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Abstract

The aim of this paper is to study the distribution of portfolio
returns across portfolios and for given asset returns. We focus on
the most common type of investment considering portfolios whose
weights are non-negative and sum up to 1. We provide algorithms and
formulas from computational geometry and the literature on splines
to compute the exact values of the probability density function, and
of the cumulative distribution function at any point. We also provide
closed-form solutions for the computation of its first four moments,
and an algorithm to compute the higher moments. All algorithms and
formulas allow for equal asset returns.

Keywords: Cross-section of portfolios, Finance, Geometry, B-spline

1 Introduction

The study of the distribution of portfolio returns, across portfolios and for
given asset returns, has attracted less attention than it deserves in the finance

∗The views expressed are those of the authors and do not necessarily reflect official
positions of the European Commission.
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literature. However it is a natural tool to understand the relative performance
of portfolios, as well as the behavior of asset cross-section and market dynamics
in general. Indeed, consider an investment set defined as the set of portfolios
in which a manager can invest. The most common is such that the portfolio
weights are non-negative and sum up to 1.1 Let us define the score of a
portfolio as the percentage of portfolios, within the investment set, that this
portfolio outperforms. For instance, in a market of 3 assets whose returns
are 0%, 1% and 1.5%, the score of a portfolio as a function of its return is as
given in Figure 1. Here, a portfolio whose return is 0.866% outperforms 50%
of the portfolios.

Figure 1: Score of a long-only portfolio in a market of 3 assets whose returns
are 0%, 1% and 1.5%.

This portfolio score has been introduced in [Pouchkarev, 2005] and has been
used in related studies by the same author: In [Pouchkarev, 2005, Pouchkarev
et al., 2004, Hallerbach et al., 2002], the relative performance of value-weighted
indices with respect to long-only portfolios is assessed in the Dutch, Spanish
and German markets2. It leads the authors to question the representative-
ness of these indices. In [Hallerbach and Pouchkarev, 2005, Hallerbach and
Pouchkarev, 2016], the dispersion of the cross-sectional portfolio returns is
used to assess the performance of asset managers whose mandate implies

1It corresponds to the long-only strategy.
2through the MSCI Netherlands 24, IBEX 35, and DAX 30 components, respectively.
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tracking error volatility constraints. This score has also been proposed inde-
pendently in [Billio et al., 2011], and in [Banerjee and Hung, 2011]. In [Billio
et al., 2011], this score is used as a portfolio performance measure whose
informativeness is shown to be higher than the Sharpe and Sortino ratios
in an asset allocation exercise. In [Banerjee and Hung, 2011], a simplified
score assigning a reward ranging from -2 to 2 according to the quintile of
the score is used to assess the performance of the momentum strategy. This
investment strategy is shown to not be outperforming an uninformed naive
investor. Recently, in [Calès et al., 2018], the score is used to study the
time-varying dependency of portfolios’ return and volatility, and relates this
dependency to periods of financial turmoils.

In terms of computation, [Pouchkarev, 2005, Theorem 4.2.2] proposes a
geometry-based closed form expression of the score. It consists in representing
the long only investment set as a simplex. The score is then the volume of
the intersection of the simplex and a halfspace. It is computed by decom-
posing this intersection in smaller simplices. However, this approach is not
valid when some asset returns are equal. As a consequence, in [Pouchkarev,
2005] and in related studies, the score is estimated by a quasi-Monte Carlo
sampling of the portfolios as described in [Rubinstein and Melamed, 1998]. In
[Banerjee and Hung, 2011, Theorem A2], the same approach is considered,3

for illustration purposes only, and the authors also rely on portfolio sampling
for their application. In [Billio et al., 2011], the set of portfolios considered
is the specific set of long/short equally weighted zero-dollar portfolios. The
estimation of the score relies on combinatorics and order statistics, and it is
computationally limited to around 20 assets. Finally, in [Calès et al., 2018],
the score is also computed as the volume of the intersection of the simplex and
a linear half-space. The authors noticed that an algorithm by [Varsi, 1973]
can be used to compute this volume exactly and efficiently for any number of
assets, even when some asset returns are equal.

In this paper, we intend to characterize statistically the distribution of
the portfolios’ returns, the score being its cumulative distribution function
(CDF). We provide algorithms and formulas to compute exactly its CDF,
its probability density function (PDF) and its moments. We consider the
most common investment set, i.e. the set of portfolios whose weights are
non-negative and sum up to 1. In Section 2, we formalize the representation

3Note that the formula proposed contains a couple of mistakes: the sum is over the
number of assets whose returns are lower than the return of the portfolio considered, and
the term within parenthesis in the numerator should be the opposite.
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of this set as a unit simplex. The portfolios considered are then uniformly
distributed over this simplex, allowing us to integrate over it, later on.

In Section 3, we first recall the computation of the CDF as proposed in
[Calès et al., 2018]. The set portfolios having same total return is a hyperplane,
hence the question consists in computing the volume of the intersection of
a simplex and a linear half-space. Based on equivalent results by [Varsi,
1973] using a geometric approach, and [Ali, 1973] with a divided differences
approach, the algorithm consists in a recurrence formula. We also propose its
computation with a closed-form formula by [Lasserre, 2015] and [Calès, 2019]
which considers the case of equal asset returns, as opposed to [Pouchkarev,
2005] and [Banerjee and Hung, 2011]. Next, we compute exactly the PDF.
The first approach is based on the geometric interpretation of univariate
B-splines by [Curry and Schoenberg, 1966], and it uses the de Boor-Cox
recursive formula, see [de Boor, 1972] and [Cox, 1972]. The second approach
is a direct derivation of the CDF obtained using the closed-form formula
by [Lasserre, 2015]. Finally, since these two approaches suffer of numerical
instability in high dimensions, we propose to derive it numerically from Varsi’s
results.

