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Abstract.  Ionic complexes of a mesogenic cholesterol derivative with 1-alkyl 1 

(Cn)-3-methylimidazolium (CnMim) (n = 6–18) were prepared from ethanol solutions 2 

containing an equimolar mixture of cholesterol hydrogen phthalate (CHP) and 3 

[CnMim][OH]; the imidazoliun hydroxide was obtained by anion exchange of 4 

[CnMim][Br].  The complex samples, termed [CnMim][CHP], were examined for 5 

evaluation of their thermal transition scheme.  Except for two samples (n = 6, 8) 6 

showing no definite ordered phase, the complexes of n ≥ 10 formed a cholesteric (n = 7 

10, 12) or smectic (n = 14–18) mesophase in a considerably wide rage of temperature; 8 

the wider range reflects an additional thermotropic property as salts of CnMim with 9 

longer alkyl chains.  These fluid mesophases transformed into a mesomorphic vitreous 10 

solid without crystallization in a usual cooling process.  For the glassy mesomorphic 11 

samples of selected complexes (n = 10, 18), the enthalpy relaxation behavior was 12 

followed as a function of the aging temperature and time, and the data were analyzed in 13 

terms of a Kohlrausch-Williams-Watts type of stretched exponential equation.  Quite a 14 

narrow distribution of the relaxation time was observed for the "liquid-crystalline 15 

glasses", indicating a high uniformity of the relaxation mode. 16 

 17 

Keywords: cholesterol derivative; imidazolium salt; ionic complex; phase transition; 18 

glassy liquid crystal; enthalpy relaxation 19 

 20 

 21 

INTRODUCTION 22 

Liquid-crystalline (LC) compounds of low molecular weight, which show a generally 23 

low melt viscosity, hardly vitrify and easily crystallize in a cooling process from their 24 

mesomorphic molten state.  However, when the molecular weight of LC compounds is 25 

increased to ca. 500–2000 g mol−1 with modification using a branched structure and/or 26 

multiple mesogenic moieties, the products of medium molecular weight often form a 27 

glassy LC phase,1–5 as a result of suppression of the crystalizability.  Such 28 

mesomorphic glass-forming compounds can be applied to optical films or core elements 29 

in displays6 and other information materials,3,7 owing to the temperature-dependent 30 

property of changing coloration or light transmittance.  For example, the vitrifiable LC 31 

compounds are promising for a rewritable recording medium; viz., some information 32 

can be transferred mechanically, electrically or photochemically to a mesophase at a 33 

temperature above the glass transition temperature (Tg), and, by simple cooling, it can 34 

be stored in the glassy state.  The stored information can be erased, for instance, by 35 

isotropization at high temperatures, and then the second information can be written in 36 
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the same cycle.  The vitrification phenomenon also prevails in LC polymers of higher 1 

molecular weight, and they are usable as various optical media for storing information; 2 

however, it is usually difficult to attain the fast and uniform response of the 3 

mesomorphic assembly to external stimuli, principally due to the high melt viscosity. 4 

   In an earlier study,8 one of the authors (YN) successfully synthesized moderate 5 

molecular-weight compounds that form a glassy LC phase, without complicated 6 

procedures consuming time, namely, by a simple mixing and solvent-evaporating 7 

method.  Those compounds were actually stoichiometric 1:1 complex salts composed 8 

of a cholesterol ester/aliphatic amine pair; where cholesterol hydrogen phthalate (CHP) 9 

and cholesterol hydrogen succinate (CHS) were used as the cholesterol derivative 10 

component, and a series of normal alkyl amines (Cn-amine, n (carbon number) = 11 

12–18) were employed as the aliphatic amine component.  The structural formulae of 12 

the constituents are shown in Figure 1.  As indicated in this figure, the complexes are 13 

stabilized by ionic interaction through salt formation between the carboxylic acid of 14 

CHP （or CHS） and the amino group of Cn-amine.  After the study of thermotropic 15 

phase behavior for the complexes, we next investigated a so-called enthalpy relaxation 16 

phenomenon resulting from physical aging of vitreous solids, using "LC glasses" of 17 

CHP/Cn-amines each having a definite molecular weight (≤ 800).9,10  It was observed 18 

that the distribution of the relaxation time of the CHP/Cn-amine glasses was much 19 

narrower than that of conventional amorphous polymer glasses. 20 

 21 

<< Figure 1 >> 22 

 23 

   In extension of the above studies, we have lately undertaken a comparative 24 

examination using similar cholesterol-based complexes prepared by altering the ionic 25 

ingredients, to find a general tendency in thermal properties and also to suggest a 26 

practical functionality for this kind of complex materials.  In the present work, the 27 

previous cation component (i.e., Cn-amine) was replaced by 1-normal alkyl 28 

(Cn)-3-methylimidazolium cation, [CnMim]+, to produce an ionic complex, 29 

[CnMim][CHP] (see Figure 1).  This cation is known as a representative component of 30 

ionic liquids (ILs) which have attracted a great deal of attention not only as a green 31 

solvent11,12 but also as a new component of ion conductive materials.13  Mesomorphic 32 

