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Abstract. A Poisson manifold (M2n,Π) is said to be bm-symplectic if it is symplectic on the
complement of a hypersurface Z and has a simple Darboux canonical form at points of Z (which
we will describe below). In this paper we will discuss a desingularization procedure which, for m
even, converts Π into a family of symplectic forms ωε having the property that ωε is equal to the
bm-symplectic form dual to Π outside an ε-neighborhood of Z and, in addition, converges to this
form as ε tends to zero in a sense that will be made precise in the theorem below. We will then
use this construction to show that a number of somewhat mysterious properties of bm-manifolds
can be more clearly understood by viewing them as limits of analogous properties of the ωε’s. We
will also prove versions of these results for m odd; however, in the odd case the family ωε has to be
replaced by a family of “folded”symplectic forms.

1. Introduction

A b-symplectic manifold is an oriented Poisson manifold (M,Π) which has the property that the
map Πn : M −→ Λ2n(TM) intersects the zero section of Λ2n(TM) transversally in a codimension
one submanifold Z ⊂ M . For such a Poisson manifold the dual to the bivector field Π is a
generalized De Rham form of b-type and defines a “b-symplectic”structure on M . These structures
and applications of them have been the topic of a number of recent articles (see [GMP],[GMP2],
[GL], [MO1], [FMM], [Ca], [MO2], [GMPS], [GLPR] [KMS], [GMPS2]) and generalizations of these
structures in which one no longer requires the transversality assumption above have also been
considered. In this paper we will be concerned with one such generalization, due to Geoffrey Scott
[S] in which the transversality assumption is replaced by the assumption that away from Z, M is
symplectic while at Z the Poisson structure has a simple Darboux canonical form. These structures
are known as bm structures (for reasons that will be clear below) and our goal in this paper will
be the “desingularization”of these structures: Where m is even, we will construct in a more or
less canonical way a family of symplectic forms on M , depending on a parameter ε, and having
the property that as ε tends to zero these forms tend in the limit to the bm form that is the dual
object to the bm Poisson bivector field Π. Where m is odd, we prove an analogous result, but with
the family of symplectic forms replaced by a family of folded symplectic forms. More explicitly we
prove (Theorems 4.1 and 6.1):

Theorem. Given a bm-symplectic structure ω on a compact manifold M2n let Z be its critical
hypersurface.

• If m is even, there exists a family of symplectic forms ωε which coincide with the bm-
symplectic form ω outside an ε-neighbourhood of Z and for which the family of bivector
fields (ωε)

−1 converges in the C2k−1-topology to the Poisson structure ω−1 as ε→ 0 .
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• If m is odd, there exists a family of folded symplectic forms ωε which coincide with the
bm-symplectic form ω outside an ε-neighbourhood of Z.

Our goal in introducing these families is that in attempting to define bm analogues of a number of
basic invariants of symplectic and folded symplectic manifolds such as symplectic volume and, for
Hamiltonian G manifolds, moment polytopes and Duistermaat-Heckman measures, one encounters
a number of frustrating “infinities”that are hard to interpret or eliminate. However, we believe
(and will verify below in a couple of important cases) that desingularization is an effective tool for
getting around this problem.

2. Preliminaries

Let M be a compact manifold and let Z ⊂ M a hypersurface in M . In [GMP] a b-symplectic
form was defined as being a 2-form in the complex of b-forms. In order to define this complex we
first considered the b-tangent bundle bT (M) (whose sections are defined as vector fields tangent to
the critical hypersurface Z) and its dual bT ∗(M). The complex of b-forms was introduced à la De
Rham as sections of the bundles Λk(bT ∗(M)).

In [S] a similar description was obtained for bm-symplectic forms. Let M be a compact oriented
manifold and let Z ⊂ M be a hypersurface in M, along with a choice of function x ∈ C∞(M)
such that 0 is a regular value of x and x−1(0) = Z. Given such a triple (M,Z, x), the fibers of the
bm-(co)tangent bundle are given by

bmTpM ∼=
{
TpZ+ < xm ∂

∂x > if p ∈ Z
TpM if p /∈ Z

bmT ∗pM
∼=
{
T ∗pZ+ < dx

xm > if p ∈ Z
T ∗pM if p /∈ Z

As in the case of b-manifolds, these fibres combine to form a bundle; a bm-manifold is a triple
(M,Z, x), along with these bundles.1

We then define

Definition 2.1. A symplectic bm-manifold is a bm-manifold (M,Z) with a closed bm-two form
ω which has maximal rank at every p ∈M .

