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Glossary

CPU
The Central Processing Unit (CPU) is the part of the computer that contains all the ele-

ments required to execute the instructions of software programs. Its main components are
the main memory, the Processing Unit (PU) and the Control Unit (CU). Modern computers
use multi-core processors, which are a single chip containing one or more cores.

Core
A core is an individual processor that actually executes program instructions. Current

single chip CPUs contain many cores and are referred as multi-processor or multi-cores.

Node
A compute node refers to a single system within a cluster of many systems.

Framework
Framework stands for a set of standardized concepts, practices or criterias used to face a

given problem. Specifically, it defines a set of programs, libraries, languages, and program-
ming models used jointly in a project.

Workflow
A workflow is composed of tasks and dependencies between tasks. Workflows are com-

monly represented as graphs, with the nodes beeing tasks and the arrows representing the
dependencies. Somehow, tasks must represent an action that must be done (i.e. the ex-
ecution of a binary), and the dependencies must represent the requirements that must be
satisfied to be able to execute the task (i.e. the machine availability or the required data).

Binary
A file containing a list of machine code instructions to perform a list of tasks.

Parallelization
Separation of a program in small independent processes that can run simultaneously.

Runtime
Metaprogram that controls a program in execution time.

Granularity
Average task duration time.
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Chapter 1

Introduction

1.1 Motivation

While data workflows have some solutions in the market that scale to tens of thousands
of cores and are really stable [1], there are not clear both scalable and stable solutions for
arbitrary task flows. Scheduling big and heterogeneous workflows is a big challenge. More
precisely, it has been proven to be an NP-hard problem [2]. Nevertheless, the advances in
the algorithm designs [3], the runtime parallelization strategies [4], the available computa-
tional resources [5] and the reduction of network latencies [6] has made possible to attack
this kind of research subjects in the last years.

The Workflows and Distributed Computing group of the BSC treats this kind of problems
through COMPSs [compss] [7], a task based programming model trying to minimize the
modifications in the code between a sequential and a distributed execution. This is achieved
through decorator definitions following the OpenMP [8] philosophy. Even if its runtime
has demonstrated to be more efficient than Spark with task based applications [9], compli-
cated DAGs with a big amount of resources have reached the current limit of the COMPSs
scheduling capabilities.

There are different approaches to confront the problem. The first one is to improve the
runtime system in such a way that, given a certain DAG, the performance obtained is as
good as possible. On the other hand, it is possible to change the user code in such a way
that the generated DAG has more potential parallelism and the granularities obtained fits
better the characteristics of the used framework.

1.2 Context

The current project is conducted as the Final Master Thesis in the Master of Innovation and
Research in Informatics - High Performance Computing (MIRI - HPC) offered by the Universi-
tat Politecnica de Catalunya (UPC) [10] and has been funded by the Barcelona Supercomputing
Center (BSC) [11].

The project has been developed as a junior research engineer in the Workflows and Dis-
tributed Computing group [12] of the Computer Science department at the BSC. The main goal
of this group is to ease the development of applications in clusters through the COMP Su-
perscalar (COMPSs) [compss] programming model.

In addition, the projects into which the project has been done were in collaboration with
the Computational Genomics group [13] of the BSC and CIMNE [14] International Centre for
Numerical Methods in Engineering.
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1.3 Objectives

This master thesis aims to show how performance can be improved both modifying
the applications and improving the scheduling systems, trying to reach the best possible
performance for a given application.

1.3.1 Detailed Objectives

The following points summarize the main goals of the project:

O1 Include new features and optimize the code and task definitions in a GWAS work-
flow

O2 Design a good methodology to implement a MLMC application

O3 Introduce improvements in the scheduler to scale as well as possible both when
increasing the resources and the amount of tasks in the DAG

In both cases they did the scientific contribution, well defining the workflows to exectute
and coding the functionalities to be done in each one of the tasks. My contribution has
consisted in studying the workflows, and proposing and implementing the way the tasks are
called In the following chapters the precise contributions due to any author will be described
as clearly as possible.

1.4 Document Structure

The rest of the document is organized as follows. Chapter 2 gives an overview of the cur-
rent state of the art of GWAS workflows, MLMC distributed excutions and Analytic work-
flows, describing the most used technologies and comparing them to what is supported
in the most common Workflow Managers. Chapter 3 introduces the COMPSs program-
ming model, describing its main features before our contribution. Chapter 4 introduces the
workflows and contributions done in this master thesis. Chapter 5 accurately describes our
contribution to provide the reader a closer look of the solutions that we have chosen to face
each specific challenge. Chapter 6 evaluates the obtained results and the performance of
our proposal. Chapter 7 provides a brief summary of the thesis and, finally, in Chapter 8 we
discuss the conclusions and state the guidelines for the future work.
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Chapter 2

State of the art

In this section, the state of the art of all the subjects treated in the document are presented.

2.1 Genomic workflows

A straightforward solution to execute genomic workflows in supercomputing infrastruc-
tures is by directly attacking the queue manager. Job Arrays are essentially a collection of
batch jobs that must have the same initial options (e.g., number of processes, wall-clock
time). Thus, the users define genomic workflows as one job array per workflow step. On
the one hand, Job Arrays are built directly on top of queue systems (i.e., SLURM, LSF, PBS)
providing a very low overhead. For instance, SLURM Job Arrays [15] can submit millions
of tasks in milliseconds. However, on the other hand, the users must manually define each
job array and the dependencies between them to preserve the full workflow. Moreover, the
requirements of each job array (workflow step) are homogeneous for all its tasks. Advanced
users may dynamically modify the requirements of each job array job, but it is not a com-
mon practice.

Regarding the GWAS workflows, the implementation presented in this master thesis is to
my knowledge the one using larger scale systems. In addition, the code has proven its utility
since there are already accepted papers that are using it [16]. Other GWAS implementations
can be found in the literature, like the one presented in [17] based on NextFlow and on the
Common Workflow Language (CWL) [18]. Although the authors claim to use HPC systems,
according to the numbers given in the article, the number of CPUs used in the executions do
not exceed a ten. Other workflows presented in the same paper use 192 cores. GWASpro [19]
is a web server for the analyses of large-scale genome-wide association studies. While the
article claim that the server uses around 1000 CPU cores, nor detailed information about the
implementation is given, neither information about the efficiency achieved.

2.2 Multilevel Monte Carlo

The sequential codes from which we started working of the the Monte Carlo (MC) and
Multilevel Monte Carlo (MLMC) algorithms [20], allow to compute statistical analysis of
scalar and field Quantity of Interests (QoI). This quantity arise from the solution of a stochas-
tic problem. MLMC presents some issues that will be further discussed that are overcome
by the Continuation Multilevel Monte Carlo (CMLMC) algorithm, firstly introduced in [21].

Even if MC [22] is a really old and well known algorithm, multilevel approaches are
much more recent [23]. In addition, the way the different moments are computed in the
version presented in the previous paragraph are highly suitable to be paralellized.
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2.3 Workflow managers

Conversely, task-based frameworks can be used as workflow managers to provide a
richer set of features. However, this solution requires the applications to be developed
specifically for them, and the system administrators to install the full framework stack.

On the one hand, some frameworks force the users to explicitly define the workflow by
means of a recipe file or a graphical interface.

FireWorks [24, 25] defines complex workflows using recipe files in Python, JSON, or
YAML. It focuses on high-throughput applications, such as computational chemistry and
materials science calculations, and provides support arbitrary computing resources (includ-
ing queue systems), monitoring through a built-in web interface, failure detection, and dy-
namic workflow management.

Taverna [26, 27] is a suite of tools to design, monitor, and execute scientific workflows.
It provides a graphical user interface for the composition of workflows that are written in
a Simple Conceptual Unified Flow Language (Scufl) and executed remotely by the Taverna
Server to any underlying infrastructure (such as supercomputers, Grids or cloud environ-
ments). Similarly, Kepler [28, 29] also provides a graphical user interface to compose sci-
entific frameworks by selecting and connecting pertinent analytical components and data
sources. Furthermore, workflows can be easily stored, reuse and shared across the commu-
nity. Internally, Kepler’s architecture is actor-oriented to allow different execution models
into the same workflow.

Also, Galaxy [30, 31] is a web-based platform for scientific analysis focused on accessi-
bility and reproducibility of workflows across the scientific community. The users define
scientific workflows through the web portal and submit their executions to a Galaxy server
containing a full repertoire of tools and reference data.

On the other hand, other frameworks implicitly build the task dependency graph from
the user code. Some opt for defining a new scripting language to manage the workflow.
These solutions force the users to learn a new language but make a clear differentiation
between the workflow’s management (the script) and the processes or programs to be exe-
cuted.

Swift [32, 33] is a parallel scripting language developed in Java and designed to ex-
press and coordinate parallel invocations of application programs on distributed and paral-
lel computing platforms. The users only define the main application and the input and out-
put parameters of each program, so that Swift can execute the application in any distributed
infrastructure by automatically building the data dependencies. Nextflow [34] enables scal-
able and reproducible scientific workflows using software containers. It provides a fluent
DSL to implement and deploy scientific workflows but allows the adaptation of pipelines
written in the most common scripting languages.

Other frameworks opt for defining some annotations on top of an already existing lan-
guage. These solutions avoid the users from learning a new language but merge the work-
flow annotations and its execution in the same files.
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Dask [35] is a library for parallel computing in Python. Dask follows a task-based ap-
proach being able to take into account the data-dependencies between the tasks and exploit-
ing the inherent concurrency. Dask has been designed for computation and interactive data
science and integration with Jupyter notebooks. It is based on the dataframe data-structure
that offers interfaces to NumPy, Pandas, and Python iterators. Dask supports implicit, sim-
ple, task-graphs previously defined by the system (Dask Array or Dask Bag) and for more
complex graphs, the programmer can relay in the delayed annotation that supports the
asynchronous executions of tasks by building the corresponding task-graph. Dask-jobqueue
is an interface to execute Dask in large clusters while still supporting interactivity. However,
the elasticity needs to be indicated by the programmer in the code. While Dask is very pop-
ular in data-science, the authors of this paper are not aware of its application to other areas.

Parsl [36] provides an intuitive way to build implicit dataflows by annotating "apps"
in Python codes. In Parsl, the developers annotate Python functions (apps) and Parsl con-
structs a dynamic, parallel execution graph derived from the implicit linkage between apps
based on shared input/output data objects. Parsl then executes apps when dependencies
are met. Parsl is resource-independent, that is, the same Parsl script can be executed on a
laptop, cluster, cloud, or supercomputer.

Since COMPSs [37] is the solution chosen in this project, a more extended presentation
is done in the following chapter.
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Chapter 3

COMPSs overview

COMPSs is a task-based programming model that aims to make easier the development
of parallel applications, targeting distributed computing platforms. It relies on the power
of its Runtime to exploit the inherent parallelism of the application at execution time by de-
tecting the task calls and the data dependencies between them.

As shown in Figure 3.1, the COMPSs Runtime allows applications to be executed on
top of different infrastructures (such as multi-core machines, grids, clouds or containers)
without modifying a single line of the application’s code. Thanks to the different connec-
tors, the Runtime is capable of handling all the underlying infrastructure so that the users
only define the tasks. It also provides fault-tolerant mechanisms for partial failures (with
job resubmission and reschedule when task or resources fail), has a live monitoring tool
through a built-in web interface, supports instrumentation using the Extrae [38] tool to gen-
erate postmortem traces that can be analyzed with Paraver [39] [40], has an Eclipse IDE, and
has pluggable cloud connectors and task schedulers.

Moreover, since the COMPSs Runtime is written in Java [41], Python [42] syntax is sup-
ported through a binding. This Python binding is supported by a Binding-commons layer
which focuses on enabling the functionalities of the Runtime to other languages (currently,
Python [43] and C/C++ [44]). It has been designed as an API with a set of defined functions.
It is written in C and performs the communication with the Runtime through the JNI [45].
In this master thesis both Java and Python versions has been used. Nevertheless, consid-
ering its more compact format, PyCOMPSs has been chosen to present the examples in the
overview.

FIGURE 3.1: PyCOMPSs overview
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Regarding the programmability, Tasks are identified by the programmer using simple
annotations in the form of Python decorators, which indicate that invocations of a given
method will become tasks at execution time. The @task decorator also contains informa-
tion about the directionality of the method parameters specifying if a given parameter is
read (IN), written (OUT) or both read and written in the method (INOUT).

Figure 3.2 shows an example of a task annotation in Python. The parameter c is of type
INOUT, and parameters a, b, and MKLProc are set to the default type IN. The directionality
tags are used at execution time to derive the data dependencies between tasks and are ap-
plied at an object level, taking into account its references to identify when two tasks access
the same object. Furthermore, the priority tag is a hint for the PyCOMPSs’ scheduler that
will force to execute the tasks with this tag earlier, always respecting the data dependencies.

Additionally to the @task decorator, the @constraint decorator can be optionally de-
fined to indicate some task hardware or software requirements. Continuing with the previ-
ous example, the task constraint ComputingUnits shows to the Runtime how many CPUs
are consumed by each task execution. The available resources are defined by the system
administrator in a separated XML configuration file. Other constraints that can be defined
refer to processor architecture, memory size, etc.

