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Chagas disease is a multisystemic disorder caused by the protozoan parasite

Trypanosoma cruzi, which affects∼8 million people in Latin America, killing 7,000 people

annually. Chagas disease is one of the main causes of death in the endemic area

and the leading cause of infectious myocarditis in the world. T. cruzi infection induces

two phases, acute and chronic, where the infection is initially asymptomatic and the

majority of patients will remain clinically indeterminate for life. However, over a period

of 10–30 years, ∼30% of infected individuals will develop irreversible, potentially fatal

cardiac syndromes (chronic chagasic cardiomyopathy [CCC]), and/or dilatation of the

gastro-intestinal tract (megacolon or megaesophagus). Myocarditis is the most serious

and frequent manifestation of chronic Chagas heart disease and appears in about 30%

of infected individuals several years after infection occurs. Myocarditis is characterized

by a mononuclear cell infiltrate that includes different types of myeloid and lymphoid cells

and it can occur also in the acute phase. T. cruzi infects and replicates in macrophages

and cardiomyocytes as well as in other nucleated cells. The pathogenesis of the chronic

phase is thought to be dependent on an immune-inflammatory reaction to a low-grade

replicative infection. It is known that cytokines produced by type 1 helper CD4+ T cells

are able to control infection. However, the role that infiltrating lymphoid and myeloid

cells may play in experimental and natural Chagas disease pathogenesis has not been

completely elucidated, and several reports indicate that it depends on the mouse genetic

background and parasite strain and/or inoculum. Here, we review the role that T cell

CD4+ subsets, myeloid subclasses including myeloid-derived suppressor cells may play

in the immunopathogenesis of Chagas disease with special focus on myocarditis, by

comparing results obtained with different experimental animal models.

Keywords: Chagas disease, myocarditis, immunoegulation, regulatory T cells, Th1 cells, Th17 cells, Trypanosoma

cruzi, MDSCs

INTRODUCTION

Trypanosoma cruzi life cycle involves stages in invertebrate and vertebrate hosts including domestic
and wild species. Clinically T. cruzi infection can be divided in two phases, acute and chronic.
In the acute phase, after infection, a local inflammatory lesion can appear at the site of the
bite. Death occurs occasionally in the acute phase (<5–10% of symptomatic cases) as a result
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of severe myocarditis or meningoencephalitis, or both. But
frequently this phase shows very mild and unspecific symptoms
and the infection can pass easily unnoticed. About 60–70% of
the infected people will never develop clinically apparent disease
being asymptomatic (undetermined). The remaining (around
30%) of patients develop the most severe chronic pathology of
the disease that appears between one and three decades after
primary infection with T. cruzi (Rassi et al., 2010; Perez-Molina
and Molina, 2017; Telleria and Tibayrenc, 2017).

T. cruzi is a heterogeneous species with a high
genetic variability being classified into six Discrete
Typing Units (DTUs), also named TcI to TcVI, which
have been associated with geographical distribution,
transmission cycle (domestic and sylvatic) but it has
also been proposed that different DTUs are associated
with diverse clinical manifestations (Zingales et al., 2009,
2012).

T. cruzi infection elicits a complex immune response.
Different cell types can recognize T. cruzi and react on different
ways for controlling infection. Detection and direct destruction
of parasites by phagocytes, like macrophages and dendritic cells,
which are activated to become APCs and initiate the adaptive
immune response is fundamental. Also non-hematopoietic cells,
as primary targets of invasion, can sense infection and can
contribute to control the infection (Telleria and Tibayrenc,
2017).

Upon T. cruzi infection macrophages secrete interleukin
(IL)-12, which activates natural killer (NK) cells to produce
interferon (IFN)-γ (Aliberti et al., 1996; Antúnez and Cardoni,
2000), which plays a crucial role in activation of macrophages
acting synergistically with TNF-α to express inducible nitric
oxide synthase (iNOS) (Muñoz-Fernández et al., 1992) and
Cyclooxygenase-2 (COX-2) (Guerrero et al., 2015).