In Section 4, we derive the moments of the distribution. Our method is
based on a result by [Lasserre and Avrachenkov, 2001] which provides an
elegant way to integrate symmetric q-linear forms on a simplex. It allows us
to propose closed-form solutions for the first four moments, and an algorithm
to compute higher moments.

2 Geometric representation of the set of port-

folios

In this section we formalize the geometric representation of sets of portfolios
with an arbitrary number of assets.

Let us consider a portfolio x investing in n assets, whose weights are
x = (x1, . . . , xn). The portfolios in which a long-only asset manager can

invest are subject to
n∑
i=1

xi = 1 and xi ≥ 0,∀i. Thus, the set of portfolios

available to this asset manager is the unit (n − 1)−simplex, denoted ∆n−1

and defined as

∆n−1 =

{
n∑
i=1

xivi

∣∣∣∣∣(x1, . . . , xn) ∈ Rn,

n∑
i=1

xi = 1 and xi ≥ 0, ∀i ∈ {1, . . . , n}

}
(1)
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where v1, . . . , vn ∈ Rn−1 are a set of n affinely independent points in a Eu-
clidean space of dimension n − 1. The vertices (vi)i=1,...,n represent the n
portfolios made of a single asset and the simplex is the convex hull of these
vertices.

For instance, we can define v1, . . . , vn such that:

1. the center of the simplex is set to the origin,

2. the distances of the simplex vertices to its center are equal,

3. the angle subtended by any two vertices through its center is arccos( −1
n−1

).

The weights (xi)i=1,...,n of portfolio x are called its barycentric coordinates,
whereas in Rn−1 they are called its Cartesian coordinates and are denoted by
x̆ = (x̆1, . . . , x̆n−1). We use the Cartesian coordinates in Section 4 to compute
the moments of the portfolios’ returns distribution.

3 PDF and CDF of the portfolios’ returns

distribution

In this section we focus on the exact computation of the cumulative distri-
bution function (CDF) and of the probability density function (PDF) of the
portfolio returns, given the asset returns.

3.1 The CDF of the portfolios’ returns distribution

Let us consider the set of long-only portfolios providing a return lower than
a given return R∗ over a period of time for which the asset returns were
R = (R1, . . . , Rn). It corresponds to a linear half-space defined as

H(R∗) =

{
(x1, . . . , xn) ∈ Rn |

n∑
i=1

Rixi ≤ R∗

}
. (2)

Denoting by V (A) the volume of a geometric object A, the allocation score
of a portfolio providing a return R∗ can be obtained by computing the ratio
of the volume of the intersection of the simplex with this half-space over the
volume of the simplex, i.e.

S(R∗) =
V (H(R∗)

⋂
∆n−1)

V (∆n−1)
(3)
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We illustrate such a volume in Figure 2. Consider a market of 4 assets
whose returns are observed, and a portfolio providing a given return R∗.
The pyramid is the simplex representing the set of long-only portfolios. The
surface highlighted in the left figure represents the set of portfolios returning
R∗. The volume highlighted in the right figure represents the set of portfolios
providing a return lower or equal to R∗.

3.1.1 Varsi’s algorithm

As noticed in [Calès et al., 2018], there exists an exact, iterative formula for
the volume defined by intersecting a simplex with a half-space. It is provided
in Algorithm 1. A geometric proof is given in [Varsi, 1973], by subdividing
the polytope into pyramids and, recursively, to simplices. For a comparison
between alternative proofs and algorithms, the reader may refer to [Calès
et al., 2018] and the references thereof.

Figure 2: (left) Surface of portfolios providing this given return. (right)
Volume of portfolios outperformed by this return.

Algorithm 1. Let H = {(ω1, . . . , ωn) |
∑n

i=1Riωi ≤ R∗} be a linear half-
space.

1. Compute ui = Ri −R∗, i = 1, 2, . . . , n.

2. Label the non-negative uj as Y1, . . . , YK and the negative ones as X1, . . . , XJ .

3. Initialize A0 = 1 , A1 = A2 = · · · = AK = 0.

4. For h = 1, 2, . . . , J repeat: Ak = YkAk−XhAk−1

Yk−Xh
, for k = 1, 2, . . . , K.
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Then, for h = J , AK = V (H(R∗)
⋂

∆n−1)
V (∆n−1)

.

This algorithm requires O(n2) operations, and thus can be computed very
quickly. As an illustration, we compute the score of a portfolio whose return
is 0 in markets of 100, 1000 and 10, 000 assets whose returns are randomly
drawn from a centered normal distribution. The computation is repeated 1000
times. We report in Table 1 the average computation time and its standard
deviation.

Number of Assets 100 1000 10,000

Mean computation time 5.89e-5 3.63e-3 0.4734
Standard deviation 1.99e-4 1.79e-4 0.0416

Table 1: Mean computation time in seconds and standard deviation of the
computation of the CDF at a point for markets of 100, 1000 and 10, 000
assets. The computations have been performed using Matlab c© on a bi-xeon
E2620 v3 under Windows c©.