1 @constraint(ComputingUnits="$ComputingUnits")
@task(c=INOUT, priority=True)

3 def multiply(a, b, c, MKLProc):
os.environ["MKL_NUM_THREADS"]=str(MKLProc)

5 c += a * b

FIGURE 3.2: Sample task annotation

A tiny synchronization API completes the PyCOMPSs syntax. As shown in Figure 3.3,
the API function compss_wait_on waits until all the tasks modifying the result’s value
are finished and brings the value to the node executing the main program. Once the value
is retrieved, the execution of the main program code is resumed. Given that PyCOMPSs is
used mostly in distributed environments, synchronizing may imply a data transfer from a
remote storage or memory space to the node executing the main program. It is important
to realize that when coding with COMPSs in Java, this API is no needed since the code is
instrumented with Javassist [46].

1 for block in Data:
presult = word_count(block)

3 reduce_count(result, presult)
finalResult = compss_wait_on(result)

5

FIGURE 3.3: Sample call to synchronization API
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3.1 COMPSs Runtime

The COMPSs Runtime handles the execution of the applications in the computing in-
frastructure. The computing infrastructure is composed of several heterogeneous nodes,
and the execution is orchestrated following the master-worker paradigm, where the main
program is started on the master node and tasks are offloaded to worker nodes. In the most
general case, the node allocating the master node will also allocate a worker node.

FIGURE 3.4: PyCOMPSs Task life-cycle

As depicted in Figure 3.4, the Runtime first builds a task graph adding a new node to it
every time a task is invoked in the application’s code. The directionality of the parameters is
used to detect the data dependencies between the new task and previous ones. Secondly, the
scheduler will analyze the generated graph in a particular way to execute all the workload
among the available resources. We must highlight that this analysis is highly dependent to
the different scheduler implementations, but the Runtime provides information about all the
data locations so that they can exploit the data locality. Eventually, when a task is scheduled
to a given resource, the required objects and files are transferred between different memory
spaces to guarantee that tasks have available their parameters before execution. Finally, the
task is executed in the worker resource and, when specified by the synchronization API, the
results are gathered back to the master resource (where the main code is running).

Only concerning the PyCOMPSs binding, when a transfer between different memory
spaces is required, the binding serializes and writes the object to disk using the standard
library Pickle. The transfer between different resources is then delegated to the Runtime.

Finally, the available Computing Units that each resource can offer to the Runtime
is configurable. More specifically, this allows to oversubscribe the amount of work that
a resource can receive; meaning that the Runtime can create more threads than the real
amount of CPUs that the resource has.

3.2 Interaction with external libraries

The PyCOMPSs Runtime supports the execution of multi-threaded tasks using the con-
straint interface. The number of cores assigned to a multi-threaded task can be indicated
by the programmer in the ComputingUnits constraint tag. The PyCOMPSs scheduler can
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assign several cores to a given multi-threaded task. On the other hand, although support
for tasks that use several nodes has been added recently, in this work we only consider tasks
executing inside a single node.

Before this work, the cores were assigned blindly to the tasks. The performance results
observed were relatively poor when running numerical applications, such as those using the
NumPy [47] or SciPy [48] libraries that link to the Intel R©MKL library [49]. It has been shown
that, by default, Intel R©MKL tends to occupy the entire node when the multi-threading is
enabled. Not considering this fact can result in a heavy oversubscribing. In addition, each
task can be executed in several NUMA sockets. This fact increases the amount of transfers
between the different NUMA-nodes, decreasing the performance dramatically. Knowing
that this behavior can be found in other libraries, the problem has been solved in a general
way.

We have modified the PyCOMPSs task executor in such a way that it is currently able
to bind multi-threaded tasks to specific computing units of the infrastructure. This fact,
combined with the capability to define the nodes’ virtual amount of computing units, allows
the user to achieve the desired rate of oversubscribing. However, this is not done blindly:
the PyCOMPSs Runtime distributes the tasks evenly between the different NUMA sockets,
avoiding at the maximum the transfers between memory spaces.

3.3 Scheduling infrastructure

PyCOMPSs Runtime has been extended with a scheduling infrastructure that supports
pluggable scheduling policies. Almost all the tests presented in this paper are based on a
data locality scheduler that takes into account the node that stores the data accessed by the
tasks. More precisely, a task will have a score equal to the amount of input data present in a
given node.

Defining a new score policy is enough to change the scheduler behavior. It will prior-
itize the tasks with the highest score for a given combination of resource, implementation,
and data. In addition to the data locality score, three more policies have been defined: First In
First Out (FIFO), Last In First Out (LIFO) and data locality with priority to tasks with a shared
edge in the dependency graph with the finished task (FIFOData). In this last policy, there
are two different scenarios. In the case where there are tasks freed by the job that has just
finished, one of them is scheduled in First In First Out order; even before treating the tasks
that are already free. Otherwise, data locality is considered between all the available tasks.
The first two policies (LIFO, FIFO) have served to probe the robustness of the scheduling
system. The third one can be seen as a relaxation of the data locality scheduler to lighten the
amount of needed comparisons to schedule a task.

The available schedulers allow the users to configure the execution depending on the
expected load. This master thesis tries to optimize the way the different schedulers are
coded internally without changing its current behavior.

3.4 Python persistent workers

In previous Runtime versions, COMPSs was enhanced with a persistent Java worker,
meaning that a Java worker process was started at the beginning of the application execu-
tion, communicating with the master to get information about the tasks to be executed and
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data transfers to be performed. However, every time a Python task was invoked, a new
Python interpreter was launched. This process has been enhanced with the implementation
of Python persistent workers.

More in detail, the PyCOMPSs worker module has been modified on top of the Python’s
built-in multiprocessing library. When the application execution begins, the primary worker
process in each worker node spawns a set of processes that will be responsible for executing
the tasks. These processes are kept alive during the whole application execution and com-
municate with the Java persistent worker through pipes. The messages that they exchange
include information about the task execution requests, job parameters, and computation re-
sults. This feature improves the overall performance by reducing the overhead of deploying
a new Python interpreter per task. Besides, modules loaded by previous tasks are already
present in the interpreter and do not need to be reloaded.

3.5 Methods’ polymorphism

GPUs have demonstrated that can sometimes achieve better performance than CPUs.
In fact, it is not always easy to decide whether it is better to use one architecture or the
other [50]. Also, FPGAs are gaining some momentum. In this context, projects with the
primary focus of interest on heterogeneous architectures are arising [51]. Hence, it seems
reasonable to think that, in both HPC and Big Data contexts, we are going towards environ-
ments with heterogeneous architectures.

@implement(source_class="matmul_objects_MKL", method="multiply")
2 @constraint (ComputingUnits="${ComputingUnitsKNL}", ProcessorName="KNL")
@task(c=INOUT)

4 def multiplyKNL(a, b, c, MKLProcXeon, MKLProcKNL):
os.environ["KMP_AFFINITY"]="disabled"

6 os.environ["MKL_NUM_THREADS"]=str(MKLProcKNL)
c += a * b

8

@constraint (ComputingUnits="${ComputingUnitsXEON}", ProcessorName="XEON")
10 @task(c=INOUT)

def multiply(a, b, c, MKLProcXeon, MKLProcKNL):
12 os.environ["MKL_NUM_THREADS"]=str(MKLProcXeon)

c += a * b
14

FIGURE 3.5: Version handling with PyCOMPSs

PyCOMPSs can manage those cases by providing support for the definition of differ-
ent versions of the same method for different architectures. The programmer can use the
@implements decorator to indicate that a method implements the same behavior than an-
other. Figure 3.5 shows an example of polymorphism, which together with the @constraint
decorator allows to indicate to the Runtime that some tasks can only be executed in a given
set of computing resources. In fact, using polymorphism and tasks’ constraints, the users
can define CPU, GPU or FPGA versions of the same task.

Internally, at the beginning of the execution, the Runtime will blindly execute any of the
available versions that can run in a given resource in order to obtain an execution profile per
version. Afterwards, the Runtime is capable to use the profiled information to choose the
implementation with the lowest execution time.
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3.6 Profiling

PyCOMPSs generates postmortem traces under demand using Extrae [38]. These files can
be explored with Paraver [39] [40], obtaining visual information to make easier the code
performance fine tuning.

Some specific PyCOMPSs events have been added in order to differentiate the different
steps done by the master and the workers. More precisely, it is possible to see the different
actions performed by a worker each time that a task is executed.

Finally, the dependency graph generated can be plotted at the end of the computation or
be explored on runtime with the monitor.
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Chapter 4

Implementations

The main objective of this chapter is to present the workflows that has been optimized
and lately used to test the performance improvements in the scheduler.

4.1 GWAS

The first application treated was mainly implemented by the Computational Genomics
group at BSC [52]. It is a genome-wide association study. The exact procedure is still not
published since the final results are still being generated. Thus, no further details about the
exact content of the tasks are given in this memory. Indeed, it has no fully sense to deeply
explain the content of the tasks since it is not my contribution at all. Instead, the way this
tasks were called has been modified.

Nevertheless, it has to be noted that all the contributions done are agnostic from the
exact application and could be applied to any kind of scientific workflow having similar
characteristics to the ones described in this memory. This fact gives more strength to the
contributions done since they can be applied elsewhere without any problem. Hence, the
key points and common problems has been identified and solved as generally as possible.

Although the dependency graph of the application is not really complicated, the exe-
cuted workflow is quite complex and difficult to debug for two main reasons:

1. It is not possible to have small debug executions
With small datasets, some parts of the workflow are not useful since they rely on sta-
tistical studies that are not valid with a small population. Hence, the application must
be debugged in production environments.

2. There is a big amount of different binaries implied
A wide range of binaries are used in the workflow. This fact, combined with the pre-
vious point, makes really difficult to detect why some binaries get stuck at some point
given the amount of files and data involved.

In the following subsections, the main characteristics of the application are described as
long as the related contributions done in this master thesis.

4.1.1 Application characteristics

The first step was to really understand how the workflow behaved. Figure 4.1 shows a
simplified representation of the DAG executed that already contains all the important infor-
mation necessary to understand the application morphology. Not being able to have debug
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executions, it became crucial to understand the different steps of the application. The appli-
cation has three different input levels, which are the points of the workflow in which new
input files are added. It is a simplification since, for instance, if several inputs are defined
at the beginning (the red ones), the results are combined at the end. Nevertheless, we can
consider that the different workflows depending on each of the red files are independent.

FIGURE 4.1: GWAS DAG

The workflow will have the following size depending on the amount of inputs:

1. Red inputs
There will be as many DAGs as input red files.

2. Yellow inputs
For each one of the red inputs, a variable amount of chunks is created. Each one of the
chunks must perform some operations with each yellow input. Hence, considering Ni

the amount of chunks for the red input file i, the total amount of yellow pipelines will
be

∑
iNi · j where j is the amount of input files in the second level.

3. Blue/purple inputs
In the next step, each output of the previous pipeline must do some computations
with the new inputs. Considering that there are k inputs at this point, the amount of
pipelines of the third kind is

∑
iNi · j · k.

In fact, the key point here is that both the input and generated files are pretty big, so the
interest is to make as many chunks as possible. On the other side, having too small chunks
make the results incorrect, so there is a lower bound in the chunk size. Even with this bound,
the amount of chunks is quite big. Depending on the i, Ni goes from 51 to 252. Furthermore,
the amount of input files in the first level goes from 1 to 25. Finally, the amount of inputs in
the last step can be as big as wanted.
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4.1.2 Binary complexity

As it has been previously said, the application is strongly binary based. More precisely,
the following binaries have some use all along the workflow:

• SHAPEIT [53]

• Eagle [54]

• Impute [55]

• Minimac3 [56]

• Minimac4 [57]

• snptest [58]

• PLINK [59]

• QCTool [58]

• BCFTools [60]

• SAMTools [61]

• GTool [62]

• 4 different custom scripts in R [63]

• 3 different custom java functions

Although the exact function of each binary is not important regarding the contribution
done in this master thesis, the binaries calls has been added to allow the lecturer understand
its heterogeneity and complexity. Indeed, the amount of different functionalities orches-
trated is pretty high. In addition, in the elaboration of this thesis, some binary version have
been upgraded. This fact has implied changes both in the installations (compilation and
dependency handling of the new versions) and the related code that was relying of concrete
version formats.

4.1.2.1 Heterogeneous Task Requirements

The different binaries of the workflow can have different hardware and software require-
ments. In general, this requirements are related to the amount of memory needed depending
on the input. On change applied to the workflow is to put some of the constraints as global
variables in such a way that they can be changed depending on the execution without need-
ing to recompile the Java code. For instance, Figure 4.2 shows two different tasks from the
workflow’s annotated interface that have different CPU and memory requirements. The an-
notation to the phasingBed task indicates that any invocation to phasingBed will require
48 cores and 50.0 GB of memory. In production runs, a specific configuration file is exported
depending on the used inputs to optimise the available resources as well as possible.
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During this master thesis, both the constraints definitions and the configuration files
used in the diferent production executions has been coded.