CD4+ T CELL SUBSETS

T cells originate from bone marrow T cell precursors that enter
circulation and reach the thymus, where they differentiate into
different types as CD4+ helper (Th) and regulatory (Treg),
CD8+ cytotoxic (CTLs), and natural killer (NKT) T cells that
colonize secondary lymphoid organs and tissues. There are
several studies about the role of CD4+ and CD8+ cells in
T. cruzi infection (reviewed in Cardillo et al., 2015). In general
those studies have provided evidence on the protective role
of Th1, especially on the outcome of acute infection in vivo
(Holscher et al., 1998). On the other hand, Th2/antibody
specific response seems to play a minor role on protection
(Abrahamsohn et al., 2000). Although it was initially published
that perforin/granzyme mediated killing was not necessary for
resistance to infection (Kumar and Tarleton, 1998), subsequent
studies reported that CTLs are important to control intracellular
infection through perforin/granzymemediated killing of infected
cells and/or FAS-mediated apoptosis (Müller et al., 2003; Martin
and Tarleton, 2004; Silverio et al., 2010). We will focus this review
on inflammatory and regulatory CD4+T cell subset studies
(summarized in Table 1).

Th1/Th2 Cells
It is known that type 1 CD4+T cell (Th1) response mediated
by pro-inflammatory cytokines as IFN-γ, Tumor necrosis factor
(TNF) and IL-1β, is protective against T. cruzi infection, in
macrophages in vitro (Gazzinelli et al., 1992; Muñoz-Fernández
et al., 1992) and in vivo using IFN-γ receptor KOmice (Holscher
et al., 1998; Aliberti et al., 2001). It has been found that IL-10
is required to prevent an excessive pro-inflammatory response
during T. cruzi infection, and something similar occurs with
Transforming growth factor (TGF)-β (Silva et al., 1991) although
this cytokine might have other functions besides immune
regulation (Ming et al., 1995; Hall and Pereira, 2000). It has been
proposed that IL-4 also downregulates IFN-γ and inflammation
when cooperating with IL-10 (Abrahamsohn et al., 2000), but
some other reports showed that this cytokine has similar effects to
those of IFN-γ as trypanocidal activity (Wirth et al., 1989; Golden
and Tarleton, 1991). Although the role of IL-13 is not clear yet, it
has been documented that this cytokine might also be involved in
the regulation of IFN-γ release (Antúnez and Cardoni, 2001).

However, the parasite is able to trigger both responses
in different magnitude depending on the mouse genetic
background, parasite strain, and inoculum. By comparing
susceptible and non-susceptible mice (BALB/c and C57BL/6,
respectively) infected with the highly virulent Y strain of
the parasite we evidenced that protection depends on the
Th1/Th2 balance (Cuervo et al., 2008; Sanoja et al., 2013). Thus,
production of cytokines by T cells infiltrating the heart at the peak
of parasite infection, presented higher Th1/Th2 cytokine balance
in mice non-susceptible to infection than in susceptible mice.

In agreement, other groups, using different approaches,
observed for instance that low Th1/Th2 balance after neutrophil
depletion in BALB/c infected with Tulahuén strain exacerbated
the infection, indicating that a high Th1/Th2 balance is protective
against the infection, but the opposite effect was found when
infecting C57BL/6 with the same parasite strain (Chen et al.,
2001). In agreement, co-cultures of T. cruzi infectedmacrophages
with live neutrophils isolated from BALB/c and C57BL/6 resulted
also in increased and decreased parasite replication, respectively
(Luna-Gomes et al., 2014), indicating the importance of the
mouse genetic background in T. cruzi infection. In addition, anti
osteopontin antibody treatment in C57BL/6 infected with the Y
strain (Santamaría and Corral, 2013) and T. cruzi TC52 antigen
immunized C3H/HeN mice infected with the RA strain (Matos
et al., 2017), induced a high Th1 response that protected mice
from infection. However, it is important to point out that the
development of severe CCC in humans is also thought to be due
to a Th1-specific immune response (Gomes et al., 2003), thus
some regulation seems to be needed to avoid disease progression.
In this direction, studies in C57BL/6 mice showed a regulatory
role of IL-10 produced by T cells in spleen of mice infected with
the Tulahuén strain (Silva et al., 1992) and a protective role in
mice infected with the Colombiana strain (Roffê et al., 2012).

Treg/Th17 Cells
As mentioned above, Treg cells may help to control T
cell responses during infection. Natural (n)Treg are able
to maintain self-tolerance in the thymus (Sakaguchi et al.,
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TABLE 1 | Lymphoid immune responses to T. cruzi infection in different mouse models.

