4.8a. This fact created large tails at the end of the
execution. In order to solve this fact, the merge is now done in a tree manner as shown in
Figure 4.8b.

4.1.6 Containerization

Considering the amount of binaries implied, the deployment of the applications has
demonstrated to be really complicated in the past. In order to mitigate this problem, one of
the contributions done in the master thesis is the containerization of the whole workflow.
First of all, a docker [64] image has been created. Nevertheless, it has to be kept in mind
that this workflow is intended to run in HPC clusters. Hence, there is no sudo [65] in
the environments where the workflow is supposed to run. This is why once the image is

4.1. GWAS 21

created, it is pushed into a local repository. From this docker image, a singularity [66] image
is created. Finally, this is the container that has been successfully used to run the production
executions.

4.1.7 Cloud execution

Finally, even if the main usage of the workflow has been done in HPC facilities. The
bioinformatics community is switching progressively from clusters to the cloud. An other
contribution of this master thesis is the execution of the workflow in a cloud computing [67]
provider.

FIGURE 4.9: Cloud setup for the execution of GUIDANCE with COMPSs.

I have created a set of scripts to create a base instance containing GUIDANCE, COMPSs,
and all its dependencies, create and set up a cluster of virtual machines, and execute the
workflow. Figure 4.9 shows the architecture of these scripts when using the Google Cloud
Platform [68] as cloud backend. Although this set of scripts is created to ease the configura-
tion of cloud environments, the strong point is that once the virtual machines are configured,
the same application that was running in supercomputing architectures can be executed on
the cloud environment.

Special thanks to Cristian Ramon-Cortés Vilarrodona who took my separated and merely
working scripts and refactored them to reach a much more professional, modular and,
reusable result.

22 Chapter 4. Implementations

4.2 MLMC

Similarly to the previous section, this section has also been done in the context of a col-
laboration with an external institution. More precisely, both MC and MLMC has been re-
viewed, understood and coded in a sequential way by Riccardo Tosi under the supervision
of Riccardo Rossi in the context of the exaQUte project [69]. In addition, all the simulations
are done with the Kratos [70] solver. All the resulting code is already pushed and available
in github [71].

The contribution of this master thesis has consisted in modify the code to enhance its
parallel capabilities. It is important to note that the comprehension level needed to fresh
code the presented algorithms and the one needed to modify them is quite different. Hence,
the contribution of this master thesis consists in understanding the code enough to be able
to propose modifications and enhancements while keeping the correctness of the results.

In order to better understand the improvements proposed, a short overview of both MC
and MLMC algorithms is done at the beginning of this section.

4.2.1 Monte Carlo algorithm overview

The MC method is the reference technique in the stochastic analysis of multi-physics
problems with uncertainties in the data parameters. This technique gives origin to a wide
class of different algorithms, whose main idea is to repeat many times the simulation with
different known r.v. w each time; this leads to an accurate estimation of the statistics of the
QoI. We consider the approximation QoI ' QoIM , moreover, since the relation QoIM =
f(uM) holds, the MC estimator for the expected value of the QoI E[QoIM] is:

EMC[QoIM] :=
1

N

N∑

i=1

QoIM (w(i)) , (4.1)

where QoIM (w(i)) and i = 1, . . . , N are N independent, identically distributed (i.i.d.) val-
ues of the QoI computed for the mesh ΩM . The MC potential lies in its basic property of
convergence to the exact statistics of the solution as the number of input samples tends to
infinity, independently from the dimensionality of the stochastic space and mostly indepen-
dently from the physics of the problem under consideration. It also has the advantage of
being considered as a “black box”, since it is non-intrusive and directly applicable to any
simulation code.

The MC estimation accuracy of the expectation can be evaluated through the mean
square error, that reads as follows

mse2MC :=E[(EMC[QoIM]− E[QoI])2]

=(E[QoIM −QoI])2 +
Var[QoIM]

N
,

(4.2)

where Var[QoI] = E[QoI2]−E[QoI]2 stands for the variance of the QoI. The term (E[QoIM−
QoI])2 is the bias or discretization error (B), it is independent from the statistics of the QoI
and only depends on the level of accuracy of the grid we are exploiting to approximate QoI
with QoIM . On the other hand, Var[QoIM]

N is the statistical error (SE), which decreases as
long as the number of samples grows, and is an indicator of the variance of our estimator.

4.2. MLMC 23

Unfortunately, one of the main drawbacks of the MC method is its too high computational
cost for the stochastic analysis of industrial problems with complex geometries.

4.2.2 Multilevel Monte Carlo algorithm overview

MLMC algorithm gives origin to a broad class of algorithms, which try to overcome
the limitations of the father MC. The main idea of the MLMC algorithm is to draw many
MC instances simultaneously on a set of grids with increasing accuracy. The different grid
refinement generates levels of accuracy. This means that the mesh parameter M grows as
long as the level increases, i.e. M0 < M1 < · · · < ML, where L is the maximum number of
levels the current simulation may reach. Due to the linearity of the expectation operator, the
mean of the QoI may be written as a telescopic sum of the expectations of the QoI on the
coarser levels. In fact, the expected value of the QoI of mesh ΩML

is:

E[QoIML
] = E[QoIM0] +

L∑

l=1

E[QoIl −QoIl−1]

=

L∑

l=1

E[Yl] ,

(4.3)

where Yl = QoIMl
−QoIMl−1

and Y0 = QoIM0 . Similarly to the MC case, the MLMC estima-
tor for the expected value of the QoI is:

EMLMC[QoIM] :=
L∑

l=0

1

Nl

Nl∑

i=1

Yl(w
(i,l))

=

L∑

l=0

EMC[QoIMl
−QoIMl−1

] .

(4.4)

One important observation is that the two QoI QoIMl
− QoIMl−1

are computed using the
same sample w. Analogously to the MC algorithm, the mean square error of the MLMC
expectation estimator is the sum of a discretization error and a statistical error, in fact

mse2MLMC :=E[(EMLMC[QoIM]− E[QoI])2]

=(E[QoIM −QoI])2 +
L∑

l=0

Var[Yl]

Nl
,

(4.5)

where (E[QoIM −QoI])2 is the bias, and
∑L

l=0
Var[Yl]
Nl

the statistical error.

We can observe matching equations equations (4.2) and (4.5) that the only difference in
the mse evaluation is the statistical contribute, which is supposed to decrease as long as the
mesh parameter M grows. In fact, three important considerations lie at the basis of both
algorithms:

i) the cost of computing one sample QoIMl
grows with the level accuracy Ml,

ii) |E[QoIMl
−QoI]| decreases as Ml grows,

iii) • MC: Var[QoIM] more or less constant w.r.t. M ,

• MLMC: Var[Yl] decreases as Ml grows.

24 Chapter 4. Implementations

The evaluation of the QoI’s cost, bias and variance builds a list P of parameters required
to compute the optimal hierarchy, i.e. number of levels L and number of samples per level
Nl , l = 0, · · · , L. The analysis of the mse was useful to highlight the differences between
the two algorithms analyzed, and how differently the variance behaves. On the other hand,
this implementation checks different ideas to verify the convergence of the algorithms.

4.2.3 Convergence criteria

Convergence is accomplished if the estimator of the expected value (EMC[QoIM] or EMLMC[QoIM])
achieves a desired tolerance ε w.r.t. the true estimator E[QoI] with a confidence of 1− φ. In
other words, we define a probability of failure (or error probability), and we want this prob-
ability to fail with a certain confidence.

For the MC algorithm, the probability of failure is defined by:

P[|EMC[QoIM]| − E[QoI] < ε] ≤ φ , φ << 1 . (4.6)

Two different convergence criteria for the MC algorithm are considered, the first one [72]
arises from the Central Limit Theorem and relies only on the sample variance and the sample
mean. Convergence is achieved when

2(1− Φ(
√
Nε)

σ̄N
) < φ , (4.7)

where Φ is the Cumulative Distribution Function (CDF) of the standard normal distribu-
tion1, N the number of i.i.d. samples available, σ̄N the sample variance2 and φ the confi-
dence of achieving the desired tolerance. This stopping criteria works well in the asymp-
totic regime, when ε → 0, but in the non-asymptotic regime, when both ε and φ are greater
than 0, this second moment criteria may fail. In [72], the authors propose an improvement
of the second order stopping criteria of equation (4.7), and to evaluate the convergence they
exploit also higher order moments (up to the fourth central moment). The goal is still to
accomplish equation (4.6), but now a penalty term is added to equation (4.7). In fact, the
stopping criteria based on higher moments reads as

2(1− Φ(
√
Nε)

σ̄N
) + penalty < φ , (4.8)

where the new penalty term is function of higher moments. This gives an increasing relia-
bility to the sequential MC algorithm for the non-asymptotic regime.

On the other hand, we refer to [21, 20] for the MLMC convergence criteria, which sat-
isfies equation (4.6) in the asymptotic regime. The total error (te) can be bounded, with
probability (1− φ), by the sum of the bias and the statistical error:

te :=|EMLMC[QoIM]− E[QoI]|
≤|E[QoI −QoIM]|+ |EMLMC[QoIM]− E[QoIM]|
≤|E[QoI]− E[QoIM]|+ CφVar[EMLMC[QoIM]] ,

(4.9)

1Φ(x) = 1
2
[1 + erf(x√

2
)], where erf(x) is the error function is the CDF function for the normal distribution

N (0, 1).
2σ̄N = 1

N−1

∑N
i=1(QoI(w(i))− E[QoI])2

4.2. MLMC 25

where

Cφ = Φ−1(1− φ

2
) (4.10)

Var[EMLMC[QoIM]] =

√√√√
L∑

l=0

Var[Yl]

Nl
. (4.11)

Since the te can be seen as the sum of discretization and statistical errors, we can set an
upper bound for both. Therefore we introduce a splitting parameter θ ∈ (0, 1) s.t.

B =|E[QoI]− E[QoIM]| ≤ (1− θ)φ (4.12)

SE =Var[EMLMC[QoIM]] ≤ (
θφ

Cφ
) , (4.13)

and we remark that θ = θ(εit, L) for the CMLMC algorithm, thus it is not constant and
user-defined as for the MC and the MLMC algorithms.

4.2.4 Description of the algorithms

The sequential MC algorithm behaves as follows:

while loop until convergence:
2 if iteration = 1:

set initial hierarchy
4 elif iteration > 1:

update number of samples
6 generate QoI values (re-use active)

update expectations and variances
8 check stopping criterion

FIGURE 4.10: Sequential MC algorithm

The CMLMC algorithm behaves as follows:

The most important thing to realize at this point is that considering the previous sub-
sections and the results in which they are based [20], the first four moments considered to
compute the convergence can be expressed as a combination of the following parameters:

• S1 =
∑

iQoIi

• S2 =
∑

iQoI
2
i

• S3 =
∑

iQoI
3
i

• S4 =
∑

iQoI
4
i

This is indeed an embarrassingly parallel operation depending on the simulation results
that can be performed in whichever order [73].

26 Chapter 4. Implementations

screening phase:
2 set initial hierarchy

loop on levels:
4 generate QoI values for initial hierarchy

compute costs, expectations and variances
6 fit cost, bias and statistical error models (LSQ fit)

compute Bayesian variance estimation
8 while loop until convergence:

update tolerance
10 compute optimal levels, splitting parameter and optimal number samples per level

loop on levels:
12 generate QoI values (re-use active)

update costs, expectations and variances
14 fit cost, bias and statistical error models (LSQ fit)

update Bayesian variance estimation
16 estimate total error = bias + statistical error

check stopping criterion
18

FIGURE 4.11: CMLMC algorithm

4.2.5 Improvements

Indeed, once the algorithms have been understood, the contribution of this master thesis
has consisted in proposing improvements in the code in order to better take advantage of
the potential parallelism. The starting point of the work done is shown in Figure 4.12.

FIGURE 4.12: Initial Multilevel Montecarlo dependency graph

All the reduces are done following a sequential schema and the convergence is checked
once all the executions of a single batch are finished. In this case, two iterations are com-
puted. In addition, the computation of the convergence must wait until all the simulations
have finished. This fact can lead to resource wasting in case an other iteration is needed
since no new simulations are started until the convergence has been computed.

All the improvements has been introduced in the MC implementation. Having a single
level it was much more easy to debug. Nevertheless, the code has been written considering
levels. This way, all the improvements done are much more easy to port to the multilevel
case. Indeed, we have considered all the data structures needed. Nevertheless, only one
level is present in each one of them.

4.2.5.1 Tree merge

First of all, the sequential merges has been changed to tree merges, in an analogous way
to what has been explained in subsection 4.1.5. In this case, and since the programming
language chosen is Python, its *args [74] capabilities has been taken into account. This fact

4.2. MLMC 27

can increase both the parallelism and the granularity to better fit the PyCOMPSs needed
characteristics.

4.2.5.2 Batch design

Once the accumulation was done in a wiser way, the next step has consisted in launch
different execution batches at once, accumulating the result as they finished. Figure 4.13
shows a dependency graph with three different batches.

FIGURE 4.13: Batched Multilevel Montecarlo dependency graph

28 Chapter 4. Implementations

Although the spawning of the tasks was already done by batches, at this level the con-
vergence of all the batches spawned at once was done in a sequential code without the
capability to spawn new tasks. Figure 4.14 shows this fact. This is mainly because this code
was coded in a really objected oriented manner. Each one of the modifications done implied
a full refactor of the code.

FIGURE 4.14: Convergence check of the batched Multilevel Montecarlo

Finally, and in order to be able to spawn new batches as the partial convergences where
reached, an other refactor has been done. This way, we can consider that there are two lev-
els of parallelism. The parallelism achieved inside each batch that allow to independently
launch the different simulations and the parallelism achieved between independent batches.

Figure 4.15 shows the final workflow, where convergence is checked as long as the
batches finish their execution so new simulations can be launched in case the convergence
is not achieved in the next iteration. Since the reservations are static, we launch preventive
computations in order to better use the allocated resources.

4.2.5.3 Full stack deployment

The last contribution of this master thesis regarding this section concerns the testing of
the resulting code. In order to test its behavior, the full stack containing Kratos, PyCOMPSs
and all its dependencies has been deployed both in MareNostrum IV [75] and Salomon [76].
For PyCOMPSs, all the dependencies can be found in appendix A.1. In the Kratos side, the
most important dependencies are Boost [77], MMG [78], Metis [79] and Trilinos [80]. In this
stage, some problems with the OpenMP pragmas has been encountered with Intel’s c++ [81]
compiler [82] so the compilation scripts has been modified in order to solve this problems.
At this point, the help from MareNostrum IV support team [83] has been crucial.