1 @Method(declaringClass = "guidance.GuidanceImpl")
@Constraints(computingUnits = "${snptestCU}",

3 memorySize = "${snptestMem}")
void snptest(

5 ...
);

7

@Method(declaringClass = "guidance.GuidanceImpl")
9 @Constraints(memorySize = "6.0")
void qctoolS(

11 ...
);

13

FIGURE 4.2: Task annotations with different CPU and memory constraints

4.1.2.2 Heterogeneous Binary Invocations

There are three main reasons that make the parametrisation of the binaries very com-
plex. First, the file formats accepted by each binary are usually different because binaries
are developed by different institutions and there is no standard file format. Although the
differences are not significant (i.e., compression, number of columns, column order), the in-
put files must be adapted before each binary execution.

Second, many binaries do not generate the output files when there is no content to write
on them. This can cause cascading failures when being part of a static workflow since, typi-
cally, the output files of one binary are input files of another one.

Third, binaries may alter their behaviour depending on the provided command line ar-
guments. Although this is not a problem itself, having executions of the same binary with a
different number of parameters is, because application users want to invoke the same task
definition regardless of the number of arguments.

Another example of this behaviour is the different merging operations to be done at the
end. Depending on the ones that are added by the user, the call to the R scripts have a dif-
ferent amount of parameters.

In addition, it has to be noted that scientists are not necessarily computer science experts.
Thus, it is a common practice to rely on state of the art software packages to perform specific
operations efficiently. For instance, a workflow orchestrated in Python or Java can execute
filtering and merging operations in the native language, imputations or associations using
binary tools (written in C or C++), and generate plots using R.

To hide this heterogeneity a Binary Wrapper has been used. As shown in Figure 4.3,
first, the wrapper parses the input parameters and builds the command line arguments;
allowing to switch between different binary calls inside the same task definition. Second,
checks the input files and re-formats them if necessary; allowing the task definition to accept
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any input file format. Next, executes the binary command and, finally, checks the output
files; generating any missing output file to prevent cascade failures. In order to avoid later
failures, the correct headers for each type of binary are added when needed.

This encapsulation acts as an interface to design the workflow orchestration entirely in
the same language, freeing the scientists from dealing explicitly with inter-language issues
(such as binary spawning, and process input and output redirection).

The different Binary Wrappers can be encapsulated in a library as a set of building blocks
and offered to the final programmer that defines the workflows. This methodology provides
a unified interface that simplifies the definition of the workflows, while the complexity of
the different components and its orchestration is performed behind the scenes. Even if this
has not been done in this master thesis, the demonstration of the usefulness of this approach
has been probed and will be taken into account in future developments.

FIGURE 4.3: Binary wrapper to homogenise binary invocations

Regarding this aspect, the main contribution of this master thesis has been in the argu-
ments parsing, pre and post process. Even if the binary calls were defined by the scientific
experts, the changes in the binary versions and the addition of new functionalities have
implied lots of changes in this envelope binary code.

4.1.3 Intelligent Workflow Execution

At this point, it is important to justify why a task based approach has been chosen in-
stead of choosing a data centered framework.

As presented at the beginning of this section, applications composed by different analy-
sis steps where different data-set are partially analysed against different input files has been
considered. Each analysis step requires a different number of jobs, and each job can have
different resource constraints and duration depending on the size of the analysed data-set
and the size and complexity of the chromosome. This implies that the execution of the differ-
ent partial analysis is unbalanced and the execution has to wait for the larger computation
in each step. Implementing the different binary executions as tasks allows the runtime to
detect the data dependencies between the different partial analysis. Hence, the application
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can advance with the partial analysis from other steps that depend on these tasks without
having to wait until the whole step is completed. The runtime can detect if the analysis
of different steps can run in parallel allowing to interleave executions from these steps to
balance executions and increase performance. Figure 4.4 shows the execution traces of the
same execution. In the superior trace, all the tasks are presented. In the lower one, only the
merging tasks are shown. Even if the merge is the step done in the last part of the study, it
can be seen that the merging is performed during all the execution.

FIGURE 4.4: Execution trace of an execution showing all the tasks and only
the last phase merging tasks

Furthermore, when looking at the duration of the tasks in Figure 4.5 we see a clear het-
erogeneity. Scheduling the tasks dynamically it is possible to better fill the gaps without the
need to predict this stochastic durability in advance. This kind of graph show all the execu-
tion threads in the vertical axis. The horizontal axis is the execution time. The different taks
are put in the graph depending on the thread that executed them and the elapsed execution
time. In this case there are 4900 threads and the right limit corresponds to 4 minutes, that
are 240 seconds.

4.1.4 Pipeline refactor

Looking at the heterogeneity on the duration of the tasks, the whole workflow has been
called into question. Hence, the duration of the tasks has been deeply studied. Figure 4.6
shows the tasks that last from 0 to 13 seconds. It can be seen that there is a large group of
tasks than last less than two seconds. Considering the amount of resources to handle, this is
a really small granularity that may not well fit the optimum characteristics for COMPSs.

The original code of the workflow was developed considering as many tasks as possible
in order to tune the exact granularity. This fact, theoretically, should allow to better fill the
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FIGURE 4.5: Main workflow task duration

FIGURE 4.6: Shorter task’s duration

available resources. Nevertheless, too small tasks can be imply scheduling problems when
growing the amount of computational capabilities.

Hence, the granularity of the different tasks has been studied. Given that in the second
and third pipelines almost all the time is due to the main functionality, it has been decided
to merge all the pipeline in a single task when all the tasks must be executed. Figure 4.7
shows squares indicating the different tasks that have been encapsulated in single remote
calls.

It is important to realize that it is possible to launch parts of the workflow depending
on the input configuration file. This improvement does not prevent from launching partial
execution of the unified pipelines. Instead, when launching partial executions the tasks are
called independently to allow stopping the pipelines exactly at the desired point.
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FIGURE 4.7: Resulting workflow after pipeline regrouping

(A) Sequential merge (B) Tree merge

FIGURE 4.8: Merge strategies

4.1.5 Merge refactor

Regarding the merging process of the different tasks, in the original code it was done
in a sequential way as shown in Figure 4.8a. This fact created large tails at the end of the
execution. In order to solve this fact, the merge is now done in a tree manner as shown in
Figure 4.8b.

4.1.6 Containerization

Considering the amount of binaries implied, the deployment of the applications has
demonstrated to be really complicated in the past. In order to mitigate this problem, one of
the contributions done in the master thesis is the containerization of the whole workflow.
First of all, a docker [64] image has been created. Nevertheless, it has to be kept in mind
that this workflow is intended to run in HPC clusters. Hence, there is no sudo [65] in
the environments where the workflow is supposed to run. This is why once the image is
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created, it is pushed into a local repository. From this docker image, a singularity [66] image
is created. Finally, this is the container that has been successfully used to run the production
executions.

4.1.7 Cloud execution

Finally, even if the main usage of the workflow has been done in HPC facilities. The
bioinformatics community is switching progressively from clusters to the cloud. An other
contribution of this master thesis is the execution of the workflow in a cloud computing [67]
provider.

FIGURE 4.9: Cloud setup for the execution of GUIDANCE with COMPSs.

I have created a set of scripts to create a base instance containing GUIDANCE, COMPSs,
and all its dependencies, create and set up a cluster of virtual machines, and execute the
workflow. Figure 4.9 shows the architecture of these scripts when using the Google Cloud
Platform [68] as cloud backend. Although this set of scripts is created to ease the configura-
tion of cloud environments, the strong point is that once the virtual machines are configured,
the same application that was running in supercomputing architectures can be executed on
the cloud environment.

Special thanks to Cristian Ramon-Cortés Vilarrodona who took my separated and merely
working scripts and refactored them to reach a much more professional, modular and,
reusable result.
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4.2 MLMC

Similarly to the previous section, this section has also been done in the context of a col-
laboration with an external institution. More precisely, both MC and MLMC has been re-
viewed, understood and coded in a sequential way by Riccardo Tosi under the supervision
of Riccardo Rossi in the context of the exaQUte project [69]. In addition, all the simulations
are done with the Kratos [70] solver. All the resulting code is already pushed and available
in github [71].

The contribution of this master thesis has consisted in modify the code to enhance its
parallel capabilities. It is important to note that the comprehension level needed to fresh
code the presented algorithms and the one needed to modify them is quite different. Hence,
the contribution of this master thesis consists in understanding the code enough to be able
to propose modifications and enhancements while keeping the correctness of the results.

In order to better understand the improvements proposed, a short overview of both MC
and MLMC algorithms is done at the beginning of this section.

4.2.1 Monte Carlo algorithm overview

The MC method is the reference technique in the stochastic analysis of multi-physics
problems with uncertainties in the data parameters. This technique gives origin to a wide
class of different algorithms, whose main idea is to repeat many times the simulation with
different known r.v. w each time; this leads to an accurate estimation of the statistics of the
QoI. We consider the approximation QoI ' QoIM , moreover, since the relation QoIM =
f(uM ) holds, the MC estimator for the expected value of the QoI E[QoIM ] is:

EMC[QoIM ] :=
1

N

N∑

i=1

QoIM (w(i)) , (4.1)

where QoIM (w(i)) and i = 1, . . . , N are N independent, identically distributed (i.i.d.) val-
ues of the QoI computed for the mesh ΩM . The MC potential lies in its basic property of
convergence to the exact statistics of the solution as the number of input samples tends to
infinity, independently from the dimensionality of the stochastic space and mostly indepen-
dently from the physics of the problem under consideration. It also has the advantage of
being considered as a “black box”, since it is non-intrusive and directly applicable to any
simulation code.

The MC estimation accuracy of the expectation can be evaluated through the mean
square error, that reads as follows

mse2MC :=E[(EMC[QoIM ]− E[QoI])2]

=(E[QoIM −QoI])2 +
Var[QoIM ]

N
,

(4.2)

where Var[QoI] = E[QoI2]−E[QoI]2 stands for the variance of the QoI. The term (E[QoIM−
QoI])2 is the bias or discretization error (B), it is independent from the statistics of the QoI
and only depends on the level of accuracy of the grid we are exploiting to approximate QoI
with QoIM . On the other hand, Var[QoIM ]

N is the statistical error (SE), which decreases as
long as the number of samples grows, and is an indicator of the variance of our estimator.
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Unfortunately, one of the main drawbacks of the MC method is its too high computational
cost for the stochastic analysis of industrial problems with complex geometries.

4.2.2 Multilevel Monte Carlo algorithm overview

MLMC algorithm gives origin to a broad class of algorithms, which try to overcome
the limitations of the father MC. The main idea of the MLMC algorithm is to draw many
MC instances simultaneously on a set of grids with increasing accuracy. The different grid
refinement generates levels of accuracy. This means that the mesh parameter M grows as
long as the level increases, i.e. M0 < M1 < · · · < ML, where L is the maximum number of
levels the current simulation may reach. Due to the linearity of the expectation operator, the
mean of the QoI may be written as a telescopic sum of the expectations of the QoI on the
coarser levels. In fact, the expected value of the QoI of mesh ΩML

is:

E[QoIML
] = E[QoIM0 ] +

L∑

l=1

E[QoIl −QoIl−1]

=

L∑

l=1

E[Yl] ,

(4.3)

where Yl = QoIMl
−QoIMl−1

and Y0 = QoIM0 . Similarly to the MC case, the MLMC estima-
tor for the expected value of the QoI is:

EMLMC[QoIM ] :=
L∑

l=0

1

Nl

Nl∑

i=1

Yl(w
(i,l))

=

L∑

l=0

EMC[QoIMl
−QoIMl−1

] .

(4.4)

One important observation is that the two QoI QoIMl
− QoIMl−1

are computed using the
same sample w. Analogously to the MC algorithm, the mean square error of the MLMC
expectation estimator is the sum of a discretization error and a statistical error, in fact

mse2MLMC :=E[(EMLMC[QoIM ]− E[QoI])2]

=(E[QoIM −QoI])2 +
L∑

l=0

Var[Yl]

Nl
,

(4.5)

where (E[QoIM −QoI])2 is the bias, and
∑L

l=0
Var[Yl]
Nl

the statistical error.

We can observe matching equations equations (4.2) and (4.5) that the only difference in
the mse evaluation is the statistical contribute, which is supposed to decrease as long as the
mesh parameter M grows. In fact, three important considerations lie at the basis of both
algorithms:

i) the cost of computing one sample QoIMl
grows with the level accuracy Ml,

ii) |E[QoIMl
−QoI]| decreases as Ml grows,

iii) • MC: Var[QoIM ] more or less constant w.r.t. M ,

• MLMC: Var[Yl] decreases as Ml grows.
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The evaluation of the QoI’s cost, bias and variance builds a list P of parameters required
to compute the optimal hierarchy, i.e. number of levels L and number of samples per level
Nl , l = 0, · · · , L. The analysis of the mse was useful to highlight the differences between
the two algorithms analyzed, and how differently the variance behaves. On the other hand,
this implementation checks different ideas to verify the convergence of the algorithms.

4.2.3 Convergence criteria

Convergence is accomplished if the estimator of the expected value (EMC[QoIM ] or EMLMC[QoIM ])
achieves a desired tolerance ε w.r.t. the true estimator E[QoI] with a confidence of 1− φ. In
other words, we define a probability of failure (or error probability), and we want this prob-
ability to fail with a certain confidence.