ILs that are capable of forming a LC phase have also been extensively studied over the 33 

past decades.14–16  To take an advanced example of materialization, a one-dimensional 34 

ion conductive material was successfully designed by using ILs which formed a 35 

columnar LC phase.17,18 36 
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   In this paper, we demonstrate new preparation of a LC glass-forming complex 1 

material in which the core of familiar ILs, N-substituted imidazolium, is incorporated.  2 

The thermotropic phase transition and enthalpy relaxation behavior of [CnMim][CHP] 3 

complexes are characterized, with particular attention to the dependence on the Cn 4 

length of the imidazolium component. 5 

 6 

 7 

EXPERIMENTAL PROCEDURES  8 

Original materials 9 

Cholesterol hydrogen phthalate (CHP) was purchased from Tokyo Chemical Industry 10 

(Tokyo, Japan) and used after purification by recrystallization from ethanol solution.  11 

1-Bromodecane, 1-bromododecane, 1-bromotetradecane and 1-bromohexadecane were 12 

purchased from Tokyo Chemical Industry, and employed without further purification.  13 

1-Methylimidazole, 1-bromobutane, 1-bromooctane, 1-bromooctadecane, ethyl acetate, 14 

acetonitrile and ethanol (HPLC grade) were purchased from Wako Pure Chemical 15 

Industries (Osaka, Japan), and 1-bromohexane and toluene were purchased from 16 

Nacalai Tesque (Kyoto, Japan); they were all used as supplied.  An ion exchange resin, 17 

Amberlite® IRA-400 (chloride form), was purchased from Sigma-Aldrich (Tokyo, 18 

Japan) and used after anion exchange from chloride to hydroxide by immersion into 1 19 

mol L−1 NaOH aqueous solution. 20 

 21 

Synthesis of 1-Cn-3-methylimidazolium bromide ([CnMim][Br]; n = 6–18) 22 

All the N-substituted imidazolium salts used, [CnMim][Br] (n = 6–18), were 23 

synthesized through N-alkylation/quaternization of 1-methylimidazole with different 24 

alkyl bromides by reference to the literature,19,20 as follows: 1-methylimidazole (0.10 25 

mol) was dissolved in toluene (50 mL) at ambient temperature (~25 °C), and alkyl 26 

bromide (0.15 mol) was added to the solution.  The mixture was stirred at 65 °C for 24 27 

h in a round-bottomed flask equipped with a reflux condenser under a dry N2 28 

atmosphere.  Toluene solvent was removed by decantation (for n = 6 and 8) or 29 

evaporation (for n = 10–18), and the crude product was dissolved in acetonitrile and 30 

then dropped into ethyl acetate with vigorous stirring.  After decanting of ethyl acetate, 31 

the remaining solvent was removed by heating the IL phase to 50 °C and stirring while 32 

on a vacuum line for 24 h.  The salt products thus obtained were all identified as the 33 

respective objects of [CnMim][Br] by 1H NMR measurements (see, for example, the 34 

spectrum of [C10Mim][Br] given in Figure 4b). 35 

 36 
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Preparation of [CnMim][CHP] complexes 1 

Figure 2 shows an outline chart of the preparation route to the target complexes, 2 

[CnMim][CHP], from [CnMim][Br] and CHP as the starting materials. 3 

 4 

<< Figure 2 >> 5 

 6 

   By neutralizing amino acid with imidazolium hydroxide, Fukumoto et al. 7 

successfully prepared amino acid ionic liquid.21  According to the method, we 8 

exchanged bromide ion of [CnMim][Br] salts (n = 6–18) to hydroxide ion ([OH]), in 9 

advance of the complexation of imidazolium cation with carboxylate anion of CHP.  10 

Each [CnMim][Br] was dissolved in ethanol at 2 wt% with stirring at room temperature 11 

(25 °C).  The [CnMim][Br]/ethanol solutions thus prepared were each passed through 12 

a column filled with the hydroxide-exchanged Amberlite® IRA-400, and a series of 13 

[CnMim][OH]/ethanol solutions were obtained.  The absence of bromine in the latter 14 

solutions was confirmed by energy dispersive X-ray analysis.  Then, a weighed 15 

amount of CHP was dissolved in each [CnMim][OH] solution with stirring at 25 °C for 16 

24 h, so that the mixture contained equimolar quantities of COO− in CHP and 17 

imidazolium cation.  The mixed solutions were each poured into a glass tray and dried 18 

at 25 °C.  After further drying at 40 °C in vacuo for 24 h, [CnMim][CHP] complexes 19 

were obtained as a laminate product. 20 

 21 

Measurements 22 

FT-IR spectra were measured with a Shimadzu IRPrestige-21 spectrometer (Shimadzu 23 

Corporation, Kyoto, Japan).  All the spectra were recorded at 20 °C in an absorption 24 

mode over a wavenumber range 400–4000 cm−1 with a resolution of 4 cm−1 via 25 

accumulation of 32 scans. 26 

   1H NMR spectra (300 MHz) were recorded using a Varian INOVA 300 apparatus 27 

(Varian, Palo Alto, CA, USA).  The measurement conditions were as follows: solvent, 28 