Mouse Parasite Organ Approach Th1/Th2 Treg Th17 References

BALB/c Y Heart Low/Exacerbation Cuervo et al., 2008

BALB/c Y Heart Low/Exacerbation High/Exacerbation Sanoja et al., 2013

BALB/c Tulahuén Heart

Spleen

Neutrophil depletion Low/Exacerbation Chen et al., 2001

BALB/c Y Heart Anti-CD25 Limited role Mariano et al., 2008

BALB/c H8 Yucatan Spleen rSSP4 immunization rSSP4 specific/

Exacerbation

Flores-García et al.,

2013

BALB/c Y Spleen

Heart

Anti-IL-17 High/Protective da Matta Guedes et al.,

2010

BALB/c

TS-CD4-Tg

Tulahuén Spleen Adoptive transfer of TS

specific T cells into RAG KO

High/ Less protection High/More

protection

Cai et al., 2016

C57BL/6 Y Heart High/Protection Cuervo et al., 2008

C57BL/6 Y Heart High/Protection High/Protection High/Protection Sanoja et al., 2013

C57BL/6 Tulahuén Heart

Spleen

Neutrophil depletion High/Protection Chen et al., 2001

C57BL/6 Y Spleen Osteopontin antibody High/Protection High/Protection Santamaría and Corral,

2013

C57BL/6 Tulahuén Spleen Anti-IL-10 NA NA NA Silva et al., 1992

C57BL/6 Colombiana Heart IL-10 KO NA NA NA Roffê et al., 2012

C57BL/6 Tulahuén Thymus

periphery

Low/Exacerbation González et al., 2016

C57BL/6 Colombian Heart G-CSF treatment High/Protection Vasconcelos et al.,

2013

C57BL/6 Y Heart SOCS2 KO Low/Protection

pathology

Esper et al., 2012

C57BL/6 Tulahuén Liver

Heart

Spleen

Ebi3 KO (classical Treg cells) High/Protection High/Protection Böhme et al., 2016

C57BL/6 Y Heart Ebi3 KO (Tr1 cells) High/Protection Medina et al., 2017

C57BL/6 Tulahuén Spleen High/Exacerbation Low/Exacerbation González et al., 2015

C57BL/6 Tulahuén Spleen IL-6 KO NA NA NA Gao and Pereira, 2002

C57BL/6 Tulahuén Spleen BATF2 KO High/Protection Kitada et al., 2017

C57BL/6 Tulahuén Liver IL-17A KO High/Protection Miyazaki et al., 2010

C57BL/6 Tulahuén Spleen

LN Liver

IL-17RA KO High/Protection Tosello Boari et al.,

2012

C3H/HeN RA Tc52/immunized High/protection High/protection Matos et al., 2017

C57BL/6 B6.SJL

C3H/HeSnJ

Tulahuén Muscle

Brain Gut

Anti-CD25 Limited role

high/protect

Kotner and Tarleton,

2007

C57BL/6

C3H/HeJ BALB/c

Colombian Y Heart Anti-CD25 Limited role Sales et al., 2008

A/J Brazil Heart Anti-CD25 High/Exacerbation Bonney et al., 2015

Swiss Webster Colombian Anti-CD25 High/Exacerbation Nihei et al., 2014

C3H Sylvio X10/4

clone

Heart G-CSF Benznidazol

treatment

Low/Pathology Medium/Pathology High/Pathology González et al., 2013

Mouse and parasite strain used; organ studied; approach used: infection of deficient mouse strain or knockout (KO), treatment, immunization, cell depletion, or adoptive transfer;

Th1/Th2 balance Treg and Th17 responses (high medium or low)/effect (Protection, exacerbation or pathology) and references are indicated.

1995), but (i)Treg cells can also be induced in response to
infection by microorganisms, and are characterized by the
expression of CD25, the transcription factor forkhead box
P3 (FOXP3), and production of anti-inflammatory IL-10 and
TGF-β (Jäger and Kuchroo, 2010). On the other hand T
helper (Th17) cells, characterized by pro-inflammatory IL-17
and IL-23 production, are associated with autoimmune diseases