For the MC algorithm, the probability of failure is defined by:

P[|EMC[QoIM ]| − E[QoI] < ε] ≤ φ , φ << 1 . (4.6)

Two different convergence criteria for the MC algorithm are considered, the first one [72]
arises from the Central Limit Theorem and relies only on the sample variance and the sample
mean. Convergence is achieved when

2(1− Φ(
√
Nε)

σ̄N
) < φ , (4.7)

where Φ is the Cumulative Distribution Function (CDF) of the standard normal distribu-
tion1, N the number of i.i.d. samples available, σ̄N the sample variance2 and φ the confi-
dence of achieving the desired tolerance. This stopping criteria works well in the asymp-
totic regime, when ε → 0, but in the non-asymptotic regime, when both ε and φ are greater
than 0, this second moment criteria may fail. In [72], the authors propose an improvement
of the second order stopping criteria of equation (4.7), and to evaluate the convergence they
exploit also higher order moments (up to the fourth central moment). The goal is still to
accomplish equation (4.6), but now a penalty term is added to equation (4.7). In fact, the
stopping criteria based on higher moments reads as

2(1− Φ(
√
Nε)

σ̄N
) + penalty < φ , (4.8)

where the new penalty term is function of higher moments. This gives an increasing relia-
bility to the sequential MC algorithm for the non-asymptotic regime.

On the other hand, we refer to [21, 20] for the MLMC convergence criteria, which sat-
isfies equation (4.6) in the asymptotic regime. The total error (te) can be bounded, with
probability (1− φ), by the sum of the bias and the statistical error:

te :=|EMLMC[QoIM ]− E[QoI]|
≤|E[QoI −QoIM ]|+ |EMLMC[QoIM ]− E[QoIM ]|
≤|E[QoI]− E[QoIM ]|+ CφVar[EMLMC[QoIM ]] ,

(4.9)

1Φ(x) = 1
2
[1 + erf( x√

2
)], where erf(x) is the error function is the CDF function for the normal distribution

N (0, 1).
2σ̄N = 1

N−1

∑N
i=1(QoI(w(i))− E[QoI])2
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where

Cφ = Φ−1(1− φ

2
) (4.10)

Var[EMLMC[QoIM ]] =

√√√√
L∑

l=0

Var[Yl]

Nl
. (4.11)

Since the te can be seen as the sum of discretization and statistical errors, we can set an
upper bound for both. Therefore we introduce a splitting parameter θ ∈ (0, 1) s.t.

B =|E[QoI]− E[QoIM ]| ≤ (1− θ)φ (4.12)

SE =Var[EMLMC[QoIM ]] ≤ (
θφ

Cφ
) , (4.13)

and we remark that θ = θ(εit, L) for the CMLMC algorithm, thus it is not constant and
user-defined as for the MC and the MLMC algorithms.

4.2.4 Description of the algorithms

The sequential MC algorithm behaves as follows:

while loop until convergence:
2 if iteration = 1:

set initial hierarchy
4 elif iteration > 1:

update number of samples
6 generate QoI values (re-use active)

update expectations and variances
8 check stopping criterion

FIGURE 4.10: Sequential MC algorithm

The CMLMC algorithm behaves as follows:

The most important thing to realize at this point is that considering the previous sub-
sections and the results in which they are based [20], the first four moments considered to
compute the convergence can be expressed as a combination of the following parameters:

• S1 =
∑

iQoIi

• S2 =
∑

iQoI
2
i

• S3 =
∑

iQoI
3
i

• S4 =
∑

iQoI
4
i

This is indeed an embarrassingly parallel operation depending on the simulation results
that can be performed in whichever order [73].
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screening phase:
2 set initial hierarchy

loop on levels:
4 generate QoI values for initial hierarchy

compute costs, expectations and variances
6 fit cost, bias and statistical error models (LSQ fit)

compute Bayesian variance estimation
8 while loop until convergence:

update tolerance
10 compute optimal levels, splitting parameter and optimal number samples per level

loop on levels:
12 generate QoI values (re-use active)

update costs, expectations and variances
14 fit cost, bias and statistical error models (LSQ fit)

update Bayesian variance estimation
16 estimate total error = bias + statistical error

check stopping criterion
18

FIGURE 4.11: CMLMC algorithm

4.2.5 Improvements

Indeed, once the algorithms have been understood, the contribution of this master thesis
has consisted in proposing improvements in the code in order to better take advantage of
the potential parallelism. The starting point of the work done is shown in Figure 4.12.

FIGURE 4.12: Initial Multilevel Montecarlo dependency graph

All the reduces are done following a sequential schema and the convergence is checked
once all the executions of a single batch are finished. In this case, two iterations are com-
puted. In addition, the computation of the convergence must wait until all the simulations
have finished. This fact can lead to resource wasting in case an other iteration is needed
since no new simulations are started until the convergence has been computed.

All the improvements has been introduced in the MC implementation. Having a single
level it was much more easy to debug. Nevertheless, the code has been written considering
levels. This way, all the improvements done are much more easy to port to the multilevel
case. Indeed, we have considered all the data structures needed. Nevertheless, only one
level is present in each one of them.

4.2.5.1 Tree merge

First of all, the sequential merges has been changed to tree merges, in an analogous way
to what has been explained in subsection 4.1.5. In this case, and since the programming
language chosen is Python, its *args [74] capabilities has been taken into account. This fact
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can increase both the parallelism and the granularity to better fit the PyCOMPSs needed
characteristics.

4.2.5.2 Batch design

Once the accumulation was done in a wiser way, the next step has consisted in launch
different execution batches at once, accumulating the result as they finished. Figure 4.13
shows a dependency graph with three different batches.

FIGURE 4.13: Batched Multilevel Montecarlo dependency graph
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Although the spawning of the tasks was already done by batches, at this level the con-
vergence of all the batches spawned at once was done in a sequential code without the
capability to spawn new tasks. Figure 4.14 shows this fact. This is mainly because this code
was coded in a really objected oriented manner. Each one of the modifications done implied
a full refactor of the code.

FIGURE 4.14: Convergence check of the batched Multilevel Montecarlo

Finally, and in order to be able to spawn new batches as the partial convergences where
reached, an other refactor has been done. This way, we can consider that there are two lev-
els of parallelism. The parallelism achieved inside each batch that allow to independently
launch the different simulations and the parallelism achieved between independent batches.

Figure 4.15 shows the final workflow, where convergence is checked as long as the
batches finish their execution so new simulations can be launched in case the convergence
is not achieved in the next iteration. Since the reservations are static, we launch preventive
computations in order to better use the allocated resources.

4.2.5.3 Full stack deployment

The last contribution of this master thesis regarding this section concerns the testing of
the resulting code. In order to test its behavior, the full stack containing Kratos, PyCOMPSs
and all its dependencies has been deployed both in MareNostrum IV [75] and Salomon [76].
For PyCOMPSs, all the dependencies can be found in appendix A.1. In the Kratos side, the
most important dependencies are Boost [77], MMG [78], Metis [79] and Trilinos [80]. In this
stage, some problems with the OpenMP pragmas has been encountered with Intel’s c++ [81]
compiler [82] so the compilation scripts has been modified in order to solve this problems.
At this point, the help from MareNostrum IV support team [83] has been crucial.
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FIGURE 4.15: Final batched Montecarlo dependency graph
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4.3 Runtime improvements

Finally, once all the user code had been improved, execution as large as possible have
been launched. At this point, some performance issues has been detected. For example,
Figure 4.16 shows an execution of the MC algorithm with 7920 simulations with 15 worker
nodes. It is clear that the resources stay idle during an astonishingly high amount of time.
This behavior is reduced when changing the task granularities and can be shown in Figure
4.17. Nevertheless, the execution trace still shows a lot of black spaces were resources are
being wasted.

FIGURE 4.16: 7920 simulations MC execution with 15 MN IV worker nodes

As it has been previously said, big data executions have a huge amount of tasks. In
addition, HPC environments network connections are really fast and there are underlying
systems that can handle the data sharing in a really efficient way [84] [85]. Thus, the most
important thing is to reduce scheduling latencies as much as possible.

4.3.1 Problem diagnosis

On the first hand, the current scheduler has been studied in order to detect where it could
be improved. COMPSs has several scheduling policies available. The focus has been put in
the ready scheduler, which only takes into account the tasks that have already been freed
from dependencies, that are ready to be executed in a given moment. Figure 4.18 shows the
code corresponding to the starting point at this stage. This function is called every time that
a tasks frees an execution slot.
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FIGURE 4.17: 30000 simulations MC execution with 15 MN IV worker nodes

1 private <T extends WorkerResourceDescription> void tryToLaunchFreeActions(List<
AllocatableAction> dataFreeActions,

List<AllocatableAction> resourceFreeActions, List<AllocatableAction>
blockedCandidates,

3 ResourceScheduler<T> resource) {

5 // Try to launch all the data free actions and the resource free actions
PriorityQueue<ObjectValue<AllocatableAction>> executableActions = new PriorityQueue
<>();

7 for (AllocatableAction freeAction : dataFreeActions) {
Score actionScore = generateActionScore(freeAction);

9 Score fullScore = freeAction.schedulingScore(resource, actionScore);
ObjectValue<AllocatableAction> obj = new ObjectValue<>(freeAction, fullScore);

11 executableActions.add(obj);
}

13 for (AllocatableAction freeAction : resourceFreeActions) {
Score actionScore = generateActionScore(freeAction);

15 Score fullScore = freeAction.schedulingScore(resource, actionScore);
ObjectValue<AllocatableAction> obj = new ObjectValue<>(freeAction, fullScore);

17 if (!executableActions.contains(obj)) {
executableActions.add(obj);

19 }
}

21

while (!executableActions.isEmpty()) {
23 ObjectValue<AllocatableAction> obj = executableActions.poll();

AllocatableAction freeAction = obj.getObject();
25 Score actionScore = obj.getScore();

27 // LOGGER.debug("Trying to launch action " + freeAction);
try {

29 scheduleAction(freeAction, actionScore);
tryToLaunch(freeAction);

31 } catch (BlockedActionException e) {
blockedCandidates.add(freeAction);

33 }
}

35 }

FIGURE 4.18: Original COMPSs ready scheduler
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There are three main things that could be improved:

• Keep track of the available worker nodes
The scheduler try to execute the free task in all the resources, verifying the
available slots for each one of them. Hence, the complexity increases linearly
with the amount of available resources. In addition, the scheduler tries to
execute all the available tasks even when no available resources are filled.

• Parallelize the scheduling process
The scheduling process is done in a single thread. Hence, all the tasks are
treated sequentially.

• Avoid computing the ordered list with the actions regarding each resource
each time that a slot is freed
Assuming that the scores associated to each pair resource - task do not vary
all along the execution, this ordered list could be maintained between calls.
This fact can avoid reordering a list as long as the amount of available tasks
each time. For big executions, this list can contain tens of thousands of tasks.
Thus, this fact cannot be overlooked.

4.3.2 Implementation proposed

Considering the problems detected in the previous section, a solution has been proposed
that both included a multi-threaded treatment that keeps the ordered lists and a control of
the available resources in order to stop the scheduling operations once all the resources were
already filled. The main code corresponding to this part can be found in the appendix C.

Figure 4.19 shows how the main while has been changed and Figure 4.20 shows the cho-
sen mechanism to asynchronously update the scheduler structures. This should be enough
to briefly understand the basis on which the full implementation is based.

The implemented solution is based in three main ideas:

• Keep track of the available workers in a HashMap [86]
This data structure has been chosen in order to guarantee a constant com-
plexity access to this information.

• Keep a different list for each one of the resources
This fact allows to store a list with the priority order of the available tasks for
each one of the resources considering the chosen policy. Currently, they are
FIFO, LIFO, data locality and load balancing (in case of equal data locality,
tasks are sent to the workers with less workload).

• Spawn threads to update the scheduling structures
Since each one of the resources has its own priority queue [87], its update can
be done asynchronously and just wait for the result in case a certain resource
frees a slot to perform some computations.

In order to achieve the desired behavior without making the code too complicated, a
strategy based on tokens has been followed. This way, each time that a list must be mod-
ified, the thread in charge of this modification wait for the token corresponding to the last
modification of each one of the lists. In addition, each time that a modification is added to
the thread scheduler, the token is update so the next time that a new thread is spawned it
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1

Future<?> lastToken = this.resourceTokens.get(resource);
3 if (lastToken != null) {

try {
5 lastToken.get();

} catch (InterruptedException | ExecutionException e) {
7 e.printStackTrace();

LOGGER.fatal("Unexpected thread interruption");
9 ErrorManager.fatal("Unexpected thread interruption");

}
11 }

this.resourceTokens.put(resource, null);
13

Iterator<ObjectValue<AllocatableAction>> executableActionsIterator = this.
unassignedReadyActions.get(resource)

15 .iterator();
HashSet<ObjectValue<AllocatableAction>> objectValueToErase = new HashSet<
ObjectValue<AllocatableAction>>();

17 while (executableActionsIterator.hasNext() && !this.availableWorkers.isEmpty()) {
ObjectValue<AllocatableAction> obj = executableActionsIterator.next();

19 AllocatableAction freeAction = obj.getObject();
try {

21 if (Tracer.isActivated()) {
Tracer.emitEvent(Tracer.Event.TRY_TO_SCHEDULE.getId(), Tracer.Event.

