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Abstract: Tauopathies comprise a group of progressive age-associated neurodegenerative diseases
where tau protein deposits are found as the predominant pathological signature (primary tauopathies)
or in combination with the presence of other toxic aggregates (secondary tauopathies). In recent years,
emerging evidence suggests that abnormal tau accumulation is mediated through spreading of seeds
of the protein from cell to cell, favouring the hypothesis of a prion-like transmission of tau to explain
the propagation of the pathology. This would also support the concept that the pathology initiates in
a very small part of the brain before becoming symptomatic and spreads across the brain over time.
To date, many key questions still remain unclear, such as the nature of the tau species involved in the
spreading, the precise seeding/template and uptaking mechanisms or the selectivity explaining why
certain neurons are affected and some others are not. A better understanding of the tau spreading
machinery will contribute to the development of new therapeutic approaches focused on halting the
abnormal propagation, offering also new perspectives for early diagnosis and preventive therapies.
In this review, we will cover the most recent advances in tau spreading mechanisms as well as the
implications of these findings for dysfunctional tauopathies.
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1. Introduction

Tuaopathies are a group of heterogeneous dementias with diverse phenotypic manifestations but
with a common feature; intracellular accumulations of abnormal filaments formed by the microtubule-
associated protein (MAP) tau [1]. Tauopathies are often difficult to diagnose antemortem and can
be divided into two different categories: primary and secondary tauopathies (see Table 1). The first
ones comprise disorders in which tau pathology is the major neuropathological characteristic, such as
frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) and Pick’s Disease.
In the second ones, an additional driving force contributing to the disease is found, often another
amyloid protein (β-amyloid peptide, Aβ, prion protein, PrP, 34-mer amyloid Bri, ABri). This group
includes familial and sporadic Alzheimer’s Disease (AD), familial Gerstmann-Sträussler–Scheinker
disease and familial British dementia [2]. Tauopathies can be also subclassified attending to the
preferential accumulation of 3R or 4R tau [3], two different tau species resulting from the alternative
splicing of exon 10. Thus, while in primary tauopathies there is a preferential accumulation of 3R, 4R or
3R + 4R tau depending on the disorder [4], in secondary tauopathies, including AD, tau is composed of
and equimolar ratio of 3R and 4R tau (3R + 4R tau) [5] (Table 1).
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Table 1. Classification of tauopathies.

Tauopathies Tau 3R/4R Ratio

Primary Tauopathies

Richardson’s syndrome 1:2–4
Pick’s disease 3:1

Frontotemporal dementia with parkinsonism-17 (FTDP-17) 1:2
Postencephalic parkinsonism (PEP) 1:1

Argylophilic grain disease 1:2
Corticobasal degeneration 1:2

Progressive supranuclear palsy (PSP) 1:3–4
Parkinson-dementia complex (PDC Guam) 1:1

Guadeloupean parkinsonism 1:2

Secondary Tauopathies

Alzheimer’s Disease (AD) 1:1
Creutzfeldt–Jakob disease -

Down’s syndrome 1:1
Dementia pugilistica 1:1

Familial British Dementia -

Mounting evidence from animal and cell models suggests that pathogenic tau propagation
between brain cells following a prion-like spreading mechanism is central to the neurodegenerative
process. This concept was first introduced in 2009, when two different groups demonstrated that
extracellular tau was able to propagate both in vitro [6] and in vivo [7]. Those experiments opened
up a new pathway that keeps on being explored nowadays. Despite many questions that must be
solved in the field, it has been suggested that therapeutics should focus on preventing the cellular
release and uptake of the misfolded tau [8]. Understanding the underlying mechanisms of abnormal
tau cell-to-cell transmission could provide, not only novel insights into the etiology of pathogenesis
but could also help to identify new targets for the development of therapies focused on counteracting
neurodegeneration or even preventing it.