CDCl3; solute concentration, 10 mg mL−1; internal standard, tetramethylsilane (TMS); 29 

temperature, 20 °C; number of scans, 64. 30 

   Polarized optical microscopy (POM) was conducted by using an Olympus 31 

microscope (BX60F5, Olympus Corporation, Tokyo, Japan) equipped with a Mettler 32 

FP82HT/FP90 hot-stage (Mettler Toledo, Tokyo, Japan).  Samples were sandwiched 33 

between a slide and cover glass. 34 

   Differential scanning calorimetry (DSC) analyses were performed on a Seiko DSC 35 

6200/EXSTER 6000 apparatus (Seiko Instruments, Chiba, Japan).  Both the 36 
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temperature and enthalpy readings were calibrated with an indium standard.  A 1 

weighed amount of each sample (ca. 5 mg) was sealed in an aluminum pan.  2 

Thermograms were recorded at a scanning rate of 10 °C min−1 for both heating and 3 

cooling scans.  The measurements were made for all the [CnMim][CHP] complexes 4 

prepared above, to establish their respective phase transition schemes.  Phase transition 5 

temperature and enthalpy were determined from the peak-top position and peak area, 6 

respectively, of the relevant endo- or exothermic signal appearing in thermograms.  Tg 7 

was evaluated by adopting a universal method proposed by Richradson et al.22,23 (see 8 

Supplementary Information), to minimize some kinetic effects due to the scanning rate 9 

and the conditions of pretreating the sample.  In this purpose, the usual DSC output 10 

data of heat flow was converted into the corresponding relative enthalpy H and a plot of 11 

H against temperature was constructed.  Following that, two tangential lines were 12 

drawn on both sides of the glass transition region in the H versus temperature curve and 13 

a value of temperature at the point of intersection was read off as Tg. 14 

   Another series of DSC measurements was carried out for selected complexes in 15 

order to evaluate the enthalpy relaxation following aging at their mesomorphic glass 16 

state.  A sequence of procedure of the relaxation measurements is summarized below 17 

(see Figure 3):  18 

1) Heating each original sample to a temperature higher than the mesophase–isotropic 19 

phase transition temperature TM-I by ca. 15 °C;  20 

2) Cooling the isotropic sample at a rate of 10 °C min−1 to a temperature (≈ Tg + 50 °C) 21 

at which the sample assumes a mesomorphic fluid state;  22 

3) Quenching the mesomorphic sample at a rate of ~90 °C min−1 to an aging 23 

temperature Ta (< Tg);  24 

4) Aging the glassy sample at Ta over a time period ta in the DSC cell (ta < 1 h) or in a 25 

thermo-regulated incubator (NCB-3200, Tokyo Rikakikai, Tokyo, Japan) (ta ≥ 1 h);  26 

5) Quenching the aged sample from Ta to −60 °C;  27 

6) Heating the frozen sample at a rate of 10 °C min−1 from −60 °C to a temperature 28 

above Tg. 29 

 30 

<< Figure 3 >> 31 

 32 

 33 

RESULTS AND DISCUSSION 34 

Formation of ionic complex 35 

Confirmation of ionic complex formation was made for [CnMim][CHP] samples by 1H 36 
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NMR and FT-IR measurements.  Figure 4 illustrates a 1H NMR spectrum of 1 

[C10Mim][CHP] (part (a)) in comparison with that of [C10Mim][Br] (part (b)).  The 2 

composition of this complex sample was evaluated as [C10Mim]/[CHP] = 0.99 using 3 

the peak intensities of signals a and e for the C10Mim component and those of signals 4 

3' and 6' for the CHP component.  In a similar manner of calculation, all the samples 5 

with various alkyl chain lengths (n = 6–18) showed a stoichiometric ratio of 6 

[CnMim]/[CHP] = 1.00 ± 0.04.  Furthermore, it was observed that the chemical shift 7 

value of an imidazolium proton (signal d) of [CnMim][CHP] was always larger by ca. 8 

0.5 ppm than the corresponding value of [CnMim][Br].  In the two spectra given in 9 

Figure 4, we find the proton signal concerned at 11.2 ppm for [C10Mim][CHP] and at 10 

10.6 ppm for [C10Mim][Br].  A similar shift of the imidazolium proton signal toward 11 

the lower magnetic field has been noted for [CnMim][Ac] (Ac, CH3COO−) prepared 12 

from [CnMim][Br].24,25  By analogy with this, it may be inferred that the 13 

[CnMim][CHP] samples are a 1:1 type of complex compound linked through a salt 14 

formation of imidazolium carboxylate. 15 

 16 

<< Figure 4 >> 17 

 18 

   Figure 5 displays FT-IR spectra of CHP, [C10Mim][CHP] and [C10Mim][Br] as 19 

reference.  In the spectral data (a) of CHP per se, there appear a C=O stretching band 20 

at 1701 cm−1 and a C-O stretching band at 1310 cm−1, both associated with a carboxylic 21 

acid dimer.  The other major bands observed at 1735 and 1255 cm−1 signalize the ester 22 

