
UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)
- BARCELONATECH

UNIVERSITAT DE BARCELONA (UB)

UNIVERSITAT ROVIRA I VIRGILI (URV)

MASTER’S THESIS

Quantum Machine Learning

Author: Jordi RIU

Advisor: Dr. Artur GARCIA

Institution: Barcelona Supercomputing Center (BSC)

Tutor: Dr. Ulises CORTÉS

Department: Computer Science (UPC)

MASTER IN ARTIFICIAL INTELLIGENCE

Facultat d’Informàtica de Barcelona (FIB)
Facultat de Matemàtiques (UB)

Escola Tècnica Superior d’Enginyeria(URV)

April 14, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/200266756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) - BARCELONATECH

Abstract
Facultat d’Informàtica de Barcelona (FIB)

MASTER IN ARTIFICIAL INTELLIGENCE

Quantum Machine Learning

by Jordi RIU

This project applies reinforcement learning techniques to optimize a quantum al-
gorithm. The upcoming quantum computers are capable of optimization tasks in
an exponentially large parameter space. Having access to such a large optimiza-
tion space potentially allows an advantage of Quantum methods over classical algo-
rithms, but at the price of problems in the optimization process -just to name a few,
the presence of local minima and the low convergence speeds-. This project explores
the application of reinforcement learning techniques to control and optimize the op-
eration of a quantum computer solving a hard combinatorial problem, namely the
MaxCut problem. Our methods use a collection of quantum observables to feed the
state of the agent, inspired on a similar classical approach to the problem applied
to the antiferromagnetic Ising model lattice. Our results show how an agent using
these observables can optimally control the operation of a quantum device to ob-
tain quasi-optimal solutions when in combination with the Quantum Approximate
Optimization Algorithm (QAOA).

v

Acknowledgements
I would like to thank Prof. Rossend Rey for supporting me, everyone at the Quantic
group for welcoming me, and specially Prof. Ulises Cortés for his supervision of the
project.

Finally, my most sincere gratitude to my advisor, Dr. Artur Garcia. He has con-
tributed greatly to the project with fantastic ideas both for the Quantum Mechanics
and Machine Learning related areas. It has been fantastic working with him.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Reinforcement Learning in a Classical Environment 3
2.1 Ising Model . 3
2.2 Q-Learning . 4

DQN . 4
Double Q-Learning . 5
Dueling Network Architectures 5
Continuous Deep Q-learning: NAF & DDPG 6

2.3 Agent & Environment Implementation 7
2.3.1 Simulating the Dynamics of the Ising Model with RL 7
2.3.2 Obtaining the Antiferromagnetic State of the 2-D Ising Lattice . 8

2.4 Experiments & Results . 9
2.4.1 Simulating the Dynamics of the Ising Model with RL 9
2.4.2 Obtaining the Antiferromagnetic State of the 2-D Ising Lattice . 10

3 Deep Reinforcement Learning in a Quantum Environment 13
3.1 Quantum Approximate Optimization Algorithm 13

MaxCut . 14
3.1.1 State of the Art . 16

3.2 QAOA Environment . 19
3.2.1 Discrete . 19

Agent Properties . 20
3.2.2 Continuous . 20

Agent Properties . 21
3.3 Results . 21

3.3.1 Ring of Disagrees . 21
3.3.2 Irregular Graph . 24

4 Conclusions 29

Bibliography 31

ix

List of Figures

2.1 Graphical representation of the 2D-Ising lattice. A spin from the lat-
tice (in red) can only interact with the ones closer to it (in black). In
2D the number of nearest neighbours is 4. 3

2.2 Mean absolute magnetization for a spin of a 40x40 Ising lattice (left)
and a 20x20 Ising lattice (right) for multiple discount factors γ. T∗critical
decreases as γ increases. 10

2.3 Q-Network model for a 6x6 Ising Lattice. 10
2.4 Agent success rate dependent on the discount factor and number of

steps per episode. 1000 test episodes with random initial configura-
tion. 200.000 training steps per parameter set. 11

2.5 Left: Histogram of the number of steps per episode with reward lower
or equal to zero (errors). Right: Histogram of the total number of steps
per episode. Both for an 6x6 Ising lattice. 12

2.6 Left: Histogram of the number of steps per episode with reward lower
or equal to zero (errors). Right: Histogram of the total number of steps
per episode. Both for an 8x8 Ising lattice. 12

2.7 Results obtained for the 6x6 (left) and 8x8 (right) Ising Lattice. Steps
taken (blue), errors (red) and energy of the initial configuration (black). 12

3.1 Example of the quantum circuit required to generate the operator in
(3.8) with γ = π = −2φ using the IBM Quantum Experience. Note
that Rφ = U1. 15

3.2 Examples of a 3-regular graph with 8 vertices. 16
3.3 Unsolved ring of disagrees graph. 21
3.4 F1 for the ring of disagrees graph. 21
3.5 Evolution of the reward during training, tested every 1.000 steps. P =

1 (Top-left), p = 2 (Top-right), p = 3 (Bottom-left), p = 4 (Bottom-right). 22
3.6 Mean Q-value (left) and Huber loss (right) for each step of an episode

with τB=0.20 and a network with 4 hidden layers and 128 units. 23
3.7 Probability of obtaining a certain cut size of the ring of disagrees prob-

lem for p = 1 (blue), p = 2 (red), p = 3 (black) and p = 4 (green). . . . 24
3.8 Maximum cut for the ring of disagrees. 24
3.9 Structure of the irregular graph. 25
3.10 F1 for the irregular graph. 25
3.11 Evolution of the reward during training for the irregular graph, tested

every 1.000 steps. P = 1 (Top-left), p = 2 (Top-right), p = 3 (Bottom-
left), p = 4 (Bottom-right). 26

3.12 Probability of obtaining a certain cut size of the irregular graph for
p = 1 (blue), p = 2 (red), p = 3 (black) and p = 4 (green). 26

3.13 Interpolated Q value function for the first set of parameters (γ1, β1) for
the irregular graph. P=1 (top-left), p=2 (top-right), p=3 (bottom-left),
p=4 (bottom-right). 27

x

3.14 Maximum cut for the irregular graph. 27

xi

List of Tables

3.1 Ring of disagrees results with 20 partitions per angle. 23
3.2 Irregular graph results with 20 partitions per angle. 26

xiii

Dedicated to my family.

1

Chapter 1

Introduction

Artificial intelligence techniques, and machine learning specifically, have been proven
to be very useful and effective when applied to a wide variety of technological and
scientific fields. Examples of such applications range from the automotive industry
to health care.

Quantum machine learning, which combines both quantum physics and machine
learning disciplines, arises in the late 90’s and early 2000’s. The field encompasses
multiple areas of research such as the use of machine learning algorithms for the
analysis of classical data on quantum computers, the application of classical machine
learning algorithms on quantum problems or the intersection between learning the-
ory and quantum information.

Analyzing classical data using quantum computers is expected to allow the recog-
nition of more complex patterns in such datasets, through the use of quantum me-
chanical effects such as coherence and entanglement. In this regard, using quantum
algorithms can also result in both improving the accuracy of the existing classical al-
gorithms and also its computational performance. The latter is known as quantum
speedup.

There are well-known examples of quantum speedup phenomena both for super-
vised and unsupervised tasks. Lloyd et al. [1] performed quantum principal com-
ponent analysis of classical data which achieved exponential speedups with respect
to classical PCA. Quantum exponential speedups have also been observed in su-
pervised learning algorithms like support vector machines [2]. The aforementioned
algorithms require the loading of classical data into quantum computers, which can
take up to exponential time [3]. This issue can be handled using qRAM [4], although
limitations appear on the amount of data that can be handled.

Dunjko et al. [5] presented a general agent-environment framework for quantum
reinforcement learning algorithms with quadratic speedups in learning efficiency,
i.e., number of interaction steps with the environment required by the agent.

Quantum algorithms for deep learning have also been explored with moderate suc-
cess. The use of quantum annealers, which are special-purpose quantum informa-
tion processors, to perform quantum sampling during the pre-training phase of a
DBN yielded close to state of the art accuracy for the MNIST dataset with fewer
training iterations [6]. Amin et al. [7] proposed a more general algorithm, called
Quantum Boltzmann Machines, with promising performances on small datasets.
Moreover, the authors argued that QBM training could in principle be conducted

2 Chapter 1. Introduction

on quantum annealers, and D-wave in particular, with small hardware modifica-
tions.

Of particular interest to our work is the Quantum Approximate Optimization Algo-
rithm (QAOA) [8]. The algorithm allows reaching approximate solutions for com-
binatorial optimization problems, such as the MaxCut problem, by applying qubit
rotations that depend on the clauses of the problem and some optimizable parame-
ters. We seek to study the performance of the QAOA when using deep reinforcement
learning as its optimization strategy.