To describe the properties of such forms we will need the following definitions and propositions
(see [S]).

Definition 2.2. A Laurent Series of a closed bm-form ω is a decomposition of ω in a tubular
neighbourhood U of Z of the form

(1) ω =
dx

xm
∧ (

m−1∑
i=0

π∗αix
i) + β

where π : U → Z is the projection, where each αi is a closed smooth De Rham form on Z, and β
is a De Rham form on M .

Proposition 2.3 (Scott). In a collar neighbourhood of Z, every closed bm-form ω can be written
in a Laurent form of type (1).

1By abuse of notation, we denote a bm-manifold by (M,Z), suppressing the function x. Note that Scott [S]’s
definition of a bm-manifold differs from ours by allowing local defining functions for Z.
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3. Symplectic foliations and normal forms for bm-symplectic manifolds

We begin by studying the symplectic foliation of the Poisson structure induced by a bm-symplectic
form on the critical hypersurface Z.

Proposition 3.1. Given a symplectic bm-structure with bm symplectic form ω, the closed one-form
α0 in the Laurent decomposition

ω =
dx

xm
∧ (

m−1∑
i=0

π∗(αi)x
i) + β

defines the codimension-one symplectic foliation F of the regular Poisson structure induced by the
dual bm-Poisson structure on the critical hypersurface Z. In addition one can find a Poisson vector
field v on Z transverse to this foliation.

See [GMP] and [GMP2] for the proof of this in the m = 1 case. (For m > 1 the proof is essentially
the same).

Since i∗L(dα0) = d(i∗Lα0) = 0 for all leaves L ∈ F , we have

(2) dα0 = β ∧ α0 for some β ∈ Ω1(Z).

As a consequence, the complex α0 ∧ Ω(Z) is a sub-complex of Ω(Z) and we have the following
short exact sequence of complexes

0 −→ α0 ∧ Ω(Z)−→Ω(Z)
j−→ Ω(Z)/(α0 ∧ Ω(Z)) −→ 0.

Thus, even though the form β is not unique for a fixed choice of α0, the projection jβ is unique
and d(jβ) = 0. Thus the first obstruction class cF ∈ H1(Ω(Z)/(α0 ∧ Ω(Z))) is defined to be
cF = [jβ] .

The following is theorem 4 in [GMP]:

Theorem 3.2. The first obstruction class cF vanishes identically if and only if we can choose the
defining one-form α0 of the foliation F to be closed.

Hence by Theorem 13 in [GMP] one gets

Theorem 3.3. If F contains a compact leaf L, then every leaf of F is diffeomorphic to L. Fur-
thermore, Z is the total space of a fibration f : M → S1 with fiber L, and F is the fiber foliation
{f−1(θ)|θ ∈ S1}.

In addition Corollary 14 in [GMP] implies:

Corollary 3.4. If cF = 0, and if the foliation contains a compact leaf L, then, the manifold Z
is the mapping torus of the map φ : L → L given by the holonomy map of the fibration over S1,

L×[0,1]
(x,0)∼(φ(x),1) .

(Recall that φ is the first return map of exp tv, where v is the unique vector field v satisfying the
equations {

ιvα0 = 1

ιvω = 0

where α0 is the defining one-form for the foliation F and ω a closed 2-form on Z that restricts to
the symplectic form on every leaf of F .)
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Remark 3.5. In the papers [GMP] and [GMP2] these results are, strictly speaking, only proved
for m = 1, but for m arbitrary the proofs are identical.

3.1. bm-versions of the Moser and Darboux theorems. For m = 1 the statement and proof of
these results can be found in [GMP2]. The proof in [GMP2] is based on the Moser path method for
b-symplectic structures; however, the Moser path method also works for bm-symplectic structures
(see [S]), so the results apply to bm−symplectic manifolds as well. The first of these theorems
asserts

Theorem 3.6. If ω0, ω1 are symplectic bm-forms on (M2n, Z) with Z compact and ω0|Z = ω1|Z ,
then there are neighbourhoods U0, U1 of Z and a bm-symplectomorphism ϕ : (U0, Z, ω0)→ (U1, Z, ω1)
such that ϕ|Z = Id.