To illustrate the CDF obtained using Algorithm 1, let us consider a market of
10 assets whose returns are as in Table 2 and let R∗ denote a portfolio return.
The CDF of the portfolios returns for any given return is reported in Figure
3. With these asset returns, 10% of the portfolios have a negative return and
a bit more than 20% of the portfolios have a return greater than 1%.

R1 R2 R3 R4 R5

0.5377% 1.8339% −2.2588% 0.8622% 0.3188%
R6 R7 R8 R9 R10

−1.3077% −0.4336% 0.3426% 3.5784% 2.7694%

Table 2: Some asset returns.

3.1.2 Closed form expression

In [Lasserre, 2015], a closed form formula is proposed to compute this volume
taking into account the case of equal asset returns. However, it omitted
some extra terms and has been corrected in [Calès, 2019]. We report it here,
adapted to our notation: Let R = (Ri)

n
i=1 be the asset returns, (Si)

d
i=1 the d

distinct returns, where d ≤ n, and (mi)
d
i=1 their multiplicities (i.e. number

of occurrences). We denote by (Ji)
d
i=1 the subsets of indices in {1, . . . , n}

associated to each Si and,

for j = 1, . . . , d, we let bj =

(
1

Ri − Sj

)
i∈{1,...,n}\Jj

.
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Figure 3: Illustration of the CDF of the portfolios returns.

Among the distinct returns we distinguish between those whose multiplicities
are 1, and those whose multiplicities are greater than 1. The indices of the
first group form a set denoted by I, while those of the second group form set
K, where S = I ∪K. Finally, (x)+ stands for max{0, x}. The CDF computed
in R∗ is given by:

S(R∗,R) =
∑
i∈I

(R∗−Si)
n−1
+

n∏
j=1,j 6=i

(Sj−Si)
+

+
∑
i∈K

(
mi−1∑
j=0

(−1)j+mi+1
(
n−1
j

) (R∗−Si)
n−j−1
+∏

k∈S\{Si}
(Sk−Si)

Φmi−1−j(bi)

)
,

(4)
with

Φk(x) =
n∑

i1=1

i1∑
i2=1

· · ·
ik−1∑
ik=1

xi1 . . . xik ,x ∈ Rn.

This formula is similar to the one proposed in [Pouchkarev, 2005, The-
orem 4.2.2] and [Banerjee and Hung, 2011, Theorem A2], but with extra
terms correcting for the equal asset returns. Unfortunately, when it comes
to calculations, the formula becomes numerically unstable for n ≥ 20 at the
usual machine precision.

3.1.3 Properties of the score

As noticed in [Banerjee and Hung, 2011], the score is invariant under some
linear transformation of the asset returns. To see this, let us consider a market
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of n assets providing the returns R = (Ri)
n
i=1. We are interested in the score

of a portfolio ω = (ωi)
n
i=1 providing a return R∗ = ω′R, where ω′ stands for

the transpose vector. As explained before, this score is the volume of simplex
∆n−1 intersected with half-space H(R∗) as in Equation (2). So, it is

S(R∗|R) =

{
θ ∈ ∆n−1|

n∑
i=1

Riθi ≤ R∗

}
(5)

Property 1. The score is invariant under linear transformations of the asset
returns such that R→ σR+ α with α ∈ R and σ ∈ R+.

Proof.

S(σR∗ + α |σR+ α) =

{
θ ∈ ∆n−1 |

n∑
i=1

(σRi + α)θi ≤ σR∗ + α

}

=

{
θ ∈ ∆n−1 |σ

n∑
i=1

Riθi + α ≤ σR∗ + α

}

=

{
θ ∈ ∆n−1 |σ

n∑
i=1

Riθi ≤ σR∗

}
= S(R∗|R).

The main implication of this property is that the asset returns can be
standardized cross-sectionally without affecting the score. It is interesting to
note that such a transformation is common in financial event studies, since
the seminal work of [Boehmer et al., 1991]. This approach has the advantages
of being robust to event-induced heteroskedasticity and of not requiring data
from a pre-event estimation period.

3.2 The PDF of the portfolios’ returns distribution

In this section we focus on the exact computation of the probability density
function (PDF) of the portfolios’ returns distribution.

3.2.1 Geometric interpretation of B-splines

In [Curry and Schoenberg, 1966], a seminal paper on splines, Theorem 2
shows that the univariate B-spline resulting from the orthogonal projection
of the volumetric slices of a unit simplex on R can be interpreted as the PDF
of these slices’ volume. For instance, in Figure 4, we have the projections
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of the areas of the intersection of planes with the 3-d simplex on the real
line. In our case, the simplex is the set of portfolios, while the planes are the
equi-return portfolios. The resulting univariate B-spline is the PDF of the
portfolio returns. For any value, it can be computed using the de Boor-Cox
recursion formula, see [de Boor, 1972] and [Cox, 1972], as shown in Algorithm
2.

Figure 4: Geometric interpretation of the PDF of the portfolio returns: a
univariate B-spline, as the orthogonal projection of the volumetric slices of a
unit simplex on R. In this example, we have 4 assets whose returns are 0%,
1%, 1.5% and 2%.