This thesis will be structured in 2 main blocks. The first one will be focused on
the design of a gym environment that mimics the Ising Model (using ferromagnetic
coupling) and the study of its performance when using reinforcement learning to
solve it. This environment should allow us to get an insight on the possible poli-
cies, architectures and algorithms that are most likely to succeed combined with the
QAOA when applied to the MaxCut problem, which will be our focus in the second
part of this work.

There are various reasons behind the selection of the Ising Model as our testing
model. First and foremost, the Ising Model with nearest neighbours interactions is a
particularly well-behaved case of the MaxCut problem. Moreover, the 2-Dimensional
Ising Model with ferromagnetic coupling is known to have a phase transition be-
tween the ordered and disordered phases which can be computed analytically. There-
fore, it will be clear whether our reinforcement learning approach yields satisfactory
results or not.

Finally, and although it is not the goal of this work, using reinforcement learning
to simulate the dynamics of the Ising Model could allow us to perform future re-
search regarding the possibility of using the Ising Model to generate time series with
statistical properties similar to the ones of financial time series as in [9].

3

Chapter 2

Reinforcement Learning in a
Classical Environment

2.1 Ising Model

The Ising model is a simple classical physics model which was originally used in
statistical mechanics to describe ferromagnetism, but nowadays it is used in a wide
range of social and physical problems.

It consists of a large number of spins interacting within a lattice. Each spin can
only take the value +1 or -1 (depending on the direction in which it points) and
is only allowed to interact with its nearest neighbours, tending to align with them
(see Figure 2.1). Therefore, it combines the effect of temperature (disordering force)
and the tendency of a physical system to reach its most stable (lowest energy) state,
which for the ferromagnetic Ising model coincides with the state in which all spins
are aligned. The Hamiltonian of the system is the following:

HIsing = −J ∑
n.n

σiσj, (2.1)

where n.n. stands for nearest neighbours, J>0 (ferromagnetic coupling) and σi is
the value of the ith spin of the lattice. The Ising model does not have any specific
dynamics, only an established behaviour at equilibrium. For this reason, there exist
multiple possibilities to model its dynamical behaviour. At equilibrium though, the
ferromagnetic 2-D Ising Model with isotropic coupling is known to exhibit a phase
transition between the ordered and disordered phases (Onsager’s Exact Solution).

FIGURE 2.1: Graphical representation of the 2D-Ising lattice. A spin
from the lattice (in red) can only interact with the ones closer to it (in

black). In 2D the number of nearest neighbours is 4.

4 Chapter 2. Reinforcement Learning in a Classical Environment

Specifically, such transition is observed at

kBTcritical =
2J

ln(1 +
√

2)
. (2.2)

For J=1, T∗critical = kBTcritical ≈ 2.26. Our first goal is to perform a simple experiment
that shows the capacities for reinforcement learning approaches to simulate the dy-
namics of the model while respecting its behaviour at equilibrium.

Next, we will try to solve a trivial case of the MaxCut problem, the 2-D Ising Lat-
tice, also through the use of RL. Ideally the agent will be able to transform the lattice
from a random initial state, to the highest energy configuration (antiferromagnetic
state) by flipping the minimum number of spins. This second experiment should
provide us with some insight on which RL strategies can be successful when using
the QAOA with RL optimization to solve the MaxCut problem.

2.2 Q-Learning

Temporal-Difference(TD) learning algorithms combine the advantages of Monte Carlo
algorithms, such as being able to learn from an environment whose dynamics model
is unknown, as well as Dynamic Programming with for example bootstrapping, i.e.,
performing estimations using other previously learned estimates. These conditions
allow TD algorithms to learn on-line, at each step of training, without the need to
wait until the end of an episode (which is not very well defined for our problem).

A particularly relevant TD control algorithm to our work is the Q-Learning algo-
rithm [10]. Q-learning is an off-policy TD control algorithm which can be presented
in several forms (even for continuous action spaces as we will see in the second part
of the thesis). The simplest one, one-step Q-learning, uses the following update rule
for the state-action value function Q of the problem:

Q(st, at)← Q(st, at) + α
{

rt+1 + γ max
a
Q(st+1, a)−Q(st, a)

}
(2.3)

With rt+1 being the reward of applying action at at time t with the environment being
at state st, γ the discount factor for future gains and α the learning rate. This update
rule is based on the fact that the optimal Q function satisfies the Bellman Equation.

Since Q-learning is an off-policy method, its performance is independent on the cho-
sen policy. Not only that but also Q-learning is known to converge with probability
1 to the optimal action-value function. The only requisite for this convergence to be
achieved is that all state-action pairs are visited and updated, policy selection thus
remains somewhat relevant.

DQN

A more sophisticated Q-learning algorithm which uses neural networks as approx-
imation to the action-value function is the Deep Q-Network (DQN) algorithm [11].
DQN solves the instabilities of standard online Q-learning using neural networks
as interpolates of the action-value function by reducing the correlation of the data
sequence through experience replay.

2.2. Q-Learning 5

Moreover, the weights of the target network used as ground truth for the training of
the Q-network are only updated every n steps (using the weights of the Q-network)
while kept frozen during the rest of individual updates, thus reducing the correla-
tion with the target as well.

The loss function that incorporates both ideas is shown in equation (2.4). It is the
squared difference between the Q value computed using the target network, with
weights θ−i and the one provided by the Q-Network.

For each iteration i, the algorithm uses the observation of the current state of the en-
vironment, s, as input to the Q-network which yields the state-action values Q(s,a;θi)
for all the possible actions, a, that can be performed in that state with θi being the
parameters of the network.
Then, following the defined policy, an action is chosen from those Q values and per-
formed on the environment, obtaining reward, r, and the observation of the new
state of the environment s’. The experience tuple formed by (s,a,r,s’) is stored in a
Data set (memory) with the previous ones. Finally, a mini-batch of experiences is
sampled randomly using a uniform distribution and it is used to compute the loss
of the model, and update the Q-network weights. Every n iterations, the weights of
the target network are updated with the ones from the Q-network.

Li(θi) = E
(s,a,r,s′)

{(
r + γ max

a′
Q(s′, a′; θ−i)−Q(s, a; θi)

)2
}

(2.4)

Double Q-Learning

Q-learning and DQN in particular can suffer from large overestimations due to us-
ing the same parameters (or network) both to evaluate the action-value function and
select the action. For this reason, the Double Q-Learning algorithm is proposed [12].

For the Double Q-Learning algorithm, the target value to which we want our state-
action function to converge is computed as:

Ytarget = r + γQ(St+1, arg max
a

Q(St+1, a; θi); θ′i) (2.5)

Thus, two different networks are used to select which action is the one with highest
state-action value. The first network decides which action is the optimal one, and the
second is used to asses its value fairly. From this idea the Double DQN algorithm
arises [13]. In it, the authors suggest using the target network as responsible for
the assessment of the state-action value once the Q-network chooses the action with
maximum expected value. Again, the weights of the target network can be updated
periodically with the ones from the Q-network (hard update). Another possibility is
to perform a soft update on the weights of the target network such that

θ−i = τθi + (1− τ)θ−i (2.6)

Dueling Network Architectures

In [14] a new strategy consisting on two streams within a network, one focused on
the computation of the average state-action value of the state s, Vπ(s) = E[Qπ(s, a)],
and the other, on the relative advantage for each action with respect to the average

6 Chapter 2. Reinforcement Learning in a Classical Environment

value (2.7).

Aπ(s, a) = Qπ(s, a)−Vπ(s) (2.7)

Thus, the first stream will produce a unique scalar value corresponding to the value
of the input state of the network while the other will produce several outputs, as
many as available action for the state. It might seem immediate to recover the Q
value arising from such strategy as the sum of the values of both streams(2.8), once
the action selection policy is applied on the A stream, with α the parameters of the
V(s) stream network and β for the A(s,a) network equivalently. However, the au-
thors mention such equation is unidentifiable as adding a constant to either V or A
and subtracting it to the other would yield the same Q-value and this multiplicity
would damage the performance of the dueling strategy.

Q(s, a; θ, α, β) = V(s; θ, β) + A(s, a; θ, α) (2.8)

For this reason, two alternative definitions are proposed (2.9). The first one ensures
that the estimator for Q(s,a) equals V(s) for the best action, eliminating the multi-
plicity since the advantage A(s,a) for the optimal action is forced to be 0 as point
of reference. The second one does not tackle the multiplicity problem but allows
for a more stable optimization as the advantage estimator is only required to evolve
as fast as the mean instead of compensating for changes in the optimal advantage
value.

Q(s, a; θ, α, β) = V(s; θ, β) + (A(s, a; θ, α)−max
a′

A(s, a′; θ, α))

Q(s, a; θ, α, β) = V(s; θ, β) + (A(s, a; θ, α)− 1
m

m

∑
a′=1

A(s, a′; θ, α))
(2.9)

Continuous Deep Q-learning: NAF & DDPG

For the second part of the project we will apply deep Q-learning in a continuous
action space. Tackling this problem requires additional developments for the agent
as the well-known action selection policies such as, for example, ε-greedy and Boltz-
mann can no longer be applied.