TRY_TO_SCHEDULE.getType());
23 }

freeAction.tryToSchedule(obj.getScore(), this.availableWorkers);
25 if (Tracer.isActivated()) {

Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.getType());
27 }

ResourceScheduler<? extends WorkerResourceDescription> assignedResource =
freeAction

29 .getAssignedResource();
tryToLaunch(freeAction);

31 if (!assignedResource.canRunSomething()) {
this.availableWorkers.remove(assignedResource);

33 }
objectValueToErase.add(obj);

35 } catch (BlockedActionException e) {
...

37 } catch (UnassignedActionException e) {
...

39 }
}

41

FIGURE 4.19: Asynchronous scheduling structures update

waits to exactly the previous modifying thread. Afterwards, when the queue needs to be ac-
cessed, the main thread wait to the token corresponding to the last modification. This way, it
is guaranteed that the queue contains all the modifications needed until this moment. This
modifications are basically erasing tasks that are already running on an other resource and
adding tasks that has been freed from the last resource scheduling. This way, the modifica-
tion of the scheduling structures is removed from the scheduling critical path.

All the new implementation and small bug fixes done during the process can be found
on the exaQUte’s branch of the COMPSs official github repository [88].
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private Runnable createAddRunnable(
2 final Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

currentEntry,
final AllocatableAction action, final Future<?> token) {

4 Runnable addRunnable = new Runnable() {
public void run() {

6 if (token != null) {
try {

8 token.get();
} catch (InterruptedException | ExecutionException e) {

10 e.printStackTrace();
LOGGER.fatal("Unexpected thread interruption");

12 ErrorManager.fatal("Unexpected thread interruption");
}

14 }
addActionToResource(currentEntry, action);

16 }
};

18 return addRunnable;
}

20

FIGURE 4.20: Asynchronous scheduling structures update
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Chapter 5

Results and evaluation

To validate the proposed COMPSs features for supporting complex task based work-
flows, some experiments have been launched in order to evaluate the following features: (i)
How efficient is the runtime on managing heterogeneity in the application; (ii) Scalability of
the approach; and (iii) Portability of this approach.

At this stage, both applications presented in the previous chapter are used in order to
demonstrate how the scheduler had an effect on both of them and how the modifications
have affected the performance obtained. The improvements originated by the changes in
the workflows and the scheduler are always mixed. This is mainly because since the ap-
plications scaled pretty well, the executions in production environments required a lot of
resources. It was thought to be a useless waste of computing hours to launch worst execu-
tions just to find the contribution due to one factor and the other.

Nonetheless, the contributions of this master thesis were used as soon as they were ready.
More precisely, a custom branch with the content of this master thesis has been installed in
MareNostrum IV during all the development. This has allowed several users to enhance
their computing capabilities when encountering scheduling difficulties. Since this users
generated execution traces, it is possible to show the effect of the improvements done in
production executions.

The COMPSs version used is the previously mentioned exaQUte branch (available at [88]).
All the stack used in each experiment is the one presented in the corresponding sections of
the previous chapter.

This chapter is organized as follows. First of all, the improvements that can only be as-
sumed by the scheduling changes are presented. For this sake, executions where the user
code has not changed are used. Afterwards, the obtained performances with the codes pre-
sented previously regarding several aspects are shown.

5.1 Experimental Setup

The results presented in this chapter have been obtained using the MareNostrum IV Su-
percomputer located at the Barcelona Supercomputing Center (BSC). Its current peak per-
formance is 11.15 Petaflops, ten times more than its previous version, MareNostrum III [89].
The supercomputer is composed by 3456 nodes, each of them with two Intel R©Xeon Plat-
inum 8160 (24 cores at 2,1 GHz each). It has 384.75 TB of main memory, 100Gb Intel R©Omni-
Path [90] Full-Fat Tree Interconnection, and 14 PB of shared disk storage managed by the
Global Parallel File System (gpfs).
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Furthermore, COMPSs version used is the previously mentioned exaQUte branch (avail-
able at [88]). All the stack used in each experiment is the one presented in the corresponding
sections of the previous chapter.

5.2 Scheduling performance

An application doing geospatial computations for the Institute of Political Economy and
Governance [91] has been used as reference. Figure 5.1 shows the execution traces of both
executions. The elapsed times goes from 14800 seconds to 3600, that is a speedup of 4.11
without changing a single line of code. The application has 75259 with different CPU con-
straints that go from tasks (the blue ones) which need the whole node to tasks (the yellow
ones) that only need a single CPU. One thing to take into account is that the scheduling
of the first part, with tasks colored in red and white, is more or less the same. This fact is
because of the duration of the tasks is superior to the latency of the old scheduler, so any
improvement can be detected. When zooming into the improvable zone, where the dura-
tion of the tasks seem to be inferior to the scheduling latency, we obtain the zoom shown in
Figure 5.2. If we compute the execution times of both traces, we get 11981 seconds for the
zoomed section with the old scheduler and 951 seconds with the new one, that is a speed
up of 12.59. Or what is the same, the second execution takes the 7.9% of the time compared
to the first execution.

FIGURE 5.1: Execution trace of the same application with the old and the new
scheduler

The first thing that we could think on is that the tasks last more or less in one case or the
other. Figure 5.3 show the duration of the tasks executed in each one of the processors. It is
clear that the execution times are similar. More precisely, the time scale goes from 0 to 60.

Nevertheless, the two representations that show more clearly the reason of the speed-up
are Figure 5.4 and Figure 5.5. The first one shows the elapsed time between consecutive
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FIGURE 5.2: Zoom on the execution trace of the same application with the old
and the new scheduler

FIGURE 5.3: Duration of the tasks when executing with the old and the new
scheduler

tasks. With the old scheduler, this time decreases progressively while the tasks start finish-
ing, so the amount of available ready tasks decreases. The code color goes from blue (more
ellapsed time) to green (less elapsed time). With the new scheduler, as long as the duration
of the tasks and its constraints makes it possible, the elapsed time between executions de-
creases dramatically.

Finally, we can see this latency impact on the amount of concurrent tasks that are ex-
ecuted by the application. In the old scheduler, only at the end a high amount of tasks is
running at the same time. This is mainly because the amount of free tasks when ordering
the priority queue is already small. With the new version, this number grows steadily as the
constraints of the tasks allow it.
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FIGURE 5.4: Elapsed time between tasks when executing with the old and the
new scheduler

FIGURE 5.5: Amount of executing tasks with the old and the new scheduler

This scheduling traces contain all the improvements detailed in the previous chapter
(a queue per resource that is kept between different scheduling and a hashmap with the
available resources) unless the multithreaded scheduler. This improvement has been added
lately when it has been shown that this improvements were not enough for certain applica-
tions. At this point it is really important to keep in mind that the improvements presented
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does not contain the multithreading in the management of the different resource queues
since this will have an impact later.

Hence, it is demonstrated that the performance has been dramatically increased with
this master thesis.

5.3 Dynamic scheduling with different tasks’ constraints evalua-
tion of the GAWS workflow

Figure 5.6 shows four Paraver traces to evaluate the performance of the GWAS worklow
using COMPSs. The time is represented in the horizontal axis, and its scale is the same for
the three of them. The available cores are represented in the vertical axis, and the different
colours represent different task types being executed in a given core during a certain time.
All the executions perform the same run using 30 computing nodes (1,440 cores), spawning
93,858 tasks, generating 120,018 files (217.68 Gb), and analyzing 2,860 inputs in the first level
with 1 single input in the second level and 3 different inputs in the third level.

The top trace (a) emulates an execution with SLURM Job Arrays with fixed job require-
ments, executing each step separately and using static constraints. Trace (b) emulates the
same run but with dynamic job constraints. Also, Trace (c) emulates the behaviour of a state
of the art task-based framework, merging all the steps by building a data dependence graph
but keeping the static constraints. Finally, the bottom trace (d) shows the execution using
dynamic constraints and without any barrier. Notice that the benefits of COMPSs handling
automatically the tasks’ data dependencies and taking into account the tasks’ constraints
is able to speed-up 2.24 times the execution. The behavior of the dynamic scheduling had
already been shown on Figure4.8. At this point the performance interest on this approach is
demonstrated.

The trace files from the previous figure also provide valuable information to understand
the parallelism and computational complexity of the different steps. The complexity of the
first step (phasing, shown in green in the traces) is proportional to the number of subjects in
the input, and the amount of spawned tasks is constant and equal to the number of chromo-
somes in the study.

Next, the complexity of the second step is proportional to the size of the input in the
first level and the second level. Moreover, the amount of spawned tasks is proportional to
the number of inputs considered in the second level. In opposition to the previous step, the
size of the different inputs in the second level directly affects the memory requirements of
each task in this step. Hence, a good configuration of the requirements is crucial. Too large
constraints result in resource wasting. Too small constraints ends up with error executions
by memory space overflow.

The complexity and number of tasks of the third section (shown in purple in the traces)
are proportional to both the number of inputs in the second and third level considered.

Finally, at the end of the execution, some single node scripts in R are executed without
further dependencies. Since there are lots of resources and the R scripts can always be run
in parallel, this phase does not scale at all in the strong scaling but scales perfectly in the
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FIGURE 5.6: GWAS executions using COMPSs. (a) Separated steps with static
constraints. (b) Separated steps with dynamic constraints. (c) Merged steps

with static constraints. (d) Merged steps with dynamic constraints.

weak scaling.

From the content of this section, it seems clear the importance of the improvements done
in the scheduling, since low latencies and the ability to schedule dynamically the tasks has
a high impact on the execution time. On the other hand, the dynamic control of the con-
straints also have a high impact on the execution time.

5.4 Scheduling and application improvements in the GWAS code

With the scheduler improvements previously presented (unless the multithreading ver-
sion) and the GWAS workflow version of the previous section, an execution with 50 nodes
(2400 cores), 2 inputs in the second phase and 4 inputs in the third phase has been done.
This execution is presented in Figure 5.7. This will be the reference point to illustrate the
improvements achieved with the modification in the user code and the multithreading in
the scheduler. It seems clear that the execution no longer scales. This has been considered
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as the departure point since the strong scaling of the same version of the code and same
scheduler scaled until 100 nodes with 2 inputs in the third level and the execution with 25
nodes and 4 inputs in the third level went also really well.

FIGURE 5.7: Execution trace with all the scheduling improvements unless the
multithreading one and all the GWAS improvements unless the merging of

the fine tasks.

There are two images that can clearly show the impact of the combination of this im-
provements. The first one is the launch of the same execution, that is the one with the same
inputs but with the small tasks merged into the big ones and the multithreaded scheduler.
Both execution traces are shown in Figure 5.8.

FIGURE 5.8: Execution traces comparing the execution shown in Figure 5.7
with only partial improvements and the one including all the improvements

in the scheduler and the GWAS workflow

On the other hand, when launching the execution with eight inputs in the third part and
all the improvements, we obtain the comparison shown in Figure 5.9. The new combination,
even if having almost the double complexity, outperforms the already improved version.

Finally, the same execution has been done with 100 nodes (4800 execution CPUs). The
execution traces are shown in Figure 5.10.

The improvement achieved seems clear, there is not much more to say. The summary
Table 5.1 shows the specific details of the executions. Final code means that it considers all
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FIGURE 5.9: Execution traces comparing the execution shown in Figure 5.7
with only partial improvements and the one including all the improvements
in the scheduler and the GWAS workflow with two times the amount of inputs

in the third level

FIGURE 5.10: Execution traces comparing the execution shown in Figure 5.7
with only partial improvements and the one including all the improvements
in the scheduler and the GWAS workflow with two times the amount of inputs

in the third level and twice the amount of available resources

the improvements. Partial means that only considers some scheduling improvements.

5.5 Scalability

5.5.1 Strong Scaling
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Code Cores Inputs in third level Total exec time (s) Parallel exec time (s)
Partial 2400 4 13558 10562
Final 2400 4 4146 1605
Final 2400 8 5446 2971
Final 4800 8 4221 1651

TABLE 5.1: Summary of the executions used to demonstrate the improve-
ments achieved

For the strong scaling analysis, I have run the GWAS workflow with 300 inputs in the
first input level, 2 in the second and, 8 in the third one with 1200, 2400, and 4800 cores
respectively (25, 50, and 100 nodes).

FIGURE 5.11: Execution traces of GWAS with 300 inputs in the first input
level, 2 in the second and, 8 in the third one with 1200, 2400, and 4800 cores

respectively (25, 50, and 100 nodes).

Table 5.2 summarises the total execution time, the parallel region’s execution time, the
total speed-up, the ideal speed-up, and the parallel region’s speed-up of the previous ex-
ecutions. The speed-ups are calculated with respect to the smallest run. For the sake of
simplicity, although the previous traces show that the application has some parallelism dur-
ing all the execution, the ideal speed-up only considers the parallel region shown in the
table.
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#Cores
Execution Time (s) Speed-up (u)
Total Parallel Total Ideal Parallel

1200 7995 5314 1.00 1.00 1.00
2400 5417 2658 1.48 1.50 1.99
4800 4211 1368 1.90 1.99 3.88

TABLE 5.2: Strong scaling analysis with 1200, 2400, and 4800 cores (25, 50, and
100 nodes respectively).