(For the proof see [GMP2], Theorem 6.5). Consider now the decomposition of a bm form

(3) ω = α ∧ dx

xm
+ β, with α ∈ Ω1(M) and β ∈ Ω2(M).

To prove the bm-version of the Darboux theorem we will need

Proposition 3.7. (See Proposition 10 in [GMP]) Let α̃ = i∗α and β̃ = i∗β, where i : Z ↪→ M

denotes the inclusion. Then the forms α̃ and β̃ are closed. Furthermore,

(1) The form α̃ is nowhere vanishing and intrinsically defined in the sense that it does not
depend on the splitting (3). In particular, the codimension-one foliation of Z defined by α̃
is intrinsically defined.

(2) For each leaf L
iL
↪→ Z of this foliation, the form i∗Lβ̃ is intrinsically defined, and is a sym-

plectic form on L.
(3) In (3) we can assume without loss of generality that:

• The forms α and β are closed.
• The form α ∧ βn−1 ∧ df is nowhere vanishing.
• And, in particular, the form i∗(α ∧ βn−1) is nowhere vanishing.

We will now show

Theorem 3.8 (bm-Darboux theorem). Let ω be a bm-symplectic form on (M,Z) and p ∈ Z. Then
we can find a coordinate chart (U, x1, y1, . . . , xn, yn) centered at p such that on U the hypersurface
Z is locally defined by y1 = 0 and

ω = dx1 ∧
dy1
ym1

+

n∑
i=2

dxi ∧ dyi.

Proof. Write ω = α ∧ dx
xm + β, and α̃ = i∗α and β̃ = i∗β, with i : Z ↪→ M the inclusion. From

Proposition 3.7, for all p ∈ Z, we have α̃p non-vanishing. Thus α̃p ∧ β̃p 6= 0 and β̃p ∈ Λ2(T ∗pZ) has
rank n− 1. Thus we can assume

ω|Z = (dx1 ∧
dy1
ym1

+
n∑
i=2

dxi ∧ dyi)|Z .

and the assertion above follows from Theorem 3.6. �
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4. Desingularizing b2k-symplectic structures

Consider a manifold M equipped with a b2k-symplectic structure given by a b2k-symplectic
form ω. In view of the Laurent decomposition given in Proposition 2.3, we have in a tubular
neighbourhood U of Z

(4) ω =
dx

x2k
∧ (

2k−1∑
i=0

αix
i) + β

where αi = π∗(α̂i) with α̂i closed one-forms on Z and π : U → Z denoting the projection.

Let f ∈ C∞(R) be an odd smooth function satisfying f ′(x) > 0 for all x ∈ [−1, 1] as shown below,

0-1
1

and satisfying

f(x) =

{ −1
(2k−1)x2k−1 − 2 for x < −1

−1
(2k−1)x2k−1 + 2 for x > 1

outside the interval [−1, 1].

Now we scale the function f to construct a new function

(5) fε(x) :=
1

ε2k−1
f
(x
ε

)
.

Thus outside the interval [−ε, ε] ,

fε(x) =

{ −1
(2k−1)x2k−1 − 2

ε2k−1 for x < −ε
−1

(2k−1)x2k−1 + 2
ε2k−1 for x > ε

We replace dx
x2k

by dfε in the expansion (4) an ε-neighborhood and obtain a differential form

ωε = dfε ∧ (
2k−1∑
i=0

αix
i) + β

Since ωε agrees with ω outside an ε neighborhood of Z, it extends to a differential form on all
of M. We denote this extension (by abuse of notation) by ωε, the fε-desingularization2 of the
b2k-symplectic structure ω.

2Or deblogging
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Theorem 4.1. The fε-desingularization ωε is symplectic. The family ωε coincides with the b2k-
symplectic form ω outside an ε-neighbourhood. The family of bivector fields ω−1ε converges to the
Poisson structure ω−1 in the C2k−1-topology as ε→ 0 .

As a consequence of this theorem we obtain,

Theorem 4.2. A manifold admitting a b2k-symplectic structure also admits a symplectic structure.