(Wynn, 2005). Reciprocal developmental pathways have been
described for the generation of both Treg and Th17 cells,
Treg require IL-2, and TGF-β for differentiation while Th17
require TGF-β and IL-6 (Bettelli et al., 2006). It was later
described that Treg cells are induced as well by Epstein-Barr
virus-induced gene 3 (Ebi3)/IL-35 heterodimers (Collison et al.,
2010).
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The role of Treg and Th17 cells in T. cruzi infection is
not completely understood. It is worth mentioning that most
studies have been done using very frequently the Tulahuén and
Y strains in different mouse genetic background combinations
(Table 1). Initial studies on Treg depletion with anti-CD25
antibodies in acute and chronic mouse experimental models
involving C57BL/6-Tulahuén strain (Kotner and Tarleton, 2007;
Sales et al., 2008) or BALB/c-Y strain (Mariano et al., 2008),
suggested a limited role for Treg cells in the control of T. cruzi
infection. Moreover, studies in A/J mice infected with the Brazil
strain, and SwissWebster mice infected with the Colombian
strain, suggested that high Treg levels produce exacerbation
of the infection (Nihei et al., 2014; Bonney et al., 2015),
respectively. In contrast, we have observed that relative expansion
of Treg cells might confer protection to infection in a non-
susceptible combination (C57BL/6 mice infected with the Y
strain) that presented as well a high Th1/Th2 balance (Sanoja
et al., 2013). In the same direction, the loss of thymic Treg
cells during the infection in C57BL/6 mice with the Tulahuén
strain compromise the peripheral pool that is related with
immune dysregulation (González et al., 2016). In agreement with
these observations it was described that treatment of C57BL/6
mice with G-CSF incremented Treg levels and conferred
increased protection to infection with the Colombian strain
(Vasconcelos et al., 2013). However, other reports showed that
immunization with rSSP4, a parasite antigen, increased rSSP4
specific Treg and produced exacerbation of the infection with
H8 Yucatan strain in BALB/c mice (Flores-García et al., 2013).
In addition, studies using Suppressor of cytokine signaling 2
(SOCS2) deficient mice (C57BL/6 background) showed that low
Treg levels protected from infection with the Y strain, while
increased immunopathology (Esper et al., 2012). By infecting
Ebi3 deficient mice (C57BL/6 background) with the Tulahuén
strain it was shown that Ebi3 suppressed Th1, Th2, and Th17
responses during T. cruzi infection which protected mice by
interfering with alternative macrophage activation (Böhme et al.,
2016).

On the other hand, IL-27 produced by myeloid cells, is
able to induce a different type of regulatory T cells that
produce IL-10 (named Tr1 cells), in combination with Ebi3.
It was recently described using Ebi3 deficient mice (C57BL/6
background) infected with the Y strain, that Ebi3 modulates
IFN-γ mediated myocarditis, through IL-10, likely produced by
Tr1 cells rather than classical Treg cells. These results in mice
were in agreement with the presence of EBI3 polymorphisms in
chagasic patients suffering severe cardiomyopathy (Medina et al.,
2017).

Notably, others reported the existence of FOXP3+ cells that
acquired a Th1-like phenotype in C57BL/6 mice results in
exacerbation of infection with the Tulahuén strain (González
et al., 2015) highlighting the importance of a regulated immune
response.

Although several studies on regulatory T cells have been
performed in animal models, there are also reports of the
associations of those cells with cardiac dysfunction in chagasic
patients that point out Treg cells as a potential therapeutic
target (Mengel et al., 2016). We will briefly comment here

some evidences about the importance of Treg cells in the
chronic pathology. Thus, studies in groups of chagasic patients
in different phases of the disease showed that Treg cells
might play a role in the immune response against T. cruzi
infection although with distinct effects in undetermined and
cardiac patients (Araujo et al., 2007). In the same direction
it was shown that individuals in the undetermined form of
the disease have a higher frequency of Treg cells, suggesting
that an expansion of those cells could be beneficial, possibly
by limiting strong cytotoxic activity and tissue damage
(de Araújo et al., 2011). Moreover, it was found that an
immunological imbalance might be the cause of a deficient
suppressor activity of regulatory T cells that controls myocardial
inflammation (Guedes et al., 2012). Interestingly, studies
performed with explants from patients with advanced chronic
Chagas disease submitted to heart transplantation showed a
skewed Th1/T cytotoxic profile whereas Treg cells were scarce
and located only in areas of severe myocarditis (Argüello et al.,
2014).

Our results on CD4+ T cells infiltrating heart tissue in mice
(Sanoja et al., 2013) are in agreement with the data obtained from
hearts of chagasic patients. Together, those studies indicate that a
Th1 response seems necessary to clear the infection in the heart
but if this response is unchecked by infiltrating Treg cells, may
lead to excessive inflammation and CCC.