Algorithm 2. Let R = (Ri)
n
i=1 be the returns of the n assets, ordered such

that Ri ≤ Rj for i < j, and let k = n− 1 be the B-spline order. To evaluate
the PDF at x, we set j = 1 and call function bspline pdf() as defined below.
The outcome is then normalized such that y = y k

Rn−R1
.

function y = bspline pdf(j,k,R,x)

1. y = 0

2. if k > 1 then

12



(a) b = bspline pdf(j,k-1,R,x);

(b) if Rj+k 6= Rj+1, then y = y + b
(

x−Rj+1

Rj+k−Rj+1

)
(c) b = bspline pdf(j+1,k-1,R,x);

(d) if Rj+k+1 6= Rj+2, then y = y + b
(

Rj+k+1−x
Rj+k+1−Rj+2

)
3. elseif Rj+1 ≤ x

(a) if Rj+2 < Rn and x < Rj+2, then y = 1, else y = 0

4. else

(a) if Rj+1 <= x and Rj+2 > Rn, then y = 1, else y = 0

Number of Assets 10 20

Mean computation time 2.99e-4 0.2870
Standard deviation 2.99e-5 0.0024

Table 3: Mean computation time in seconds and standard deviation of the
computation of the PDF at a point for markets of 10 and 20 assets. The
computations have been performed using Matlab c© on a bi-xeon E2620 v3
under Windows c©.

As an illustration, let us consider the previous example with 10 assets. Using
Algorithm 2, we compute the PDF of the portfolios’ returns and report it in
Figure 5. In this example, we observe that the distribution is uni-modal with
most portfolios having a return close to 0.6%. In the next section, we shall
focus on the computation of the moments of this distribution.

3.2.2 Closed form expression

It is straightforward to get the PDF by deriving Equation (4). Using the same
notation as in Section 3.1.2, this leads to the following closed-form formula
for the PDF:

f(R∗,R) = (n− 1)
∑
i∈I

(R∗−Si)
n−2
+

n∏
j=1,j 6=i

(Sj−Si)
+

+
∑
i∈K

(
mi−1∑
j=0

(−1)j+mi+1(n− j − 1)
(
n−1
j

) (R∗−Si)
n−j−2
+∏

k∈S\{Si}
(Sk−Si)

Φmi−1−j(bi)

)
.

(6)
Its computation suffers from the same drawback as the computation of the

CDF, providing numerically unstable results for n ≥ 20 at the usual machine
precision.

13



Figure 5: Illustration of the PDF of the portfolios returns.

3.2.3 Numerical derivation

The iterative nature of the de Boor-Cox formula makes the computation of
the PDF slow for large number of assets, say ≥ 20. Moreover, its computation
using the closed form formula above is numerically unstable for large number
of assets, say ≥ 20. So, a practical alternative is to estimate the PDF by
deriving numerically the CDF obtained earlier, using Varsi’s algorithm.

Let F be the CDF and x0 the point in which we wish to estimate its
derivative. One may employ central differences and the five points’ method,
thus having

F ′(x0) =
−F (x0 + 2h) + 8F (x0 + h)− 8F (x0 − h) + F (x0 − 2h)

12h
+
h4

30
F (5)(c),

(7)
with c ∈ [x0 − 2h, x0 + 2h]. The truncation error is then O(h4). Even though
it is only an estimate of the PDF, this approach enables us to scale up to
thousands of assets with computation times being 5 times higher than those
reported in Table 1 for an estimate at a single point with the five points
method.

4 Moments of the portfolios’ returns distri-

bution

In this section, we compute the moments of the portfolios returns. In Sec-
tion 4.1, we provide affine maps to pass from barycentric to Cartesian coor-
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dinates, and vice-versa, as well as some useful identities. In Section 4.2, we
state the moments’ definitions. In Section 4.3, we recall a theorem proposed
in [Lasserre and Avrachenkov, 2001] which provides an elegant expression
for the integral of a symmetric q-linear form on a simplex. In Section 4.4,
since the theorem makes use of nested sums, we provide identities for some
of these nested sums. In Section 4.5, after having developed the moments
expressions, we compute the individual terms that make up the moments up
to the fourth one. In Section 4.6, we provide the closed form solution of the
first four moments. Finally, in Section 4.7, we propose a general algorithm to
compute any moment.

4.1 Barycentric and Cartesian representations

There are affine maps to pass

• from barycentric to Cartesian coordinates:

mbc : Rn → Rn−1,
x 7→ x̆ = Tx+ vn,

(8)

where vertices vi correspond to (n− 1)-dimensional column vectors, and
T =

[
v1 − vn, · · · , vn−1 − vn

]
is an (n− 1)× (n− 1) matrix.

• from Cartesian to barycentric coordinates:

mcb : Rn−1 → Rn,

x̆ 7→ x =

[
In−1

−1′n−1

]
T−1(x̆− vn) +

[
0n−1

1

]
,

(9)

where 0n−1 and 1n−1 are the (n− 1)-dimensional column vectors of 0’s
and 1’s, respectively, and In−1 is the (n− 1)× (n− 1) identity matrix.

The return of portfolio x is then given by

R′x = Ax̆− Avn +Rn, (10)

where A = R′
[

In−1

−1′n−1

]
T−1. By construction, we also have these useful

identities:

Lemma 2. For n ∈ N, vertices (vi)
n
i=1, and matrix A as defined previously,

it holds
n∑
i=1

Avi = A
n∑
i=1

vi = 0. (11)
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Lemma 3. For n ∈ N, (Ri)
n
i=1, (vi)

n
i=1, A and M1 as defined previously, it

holds
Ri = Avi − Avn +Rn, i ∈ {1, . . . , n} . (12)

Lemma 4. For n ∈ N, (Ri)
n
i=1, (vi)

n
i=1, A and M1 as defined previously, it

holds
M1 = Rn − Avn. (13)

Lemma 5. For n ∈ N, (Ri)
n
i=1, (vi)

n
i=1, A and M1 as defined previously, it

holds
Avi = Ri −M1. (14)

4.2 Moments

We are interested in the distribution of the portfolio returns given the observed
individual asset returns R = (R1, . . . , Rn).