4.2. MLMC 29

1

6

d4v2

Synchro0

d1v1 d2v1 d3v1

2

d1v1 d2v1 d3v1

3

d1v1 d2v1d3v1

4

d1v1 d2v1d3v1

5

d1v1 d2v1d3v1

9

d1v1 d2v1 d3v1

10

d1v1 d2v1 d3v1

11

d1v1 d2v1d3v1

12

d1v1 d2v1d3v1

13

d1v1 d2v1d3v1

17

d1v1 d2v1 d3v1

18

d1v1 d2v1 d3v1

19

d1v1 d2v1d3v1

20

d1v1 d2v1d3v1

21

d1v1 d2v1d3v1

25

d28v1 d29v1d30v1 d31v1

28

d47v1 d48v1d49v1 d50v1

31

d66v1 d67v1d68v1 d69v1

37

d96v1d97v1

d5v2

7

d6v2 d7v2

8

d8v2

d9v2

26

d10v2

27

d11v2

14

d12v2 d13v2

15

d14v2 d15v2

16

d16v2

d17v2

29

d18v2

30

d19v2

22

d20v2 d21v2

23

d22v2 d23v2

24

d24v2

d25v2

32

d26v2

33

d27v2d32v2d33v2 d34v2 d35v2 d36v2

d37v2d38v2 d39v2 d40v2 d41v2

34

d42v2 d43v2 d44v2 d45v2d46v2

d51v2d52v2 d53v2 d54v2 d55v2

d56v2d57v2 d58v2 d59v2 d60v2

d70v2d71v2 d72v2 d73v2 d74v2

d75v2d76v2 d77v2 d78v2 d79v2

35

d85v2 d86v2 d87v2 d88v2 d89v2

d89v2

36

d91v2 d92v2d93v2 d91v2 d92v2 d93v2

sync

d90v2 d91v2

d98v2

38

d1v1 d2v1d3v1

39

d1v1 d2v1d3v1

40

d1v1 d2v1d3v1

41

d1v1 d2v1d3v1

42

d1v1 d2v1d3v1

46

d107v1 d108v1 d109v1d110v1

49

d85v2 d86v2d87v2 d88v2 d89v2 d61v2 d62v2 d63v2 d64v2 d65v2

52

d96v1 d97v1

sync

43

d99v2 d100v2

44

d101v2d102v2

45

d103v2

d104v2

47

d105v2

48

d106v2d111v2 d112v2 d113v2 d114v2d115v2

d116v2 d117v2 d118v2 d119v2d120v2

50

d126v2d127v2 d128v2d129v2 d130v2

d130v2

51

d132v2 d133v2 d134v2 d132v2 d133v2 d134v2

d131v2 d132v2

d137v2

53

d1v1d2v1 d3v1

54

d1v1d2v1 d3v1

55

d1v1 d2v1 d3v1

56

d1v1 d2v1d3v1

57

d1v1d2v1 d3v1

61

d146v1 d147v1 d148v1 d149v1

64

d126v2 d127v2 d128v2 d129v2 d130v2 d80v2 d81v2 d82v2d83v2 d84v2

67

d96v1 d97v1

sync

58

d138v2 d139v2

59

d140v2d141v2

60

d142v2

d143v2

62

d144v2

63

d145v2d150v2 d151v2 d152v2 d153v2d154v2

d155v2 d156v2 d157v2 d158v2d159v2

65

d165v2 d166v2d167v2 d168v2 d169v2

d169v2

66

d171v2 d172v2 d173v2 d171v2d172v2 d173v2

d170v2 d171v2

d176v2

68

d1v1d2v1 d3v1

69

d1v1d2v1 d3v1

70

d1v1 d2v1d3v1

71

d1v1 d2v1d3v1

72

d1v1 d2v1d3v1

76

d185v1 d186v1 d187v1 d188v1

79

d165v2 d166v2 d167v2 d168v2 d169v2 d121v2 d122v2 d123v2d124v2 d125v2

82

d96v1 d97v1

sync

73

d177v2 d178v2

74

d179v2d180v2

75

d181v2

d182v2

77

d183v2

78

d184v2d189v2 d190v2 d191v2 d192v2d193v2

d194v2 d195v2 d196v2 d197v2 d198v2

80

d204v2 d205v2d206v2 d207v2 d208v2

d208v2

81

d210v2 d211v2 d212v2 d210v2d211v2 d212v2

d209v2 d210v2

d215v2

KratosMultiphysics.MultilevelMonteCarloApplication.compressible_mc_utilities.ExecuteInstanceAux_Task
KratosMultiphysics.MultilevelMonteCarloApplication.compressible_mc_utilities.AddResultsAux_Task

KratosMultiphysics.MultilevelMonteCarloApplication.compressible_statistical_variable_utilities.UpdateBatchesPassPowerSumsAux_Task
KratosMultiphysics.MultilevelMonteCarloApplication.compressible_statistical_variable_utilities.UpdateGlobalPowerSumsAux_Task

KratosMultiphysics.MultilevelMonteCarloApplication.compressible_statistical_variable_utilities.ComputeHStatisticsAux_Task
KratosMultiphysics.MultilevelMonteCarloApplication.compressible_statistical_variable_utilities.ComputeSkewnessKurtosisAux_Task

KratosMultiphysics.MultilevelMonteCarloApplication.compressible_mc_utilities.CheckConvergenceAux_Task

FIGURE 4.15: Final batched Montecarlo dependency graph

30 Chapter 4. Implementations

4.3 Runtime improvements

Finally, once all the user code had been improved, execution as large as possible have
been launched. At this point, some performance issues has been detected. For example,
Figure 4.16 shows an execution of the MC algorithm with 7920 simulations with 15 worker
nodes. It is clear that the resources stay idle during an astonishingly high amount of time.
This behavior is reduced when changing the task granularities and can be shown in Figure
4.17. Nevertheless, the execution trace still shows a lot of black spaces were resources are
being wasted.

FIGURE 4.16: 7920 simulations MC execution with 15 MN IV worker nodes

As it has been previously said, big data executions have a huge amount of tasks. In
addition, HPC environments network connections are really fast and there are underlying
systems that can handle the data sharing in a really efficient way [84] [85]. Thus, the most
important thing is to reduce scheduling latencies as much as possible.

4.3.1 Problem diagnosis

On the first hand, the current scheduler has been studied in order to detect where it could
be improved. COMPSs has several scheduling policies available. The focus has been put in
the ready scheduler, which only takes into account the tasks that have already been freed
from dependencies, that are ready to be executed in a given moment. Figure 4.18 shows the
code corresponding to the starting point at this stage. This function is called every time that
a tasks frees an execution slot.

4.3. Runtime improvements 31

FIGURE 4.17: 30000 simulations MC execution with 15 MN IV worker nodes

1 private <T extends WorkerResourceDescription> void tryToLaunchFreeActions(List<
AllocatableAction> dataFreeActions,

List<AllocatableAction> resourceFreeActions, List<AllocatableAction>
blockedCandidates,

3 ResourceScheduler<T> resource) {

5 // Try to launch all the data free actions and the resource free actions
PriorityQueue<ObjectValue<AllocatableAction>> executableActions = new PriorityQueue
<>();

7 for (AllocatableAction freeAction : dataFreeActions) {
Score actionScore = generateActionScore(freeAction);

9 Score fullScore = freeAction.schedulingScore(resource, actionScore);
ObjectValue<AllocatableAction> obj = new ObjectValue<>(freeAction, fullScore);

11 executableActions.add(obj);
}

13 for (AllocatableAction freeAction : resourceFreeActions) {
Score actionScore = generateActionScore(freeAction);

15 Score fullScore = freeAction.schedulingScore(resource, actionScore);
ObjectValue<AllocatableAction> obj = new ObjectValue<>(freeAction, fullScore);

17 if (!executableActions.contains(obj)) {
executableActions.add(obj);

19 }
}

21

while (!executableActions.isEmpty()) {
23 ObjectValue<AllocatableAction> obj = executableActions.poll();

AllocatableAction freeAction = obj.getObject();
25 Score actionScore = obj.getScore();

27 // LOGGER.debug("Trying to launch action " + freeAction);
try {

29 scheduleAction(freeAction, actionScore);
tryToLaunch(freeAction);

31 } catch (BlockedActionException e) {
blockedCandidates.add(freeAction);

33 }
}

35 }

FIGURE 4.18: Original COMPSs ready scheduler

32 Chapter 4. Implementations

There are three main things that could be improved:

• Keep track of the available worker nodes
The scheduler try to execute the free task in all the resources, verifying the
available slots for each one of them. Hence, the complexity increases linearly
with the amount of available resources. In addition, the scheduler tries to
execute all the available tasks even when no available resources are filled.

• Parallelize the scheduling process
The scheduling process is done in a single thread. Hence, all the tasks are
treated sequentially.

• Avoid computing the ordered list with the actions regarding each resource
each time that a slot is freed
Assuming that the scores associated to each pair resource - task do not vary
all along the execution, this ordered list could be maintained between calls.
This fact can avoid reordering a list as long as the amount of available tasks
each time. For big executions, this list can contain tens of thousands of tasks.
Thus, this fact cannot be overlooked.

4.3.2 Implementation proposed

Considering the problems detected in the previous section, a solution has been proposed
that both included a multi-threaded treatment that keeps the ordered lists and a control of
the available resources in order to stop the scheduling operations once all the resources were
already filled. The main code corresponding to this part can be found in the appendix C.

Figure 4.19 shows how the main while has been changed and Figure 4.20 shows the cho-
sen mechanism to asynchronously update the scheduler structures. This should be enough
to briefly understand the basis on which the full implementation is based.

The implemented solution is based in three main ideas:

• Keep track of the available workers in a HashMap [86]
This data structure has been chosen in order to guarantee a constant com-
plexity access to this information.

• Keep a different list for each one of the resources
This fact allows to store a list with the priority order of the available tasks for
each one of the resources considering the chosen policy. Currently, they are
FIFO, LIFO, data locality and load balancing (in case of equal data locality,
tasks are sent to the workers with less workload).

• Spawn threads to update the scheduling structures
Since each one of the resources has its own priority queue [87], its update can
be done asynchronously and just wait for the result in case a certain resource
frees a slot to perform some computations.

In order to achieve the desired behavior without making the code too complicated, a
strategy based on tokens has been followed. This way, each time that a list must be mod-
ified, the thread in charge of this modification wait for the token corresponding to the last
modification of each one of the lists. In addition, each time that a modification is added to
the thread scheduler, the token is update so the next time that a new thread is spawned it

4.3. Runtime improvements 33

1

Future<?> lastToken = this.resourceTokens.get(resource);
3 if (lastToken != null) {

try {
5 lastToken.get();

} catch (InterruptedException | ExecutionException e) {
7 e.printStackTrace();

LOGGER.fatal("Unexpected thread interruption");
9 ErrorManager.fatal("Unexpected thread interruption");

}
11 }

this.resourceTokens.put(resource, null);
13

Iterator<ObjectValue<AllocatableAction>> executableActionsIterator = this.
unassignedReadyActions.get(resource)

15 .iterator();
HashSet<ObjectValue<AllocatableAction>> objectValueToErase = new HashSet<
ObjectValue<AllocatableAction>>();

17 while (executableActionsIterator.hasNext() && !this.availableWorkers.isEmpty()) {
ObjectValue<AllocatableAction> obj = executableActionsIterator.next();

19 AllocatableAction freeAction = obj.getObject();
try {

21 if (Tracer.isActivated()) {
Tracer.emitEvent(Tracer.Event.TRY_TO_SCHEDULE.getId(), Tracer.Event.

TRY_TO_SCHEDULE.getType());
23 }

freeAction.tryToSchedule(obj.getScore(), this.availableWorkers);
25 if (Tracer.isActivated()) {

Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.getType());
27 }

ResourceScheduler<? extends WorkerResourceDescription> assignedResource =
freeAction

29 .getAssignedResource();
tryToLaunch(freeAction);

31 if (!assignedResource.canRunSomething()) {
this.availableWorkers.remove(assignedResource);

33 }
objectValueToErase.add(obj);

35 } catch (BlockedActionException e) {
...

37 } catch (UnassignedActionException e) {
...

39 }
}

41

FIGURE 4.19: Asynchronous scheduling structures update

waits to exactly the previous modifying thread. Afterwards, when the queue needs to be ac-
cessed, the main thread wait to the token corresponding to the last modification. This way, it
is guaranteed that the queue contains all the modifications needed until this moment. This
modifications are basically erasing tasks that are already running on an other resource and
adding tasks that has been freed from the last resource scheduling. This way, the modifica-
tion of the scheduling structures is removed from the scheduling critical path.

All the new implementation and small bug fixes done during the process can be found
on the exaQUte’s branch of the COMPSs official github repository [88].

34 Chapter 4. Implementations

private Runnable createAddRunnable(
2 final Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

currentEntry,
final AllocatableAction action, final Future<?> token) {

4 Runnable addRunnable = new Runnable() {
public void run() {

6 if (token != null) {
try {

8 token.get();
} catch (InterruptedException | ExecutionException e) {

10 e.printStackTrace();
LOGGER.fatal("Unexpected thread interruption");

12 ErrorManager.fatal("Unexpected thread interruption");
}

14 }
addActionToResource(currentEntry, action);

16 }
};

18 return addRunnable;
}

20

FIGURE 4.20: Asynchronous scheduling structures update

35

Chapter 5

Results and evaluation

To validate the proposed COMPSs features for supporting complex task based work-
flows, some experiments have been launched in order to evaluate the following features: (i)
How efficient is the runtime on managing heterogeneity in the application; (ii) Scalability of
the approach; and (iii) Portability of this approach.

At this stage, both applications presented in the previous chapter are used in order to
demonstrate how the scheduler had an effect on both of them and how the modifications
have affected the performance obtained. The improvements originated by the changes in
the workflows and the scheduler are always mixed. This is mainly because since the ap-
plications scaled pretty well, the executions in production environments required a lot of
resources. It was thought to be a useless waste of computing hours to launch worst execu-
tions just to find the contribution due to one factor and the other.

Nonetheless, the contributions of this master thesis were used as soon as they were ready.
More precisely, a custom branch with the content of this master thesis has been installed in
MareNostrum IV during all the development. This has allowed several users to enhance
their computing capabilities when encountering scheduling difficulties. Since this users
generated execution traces, it is possible to show the effect of the improvements done in
production executions.

The COMPSs version used is the previously mentioned exaQUte branch (available at [88]).
All the stack used in each experiment is the one presented in the corresponding sections of
the previous chapter.

This chapter is organized as follows. First of all, the improvements that can only be as-
sumed by the scheduling changes are presented. For this sake, executions where the user
code has not changed are used. Afterwards, the obtained performances with the codes pre-
sented previously regarding several aspects are shown.

5.1 Experimental Setup

The results presented in this chapter have been obtained using the MareNostrum IV Su-
percomputer located at the Barcelona Supercomputing Center (BSC). Its current peak per-
formance is 11.15 Petaflops, ten times more than its previous version, MareNostrum III [89].
The supercomputer is composed by 3456 nodes, each of them with two Intel R©Xeon Plat-
inum 8160 (24 cores at 2,1 GHz each). It has 384.75 TB of main memory, 100Gb Intel R©Omni-
Path [90] Full-Fat Tree Interconnection, and 14 PB of shared disk storage managed by the
Global Parallel File System (gpfs).