In particular the topological constraints that apply for symplectic structures also apply for b2k-
symplectic structures.

This point of view in the study of bm-symplectic forms yields several consequences. In this paper
we concentrate on a couple of them concerning volume forms and Hamiltonian actions.

We now prove Theorem 4.1.

Proof. Clearly for all ε, the form ωε = dfε ∧ (
∑2k−1

i=0 αix
i) + β is closed since all the one forms αi

are closed.

Let us check that it is symplectic. Outside U, ωε coincides with ω. In U but away from Z,

ωnε =
dfε
dx
x−2kωn

which is nowhere vanishing. To check that ωε is symplectic at Z, observe that

ωε = dfε ∧ (

2k−1∑
i=0

xiαi) + β = ε−2k
df

dx

(x
ε

)
dx ∧ (

2k−1∑
i=0

xiαi) + β

which on the interval |x| < ε is equal to

ε−2k(
df

dx

(x
ε

)
dx ∧ α0) + β +O(ε)

and hence

ωε
n = ε−2k(

df

dx

(x
ε

)
dx ∧ α0 ∧ βn−1 +O(ε))

which is non-vanishing for ε sufficiently small because of Proposition 3.7 applied to the original
b2k-symplectic form and the definition of f . This proves that ωε is symplectic.

Let us now prove that the family of bivector fields ω−1ε converges to ω−1 when ε → 0 in the
C2k−1-topology.

Consider the form ω and the family ωε. Then in b2k-Darboux coordinates (Theorem 3.8),

ωε = ε−2kf ′
(x
ε

)
dx ∧ dy + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn

and

ω =
1

x2k
dx ∧ dy + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn

We wish to verify that the family ω−1ε of bivector fields given by

(6) ω−1ε = ε2kg
(x
ε

) ∂

∂x
∧ ∂

∂y
+

∂

∂x2
∧ ∂

∂y2
+ · · ·+ ∂

∂xn
∧ ∂

∂yn

where g(x) = 1
f ′(x) , converges to

(7) ω−1 = x2k
∂

∂x
∧ ∂

∂y
+

∂

∂x2
∧ ∂

∂y2
+ · · ·+ ∂

∂xn
∧ ∂

∂yn
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as ε tends to zero.

Let h(x) = ( d
dx)2k−1g(x). Then ω−1ε converges to ω−1 in the C2k−1 topology if εh

(
x
ε

)
converges

in the uniform norm to 2kx. But x2k = ε2kg
(
x
ε

)
for |x| > ε, so for ε < |x|, εh

(
x
ε

)
is equal to 2kx,

and for ε > |x| both functions are bounded by a constant multiple of ε.

Hence εh
(
x
ε

)
converges in the uniform norm to 2kx when ε → 0 and this gives the C2k−1-

convergence of (6) to (7), thus finishing the proof of the theorem.

�

5. Desingularization and volume formulae

5.1. Volume formulae for b2k-symplectic manifolds. We recall from section 5.1 in [S] the
following construction which relates the volume with the Laurent decomposition of a bm-symplectic
structure.

On a tubular neighbourhood U = Z × (−1, 1), ω = dx
x2k
∧ (
∑2k−1

i=0 xiαi) + β. Hence for Uε =
Z × (−ε, ε), the symplectic volume of M \ Uε is, up to a bounded error term, given by

(8)
2k−1∑
i=0

∫
U−Uε

dx

x2k−i
∧ αi ∧ βn−1

Furthermore,

(9) β = dx ∧ γ +
2k−1∑
j=0

xiπ∗(βj) +O(x2k)

where βj are 2-forms on Z. Plugging equation (9) into equation (8) we get,

(10) 2
2k−1∑
i=0

∫
Iε

dx

x2k−i
(

∫
Z
αi ∧ (

2k−1∑
j=0

xiβj)
n−1) +O(1)

where Iε = (−1,−ε) ∪ (ε, 1). Thus,

(11)

∫
M\Uε

ωn =
k∑
i=1

ciε
−2i−1 +O(1)

where the ci are linear combinations of the integrals∫
Z
αj1 ∧ βj2 ∧ · · · ∧ βjn

5.2. The desingularized version of this result. Let us compute the symplectic volume of M
with respect to the symplectic form

(12) ωε = dfε ∧ (

2k−1∑
i=0

xiαi) + β

Outside the tubular neighbourhood, Uε, ωε coincides with ω, so we get, for the integral of ωε
n

over the complement of this tube neighbourhood, the result described above. What about the
integral on the tube neighbourhood?