By definition, the moments of the portfolio returns distribution are given
as follows, where V (·) stands for Euclidean volume:

M1 =
1

V (∆n−1)

∫
∆n−1

Ax̆− Avn +Rn dx̆, (15)

M2 =
1

V (∆n−1)

∫
∆n−1

(Ax̆− Avn +Rn −M1)2 dx̆, (16)

Mk =
1

V (∆n−1) (
√
M2)k

∫
∆n−1

(Ax̆− Avn +Rn −M1)kdx̆, k ≥ 3, (17)

where the term 1
V (∆n−1)

is normalizing the equations. Indeed, the distance be-

tween the vertices vi is arbitrary, and so is the volume of ∆n−1. An alternative
is to choose the distance between the vertices vi such that V (∆n−1) = 1.

By employing Lemma 4, M2 and Mk simplify to

M2 =
1

V (∆n−1)

∫
∆n−1

(Ax̆)2 dx̆, (18)

Mk =
1

V (∆n−1) (
√
M2)k

∫
∆n−1

(Ax̆)kdx̆, k ≥ 3. (19)
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4.3 Integrating over ∆n−1

From [Lasserre and Avrachenkov, 2001], and slightly adapted to our notations,
we have the following

Theorem 6. Let v1, . . . , vn be the vertices of an (n−1)−dimensional simplex
∆n−1. Then, for a symmetric q-linear form H : (Rn−1)q → R, we have∫

∆n−1

H(X, . . . , X) dx̆ =
V (∆n−1)(
n− 1 + q

q

) ∑
1≤i1≤i2≤···≤iq≤n

H(vi1 , vi2 , . . . , viq),

(20)

where V (∆n−1) =

∫
∆n−1

1 dx̆ stands for the volume of the simplex ∆n−1.

4.4 Nested sum identities

In the following, we employ these identities:

Lemma 7. For n ∈ N, it holds

2
n∑
i=1

n∑
j=i

xixj =

(
n∑
i=1

xi

)2

+
n∑
i=1

x2
i . (21)

Proof. Trivial.

Lemma 8. For n ∈ N, it holds

(3!)
n∑
i=1

n∑
j=i

n∑
k=j

xixjxk =

(
n∑
i=1

xi

)3

+ 3

(
n∑
i=1

xi

)(
n∑
i=1

x2
i

)
+ 2

n∑
i=1

x3
i . (22)

See proof in Annex A.

Lemma 9. For n ∈ N, it holds

(4!)
n∑
i=1

n∑
j=i

n∑
k=j

n∑
t=k

xixjxkxt =

=

(
n∑
i=1

xi

)4

+ 6

(
n∑
i=1

xi

)2( n∑
i=1

x2
i

)
+ 8

(
n∑
i=1

xi

)(
n∑
i=1

x3
i

)
+ 6

(
n∑
i=1

x4
i

)
+ 3

(
n∑
i=1

x2
i

)2

.

See proof in Annex B.
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4.5 Expression of moments’ individual terms

We now need to compute
∫

∆n−1(Ax̆)p dx̆, where p corresponds to a single
term of the development.

Lemma 10. For n ∈ N, it holds∫
∆n−1

(Ax̆)2 dx̆ =
V (∆n−1)

n(n+ 1)

n∑
i=1

(Avi)
2. (23)

Proof. Apply Theorem 6, with q = 2, and H(x̆1, y̆2) = (Ax̆1)(Ax̆2), by
replacing the nested sum in the theorem as in Lemma 7, then recalling
Lemma 2.

Lemma 11. For n ∈ N, it holds∫
∆n−1

(Ax̆)3 dx̆ =
2V (∆n−1)

n(n+ 1)(n+ 2)

n∑
i=1

(Avi)
3. (24)

Proof. Apply Theorem 6, with q = 3, and H(x̆1, y̆2, y̆3) = (Ax̆1)(Ax̆2)(Ax̆3),
by replacing the nested sum in the theorem as in Lemma 8, then recalling
Lemma 2.

Lemma 12. For n ∈ N, it holds

∫
∆n−1

(Ax̆)4 dx̆ =
V (∆n−1)

n(n+ 1)(n+ 2)(n+ 3)

6

(
n∑
i=1

(Avi)
4

)
+ 3

(
n∑
i=1

(Avi)
2

)2
 .

Proof. Apply Theorem 6, with q = 4, andH(x̆1, y̆2, y̆3, y̆4) = (Ax̆1)(Ax̆2)(Ax̆3)(Ax̆4),
replacing the nested sum in the theorem as in Lemma 9, then recalling Lemma
2.

4.6 Closed form expression of the first four moments

In this section, we derive the following closed form expressions for the first
four moments, reported in Theorems 13 to 16, respectively.

Theorem 13. In a market of n assets, n ∈ N, whose returns are R = (Ri)
n
i=1,

the first moment of the portfolios’ returns is

M1 =
1

n

n∑
i=1

Ri. (25)
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Proof. See proof in Annex C.

Theorem 14. In a market of n assets, n ∈ N, whose returns are R = (Ri)
n
i=1,

the second moment of the portfolios’ returns is

M2 =
1

n(n+ 1)

n∑
i=1

(Ri −M1)2 =
1

n+ 1
V ar(R), (26)

where V ar is the biased sample variance.