36 Chapter 5. Results and evaluation

Furthermore, COMPSs version used is the previously mentioned exaQUte branch (avail-
able at [88]). All the stack used in each experiment is the one presented in the corresponding
sections of the previous chapter.

5.2 Scheduling performance

An application doing geospatial computations for the Institute of Political Economy and
Governance [91] has been used as reference. Figure 5.1 shows the execution traces of both
executions. The elapsed times goes from 14800 seconds to 3600, that is a speedup of 4.11
without changing a single line of code. The application has 75259 with different CPU con-
straints that go from tasks (the blue ones) which need the whole node to tasks (the yellow
ones) that only need a single CPU. One thing to take into account is that the scheduling
of the first part, with tasks colored in red and white, is more or less the same. This fact is
because of the duration of the tasks is superior to the latency of the old scheduler, so any
improvement can be detected. When zooming into the improvable zone, where the dura-
tion of the tasks seem to be inferior to the scheduling latency, we obtain the zoom shown in
Figure 5.2. If we compute the execution times of both traces, we get 11981 seconds for the
zoomed section with the old scheduler and 951 seconds with the new one, that is a speed
up of 12.59. Or what is the same, the second execution takes the 7.9% of the time compared
to the first execution.

FIGURE 5.1: Execution trace of the same application with the old and the new
scheduler

The first thing that we could think on is that the tasks last more or less in one case or the
other. Figure 5.3 show the duration of the tasks executed in each one of the processors. It is
clear that the execution times are similar. More precisely, the time scale goes from 0 to 60.

Nevertheless, the two representations that show more clearly the reason of the speed-up
are Figure 5.4 and Figure 5.5. The first one shows the elapsed time between consecutive

5.2. Scheduling performance 37

FIGURE 5.2: Zoom on the execution trace of the same application with the old
and the new scheduler

FIGURE 5.3: Duration of the tasks when executing with the old and the new
scheduler

tasks. With the old scheduler, this time decreases progressively while the tasks start finish-
ing, so the amount of available ready tasks decreases. The code color goes from blue (more
ellapsed time) to green (less elapsed time). With the new scheduler, as long as the duration
of the tasks and its constraints makes it possible, the elapsed time between executions de-
creases dramatically.

Finally, we can see this latency impact on the amount of concurrent tasks that are ex-
ecuted by the application. In the old scheduler, only at the end a high amount of tasks is
running at the same time. This is mainly because the amount of free tasks when ordering
the priority queue is already small. With the new version, this number grows steadily as the
constraints of the tasks allow it.

38 Chapter 5. Results and evaluation

FIGURE 5.4: Elapsed time between tasks when executing with the old and the
new scheduler

FIGURE 5.5: Amount of executing tasks with the old and the new scheduler

This scheduling traces contain all the improvements detailed in the previous chapter
(a queue per resource that is kept between different scheduling and a hashmap with the
available resources) unless the multithreaded scheduler. This improvement has been added
lately when it has been shown that this improvements were not enough for certain applica-
tions. At this point it is really important to keep in mind that the improvements presented

5.3. Dynamic scheduling with different tasks’ constraints evaluation of the GAWS
workflow

39

does not contain the multithreading in the management of the different resource queues
since this will have an impact later.

Hence, it is demonstrated that the performance has been dramatically increased with
this master thesis.

5.3 Dynamic scheduling with different tasks’ constraints evalua-
tion of the GAWS workflow

Figure 5.6 shows four Paraver traces to evaluate the performance of the GWAS worklow
using COMPSs. The time is represented in the horizontal axis, and its scale is the same for
the three of them. The available cores are represented in the vertical axis, and the different
colours represent different task types being executed in a given core during a certain time.
All the executions perform the same run using 30 computing nodes (1,440 cores), spawning
93,858 tasks, generating 120,018 files (217.68 Gb), and analyzing 2,860 inputs in the first level
with 1 single input in the second level and 3 different inputs in the third level.

The top trace (a) emulates an execution with SLURM Job Arrays with fixed job require-
ments, executing each step separately and using static constraints. Trace (b) emulates the
same run but with dynamic job constraints. Also, Trace (c) emulates the behaviour of a state
of the art task-based framework, merging all the steps by building a data dependence graph
but keeping the static constraints. Finally, the bottom trace (d) shows the execution using
dynamic constraints and without any barrier. Notice that the benefits of COMPSs handling
automatically the tasks’ data dependencies and taking into account the tasks’ constraints
is able to speed-up 2.24 times the execution. The behavior of the dynamic scheduling had
already been shown on Figure4.8. At this point the performance interest on this approach is
demonstrated.

The trace files from the previous figure also provide valuable information to understand
the parallelism and computational complexity of the different steps. The complexity of the
first step (phasing, shown in green in the traces) is proportional to the number of subjects in
the input, and the amount of spawned tasks is constant and equal to the number of chromo-
somes in the study.

Next, the complexity of the second step is proportional to the size of the input in the
first level and the second level. Moreover, the amount of spawned tasks is proportional to
the number of inputs considered in the second level. In opposition to the previous step, the
size of the different inputs in the second level directly affects the memory requirements of
each task in this step. Hence, a good configuration of the requirements is crucial. Too large
constraints result in resource wasting. Too small constraints ends up with error executions
by memory space overflow.

The complexity and number of tasks of the third section (shown in purple in the traces)
are proportional to both the number of inputs in the second and third level considered.

Finally, at the end of the execution, some single node scripts in R are executed without
further dependencies. Since there are lots of resources and the R scripts can always be run
in parallel, this phase does not scale at all in the strong scaling but scales perfectly in the

40 Chapter 5. Results and evaluation

FIGURE 5.6: GWAS executions using COMPSs. (a) Separated steps with static
constraints. (b) Separated steps with dynamic constraints. (c) Merged steps

with static constraints. (d) Merged steps with dynamic constraints.

weak scaling.

From the content of this section, it seems clear the importance of the improvements done
in the scheduling, since low latencies and the ability to schedule dynamically the tasks has
a high impact on the execution time. On the other hand, the dynamic control of the con-
straints also have a high impact on the execution time.

5.4 Scheduling and application improvements in the GWAS code

With the scheduler improvements previously presented (unless the multithreading ver-
sion) and the GWAS workflow version of the previous section, an execution with 50 nodes
(2400 cores), 2 inputs in the second phase and 4 inputs in the third phase has been done.
This execution is presented in Figure 5.7. This will be the reference point to illustrate the
improvements achieved with the modification in the user code and the multithreading in
the scheduler. It seems clear that the execution no longer scales. This has been considered

5.4. Scheduling and application improvements in the GWAS code 41

as the departure point since the strong scaling of the same version of the code and same
scheduler scaled until 100 nodes with 2 inputs in the third level and the execution with 25
nodes and 4 inputs in the third level went also really well.

FIGURE 5.7: Execution trace with all the scheduling improvements unless the
multithreading one and all the GWAS improvements unless the merging of

the fine tasks.

There are two images that can clearly show the impact of the combination of this im-
provements. The first one is the launch of the same execution, that is the one with the same
inputs but with the small tasks merged into the big ones and the multithreaded scheduler.
Both execution traces are shown in Figure 5.8.

FIGURE 5.8: Execution traces comparing the execution shown in Figure 5.7
with only partial improvements and the one including all the improvements

in the scheduler and the GWAS workflow

On the other hand, when launching the execution with eight inputs in the third part and
all the improvements, we obtain the comparison shown in Figure 5.9. The new combination,
even if having almost the double complexity, outperforms the already improved version.

Finally, the same execution has been done with 100 nodes (4800 execution CPUs). The
execution traces are shown in Figure 5.10.

The improvement achieved seems clear, there is not much more to say. The summary
Table 5.1 shows the specific details of the executions. Final code means that it considers all

42 Chapter 5. Results and evaluation

FIGURE 5.9: Execution traces comparing the execution shown in Figure 5.7
with only partial improvements and the one including all the improvements
in the scheduler and the GWAS workflow with two times the amount of inputs

in the third level

FIGURE 5.10: Execution traces comparing the execution shown in Figure 5.7
with only partial improvements and the one including all the improvements
in the scheduler and the GWAS workflow with two times the amount of inputs

in the third level and twice the amount of available resources

the improvements. Partial means that only considers some scheduling improvements.

5.5 Scalability

5.5.1 Strong Scaling

5.5. Scalability 43

Code Cores Inputs in third level Total exec time (s) Parallel exec time (s)
Partial 2400 4 13558 10562
Final 2400 4 4146 1605
Final 2400 8 5446 2971
Final 4800 8 4221 1651

TABLE 5.1: Summary of the executions used to demonstrate the improve-
ments achieved

For the strong scaling analysis, I have run the GWAS workflow with 300 inputs in the
first input level, 2 in the second and, 8 in the third one with 1200, 2400, and 4800 cores
respectively (25, 50, and 100 nodes).

FIGURE 5.11: Execution traces of GWAS with 300 inputs in the first input
level, 2 in the second and, 8 in the third one with 1200, 2400, and 4800 cores

respectively (25, 50, and 100 nodes).

Table 5.2 summarises the total execution time, the parallel region’s execution time, the
total speed-up, the ideal speed-up, and the parallel region’s speed-up of the previous ex-
ecutions. The speed-ups are calculated with respect to the smallest run. For the sake of
simplicity, although the previous traces show that the application has some parallelism dur-
ing all the execution, the ideal speed-up only considers the parallel region shown in the
table.

44 Chapter 5. Results and evaluation

#Cores
Execution Time (s) Speed-up (u)
Total Parallel Total Ideal Parallel

1200 7995 5314 1.00 1.00 1.00
2400 5417 2658 1.48 1.50 1.99
4800 4211 1368 1.90 1.99 3.88

TABLE 5.2: Strong scaling analysis with 1200, 2400, and 4800 cores (25, 50, and
100 nodes respectively).

Notice that the parallel region represents 66.5% of the execution time when running with
1200 cores. Hence the application’s global speed-up is limited by the workflow itself (1.99
ideal speed-up), leading to a maximum speed-up of 1.90 when running with 4800 cores.

5.5.2 Weak Scaling

Considering appreciations from the previous section regarding the computational com-
plexity, the time should remain constant while increasing the number of inputs in the third
level. Nevertheless, not all the tasks last the same time (the executions rely on stochastic
procedures) so it is not possible to compute an entirely realistic study. This is why, even
if results can suggest that we obtain super-speedups, it is more reasonable to think that
COMPSs scales linearly with the number of cores and tasks.

#Cores #Tasks Tasks per core Execution Time (s)

1200 279,562 232.97 4347
2400 483,576 201.49 4184
4800 893,123 186.07 4211

TABLE 5.3: Weak scaling analysis with 1200, 2400, and 4800 cores (25, 50, and
100 nodes respectively).

Hence, I have executed the workflow with 300 inputs in the first level, two inputs in
the second level, and 25 nodes with 2, 50 nodes with 4, and 100 nodes with 8 inputs in the
third level. Table 5.3 shows the number of tasks, the number of tasks per core, and the total
execution time for 1200, 2400, and 4800 cores (25, 50, and 100 nodes respectively). Notice
that the execution time and the number of tasks per core remain almost the same in all the
executions due to the previous considerations. Figure 5.12 shows the execution traces of the
executions corresponding to the weak scaling analysis. The time has been scaled in such a
way that is the same for the three executions.

5.6. Portability 45

FIGURE 5.12: Execution traces corresponding to the three executions per-
formed to state the weak scaling

5.6 Portability

5.6.1 Cloud computing

In order to evaluate the portability, I have performed a little execution with a really small
dataset using the Google Cloud Platform. The free tier is limited to 8 concurrently executed
CPUs, which limited a lot the size of the execution to launch. Nevertheless, the main goal
was to demonstrate that the workflow could be executed in a supercomputing facility or in
the cloud without modifying a single line of the workflow.

FIGURE 5.13: Execution trace of the cloud execution

I have fitted the execution to the free tier limits of the Google Cloud Platform; using 2
computing nodes with 4 vCPUs, 26 Gb of memory, Intel Xeon E5 v3 (Haswell) 2.3 GHz, and

46 Chapter 5. Results and evaluation

500 Gb disk. The execution takes 12,341 s (approximately 206 minutes) and, in comparison
with previous experiments, the execution requires file transfers between nodes because the
cloud nodes have no shared disk configured. Some executions with buckets [92] acting as
shared file system has been done. Nevertheless, the encountered performance is really poor,
so this idea has been discarded.

5.6.2 HPC

In addition, the singularity image has been used in production executions obtaining the
same performance than the bare-metal ones. Nevertheless, extrae is not working properly
so no execution traces are available.

5.7 Scheduling and workflow improvements in the MC workflow

While in the GWAS case more executions have been done, in this case the changes in
the workflow took more time and were done in parallel to the scheduling modifications.
Hence, it is only possible to compare the before and after with already all the modifications
in place. Figure 4.15 shows the execution without the asynchronous enhancements and the
scheduling improvements but without the multithreading improvement. In total, there are
8000 samples. Figure 5.15 shows an execution with the asynchronous improvements and the
last scheduler version. In total there are 51000 samples. I cannot give further details since
the executions have been done by Riccardo Tosi that gently gave me images of them (I do
not have the original trace file to open it with paraver). The time is not scaled. I have tried
to scale the images in such a way that the duration of the tasks is similar. This can be shown
because when the scheduler does not perform well it is possible to clearly see the beginning
and the end of the tasks.

FIGURE 5.14: Execution trace of a MC execution with 8000 samples and syn-
chronous convergence checking and 15 worker nodes

Considering the previous comments, no rigorous information con be given when ana-
lyzing this traces. Nevertheless, some qualitative information can be extracted considering
that in the second execution there are two times more resources and six times more sam-
ples. For reasons to be discovered, at the beginning of the execution the scheduling behaves
similarly. Nevertheless, at one point, it starts going clearly better. From the information
that Riccardo has provided, the scheduling problem at the beginning is proportional to the
amount of available resources and disappears after the first iteration for executions with the
same amount of samples (51000) and 10, 20 and 30 available nodes.

5.7. Scheduling and workflow improvements in the MC workflow 47

FIGURE 5.15: Execution trace of a MC execution with 51000 samples and asyn-
chronous convergence checking and 29 worker nodes

Finally and from what has been commented, the asynchronous convergence checking is
unremarkable in the execution trace so there are not performance problems related with this
code improvement. In addition, the scheduler seems to work much more better.

49

Chapter 6

Conclusions and Future work

This master thesis has contributed to the good scalability to at least three different work-
flows with a real scientific application. In addition, it has defined deeply the changes done
in order to reproduce them in other use cases.

In addition, the COMPSs scheduler has been enhanced to be able to scale out to a higher
amount of resources. Despite the results presented, this improvements are not enought to
scale until 200 nodes and beyond. Hence, further improvements should be put in place
considering the new capabilities of the supercomputers that are being build and even those
which are already in place. This could be considered as the single future work thing to do,
since it is so important that under my opinion should be highly prioritized.