2. Tau Protein

Tau was first discovered in 1975 as a MAP, being the most abundant one in the brain [9].
The human tau gene (MAPT), located on chromosome 17q21, contains 16 exons, from which different
tau isoforms are generated by alternative splicing [10,11]. Some of these isoforms are selectively
expressed during embryonic and early postnatal development [11–13], whereas in the adult central
nervous system, six different tau isoforms are expressed, differing in the presence or absence of exons
2, 3 and 10. Exon 10 encodes one of the four repeat sequences [5,14] that form the microtubule-binding
domain [1]. The presence of exon 10 results in tau with four repeat microtubule-binding sequences
(4R), whereas the alternatively spliced isoforms without exon 10 have only three of these sequences
(3R). The expression of some of these tau isoforms is developmentally regulated. Thus, isoforms
lacking exon 10 (3R) are found at early developmental stages whereas tau isoforms containing exon 10
(Tau 4R) are mainly found in neurons at mature developmental stages [15].

In the brain, tau is mainly found in neurons but it is also present at low levels in glia [16], and,
despite being mostly an intracellular protein, it has also been detected outside cells as it will be
further discussed later. Within neurons, tau is predominantly localized in the cytosol associated to
microtubules, especially in the axonal compartment [17]. However, when phosphorylated, it can be
also found in the somato-dendritic compartment [18] and even at dendritic spines [19]. Additionally,
tau can associate with the plasma membrane [20,21] or it can be found in the nucleus [22]. Finally, tau
expression in the human brain shows considerable regional variation. Protein levels in the white matter
and the cerebellum are two-fold lower than the levels found in the neocortex. Importantly MAPT gene
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also exhibits regional differences [23,24]. All these variations in tau expression may contribute to the
differential vulnerability of brain regions to tau pathology.

As stated, tau was originally discovered as a microtubule-associated protein, however, in the
recent years, several other functions have been revealed. In neurons, besides regulating microtubule
dynamics, tau may regulate axonal transport via different mechanisms, including its influence over
the motor proteins dynein and kinesin with which tau competes for binding to microtubules, slowing
down the anterograde and retrograde transport along the tubulin network [25]

However, despite this having been demonstrated in vitro, little influence of tau in axonal transport
in vivo has been observed so far [26]. Also, in the axonal compartment, tau seems to be essential for
axonal elongation and maturation as demonstrated in overexpression and knocking down experiments
in vitro [27], although further experiments are required to support these conclusions. A small amount
of tau has been found in dendrites as well, where its physiological role is not well understood yet but
where it has been proposed to be involved in the regulation of synaptic plasticity [28]. Additionally,
in the nucleus of neurons and non-neuronal cells, tau is believed to be key in maintaining the
integrity of genomic DNA, cytoplasmic RNA and nuclear RNA [22,29]. Finally, other functions
of tau include regulation of neuronal activity, neurogenesis, iron export and long-term depression
(LTD) [30], although again, results are in some cases not conclusive due to discrepancies specially
concerning the transgenic mouse lines used in the different experiments.

Interestingly, regulation of tau function is predominantly achieved through post-translational
modifications, primarily phosphorylation at many sites. Thus, an increase in tau phosphorylation reduces
its affinity for microtubules, resulting in neuronal cytoskeleton instability [31]. Hyperphosphorylation of
tau may also induce pathology through other mechanisms. First, hyperphosphorylation of tau might
induce tau missorting from axons to the somatodendritic compartment, which can cause synaptic
dysfunction [32,33]. Second, degradation of tau (via autophagy or via proteasome) and its truncation by
proteases can be also altered by phosphorylation. Third, often tau phosphorylation has been considered
to enhance tau aggregation, as hyperphosphorylation and aggregation are both increased in AD [34].
However, this is still a matter of debate. Lastly, phosphorylation of tau may also change its interaction
with other proteins. For example, the hyperphosphorylated form but not the unphosphorylated one
can interact with the kinesin-associated protein JUN N-terminal kinase interacting protein 1 (JIP1)
impairing the formation of the kinesin complex responsible of mediating axonal transport [35]. In the
recent years, a novel post-translation modification of tau has been discovered. Acetylation of several
lysine residues occurs by the action of the P300 acetyltransferase and the DNA cAMP response element
(CREB)-binding protein. Depending on the sites, the acetylation of tau could inhibit its degradation,
or by contrast, facilitate its degradation and suppress its phosphorylation and aggregation. [36,37].
Acetylation of tau has been found in AD and other taupathies. Specifically, acetylation at Lys174 has
been recently identified in AD brains and it seems that it may contribute to retard tau turnover being
critical for tau-induced toxicity, which has opened new therapeutic perspectives for the treatment of
AD and other human tauopathies [38]. Finally, it is worth to note that tau protein is also subject to
other post-translational modifications, including glycosylation, glycation, deamidation, isomerization,
nitration, methylation, ubiquitylation, sumoylation and truncation [39]. Among them, N-glycosilation
as well as the non-enzymatic modifications including deamidation, are believed to contribute to tau
aggregation by changing its conformational structure and reducing its affinity for microtubules [40–42].
In contrast, other modifications such as the O-GlcNAcylation of tau (a type of O-glycosylation) may
protect it against phosphorylation [43] and supress its aggregation [44]. Interestingly, in AD brains,
N-glycosylation has been found to be increased [45] while O-GlcNAcylation seems to be reduced [43],
which may explain the overall hyperphosphorylation and aggregation phenomena observed in the
pathology. Other post-translational modifications, such as ubyquitylation and sumoylation, might
influence tau degradation through the proteasome directly or indirectly, respectively [46,47]. Finally,
tau truncation occurs in AD and other tauopathies and it is likely to play an important role, since tau
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fragments are not only prone to aggregation but they can also induce neurodegeneration independently
of tau aggregation [30].