Recall that
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fε(x) = ε−(2k−1)f
(x
ε

)
where f is the function defined in (5) and thus the integral of ωε

n over Uε is given by

(13)

∫
Uε
dfε ∧ (

2k−1∑
i=0

xiαi) ∧ βn−1,

which by equation (9) can be rewritten as

(14)
2k−1∑
i=1

bi

∫ ε

−ε

dfε
dx
xidx

plus a bounded error term where the coefficients bi like the ci are linear combinations of the integrals∫
Z
αj1 ∧ βj2 ∧ · · · ∧ βjn .

To evaluate the integrals ∫ ε

−ε

dfε
dx
xidx

we make the change of coordinates x = εy which converts the integral above into

(15) ε−(2k−1)+i
∫ 1

−1

df

dy
(y)yidx.

Therefore since f(y) = −f(y) this integral is zero for i odd and equal to a positive constant

multiple of ε−(2k−1)+i for i even. Thus,

(16)

∫
Uε
ωnε =

k∑
i=1

aiε
−(2i−1)

where the ai’s like the bi’s and ci’s are linear combinations of integrals of type∫
Z
αj1 ∧ βj2 ∧ · · · ∧ βjn .

Finally combining equations (16) and equation (11) this proves

Theorem 5.1. The volume determined by the desingularized symplectic form ωε is given by a
formula of type ∫

M
ωε
n =

k∑
i=1

(ai + ci)ε
−(2n−1) +O(1)

where the coefficients ai’s and ci’s are linear combinations of integrals of type
∫
Z αj1∧βj2∧· · ·∧βjn .
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5.3. Leading terms. The leading term in the asymptotic expansion given by formula (11) is

(17)
2

2k − 1
ε−(2k−1)

∫
Z
α0 ∧ βn−1

and the leading term in the asymptotic expansion inside Uε is

(18) 4ε−(2k−1)
∫
Z
α0 ∧ βn−1

so adding equations (17) and (18) we obtain the following asymptotic result for the symplectic
volume of M with respect to ωε :

Theorem 5.2 (Asymptotics for the symplectic volume).∫
ωε
n ∼ 2(2 +

1

2k − 1
)ε−(2k−1)

∫
Z
α0 ∧ βn−1

6. Desingularizing b2k+1-symplectic structures

Let M be a b2k+1-symplectic manifold. In view of the Laurent decomposition given in Proposition
2.3 in an ε-neighbourhood of Z the b-symplectic form has the decomposition, in local coordinates

ω =
dx

x2k+1
∧ (

2k∑
i=0

π∗(αi)x
i) + β

Let f ∈ C∞(R) satisfy

• f > 0.
• f(x) = f(−x).
• f ′(x) > 0 if x < 0.
• f(x) = −x2 + 2 if x ∈ [−1, 1].
• f(x) = log(|x|) if k = 0, x ∈ R \ [−2, 2].
• f(x) = −1

(2k+2)x2k+2 if k > 0, x ∈ R \ [−2, 2].

Now define

(19) fε(x) :=
1

ε2k
f
(x
ε

)
and, as in the even case, let

(20) ωε = dfε ∧ (

2k∑
i=0

π∗(αi)x
i) + β

We can prove the following

Theorem 6.1. The 2-form ωε is a folded symplectic form which coincides with ω outside an ε-
neighbourhood of Z.

Proof. By definition of the function fε, ωε coincides with ω outside an ε-neighbourhood of the
critical hypersurface Z. As in the proof of Theorem 4.1, it is easy to see that ωε is symplectic away
from Z. In order to check that ωε is a folded symplectic structure, we need to check that ωε

n is
transverse to the zero section of the bundle Λn(T ∗M).
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Let us denote by αi = π∗(α̂i) with α̂i one-forms on Z. Since

ωε = dfε ∧ (
2k∑
i=0

xiαi) + β = ε−(2k+1) df

dx

(x
ε

)
dx ∧ (

2k∑
i=0

xiαi) + β,

on the interval |x| < ε we have

ωε = ε−(2k+1)(
df

dx

(x
ε

)
dx ∧ α0 +O(ε)) + β.