Notice that the parallel region represents 66.5% of the execution time when running with
1200 cores. Hence the application’s global speed-up is limited by the workflow itself (1.99
ideal speed-up), leading to a maximum speed-up of 1.90 when running with 4800 cores.

5.5.2 Weak Scaling

Considering appreciations from the previous section regarding the computational com-
plexity, the time should remain constant while increasing the number of inputs in the third
level. Nevertheless, not all the tasks last the same time (the executions rely on stochastic
procedures) so it is not possible to compute an entirely realistic study. This is why, even
if results can suggest that we obtain super-speedups, it is more reasonable to think that
COMPSs scales linearly with the number of cores and tasks.

#Cores #Tasks Tasks per core Execution Time (s)

1200 279,562 232.97 4347
2400 483,576 201.49 4184
4800 893,123 186.07 4211

TABLE 5.3: Weak scaling analysis with 1200, 2400, and 4800 cores (25, 50, and
100 nodes respectively).

Hence, I have executed the workflow with 300 inputs in the first level, two inputs in
the second level, and 25 nodes with 2, 50 nodes with 4, and 100 nodes with 8 inputs in the
third level. Table 5.3 shows the number of tasks, the number of tasks per core, and the total
execution time for 1200, 2400, and 4800 cores (25, 50, and 100 nodes respectively). Notice
that the execution time and the number of tasks per core remain almost the same in all the
executions due to the previous considerations. Figure 5.12 shows the execution traces of the
executions corresponding to the weak scaling analysis. The time has been scaled in such a
way that is the same for the three executions.
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FIGURE 5.12: Execution traces corresponding to the three executions per-
formed to state the weak scaling

5.6 Portability

5.6.1 Cloud computing

In order to evaluate the portability, I have performed a little execution with a really small
dataset using the Google Cloud Platform. The free tier is limited to 8 concurrently executed
CPUs, which limited a lot the size of the execution to launch. Nevertheless, the main goal
was to demonstrate that the workflow could be executed in a supercomputing facility or in
the cloud without modifying a single line of the workflow.

FIGURE 5.13: Execution trace of the cloud execution

I have fitted the execution to the free tier limits of the Google Cloud Platform; using 2
computing nodes with 4 vCPUs, 26 Gb of memory, Intel Xeon E5 v3 (Haswell) 2.3 GHz, and
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500 Gb disk. The execution takes 12,341 s (approximately 206 minutes) and, in comparison
with previous experiments, the execution requires file transfers between nodes because the
cloud nodes have no shared disk configured. Some executions with buckets [92] acting as
shared file system has been done. Nevertheless, the encountered performance is really poor,
so this idea has been discarded.

5.6.2 HPC

In addition, the singularity image has been used in production executions obtaining the
same performance than the bare-metal ones. Nevertheless, extrae is not working properly
so no execution traces are available.

5.7 Scheduling and workflow improvements in the MC workflow

While in the GWAS case more executions have been done, in this case the changes in
the workflow took more time and were done in parallel to the scheduling modifications.
Hence, it is only possible to compare the before and after with already all the modifications
in place. Figure 4.15 shows the execution without the asynchronous enhancements and the
scheduling improvements but without the multithreading improvement. In total, there are
8000 samples. Figure 5.15 shows an execution with the asynchronous improvements and the
last scheduler version. In total there are 51000 samples. I cannot give further details since
the executions have been done by Riccardo Tosi that gently gave me images of them (I do
not have the original trace file to open it with paraver). The time is not scaled. I have tried
to scale the images in such a way that the duration of the tasks is similar. This can be shown
because when the scheduler does not perform well it is possible to clearly see the beginning
and the end of the tasks.

FIGURE 5.14: Execution trace of a MC execution with 8000 samples and syn-
chronous convergence checking and 15 worker nodes

Considering the previous comments, no rigorous information con be given when ana-
lyzing this traces. Nevertheless, some qualitative information can be extracted considering
that in the second execution there are two times more resources and six times more sam-
ples. For reasons to be discovered, at the beginning of the execution the scheduling behaves
similarly. Nevertheless, at one point, it starts going clearly better. From the information
that Riccardo has provided, the scheduling problem at the beginning is proportional to the
amount of available resources and disappears after the first iteration for executions with the
same amount of samples (51000) and 10, 20 and 30 available nodes.
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FIGURE 5.15: Execution trace of a MC execution with 51000 samples and asyn-
chronous convergence checking and 29 worker nodes

Finally and from what has been commented, the asynchronous convergence checking is
unremarkable in the execution trace so there are not performance problems related with this
code improvement. In addition, the scheduler seems to work much more better.
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Chapter 6

Conclusions and Future work

This master thesis has contributed to the good scalability to at least three different work-
flows with a real scientific application. In addition, it has defined deeply the changes done
in order to reproduce them in other use cases.

In addition, the COMPSs scheduler has been enhanced to be able to scale out to a higher
amount of resources. Despite the results presented, this improvements are not enought to
scale until 200 nodes and beyond. Hence, further improvements should be put in place
considering the new capabilities of the supercomputers that are being build and even those
which are already in place. This could be considered as the single future work thing to do,
since it is so important that under my opinion should be highly prioritized.

Finally, and since an image is worth much more than a thousand words, I would like to
do a suggestion. Just look at Figure 5.2 to understand the impact of the first improvements
done in the scheduler. After that, and keeping in mind that the first improvements were also
present in the bad execution, I would read the section 5.4 to better understand the impact of
the second batch of modifications. With just this two actions one can briefly understand the
contributions of this master thesis and its impact in production environments.
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GWAS

A.1 Dockerfile

1 FROM ubuntu:18.04

3 ARG DEBIAN_FRONTEND=noninteractive

5 ENV TERM linux

7 RUN echo ’debconf debconf/frontend select Noninteractive’ | debconf-set-selections

9 RUN apt-get update && \
apt-get purge openjdk-\* icedtea-\* icedtea6-\* && \

11 apt-get remove openjdk-11-jre openjdk-11-jdk openjdk-11-jre-headless openjdk-11-jdk
-headless && \
apt-get purge openjdk-* && \

13 apt-get install -y --no-install-recommends openjdk-8-jdk && \
update-alternatives --install /usr/bin/java java /usr/lib/jvm/java-8-openjdk-amd64/
jre/bin/java 9999 && \

15 rm -rf /var/lib/apt/lists/*

17 # Install Packages
RUN apt-get update && \

19 apt-get install -y --no-install-recommends apt-utils && \
apt-get install -y --no-install-recommends \

21 git \
vim \

23 wget \
sudo \

25 openssh-server && \
yes yes | ssh-keygen -f /root/.ssh/id_rsa -t rsa -N ’’ > /dev/null && \

27 cat /root/.ssh/id_rsa.pub > /root/.ssh/authorized_keys && \
git config --global core.compression 9 && \

29 # =============================================================================
# Dependencies for building COMPSs

31 # =============================================================================
# Build dependencies

33 sudo apt-get install -y --no-install-recommends maven \
# Runtime dependencies

35 openjdk-8-jdk graphviz xdg-utils \
# Bindings-common-dependencies

37 libtool automake build-essential \
# C-binding dependencies

39 libboost-all-dev libxml2-dev csh \
# Extrae dependencies

41 libxml2 gfortran libpapi-dev papi-tools \
# Misc. dependencies

43 openmpi-bin openmpi-doc libopenmpi-dev uuid-runtime curl bc \
# Python-binding dependencies

45 python-dev python3-dev libpython2.7 python-pip python3-pip python-setuptools
python3-setuptools && \
pip2 install wheel && \

47 pip3 install wheel && \
pip2 install wheel numpy==1.15.4 dill guppy decorator mpi4py==1.3.1 && \

49 pip3 install wheel numpy==1.15.4 dill decorator mpi4py==3.0.1 && \
# Python-redis dependencies
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51 pip2 install redis==2.10.6 redis-py-cluster && \
pip3 install redis==2.10.6 redis-py-cluster && \

53 # pycompsslib dependencies
pip2 install scipy==1.0.0 scikit-learn==0.19.1 pandas==0.23.1 && \

55 pip3 install scipy==1.0.0 scikit-learn==0.19.1 pandas==0.23.1 && \
# AutoParallel dependencies

57 apt-get install -y --no-install-recommends libgmp3-dev flex bison libbison-dev
texinfo libffi-dev && \
pip2 install astor sympy enum34 islpy && \

59 # Testing dependencies
pip3 install enum34 tabulate && \

61 # Configure user environment
# =============================================================================

63 # System configuration
# =============================================================================

65 # Add environment variables
echo "JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/" >> /etc/environment && \

67 echo "MPI_HOME=/usr/lib/openmpi" >> /etc/environment && \
echo "LD_LIBRARY_PATH=/usr/lib/openmpi/lib" >> /etc/environment && \

69 mkdir /run/sshd && \
rm -rf /var/lib/apt/lists/*

71

RUN rm -rf ./framework && \
73 export JAVA_HOME="/usr/lib/jvm/java-8-openjdk-amd64/" && \

export MPI_HOME="/usr/lib/openmpi" && \
75 export LD_LIBRARY_PATH="/usr/lib/openmpi/lib" && \

git clone --branch "exaQUte" https://github.com/bsc-wdc/compss.git framework && \
77 cd ./framework && \

./submodules_get.sh && \
79 ./submodules_patch.sh && \

echo "${JAVA_HOME}" && \
81 sudo /framework/builders/buildlocal -P -M /opt/COMPSs && \

rm -rf /root/.cache && \
83 cd .. && \

rm -r ./framework
85

87 #Copy binaries into the container
RUN mkdir /TOOLS

89 COPY ./TOOLS/shapeit.v2.r727.linux.x64 /TOOLS/shapeit.v2.r727.linux.x64
COPY ./TOOLS/R_scripts /TOOLS/R_scripts

91 COPY ./TOOLS/deps.R /TOOLS/deps.R
RUN chmod 775 /TOOLS/R_scripts/*

93

WORKDIR /TOOLS
95

RUN export DEBIAN_FRONTEND=noninteractive && \
97 sudo apt-get update && sudo apt-get install -y --no-install-recommends gnupg2

software-properties-common && \
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
E298A3A825C0D65DFD57CBB651716619E084DAB9 && \

99 sudo add-apt-repository ’deb https://cloud.r-project.org/bin/linux/ubuntu bionic-
cran35/’ && \
sudo apt-get update && DEBIAN_FRONTEND=noninteractive sudo apt-get install -y --no-
install-recommends apt-utils && \

101 sudo sed -i ’s/^mesg n$/tty -s \&\& mesg n/g’ /root/.profile && \
DEBIAN_FRONTEND=noninteractive sudo apt-get install -y --no-install-recommends r-
base r-base-dev r-base-core libcurl4-openssl-dev \

103 jags libpq-dev libmariadb-client-lgpl-dev && \
rm -rf /var/lib/apt/lists/*

105

RUN /usr/bin/Rscript /TOOLS/deps.R
107

######### IN CASE WE WANT TO UPGRADE QCTOOL #########
109

#Install mercurial (for QCTool)
111 #RUN apt-get install -y mercurial

113 #Install qctoolNew
#RUN hg clone -r ba5eaa4 https://gavinband@bitbucket.org/gavinband/qctool qctool_2.0 &&

\
115 # cd qctool_2.0 && \



A.1. Dockerfile 61

# ./waf-1.5.18 configure && \
117 # ./waf-1.5.18 && \

# ln -s /TOOLS/build/release/qctool_v2.0.1 /usr/bin/qctool2.0
119

######### END OF QCTOOL INSTALACTION ################
121

#Install qctool
123 RUN wget http://www.well.ox.ac.uk/~gav/resources/archive/qctool_v1.4-linux-x86_64.tgz &

& \
tar zxvf qctool_v1.4-linux-x86_64.tgz && \

125 rm qctool_v1.4-linux-x86_64.tgz && \
chmod -R 755 /TOOLS/qctool_v1.4-linux-x86_64/ && \

127 ln -s /TOOLS/qctool_v1.4-linux-x86_64/qctool /usr/bin/qctool1.4

129 #bcftools and samtools dependencies
RUN sudo apt-get update && \

131 sudo apt-get install -y --no-install-recommends zlib1g-dev libbz2-dev liblzma-dev
libncurses5-dev libncursesw5-dev && \
rm -rf /var/lib/apt/lists/*

133

#Install bcftools
135 RUN wget https://github.com/samtools/bcftools/releases/download/1.8/bcftools-1.8.tar.

bz2 -O bcftools.tar.bz2 && \
tar -xjvf bcftools.tar.bz2 && \

137 rm bcftools.tar.bz2 && \
cd bcftools-1.8 && \

139 make && \
make prefix=/usr/local/bin install && \

141 ln -s /usr/local/bin/bin/bcftools /usr/bin/bcftools

143 #Install samtools
RUN wget https://github.com/samtools/samtools/releases/download/1.5/samtools-1.5.tar.