3. Tau Spreading Mechanisms

Although tau is predominantly an intracellular protein, recent evidence shows that, besides the
amount of tau released by dying neurons, the protein can be also actively secreted to the extracellular
space both in vitro and in vivo. In vitro, experiments have demonstrated on the one hand, that human
tau can be secreted by non-neuronal and neuronal cell lines when overexpressed [48–55] and that
this extracellular tau is toxic [56,57] and it may bind cellular receptors such as muscarinic (M1, M3)
receptors [58]. In vivo, tau has been found in the interstitial fluid and the cerebrospinal fluid (CSF)
of tau transgenic mouse brains before neurodegeneration, demonstrating that secretion is an active
process not occurring only after cell death [59,60].

To date, mechanisms underlying tau spreading are not fully understood and further experiments
are required to answer the main questions that are behind the process:

3.1. Which Are the Seeding Mechanisms?

The formation of tau filaments can be initiated or accelerated by the addition of seeds. Since 2009,
several works have proved that Tau assemblies, when applied extracellularly, can seed the formation of
aggregates [6,7] that serve as the start point for the spreading of tau. Considering that tau is mainly
an intracellular protein, its propagation requires seeding as well as aggregate uptake and secretion.
However, a lack of consensus exists regarding this point. In 2014, and thanks to super-resolution
imaging techniques, Michel et al. demonstrated that monomeric tau could function as an efficient
seed [61]. In contrast, the following year, Falcon et al. postulated that tau is only able to seed aggregation
when it is competent, a characteristic that, according to their experiments, monomeric tau does not
seem to show and that is absent when some amino acids are deleted from the full-length form [62].
Also in 2015, a work published by Mirbaha et al. supported the idea of bigger sizes of tau other than
monomers to induce seeding, proposing tau trimers as the minimal particle size to be uptaken by
a cell to serve as a conformational template for intracellular tau [63], an hypothesis that confirmed
a previous work published in 2013 by Wu et al. [64]. More recently, a study by Fitzpatrick et al.
has stressed the importance of the atomic structure characterization of tau filaments to understand
their aggregation. Thus, the authors report how different protofilament packing interactions lead to
ultrastructural polymorphism in tau filaments and more importantly, that some of those aggregation
patterns seem to be common among AD patients [65].

Another important point is how mutations in tau protein can affect both its ability to seed or to be
seeded. Thus, it has been demonstrated that the frequency of tau seeding appears to depend, in part,
on the mutational status of the protein and the transduced fibrils [66–68]. The efficiency of mutated
tau to induce seeding may also open the debate of tau propagation in tauopathies, where mutant tau is
not a common feature in many cases.

Tau isoforms also influence tau seeding, as it has been demonstrated by several groups in vitro
when using different tau isoforms as seeding templates [69,70] and even by using purified oligomers
isolated from brains of individuals with progressive supranuclear palsy (PSP) [71].