In this regard, Gu et al [15] suggest the Normalized Advantage Function (NAF)
approach. The method is based on the idea of finding a representation for the state-
action value function Q for which its maximum can be determined analytically.

The NAF algorithm uses a naive dueling strategy with Q(s, a) = A(s, a) + V(s) but
A(s,a) is constructed as

A(s, a; θA) = −1
2
(a− µ(a; θµ))TP(s; θP)(a− µ(a; θµ)) (2.10)

with
P(s; θP) = L(s; θP)L(s; θP)T (2.11)

a positive-definite square matrix and L(s; θP) a lower-triangular matrix constructed
with the outputs of the network. Therefore, the network will now have three streams,
V, µ and L.

By forcing A(s,a) to have this form, it is ensured that the maximum value for Q

2.3. Agent & Environment Implementation 7

will be obtained when a = µ as otherwise, A is always negative.

At each step, the agent obtains µ from the observation of the state and selects the
action a by adding noise to it (it is suggested to use an Ornstein-Uhlenbeck process
for noise generation). Afterwards the action is applied to the environment and the
tuple (st, a, r, st + 1) is stored in the memory to perform experience replay during
the optimization phase. The target value for Q used as optimization goal is set to r
+ V(st + 1) and the Q value is constructed using the V(s), L(s) and µ(s) streams.

In [16] the authors suggest a two network actor-critic strategy, Deep DPG. The critic
network is used to compute Q(s,a) while the actor network establishes the action
selection policy through the computation of µ(s). To increase exploration, a ran-
dom term sampled from a random process is added to the actor value in the same
way than for NAF. The target value used to compute the loss function is then: yt =
r + γQ′(st+1, µ′(st+1; θµ′); θQ′).

2.3 Agent & Environment Implementation

Gym package (python) is used to set up the Ising environment for both problems.

2.3.1 Simulating the Dynamics of the Ising Model with RL

For the first problem, we want to reproduce the behaviour at equilibrium of the Ising
Model when simulated using an RL approach.
The environment stores the physical properties of the model, i.e., its current temper-
ature and the size of the lattice as well as its configuration (which spins are up and
which ones are down).

The environment is initialized with all the spins pointing at the same direction or
with random directions according to a random variable that follows a uniform dis-
tribution between [-1 and 1], with negative values resulting in -1 orientation for the
spins and the other way around for positive values.There are only two possible ac-
tions to be performed on the environment for each step: Flipping a spin or maintain-
ing its orientation.

The Metropolis algorithm [17] defines the acceptance probability of a transition be-
tween lattice configurations, which for single-flip dynamics corresponds to the prob-
ability of flipping a certain spin (P(↑↓)), to be equal to Equation (2.12) in order to
satisfy detailed balance at equilibrium.

P(↑↓) = min(1, e−β∆E), (2.12)

Note that β = 1
kBT and ∆E is difference of energy between the new state (after the

flip is performed) and the previous state.

Inspired by this probability definition, the rewards of the environment are set to:

• Flip Action: −∆E.

• No-Flip Action: 0.

With this reward definition, unfavorable energy states are in principle not encour-
aged by the environment. Note that for γ = 0 the Q-values for each action will

8 Chapter 2. Reinforcement Learning in a Classical Environment

be equal to −∆E for any flip action and 0 for the no-flip action. With such reward
definition, using a Softmax policy for action selection and taking into account that
the configuration probability at equilibrium follows the Boltzmann distribution, the
detailed balance condition is fulfilled ((2.13)).

P({σ}1)P({σ}1 → {σ}2) = e−βE1
e−β(E2−E1)

e−β(E2−E1) + 1
= e−βE2

1
e−β(E2−E1) + 1

= e−βE2
1

e−β(E2−E1) ∗ (1 + eβ(E2−E1))
= e−βE2

e−β(E1−E2)

1 + e−β(E1−E2)
= P({σ}2)P({σ}2 → {σ}1).

(2.13)
The agent will follow a single spin-flip strategy per step. Each spin will be selected
randomly following a uniform distribution across all the spins in the lattice. There-
fore, the energy variation of the system per step depends uniquely on the orientation
of the target spin and its nearest neighbours. Each of these 5 spins can only take 2
orientation values, yielding a total amount of 32 different states for the environment
to be in (if each spin is identified with a specific location). Moreover, the state space
of the environment can be reduced to only 5 states by using the existing symme-
tries on the energy definition. For example, the state {σi}i∈n.n. = [−1,−1, 1,−1,−1]
should behave in the same way that the state {σj}j∈n.n. = [1, 1,−1, 1, 1] as for both
states flipping the central spin would result in a decrease of -4J of the energy of the
system. For this reason, the observation obtained from the environment will be a
one-hot encoding of these 5 energy states.

In the same way, each state can only transition to two other states, either itself (if
the action is no-flip) or the state which energy has the same absolute value but dif-
ferent sign than the original. Therefore, we will be working with a deterministic
classical and discrete environment.

Finally, the agent will use one-step Q-learning as RL algorithm, with Softmax selec-
tion policy. The action-value function will be computed with a simple single-layer
neural network, which takes as inputs the observation of the environment, i.e., a
one-hot encoded vector of the energy value of the configuration. Also, the reduced
temperature of the system T∗ = kBT will be used as τ for the Softmax policy.

2.3.2 Obtaining the Antiferromagnetic State of the 2-D Ising Lattice

For this second problem, the goal of the agent is to transform the 2-D Ising lattice,
starting from a random configuration, to the antiferromagnetic state. That is, all the
nearest neighbour spins have opposite orientation to the central spin. To do so, the
agent will perform single spin-flips at each step. Note that the antiferromagnetic
state is the state with the highest energy of the system, with value equal to twice the
number of spins in the lattice, nspins, if J equals one. In order to consider the solution
to be relevant, it has to be reached in less steps than the amount of spins in the lattice.

The environment stores the current configuration of the lattice as well as the number
of flips that did not increase the energy of the system, considered incorrect.

Each step, the agent chooses a spin and flips it. Therefore, the action space has di-
mension nspins. The resulting reward is defined as ∆E

∆Emax . For the 2-D Ising lattice the
maximum variation of energy between two states due to a spin-flip is 8J. An episode

2.4. Experiments & Results 9

ends whenever the antiferromagnetic state is reached, providing an additional re-
ward equal to K divided by the number of incorrect flips, with K being a positive
arbitrary parameter. Thus, the agent obtains the maximum possible reward for an
episode, when it reaches the final state without making any mistakes.
The observation returned to the agent is the array of spin orientations after the spin
is flipped and has dimension nspins x nspins.

Regarding the agent, the DQN Agent implementation from the keras-rl package will
be used. The network architecture depends on the size of the lattice (as seen in the
next section), and combines both convolutional and fully-connected layers.

2.4 Experiments & Results

2.4.1 Simulating the Dynamics of the Ising Model with RL

We train the agent at different temperatures, starting from T* = 1.5 and up to T* = 3.0
with an increase of 0.1 each iteration. At each temperature the training is performed
for 10.000 steps and tested over 300.000 steps. For J=0, T∗critical should be close to 2.26
in a lattice with infinite dimension. However, since the lattice used will have a lim-
ited size of 20x20 and 40x40 spins, T∗critical value will be modified due to finite-size
effects. To reduce such effects, periodic boundary conditions will be applied. Also,
the lattice is initialized at the ferromagnetic state, which is the equilibrium state of
the lattice for temperature below the critical temperature.

One-step Q-learning with learning rate α = 1 is used as the RL algorithm for the
agent. The action-value function is approximated by a simple neural network that
has a 5 dimensional vector as input, which corresponds to the one-hot encoded en-
ergy state, and 2 outputs, the Q values for the possible actions. The network is op-
timized minimizing the loss function in (2.14) using the gradient descent algorithm
with 0.1 learning rate.

Li(θi, s, a) =
(

r + γ max
a′
Q(s′, a′; θi)−Q(s, a; θi)

)2

(2.14)

For each lattice size, multiple discount factors are tested for the agent. The magneti-
zation of the system is sampled every 300 testing steps and its mean absolute value
is computed at the end of the testing phase per each temperature.

The results for the 40x40 lattice are shown in Figure 2.2. The agent is able to re-
produce the behaviour at equilibrium of the system as the transition between the
ordered and disordered phases is clear and found around T∗ ∼ 2.4. The fact that
the agent is able to control the temperature of transition is particularly interesting,
reducing its value as γ increases.

The same behaviour is observed for the 20x20 lattice (Figure 2.2) but the finite-
size effects are far more relevant. For instance, it is clear that the mean absolute
magnetization for the disordered phase is higher than for the previous case and the
transition is less sharp.