linkage of cholesterol with phthalic acid in CHP.  In the data (b) of [C10Mim][CHP], 23 

there is no absorption signal of the carboxylic acid.  Instead of this disappearance, 24 

absorption bands signalizing carboxylate formation emerge at 1590 and 1370 cm−1 in 25 

the spectrum (b).  These pieces of evidence ensure the complete complexation between 26 

the two ionic constituents, [C10Mim]+ and [CHP]−.  Similar FT-IR observations were 27 

made for the other [CnMim][CHP] samples.  The formal feature of the complexes may 28 

be like a fatten tadpole-shape, as modeled in Figure 2; the cholesteryl group is 29 

articulated with the Cn tail through a somewhat bulky joint comprising phthaloyl and 30 

imidazolium moieties. 31 

 32 

<< Figure 5 >> 33 

 34 

Thermal transition scheme 35 

Thermal transition behavior of CHP is well established in earlier studies.8–10  The 36 
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transition scheme was essentially reproduced in the present DSC measurement:  On 1 

heating the original crystalline CHP obtained from ethanol solution, it melted at 169 °C 2 

to transform into an isotropic liquid (I).  When the molten CHP was cooled, the 3 

isotropic phase changed into a cholesteric mesophase (MCh) at ~85 °C.  Upon 4 

continued cooling of the mesomorphic CHP, it was vitrified at ca. 30 °C without 5 

crystallizing and with retaining a cholesteric planar texture.  In the second heating scan, 6 

the anisotropic glass (GCh) changed again into the fluid mesophase around 30 °C and 7 

then transformed into the isotropic liquid at ~92 °C.  In the following cycles of cooling 8 

and heating, CHP showed the same enantiotropic phase behavior, I ↔ MCh ↔ GCh (see 9 

the first row of data listed in Table 1).  It should be remarked here that the CHP 10 

molecules with a steroid mesogen are dimerized through dual intermolecular hydrogen 11 

bonding between the COOH groups at their terminal ends (see Figure 2), and this dimer 12 

is a structural unit involved in the observed phase behavior. 13 

   Similar DSC experiments were conducted for the tadpole-shaped [CnMim][CHP] 14 

complexes; the samples were all prepared as a crystalline material from ethanol solution.  15 

After isotropization of each sample by heating to a high temperature (>120 °C), the 16 

thermotropic phase behavior was evaluated in the subsequent cooling and heating cycles.  17 

The results are summarized in Table 1 and representative DSC data are compiled in 18 

Figure 6.  Roughly we observed three patterns (A, B and C) of phase transition scheme, 19 

which varied depending on the alkyl chain length (n) of [CnMim]+. 20 

 21 

<< Table 1 >> 22 

 23 

<< Figure 6 >> 24 

 25 

   Pattern A refers to thermal behavior of the complexes of n = 6 and 8.  These 26 

samples exhibited only a glass transition (Tg < ca. 10 °C) and no phase transition 27 

accompanied by an exo- or endo-thermic signal in the ordinary DSC cycles, as the 28 

evidence is illustrated for [C8Mim][CHP] in Figure 6a.  Thus these complexes solely 29 

repeated the transition behavior, I ↔ GA (amorphous glass). 30 

   In pattern B, two mesomorphic phases appear before glass transition in the cooling 31 

process from an isotropic molten state, and consecutive crystallization and fusion take 32 

place before isotropization in the heating process from a mesomorphic glass state.  33 

This pattern refers to thermal behavior of the complexes of n = 10 and 12.  Figure 6b 34 

illustrates DSC thermograms of [C10Mim][CHP], together with supplementary POM 35 

photographic data.  In the cooling scan, first the isotropic melt (I) transformed into a 36 
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cholesteric mesophase (MCh) at 81 °C and then this phase partly changed into a smectic 1 

mesophase (MSm) at 26 °C, followed by vitrification into a mesomorphic glass (GCh/Sm) 2 

at ca. 10 °C.  This specification of the mesophases can be supported by the data of 3 

transition enthalpy (included in Figure 6b, left), and by the POM observations as well.  4 

In Figure 6b, right, the upper POM image shows a cholesteric planar texture and the 5 

lower image contains a battonet-like texture mingled with the planar one.  In the 6 

subsequent heating scan, the anisotropic glass unfroze into a fluid mesophase (MCh/Sm) 7 

above 10 °C, and right after transition of MCh/Sm → MCh at 32 °C, a cold crystallization 8 

occurred at 40–50 °C from the MCh state.  Then the resulting crystal (K) melted in a 9 

temperature range 60–90 °C and ultimately transformed again into the isotropic fluid.  10 

Concerning [C12Mim][CHP], the scheme of “I → MCh →MCh/Sm → GCh/Sm” was also 11 

applicable to the cooling process of this sample, but, in the heating, a cold 12 

crystallization occurred at 45–65 °C from the MCh/Sm state that was unfrozen above 13 

~13 °C from the GCh/Sm state.  Following fusion at 70–90 °C of the formed crystal (K), 14 

the MCh phase was restored and it transformed into the isotropic melt at 123 °C. 15 