Finally, and since an image is worth much more than a thousand words, I would like to
do a suggestion. Just look at Figure 5.2 to understand the impact of the first improvements
done in the scheduler. After that, and keeping in mind that the first improvements were also
present in the bad execution, I would read the section 5.4 to better understand the impact of
the second batch of modifications. With just this two actions one can briefly understand the
contributions of this master thesis and its impact in production environments.

51

Bibliography

[1] Apache Spark. Apache Spark. URL: http://spark.apache.org/.

[2] Daniel Drzisga et al. “Scheduling massively parallel multigrid for multilevel Monte
Carlo methods”. In: SIAM Journal on Scientific Computing 39.5 (2017), S873–S897.

[3] Ramon Amela et al. “Executing linear algebra kernels in heterogeneous distributed
infrastructures with PyCOMPSs”. In: Oil & Gas Science and Technology–Revue d’IFP En-
ergies nouvelles 73 (2018), p. 47.

[4] Cristian Ramon-Cortes et al. “AutoParallel: A Python module for automatic paral-
lelization and distributed execution of affine loop nests”. In: arXiv preprint arXiv:1810.11268
(2018).

[5] European Commission. HPC strategies and implementations. URL: https://ec.europa.
eu/programmes/horizon2020/en/h2020-section/high-performance-
computing-hpc.

[6] Robert Underwood, Jason Anderson, and Amy Apon. “Measuring Network Latency
Variation Impacts to High Performance Computing Application Performance”. In:
Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering.
ACM. 2018, pp. 68–79.

[7] Francesc Lordan et al. “Servicess: An interoperable programming framework for the
cloud”. In: Journal of grid computing 12.1 (2014), pp. 67–91.

[8] Leonardo Dagum and Ramesh Menon. “OpenMP: An industry-standard API for shared-
memory programming”. In: Computing in Science & Engineering 1 (1998), pp. 46–55.

[9] J. Conejero et al. “Task-based programming in COMPSs to converge from HPC to big
data”. In: International journal of high performance computing applications (Apr. 2017).
DOI: 10.1177/1094342017701278.

[10] Universitat Politècnica de Catalunya (UPC). Universitat Politècnica de Catalunya (UPC).
URL: http://www.upc.es.

[11] Barcelona Supercomputing Center (BSC). Barcelona Supercomputing Center (BSC). URL:
http://www.bsc.es.

[12] Barcelona Supercomputing Center (BSC). Workflows and distributed computing group.
URL: https://www.bsc.es/discover-bsc/organisation/scientific-
structure/workflows-and-distributed-computing.

[13] Barcelona Supercomputing Center (BSC). Computational genomics group. URL: https:
//www.bsc.es/discover-bsc/organisation/scientific-structure/
computational-genomics.

[14] International Centre for Numerical Methods in Engineering (CIMNE). International
Centre for Numerical Methods in Engineering (CIMNE). URL: https://www.cimne.
com/.

[15] SLURM Team. SLURM Workload Manager - Job Array Support. 2017. URL: https://
slurm.schedmd.com/job_array.html.

http://spark.apache.org/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/high-performance-computing-hpc
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/high-performance-computing-hpc
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/high-performance-computing-hpc
https://doi.org/10.1177/1094342017701278
http://www.upc.es
http://www.bsc.es
https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing
https://www.bsc.es/discover-bsc/organisation/scientific-structure/workflows-and-distributed-computing
https://www.bsc.es/discover-bsc/organisation/scientific-structure/computational-genomics
https://www.bsc.es/discover-bsc/organisation/scientific-structure/computational-genomics
https://www.bsc.es/discover-bsc/organisation/scientific-structure/computational-genomics
https://www.cimne.com/
https://www.cimne.com/
https://slurm.schedmd.com/job_array.html
https://slurm.schedmd.com/job_array.html

52 BIBLIOGRAPHY

[16] Sílvia Bonàs-Guarch et al. “Re-analysis of public genetic data reveals a rare X-chromosomal
variant associated with type 2 diabetes”. In: Nature communications 9.1 (2018), p. 321.

[17] Shakuntala Baichoo et al. “Developing reproducible bioinformatics analysis work-
flows for heterogeneous computing environments to support African genomics”. In:
BMC bioinformatics 19.1 (2018), p. 457.

[18] Peter Amstutz et al. Common workflow language, v1. 0. July 2016. DOI: 10.6084/m9.
figshare.3115156.v2. URL: https://figshare.com/articles/Common_
Workflow_Language_draft_3/3115156.

[19] Bongsong Kim et al. “GWASpro: a high-performance genome-wide association analy-
sis server”. In: Bioinformatics (Dec. 2018), pp. 1–3. DOI: 10.1093/bioinformatics/
bty989. URL: https://doi.org/10.1093/bioinformatics/bty989.

[20] M. Pisaroni, F. Nobile, and P. Leyland. “A Continuation Multi Level Monte Carlo (C-
MLMC) method for uncertainty quantification in compressible inviscid aerodynam-
ics.” In: Computer Methods in Applied Mechanics and Engineering 326 (2017), pp. 20 –50.

[21] Nathan Collier et al. “A continuation multilevel Monte Carlo algorithm.” In: BIT NU-
MERICAL MATHEMATICS 55.2 (2015), pp. 399 –432.

[22] Nicholas Metropolis and Stanislaw Ulam. “The monte carlo method”. In: Journal of the
American statistical association 44.247 (1949), pp. 335–341.

[23] Michael B Giles. “Multilevel monte carlo path simulation”. In: Operations Research 56.3
(2008), pp. 607–617.

[24] Anubhav Jain et al. “FireWorks: A dynamic workflow system designed for high-throughput
applications”. In: Concurrency and Computation: Practice and Experience 27.17 (2015),
pp. 5037–5059.

[25] Abybhav Jain. Introduction to FireWorks (workflow software) - FireWorks 1.8.7 documenta-
tion. 2013. URL: https://materialsproject.github.io/fireworks/#.

[26] Katherine Wolstencroft et al. “The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud”. In: Nucleic Acids Re-
search 41.W1 (May 2013), W557–W561. ISSN: 0305-1048. DOI: 10.1093/nar/gkt328.
URL: https://doi.org/10.1093/nar/gkt328.

[27] Taverna Committers. Apache Taverna. 2014. URL: https://taverna.incubator.
apache.org/.

[28] Bertram Ludäscher et al. “Scientific workflow management and the Kepler system”.
In: Concurrency and Computation: Practice and Experience 18.10 (2006), pp. 1039–1065.

[29] UC Davis, UC Santa Barbara, and UC San Diego. The Kepler Project. 2004. URL: https:
//kepler-project.org/.

[30] Enis Afgan et al. “The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2016 update”. In: Nucleic Acids Res. 44.W1 (2016), W3–W10.

[31] Galaxy Team. Galaxy. 2005. URL: https://usegalaxy.org/.

[32] Michael Wilde et al. “Swift: A language for distributed parallel scripting”. In: Parallel
Computing 37.9 (2011), pp. 633 –652. ISSN: 0167-8191. DOI: https://doi.org/10.
1016/j.parco.2011.05.005. URL: http://www.sciencedirect.com/
science/article/pii/S0167819111000524.

[33] Swift Project Team. The Swift Parallel Scripting Language. 2011. URL: http://swift-
lang.org/main/.

[34] Barcelona Centre for Genomic Regulation (CRG). Nextflow: A DSL for parallel and scal-
able computational pipelines. 2014. URL: https://www.nextflow.io/.

https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156
https://doi.org/10.1093/bioinformatics/bty989
https://doi.org/10.1093/bioinformatics/bty989
https://doi.org/10.1093/bioinformatics/bty989
https://materialsproject.github.io/fireworks/#
https://doi.org/10.1093/nar/gkt328
https://doi.org/10.1093/nar/gkt328
https://taverna.incubator.apache.org/
https://taverna.incubator.apache.org/
https://kepler-project.org/
https://kepler-project.org/
https://usegalaxy.org/
https://doi.org/https://doi.org/10.1016/j.parco.2011.05.005
https://doi.org/https://doi.org/10.1016/j.parco.2011.05.005
http://www.sciencedirect.com/science/article/pii/S0167819111000524
http://www.sciencedirect.com/science/article/pii/S0167819111000524
http://swift-lang.org/main/
http://swift-lang.org/main/
https://www.nextflow.io/

BIBLIOGRAPHY 53

[35] Dask: Library for dynamic task scheduling. Dask Development Team. 2016. URL: https:
//dask.org.

[36] University of Chicago. Parsl: Parallel Scripting in Python. 2017. URL: http://parsl-
project.org/.

[37] Rosa M. Badia and et al. “COMP superscalar, an interoperable programming frame-
work”. In: SoftwareX 3 (Dec. 2015), pp. 32–36. URL: https://doi.org/10.1016/
j.softx.2015.10.004.

[38] Extrae. Web page at https://tools.bsc.es/extrae. (Date of last access: 19th
December, 2016).

[39] Vincent Pillet and et. al. “Paraver: A Tool to Visualize and Analyze Parallel Code”. In:
Transputer and occam Developments (Apr. 1995). http://www.bsc.es/paraver -
Accessed April, 2012, pp. 17–32.

[40] Paraver: a flexible performance analysis tool. Web page at https://tools.bsc.es/
paraver. (Date of last access: 19th December, 2016).

[41] James Gosling et al. The Java language specification. Addison-Wesley Professional, 2000.

[42] Guido Van Rossum and Fred L Drake. Python language reference manual. Network The-
ory, 2003.

[43] Jesús Labarta et al. Enric Tejedor Rosa M. Badia. “PyCOMPSs: Parallel computational
workflows in Python”. In: The International Journal of High Performance Computing Ap-
plications (IJHPCA) 31 (2017), pp. 66–82. URL: http://dx.doi.org/10.1177/
1094342015594678.

[44] Karim Djemame et al. “Towards an Energy-Aware Framework for Application Devel-
opment and Execution in Heterogeneous Parallel Architectures”. In: Hardware Accel-
erators in Data Centers. Springer, 2019, pp. 129–148.

[45] Sheng Liang. Java Native Interface: Programmer’s Guide and Reference. 1st. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1999. ISBN: 0201325772.

[46] Shigeru Chiba. “Load-time Structural Reflection in Java”. In: ECOOP 2000 - Object-
Oriented Programming 1850 (May 2000), pp. 313–336. URL: http://dx.doi.org/
10.1007/3-540-45102-1_16.

[47] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. “The NumPy Array: A
Structure for Efficient Numerical Computation”. In: Computing in Science and Engg.
13.2 (Mar. 2011), pp. 22–30. DOI: 10.1109/MCSE.2011.37. URL: http://dx.doi.
org/10.1109/MCSE.2011.37.

[48] Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open source scientific tools for
Python. 2001–. URL: http://www.scipy.org/.

[49] Intel Corporation. Intel Math Kernel Library. Reference Manual. Santa Clara, USA. ISBN
630813-054US. Intel Corporation, 2015.

[50] Shuai Che et al. “Rodinia: A Benchmark Suite for Heterogeneous Computing”. In: Pro-
ceedings of the 2009 IEEE International Symposium on Workload Characterization (IISWC).
IISWC ’09. IEEE Computer Society, 2009, pp. 44–54. DOI: 10.1109/IISWC.2009.
5306797. URL: http://dx.doi.org/10.1109/IISWC.2009.5306797.

[51] Karim Djemame et al. “TANGO: Transparent heterogeneous hardware Architecture
deployment for eNergy Gain in Operation”. In: CoRR abs/1603.01407 (2016). URL:
http://arxiv.org/abs/1603.01407.

[52] Computational Genomics Group. GUIDANCE. http://cg.bsc.es/guidance/.
2016.

https://dask.org
https://dask.org
http://parsl-project.org/
http://parsl-project.org/
https://doi.org/10.1016/j.softx.2015.10.004
https://doi.org/10.1016/j.softx.2015.10.004
https://tools.bsc.es/extrae
http://www.bsc.es/paraver
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver
http://dx.doi.org/10.1177/1094342015594678
http://dx.doi.org/10.1177/1094342015594678
http://dx.doi.org/10.1007/3-540-45102-1_16
http://dx.doi.org/10.1007/3-540-45102-1_16
https://doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://www.scipy.org/
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://arxiv.org/abs/1603.01407
http://cg.bsc.es/guidance/

54 BIBLIOGRAPHY

[53] Olivier Delaneau, Jonathan Marchini, and Jean-François Zagury. “A linear complexity
phasing method for thousands of genomes”. In: Nature methods 9.2 (2012), p. 179.

[54] Po-Ru Loh et al. “Reference-based phasing using the Haplotype Reference Consor-
tium panel”. In: Nature genetics 48.11 (2016), p. 1443.

[55] Bryan N Howie, Peter Donnelly, and Jonathan Marchini. “A flexible and accurate
genotype imputation method for the next generation of genome-wide association stud-
ies”. In: PLoS genetics 5.6 (2009), e1000529.

[56] Sayantan Das et al. “Next-generation genotype imputation service and methods”. In:
Nature genetics 48.10 (2016), p. 1284.

[57] Ketian Yu and Sayantan Das. Minimac4. URL: https://genome.sph.umich.edu/
wiki/Minimac4.

[58] Jonathan Marchini and Bryan Howie. “Genotype imputation for genome-wide asso-
ciation studies”. In: Nature Reviews Genetics 11.7 (2010), p. 499.

[59] Shaun Purcell et al. “PLINK: a tool set for whole-genome association and population-
based linkage analyses”. In: The American Journal of Human Genetics 81.3 (2007), pp. 559–
575.

[60] Vagheesh Narasimhan et al. “BCFtools/RoH: a hidden Markov model approach for
detecting autozygosity from next-generation sequencing data”. In: Bioinformatics 32.11
(2016), pp. 1749–1751.

[61] Heng Li et al. “The sequence alignment/map format and SAMtools”. In: Bioinformatics
25.16 (2009), pp. 2078–2079.

[62] Colin Freeman. GTool. URL: http://www.well.ox.ac.uk/~cfreeman/software/
gwas/gtool.html.

[63] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. Vienna, Austria, 2015. URL: https://www.R-project.
org/.

[64] Dirk Merkel. “Docker: lightweight linux containers for consistent development and
deployment”. In: Linux Journal 2014.239 (2014), p. 2.

[65] Todd C. Miller. sudo. URL: https://www.sudo.ws/.

[66] Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. “Singularity: Scientific
containers for mobility of compute”. In: PloS one 12.5 (2017), e0177459.

[67] Peter Mell, Tim Grance, et al. “The NIST definition of cloud computing”. In: (2011).

[68] Google Cloud. Google Cloud including GCP and G Suite. 2008. URL: https://cloud.
google.com/.

[69] exaQUte. Exascale Quantification of Uncertainties for Technology and Science Simulation.
URL: https://www.exaqute.eu.