10 Chapter 2. Reinforcement Learning in a Classical Environment

FIGURE 2.2: Mean absolute magnetization for a spin of a 40x40 Ising
lattice (left) and a 20x20 Ising lattice (right) for multiple discount fac-

tors γ. T∗critical decreases as γ increases.

FIGURE 2.3: Q-Network model for a 6x6 Ising Lattice.

2.4.2 Obtaining the Antiferromagnetic State of the 2-D Ising Lattice

For this problem, we perform a proof of concept with 6 x 6 2-D Ising Lattice first
and an 8x8 afterwards. The optimal network architecture is shown in Figure 2.2. It
consists of two two-dimensional convolutional layers with ReLU activation function
[18] and a kernel of 3 by 3 as the interactions between spins in the layer have this
range of effect. In addition, the previous outputs are flattened and introduced into a
fully-connected layer with ReLU activation and an output layer, that has linear acti-
vation function.

The optimization algorithm used is the Adam [19] algorithm with 0.001 learning rate.
During training, the agent has 100 steps per episode to transform the initial random
lattice configuration, sampled from a uniform distribution, into the antiferromag-
netic state. This tends to generate configurations with average Magnetization close
to 0, but with some variation between the energies of multiple initial states.

For a lower number of steps per episode, the convergence of the algorithm is slightly
slower as the exploration of the state space is reduced. The exploration range of the
state space becomes specially salient when taking into account that the initial con-
figuration of the lattice has the previously mentioned restrictions. We would expect
that a wider variety in initial configurations would make this difference disappear.

On the other hand, during the testing phase of the model, the agent is only allowed
to perform a maximum of 36 flips per episode, which is the number of spins in the
lattice. This restriction is imposed as a non-intelligent agent, that flipped a spin up
and the next one down in order, would reach the antiferromagnetic state in that

2.4. Experiments & Results 11

FIGURE 2.4: Agent success rate dependent on the discount factor and
number of steps per episode. 1000 test episodes with random initial

configuration. 200.000 training steps per parameter set.

amount of steps.

The other crucial parameter for the result of the network is the discount factor γ
(Figure 2.4). The higher the discount factor, the better results the agent is able to pro-
duce. Specifically, the success rate of the agent, i.e., the amount of episodes that reach
the antiferromagnetic configuration, for γ = 0.6 is around 60% while for γ = 0.9 the
success rate is higher than 96%. However, for γ > 0.9 the model displays conver-
gence issues during training.

This behaviour is due to the additional reward obtained by the agent if it succeeds
on reaching the final state. A small value of the discount factor reduces the influence
of this final reward on the state-action value. Therefore, the incentive for the agent
to end the episode is lower. On the other hand, for very high discount factors, such
final reward becomes dominant in the Q value computation, which might compen-
sate the negative immediate reward of incorrect flips.
Also, we use an ε-greedy policy with ε = 0.1, train the agent over 200.000 steps and
test it over 1000 episodes. The target network weights are updated using a soft up-
date with τ = 0.01.

In Figure 2.5 the obtained results are displayed. The first one is an histogram on
the amount of errors per episode made by the agent during testing. Note that a flip
producing a null variation in energy for the system is also considered an incorrect
flip. The agent makes ≤ 5 mistakes per episode with probability close to 0.7. The
second figure is a histogram on the amount of steps performed per episode. Again
the agent is able to solve the problem in ≤ 20 steps with a probability close to 0.7.
However, for 35 of the 1000 episodes the agent is not able to solve the problem, yield-
ing a success rate of 0.965.

In Figure 2.7 a random sample of 50 testing episodes is displayed. We note that
there is no clear correlation between the initial energy of the lattice and the perfor-
mance of the agent. On the other hand, and as expected, the episodes with higher
incorrect steps also have a higher total amount of steps.

For the 8x8 lattice we use the same parameters with the following slight modifi-
cations: The number of outputs is set to 64, and the input size is an 8x8 array. In ad-
dition, the number of steps per episode during training is set to 500 as the state space
dimension is also increased. For the test phase, the number of steps per episode is

12 Chapter 2. Reinforcement Learning in a Classical Environment

FIGURE 2.5: Left: Histogram of the number of steps per episode with
reward lower or equal to zero (errors). Right: Histogram of the total

number of steps per episode. Both for an 6x6 Ising lattice.

FIGURE 2.6: Left: Histogram of the number of steps per episode with
reward lower or equal to zero (errors). Right: Histogram of the total

number of steps per episode. Both for an 8x8 Ising lattice.

set to 64. Moreover, we expand the exploration of the action space by increasing the
ε parameter of the policy to 0.25. Finally, we train the agent for 500.000 steps instead
of the previous 200.000.

The best obtained results are displayed in Figure 2.6. The success rate of the agent is
around 40%, much lower than for the previous lattice. Also the number of errors per
episode is much higher. A sample of the test episode results is displayed in Figure
2.7. It is clear that scaling this approach for solving the MaxCut problem is complex
and its capacity is limited. The optimization of the 8x8 lattice would already require
an in-depth parameter exploration which is not the goal of this thesis.

FIGURE 2.7: Results obtained for the 6x6 (left) and 8x8 (right) Ising
Lattice. Steps taken (blue), errors (red) and energy of the initial con-

figuration (black).

13

Chapter 3

Deep Reinforcement Learning in a
Quantum Environment

3.1 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) [8] is a very recent
algorithm (2014) aimed towards obtaining quasi-optimal solutions for combinatorial
problems. The algorithm uses classical-quantum approach based on the classical
optimization of quantum states. Combinatorial problems are defined by a set of m
binary clauses, Cα, each of which is either fulfilled or not by a set of n bits, z. If a
clause is fulfilled it yields a value of 1, otherwise its value is 0. The goal of the QAOA
is to find a z that satisfies as many clauses as possible. Thus, the objective function
to maximize, C(z), is defined as Equation (3.1).

C(z) = ∑
α

Cα(z). (3.1)

Note that the algorithm will likely not produce the optimal solution but rather an
approximate to it within a reasonable amount of time.

The QAOA is based on a series of pairs of unitary transformations applied to a
quantum system of n qubits. Each qubit is a two-level quantum system within a
2-dimensional Hilbert space (H 2). At the beginning, every qubit is initialized as
|+〉 = 1√

2
|↑〉 + 1√

2
|↓〉, where |↑〉 and |↓〉 are the eigenstates of the σz matrix and

form a basis of the space. Therefore, the whole 2n-dimensional initial system state
becomes |s〉 = |+〉 ⊗ |+〉 ⊗ ...⊗ |+〉. Note that storing the wave function of the state
in a classical computer would require an exponential increase in memory when n
increases, while that is not the case if a quantum computer is used.

The algorithm applies p pairs of unitary transformations, U(B, β) and U(C, γ) each
of which depends on a different operator and a parameter that acts as a scaling factor
for the rotation, β and γ respectively. While C is the quantum form of the objective
function, B is independent on the combinatorial problem we want to solve and its
form is given by (3.2).

B =
n

∑
j=1

σx
j , (3.2)

With σx
j the x-axis Pauli matrix for the j-th qubit. After such transformations, and for

a certain p, the final angle dependent quantum state of the n-qubit system becomes:

|γ, β〉 = U(B, βp)U(C, γp)U(B, βp−1)U(C, γp−1)...U(B, β1)U(C, γ1) |s〉 . (3.3)

14 Chapter 3. Deep Reinforcement Learning in a Quantum Environment

The form of these unitary transformations are shown in Equation (3.4)

U(B, β) = e−iβB = e−iβ ∑n
j=1 σx

j = ∏
j

e−iβσx
j

U(C, γ) = e−iγC = e−iγ ∑α Cα = ∏
α

e−iγCα

(3.4)

Therefore, the quantum state obtained after these rotations uniquely depends on 2p
parameters and can be generated with a quantum circuit of depth mp+p at most.
Let Fp be the average value of the objective operator in this state

Fp = 〈γ, β|C |γ, β〉 , (3.5)

The algorithm requires an optimization strategy that finds the optimal angle config-
uration that yields the maximum expectation value Mp. Notice that Mp ≥ Mp−1 as
βp and γp can be set to 0 such that U(B, βp) = U(C, γp) = I.
Once Mp is found, and due to the form of Fp, a quantum computer will be able to
generate a string of bits z for which C(z) is close to Mp or larger in an efficient way.

The goal of this second part of the project is to use reinforcement learning approaches
as the optimization strategy for the QAOA when applied to the MaxCut problem.

MaxCut

The goal of the QAOA algorithm will be to find the MaxCut for a graph with bounded
degree. The graph will have n vertices each of which will have a bounded number of
edges connecting itself to other vertices in the graph. For r-regular graphs, all vertex
will have exactly r connections.