Proof. Replace

∫
∆n−1

(Ax̆)2 dx̆ in Equation (18) by the expression from

Lemma 10, then apply Lemma 5.

Theorem 15. In a market of n assets, n ∈ N, whose returns are R = (Ri)
n
i=1,

the third moment of the portfolios’ returns is

M3 =
1

M
3/2
2

2

n(n+ 1)(n+ 2)

n∑
i=1

(Ri −M1)3. (27)

Proof. By replacing

∫
∆n−1

(Ax̆)3 dx̆ in Equation (19) with the expression from

Lemma 11, and applying Lemma 5, one obtains the result.

Theorem 16. In a market of n assets, n ∈ N, whose returns are R = (Ri)
n
i=1,

the fourth moment of the portfolios’ returns is

M4 =
1

M2
2

1

n(n+ 1)(n+ 2)(n+ 3)

6
n∑
i=1

(Ri −M1)4 + 3

(
n∑
i=1

(Ri −M1)2

)2
 .

(28)

Proof. By replacing

∫
∆n−1

(Ax̆)4 dx̆ in Equation (19) with the expression from

Lemma 12, and applying Lemma 5, the claim is established.

4.7 General algorithm to compute the moments

We now wish to compute the kth moment of the portfolios’ returns, i.e.,
restating Equation (19), we compute

Mk =
1

V ol (∆n−1) (
√
M2)k

∫
∆n−1

(Ax̆)kdx̆ , k ≥ 3.
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Let us set H(X1, . . . , Xk) =
k∏
i=1

Xi. It is a symmetric k-linear form, and

we have
H(Ax̆, . . . , Ax̆︸ ︷︷ ︸

k times

) = (Ax̆)k.

Thus from Theorem 6 we have∫
∆n−1

H(Ax̆, . . . , Ax̆︸ ︷︷ ︸
k times

) dx̆ =
V (∆n−1)(
n− 1 + k

k

) ∑
1≤m1≤m2≤···≤mk≤n

H(Avm1 , Avm2 , . . . , Avmk
).

Let qi be the number of occurrences of value i, 1 ≤ i ≤ n. Then,∫
∆n−1

(Ax̆)k dx̆ =
V (∆n−1)(
n− 1 + k

k

) ∑
n∑

i=1
qi=k

n∏
i=1

(Avi)
qi .

Now, we change the notations. Let λ = (λ1, . . . , λk) be a partition of k, and
Λk the set of partitions of k. We denote by l = (li)

d
i=1 the d unique non-zero

values in λ, d ≤ k, and by (pi)
d
i=1 the multiplicities of (li)

d
i=1. For instance,

λ = (2, 1, 1, 0) is a partition of k = 4, with d = 2, l = (1, 2) and the associated
multiplicities p = (2, 1).

From [Macdonald, 1995, Eq. (2.14’)], we have

∑
n∑

i=1
qi=k

n∏
i=1

(Avi)
qi =

∑
λ∈Λk

d∏
i=1

(
n∑
j=1

(Avj)
li

)pi

d∏
i=1

pi!l
pi
i

.

Set Λk can be obtained with Algorithm ZS1 in [Zoghbi and Stojmenovic,
1994], and is still tractable for large moments, as shown on Table 4:

k 1 5 10 20 30 40

|Λk| 1 7 42 627 5604 37338

Table 4: Number of partitions |Λk| for different values of k.

The computation is formally presented in Algorithm 3 below. As an illustration
of the computation times, we compute the kth order moments, k = 5, 10, 15, 20,
for markets of 100, 1000 and 10, 000 assets whose returns are randomly drawn.
The computation is repeated 1000 times. We report in Table 5 the average
computation time in seconds and its standard deviation.
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Algorithm 3. Let R be the asset returns, N the number of assets, and k the
moment order.

1. Compute M2 by Theorem 14

2. Compute Av as in Lemma 5

3. Compute Λ using Algorithm ZS1 in [Zoghbi and Stojmenovic, 1994]

4. Set S = 0

5. For each λ ∈ Λ:

(a) decompose λ in its d non-zero elements (li)
d
i=1 with multiplicities

(pi)
d
i=1

(b) a =
d∏
i=1

pi! l
pi
i

(c) b =
d∏
i=1

(
n∑
j=1

(Avj)
li

)pi

(d) S = S + a/b

6. Set Mk = S /

(√
M2

k ·
(
n− 1 + k

k

))

Moment order: 5 10 15 20
Nb of Assets

100 0.0006 0.0024 0.0100 0.0398
(0.0021) (0.0003) (0.0005) (0.0005)

1000 0.0008 0.0034 0.0117 0.0420
(0.0000) (0.0003) (0.0002) (0.0007)

10000 0.0020 0.0053 0.0145 0.0506
(0.0001) (0.0000) (0.0011) (0.0028)

Table 5: Mean runtime in seconds, and standard deviation in parenthesis, of
computing the moment of order k in markets of 100, 1000 and 10, 000 assets.
The assets returns are drawn randomly before each of the 1000 computations.
The experiments were performed with Matlab c© on a bi-xeon E2620 v3 under
Windows c©.
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5 Concluding remarks and future work

In this paper, we reviewed different approaches to compute the PDF, CDF
and moments of the distribution of portfolio returns, across portfolios and for
the long-only strategy.

For the CDF, the computations improve upon existing work by providing
exact results, allowing for equal asset returns, and handle a large number of
assets, thus removing the need of Monte Carlo sampling for its estimation.
These computations can be based on:

• the volume algorithm by [Varsi, 1973] which is fast and exact even for
a large number of assets,

• the closed form expression of CDF, which is exact but numerically
unstable for a large number of assets.