[70] Pooyan Dadvand, Riccardo Rossi, and Eugenio Oñate. “An object-oriented environ-
ment for developing finite element codes for multi-disciplinary applications”. In: Archives
of computational methods in engineering 17.3 (2010), pp. 253–297.

[71] CIMNE. Kratos Multiphysics. https://github.com/KratosMultiphysics/
Kratos. 2019.

[72] Christian Bayer et al. “ON NONASYMPTOTIC OPTIMAL STOPPING CRITERIA IN
MONTE CARLO SIMULATIONS.” In: SIAM JOURNAL ON SCIENTIFIC COMPUT-
ING 36.2 (2014), A869 –A885.

https://genome.sph.umich.edu/wiki/Minimac4
https://genome.sph.umich.edu/wiki/Minimac4
http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html
http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html
https://www.R-project.org/
https://www.R-project.org/
https://www.sudo.ws/
https://cloud.google.com/
https://cloud.google.com/
https://www.exaqute.eu
https://github.com/KratosMultiphysics/Kratos
https://github.com/KratosMultiphysics/Kratos

BIBLIOGRAPHY 55

[73] Michele Pisaroni, Sebastian Krumscheid, and Fabio Nobile. Quantifying uncertain sys-
tem outputs via the multilevel Monte Carlo method-Part I: Central moment estimation. Tech.
rep. 2017.

[74] Michele Pisaroni, Sebastian Krumscheid, and Fabio Nobile. Python glossary. Tech. rep.
URL: https://docs.python.org/3/glossary.html.

[75] Barcelona Supercomputing Center (BSC). MareNostrum 4 User Guide. URL: https:
//www.bsc.es/support/MareNostrum4-ug.pdf.

[76] IT4Innovations. Salomon Hardware Overview. URL: https://docs.it4i.cz/salomon/
hardware-overview/.

[77] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley Pro-
fessional, 2004.

[78] Charles Dapogny, Cécile Dobrzynski, and Pascal Frey. “Three-dimensional adaptive
domain remeshing, implicit domain meshing, and applications to free and moving
boundary problems”. In: Journal of computational physics 262 (2014), pp. 358–378.

[79] George Karypis. “METIS and ParMETIS”. In: Encyclopedia of parallel computing (2011),
pp. 1117–1124.

[80] Michael Heroux et al. An Overview of Trilinos. Tech. rep. SAND2003-2927. Sandia Na-
tional Laboratories, 2003.

[81] Bjarne Stroustrup. The C++ programming language. Pearson Education India, 2000.

[82] Intel. C++ Intel’s compuiler developer guide. Tech. rep. 2019. URL: https://software.
intel.com/en-us/cpp-compiler-developer-guide-and-reference.

[83] Barcelona Supercomputing Center (BSC). User support group. URL: https://www.
bsc.es/discover-bsc/organisation/support-structure/user-support.

[84] Frank B Schmuck and Roger L Haskin. “GPFS: A Shared-Disk File System for Large
Computing Clusters.” In: FAST. Vol. 2. 19. 2002.

[85] Philip Schwan et al. “Lustre: Building a file system for 1000-node clusters”. In: Pro-
ceedings of the 2003 Linux symposium. Vol. 2003. 2003, pp. 380–386.

[86] Oracle. Java HashMap documentation. URL: https://docs.oracle.com/javase/
8/docs/api/java/util/HashMap.html.

[87] Oracle. Java Priority Queue documentation. URL: https : / / docs . oracle . com /
javase/8/docs/api/java/util/PriorityQueue.html.

[88] BSC. COMPSs’ exaQUte branch. https://github.com/bsc-wdc/compss/tree/
exaQUte. 2019.

[89] Barcelona Supercomputing Center (BSC). MareNostrum 3 User Guide. URL: https:
//www.bsc.es/support/MareNostrum3-ug.pdf.

[90] Mark S Birrittella et al. “Intel R© Omni-path architecture: Enabling scalable, high per-
formance fabrics”. In: 2015 IEEE 23rd Annual Symposium on High-Performance Intercon-
nects. IEEE. 2015, pp. 1–9.

[91] Institute of Political Economy and Governance (IPEG). Institute of Political Economy and
Governance (IPEG). URL: http://barcelona-ipeg.eu/.

[92] Google. Google Cloud buckets documentation. URL: https://cloud.google.com/
storage/docs/json_api/v1/buckets.

https://docs.python.org/3/glossary.html
https://www.bsc.es/support/MareNostrum4-ug.pdf
https://www.bsc.es/support/MareNostrum4-ug.pdf
https://docs.it4i.cz/salomon/hardware-overview/
https://docs.it4i.cz/salomon/hardware-overview/
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference
https://www.bsc.es/discover-bsc/organisation/support-structure/user-support
https://www.bsc.es/discover-bsc/organisation/support-structure/user-support
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html
https://github.com/bsc-wdc/compss/tree/exaQUte
https://github.com/bsc-wdc/compss/tree/exaQUte
https://www.bsc.es/support/MareNostrum3-ug.pdf
https://www.bsc.es/support/MareNostrum3-ug.pdf
http://barcelona-ipeg.eu/
https://cloud.google.com/storage/docs/json_api/v1/buckets
https://cloud.google.com/storage/docs/json_api/v1/buckets

57

Appendices

59

Appendix A

GWAS

A.1 Dockerfile

1 FROM ubuntu:18.04

3 ARG DEBIAN_FRONTEND=noninteractive

5 ENV TERM linux

7 RUN echo ’debconf debconf/frontend select Noninteractive’ | debconf-set-selections

9 RUN apt-get update && \
apt-get purge openjdk-* icedtea-* icedtea6-* && \

11 apt-get remove openjdk-11-jre openjdk-11-jdk openjdk-11-jre-headless openjdk-11-jdk
-headless && \
apt-get purge openjdk-* && \

13 apt-get install -y --no-install-recommends openjdk-8-jdk && \
update-alternatives --install /usr/bin/java java /usr/lib/jvm/java-8-openjdk-amd64/
jre/bin/java 9999 && \

15 rm -rf /var/lib/apt/lists/*

17 # Install Packages
RUN apt-get update && \

19 apt-get install -y --no-install-recommends apt-utils && \
apt-get install -y --no-install-recommends \

21 git \
vim \

23 wget \
sudo \

25 openssh-server && \
yes yes | ssh-keygen -f /root/.ssh/id_rsa -t rsa -N ’’ > /dev/null && \

27 cat /root/.ssh/id_rsa.pub > /root/.ssh/authorized_keys && \
git config --global core.compression 9 && \

29 # ===
Dependencies for building COMPSs

31 # ===
Build dependencies

33 sudo apt-get install -y --no-install-recommends maven \
Runtime dependencies

35 openjdk-8-jdk graphviz xdg-utils \
Bindings-common-dependencies

37 libtool automake build-essential \
C-binding dependencies

39 libboost-all-dev libxml2-dev csh \
Extrae dependencies

41 libxml2 gfortran libpapi-dev papi-tools \
Misc. dependencies

43 openmpi-bin openmpi-doc libopenmpi-dev uuid-runtime curl bc \
Python-binding dependencies

45 python-dev python3-dev libpython2.7 python-pip python3-pip python-setuptools
python3-setuptools && \
pip2 install wheel && \

47 pip3 install wheel && \
pip2 install wheel numpy==1.15.4 dill guppy decorator mpi4py==1.3.1 && \

49 pip3 install wheel numpy==1.15.4 dill decorator mpi4py==3.0.1 && \
Python-redis dependencies

60 Appendix A. GWAS

51 pip2 install redis==2.10.6 redis-py-cluster && \
pip3 install redis==2.10.6 redis-py-cluster && \

53 # pycompsslib dependencies
pip2 install scipy==1.0.0 scikit-learn==0.19.1 pandas==0.23.1 && \

55 pip3 install scipy==1.0.0 scikit-learn==0.19.1 pandas==0.23.1 && \
AutoParallel dependencies

57 apt-get install -y --no-install-recommends libgmp3-dev flex bison libbison-dev
texinfo libffi-dev && \
pip2 install astor sympy enum34 islpy && \

59 # Testing dependencies
pip3 install enum34 tabulate && \

61 # Configure user environment
===

63 # System configuration
===

65 # Add environment variables
echo "JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/" >> /etc/environment && \

67 echo "MPI_HOME=/usr/lib/openmpi" >> /etc/environment && \
echo "LD_LIBRARY_PATH=/usr/lib/openmpi/lib" >> /etc/environment && \

69 mkdir /run/sshd && \
rm -rf /var/lib/apt/lists/*

71

RUN rm -rf ./framework && \
73 export JAVA_HOME="/usr/lib/jvm/java-8-openjdk-amd64/" && \

export MPI_HOME="/usr/lib/openmpi" && \
75 export LD_LIBRARY_PATH="/usr/lib/openmpi/lib" && \

git clone --branch "exaQUte" https://github.com/bsc-wdc/compss.git framework && \
77 cd ./framework && \

./submodules_get.sh && \
79 ./submodules_patch.sh && \

echo "${JAVA_HOME}" && \
81 sudo /framework/builders/buildlocal -P -M /opt/COMPSs && \

rm -rf /root/.cache && \
83 cd .. && \

rm -r ./framework
85

87 #Copy binaries into the container
RUN mkdir /TOOLS

89 COPY ./TOOLS/shapeit.v2.r727.linux.x64 /TOOLS/shapeit.v2.r727.linux.x64
COPY ./TOOLS/R_scripts /TOOLS/R_scripts

91 COPY ./TOOLS/deps.R /TOOLS/deps.R
RUN chmod 775 /TOOLS/R_scripts/*

93

WORKDIR /TOOLS
95

RUN export DEBIAN_FRONTEND=noninteractive && \
97 sudo apt-get update && sudo apt-get install -y --no-install-recommends gnupg2

software-properties-common && \
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
E298A3A825C0D65DFD57CBB651716619E084DAB9 && \

99 sudo add-apt-repository ’deb https://cloud.r-project.org/bin/linux/ubuntu bionic-
cran35/’ && \
sudo apt-get update && DEBIAN_FRONTEND=noninteractive sudo apt-get install -y --no-
install-recommends apt-utils && \

101 sudo sed -i ’s/^mesg n$/tty -s \&\& mesg n/g’ /root/.profile && \
DEBIAN_FRONTEND=noninteractive sudo apt-get install -y --no-install-recommends r-
base r-base-dev r-base-core libcurl4-openssl-dev \

103 jags libpq-dev libmariadb-client-lgpl-dev && \
rm -rf /var/lib/apt/lists/*

105

RUN /usr/bin/Rscript /TOOLS/deps.R
107

######### IN CASE WE WANT TO UPGRADE QCTOOL #########
109

#Install mercurial (for QCTool)
111 #RUN apt-get install -y mercurial

113 #Install qctoolNew
#RUN hg clone -r ba5eaa4 https://gavinband@bitbucket.org/gavinband/qctool qctool_2.0 &&

\
115 # cd qctool_2.0 && \

A.1. Dockerfile 61

./waf-1.5.18 configure && \
117 # ./waf-1.5.18 && \

ln -s /TOOLS/build/release/qctool_v2.0.1 /usr/bin/qctool2.0
119

######### END OF QCTOOL INSTALACTION ################
121

#Install qctool
123 RUN wget http://www.well.ox.ac.uk/~gav/resources/archive/qctool_v1.4-linux-x86_64.tgz &

& \
tar zxvf qctool_v1.4-linux-x86_64.tgz && \

125 rm qctool_v1.4-linux-x86_64.tgz && \
chmod -R 755 /TOOLS/qctool_v1.4-linux-x86_64/ && \

127 ln -s /TOOLS/qctool_v1.4-linux-x86_64/qctool /usr/bin/qctool1.4

129 #bcftools and samtools dependencies
RUN sudo apt-get update && \

131 sudo apt-get install -y --no-install-recommends zlib1g-dev libbz2-dev liblzma-dev
libncurses5-dev libncursesw5-dev && \
rm -rf /var/lib/apt/lists/*

133

#Install bcftools
135 RUN wget https://github.com/samtools/bcftools/releases/download/1.8/bcftools-1.8.tar.

bz2 -O bcftools.tar.bz2 && \
tar -xjvf bcftools.tar.bz2 && \

137 rm bcftools.tar.bz2 && \
cd bcftools-1.8 && \

139 make && \
make prefix=/usr/local/bin install && \

141 ln -s /usr/local/bin/bin/bcftools /usr/bin/bcftools

143 #Install samtools
RUN wget https://github.com/samtools/samtools/releases/download/1.5/samtools-1.5.tar.

bz2 -O samtools.tar.bz2 && \
145 tar -xjvf samtools.tar.bz2 && \

rm samtools.tar.bz2 && \
147 cd samtools-1.5 && \

make && \
149 make prefix=/usr/local/bin install && \

ln -s /usr/local/bin/bin/samtools /usr/bin/samtools
151

#Plink dependencies
153 RUN sudo add-apt-repository universe && \

sudo apt-get update && \
155 sudo apt-get install -y --no-install-recommends libatlas-base-dev libblas-dev

liblapack-dev libatlas-base-dev && \
rm -rf /var/lib/apt/lists/*

157

#Install plink
159 RUN git clone https://github.com/chrchang/plink-ng.git && \

cd plink-ng && \
161 rm -r 2.0 && \

cd 1.9 && \
163 ./plink_first_compile && \

ln -s /TOOLS/plink-ng/1.9/plink /usr/bin/plink
165

#Install Eagle
167 RUN wget https://data.broadinstitute.org/alkesgroup/Eagle/downloads/old/Eagle_v2.3.tar.

gz && \
tar -zxvf Eagle_v2.3.tar.gz && \

169 rm Eagle_v2.3.tar.gz && \
rm -r Eagle_v2.3/example/ && \

171 ln -s /TOOLS/Eagle_v2.3/eagle /usr/bin/eagle

173 #Install Impute ### This step will stop working once they upgrade the program since
only the last version is available

RUN wget https://mathgen.stats.ox.ac.uk/impute/impute_v2.3.2_x86_64_static.tgz && \
175 tar -zxvf impute_v2.3.2_x86_64_static.tgz && \

rm impute_v2.3.2_x86_64_static.tgz && \
177 rm -r impute_v2.3.2_x86_64_static/Example/ && \

ln -s /TOOLS/impute_v2.3.2_x86_64_static/impute2 /usr/bin/impute2
179

#Install snptest

62 Appendix A. GWAS

181 RUN wget http://www.well.ox.ac.uk/~gav/resources/archive/snptest_v2.5_linux_x86_64_
static.tgz && \
tar -zxvf snptest_v2.5_linux_x86_64_static.tgz && \

183 rm snptest_v2.5_linux_x86_64_static.tgz && \
rm -r snptest_v2.5_linux_x86_64_static/example/ && \

185 chmod -R 755 /TOOLS/snptest_v2.5_linux_x86_64_static/ && \
ln -s /TOOLS/snptest_v2.5_linux_x86_64_static/snptest_v2.5 /usr/bin/snptest_v2.5