Aggregation may be directly influenced by the tau phosphorylation status. A recent publication
has demonstrated how hyperphosphorylation is a driving force for tau aggregation in vitro, and how
a specific phosphorylation pattern (Ser202/Thr205/Ser208) is sufficient to induce this phenomenon
without the addition of any exogenous aggregation inducer [72].

Finally, tau strains seem to be essential for the overall propagation process including the seeding
of tau. Thus, tau forms multiple unique prion-like strains with distinct biochemical properties that are
able to induce diverse pathological phenotypes both in vitro and in vivo. These tau strains also target
different brain regions and propagate pathology at unique rates [68,73].
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3.2. Which Are the Releasing Mechanisms?

Although the precise mechanisms by which tau reaches the extracellular space remain to be
elucidated, it is believed that its secretion occurs via the unconventional vesicular or non-vesicular-
mediated secretory pathway, since tau protein does not contain an apparent signal sequence to
regulate its translocation to the endoplasmic reticulum (ER) as it happens in the conventional secretory
pathway [74]. One of the possible mechanisms within this unconventional secretory pathway is the
vesicular-mediated exososome pathway. Exosomes are extracellular vesicles that are released upon
fusion of the multivesicular bodies with the plasma membrane [75]. Several studies have demonstrated
tau secretion via this pathway. For example, tau from the CSF [53] and from blood of patients with
AD [76] was demonstrated to be associated with exososomes. Tau secretion in an exososome-dependent
manner has been also reported in experiments with N2a cells overexpressing tau [77] as well as mediated
by microglia cells [78]. Another vesicular-mediated mechanism proposed by Dujardin et al. in 2014
implicates ectosomes, which are larger extracellular vesicles that directly shed from cells by plasma
membrane budding [79]. In the study, the authors postulate that tau is predominately secreted in
ectosomes and when it accumulates, the exosomal pathway is activated [80]. A third mechanism
proposes the formation of thin membranous bridges termed tunnelling nanotubes (TNTs) to mediate
tau release and spreading [81]. These structures have been demonstrated to mediate neuron-to-neuron
transfer of pathological tau protein assembles and therefore, they have been considered a possible
highway in the spreading of tau, another prion-like protein in neurodegenerative diseases [82,83].

However, other studies report that the majority of extracellular tau is membrane-free [48,49] and
that consequently, the extracellular vesicle-mediated mechanisms are only responsible for a small
fraction of the total tau that is released to the extracellular space. Alternatives for tau secretion are not
well understood yet and include the implication of some chaperone complexes [84] and certain Rab
GTPases such as Rab7a [85] and Rab1a [86], supporting the idea that tau release involves intracellular
vesicle transport.

Several types of stimuli affect tau secretion. For example, the stimulation of neuronal activity
both in vitro and in vivo enhances tau release [87–89] and at the same time, extracellular tau influences
tau activity [90], suggesting a positive feedback loop. On the other hand, lysosomal dysfunction or
starvation also seems to increase tau secretion [91]. Finally, differences in tau species and isoforms,
not only influence seeding as it was above-mentioned, but they also impact its release, as it has been
reported for tau mutated forms [49], hyperphosphorylated forms of the protein [52,90] and truncated
forms of tau [52].

3.3. Which Tau Species Are Secreted?

Elucidating which tau species are released to the extracellular space might help to understand the
overall propagation process and it would be especially interesting for the development of therapies
focused on halting tau spreading. As in the other key questions relative to the process, there is no
consensus regarding tau species involved in secretion as to date, mainly because of the distinct nature
of the experiments, making extrapolation to the actual physiological and/or pathological conditions
difficult. Thus, while some cell lines such as M1C and Hela cells overexpressing human tau release a
cleaved form of the protein in its C-terminal end [48,49,87], primary cortical neurons or neuronal cell
lines such as SH-SY5Y secrete endogenous full-length tau [49,54]. The phosphorylation status of tau has
been also examined. Depending on the cell type, secretion of overexpressed human tau by non-neuronal
cell lines is either phosphorylated or importantly dephosphorylated at several sites [48,52].

Further experiments are required to determine which forms of tau could be preferentially released
in pathological situations in vivo and whether some forms are associated with particular stimuli.
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3.4. Which Are the Uptaking Mechanisms?