On the other hand, IL-17 producing Th17 cells have
been shown to play a protective role against parasite-
induced myocarditis in BALB/c mice infected with 100
blood trypomastigotes (low inoculum) of the Y strain per mice
(susceptible model), by inhibiting Th1 differentiation during
the acute phase of infection (da Matta Guedes et al., 2010).
However, we found that in susceptible BALB/c mice high Th17
levels correlated with protection only with low parasite inocula
(50 blood trypomastigotes of the Y strain per mice), but with
high inocula (2000 blood trypomastigotes per mice) high Th17
levels were associated with high heart parasite burden, low heart
CD4+ T cell infiltration and high mortality (Sanoja et al., 2013).
However, previous reports showed that IL-6 was required for
resistance of C57BL/6 mice infected with the Tulahuén strain
(Gao and Pereira, 2002).

Recently, several reports using mice with C57BL/6
background infected with the Tulahuén strain showed that
Th17 high levels conferred protection against infection using
Il-23 inhibitory BATF2 (Kitada et al., 2017), regulatory EBI3
(Böhme et al., 2016), IL-17A (Miyazaki et al., 2010) and IL-17RA
(Tosello Boari et al., 2012) deficient mice. On the other hand,
immunization of C3H/HeN mice with TC52, a T. cruzi protein
with glutathione transferase activity and a vaccine candidate,
conferred Th17 specific protection against infection with the
RA strain (Matos et al., 2017). Similarly, adoptive transfer of
BALB/c parasite transialidase (TS) specific Th17 cells into RAG
mice (lacking B and T cells) conferred higher protection than TS
specific Th1 cells against infection with the Tulahuén strain (Cai
et al., 2016).

Thus, different mechanisms seem to mediate protection
depending on the mouse model and the T. cruzi strain and
inoculum.
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MYELOID SUBSETS

It was previously thought thatmacrophages originated from bone
marrow monocytes, which in normal conditions differentiate
in different types of tissue macrophages or become activated
in inflammatory processes. More recently, it was described that
resident tissue macrophages can have embryonic origin. In this
direction, it has been recently proposed a new nomenclature for
macrophages and dendritic cells based on ontology (Guilliams
et al., 2014). However, we are going to focus on the role of
macrophages, dendritic cells, and myeloid-derived suppressor
cells (MDSCs) that can be of different origin but share
localization and present similar phenotypes during T. cruzi
infection (summarized in Table 2). It is worth mentioning the
importance of myeloid cells as “Trojan horses” disseminating the
parasite throughout different organs. This has been evidenced
in Signaling Lymphocytic Activation Molecule family member 1
(SLAMF1) KO mice (BALB/c background) infected with the Y
strain, in which myeloid cells are refractory to infection and all
SLAMF1 KO mice survive while all BALB/c die from infection,
suggesting a great contribution of myeloid cells in disseminating
infection (Calderón et al., 2012). More recently, studies using
in vivo imaging showed that bioluminiscent parasites are detected
in different anatomical locations during infection in the absence
of locally persistent infection, most likely inside infected myeloid
cells, which is also in agreement with the “Trojan horse”
hypothesis (Lewis et al., 2014).

M1/M2 Macrophages
Mirroring T cell behavior, monocytes can be activated by
Th1 cytokines that convert them into classically activated
macrophages (also named CAM or M1) that kill the parasite,
or by Th2 cytokines that convert them into alternatively
activated macrophages (also named AAM or M2) that promote
proliferation (Munder et al., 1999).

As mentioned, in most cases resistance to the infection in
the acute phase is associated with Th1 cells through IFN-
γ production, which activates JAK/STAT pathway leading
to STAT1α translocation and the transcription of a stable
iNOS mRNA species in M1 macrophages. In turn, increased
iNOS, which metabolizes L-arginine and produces NO, controls
parasite replication (Muñoz-Fernández et al., 1992; Bergeron
and Olivier, 2006). In addition, during acute infection there is
suppression of T cell proliferation that is partially suppressed by
NO (Goñi et al., 2002).