187

#Install minimac3
189 #RUN git clone https://github.com/Santy-8128/Minimac3.git && \

cd Minimac3 && \
191 # make -w && \

sudo ln -s /TOOLS/Minimac3/bin/Minimac3 /usr/bin/minimac3
193 RUN wget ftp://share.sph.umich.edu/minimac3/Minimac3Executable.tar.gz && \

tar -zxvf Minimac3Executable.tar.gz && \
195 rm Minimac3Executable.tar.gz && \

chmod -R 755 /TOOLS/Minimac3Executable/bin && \
197 ln -s /TOOLS/Minimac3Executable/bin/Minimac3-omp

199 #Minimac4 dependencies
RUN sudo apt-get update && \

201 sudo apt-get install -y --no-install-recommends cmake python-pip python-dev && \
pip install cget

203

#Install minimac4
205 RUN git clone https://github.com/Santy-8128/Minimac4.git && \

cd Minimac4 && \
207 bash install.sh && \

ln -s /TOOLS/Minimac4/release-build/minimac4 /usr/bin/minimac4
209 # sudo ln -s /TOOLS/Minimac3/bin/Minimac3-omp /usr/bin/minimac3

sudo ln -s /TOOLS/Minimac3/bin/Minimac3 /usr/bin/minimac3
211

RUN apt-get update && \
213 apt-get autoremove openjdk-11-jre openjdk-11-jdk

215 RUN ln -s /usr/lib/jvm/java-8-openjdk-amd64 /usr/lib/jvm/default-java

217 ENV LC_ALL "C"
#ENV PLINKBINARY "/TOOLS/plink_1.9/plink"

219 #ENV EAGLEBINARY "/TOOLS/Eagle_v2.3/eagle"
#ENV IMPUTE2BINARY "/TOOLS/impute_v2.3.2_x86_64_static/impute2"

221 #ENV QCTOOLBINARY "/TOOLS/qctool_v1.4-linux-x86_64/qctool
#ENV SNPTESTBINARY "/TOOLS/snptest_v2.5_linux_x86_64_static/snptest_v2.5"

223 #ENV MINIMACBINARY "/TOOLS/Minimac3/bin/Minimac3"
ENV RSCRIPTDIR "/TOOLS/R_scripts/"

225 ENV SHAPEITBINARY "/TOOLS/shapeit.v2.r727.linux.x64"
#ENV MINIMACBINARY "/TOOLS/Minimac3/bin/Minimac3"

227

ENV PLINKBINARY "/usr/bin/plink"
229 ENV QCTOOLBINARY "/usr/bin/qctool1.4"

ENV EAGLEBINARY "/usr/bin/eagle"
231 ENV IMPUTE2BINARY "/usr/bin/impute2"

ENV QCTOOLBINARY "/usr/bin/qctool1.4"
233 ENV SNPTESTBINARY "/usr/bin/snptest_v2.5"

ENV MINIMAC3BINARY "/usr/bin/minimac3"
235 ENV MINIMAC4BINARY "/usr/bin/minimac4"

237 ENV RSCRIPTBINDIR "/usr/bin/"

239 ENV BCFTOOLSBINARY "/usr/bin/bcftools"
#ENV QCTOOLSNEWBINARY "/gpfs/scratch/pr1ees00/pr1ees14/GCAT/SHAPEIT_IMPUTE/qctool/build

/release/qctool_v2.0-rc9"
241 #ENV QCTOOLSNEWBINARY "/usr/bin/qctool2.0" ## THE INSTALLATION IS NOT PERFORMED BECAUSE

THIS BINARY IS NOT USED IN THE CODE
ENV SAMTOOLSBINARY "/usr/bin/samtools"

A.2 Docker generation

A.3. Singularity build file 63

#!/bin/bash
2

cp ../../src/main/R/* ./TOOLS/R_scripts/
4

sudo docker build -f GuidanceDockerfile -t docker_guidance .
6

echo "[INFO] Docker build successfully executed."
8 #sudo docker run docker_guidance&
#sudo docker save --output=docker_singularity.tar docker_guidance

10 #sudo docker ps
#sudo sudo docker exec -i -t {name or id} /bin/bash

A.3 Singularity build file

Bootstrap: docker
2 From: docker://localhost:5000/docker_guidance:latest

4 %environment
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

6

%setup
8 mkdir -p $SINGULARITY_ROOTFS/gpfs/home/

mkdir -p $SINGULARITY_ROOTFS/gpfs/scratch/
10 mkdir -p $SINGULARITY_ROOTFS/gpfs/apps/MN4

mkdir -p $SINGULARITY_ROOTFS/gpfs/projects/
12 mkdir -p /opt/intel

mkdir -p /scratch
14

Files that are included from the host
16

%files
18

%post
20

A.4 Singularity generation

1 #!/bin/bash

3 rm -f guidance_singularity.img

5 #sudo docker run -d -p 5000:5000 --name registry registry:2
#sudo docker pull docker_guidance

7 #sudo docker image tag docker_guidance localhost:5000/docker_guidance_image
#sudo docker push localhost:5000/docker_guidance_image

9

#export SINGULARITY_NOHTTPS=true
11

DOCKER IMAGE GENERATION
13

sudo docker ps -a | tail -n +2 | awk ’{ print $1 }’ | xargs -i sudo docker stop {}
15 sudo docker ps -a | tail -n +2 | awk ’{ print $1 }’ | xargs -i sudo docker rm {}

17 sudo docker image ls | grep "docker_guidance" | awk ’{ print $3 }’ | tail -n +2 | xargs
-i sudo docker rmi -f {}

19 pushd docker
./build_docker.sh

21 popd

23 #sudo docker stop registry
#sudo docker ps -a | grep registry:2 | xargs -i sudo docker rm {}

25 sudo docker rmi -f registry:2

64 Appendix A. GWAS

sudo docker run -d -p 5000:5000 --restart=always --name registry registry:2
27 sudo docker tag docker_guidance localhost:5000/docker_guidance

sudo docker push localhost:5000/docker_guidance
29

SINGULARITY IMAGE GENERATION
31

https://github.com/singularityware/singularity/issues/429
33

sudo SINGULARITY_NOHTTPS=yes singularity build guidance_singularity.img singularity/
guidance.def

65

66 Appendix B. MC

Appendix B

MC

B.1 MLMC poster

ScalabledistributedMultilevelMonteCarlo
workflowdesign

Riccardo Tosi (CIMNE), Marc Nuñez (CIMNE), Ramon Amela (BSC),
Rosa M. Badia (BSC), Riccardo Rossi (CIMNE-UPC), Rubén Zorrilla (CIMNE)

1. Introduction

The following presents some initial results of integration of well-known algorithms
developed to study Uncertainty Quanti�cation (UQ) inside the KratosMultiphysics
(Kratos) environment. The application of choice has been the resolution of the potential
�ow around an airfoil. The �nal aim is to perform Optimization Under Uncertainties
(OUU) of the �ow around civil structures, using embedded geometries.

2. Monte Carlo and Multilevel Monte Carlo

The Monte Carlo (MC) method is the reference method in the stochastic analysis of
multiphysics problems with uncertainties in the data parameters. The idea is to repeatedly
generate the random input and to solve numerically the associated deterministic problem,
in order to produce a statistical analysis.

• Problem under consideration considered
as a black-box.

• MC estimator of the expectation of a
Quantity of Interest (QoI):

EMC[QoI] :=
N∑

i=1

QoI(w(i)) .

• Convergence to the exact statistics as
the number of samples N →∞.

• Convergence rate of the mean square
error ∼ O(N

1
2):

mse2MC := E[(EMC[QoIM]− E[QoI])2] .

101 102 103 104
10−3

10−2

N

mse2MC
Kratos

literature

Figure 1: MC mean square error.

• Too high computational cost for
complex problems ⇒ development
of Multilevel Monte Carlo (MLMC)
algorithms.

The MLMC main features are:

• Simultaneous computation of MC QoIMl
samples on successive re�nement levels.

• MLMC estimator of the expectation of a QoI:

EMLMC[QoIM] :=
L∑

l=0

E[QoIMl
(w(i,l))−QoIMl−1

(w(i,l))] .

• Combination of a large number of cheap and low accuracy QoIMl
samples with few

expensive high accuracy samples.

Figure 2: Hierarchy
of computational
grids, showing
increasing accuracy
levels.

3. HPC implementation

Both the MC and the MLMC algorithms are parallelizable, since their working principle
is to solve repeatedly the same problem of interest, each time with a di�erent random
input. This led to the integration among Kratos and PyCOMPSs, the python library of
COMPSs. The current version is able to run several thousands of samples at once.

1

2

d9v2

Synchro0

d1v1 d2v1 d3v1 d4v1 d5v1d6v1 d7v1 d8v1

3

d1v1 d2v1 d3v1 d4v1 d5v1d14v1 d7v1 d15v1

5

d1v1 d2v1 d3v1 d4v1 d5v1d21v1 d7v1 d22v1

7

d1v1 d2v1 d3v1 d4v1 d5v1d28v1 d7v1 d29v1

9

d1v1 d2v1 d3v1 d4v1 d5v1d35v1 d7v1 d36v1

11

d1v1 d2v1 d3v1 d4v1 d5v1d42v1 d7v1 d43v1

12

d3v1 d4v1 d5v1 d42v1 d7v1 15

d1v1 d2v1 d3v1 d4v1 d5v1d54v1 d7v1 d55v1

16

d3v1 d4v1 d5v1 d54v1 d7v119

d1v1 d2v1 d3v1d4v1 d5v1 d66v1 d7v1 d67v1

20

d3v1 d4v1 d5v1 d66v1 d7v1 23

d1v1 d2v1 d3v1d4v1 d5v1 d78v1 d7v1 d79v1

24

d3v1 d4v1 d5v1 d78v1 d7v1 27

d1v1 d2v1 d3v1 d4v1 d5v1d90v1 d7v1 d91v1

28

d3v1 d4v1 d5v1 d90v1 d7v1 31

d1v1 d2v1 d3v1 d4v1 d5v1d102v1 d7v1 d103v1

32

d3v1 d4v1 d5v1 d102v1 d7v1

33

d3v1 d4v1 d5v1 d102v1 d7v1

37

d1v1 d2v1 d3v1d4v1 d5v1 d119v1 d7v1 d120v1

38

d3v1 d4v1 d5v1 d119v1 d7v1

39

d3v1 d4v1d5v1 d119v1 d7v1

43

d1v1 d2v1 d3v1d4v1 d5v1 d136v1 d7v1 d137v1

44

d3v1 d4v1 d5v1 d136v1 d7v1

45

d3v1 d4v1d5v1 d136v1 d7v1

49

d1v1 d2v1d3v1 d4v1 d5v1 d153v1 d7v1 d154v1

50

d3v1 d4v1 d5v1 d153v1 d7v1

51

d3v1 d4v1d5v1 d153v1 d7v1

55

d1v1 d2v1 d3v1 d4v1d5v1 d170v1 d7v1 d171v1

56

d3v1d4v1 d5v1 d170v1 d7v1

57

d3v1 d4v1d5v1 d170v1 d7v1

61

d187v1 d188v1 d189v1 d190v1d191v1

62

d199v1 d200v1d201v1 d202v1 d203v1

91

d407v1 d408v1 d409v1d410v1 d411v1

92

d419v1d420v1 d421v1 d422v1 d423v1

111

d557v1d558v1 d559v1 d560v1 d561v1

112

d569v1 d570v1d571v1 d572v1 d573v1

121

d637v1 d638v1 d639v1 d640v1

d12v2 d13v2

4

d16v2

63

d19v2

64

d20v2

6

d23v2

65

d26v2

66

d27v2

8

d30v2

67

d33v2

68

d34v2

10

d37v2

69

d40v2

70

d41v2

d45v2 d46v2 d44v2

13

d47v2

14

d47v2

71

d50v2

72

d51v2

d52v2 d53v2

d57v2 d58v2 d56v2

17

d59v2

18

d59v2

73

d62v2

74

d63v2

93

d64v2

94

d65v2

d69v2 d70v2 d68v2

21

d71v2

22

d71v2

75

d74v2

76

d75v2

95

d76v2

96

d77v2

d81v2 d82v2 d80v2

25

d83v2 26

d83v2

77

d86v2

78

d87v2

97

d88v2

98

d89v2

d93v2 d94v2 d92v2

29

d95v2

30

d95v2

79

d98v2

80

d99v2

99

d100v2

100

d101v2

d105v2 d106v2 d104v2

d108v2d109v2 d107v2

34

d110v2

35

d110v2

36

d110v2

81

d113v2

82

d114v2

101

d115v2

102

d116v2

d117v2d118v2

d122v2 d123v2 d121v2

d125v2 d126v2 d124v2

40

d127v2

41

d127v2

42

d127v2

83

d130v2

84

d131v2

103

d132v2

104

d133v2

113

d134v2

114

d135v2

d139v2 d140v2 d138v2

d142v2 d143v2 d141v2

46

d144v2

47

d144v2

48

d144v2

85

d147v2

86

d148v2

105

d149v2

106

d150v2

115

d151v2

116

d152v2

d156v2d157v2 d155v2

d159v2 d160v2 d158v2

52

d161v2

53

d161v2 54

d161v2

87

d164v2

88

d165v2

107

d166v2

108

d167v2

117

d168v2

118

d169v2

d173v2 d174v2 d172v2

d176v2 d177v2 d175v2

58

d178v2

59

d178v2

60

d178v2

89

d181v2

90

d182v2

109

d183v2

110

d184v2

119

d185v2

120

d186v2

d192v2 d194v2d195v2 d196v2 d197v2 d198v2 d204v2 d206v2d207v2 d208v2 d209v2 d210v2

d211v2 d213v2 d214v2 d215v2 d216v2d217v2 d218v2 d220v2 d221v2 d222v2d223v2 d224v2

d225v2 d227v2 d228v2 d229v2 d230v2 d231v2 d232v2 d234v2 d235v2 d236v2d237v2 d238v2

d239v2 d241v2 d242v2d243v2 d244v2 d245v2 d246v2 d248v2 d249v2 d250v2 d251v2 d252v2

d253v2 d255v2 d256v2 d257v2 d258v2 d259v2 d260v2 d262v2d263v2 d264v2 d265v2 d266v2

d267v2 d269v2 d270v2d271v2 d272v2 d273v2 d274v2 d276v2 d277v2 d278v2d279v2 d280v2

d281v2 d283v2 d284v2 d285v2 d286v2 d287v2 d288v2 d290v2 d291v2 d292v2 d293v2 d294v2

d295v2 d297v2 d298v2 d299v2d300v2 d301v2 d302v2 d304v2 d305v2 d306v2d307v2 d308v2

d309v2 d311v2d312v2 d313v2 d314v2 d315v2 d316v2d318v2 d319v2 d320v2 d321v2 d322v2

d323v2 d325v2 d326v2 d327v2 d328v2 d329v2 d330v2 d332v2 d333v2 d334v2d335v2 d336v2