bz2 -O samtools.tar.bz2 && \
145 tar -xjvf samtools.tar.bz2 && \

rm samtools.tar.bz2 && \
147 cd samtools-1.5 && \

make && \
149 make prefix=/usr/local/bin install && \

ln -s /usr/local/bin/bin/samtools /usr/bin/samtools
151

#Plink dependencies
153 RUN sudo add-apt-repository universe && \

sudo apt-get update && \
155 sudo apt-get install -y --no-install-recommends libatlas-base-dev libblas-dev

liblapack-dev libatlas-base-dev && \
rm -rf /var/lib/apt/lists/*

157

#Install plink
159 RUN git clone https://github.com/chrchang/plink-ng.git && \

cd plink-ng && \
161 rm -r 2.0 && \

cd 1.9 && \
163 ./plink_first_compile && \

ln -s /TOOLS/plink-ng/1.9/plink /usr/bin/plink
165

#Install Eagle
167 RUN wget https://data.broadinstitute.org/alkesgroup/Eagle/downloads/old/Eagle_v2.3.tar.

gz && \
tar -zxvf Eagle_v2.3.tar.gz && \

169 rm Eagle_v2.3.tar.gz && \
rm -r Eagle_v2.3/example/ && \

171 ln -s /TOOLS/Eagle_v2.3/eagle /usr/bin/eagle

173 #Install Impute ### This step will stop working once they upgrade the program since
only the last version is available

RUN wget https://mathgen.stats.ox.ac.uk/impute/impute_v2.3.2_x86_64_static.tgz && \
175 tar -zxvf impute_v2.3.2_x86_64_static.tgz && \

rm impute_v2.3.2_x86_64_static.tgz && \
177 rm -r impute_v2.3.2_x86_64_static/Example/ && \

ln -s /TOOLS/impute_v2.3.2_x86_64_static/impute2 /usr/bin/impute2
179

#Install snptest
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181 RUN wget http://www.well.ox.ac.uk/~gav/resources/archive/snptest_v2.5_linux_x86_64_
static.tgz && \
tar -zxvf snptest_v2.5_linux_x86_64_static.tgz && \

183 rm snptest_v2.5_linux_x86_64_static.tgz && \
rm -r snptest_v2.5_linux_x86_64_static/example/ && \

185 chmod -R 755 /TOOLS/snptest_v2.5_linux_x86_64_static/ && \
ln -s /TOOLS/snptest_v2.5_linux_x86_64_static/snptest_v2.5 /usr/bin/snptest_v2.5

187

#Install minimac3
189 #RUN git clone https://github.com/Santy-8128/Minimac3.git && \

# cd Minimac3 && \
191 # make -w && \

# sudo ln -s /TOOLS/Minimac3/bin/Minimac3 /usr/bin/minimac3
193 RUN wget ftp://share.sph.umich.edu/minimac3/Minimac3Executable.tar.gz && \

tar -zxvf Minimac3Executable.tar.gz && \
195 rm Minimac3Executable.tar.gz && \

chmod -R 755 /TOOLS/Minimac3Executable/bin && \
197 ln -s /TOOLS/Minimac3Executable/bin/Minimac3-omp

199 #Minimac4 dependencies
RUN sudo apt-get update && \

201 sudo apt-get install -y --no-install-recommends cmake python-pip python-dev && \
pip install cget

203

#Install minimac4
205 RUN git clone https://github.com/Santy-8128/Minimac4.git && \

cd Minimac4 && \
207 bash install.sh && \

ln -s /TOOLS/Minimac4/release-build/minimac4 /usr/bin/minimac4
209 # sudo ln -s /TOOLS/Minimac3/bin/Minimac3-omp /usr/bin/minimac3

# sudo ln -s /TOOLS/Minimac3/bin/Minimac3 /usr/bin/minimac3
211

RUN apt-get update && \
213 apt-get autoremove openjdk-11-jre openjdk-11-jdk

215 RUN ln -s /usr/lib/jvm/java-8-openjdk-amd64 /usr/lib/jvm/default-java

217 ENV LC_ALL "C"
#ENV PLINKBINARY "/TOOLS/plink_1.9/plink"

219 #ENV EAGLEBINARY "/TOOLS/Eagle_v2.3/eagle"
#ENV IMPUTE2BINARY "/TOOLS/impute_v2.3.2_x86_64_static/impute2"

221 #ENV QCTOOLBINARY "/TOOLS/qctool_v1.4-linux-x86_64/qctool
#ENV SNPTESTBINARY "/TOOLS/snptest_v2.5_linux_x86_64_static/snptest_v2.5"

223 #ENV MINIMACBINARY "/TOOLS/Minimac3/bin/Minimac3"
ENV RSCRIPTDIR "/TOOLS/R_scripts/"

225 ENV SHAPEITBINARY "/TOOLS/shapeit.v2.r727.linux.x64"
#ENV MINIMACBINARY "/TOOLS/Minimac3/bin/Minimac3"

227

ENV PLINKBINARY "/usr/bin/plink"
229 ENV QCTOOLBINARY "/usr/bin/qctool1.4"

ENV EAGLEBINARY "/usr/bin/eagle"
231 ENV IMPUTE2BINARY "/usr/bin/impute2"

ENV QCTOOLBINARY "/usr/bin/qctool1.4"
233 ENV SNPTESTBINARY "/usr/bin/snptest_v2.5"

ENV MINIMAC3BINARY "/usr/bin/minimac3"
235 ENV MINIMAC4BINARY "/usr/bin/minimac4"

237 ENV RSCRIPTBINDIR "/usr/bin/"

239 ENV BCFTOOLSBINARY "/usr/bin/bcftools"
#ENV QCTOOLSNEWBINARY "/gpfs/scratch/pr1ees00/pr1ees14/GCAT/SHAPEIT_IMPUTE/qctool/build

/release/qctool_v2.0-rc9"
241 #ENV QCTOOLSNEWBINARY "/usr/bin/qctool2.0" ## THE INSTALLATION IS NOT PERFORMED BECAUSE

THIS BINARY IS NOT USED IN THE CODE
ENV SAMTOOLSBINARY "/usr/bin/samtools"

A.2 Docker generation
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#!/bin/bash
2

cp ../../src/main/R/* ./TOOLS/R_scripts/
4

sudo docker build -f GuidanceDockerfile -t docker_guidance .
6

echo "[INFO] Docker build successfully executed."
8 #sudo docker run docker_guidance&
#sudo docker save --output=docker_singularity.tar docker_guidance

10 #sudo docker ps
#sudo sudo docker exec -i -t {name or id} /bin/bash

A.3 Singularity build file

Bootstrap: docker
2 From: docker://localhost:5000/docker_guidance:latest

4 %environment
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

6

%setup
8 mkdir -p $SINGULARITY_ROOTFS/gpfs/home/

mkdir -p $SINGULARITY_ROOTFS/gpfs/scratch/
10 mkdir -p $SINGULARITY_ROOTFS/gpfs/apps/MN4

mkdir -p $SINGULARITY_ROOTFS/gpfs/projects/
12 mkdir -p /opt/intel

mkdir -p /scratch
14

# Files that are included from the host
16

# %files
18

%post
20

A.4 Singularity generation

1 #!/bin/bash

3 rm -f guidance_singularity.img

5 #sudo docker run -d -p 5000:5000 --name registry registry:2
#sudo docker pull docker_guidance

7 #sudo docker image tag docker_guidance localhost:5000/docker_guidance_image
#sudo docker push localhost:5000/docker_guidance_image

9

#export SINGULARITY_NOHTTPS=true
11

## DOCKER IMAGE GENERATION ##
13

sudo docker ps -a | tail -n +2 | awk ’{ print $1 }’ | xargs -i sudo docker stop {}
15 sudo docker ps -a | tail -n +2 | awk ’{ print $1 }’ | xargs -i sudo docker rm {}

17 sudo docker image ls | grep "docker_guidance" | awk ’{ print $3 }’ | tail -n +2 | xargs
-i sudo docker rmi -f {}

19 pushd docker
./build_docker.sh

21 popd

23 #sudo docker stop registry
#sudo docker ps -a | grep registry:2 | xargs -i sudo docker rm {}

25 sudo docker rmi -f registry:2
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sudo docker run -d -p 5000:5000 --restart=always --name registry registry:2
27 sudo docker tag docker_guidance localhost:5000/docker_guidance

sudo docker push localhost:5000/docker_guidance
29

## SINGULARITY IMAGE GENERATION ##
31

# https://github.com/singularityware/singularity/issues/429
33

sudo SINGULARITY_NOHTTPS=yes singularity build guidance_singularity.img singularity/
guidance.def



65



66 Appendix B. MC

Appendix B

MC

B.1 MLMC poster

ScalabledistributedMultilevelMonteCarlo
workflowdesign

Riccardo Tosi (CIMNE), Marc Nuñez (CIMNE), Ramon Amela (BSC),
Rosa M. Badia (BSC), Riccardo Rossi (CIMNE-UPC), Rubén Zorrilla (CIMNE)

1. Introduction

The following presents some initial results of integration of well-known algorithms
developed to study Uncertainty Quanti�cation (UQ) inside the KratosMultiphysics
(Kratos) environment. The application of choice has been the resolution of the potential
�ow around an airfoil. The �nal aim is to perform Optimization Under Uncertainties
(OUU) of the �ow around civil structures, using embedded geometries.

2. Monte Carlo and Multilevel Monte Carlo

The Monte Carlo (MC) method is the reference method in the stochastic analysis of
multiphysics problems with uncertainties in the data parameters. The idea is to repeatedly
generate the random input and to solve numerically the associated deterministic problem,
in order to produce a statistical analysis.

• Problem under consideration considered
as a black-box.

• MC estimator of the expectation of a
Quantity of Interest (QoI):

EMC[QoI] :=
N∑

i=1

QoI(w(i)) .

• Convergence to the exact statistics as
the number of samples N →∞.

• Convergence rate of the mean square
error ∼ O(N

1
2 ):

mse2MC := E[(EMC[QoIM ]− E[QoI])2] .

101 102 103 104
10−3

10−2

N

mse2MC
Kratos

literature

Figure 1: MC mean square error.

• Too high computational cost for
complex problems ⇒ development
of Multilevel Monte Carlo (MLMC)
algorithms.

The MLMC main features are:

• Simultaneous computation of MC QoIMl
samples on successive re�nement levels.

• MLMC estimator of the expectation of a QoI:

EMLMC[QoIM ] :=
L∑

l=0

E[QoIMl
(w(i,l))−QoIMl−1

(w(i,l))] .

• Combination of a large number of cheap and low accuracy QoIMl
samples with few

expensive high accuracy samples.

Figure 2: Hierarchy
of computational
grids, showing
increasing accuracy
levels.

3. HPC implementation

Both the MC and the MLMC algorithms are parallelizable, since their working principle
is to solve repeatedly the same problem of interest, each time with a di�erent random
input. This led to the integration among Kratos and PyCOMPSs, the python library of
COMPSs. The current version is able to run several thousands of samples at once.
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Figure 3: Graph connections of MLMC algorithm dependencies, running with PyCOMPSs.

Figure 4: Section of the execution trace of a MC execution with N = 16000.

4. Embedded solver

The use of embedded geometries presents some clear advantages if compared to typical
body-�tted meshes.

• Dealing with incomplete geometries as input �les (geometries with gaps, holes or
overlaps).

• Solving problems with large boundary movement (typical in optimization).

• Accounting for complex geometries, such as volume-less bodies.

In the following �gures, a simple example of the �ow around an ellipse with an angle of
attack of 5o is showcased, as well as a comparison to reference results.

Figure 5: Example of the pressure
distribution.
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Figure 6: Embedded solver comparison to
reference (XFoil).

5. Adaptative remeshing

Adaptative remeshing enhances the accuracy of the embedded solver, thanks to the better
de�nition of the level-set representing the input geometry. The following �gures showcase
the remesh of a NACA 0012 airfoil, using the MMG library.

Figure 7: NACA 0012 airfoil embedded in an initial background mesh. Observe that the element
size of the background mesh is not enough to account for the sharp geometry of the trailing edge.

Figure 8: NACA 0012 airfoil, after remsehing the background mesh in terms of the inital
geometry.

6. Computation of sensitivities

To perform an optimization analysis with an aerodynamic solver, the computation of
the gradient of an objective function is needed. This gradient is the sensitivity of the
geometry with respect to the objective function. In this case, the objective functions will
be aerodyanimc forces or characteristics, whose gradient with respect to the geometry is
unknowkn. Thus, adjoint techinques are used to compute the gradient, which are validated
with the �nite di�erences method.

Figure 9: Visual representation of the
sensitivities of each geometry parameter, i.e.
each node that de�nes the airfoil geometry,
computed using adjoint techniques.
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Figure 10: Comparison between the adjoint
analysis and the �nite di�erence method. The
relative error obtained is 0.17%.
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7. Future Developments

• Extend embedded solver to 3D.

• Computation of sensitivities for embedded
geometries.

• Optimization of MC and MLMC parallelization.