For the PDF, our methods are new, based on what follows:

• the algorithm by de Boor and Cox [de Boor, 1972, Cox, 1972], which is
exact but slow for a large number of assets,

• the closed form expression of PDF, which is exact but numerically
unstable for a large number of assets,

• the numerical derivation of the CDF using [Varsi, 1973], which only
provides an estimate but is fast and applies to a large number of assets.

For the moments, the computations are new and can based on

• closed form expressions up to the fourth-order moment,

• a new algorithm using Algorithm ZS1 by [Zoghbi and Stojmenovic,
1994], for higher moments, which is fast and exact even for a large
number of assets.

It should be noted that most of these computations can easily be vectorized,
thus further extending their realm of applications.

These results have several statistical and econometric implications.

• The asset returns can be standardized cross-sectionally without altering
the relative performance of portfolios. The series obtained are then
robust to systemic heteroskedasticity.
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• The closed form expressions of the first three moments show a direct
mapping between the moments of the cross-sectional asset returns
distribution and those of the distribution of portfolio returns.

In particular, the first moments are identical for both distributions. The
second and third moments are proportional to each other, the factor
depending on the number of assets. For the second moment, the factor
is 1

N+1
where N is the number of assets, implying that it might be more

difficult to find a portfolio which performs significantly better than the
equally weighted portfolio, when the number of assets increases.

The closed form expression of the fourth moment behaves differently
with an extra positive term implying fatter tails in the distribution of
portfolio returns than in the cross-sectional distribution of the asset
returns. Its implications have to be further analyzed.

The relevance of computing high moments can be discussed. We believe
that these moments should be useful in an alternative method recovering the
PDF. Indeed, since the distribution is bounded, this problem is known as
the Hausdorff moment problem, which has been addressed, see for instance
[Mnatsakanov, 2008]. This approach has been inconclusive for the authors.

Future work can take several directions. On the theoretical side, it would
be interesting to study the distribution of portfolio volatilities in order to
better assess the dependency between portfolios returns and volatilities, which
is done by sampling in [Calès et al., 2018] It would also be interesting to
consider different investment sets, e.g. including short selling4 and leverage5.

In terms of applications, it should be noticed that the paper focuses on
portfolio returns but the methodology can be applied to any linear combination
of asset characteristics, e.g. by defining the portfolio dividend yield as the
weighted sum of the asset dividend yields. The use of the score, i.e., the CDF,
has already found applications in portfolio performance measures. These
may be improved, for instance by considering the random nature of the asset
returns. The PDF can be used to finely assess the distribution of portfolios
with possible applications in portfolio diversification and turn-over analysis.
The moments can find applications in the literature on return dispersion, see
e.g. [Yu and Sharaiha, 2007], [Stivers and Sun, 2010], [Gorman et al., 2010],
[Bhootra, 2011] and [Verousis and Voukelatos, 2018]. They can also find
applications in the literature on noise trading, see e.g. [De Long et al., 1989].

4i.e. negative portfolio weights.
5i.e. sum of portfolio weights greater than one.
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A Proof of Lemma 8

Lemma 8 For n ∈ N, it holds

6
n∑
i=1

n∑
j=i

n∑
k=j

xixjxk =

(
n∑
i=1

xi

)3

+ 3

(
n∑
i=1

xi

)(
n∑
i=1

x2
i

)
+ 2

n∑
i=1

x3
i .

Proof. Let S(n) =
∑n

i=1

∑n
j=i

∑n
k=j xixjxk. The cases n = 0 and n = 1 are

easily verifiable. Let us assume that the theorem holds for S(n), n ≥ 1. We
shall prove it for S(n+ 1). Clearly,

S(n+ 1) = S(n) +
n∑
i=1

n∑
j=i

xixjxn+1 +
n∑
i=1

xix
2
n+1 + x3

n+1,

which, by inductive hypothesis, yields

6S(n+ 1) =(
n∑
i=1

xi

)3

+ 3

(
n∑
i=1

xi

)(
n∑
i=1

x2
i

)
+ 2

n∑
i=1

x3
i + 6xn+1

n∑
i=1

n∑
j=i

xixj + 6x2
n+1

n∑
i=1

xi + 6x3
n+1.

The underlined term becomes

3xn+1

(
2

n∑
i=1

x2
i + 2

n∑
i=1

n∑
j>i

xixj

)
, (29)

where the last index j is strictly larger than i. The overall sum is re-written
as the sum of the following three terms, where we have underlined terms
corresponding to sum (29):(

n∑
i=1

xi

)3

+ 3xn+1

(
n∑
i=1

xi

)2

+ 3x2
n+1

n∑
i=1

xi + x3
n+1 =

(
n∑
i=1

xi + xn+1

)3

,

3

( n∑
i=1

xi

)(
n∑
i=1

x2
i

)
+ xn+1

n∑
i=1

x2
i + x2

n+1

n∑
i=1

xi + x3
n+1

 =

=3

(
n∑
i=1

xi + xn+1

)(
n∑
i=1

x2
i + x2

n+1

)
,

2
n∑
i=1

x3
i + 2x3

n+1,

which correspond to the three sums of the original claim.
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B Proof of Lemma 9