Finding the MaxCut of the graph means dividing the vertices into two types, +1
and -1 for example, such that the amount of connections between vertices of dif-
ferent type is maximal. To do so using the QAOA algorithm, each vertex will be
encoded by a qubit, and each state of the computational basis will identify the type
of the vertex once it is measured.

With this setup, the objective function to be maximized can be expressed in terms
of quantum operators as

C = ∑
〈jk〉

1
2
(−σz

j σz
k + I), (3.6)

with ∑〈jk〉 being the sum over all the edges of the graph and j and k the identifier
of the vertices connected by the edge. Since the eigenvalues of the σz are +1 and
-1, each edge will contribute to either 1 or 0 to the objective function depending on
whether it connects qubits measured in different eigenstates or not.

Using (3.6), operator U(C, γ) can be constructed in the following way

U(C, γ) = ∏
〈jk〉

e−iγ
−σz

j σz
k+I

2 (3.7)

3.1. Quantum Approximate Optimization Algorithm 15

FIGURE 3.1: Example of the quantum circuit required to generate the
operator in (3.8) with γ = π = −2φ using the IBM Quantum Experi-

ence. Note that Rφ = U1.

Each of the terms of the product, that corresponds to the operator that arises due to
each edge between qubits j and k, can be expressed as follows

e−iγ
−σz

j σz
k+I

2 = e−iγ

−

1 0
0 −1

⊗
1 0
0 −1

+

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2 =

= e−iγ

−

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

+

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2 = e

−iγ

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

=

=

1 0 0 0
0 e−iγ 0 0
0 0 e−iγ 0
0 0 0 1

(3.8)

This operator can be constructed combining the following one-qubit and two-qubits
quantum gates in Equation (3.9) as shown in Figure 3.1 [20]. Note that the matrix for
the CNOT gate corresponds to a CNOT gate in which the second qubit (qubit k) is
the control qubit.

X =

(
0 1
1 0

)
Rφ =

(
1 0
0 eiφ

)

CNOT =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

Rx(θ) =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
(3.9)

By sequentially introducing this gates between each of the connected qubits of the
graph, the unitary transformation U(C, γ) is applied. On the other hand, U(B, β),
can be implemented as the Rx(θ) gate. Once all these gates are applied for all angles,
the state |γ, β〉 for the MaxCut problem is obtained.

Evaluating the goodness of the obtained solution is another issue that needs to be ad-
dressed. The MaxCut for the Ising model, which corresponds to a 4-regular graph,
could be computed in a very simple way (2*n) due to the geometry of the graph.
However, this might not always be the case due to frustrations of edges that arise

16 Chapter 3. Deep Reinforcement Learning in a Quantum Environment

FIGURE 3.2: Examples of a 3-regular graph with 8 vertices.

from the geometry of the problem. Examples of that are shown in Figure 3.2 for a
3-regular graph with 8 vertices. Note that the MaxCut for this type of graph would
be 12 for the ideal case (a cube) but due to the geometry of the graph, such cut is not
achievable for the cases in 3.2 which have a MaxCut of 10 edges.

One way to evaluate the correctness of the cut obtained with the QAOA would be to
compare it with the results of other well-established classical algorithms, but since
we will be working with small graphs it will not be required.

Finally, it is also important to define the range of values that will be explored for
γ and β by the optimization agent. In general, γ should be explored within the in-
terval [0, 2π) since C has integer eigenvalues, while β should lie between 0 and π.
For the specific case of the MaxCut problem there are additional symmetries that
allows the restriction of both parameters into a smaller range. Specifically, since
U(B, π

2) = (σx)⊗N it commutes through the circuit and thus it is possible to define
the range of β as [0, π

2).

3.1.1 State of the Art

In [8] the authors suggest the possibility of evaluating Fp = 〈γ, β|C |γ, β〉 in a fine
grid as long as the partitions are polynomial in n and m. Additionally, for the Max-
Cut problem, they present an optimization strategy consisting on dividing the whole
graph in subgraph types which size depends on p, optimizing these subgraphs inde-
pendently, and weighting its cut using the number of occurrences of each subgraph
on the whole graph. These subgraphs arise when analyzing each clause Cjk in Fp.
Specifically, due to the commutation of the Pauli-X and Pauli-Z operators applied to

3.1. Quantum Approximate Optimization Algorithm 17

different qubits as in (3.10) (exemplified for p = 1).

〈γ, β|Cjk |γ, β〉 = U†(C, γ)U†(B, β)(−σz
j σz

k + I)U(B, β)U(C, γ) =

= U†(C, γ)∏
l

eiβσx
l (−σz

j σz
k + I)∏

l
e−iβσx

l U(C, γ) =

= U†(C, γ)eiβ(σx
j +σx

k)(−σz
j σz

k + I)e−iβ(σx
j +σx

k) ∏
l 6=j,k

eiβσx
l e−iβσx

l U(C, γ)

= U†(C, γ)eiβ(σx
j +σx

k)(−σz
j σz

k + I)e−iβ(σx
j +σx

k)U(C, γ)

(3.10)

In the same way, all the terms in U(C, γ) that do not involve operators σz
j or σz

k will
also cancel out. Thus, for p=1 each clause is only affected by its edge and its imme-
diately adjacent edges. In general, for any p, each clause would be affected by those
that are at distance smaller or equal than p.

In the same publication, it is also shown that the mean C(z) obtained sampling m2

times from the state |γ, β〉 will be within 1 of Fp(γ, β) with probability 1− 1
m . More-

over, the generated classical bit strings will then likely produce C(z) close to Fp(γ, β).
Further proof on the concentration of the objective function value is provided in [21].

Finally, 2-regular graphs (ring of disagrees) and 3-regular graphs are studied. It
is concluded that, for the former, the algorithm obtains a cut of size n 2p+1

2p+2 − 1 or
bigger for the optimal configuration of parameters, which is close to the optimal one
of n. Whereas for the latter, the algorithm produces a cut with size of at least 0.6924
of the optimal cut.

In [22] the authors first use BFGS to perform brute force optimization of the parame-
ters for 3-regular graphs, obtaining for all graphs a non-degenerate global maximum
and finding some tendencies on the evolution of γp and βp as p increases. Specifi-
cally, γ is found to increase smoothly while β decreases smoothly with p. Moreover,
for regular graphs of the same degree, the optimal parameters seem to occupy ap-
proximately the same region of the space independent of the graph geometry. From
this tendencies, the authors propose an heuristic strategy to perform an optimiza-
tion in polynomial time instead of the exponential time of the brute force approach.
Essentially, they use the value of the angles for p to determine a good starting point
for the search of the optimal parameters for p+1. To do so, the angular parameters
are represented with the following Fourier-like transformation:

γi =
q

∑
k=1

uk sin
[(

k− 1
2

)(
i− 1

2

)
π

p

]
βi =

q

∑
k=1

vk cos
[(

k− 1
2

)(
i− 1

2

)
π

p

] (3.11)

The optimized angular parameters for p will then be described by the tuple (~u∗, ~v∗).
Using these tuple as heuristics to initialize γp+1 and βp+1 (for O(poly(p)) iterations)
proves to beat a brute force approach with random initialization, unless 2O(p) num-
ber of executions are performed.

A different optimization approach is followed by Crooks [23]. Instead of optimizing
the angle parameters for each specific graph, what is suggested is finding a global

18 Chapter 3. Deep Reinforcement Learning in a Quantum Environment

optimization protocol for an entire class of problem instances (for example graphs
with the same edge probability). Thus, the optimal parameters are such that

(β∗, γ∗) = − arg min
β,γ

1
|T| ∑

C∈T
〈γ, β|C |γ, β〉 (3.12)

With T the training set of problems and |T| the total number of problems in the
training set. The quantum circuit defining the objective function is implemented
into quantum virtual machine on top of Tensorflow and optimized using stochas-
tic gradient descent and back-propagation. Note that since gradient descent is used
the objective function multiplied by -1 so that the MaxCut for the graphs becomes
the minimum of the objective function. Results show that the MaxCut obtained
by the QAOA for p=8 is already better than the ones with Goemans-Williamson
[Goeamans], shown for graphs with number of vertices n ∈ [8, 17].

Guerreschi et Matsuura [24] study the computational time requirements of the QAOA
algorithm when implemented on real quantum hardware and compare them with
the AKMAXSAT classical solver [25]. The time required for the calculation of a single
instance |γ, β〉, T is equal to

T = TI + cdepth · TG + TM (3.13)

with cdepth the depth of the quantum circuit, TI being the time required to prepare
the initial state, TG the time duration of the quantum gates of the system averaged
over all types of gates used, and TM the time required to measure the qubits. The
total amount of time will then be multiplied by the total number of instances used
during optimization. The projection of the results show that the computation time
required for the QAOA using Nelder-Mead optimization would only surpass classi-
cal approaches when several hundreds of qubits would be used.