Initially, a role for “bulk” or “fluid phase” endocytosis was proposed, but the precise mechanism
was unknown. In a study published in 2013, Holmes et al. demonstrated the uptake of tau
and α-synuclein aggregate seeds by neurons through macropinocytosis, a subtype of fluid-phase
bulk endocytosis, which might be the most likely mechanism for tau uptake. This process is
initiated by the binding of aggregated protein on the cell surface to heparin sulphate proteoglycans
(HSPGs), a family of core proteins decorated with glycosaminoglycan polysaccharides. Remarkably,
the internalization process is only triggered by these aggregated species and not by monomeric
tau [92]. Another study also suggests that HSPGs can mediate the internalization of exososomes [93].
Interestingly, this HSPGs-mediated process is similar to the one utilized by eukaryotic cells for virus
internalization [94,95].

Not only neurons participate in the uptake of tau aggregates. For example, microglial cells are able
to internalize and degrade pathological tau, a process that is enhanced by the use of a tau monoclonal
antibody [96]. However, it is unknown whether cell-specific mechanisms exist.

3.5. How Does Propagation Occur?

Growing evidence suggests that accumulation of abnormal tau is mediated through spreading
of protein seeds from cell to cell and involving extracellular tau species as the main agent in the
interneuronal propagation of neurofibrillary lesions and spreading of tau toxicity throughout different
brain regions [97,98]. As it has been previously described, pathogenic tau needs to be released from
the originating neuron or glial cell and taken up by a neighbouring neuron or glial cell. Notably, in
neurodegenerative diseases this transfer may occur across synapses and thus correspond to intrinsic
connectivities between cells [99]. Importantly, some studies strongly suggest that tau can be spread
via neuronal connections. Indeed, in experiments with animal models in which initial focus of
the pathology is varied, it has been shown that different neuronal populations are sequentially
affected depending on the injection site of the preformed fibrils [7,100,101], supporting the idea
of neuronal connectivity as an important factor to understand cell vulnerability to protein aggregation
in neurodegenerative diseases. This idea is further supported by the fact that structures that are
anatomically distant are affected in some of these pathologies, indicating that transmission might not
simply occur by simple diffusion among neighbouring cells [7,100,102].

Despite tau propagation being broadly reported in animal models of tauopathies, does it
also occur in humans? If so, how does it happen? Neuropathological studies have identified
that, in neurodegenerative diseases, stereotypical patterns of pathology take place over time, with
the progression of these patterns being associated with the increasing severity of the clinical
phenotype [103]. This was firstly established in AD patient brains, where tau pathology was found to
propagate from the entorhinal cortex through the hippocampus and into the limbic and associated
cortexes, which correlates with the clinical cognitive status of the patient [104]. Stereotypical patterns
have been also found in other tauopathies such as chronic traumatic encephalopathy (CTE), a tauopathy
that occurs as a consequence of repetitive mild traumatic brain injury, where tau lesions can originate
closer to perivascular spaces within the depths of cortical sulci [105] and become subsequently
detectable in larger regions of the neocortex and allocortex, diencephalon, basal ganglia, brainstem
and spinal cord [106]. Alternative to the hypothesis of the spread of the pathology, the concept of
neuronal vulnerability was introduced to explain the appearance of the pathologies in different brain
regions [8]. This concept suggests that some neurons are intrinsically more vulnerable than others
during pathogenic processes [107]. However, the factors that determine this “intrinsic vulnerability”
are poorly understood and might include the expression of certain gene profiles that could make a
neuron more dysfunctional at an earlier stage and structurally abnormal than others.

Finally, it is noteworthy to stress the putative role of glia in the propagation of tau pathology.
At least in animal models, the injection of brain lysates from different taupathies including progressive
supranuclear palsy (PSP), corticobasal degeneration and argyripilic grain disease into the brains
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of mice expressing wild-type tau, induces tau pathology in oligodendrocytes and astrocytes [108].
This demonstrates the spreading to these cells, but does not provide an explanation about the potential
role of glia in tau propagation. Interestingly, recently, work published by Venegas et al. has established
a direct correlation between the microglia-dependent inflammasome activity and the spreading of
amyloid-β pathology in AD [109]. Taking into account these results, it would be very informative to
perform experiments to determine a possibly similar role for microglia and the inflammasome in the
spreading of tau pathology.