Lemma 9 For n ∈ N, it holds

(4!)
n∑
i=1

n∑
j=i

n∑
k=j

n∑
t=k

xixjxkxt =

(
n∑
i=1

xi

)4

+ 6

(
n∑
i=1

xi

)2( n∑
i=1

x2
i

)
+ 8

(
n∑
i=1

xi

)(
n∑
i=1

x3
i

)
+ 6

(
n∑
i=1

x4
i

)
+ 3

(
n∑
i=1

x2
i

)2

Proof. Let S(n) =
∑n

i=1

∑n
j=i

∑n
k=j

∑n
t=k xixjxkxt. The cases n = 0 and

n = 1 are easily verifiable. Let us assume that the theorem holds for
S(n), n ≥ 1. We shall prove it for S(n+ 1). Clearly,

S(n+1) = S(n)+
n∑
i=1

n∑
j=i

n∑
k=j

xixjxkxn+1+
n∑
i=1

n∑
j=i

xixjx
2
n+1+

n∑
i=1

xix
3
n+1+x4

n+1,

which, by the inductive hypothesis, yields:

24S(n+ 1) =(
n∑
i=1

xi

)4

+ 6

(
n∑
i=1

xi

)2( n∑
i=1

x2
i

)
+ 8

(
n∑
i=1

xi

)(
n∑
i=1

x3
i

)
+ 6

(
n∑
i=1

x4
i

)
+ 3

(
n∑
i=1

x2
i

)2

+ 24xn+1

n∑
i=1

n∑
j=i

n∑
k=j

xixjxk + 24x2
n+1

n∑
i=1

n∑
j=i

xixj + 24x3
n+1

n∑
i=1

xi + 24x4
n+1.

Let A = x3
n+1

∑n
i=1 xi and B = x4

n+1. From Lemma 8, we have

24xn+1

n∑
i=1

n∑
j=i

n∑
k=j

xixjxk =

=4xn+1

( n∑
i=1

xi

)3

+ 3

(
n∑
i=1

xi

)(
n∑
i=1

x2
i

)
+ 2

n∑
i=1

x3
i


= 4xn+1

(
n∑
i=1

xi

)3

︸ ︷︷ ︸
=C

+ 12xn+1

(
n∑
i=1

xi

)(
n∑
i=1

x2
i

)
︸ ︷︷ ︸

=D

+ 8xn+1

n∑
i=1

x3
i︸ ︷︷ ︸

=E
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And from Lemma 8, we have

24x2
n+1

n∑
i=1

n∑
j=i

xixj =

=12x2
n+1

( n∑
i=1

xi

)2

+
n∑
i=1

x2
i


= 12x2

n+1

(
n∑
i=1

xi

)2

︸ ︷︷ ︸
=2F

+ 12x2
n+1

(
n∑
i=1

x2
i

)
︸ ︷︷ ︸

=2G

.

The overall sum is rewritten using the sum of the following four terms:(
n+1∑
i=1

xi

)4

=

(
n∑
i=1

xi

)4

+ 4xn+1

(
n∑
i=1

xi

)3

︸ ︷︷ ︸
=C

+ 6x2
n+1

(
n∑
i=1

xi

)2

︸ ︷︷ ︸
=F

+ 4x3
n+1

(
n∑
i=1

xi

)
︸ ︷︷ ︸

=4A

+x4
n+1︸︷︷︸
=B

.

6

(n+1∑
i=1

xi

)2(n+1∑
i=1

x2
i

) =6

( n∑
i=1

xi

)2

+ 2xn+1

(
n∑
i=1

xi

)
+ x2

n+1

(x2
n+1 +

n∑
i=1

x2
i

)
=6

(
n∑
i=1

xi

)2( n∑
i=1

x2
i

)
+ 6x2

n+1

(
n∑
i=1

xi

)2

︸ ︷︷ ︸
=F

+ 12x3
n+1

(
n∑
i=1

xi

)
︸ ︷︷ ︸

=12A

+ 12xn+1

(
n∑
i=1
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)(
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i=1

x2
i

)
︸ ︷︷ ︸

=D
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+x2
n+1

(
n∑
i=1

x2
i

)
︸ ︷︷ ︸

=G

.

8

(
n+1∑
i=1

xi

)(
n+1∑
i=1

x3
i

)
=8

(
n∑
i=1

xi

)(
n∑
i=1

x3
i

)
+ 8xn+1

(
n∑
i=1

x3
i

)
︸ ︷︷ ︸

=E

+ 8x3
n+1

(
n∑
i=1

xi

)
︸ ︷︷ ︸

=8A

+ 8x4
n+1︸ ︷︷ ︸

=8B

.

3

(
n+1∑
i=1

x2
i

)2

=3

(
n∑
i=1

x2
i

)2

+ 6x2
n+1

(
n∑
i=1

x2
i

)
︸ ︷︷ ︸

=G

+ 3x4
n+1︸ ︷︷ ︸

=3B

.
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6

(
n+1∑
i=1

x4
i

)
= 6

(
n∑
i=1

x4
i

)
+ 6x4

n+1︸ ︷︷ ︸
=6B

.

C Proof of Theorem 13

By definition of the second moment in Eq. 15, we have

V
(
∆n−1

)
M1 =

∫
∆n−1

Ax̆− Avn +Rn dx̆ =

∫
∆n−1

Ax̆ dx̆+ (−Avn +Rn)V
(
∆n−1

)
.

From Lemma 9, and simplifying by V (∆n−1), we get

M1 =

(
1

n

n∑
i=1

Avi

)
+ (−Avn +Rn)

=
1

n

n∑
i=1

(Avi − Avn +Rn) =
1

n

n∑
i=1

Ri,

which concludes the proof.
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