d337v2 d339v2 d340v2d341v2 d342v2 d343v2 d344v2d346v2 d347v2 d348v2 d349v2 d350v2

d351v2 d353v2d354v2 d355v2 d356v2 d357v2 d358v2 d360v2 d361v2 d362v2 d363v2d364v2

d365v2d367v2 d368v2 d369v2 d370v2 d371v2 d372v2 d374v2 d375v2d376v2 d377v2 d378v2

d379v2 d381v2 d382v2 d383v2 d384v2 d385v2 d386v2d388v2 d389v2 d390v2 d391v2 d392v2

d393v2d394v2

sync

d393v2 d394v2

d400v2

d400v2

d412v2 d414v2 d415v2 d416v2 d417v2d418v2 d424v2 d426v2d427v2 d428v2 d429v2 d430v2

d431v2 d433v2 d434v2 d435v2 d436v2d437v2 d438v2d440v2 d441v2 d442v2 d443v2 d444v2

d445v2d447v2 d448v2 d449v2 d450v2 d451v2 d452v2 d454v2d455v2 d456v2 d457v2 d458v2

d459v2 d461v2 d462v2d463v2 d464v2 d465v2 d466v2 d468v2 d469v2d470v2 d471v2 d472v2

d473v2 d475v2 d476v2 d477v2 d478v2d479v2 d480v2 d482v2 d483v2 d484v2d485v2 d486v2

d487v2d489v2 d490v2 d491v2 d492v2 d493v2 d494v2 d496v2 d497v2 d498v2 d499v2d500v2

d501v2 d503v2 d504v2 d505v2d506v2 d507v2 d508v2d510v2 d511v2 d512v2 d513v2 d514v2

d515v2 d517v2d518v2 d519v2 d520v2 d521v2 d522v2 d524v2 d525v2d526v2 d527v2 d528v2

d529v2 d531v2 d532v2 d533v2 d534v2d535v2 d536v2 d538v2 d539v2 d540v2 d541v2 d542v2

d543v2d544v2

d543v2 d544v2

d550v2

d550v2

d562v2 d564v2 d565v2 d566v2d567v2 d568v2d574v2d576v2 d577v2 d578v2 d579v2 d580v2

d581v2 d583v2 d584v2 d585v2d586v2 d587v2d588v2 d590v2 d591v2d592v2 d593v2 d594v2

d595v2 d597v2 d598v2 d599v2 d600v2d601v2d602v2 d604v2 d605v2 d606v2d607v2 d608v2

d609v2 d611v2 d612v2 d613v2 d614v2d615v2d616v2 d618v2 d619v2 d620v2 d621v2d622v2

d623v2 d624v2

d623v2 d624v2

d630v2

d630v2

d644v2 d641v2 d642v2 d643v2d645v2

122

d1v1 d2v1 d3v1 d4v1 d5v1d646v1 d7v1 d647v1

123

d3v1 d4v1 d5v1 d646v1d7v1

124

d3v1 d4v1 d5v1 d646v1 d7v1

125

d3v1 d4v1 d5v1 d646v1 d7v1

130

d1v1 d2v1 d3v1 d4v1 d5v1d668v1 d7v1 d669v1

131

d3v1 d4v1 d5v1 d668v1d7v1

132

d3v1 d4v1 d5v1 d668v1 d7v1

133

d3v1 d4v1 d5v1 d668v1 d7v1

138

d1v1 d2v1 d3v1 d4v1 d5v1 d690v1 d7v1d691v1

139

d3v1 d4v1 d5v1 d690v1 d7v1

140

d3v1 d4v1 d5v1 d690v1d7v1

141

d3v1 d4v1 d5v1 d690v1 d7v1

146

d1v1 d2v1 d3v1 d4v1 d5v1 d712v1d7v1 d713v1

147

d3v1 d4v1d5v1 d712v1 d7v1

148

d3v1d4v1 d5v1 d712v1 d7v1

149

d3v1 d4v1 d5v1 d712v1 d7v1

154

d1v1 d2v1 d3v1 d4v1 d5v1d734v1 d7v1 d735v1

155

d3v1 d4v1 d5v1 d734v1d7v1

156

d3v1 d4v1 d5v1 d734v1 d7v1

157

d3v1 d4v1 d5v1 d734v1 d7v1

162

d1v1 d2v1 d3v1 d4v1 d5v1 d756v1d7v1 d757v1

163

d3v1 d4v1d5v1 d756v1 d7v1

164

d3v1d4v1 d5v1 d756v1 d7v1

165

d3v1 d4v1 d5v1 d756v1 d7v1

170

d778v1d395v2 d396v2 d397v2 d398v2 d399v2

171

d786v1 d402v2 d403v2d404v2 d405v2 d406v2

182

d864v1 d545v2 d546v2 d547v2d548v2 d549v2

183

d872v1d552v2 d553v2 d554v2 d555v2 d556v2

194

d950v1 d625v2d626v2 d627v2 d628v2 d629v2

195

d958v1d632v2 d633v2 d634v2 d635v2 d636v2

206

d1036v1 d1037v1 d1038v1 d1039v1 d1040v1

207

d1048v1d1049v1 d1050v1 d1051v1 d1052v1

218

d637v1 d1130v1 d639v1 d1131v1

sync

d649v2 d650v2 d648v2

d652v2d653v2 d651v2

d655v2 d656v2 d654v2

126

d657v2

127

d657v2

128

d657v2

129

d657v2

d660v2d661v2 d662v2 d663v2 d664v2 d665v2 d666v2d667v2

d671v2 d672v2 d670v2

d674v2d675v2 d673v2

d677v2 d678v2 d676v2

134

d679v2

135

d679v2

136

d679v2

137

d679v2

172

d682v2

173

d683v2

184

d684v2

185

d685v2

196

d686v2

197

d687v2

208

d688v2

209

d689v2

d693v2 d694v2 d692v2

d696v2 d697v2 d695v2

d699v2 d700v2 d698v2

142

d701v2

143

d701v2

144

d701v2

145

d701v2

174

d704v2

175

d705v2

186

d706v2

187

d707v2

198

d708v2

199

d709v2

210

d710v2

211

d711v2

d715v2 d716v2 d714v2

d718v2 d719v2 d717v2

d721v2 d722v2 d720v2

150

d723v2

151

d723v2

152

d723v2

153

d723v2

176

d726v2

177

d727v2

188

d728v2

189

d729v2

200

d730v2

201

d731v2

212

d732v2

213

d733v2

d737v2 d738v2 d736v2

d740v2d741v2 d739v2

d743v2 d744v2 d742v2

158

d745v2

159

d745v2

160

d745v2

161

d745v2

178

d748v2

179

d749v2

190

d750v2

191

d751v2

202

d752v2

203

d753v2

214

d754v2

215

d755v2

d759v2 d760v2 d758v2

d762v2 d763v2 d761v2

d765v2 d766v2 d764v2

166

d767v2

167

d767v2

168

d767v2

169

d767v2

180

d770v2

181

d771v2

192

d772v2

193

d773v2

204

d774v2

205

d775v2

216

d776v2

217

d777v2

d779v2 d781v2 d782v2 d783v2 d784v2 d785v2d787v2 d789v2 d790v2 d791v2d792v2 d793v2

d794v2d796v2 d797v2 d798v2 d799v2 d800v2d801v2 d803v2 d804v2 d805v2 d806v2 d807v2

d808v2d810v2 d811v2 d812v2 d813v2 d814v2d815v2 d817v2d818v2 d819v2 d820v2 d821v2

d822v2d824v2 d825v2 d826v2 d827v2 d828v2d829v2 d831v2 d832v2 d833v2d834v2 d835v2

d836v2d838v2 d839v2 d840v2 d841v2 d842v2d843v2 d845v2 d846v2 d847v2 d848v2 d849v2

d850v2 d851v2

d850v2d851v2

d857v2

d857v2

d865v2 d867v2 d868v2 d869v2 d870v2d871v2 d873v2 d875v2 d876v2d877v2 d878v2 d879v2

d880v2d882v2 d883v2 d884v2 d885v2 d886v2 d887v2d889v2 d890v2 d891v2d892v2 d893v2

d894v2 d896v2 d897v2d898v2 d899v2 d900v2 d901v2d903v2 d904v2 d905v2 d906v2 d907v2

d908v2 d910v2 d911v2 d912v2 d913v2d914v2 d915v2d917v2 d918v2 d919v2 d920v2 d921v2

d922v2d924v2 d925v2 d926v2 d927v2 d928v2 d929v2d931v2 d932v2 d933v2 d934v2 d935v2

d936v2 d937v2

d936v2d937v2

d943v2

d943v2

d951v2d953v2 d954v2 d955v2 d956v2 d957v2 d959v2 d961v2 d962v2 d963v2 d964v2d965v2

d966v2d968v2 d969v2 d970v2 d971v2 d972v2 d973v2 d975v2 d976v2 d977v2 d978v2d979v2

d980v2 d982v2d983v2 d984v2 d985v2 d986v2 d987v2 d989v2 d990v2 d991v2d992v2 d993v2

d994v2 d996v2d997v2 d998v2 d999v2 d1000v2 d1001v2 d1003v2 d1004v2 d1005v2d1006v2 d1007v2

d1008v2 d1010v2d1011v2 d1012v2 d1013v2 d1014v2 d1015v2 d1017v2 d1018v2d1019v2 d1020v2 d1021v2

d1022v2d1023v2

d1022v2 d1023v2

d1029v2

d1029v2

d1041v2 d1043v2 d1044v2 d1045v2 d1046v2d1047v2d1053v2d1055v2 d1056v2 d1057v2 d1058v2 d1059v2

d1060v2 d1062v2 d1063v2d1064v2 d1065v2 d1066v2d1067v2d1069v2 d1070v2 d1071v2 d1072v2 d1073v2

d1074v2 d1076v2d1077v2 d1078v2 d1079v2 d1080v2d1081v2 d1083v2 d1084v2 d1085v2 d1086v2 d1087v2

d1088v2 d1090v2 d1091v2 d1092v2 d1093v2 d1094v2d1095v2 d1097v2 d1098v2 d1099v2 d1100v2d1101v2

d1102v2 d1104v2 d1105v2 d1106v2 d1107v2d1108v2d1109v2 d1111v2 d1112v2 d1113v2 d1114v2d1115v2

d1116v2d1117v2

d1116v2 d1117v2

d1123v2

d1123v2

d1135v2 d1132v2 d1133v2d1134v2 d1136v2

KratosMultiphysics.MultilevelMonteCarloApplication.cmlmc_utilities.ExecuteInstance_Task
KratosMultiphysics.MultilevelMonteCarloApplication.cmlmc_utilities.AddResultsAux_Task

statistical_variable_utilities.UpdateOnePassMomentsVarianceAux_Task
KratosMultiphysics.MultilevelMonteCarloApplication.cmlmc_utilities.FinalizePhaseAux_Task

Figure 3: Graph connections of MLMC algorithm dependencies, running with PyCOMPSs.

Figure 4: Section of the execution trace of a MC execution with N = 16000.

4. Embedded solver

The use of embedded geometries presents some clear advantages if compared to typical
body-�tted meshes.

• Dealing with incomplete geometries as input �les (geometries with gaps, holes or
overlaps).

• Solving problems with large boundary movement (typical in optimization).

• Accounting for complex geometries, such as volume-less bodies.

In the following �gures, a simple example of the �ow around an ellipse with an angle of
attack of 5o is showcased, as well as a comparison to reference results.

Figure 5: Example of the pressure
distribution.

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

x̂

C
p

Reference

Embedded

−0.4

−0.2

0

0.2

0.4

y
(m

)

Figure 6: Embedded solver comparison to
reference (XFoil).

5. Adaptative remeshing

Adaptative remeshing enhances the accuracy of the embedded solver, thanks to the better
de�nition of the level-set representing the input geometry. The following �gures showcase
the remesh of a NACA 0012 airfoil, using the MMG library.

Figure 7: NACA 0012 airfoil embedded in an initial background mesh. Observe that the element
size of the background mesh is not enough to account for the sharp geometry of the trailing edge.

Figure 8: NACA 0012 airfoil, after remsehing the background mesh in terms of the inital
geometry.

6. Computation of sensitivities

To perform an optimization analysis with an aerodynamic solver, the computation of
the gradient of an objective function is needed. This gradient is the sensitivity of the
geometry with respect to the objective function. In this case, the objective functions will
be aerodyanimc forces or characteristics, whose gradient with respect to the geometry is
unknowkn. Thus, adjoint techinques are used to compute the gradient, which are validated
with the �nite di�erences method.

Figure 9: Visual representation of the
sensitivities of each geometry parameter, i.e.
each node that de�nes the airfoil geometry,
computed using adjoint techniques.

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

x[m]

∥ ∥ ∥
∂
f

∂
x
i

∥ ∥ ∥

Finite Differences gradient

Adjoint gradient

−0.4

−0.2

0

0.2

0.4

y
[m

]

Figure 10: Comparison between the adjoint
analysis and the �nite di�erence method. The
relative error obtained is 0.17%.

8. References

[1] Pooyan Dadvand, Riccardo Rossi, and Eugenio Oñate. An object-oriented environment for
developing �nite element codes for multi-disciplinary applications. Archives of computational
methods in engineering, 17(3):253�297, 2010.

[2] Ramon Amela, Cristian Ramon-Cortes, Jorge Ejarque, Javier Conejero, and Rosa M Badia.
Executing linear algebra kernels in heterogeneous distributed infrastructures with pycompss.
Oil & Gas Science and Technology�Revue d'IFP Energies nouvelles, 73:47, 2018.

[3] M Davari, Riccardo Rossi, Pooyan Dadvand, Inigo Lopez, and Roland Wüchner. A cut
�nite element method for the solution of the full-potential equation with an embedded wake.
Computational Mechanics, 08 2018.

[4] MMG - Surface and volume remeshers. https://github.com/MmgTools/mmg. Accessed:
21.03.2019.

7. Future Developments

• Extend embedded solver to 3D.

• Computation of sensitivities for embedded
geometries.

• Optimization of MC and MLMC parallelization.

• Application of MLMC to more challenging physical
problems.