On the other hand, M2 macrophages, induced by Th2
and regulatory cytokines, have been implicated in parasite
growth (Vincendeau et al., 2003). They express Arginase 1
that metabolizes L-arginine to produce ornithine that in turn
is metabolized by ornithine decarboxylase (ODC) to produce
polyamines needed for growth of all eukaryotic cells. In this
regard, expression of arginase 1, a M2 marker (Ghassabeh et al.,
2006), was found to be upregulated in macrophages infected
with T. cruzi and associated to parasite survival (Stempin et al.,
2004). Studies using EBI3 KO mice (C57BL/6 background),
which showed decreased levels of Tregs after infection with the
Tulahuén strain, also showed increased expression of arginase 1,

which could indicate an exacerbated M2 polarization that was
associated with susceptibility to infection (Böhme et al., 2016).
Also, treatment of mice with anti-CD73, an enzyme involved in
ATP generation, resulted in polarization toward M1 phenotype
and protection of BALB/c mice against the Tulahuén strain
(Ponce et al., 2016), and infection of B6.129S mice potentiated
a M2 polarization in adipose tissue in a diet-induced obesity
mouse model (Cabalén et al., 2016). Also apoptotic CD8+ T cells
increased M2 differentiation contributing to parasite persistence
in peritoneal macrophages from BALB/c mice infected with
Dm28 strain (Cabral-Piccin et al., 2016). Finally, it has been
described that IL-6 promotes M2 macrophage polarization that
infiltrates heart tissue, downregulating NO production and
reducing cardiac damage induced by infection with the Tulahuén
strain in mice of mixed background (B6.129S) (Sanmarco et al.,
2017).

MDSCs and Extracellular L-Arginine
Besides M1 and M2 macrophages, during inflammation, trauma,
cancer, and also infection, there is an interference of myeloid
cell differentiation that induces the expansion and accumulation
of immature myeloid cells (F4/80-), which are known as
myeloid-derived suppressor cells (MDSCs) (Gallina et al., 2006;
Gabrilovich and Nagaraj, 2009). While M2 macrophages are
thought to express arginase 1 but no iNOS, MDSCs can
express both enzymes (Gabrilovich and Nagaraj, 2009). MDSCs
have been extensively studied in cancer biology, and they
can eventually convert into Tumor associated macrophages
(TAMs) that express the maturation marker F4/80 (Bronte et al.,
2016). In addition, neutrophils can also convert into Tumor
associated neutrophils (TANs) with tumor suppressor (N1) or
pro-tumorigenic (N2) activity with parallelism with Th1/M1 and
Th2/M2 responses (Bronte et al., 2016).

However, other authors defined CD11b+Gr-1(Ly6G/Ly6C)+
cell subsets as MDSCs, depending on their precursor origins:
macrophages, granulocytes, and dendritic cells (DCs)
(Geissmann et al., 2010), making classification even more
complex. TipDCs, which are DCs that express iNOS and TNF
and tumor tolerogenic DCs express arginase 1 have also been
described (Rodriguez et al., 2017).

Arginase 1 and iNOS, either separately or in combination,
can inhibit T-cell responses. L-Arginine is required for T cell
proliferation and the threshold of L-arginine concentration
in mammalian plasma that permits fully functional T cell
proliferation is in the order of 100µM (Choi et al., 2009).
Moreover, combined activity of arginase 1 and iNOS enzymes
has been shown to be important in the suppressive activity of
mouse MDSCs in tumors (Bronte et al., 2003), but there are
also several evidences of the role of MDSCs, iNOS, and L-
arginine depletion in infectious diseases as chronic infections
with helminthes (Brys et al., 2005). L-arginine is considered semi-
essential in mammals as an extra contribution is required in
the diet in stressed conditions such as pregnancy, trauma, or
infection, in which the requirements of the amino acid exceeds
the production capacity of the organism (Bronte and Zanovello,
2005).

Frontiers in Microbiology | www.frontiersin.org 5 March 2018 | Volume 9 | Article 351

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Fresno and Gironès Immunoregulation in the Cardiac Pathogenesis of Trypanosoma cruzi Infection

TABLE 2 | Myeloid immune responses to T. cruzi infection in mouse models.

Mouse Parasite Organ Approach M1/M2 MDSCs References

C57BL/6 Tulahuén Liver Heart Spleen Ebi3 KO Low/Exacerbation Böhme et al., 2016

BALB/c G Spleen IFNg KO iNOS KO iNOS inhibitor High/Exacerbation Goñi et al., 2002

BALB/c Tulahuén Heart CD73 inhibitor High/Protection Ponce et al., 2016

B6.129S Tulahuén Fat Low/Exacerbation Cabalén et al., 2016

BALB/c Dm28 PECs CD8+ apoptotic cells Low/Exacerbation Cabral-Piccin et al.,

2016

B6.129S Tulahuén Heart IL-6 KO Low/Exacerbation Sanmarco et al., 2017

BALB/c Y Heart High/Exacerbation Cuervo et al., 2011

BALB/c C57BL/6 Tulahuén Spleen Liver MDSCs inhibitor 5FU High/Protection Arocena et al., 2014

Mouse and parasite strain used; organ studied; approach used: infection of deficient mouse strain or knockout (KO), treatment, immunization, cell depletion, or adoptive transfer; M1/M2

balance and MDSCs responses/effect and references are indicated. Peritoneal macrophage (PECs).