• Application of MLMC to more challenging physical
problems.
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Appendix C

Scheduling improvements

C.1 Scheduler auxiliar structures

// Tree set is an ordered set!!
2 protected HashMap<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

unassignedReadyActions;
protected final HashSet<ResourceScheduler<?>> availableWorkers;

4 protected final HashMap<ResourceScheduler<?>, Future<?>> resourceTokens;
protected int amountOfWorkers;

6 ThreadPoolExecutor schedulerExecutor;

C.2 Scheduler main function

protected <T extends WorkerResourceDescription> void tryToLaunchFreeActions(List<
AllocatableAction> dataFreeActions,

2 List<AllocatableAction> resourceFreeActions, List<AllocatableAction>
blockedCandidates,

ResourceScheduler<T> resource) {
4 if (DEBUG) {

LOGGER.debug("[ReadyScheduler] Try to launch free actions on resource " +
resource.getName() + " with "

6 + this.unassignedReadyActions.get(resource).size() + " candidates
in this worker");

}
8

// Actions that have been freeded by the action that just finished
10 for (AllocatableAction freeAction : dataFreeActions) {

if (DEBUG) {
12 LOGGER.debug(

"[ReadyScheduler] Introducing action " + freeAction + " into
the scheduler from data free");

14 }
addActionToSchedulerStructures(freeAction);

16 }
dataFreeActions = new LinkedList<AllocatableAction>();

18

// Resource free actions should always be empty in this scheduler
20 for (AllocatableAction freeAction : resourceFreeActions) {

if (DEBUG) {
22 LOGGER.debug(

"[ReadyScheduler] Introducing action " + freeAction + " into
the scheduler from resource free");

24 }
addActionToSchedulerStructures(freeAction);

26 }
resourceFreeActions = new LinkedList<AllocatableAction>();

28

// Only in case there are actions that have entered the scheduler without
having

30 // available resources -> They were in the blocked list
for (AllocatableAction freeAction : blockedCandidates) {
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32 if (DEBUG) {
LOGGER.debug("[ReadyScheduler] Introducing action " + freeAction + "

into the scheduler from blocked");
34 }

addActionToSchedulerStructures(freeAction);
36 }

blockedCandidates = new LinkedList<AllocatableAction>();
38

Future<?> lastToken = this.resourceTokens.get(resource);
40 if (lastToken != null) {

try {
42 lastToken.get();

} catch (InterruptedException | ExecutionException e) {
44 e.printStackTrace();

LOGGER.fatal("Unexpected thread interruption");
46 ErrorManager.fatal("Unexpected thread interruption");

}
48 }

this.resourceTokens.put(resource, null);
50

Iterator<ObjectValue<AllocatableAction>> executableActionsIterator = this.
unassignedReadyActions.get(resource)

52 .iterator();
HashSet<ObjectValue<AllocatableAction>> objectValueToErase = new HashSet<

ObjectValue<AllocatableAction>>();
54 while (executableActionsIterator.hasNext() && !this.availableWorkers.isEmpty())

{
ObjectValue<AllocatableAction> obj = executableActionsIterator.next();

56 AllocatableAction freeAction = obj.getObject();
try {

58 if (Tracer.isActivated()) {
Tracer.emitEvent(Tracer.Event.TRY_TO_SCHEDULE.getId(), Tracer.Event

.TRY_TO_SCHEDULE.getType());
60 }

freeAction.tryToSchedule(obj.getScore(), this.availableWorkers);
62 if (Tracer.isActivated()) {

Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.
getType());

64 }
ResourceScheduler<? extends WorkerResourceDescription> assignedResource

= freeAction
66 .getAssignedResource();

tryToLaunch(freeAction);
68 if (!assignedResource.canRunSomething()) {

this.availableWorkers.remove(assignedResource);
70 }

objectValueToErase.add(obj);
72 } catch (BlockedActionException e) {

if (Tracer.isActivated()) {
74 Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.

getType());
}

76 objectValueToErase.add(obj);
addToBlocked(freeAction);

78 if (DEBUG) {
LOGGER.debug("[ReadyScheduler] Action " + freeAction + " added to

blocked actions");
80 }

} catch (UnassignedActionException e) {
82 System.out.println("Cannot schedule action " + freeAction);

if (Tracer.isActivated()) {
84 Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.

getType());
}

86 if (DEBUG) {
LOGGER.debug("[ReadyScheduler] Action " + freeAction

88 + " could not be assigned to any of the available resources
");

}
90 // Nothing to be done here since the action was already in the

scheduler
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// structures. If there is an exception, the freeAction will not be
added

92 // to the objectValueToErase list.
// Hence, this is not an ignored Exception but an expected behavior.

94 }
}

96

for (ObjectValue<AllocatableAction> obj : objectValueToErase) {
98 AllocatableAction action = obj.getObject();

removeActionFromSchedulerStructures(action);
100 }

}

C.3 Scheduler auxiliar calls

1 private void addActionToResource(
Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

currentEntry,
3 AllocatableAction action) {

ResourceScheduler<?> resource = currentEntry.getKey();
5 TreeSet<ObjectValue<AllocatableAction>> actionList = (TreeSet<ObjectValue<

AllocatableAction>>) currentEntry
.getValue();

7 Score fullScore = action.schedulingScore(resource, generateActionScore(action))
;

if (fullScore != null) {
9 ObjectValue<AllocatableAction> obj = new ObjectValue<>(action, fullScore);

actionList.add(obj);
11 }

}
13

private void removeActionFromResource(
15 Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

currentEntry,
AllocatableAction action) {

17 currentEntry.getKey();
TreeSet<ObjectValue<AllocatableAction>> actionList = currentEntry.getValue();

19 Score fullScore = action.schedulingScore(currentEntry.getKey(),
generateActionScore(action));

if (fullScore != null) {
21 ObjectValue<AllocatableAction> obj = new ObjectValue<>(action, fullScore);

actionList.remove(obj);
23 }

}
25

private Runnable createAddRunnable(
27 final Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction

>>> currentEntry,
final AllocatableAction action, final Future<?> token) {

29 Runnable addRunnable = new Runnable() {
public void run() {

31 if (token != null) {
try {

33 token.get();
} catch (InterruptedException | ExecutionException e) {

35 e.printStackTrace();
LOGGER.fatal("Unexpected thread interruption");

37 ErrorManager.fatal("Unexpected thread interruption");
}

39 }
addActionToResource(currentEntry, action);

41 }
};

43 return addRunnable;
}

45

private Runnable createRemoveRunnable(
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47 final Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction
>>> currentEntry,

final AllocatableAction action, final Future<?> token) {
49 Runnable removeRunnable = new Runnable() {

public void run() {
51 if (token != null) {

try {
53 token.get();

} catch (InterruptedException | ExecutionException e) {
55 e.printStackTrace();

LOGGER.fatal("Unexpected thread interruption");
57 ErrorManager.fatal("Unexpected thread interruption");

}
59 }

removeActionFromResource(currentEntry, action);
61 }

};
63 return removeRunnable;

}
65

private void addActionToSchedulerStructures(AllocatableAction action) {
67 if (!this.unassignedReadyActions.isEmpty()) {

if (DEBUG) {
69 LOGGER.debug("[ReadyScheduler] Add action to scheduler structures " +

action);
}

71 Iterator<Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<
AllocatableAction>>>> iter = unassignedReadyActions

.entrySet().iterator();
73 Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

currentEntry = iter.next();
TreeSet<ObjectValue<AllocatableAction>> actionList = (TreeSet<ObjectValue<

AllocatableAction>>) currentEntry
75 .getValue();

77 ResourceScheduler<?> resource = currentEntry.getKey();
Score actionScore = generateActionScore(action);

79 Score fullScore = action.schedulingScore(resource, actionScore);
ObjectValue<AllocatableAction> obj = new ObjectValue<>(action, fullScore);

81 if (!actionList.add(obj)) {
return;

83 }
while (iter.hasNext()) {

85 currentEntry = iter.next();
resource = currentEntry.getKey();

87 Future<?> lastToken = this.resourceTokens.get(resource);
this.resourceTokens.put(resource,

89 schedulerExecutor.submit(createAddRunnable(currentEntry, action
, lastToken)));

}
91 } else {

if (DEBUG) {
93 LOGGER.debug(

"[ReadyScheduler] Cannot add action " + action + " because
there are not available resources");

95 }
addToBlocked(action);

97 }
}

99

private void removeActionFromSchedulerStructures(AllocatableAction action) {
101 if (!this.unassignedReadyActions.isEmpty()) {

if (DEBUG) {
103 LOGGER.debug("[ReadyScheduler] Remove action from scheduler structures

" + action);
}

105 Iterator<Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<
AllocatableAction>>>> iter = unassignedReadyActions

.entrySet().iterator();
107 Map.Entry<ResourceScheduler<?>, TreeSet<ObjectValue<AllocatableAction>>>

currentEntry = iter.next();
ResourceScheduler<?> resource = currentEntry.getKey();
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109 TreeSet<ObjectValue<AllocatableAction>> actionList = currentEntry.getValue
();

Score actionScore = generateActionScore(action);
111 Score fullScore = action.schedulingScore(resource, actionScore);

ObjectValue<AllocatableAction> obj = new ObjectValue<>(action, fullScore);
113 if (!actionList.remove(obj)) {

return;
115 }

while (iter.hasNext()) {
117 currentEntry = iter.next();

resource = currentEntry.getKey();
119 Future<?> lastToken = this.resourceTokens.get(resource);

this.resourceTokens.put(resource,
121 schedulerExecutor.submit(createRemoveRunnable(currentEntry,

action, lastToken)));
}

123 }
}

125

127 protected <T extends WorkerResourceDescription> void tryToLaunchFreeActions(List<
AllocatableAction> dataFreeActions,

List<AllocatableAction> resourceFreeActions, List<AllocatableAction>
blockedCandidates,

129 ResourceScheduler<T> resource) {
if (DEBUG) {

131 LOGGER.debug("[ReadyScheduler] Try to launch free actions on resource " +
resource.getName() + " with "

+ this.unassignedReadyActions.get(resource).size() + " candidates
in this worker");

133 }

135 // Actions that have been freeded by the action that just finished
for (AllocatableAction freeAction : dataFreeActions) {

137 if (DEBUG) {
LOGGER.debug(

139 "[ReadyScheduler] Introducing action " + freeAction + " into
the scheduler from data free");

}
141 addActionToSchedulerStructures(freeAction);

}
143 dataFreeActions = new LinkedList<AllocatableAction>();

145 // Resource free actions should always be empty in this scheduler
for (AllocatableAction freeAction : resourceFreeActions) {

147 if (DEBUG) {
LOGGER.debug(

149 "[ReadyScheduler] Introducing action " + freeAction + " into
the scheduler from resource free");

}
151 addActionToSchedulerStructures(freeAction);

}
153 resourceFreeActions = new LinkedList<AllocatableAction>();

155 // Only in case there are actions that have entered the scheduler without
having

// available resources -> They were in the blocked list
157 for (AllocatableAction freeAction : blockedCandidates) {

if (DEBUG) {
159 LOGGER.debug("[ReadyScheduler] Introducing action " + freeAction + "

into the scheduler from blocked");
}

161 addActionToSchedulerStructures(freeAction);
}

163 blockedCandidates = new LinkedList<AllocatableAction>();

165 Future<?> lastToken = this.resourceTokens.get(resource);
if (lastToken != null) {

167 try {
lastToken.get();

169 } catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
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171 LOGGER.fatal("Unexpected thread interruption");
ErrorManager.fatal("Unexpected thread interruption");

173 }
}

175 this.resourceTokens.put(resource, null);

177 Iterator<ObjectValue<AllocatableAction>> executableActionsIterator = this.
unassignedReadyActions.get(resource)

.iterator();
179 HashSet<ObjectValue<AllocatableAction>> objectValueToErase = new HashSet<

ObjectValue<AllocatableAction>>();
while (executableActionsIterator.hasNext() && !this.availableWorkers.isEmpty())

{
181 ObjectValue<AllocatableAction> obj = executableActionsIterator.next();

AllocatableAction freeAction = obj.getObject();
183 try {

if (Tracer.isActivated()) {
185 Tracer.emitEvent(Tracer.Event.TRY_TO_SCHEDULE.getId(), Tracer.Event

.TRY_TO_SCHEDULE.getType());
}

187 freeAction.tryToSchedule(obj.getScore(), this.availableWorkers);
if (Tracer.isActivated()) {

189 Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.
getType());

}
191 ResourceScheduler<? extends WorkerResourceDescription> assignedResource

= freeAction
.getAssignedResource();

193 tryToLaunch(freeAction);
if (!assignedResource.canRunSomething()) {

195 this.availableWorkers.remove(assignedResource);
}

197 objectValueToErase.add(obj);
} catch (BlockedActionException e) {

199 if (Tracer.isActivated()) {
Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.

getType());
201 }

objectValueToErase.add(obj);
203 addToBlocked(freeAction);

if (DEBUG) {
205 LOGGER.debug("[ReadyScheduler] Action " + freeAction + " added to

blocked actions");
}

207 } catch (UnassignedActionException e) {
System.out.println("Cannot schedule action " + freeAction);

209 if (Tracer.isActivated()) {
Tracer.emitEvent(Tracer.EVENT_END, Tracer.Event.TRY_TO_SCHEDULE.

getType());
211 }

if (DEBUG) {
213 LOGGER.debug("[ReadyScheduler] Action " + freeAction

+ " could not be assigned to any of the available resources
");

215 }
// Nothing to be done here since the action was already in the

scheduler
217 // structures. If there is an exception, the freeAction will not be

added
// to the objectValueToErase list.

219 // Hence, this is not an ignored Exception but an expected behavior.
}

221 }

223 for (ObjectValue<AllocatableAction> obj : objectValueToErase) {
AllocatableAction action = obj.getObject();

225 removeActionFromSchedulerStructures(action);
}

227 }
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