Contacts

rtosi@cimne.upc.edu
mnunez@cimne.upc.edu
ramon.amela@bsc.es
rosa.m.badia@bsc.es
rrossi@cimne.upc.edu
rzorrilla@cimne.upc.edu

67

Appendix C

Scheduling improvements

C.1 Scheduler auxiliar structures

// Tree set is an ordered set!!
2 protected HashMap<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

unassignedReadyActions;
protected final HashSet<ResourceScheduler<?>> availableWorkers;

4 protected final HashMap<ResourceScheduler<?>, Future<?>> resourceTokens;
protected int amountOfWorkers;

6 ThreadPoolExecutor schedulerExecutor;

C.2 Scheduler main function

protected <T extends WorkerResourceDescription> void tryToLaunchFreeActions(List<
AllocatableAction> dataFreeActions,

2 List<AllocatableAction> resourceFreeActions, List<AllocatableAction>
blockedCandidates,

ResourceScheduler<T> resource) {
4 if (DEBUG) {

LOGGER.debug("[ReadyScheduler] Try to launch free actions on resource " +
resource.getName() + " with "

6 + this.unassignedReadyActions.get(resource).size() + " candidates
in this worker");

}
8

// Actions that have been freeded by the action that just finished
10 for (AllocatableAction freeAction : dataFreeActions) {

if (DEBUG) {
12 LOGGER.debug(

"[ReadyScheduler] Introducing action " + freeAction + " into
the scheduler from data free");

14 }
addActionToSchedulerStructures(freeAction);

16 }
dataFreeActions = new LinkedList<AllocatableAction>();

18

// Resource free actions should always be empty in this scheduler
20 for (AllocatableAction freeAction : resourceFreeActions) {

if (DEBUG) {
22 LOGGER.debug(

"[ReadyScheduler] Introducing action " + freeAction + " into
the scheduler from resource free");

24 }
addActionToSchedulerStructures(freeAction);

26 }
resourceFreeActions = new LinkedList<AllocatableAction>();

28

// Only in case there are actions that have entered the scheduler without
having

30 // available resources -> They were in the blocked list
for (AllocatableAction freeAction : blockedCandidates) {

68 Appendix C. Scheduling improvements

32 if (DEBUG) {
LOGGER.debug("[ReadyScheduler] Introducing action " + freeAction + "

into the scheduler from blocked");
34 }

addActionToSchedulerStructures(freeAction);
36 }

blockedCandidates = new LinkedList<AllocatableAction>();
38

Future<?> lastToken = this.resourceTokens.get(resource);
40 if (lastToken != null) {

try {
42 lastToken.get();

} catch (InterruptedException | ExecutionException e) {
44 e.printStackTrace();

LOGGER.fatal("Unexpected thread interruption");
46 ErrorManager.fatal("Unexpected thread interruption");

}
48 }

this.resourceTokens.put(resource, null);
50

Iterator<ObjectValue<AllocatableAction>> executableActionsIterator = this.
unassignedReadyActions.get(resource)

52 .iterator();
HashSet<ObjectValue<AllocatableAction>> objectValueToErase = new HashSet<

ObjectValue<AllocatableAction>>();
54 while (executableActionsIterator.hasNext() && !this.availableWorkers.isEmpty())

{
ObjectValue<AllocatableAction> obj = executableActionsIterator.next();

56 AllocatableAction freeAction = obj.getObject();
try {

58 if (Tracer.isActivated()) {
Tracer.emitEvent(Tracer.Event.TRY_TO_SCHEDULE.getId(), Tracer.Event

.TRY_TO_SCHEDULE.getType());
60 }

freeAction.tryToSchedule(obj.getScore(), this.availableWorkers);
62 if (Tracer.isActivated()) {

Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.
getType());

64 }
ResourceScheduler<? extends WorkerResourceDescription> assignedResource

= freeAction
66 .getAssignedResource();

tryToLaunch(freeAction);
68 if (!assignedResource.canRunSomething()) {

this.availableWorkers.remove(assignedResource);
70 }

objectValueToErase.add(obj);
72 } catch (BlockedActionException e) {

if (Tracer.isActivated()) {
74 Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.

getType());
}

76 objectValueToErase.add(obj);
addToBlocked(freeAction);

78 if (DEBUG) {
LOGGER.debug("[ReadyScheduler] Action " + freeAction + " added to

blocked actions");
80 }

} catch (UnassignedActionException e) {
82 System.out.println("Cannot schedule action " + freeAction);

if (Tracer.isActivated()) {
84 Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.

getType());
}

86 if (DEBUG) {
LOGGER.debug("[ReadyScheduler] Action " + freeAction

88 + " could not be assigned to any of the available resources
");

}
90 // Nothing to be done here since the action was already in the

scheduler

C.3. Scheduler auxiliar calls 69

// structures. If there is an exception, the freeAction will not be
added

92 // to the objectValueToErase list.
// Hence, this is not an ignored Exception but an expected behavior.

94 }
}

96

for (ObjectValue<AllocatableAction> obj : objectValueToErase) {
98 AllocatableAction action = obj.getObject();

removeActionFromSchedulerStructures(action);
100 }

}

C.3 Scheduler auxiliar calls

1 private void addActionToResource(
Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

currentEntry,
3 AllocatableAction action) {

ResourceScheduler<?> resource = currentEntry.getKey();
5 TreeSet<ObjectValue<AllocatableAction>> actionList = (TreeSet<ObjectValue<

AllocatableAction>>) currentEntry
.getValue();

7 Score fullScore = action.schedulingScore(resource, generateActionScore(action))
;

if (fullScore != null) {
9 ObjectValue<AllocatableAction> obj = new ObjectValue<>(action, fullScore);

actionList.add(obj);
11 }

}
13

private void removeActionFromResource(
15 Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

currentEntry,
AllocatableAction action) {

17 currentEntry.getKey();
TreeSet<ObjectValue<AllocatableAction>> actionList = currentEntry.getValue();

19 Score fullScore = action.schedulingScore(currentEntry.getKey(),
generateActionScore(action));

if (fullScore != null) {
21 ObjectValue<AllocatableAction> obj = new ObjectValue<>(action, fullScore);

actionList.remove(obj);
23 }

}
25

private Runnable createAddRunnable(
27 final Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction

>>> currentEntry,
final AllocatableAction action, final Future<?> token) {

29 Runnable addRunnable = new Runnable() {
public void run() {

31 if (token != null) {
try {

33 token.get();
} catch (InterruptedException | ExecutionException e) {

35 e.printStackTrace();
LOGGER.fatal("Unexpected thread interruption");

37 ErrorManager.fatal("Unexpected thread interruption");
}

39 }
addActionToResource(currentEntry, action);

41 }
};

43 return addRunnable;
}

45

private Runnable createRemoveRunnable(

70 Appendix C. Scheduling improvements

47 final Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction
>>> currentEntry,

final AllocatableAction action, final Future<?> token) {
49 Runnable removeRunnable = new Runnable() {

public void run() {
51 if (token != null) {

try {
53 token.get();

} catch (InterruptedException | ExecutionException e) {
55 e.printStackTrace();

LOGGER.fatal("Unexpected thread interruption");
57 ErrorManager.fatal("Unexpected thread interruption");

}
59 }

removeActionFromResource(currentEntry, action);
61 }

};
63 return removeRunnable;

}
65

private void addActionToSchedulerStructures(AllocatableAction action) {
67 if (!this.unassignedReadyActions.isEmpty()) {

if (DEBUG) {
69 LOGGER.debug("[ReadyScheduler] Add action to scheduler structures " +

action);
}

71 Iterator<Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<
AllocatableAction>>>> iter = unassignedReadyActions

.entrySet().iterator();
73 Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

currentEntry = iter.next();
TreeSet<ObjectValue<AllocatableAction>> actionList = (TreeSet<ObjectValue<

AllocatableAction>>) currentEntry
75 .getValue();

77 ResourceScheduler<?> resource = currentEntry.getKey();
Score actionScore = generateActionScore(action);

79 Score fullScore = action.schedulingScore(resource, actionScore);
ObjectValue<AllocatableAction> obj = new ObjectValue<>(action, fullScore);

81 if (!actionList.add(obj)) {
return;

83 }
while (iter.hasNext()) {

85 currentEntry = iter.next();
resource = currentEntry.getKey();

87 Future<?> lastToken = this.resourceTokens.get(resource);
this.resourceTokens.put(resource,

89 schedulerExecutor.submit(createAddRunnable(currentEntry, action
, lastToken)));

}
91 } else {

if (DEBUG) {
93 LOGGER.debug(

"[ReadyScheduler] Cannot add action " + action + " because
there are not available resources");

95 }
addToBlocked(action);

97 }
}

99

private void removeActionFromSchedulerStructures(AllocatableAction action) {
101 if (!this.unassignedReadyActions.isEmpty()) {

if (DEBUG) {
103 LOGGER.debug("[ReadyScheduler] Remove action from scheduler structures

" + action);
}

105 Iterator<Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<
AllocatableAction>>>> iter = unassignedReadyActions

.entrySet().iterator();
107 Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

currentEntry = iter.next();
ResourceScheduler<?> resource = currentEntry.getKey();

C.3. Scheduler auxiliar calls 71

109 TreeSet<ObjectValue<AllocatableAction>> actionList = currentEntry.getValue
();

Score actionScore = generateActionScore(action);
111 Score fullScore = action.schedulingScore(resource, actionScore);

ObjectValue<AllocatableAction> obj = new ObjectValue<>(action, fullScore);
113 if (!actionList.remove(obj)) {

return;
115 }

while (iter.hasNext()) {
117 currentEntry = iter.next();

resource = currentEntry.getKey();
119 Future<?> lastToken = this.resourceTokens.get(resource);

this.resourceTokens.put(resource,
121 schedulerExecutor.submit(createRemoveRunnable(currentEntry,

action, lastToken)));
}

123 }
}

125

127 protected <T extends WorkerResourceDescription> void tryToLaunchFreeActions(List<
AllocatableAction> dataFreeActions,

List<AllocatableAction> resourceFreeActions, List<AllocatableAction>
blockedCandidates,

129 ResourceScheduler<T> resource) {
if (DEBUG) {

131 LOGGER.debug("[ReadyScheduler] Try to launch free actions on resource " +
resource.getName() + " with "

+ this.unassignedReadyActions.get(resource).size() + " candidates
in this worker");

133 }

135 // Actions that have been freeded by the action that just finished
for (AllocatableAction freeAction : dataFreeActions) {

137 if (DEBUG) {
LOGGER.debug(

139 "[ReadyScheduler] Introducing action " + freeAction + " into
the scheduler from data free");

}
141 addActionToSchedulerStructures(freeAction);

}
143 dataFreeActions = new LinkedList<AllocatableAction>();

145 // Resource free actions should always be empty in this scheduler
for (AllocatableAction freeAction : resourceFreeActions) {

147 if (DEBUG) {
LOGGER.debug(

149 "[ReadyScheduler] Introducing action " + freeAction + " into
the scheduler from resource free");

}
151 addActionToSchedulerStructures(freeAction);

}
153 resourceFreeActions = new LinkedList<AllocatableAction>();

155 // Only in case there are actions that have entered the scheduler without
having

// available resources -> They were in the blocked list
157 for (AllocatableAction freeAction : blockedCandidates) {

if (DEBUG) {
159 LOGGER.debug("[ReadyScheduler] Introducing action " + freeAction + "

into the scheduler from blocked");
}

161 addActionToSchedulerStructures(freeAction);
}

163 blockedCandidates = new LinkedList<AllocatableAction>();

165 Future<?> lastToken = this.resourceTokens.get(resource);
if (lastToken != null) {

167 try {
lastToken.get();

169 } catch (InterruptedException | ExecutionException e) {
e.printStackTrace();

72 Appendix C. Scheduling improvements

171 LOGGER.fatal("Unexpected thread interruption");
ErrorManager.fatal("Unexpected thread interruption");

173 }
}

175 this.resourceTokens.put(resource, null);

177 Iterator<ObjectValue<AllocatableAction>> executableActionsIterator = this.
unassignedReadyActions.get(resource)

.iterator();
179 HashSet<ObjectValue<AllocatableAction>> objectValueToErase = new HashSet<

ObjectValue<AllocatableAction>>();
while (executableActionsIterator.hasNext() && !this.availableWorkers.isEmpty())

{
181 ObjectValue<AllocatableAction> obj = executableActionsIterator.next();

AllocatableAction freeAction = obj.getObject();
183 try {

if (Tracer.isActivated()) {
185 Tracer.emitEvent(Tracer.Event.TRY_TO_SCHEDULE.getId(), Tracer.Event

.TRY_TO_SCHEDULE.getType());
}

187 freeAction.tryToSchedule(obj.getScore(), this.availableWorkers);
if (Tracer.isActivated()) {

189 Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.
getType());

}
191 ResourceScheduler<? extends WorkerResourceDescription> assignedResource

= freeAction
.getAssignedResource();

193 tryToLaunch(freeAction);
if (!assignedResource.canRunSomething()) {

195 this.availableWorkers.remove(assignedResource);
}

197 objectValueToErase.add(obj);
} catch (BlockedActionException e) {

199 if (Tracer.isActivated()) {
Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.

getType());
201 }

objectValueToErase.add(obj);
203 addToBlocked(freeAction);

if (DEBUG) {
205 LOGGER.debug("[ReadyScheduler] Action " + freeAction + " added to

blocked actions");
}

207 } catch (UnassignedActionException e) {
System.out.println("Cannot schedule action " + freeAction);

209 if (Tracer.isActivated()) {
Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.

getType());
211 }

if (DEBUG) {
213 LOGGER.debug("[ReadyScheduler] Action " + freeAction

+ " could not be assigned to any of the available resources
");

215 }
// Nothing to be done here since the action was already in the

scheduler
217 // structures. If there is an exception, the freeAction will not be

added
// to the objectValueToErase list.

219 // Hence, this is not an ignored Exception but an expected behavior.
}

221 }

223 for (ObjectValue<AllocatableAction> obj : objectValueToErase) {
AllocatableAction action = obj.getObject();

225 removeActionFromSchedulerStructures(action);
}

227 }

	Dedication
	Declaration of Authorship
	Acknowledgements
	Abstract
	Introduction
	Motivation
	Context
	Objectives
	Detailed Objectives

	Document Structure

	State of the art
	Genomic workflows
	Multilevel Monte Carlo
	Workflow managers

	COMPSs overview
	COMPSs Runtime
	Interaction with external libraries
	Scheduling infrastructure
	Python persistent workers
	Methods' polymorphism
	Profiling

	Implementations
	GWAS
	Application characteristics
	Binary complexity
	Heterogeneous Task Requirements
	Heterogeneous Binary Invocations

	Intelligent Workflow Execution
	Pipeline refactor
	Merge refactor
	Containerization
	Cloud execution

	MLMC
	Monte Carlo algorithm overview
	Multilevel Monte Carlo algorithm overview
	Convergence criteria
	Description of the algorithms
	Improvements
	Tree merge
	Batch design
	Full stack deployment

	Runtime improvements
	Problem diagnosis
	Implementation proposed

	Results and evaluation
	Experimental Setup
	Scheduling performance
	Dynamic scheduling with different tasks' constraints evaluation of the GAWS workflow
	Scheduling and application improvements in the GWAS code
	Scalability
	Strong Scaling
	Weak Scaling

	Portability
	Cloud computing
	HPC

	Scheduling and workflow improvements in the MC workflow

	Conclusions and Future work
	Bibliography
	Appendices
	GWAS
	Dockerfile
	Docker generation
	Singularity build file
	Singularity generation

	MC
	MLMC poster

	Scheduling improvements
	Scheduler auxiliar structures
	Scheduler main function
	Scheduler auxiliar calls