MDSCs have been characterized by the expression of
Ly6C and Ly6G surface antigens, that allow to classify
them as monocytic CD11b+Ly6C+Ly6G- (M-MDSCs) or
polymorphonuclear CD11b+Ly6C-Ly6G+ (PMN-MDSCs) cell
subsets (being the last currently indistinguishable from TANs).
They are further characterized by their capacity to suppress T
cell proliferation. However, it has been recently proposed that
subsets that do not suppress proliferation should be described as
MDSC-like cells (MDSC-LC) (Bronte et al., 2016).

We have shown that acute T. cruzi infection induces
alterations the appearance of CD11b+Ly6C+Ly6G-M-MDSC in
spleen and heart (Goñi et al., 2002; Cuervo et al., 2008, 2011) of
BALB/cmice infected with a the Y strain. Similar cells were found
in spleen and liver of C57BL/6 mice infected with the Tulahuén
strain (Arocena et al., 2014). In addition, these M-MDSCs cells
express COX-2 and produce PGE2 that contribute significantly
to heart leukocyte infiltration and to the release of chemokines
and inflammatory cytokines in the heart of T. cruzi infected mice,
being somehow detrimental for the host (Guerrero et al., 2015).

In the heart, we found leukocyte infiltration characterized by
the presence of PMN-MDSCs that via S100A8/A9 may recruit
M-MDSCs, expressing Arg-1 and iNOS, which suppress T cell
proliferation (Cuervo et al., 2011). M-MDSCs expansion is
linked to local and systemic extracellular L-arginine depletion,
likely involved in immunosuppression. It is worth mentioning
that a decrease in L-arginine causes down regulation iNOS
expression (Konig et al., 2009) and reduces NO production
by substrate competition. Notably, L-arginine administration
to infected mice incremented plasma L-arginine and NO
levels, significantly decreased parasitemia, heart parasite burden
and clinical score, while increasing mice survival and cardiac
performance (Carbajosa et al., 2018). In this direction, L-arginine
treatment has been also shown to be beneficial in preventing
Trypanosoma cruzi vertical transmission in rats (da Costa et al.,
2014) and in patients affected by Dilated Cardiomyopathy, which
clinically is the most similar to Chagas cardiomyopathy (Kralova
et al., 2015).

In addition, inflammatory monocyte-derived dendritic cells
(moDCs) have been recently found in skin after T. cruzi
intradermal inoculation, which could be related with MDSCs

(Poncini and Gonzalez-Cappa, 2017), showing the importance of
these cells in the natural transmission of the parasite.

Moreover, after a global metabolomic analysis we found
elevated levels of asymmetric+symmetric dimethyl-arginine
(ADMA+SDMA) after infection in heart and plasma (Gironès
et al., 2014) and confirmed elevated levels of ADMA in plasma
(Carbajosa et al., 2018). ADMA is a product nuclear proteolysis
by arginine methyltransferases (Teerlink, 2005), and is an
endogenous inhibitor of iNOS that in combination with L-
arginine regulates NOS activity (Blackwell, 2010). We have
described that during T. cruzi infection there is L-arginine
depletion and increased levels of ADMA. Thus, despite iNOS
expression by MDSCs and M1 macrophages is high, its activity
could be inhibited by the combination of lack of L-arginine as
substrate and high levels of ADMA (Carbajosa et al., 2018).
Interestingly, the L-arginine/ADMA ratio is a predictor of
NO bioavailability and mortality in Dilated Cardiomyopathy
(Anderssohn et al., 2012), a disease with some similarities with
Chagasic Cardiomyotpathy, suggesting a possible relation with
pathology.

Therefore, supplementation with L-arginine in the diet
is beneficial for the infected mice in the acute phase of
infection and, although further experiments are needed to
go into the clinic. L-arginine can eventually have beneficial
effects in patients, alone or in combination with antiparasitic
drugs.