Wang et al. [26] present an analytical formula to compute classically 〈γ, β|Cjk |γβ〉
for p = 1 (3.14). Using this expression, the optimization of Fp can be performed in a
fully classical manner.

〈γ, β|Cjk |γβ〉 = 1
2
+

1
4

sin(4β) sin(γ)
[

cosdj(γ) + cosdk(γ)

]
− 1

4
sin2(β) cosdj+dk+λjk(γ)

[
1− cosλjk(2γ)

] (3.14)

dj + 1 is the number of edges connected to vertex j and λjk the number of triangles
in the graph that contain edge jk. Through this formula, the authors reach an ex-
pression (3.15) for Fp for triangle-free n-regular graphs, which will be useful when
testing our approach on the ring of disagrees problem.

Fp =
m
2
(1 + sin(4β) sin(γ) cos(n− 1)(γ) (3.15)

With m the number of edges in the graph. The previous expression is maximal for

F∗p =
m
2

[
1 +

1√
n + 1

(
1

n + 1

) n
2
]

. (3.16)

3.2. QAOA Environment 19

Finally, we mention one of the immediate applications of the QAOA algorithm pre-
sented in [27]. The authors use the QAOA algorithm to perform image segmentation
in medical images. To do so, each image is cropped into smaller-scale images of 3x3
and 4x4 pixels. Each pixel in the image is associated with a node of the graph and
every edge is weighted using the intensity of the pixel. Note that the problem would
have the same geometry than the 2-D Ising Lattice. The problem is then assimilated
to the max-flow min-cut problem, and successfully solved for a Coronary angiogram
image.

3.2 QAOA Environment

3.2.1 Discrete

The first environment to be tested will try to optimize a discrete version of the QAOA
algorithm. There are several reasons that lead us to choose this as starting point.
Firstly, and although we will be using a quantum computer simulator as back-end,
if we were to utilize this environment in combination with a real quantum computer,
we might not have the tools to generate all the continuous angular spectrum for γ
and β. Secondly, training the discrete environment should be easier than a continu-
ous one while obtaining relevant results.

The environment stores the number of qubits of the graph and its edges, and the
number of partitions into which each angle dominion is discretized. The environ-
ment has the following properties:

• Initial State: Initialize each qubit into |+〉 state. And return the first observa-
tion.

• Agent’s action: Select a site of the discretized (γ, β) lattice defining a value for
γp and βp. Apply operators U(C,γp) and U(B,βp) to the current quantum state.

• Action effect on the environment: Quantum state modified from |γ, β〉p−1 to |γ, β〉p.

• Observation: There are different observations that could be relevant in prin-
ciple. Firstly, and as suggested by [22], γ increases steadily with p while β
decreases. Therefore, it would make sense to include the angles obtained in
p-1 to predict the ones in p (not the whole set of angles since the dimension of
the input would then be different at each step). Moreover, although we want
to maximize 〈γ, β|C |γ, β〉, there are many other properties from the quantum
state at our disposal, that can be obtained measuring with different operators.
Specifically, we plan on using {σx

i }, {σ
y
i } and {σz

i }. Using these operators, the
initial observation used by our agent will be:

〈+|i σz
i |+〉i = 1,

〈+|i σ
y
i |+〉i = 0,

〈+|i σx
i |+〉i = 0, ∀i ∈ [1, n]

(3.17)

With n the number of qubits. We can also use other observables generated
with combinations of products of Pauli matrices for multiple qubits. On the
other hand, although using the whole wave function of the state is theoretically

20 Chapter 3. Deep Reinforcement Learning in a Quantum Environment

possible, the dimension of the observation would then increase exponentially
with the number of qubits on the graph, making the classical optimization
infeasible.

• Reward: For the reward system we also have several logical options. First and
foremost, since the length of the episodes is fixed at p steps, we can define a
reward of 0 for all steps before step p and a reward of Fp for that last episode.
With this approach we expect the algorithm to be less likely to get stuck in
optimal states achieved for smaller p, making the rest of rotations irrelevant
(with angles equal to 0).
On the other hand, we could also define an incremental reward for each step
of the episode (F1, F2 − F1, F3 − F2, and so on), which would result in the same
total reward than the first definition but increasing the likelihood of finding
optimal configurations for smaller p. Additionally, the reward could also be
computed as the difference between the obtained Fp and the best Fp observed
during training.

As for the implementation of the quantum circuit, a universal quantum source lan-
guage called Qibo will be used in combination with a quantum virtual machine vqm-
lite as they are developed by our group and thus their intricacies are better known.
Other options would include Project-Q [28] or QCGPU [29] both of which are open-
source and also implemented in our environment, but not tested.

It is important to note that since we are working with a quantum computer sim-
ulator, we can obtain the exact wave function of the |γ, β〉 state and thus compute
also Fp exactly for this state (with vector-matrix products). On the other hand, when
using a quantum computer, evaluating Fp would be done by averaging the cut of
the bitstrings, obtained when measuring the |γ, β〉 on the computational basis, over
several iterations.

Agent Properties

Regarding the agent structure, a dueling network architecture will be used, with
average dueling type as in equation (2.9), and trained using the DDQN algorithm.
Such agent will be implemented using the DQN agent from the Keras-rl package.
Note that for such implementation the network for both streams shares the same
weights except for the output layer. This might limit the network performance, but
should suffice for the goals of this work. As it will be seen in the results, the size
of the network (both its number of units and layers) will increase as p increases.
Moreover, the agent will use the Boltzmann policy as action selection policy, a soft-
update of the network weights, and Adam as optimization algorithm. Finally, it is
relevant to point out that the Keras-rl DQN agent uses the Huber-loss function as
minimization objective.

3.2.2 Continuous

The continuous version of the discrete environment will have the exact same prop-
erties except for the fact that the angle parameters applied to the environment will
not be obtained from a discretized lattice.

3.3. Results 21

FIGURE 3.3: Unsolved ring of disagrees graph.

FIGURE 3.4: F1 for the ring of disagrees graph.

Agent Properties

For the continuous version of the environment we will work with a DDPG agent
again implemented using the Keras-rl package. The network architecture will de-
pend on the value of p, but all hidden layers will use ReLU as its activation function
(as for the discrete case), soft updates for the target network will be used and Adam
as optimization algorithm. The random term added to µ(s) will be sampled from a
Ornstein-Uhlenbeck process.

3.3 Results

3.3.1 Ring of Disagrees

We will start testing our approach on the ring of disagrees graph, Figure 3.3, as its
maximum value for Fp is known exactly to be n 2p+1

2p+2 . To begin with, the dependence
of Fp on γ, β is studied for p = 1 evaluating F1 in a discretized γ, β lattice with 20
partitions (Figure 3.4). Two maximums and the same amount of minimums are ob-
served, and the maximum value for F1 is 7.5 as expected for a graph of n = 10 nodes.

Now that we know which are the optimal angles for p = 1, we start using our
discrete environment for the same value of p. The network has a unique hidden
layer with 64 units. The learning rate used for the Adam algorithm is 1e-3 which is
also the τupdate used for the soft update oF the target network weights.

The agent is trained over 10.000 steps with a memory limit of 500 steps. Each an-
gular parameter is divided in 20 partitions. The observations used by the agent are
the angles for the previous step (with initial value of 0 for both) and the average
value of σx

i , σ
y
i and σz

i .

22 Chapter 3. Deep Reinforcement Learning in a Quantum Environment

FIGURE 3.5: Evolution of the reward during training, tested every
1.000 steps. P = 1 (Top-left), p = 2 (Top-right), p = 3 (Bottom-left),

p = 4 (Bottom-right).

We observe that the network is particularly sensible to the τB parameter of the action
selection policy used, which controls the balance between exploration and exploita-
tion of the algorithm. For higher τB values the agent visits higher reward states in
less number of steps, but the algorithm is highly unstable and the weights of the net-
work do not converge to the desired ones. This instability increases as p increases as
we will see next.

For τB = 0.55 and sampling 32 instances from the memory at each step the algo-
rithm converges rapidly towards the state in Table 3.1.The evolution of the reward
during training is displayed in Figure 3.5. We observe that the algorithm is stable.

For p = 2 we try to initiate the training using the same network structure and using
the weights of the optimal configuration for p = 1 as initialization. This approach is
repeated for the next p as well (using the optimal configuration for p-1). However,
it performs poorly in all cases. There are two reasons that justify this poor perfor-
mance. First and foremost, by looking at the optimal results shown in Table 3.1, it is
clear that γi of the optimal state for different p values is modified. This is also the
main issue to be dealt with when trying to use the network trained for a certain p to
obtained results for higher p values. Second, we will see that the architecture of the
network changes with p and, therefore, its weights can not be initialized with the
previous p weights.

If we initialize the weights randomly and train for 30.000 steps with τB = 0.35 the
results obtained are shown in Figure 3.5. The network consists of two hidden layers
of 64 units each. Note that the maximum observed value is obtained before 10.000
steps of training (5.000 episodes), while if we tried to evaluate every point of the
discretized 4-dimensional angular lattice we would require 160.000 episodes.