   Pattern C is classified as an enantiotropic scheme, I ↔ MSm ↔ GSm, and refers to 16 

thermal behavior of the complexes of n = 14–18.  Examples of DSC thermograms are 17 

given in Figure 6c and d for [C14Mim][CHP] and [C18Mim][CHP], respectively.  An 18 

isotropic liquid–mesophase transition (at >150 °C) and a single glass transition (Tg  19 

5 °C) are clearly observed in both cooling and heating scans for these samples.  The 20 

temperature range where the complexes are in a liquid-crystalline state is extremely 21 

wide.  On examination by POM, a battonet texture (Figure 6c, right) or a fan-shaped 22 

texture (Figure 6d, right) was observed in their mesomorphic fluid states.  These 23 

optical images are characteristic of the smectic type of liquid crystals.  It was also 24 

perceived that the complexes generally preferred a molecular arrangement to orient 25 

perpendicular rather than parallel to the surface plane of a slide glass in the 26 

mesomorphic state.  This tendency may be ascribed to a homeotropic character of the 27 

Cn chain (n ≥ 14) serving as a considerably long tail of the complexes. 28 

   To survey the results listed in Table 1, we can make the following remarks: (1) 29 

[CnMim][CHP] complexes form a mesophase and solidify into a mesomorphic glass (or 30 

liquid-crystalline glass) upon cooling, except for the samples of n = 6 and 8.  However, 31 

even the latter two would intrinsically have an ability of forming a mesophase 32 

(according to quite a slower kinetics), which was suggested by microscopic observation 33 

of a feeble birefringent phase for the samples annealed at ~50 °C for more than 5 h.  34 

(2) The mesophase of [CnMim][CHP] tends to be more ordered with increasing length 35 

of the Cn chain (see ∆HM-I data in Table 1); the molecular arrangement therein is 36 

<~
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dominantly cholesteric for n = 10 and 12, and smectic for n = 14–18.  (3) Tg of 1 

[CnMim][CHP] tends to decrease with an increase in n and is always lower than that of 2 

CHP.  In contrast, the phase transition temperature TM-I increases with increasing n (≥ 3 

10).  In particular, the values (122–165 °C) for the complexes of n ≥ 12 are 4 

extraordinarily high, beyond that (92.0 °C) for CHP. 5 

   The Cn-length dependence of the thermal behavior of [CnMim][CHP] is roughly 6 

similar in a broad outline to that examined formerly for CHP/Cn-amine complexes.8,10  7 

In the latter system, however, the scheme of I ↔ MSm ↔ GSm (pattern C) was applicable 8 

to the complexes with Cn-amines of n = 10–18, and CHP/C8-amine provided a 9 

transition scheme of I ↔ MCh ↔ GCh while CHP/C6-amine obeyed the scheme of I ↔ 10 

GA (pattern A).  Thus the ordered phases, MSm and MCh, were formed using relatively 11 

shorter Cn chains, compared with the situation in the [CnMim][CHP] system.  12 

Furthermore, TM-I values (ca. 85–100 °C)8 observed for CHP/Cn-amine samples of n ≥ 13 

12 were noticeably lower than those of [CnMim][CHP]s with the same range of Cn 14 

length and rather comparable to that of CHP per se.  The very high TM-I values of the 15 

[CnMim][CHP] complexes might strongly reflect a thermotropic property as 16 

N-substituted imidazolium IL, although there would be a contribution of an increase in 17 

the axial ratio of the mesogenic moiety of the complexes with the rigid imidazolium 18 

ring.  According to literature,14,26–28 salts of [CnMim]+ with longer alkyl chains (n = 19 

12–18) are usually crystalline at room temperature and often exhibit a liquid-crystalline 20 

(smectic) phase in the molten state; for instance, [CnMim][Br] of n ≥ 12 show 21 

transitions of K → MSm at 50 °C or thereabouts and MSm → I at temperatures much 22 

higher than 100 °C.27,28  23 

 24 

Enthalpy relaxation of mesomorphic glasses 25 

The physical aging of glassy materials, generally occurring during their annealing at 26 

temperatures lower than Tg, is interpreted as a spontaneous non-equilibrium 27 

phenomenon.  More specifically, when a viscous fluid is vitrified below Tg by cooling, 28 

excess quantities of volume and enthalpy carried over in the solid should be decrease 29 

with time toward the respective equilibrium values at the aging temperature.  This 30 

behavior is commonly designated as volume relaxation or enthalpy relaxation,29,30 often 31 

attended by serious changes in mechanical property and endurance of the material.31–34  32 