CONCLUSION AND PERSPECTIVES

There are several aspects to be taken into account in the
regulation of Cardiac Chagas immunopathogenesis. First, the
dynamics of different subsets of immune cells is mutually
dependent and interconnected. Parasite molecules that might
trigger different immune responses depending on the parasite
genotype because of the expression of virulence factors that
facilitate infection of particular cell types and tissues. Because of
being eukaryotic cells parasite possess many common pathways
with the host and might alter several host pathways. In
addition, most of the studies that describe immune lymphoid
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and myeloid cell subsets, have been done in inflammatory
models in the absence of infection, and it is often difficult
to fit the ones observed during real infections with those
classifications.

In all studies in mice, it is important to note that parasite
strain and mouse genetic background, as well as the amount
of parasites, greatly determine the results of infection and
also affects the presence or absence of those regulatory cells
(Sanoja et al., 2013). Thus, parasite genome and mouse genetic
background greatly determine the outcome of the infection, and
this might explain the apparent discrepancies observed in the
literature among different groups.

Nevertheless, in all instances immune regulation seems to
be the key to fight infection, since a strong protective Th1
response can cause organ damage if not regulated. A similar
statement can be formulated for Th17 response. In addition,
resolution of inflammation by myeloid cells also may play a role.
Ponce et al. described an initial infiltration of M1 macrophages
into the heart, followed by expansion of M2 to heal the organ
(Sanmarco et al., 2017). Likely, there is overlap between M1/M2
and MDSCs because studies were done analyzing only a few
markers that are common to both cells types. An important
point to take into account when comparing all those studies is
the definition of the different myeloid cell subsets infiltrating
the heart, which are based on cell surface marker expression.
Thus, the main difference between mature M1 macrophages
and MDSCs is the expression of F4/80 (marker of mature
macrophages). However, in cancer models F4/80- MDSCs give
rise later to tumor associated macrophages (TAMs) that express
F4/80 (Bronte et al., 2016), thus in T. cruzi infection the
possibility thatMDSCs end up expressing thismaturationmarker
cannot be discarded.

Most studies on T. cruzi infection were planed according
current classifications based on markers which are mutually
exclusive (i.e., T-Bet for Th1 cells, FOXP3 for Tregs, or RORγT
for Th17 cells), however infection might trigger different types
of cells, for instance, as mentioned, FOXP3+ T cells with a Th-1-
like phenotype (González et al., 2015). In the other hand, different
myeloid cells share common myeloid markers as CD11c, CD11b,
and F4/80 (Guilliams et al., 2014). Thus, future work should take
different subsets and markers into account in order to perform
integrated studies using multiple markers in polychromatic flow
cytometry assays.

Thus, based in our findings and others, we propose a dual
model for non-susceptibility/susceptibility to infection. In the
non-susceptible model (Figure 1A) the expansion of Treg cells
would balance the immune response allowing first inflammation
mediated by Th1 and M1 cells that control parasite replication
mediated by iNOS mediated NO production; this is followed
by resolution of inflammation and healing of damaged tissues
mediated by the Th2 and M2 cells, with some protective effect of
Th17 cells. In the susceptible model (Figure 1B), the lack of Treg
cells will imbalance the immune response, with exacerbation
of Th1 and Th2 responses that interfere with macrophage
activation, and give rise to the expansion of MDSCs; these
cells deplete L-arginine pools, which together with ADMA high
levels, inhibit NO production by iNOS and increases parasite

FIGURE 1 | Proposed model for susceptibility to T. cruzi infection. (A) In the

non-susceptible scenario, Treg cells allow a balanced Th1/Th2 immune

response, able to control parasite replication by Th1/M1 response than later

shifts to Th2/M2 for resolution of inflammation and healing damaged tissues;

Th17 cells play a protective role. (B) In the susceptible context the lack of Treg

cells conduces to an unbalanced immune response were MDSCs expand and

consume L-arginine pools, that together with high levels of ADMA, inhibit NO

production by iNOS losing the control of parasite replication; there is also

expansion of pathogenic Th17. The size of the different cells (colored circles

with names) denotes the magnitude of their expansion. Green arrows indicate

activation. Red arrows indicate suppression/inhibition.

replication; in this scenario, Th17 might expand and become
pathogenic.

Thus, we have only little pieces of the puzzle since
studies that integrate all the immune cells involved have not
been performed. Finally, further studies combining “OMIC”
techniques including genomics, transcriptomics, proteomics, and
metabolomics studies, should shed more light in the role of
immune regulation during T. cruzi infection.
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