3.3. Results 23

Ring of Disagrees Results
p γ β Fp Max(Fp)
1 γ1 = 2.3561 β1 = 1.1781 7.5 7.5
2 γ1 = 1.2566

γ2 = 2.5133
β1 = 1.2566
β2 = 0.7069

8.262 8.3̄

3 γ1 = 2.3562
γ2 = 0.6283
γ3 = 1.2566

β1 = 0.6283
β2 = 0.3142
β3 = 1.1781

8.670 8.75

4 γ1 = 2.5132
γ2 = 2.1991
γ3 = 2.1991
γ4 = 1.8849

β1 = 0.9424
β2 = 1.0996
β3 = 1.0996
β4 = 1.2566

8.74 9

TABLE 3.1: Ring of disagrees results with 20 partitions per angle.

FIGURE 3.6: Mean Q-value (left) and Huber loss (right) for each step
of an episode with τB=0.20 and a network with 4 hidden layers and

128 units.

For p = 3 similar results are found, with simply increasing the number of hidden
layers to 3 and the number of units per layer to 96. The algorithm is a bit more unsta-
ble but a great result is obtained with less than 20.000 steps (around 7.000 episodes).

For p = 4 the algorithm is not able to converge for tauB = 0.35 with networks of
<5 layers of depth. Reducing the τB parameter to 0.20 allows for the algorithm to
converge with only 2 layers of 64 units per layer depth, but in expense of reducing
exploration and an Fp of 8.65 is obtained after 40.000 steps. If we increase the num-
ber of layers to 4 and the number of units to 128 we reach the results in Figure 3.5,
with the the algorithm being less stable. The evolution of the mean Q(s,a) value of
each episode for this configuration is shown in Figure 3.6, as well as the evolution of
the loss function. We observe that the source of the oscillation in the reward is due
to the overestimation of a local optima (red box). Also, for p = 4 the memory limit
is increased to 1.000 steps to maintain a reasonable amount of episodes.

In Figure 3.7 the optimal states for each p are sampled 100.000 times and the proba-
bility of obtaining a cut depending on its size is shown. As predicted by the theory,
the cut size of the samples is very close to the Fp value of the state. The obtained
bitstring with maximum cut for the ring of disagrees problem is shown in Figure 3.8.

As a final remark, it is relevant to point out that the results obtained by the net-
work might vary within each execution as the algorithm might get stuck in local

24 Chapter 3. Deep Reinforcement Learning in a Quantum Environment

FIGURE 3.7: Probability of obtaining a certain cut size of the ring of
disagrees problem for p = 1 (blue), p = 2 (red), p = 3 (black) and

p = 4 (green).

FIGURE 3.8: Maximum cut for the ring of disagrees.

optima. Nonetheless, although we might not reach the exact optimal value at each
execution, very similar results are obtained.

3.3.2 Irregular Graph

After testing the algorithm for a 2-regular graph we will do the same for a graph in
which all nodes have 2 edges except for two nodes with a degree of 3. The structure
of the graph is shown in Figure 3.9. Again we explore F1 within a lattice of 20 parti-
tions (Figure 3.13) and observe that for this problem there is only a global maximum
and a global minimum, and additionally, there is a local maximum and a local min-
imum.

We use the same parameter configuration than for the previous graph (as they
are pretty similar with the irregular having less nodes). The results are shown in
Table 3.2 and Figure 3.11. Again we are able to achieve a pretty stable training with
better results for higher p value.

In Figure 3.12 the probability of obtaining a bitstring yielding a certain cut is shown.
As for the ring of disagrees , the produced bitstrings are concentrated around Fp.

With these results, both for a regular and irregular graph, we have performed a proof
of concept of the possibility of using RL as optimization algorithm for the QAOA for

3.3. Results 25

FIGURE 3.9: Structure of the irregular graph.

FIGURE 3.10: F1 for the irregular graph.

a certain p. However, there is a further development that could be done, which is
to train the network to be able to optimize all p values at the same time. Ideally, we
would like our network to be able to extrapolate the optimization strategy to any p
even if we train it for smaller p values. In this regard we propose a training strategy
in which per each episode the p value (number of steps per episode) is chosen ran-
domly within a certain range.

To get an insight on the difficulties that might arise, we plot in Figure 3.13 the in-
terpolated Q(s,a) function of the first set of parameters, γ1 and β1, for the optimal
networks obtained at each p. It is clear that the surface changes with p as the path
to reach better states for higher p is different. However, the localization of the maxi-
mum is more or less stable. Further tests need to be done for the other episode steps
in order to validate the proposed training strategy.

Finally, for this irregular graph we perform some tests using the continuous en-
vironment. We test the continuous approach for p = 2 and p = 3 without using
the wave function of |γ, β〉 as inputs. For p = 2 using 2 hidden layers with 32 neu-
rons per layer and a learning rate of 0.001 for the Adam optimization algorithm we
obtain a maximum Fp of 4.190. For p = 3 only increasing the amount of units per
layer to 100 we are able to reach a maximum Fp of 4.665. Further exploration of the
continuous remains to be done. The graph configuration producing maximum cut
for the irregular graph is shown in Figure 3.14.

26 Chapter 3. Deep Reinforcement Learning in a Quantum Environment

FIGURE 3.11: Evolution of the reward during training for the irregu-
lar graph, tested every 1.000 steps. P = 1 (Top-left), p = 2 (Top-right),

p = 3 (Bottom-left), p = 4 (Bottom-right).

Irregular Graph Results
p γ β Fp Max(Fp)
1 γ1 = 0.6283 β1 = 0.3142 4.091 -
2 γ1 = 0.6283

γ2 = 1.0995
β1 = 0.5498
β2 = 0.3142

4.593 -

3 γ1 = 0.6283
γ2 = 0.9425
γ3 = 0.9425

β1 = 0.4712
β2 = 0.3142
β3 = 0.1571

4.721 -

4 γ1 = 0.4712
γ2 = 0.7854
γ3 = 0.6283
γ4 = 0.6283

β1 = 0.4712
β2 = 0.3142
β3 = 0.1571
β4 = 0.1571

4.818 -

TABLE 3.2: Irregular graph results with 20 partitions per angle.

FIGURE 3.12: Probability of obtaining a certain cut size of the irreg-
ular graph for p = 1 (blue), p = 2 (red), p = 3 (black) and p = 4

(green).

3.3. Results 27

FIGURE 3.13: Interpolated Q value function for the first set of param-
eters (γ1, β1) for the irregular graph. P=1 (top-left), p=2 (top-right),

p=3 (bottom-left), p=4 (bottom-right).

FIGURE 3.14: Maximum cut for the irregular graph.

29

Chapter 4

Conclusions

In the first part of this work, we have designed a RL strategy to solve the MaxCut
problem for the 2-D Antiferromagnetic Ising Model, yielding good performance for
small lattices. The approach consists on using the lattice configuration as input to
the optimization agent.

Similarly, and inspired on the previous approach, we suggest characterizing the
|γ, β〉 state with the use of either the expected value for the Pauli operators for each
qubit, or its complete wave function, and then employ it as observation for the opti-
mization of the QAOA algorithm. This represents a novel formulation, in contrast to
the variational eigensolver approaches typically used for the optimization of quan-
tum problems (Reinforcement Learning Methods for Quantum Approximate Optimization
Algorithm, Artur Garcia and Jordi Riu, in preparation).

As proof of concept, we tested this modus operandi both for small regular and ir-
regular graphs, using discretized and continuous RL algorithms, and for several p-
levels, obtaining close to optimal results with few steps of training. We are currently
working on performing further exploration with higher complexity graph and big-
ger p values.

Additionally, more complex state representations using products of these operators
for several qubits could be used. Specifically, it seems promising to use the expected
value of each individual clause of the objective function as input, or an analogous
operator using σx and σy.

The obtained results suggest the possibility of using a global training strategy for
all p. Ultimately, we would want our network to receive p as an input value and
return the optimal angle configuration for it. To do so, we plan on using a training
strategy in which the length of the episode is chosen at random at the start of the
episode. As seen in the results for the irregular graph, the optimal angle configura-
tion at a certain step varies with the length of the episode, which suggests that the
optimization problem will require more sophisticated network models to be repro-
duced.

Another relevant characteristic of our work is the fact that all the computation of
the quantum estimates have been performed using the exact wave function of our
state. For higher number of qubits or when using a quantum computer, these quanti-
ties have to be estimated taking several measures of the properties of the state. Thus,
the amount of samples becomes a new parameter to take into consideration for the
performance of the agent.

30 Chapter 4. Conclusions

In conclusion, this work represents the first step towards finding a general RL ap-
proach for the optimization of the QAOA algorithm for the MaxCut problem.