In the present paper, our interest was focused on the enthalpy relaxation behavior of 33 

mesomorphic vitreous solids from a fundamental standpoint.  The samples explored 34 

herein were the vitrified [CnMim][CHP]s of n = 10 and 18 retaining cholesteric and 35 

smectic mesomorphies, respectively. 36 
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   The enthalpy relaxation of glassy materials can be observed as an endothermic peak 1 

in their DSC thermograms just after the onset of the glass transition when the aged 2 

samples are heated.  Figure 7 illustrates DSC thermograms obtained for the 3 

[C18Mim][CHP] LC glass which was aged for different time periods at −10 °C.  The 4 

enthalpy ∆H can be evaluated from the endothermic peak area shaded in each 5 

thermogram.  Deservedly, the area increased with aging time, accompanied by a 6 

systematic shift in the peak-top position and also in the onset point of the glass 7 

transition to the side of higher temperature.  Figure 8 collects data of the time 8 

evolution of ∆H for the glassy complex aged at various temperatures.  The enthalpy 9 

rose rapidly with time in a relatively early stage of the aging and eventually leveled off 10 

to converge at an equilibrium ∆H∞, the value of which became larger as the aging 11 

temperature was lowered.  A similar tendency of the dependence of ∆H on aging time 12 

(ta) and temperature (Ta) was observed for the [C10Mim][CHP] LC glass. 13 

 14 

<< Figure 7 >> 15 

 16 

<< Figure 8 >> 17 

 18 

   Regression analysis of the ∆H versus ta plots was made by the following 19 

Kohlrausch-Williams-Watts (KWW) type of equation with a stretched exponential 20 

term:35 21 

ΔH = ΔH∞ [1 – exp{−(ta/τ)β}]     (1) 22 

where τ is the relaxation time of enthalpy and β is a non-exponential parameter (0 < β ≤ 23 

1) indicating the degree of distribution of the relaxation time.  Table 2 collects values 24 

of τ and β determined by the best fitting to the ∆H data observed for the present 25 

complex glasses of n = 10 and 18. 26 

 27 

<< Table 2 >> 28 

 29 

   In Figure 9a, the logarithmic plot of τ against the reciprocal of aging temperature (in 30 

K) is constructed for the two glassy complexes.  For both complexes, the plot provided 31 

a good linearity indicating applicability of the Arrhenius equation:  32 

τ−1 = τ0−1 exp [−Ea/(RT)]          (2) 33 

where Ea is the activation energy for the enthalpy relaxation process in the glassy state, 34 

and τ0−1 and R are the pre-exponential factor and the gas constant, respectively.  Then 35 

the energy Ea can be evaluated from the slope of each straight line of the plot.  The 36 
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result of the evaluation is listed in Table 2.  Figure 9b shows another plotting with 1 

ordinary logarithm of τ against the inverse of a Tg-reduced aging temperature for the 2 

mesomorphic glasses.  According to Angell,36 the fragility of glassy materials is 3 

generally defined in the following way:  4 

m = dlogτ /d(Tg/T) | T = Tg          (3) 5 

where m is the fragility index and its larger value denotes higher fragility.  Table 2 also 6 

lists m data estimated from the slope of each Angel plot that gives linearity in Figure 9b. 7 

 8 

<< Figure 9 >> 9 

 10 

   Table 2 includes results of similar relaxation analysis performed for LC glasses of 11 

CHP and CHP/Cn-amine (n = 10, 16, 18).9,10  In comparison with the previous results, 12 

the following remarks should be made on the enthalpy relaxation data for the present 13 

complex glasses: 14 

   (1) The parameter β was again of a higher value, situated at 0.90 and 0.84 on 15 

average for n = 10 and 18, respectively.  In principle, the extreme of β = 1 means that 16 

there occurs just a single (or unified) relaxation mode, while, when the distribution of 17 

the relaxation time is very broad due to concurrence of many relaxation modes in the 18 

aging process, β assumes a much smaller value to approach zero.  As can be seen from 19 

Table 2, the β values for the cholesterol-based LC glasses explored so far are all 20 

considerably larger than those (mostly 05–0.55)37 reported for conventional amorphous 21 

polymers.  Another notice is that the ionic complexes of CHP with Cn-amine and 22 

CnMim provided somewhat higher β values relative to that (~0.7) observed for the neat 23 

CHP (dimer) system. 24 

   (2) The relaxation times of the [CnMim][CHP] glasses were roughly several to 40 25 

times longer than those of the CHP/Cn-amine glasses.  Values of Ea estimated for the 26 

former glasses were higher than those for the latter ones, when compared between the 27 

samples having the same Cn length.  With regard to the [CnMim][CHP] glasses, the 28 

bulkiness of the ionic junction involving an imidazolium moiety might lower the 29 

molecular mobility in the relaxation process.  In any of the two complex series, 30 

however, the Ea values are much lower than those (426–1070 kJ mol−1)38,39 reported for 31 

poly(styrene). 32 

   (3) The fragility index m and also Ea for the [CnMim][CHP] glasses decreased with 33 

an increase of the Cn length, as in the case for the CHP/Cn-amine glasses.  Both the 34 

values for the two series of ionic complex were evidently lower than those for CHP per 35 

se.  However, the estimations for [C10Mim][CHP] yielded somewhat larger m and Ea, 36 
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each approaching the data for CHP, which may be attributable to an additional factor, 1 

i.e., the prevalence of cholesteric ordering rather than of smectic one.  In any case, the 2 

Cn tail of the respective cationic components exercised an effect of diluent solvent for 3 

the molecular assembly to promote cooperative motions.  This should allow the glassy 4 

materials to be less fragile.  Interestingly, the present result is in accordance with a 5 

general trend pointed out by Böhmer:40 viz., the distribution of the relaxation time is 6 

rather wider (i.e., β is lower) as the glassy material concerned is more fragile. 7 