Despite contribution of glial cells to the initiation and progression of several neurodegenerative
disorders apart from tauophaties, further studies are required to elucidate the specific role of these
brain cells in protein propagation.

4. Tau Spreading Implications for Dysfunctional Tauopathies

To date, we have no discovered effective therapies for the treatment of tauopathies, since
neuroprotective and anti-inflammatory therapies have largely proved to be unsatisfactory. The discovery
of tau spreading in neurodegenerative disorders has opened new perspectives for therapeutic strategies,
focused on preventing or even stopping the process.

As it was extensively discussed in this review, tau spreading involves several different processes
from protein seeding and aggregate release, to the uptake of the extracellular tau and the final
propagation of the toxic species. Consequently, therapies can be directed to prevent any or several parts
of the process. For example, stabilization of the wild-type protein in its normal conformation conferring
resistance to template-directed conformational change without interfering with its normal function
could be a possible therapeutic approach [103] that indeed, has been already applied with success
in the treatment of a neurodegenerative disorder, transthyretin amyloidosis [110]. Post-translational
modifications, especially hyperphosphorylation, have been also the focus of many therapies. Indeed,
some compounds are currently undergoing clinical trials, such as a derivative of methylene blue
(LMTX), which has numerous targets including some tau-phosphorylating kinases, and that conferred
treatment benefits in a Phase II trial in individuals with mild-to-moderate AD and now is undergoing
a Phase III trial [111], or tideglusib, a GSK-3 inhibitor (the main tau kinase. [112]), which reduced the
progression of brain atrophy in a Phase II trial in patients with mild-to-moderate PSP [113].

Another strategy could be addressed to interfere with the release or the uptake of the protein.
Thus, specific antibodies could capture protein seeds in the extracellular space before being transferred
to the receiving cell [114] or target receptors or other cellular proteins needed for the uptake or release
of pathogenic proteins [115–117]. Immunotherapy has emerged as a promising therapeutic strategy
for tauopathies. Although mechanisms of action remain unclear, experiments in transgenic mouse
models with vaccinations have reduced tau pathology and improved the performance in behavioural
tests [118,119]. It has been demonstrated that when recycling of antibodies between the central nervous
system (CNS) and the plasma compartments exists, there is a reasonably high CNS exposure to the
antibody [120]. Antibodies may enter neurons by different mechanisms [30] inhibiting intracellular
tau aggregation, but they could also exert their therapeutic effects by interacting with extracellular
antigens without entering cells [121]. Indeed, some antibodies were able to prevent tau spreading in
transgenic mice by capturing extracellular tau seeds [122]; a promising result that could be relevant for
its translational application in humans in the future.

An important obstacle when translating these therapies to humans will be the blood–brain barrier
(BBB) and the blood–cerebrospinal fluid barrier, both of which limit the passage of extrathecally
administered antibodies into the CNS [123]. In this way, it has been recently suggested that the use
of sound waves could enhance BBB permeability, thereby facilitating the delivery of tau antibodies
to the brain [124]. It is worth mentioning that some compounds used in clinical practice for decades
have been demonstrated to pass freely through the BBB and to be effective in the treatment of some
neurodegenerative disorders. This is the case for ceftriaxone, a β-lactam antibiotic used for halting or
reversing neurodegeneration in some disorders such as Alexander’s Disease and Parkinson's Disease,
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thanks to its chaperon-like effect on some of the misfolded proteins involved in these pathologies
(GFAP and α-synuclein, respectively) [125–127].

On the other hand, interfering with cellular uptake or release would probably affect the homeostasis
of other cellular proteins leading to important adverse effects, and consequently, it should be taken into
account when designing a therapeutic strategy.

5. Conclusions

The existence and subsequent relevance of tau spreading in tauopathies has been relatively
recently highlighted. Although growing evidence has emerged supporting and demonstrating this
phenomenon, mechanisms remain poorly understood and further studies are required to understand
the process and its consequences. Hence, tau spreading has been the focuse of many therapeutic
strategies, which to date, have collected promising results. However, a detailed knowledge of how
the spreading may occur is fundamental for the success of these therapies. Consequently, intensive
work is required so that the propagation of tau pathology is considered as a real target for future
therapeutic approaches.
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