Thus,

ωε
n = ε−(2k+1)(

df

dx

(x
ε

)
dx ∧ α0 ∧ βn−1 +O(ε)).

By Proposition 3.7 the form α0 ∧ βn−1 is nondegenerate. Since df vanishes only at zero, df
dxdx ∧

α0 ∧ βn−1 does not vanish away from Z. Hence for ε sufficiently small, neither does ωnε .

From the construction, df
dx vanishes linearly at x = 0; so ωε

n intersects the zero section of
Λn(T ∗M) transversely. Thus ωε is a folded symplectic structure.

�

As a consequence of this fact we obtain the following theorem which generalizes some of the
results contained in Section 3 in [FMM] for b-symplectic manifolds:

Theorem 6.2. A manifold admitting a b2k+1-symplectic structure also admits a folded symplectic
structure.

7. Group actions and desingularization

We conclude by briefly mentioning some applications of desingularization which we propose to
explore in detail in a sequel to this paper.

In the papers [GMPS] and [GMPS2] it was shown that two classical theorems in equivariant
symplectic geometry, the Delzant theorem and the Atiyah-Guillemin-Sternberg convexity theorem,
have analogs for b-symplectic manifolds. We will show that these theorems also have analogs for
for bk-manifolds (except for the assertion in Delzant’s theorem that “the moment image of M
determines M up to symplectomorphism”).

In addition we will use the desingularization procedure to prove bk-versions of the Kirwan convex-
ity theorem and of the Duistermaat-Heckman theorem (concerning the latter the main ingredient
in our proof will be the observation that in the vicinity of the critical hypersurface Z, the desingu-
larized Duistermaat-Heckman measure can be easily computed and its behavior as ε tends to zero
easily described using Theorems 4.1 and 6.1.)

Finally we note that the complexities that are required to keep track of the “infinities” occurring
in the bk-versions of the theorems above can largely be avoided by viewing these infinities as coming
from the desingularization process as ε tends to zero.

7.1. A convexity result for bm-symplectic manifolds. In what follows we will assume for
simplicity that the hypersurface Z is connected; this assumption can readily be removed. As we
did in [GMPS] for b-symplectic manifolds, we can define Hamiltonian actions in the bm-setting.

Definition 7.1. An action of a torus G = Tn on the bm-symplectic manifold (M,ω) is called
Hamiltonian if it preserves ω and ιX#ω is bm-exact for any X ∈ g.
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Given such a Hamiltonian action on a bm-manifold M , this action is also Hamiltonian with
respect to the desingularized forms. Hence if m is even, we obtain a family of symplectic forms
and a family of Hamiltonian actions on the pairs (M,ωε). Observe in this case the desingularized
forms are symplectic and we can invoke the Atiyah-Guillemin-Sternberg convexity theorem for the
moment map ([At], [GS]).

Let us denote by Fε the associated family of moment maps. Then the image of these moment
maps are convex polytopes. To describe those polytopes, there are two cases to consider3:

Case 1. The image of the moment map coincides with the image of the moment map induced in
the symplectic foliation in the critical set 4. In this case the moment polytope for M coincides with
the image of the moment map on one of the symplectic leaves in Z.

Case 2. The function fε is one of the components of the moment map5. These polytopes are as
depicted in the picture below:

In this figure the region above lλ and the region below −lλ are independent of ε for ε < λ.

Finally for b2k+1-symplectic manifolds the desingularization gives us folded symplectic manifolds
and for these the moment polytopes are the folded versions of the polytopes above, as depicted in
the figure below:

3By analogs of the results in [GMPS], these are the only two cases that occur, even when the number of connected
components of Z is greater than 1.

4In this case all the connected components for the initial action have zero modular weight. Cf. [GMPS].
5In this case, all the connected components for the initial action have non-zero modular weight. Cf. [GMPS].
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We will give a more detailed and rigorous account of these results in a future paper. Similarly we
will prove analogues of the Duistermaat-Heckman theorems and the Delzant theorem using these
methods.
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