 8 

 9 

CONCLUSION 10 

Stoichiometric 1:1 ionic complexes, [CnMim][CHP] (n = 6–18), were successfully 11 

prepared from ethanol solutions containing an equimolar mixture of cholesterol 12 

hydrogen phthalate (CHP) and 1-Cn-3-methylimidazolium hydroxide ([CnMim][OH]).  13 

The hydroxide was derived from [CnMim][Br] by exchange of the anion.  The 14 

structural feature of the complexes is a fatten tadpole-shape; the mesogenic cholesteryl 15 

group is articulated with the Cn tail through a bulky joint comprising phthaloyl and 16 

imidazolium moieties.  Thermal properties involving liquid crystallinity of the ionic 17 

complexes were investigated in comparison with the previous result for a series of 18 

CHP/Cn-amine. 19 

   Concerning the transition behavior after isotropizing treatment, the [CnMim][CHP] 20 

complexes formed a mesophase and solidified into a mesomorphic glass upon cooling, 21 

except for the samples of n = 6 and 8.  The detected mesophase tended to be more 22 

ordered with increasing length of the Cn chain; the molecular arrangement therein was 23 

dominantly cholesteric for n = 10 and 12, and smectic for n = 14–18.  The values of 24 

isotropic transition point (i.e., TM-I) observed for the samples of n ≥ 12 were much 25 

higher than those of CHP/Cn-amine complexes with the corresponding range of Cn 26 

length.  The marked elevation in TM-I of the [CnMim][CHP] complexes can be 27 

interpreted as due to an additional thermotropicity as imidazolium salts with longer 28 

N-alkyl substituents. 29 

   For the mesomorphic glasses of [CnMim][CHP] (n = 10 and 18), the enthalpy 30 

relaxation behavior was monitored as evolution of a DSC endothermic peak, and the 31 

data analysis was made in terms of the KWW type of stretched exponential function.  32 

Of significance was the confirmation of extremely narrow distribution of the relaxation 33 

time from the estimation of the exponent β close to unity.  The activation energy Ea for 34 

the relaxation process and the fragility index m were also evaluated from the Arrhenius 35 

and Angell equations, respectively.  The obtained Ea and m values were appreciably 36 
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higher compared to those for the vitreous CHP/Cn-amine samples with the 1 

corresponding Cn length.  This indicates that the bulkiness of the ionic junction 2 

comprising the imidazolium moiety lowered the molecular mobility in the relaxation 3 

process. 4 

   The present study should serve as a helpful guide for designing functional LC 5 

materials possessing vitrifiability.  The thermal and optical properties of the 6 

cholesterol-based complexes may be variable not only by altering a part of the ionic 7 

junction but also by modifying the alkyl tail of the counter component.  In the 8 

meanwhile, the enthalpy relaxation analysis for the mesomorphic glasses provides 9 

useful information in understanding the physical aging of polymer glasses (involving 10 

both amorphous and liquid-crystalline glasses39,41).  The present result would still 11 

reflect a generic property of low or medium molecular-weight compounds.  In this 12 

respect, we will be required to complement further relaxation data using polymers 13 

having a similar complex structure as a pendant group; this is currently under way in 14 

our laboratory.  15 
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Titles and legends to figures 1 

 2 

Figure 1  Structural formulae of the cholesterol-based ionic complexes, CHP (or 3 

CHS)/Cn-amine (studied previously8–10) and [CnMim][CHP] (targeted in the present 4 

paper). 5 

 6 

Figure 2  Outline chart showing the preparation route to [CnMim][CHP] samples (n = 7 

6–18) from [CnMim][Br] and CHP. 8 

 9 

Figure 3  Thermal program of the DSC measurement for enthalpy relaxation 10 

experiment.  Abbreviations: TM-I, mesophase–isotropic phase transition temperature; Tg, 11 

glass transition temperature; Ta, aging temperature; ta, aging time. 12 

 13 

Figure 4  1H NMR spectra of (a) [C10Mim][CHP] and (b) [C10Mim][Br] in CDCl3.  14 

Notations: †, proton signals in multitude from a steroid group of [CHP]− and f–n 15 

positions of [C10Mim]+; ‡, proton signals in multitude from a benzene ring of [CHP]− 16 

and b and c positions of [C10Mim]+.  Peak integral values used for calculation of the 17 

complex composition (in (a)) are as follows: a, 42.12; e, 29.04; 3', 14.49; 6', 14.35. 18 

 19 

Figure 5  FT-IR spectra of (a) CHP per se, (b) [C10Mim][CHP] and (c) [C10Mim][Br].  20 