31

Bibliography

[1] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum principal
component analysis”. In: Nature Physics 10 (2014), pp. 631–633. DOI: 10.1038/
nphys3029. arXiv: 1307.0401 [quant-ph].

[2] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. “Quantum Support Vec-
tor Machine for Big Data Classification”. In: 113, 130503 (2014), p. 130503. DOI:
10.1103/PhysRevLett.113.130503. arXiv: 1307.0471 [quant-ph].

[3] S. Aaronson. “Read the fine print”. In: Nature Physics 11 (Apr. 2015), pp. 291–
293. DOI: 10.1038/nphys3272.

[4] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum Random
Access Memory”. In: 100, 160501 (2008), p. 160501. DOI: 10.1103/PhysRevLett.
100.160501. arXiv: 0708.1879 [quant-ph].

[5] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. “Quantum-Enhanced
Machine Learning”. In: Phys. Rev. Lett. 117 (13 2016), p. 130501. DOI: 10.1103/
PhysRevLett.117.130501. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.117.130501.

[6] Steven H. Adachi and Maxwell P. Henderson. “Application of Quantum An-
nealing to Training of Deep Neural Networks”. In: arXiv e-prints, arXiv:1510.06356
(2015), arXiv:1510.06356. arXiv: 1510.06356 [quant-ph].

[7] Mohammad H. Amin et al. “Quantum Boltzmann Machine”. In: arXiv e-prints,
arXiv:1601.02036 (2016), arXiv:1601.02036. arXiv: 1601.02036 [quant-ph].

[8] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A Quantum Approxi-
mate Optimization Algorithm”. In: arXiv e-prints, arXiv:1411.4028 (2014), arXiv:1411.4028.
arXiv: 1411.4028 [quant-ph].

[9] Jordi Riu and Rossend Rey. “Microscopic Models Applied to Financial Mar-
kets”. In: (2015).

[10] Christopher Watkins. “Learning From Delayed Rewards”. In: (Jan. 1989).

[11] Volodymyr Mnih et al. “Human-level control through deep reinforcement learn-
ing”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. ISSN: 00280836. URL: http:
//dx.doi.org/10.1038/nature14236.

[12] Hado V. Hasselt. “Double Q-learning”. In: (2010). Ed. by J. D. Lafferty et al.,
pp. 2613–2621. URL: http : / / papers . nips . cc / paper / 3964 - double - q -
learning.pdf.

[13] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learn-
ing with Double Q-learning”. In: CoRR abs/1509.06461 (2015). arXiv: 1509.
06461. URL: http://arxiv.org/abs/1509.06461.

[14] Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Dueling Network Archi-
tectures for Deep Reinforcement Learning”. In: CoRR abs/1511.06581 (2015).
arXiv: 1511.06581. URL: http://arxiv.org/abs/1511.06581.

https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
http://arxiv.org/abs/1307.0401
https://doi.org/10.1103/PhysRevLett.113.130503
http://arxiv.org/abs/1307.0471
https://doi.org/10.1038/nphys3272
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
http://arxiv.org/abs/0708.1879
https://doi.org/10.1103/PhysRevLett.117.130501
https://doi.org/10.1103/PhysRevLett.117.130501
https://link.aps.org/doi/10.1103/PhysRevLett.117.130501
https://link.aps.org/doi/10.1103/PhysRevLett.117.130501
http://arxiv.org/abs/1510.06356
http://arxiv.org/abs/1601.02036
http://arxiv.org/abs/1411.4028
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581

32 BIBLIOGRAPHY

[15] Shixiang Gu et al. “Continuous Deep Q-Learning with Model-based Accel-
eration”. In: arXiv e-prints, arXiv:1603.00748 (2016), arXiv:1603.00748. arXiv:
1603.00748 [cs.LG].

[16] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learn-
ing”. In: arXiv e-prints, arXiv:1509.02971 (2015), arXiv:1509.02971. arXiv: 1509.
02971 [cs.LG].

[17] Metropolis NS et al. “Equation of State Calculations by Fast Computing Ma-
chines”. In: Journal of Chemical Physics 21 (Jan. 1953), pp. 1087–1092.

[18] Richard H. R. Hahnloser et al. “Digital selection and analogue amplification
coexist in a cortex-inspired silicon circuit”. In: Nature 405 (2000), pp. 947–951.

[19] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: arXiv e-prints, arXiv:1412.6980 (2014), arXiv:1412.6980. arXiv:
1412.6980 [cs.LG].

[20] Patrick J. Coles et al. “Quantum Algorithm Implementations for Beginners”.
In: arXiv e-prints, arXiv:1804.03719 (2018), arXiv:1804.03719. arXiv: 1804.03719
[cs.ET].

[21] Fernando G. S. L. Brandao et al. “For Fixed Control Parameters the Quan-
tum Approximate Optimization Algorithm’s Objective Function Value Con-
centrates for Typical Instances”. In: arXiv e-prints, arXiv:1812.04170 (2018), arXiv:1812.04170.
arXiv: 1812.04170 [quant-ph].

[22] Leo Zhou et al. “Quantum Approximate Optimization Algorithm: Performance,
Mechanism, and Implementation on Near-Term Devices”. In: arXiv e-prints,
arXiv:1812.01041 (2018), arXiv:1812.01041. arXiv: 1812.01041 [quant-ph].

[23] Gavin E. Crooks. “Performance of the Quantum Approximate Optimization
Algorithm on the Maximum Cut Problem”. In: arXiv e-prints, arXiv:1811.08419
(2018), arXiv:1811.08419. arXiv: 1811.08419 [quant-ph].

[24] G. G. Guerreschi and A. Y. Matsuura. “QAOA for Max-Cut requires hundreds
of qubits for quantum speed-up”. In: arXiv e-prints, arXiv:1812.07589 (2018),
arXiv:1812.07589. arXiv: 1812.07589 [quant-ph].

[25] Adrian Kuegel. “Improved Exact Solver for the Weighted MAX-SAT Prob-
lem”. In: EPiC Series in Computing 8 (2012). Ed. by Daniel Le Berre, pp. 15–
27. ISSN: 2398-7340. DOI: 10.29007/38lm. URL: https://easychair.org/
publications/paper/p3wf.

[26] Zhihui Wang et al. “Quantum approximate optimization algorithm for Max-
Cut: A fermionic view”. In: Physical Review A 97, 022304 (2018), p. 022304. DOI:
10.1103/PhysRevA.97.022304. arXiv: 1706.02998 [quant-ph].

[27] Lisa Tse et al. “Graph Cut Segmentation Methods Revisited with a Quantum
Algorithm”. In: CoRR abs/1812.03050 (2018). arXiv: 1812.03050. URL: http:
//arxiv.org/abs/1812.03050.

[28] Damian S. Steiger, Thomas Häner, and Matthias Troyer. “ProjectQ: An Open
Source Software Framework for Quantum Computing”. In: arXiv e-prints, arXiv:1612.08091
(2016), arXiv:1612.08091. arXiv: 1612.08091 [quant-ph].

[29] Adam Kelly. “Simulating Quantum Computers Using OpenCL”. In: arXiv e-
prints, arXiv:1805.00988 (2018), arXiv:1805.00988. arXiv: 1805.00988 [quant-ph].

http://arxiv.org/abs/1603.00748
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1804.03719
http://arxiv.org/abs/1804.03719
http://arxiv.org/abs/1812.04170
http://arxiv.org/abs/1812.01041
http://arxiv.org/abs/1811.08419
http://arxiv.org/abs/1812.07589
https://doi.org/10.29007/38lm
https://easychair.org/publications/paper/p3wf
https://easychair.org/publications/paper/p3wf
https://doi.org/10.1103/PhysRevA.97.022304
http://arxiv.org/abs/1706.02998
http://arxiv.org/abs/1812.03050
http://arxiv.org/abs/1812.03050
http://arxiv.org/abs/1812.03050
http://arxiv.org/abs/1612.08091
http://arxiv.org/abs/1805.00988

	Abstract
	Acknowledgements
	Introduction
	Reinforcement Learning in a Classical Environment
	Ising Model
	Q-Learning
	DQN
	Double Q-Learning
	Dueling Network Architectures
	Continuous Deep Q-learning: NAF & DDPG

	Agent & Environment Implementation
	Simulating the Dynamics of the Ising Model with RL
	Obtaining the Antiferromagnetic State of the 2-D Ising Lattice

	Experiments & Results
	Simulating the Dynamics of the Ising Model with RL
	Obtaining the Antiferromagnetic State of the 2-D Ising Lattice

	Deep Reinforcement Learning in a Quantum Environment
	Quantum Approximate Optimization Algorithm
	MaxCut
	State of the Art

	QAOA Environment
	Discrete
	Agent Properties

	Continuous
	Agent Properties

	Results
	Ring of Disagrees
	Irregular Graph

	Conclusions
	Bibliography