Spectra (a) and (b) were measured by the standard KBr-pellet method.  Spectrum (c) 21 

was recorded by a liquid-layer method in which the fluid sample was sandwiched 22 

between two KBr plates. 23 

 24 

Figure 6  DSC thermograms and POM images of selected [CnMim][CHP] samples: 25 

(a) [C8Mim][CHP]; (b) [C10Mim][CHP]; (c) [C14Mim][CHP]; (d) [C18Mim][CHP].  26 

The thermograms were all recorded at a scanning rate of 10 °C min−1 after 27 

isotropization of each sample by heating to a temperature of >120 °C.  POM images 28 

were captured at various temperatures in the cooling process.  Particularly, the image 29 

in Figure 6c was obtained by tilting the sample slide on the POM stage.  30 

Abbreviations: K, crystal; M, mesophase; G, glassy state; A, amorphous; Ch, 31 

cholesteric; Sm, smectic. 32 

 33 

Figure 7  DSC thermograms for the LC glass of [C18Mim][CHP], each obtained after 34 

aging for the indicated time period at −10 °C.  The data were recorded in the heating 35 

scan at 10 °C min−1.  Solid arrows indicate the onset point of the glass transition, and a 36 
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white arrow indicates the Tg position determined by a universal method proposed by 1 

Richardson et al.22,23  2 

 3 

Figure 8  Time evolution of enthalpy relaxation for the LC glass of [C18Mim][CHP] 4 

which was aged at different temperatures lower than Tg. 5 

 6 

Figure 9  (a) Arrhenius plots of the relaxation time against the reciprocal of aging 7 

temperature and (b) Angell plots of the relaxation time against the inverse of Tg-reduced 8 

aging temperature, constructed for LC glasses of [C10Mim][CHP] and 9 

[C18Mim][CHP]. 10 

 11 
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Figure 6  Continued. 5 
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Table 1  Thermal transition property of CHP and [CnMim][CHP] complexes 1 

 2 

Sample 
Phase 

transition 

pattern 

Phase transition scheme Tg1)/°C TM–I1)/°C 
ΔHM–I1) 

/kJ mol−1 

CHP per se 2) – GCh↔MCh↔I 25.8  91.4 3.3 

[C6Mim][CHP] A GA↔I 13.9 – – 

[C8Mim][CHP] A GA↔I  7.8 – – 

[C10Mim][CHP] B 
GCh/Sm↔MCh/Sm↔MCh←I 
               ↘ ↗ 

               K 
10.4  81.1 – (1.03)) 

[C12Mim][CHP] B 
GCh/Sm↔MCh/Sm←MCh↔I 

     ↘  ↗      K 
12.6 122.6 1.7 (1.83)) 

[C14Mim][CHP] C GSm↔MSm↔I  4.5 154.0 3.1 (3.13)) 

[C16Mim][CHP] C GSm↔MSm↔I  4.1 161.4 3.4 (3.43)) 

[C18Mim][CHP] C GSm↔MSm↔I  2.5 164.3 3.3 (3.63)) 

 3 

Abbreviations: K, crystal; M, mesophase; G, glassy state; A, amorphous; Ch, 4 

cholesteric; Sm, smectic.  1) Estimated in the 2nd heating scan.  2) Data were all 5 

quoted from ref. 8.  3) Estimated in the cooling scan. 6 

 7 

  8 
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Table 2  Analytical results of enthalpy relaxation for LC glasses of CHP, 1 

[CnMim][CHP], and comparable CHP/Cn-amine complexes 2 

 3 

Sample Tg/°C 
Tg−Ta 

/°C 

ΔH∞ 

/kJ mol−1 
τ/s lnτ/s β 

Ea 
/kJ mol−1 

m 

CHP per se1) 25.8  

18.8  1.83 2.51×105 12.40  0.69  

154 27 
10.8  1.31 3.34×104 10.40  0.74  

5.8  1.21 1.00×104 9.22  0.78  

2.8  1.02 7.94×103 8.97  0.70  

[C10Mim][CHP] 10.4  

13.4  1.59 1.43×105 11.87  0.96  

118 22 
10.4  1.44 7.41×104 11.21  0.95  

7.4  1.27 4.04×104 10.61  0.87  

3.4  1.03 2.19×104 9.99  0.80  

[C18Mim][CHP] 2.5  

17.5   0.919 1.25×105 11.70  0.85  

76 15 
12.5   0.887 6.06×104 11.01  0.82  

7.5   0.842 3.16×104 10.36  0.84  

3.5   0.502 1.96×104 9.88  0.84  

CHP/C10-amine2) 18.7 

16.7 1.69 9.17×104 11.4 0.87 

94 17 
13.7 1.52 2.76×104 10.2 0.91 

8.7 1.49 1.77×104 9.78 0.98 

3.7 1.26 1.18×104 9.38 0.87 

CHP/C16-amine1) 19.0 

19.0  0.849 1.51×103 7.32 0.98 

52 9 
14.0  0.604 9.53×102 6.86 0.92 

10.0  0.408 7.41×102 6.61 0.90 

7.0  0.262 5.61×102 6.33 0.84 

CHP/C18-amine1) 20.0  

25.5   0.990 2.37×103 7.77  1.00  

47 8 
20.3   0.949 1.33×103 7.19  0.98  

15.5   0.730 1.04×103 6.95  0.91  

13.0   0.521 8.98×102 6.80  0.84  

 4 
1) Data are all quoted from ref. 9.  2) Data are all quoted from ref. 10. 5 


