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The magnetic vortex formation at room temperature and its evolution under in-plane
magnetic field is studied in chemically grown self-assembled La0.7Sr0.3MnO3 nanois-
lands of less than 200 nm in width. We use variable field magnetic force microscopy
and numerical simulations to confirm that the vortex state is ubiquitous in these
square-base pyramid shape epitaxial La0.7Sr0.3MnO3 nanostructures, and that it re-
quires in-plane magnetic fields below 40 kA/m to be annihilated. © 2014 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Com-
mons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4891277]

Nanoscale magnetism is of great scientific interest and high technological relevance.1, 2 As a
consequence, many research efforts have been devoted during the past few years to the design and
growth of nanostructures of magnetic materials in order to investigate the size reduction effects on
their functionality and potential applications, with the perspective of integrating them into devices.
The primary functions of such devices are essentially determined by the local magnetic moment
orientation, which in turn is established by the size and shape of the ferromagnetic objects. Designed
magnetic structures with dimensions in the submicrometer scale exhibit a specific magnetic ordering,
including magnetic vortices.3–5 A growing interest on magnetic vortices arose as the improved
sensibility of imaging techniques allowed to observe the vortex core5, 6 and made accessible its
internal structure.7 In fact, the vortex core has become an appealing memory unit candidate for data
storage8, 9 and, also recently, various types of emerging devices such as microwave oscillators10, 11

and amplifiers12, 13 based on the properties of magnetic vortices were proposed.
In metal-based magnetically soft nanostructures like permalloy, shape anisotropy is the main

ingredient determining the magnetic ground state. However, the superposition of a biaxial anisotropy
to the shape anisotropy may have a determinant influence in stabilizing the magnetic ground state.14, 15

A good candidate for nanoscale-based magnetic applications is nanostructures of the mixed-valence
manganite La0.7Sr0.3MnO3 (LSMO), a complex oxide that exhibits high spin polarization and colossal
magnetoresistance, and biaxial magnetocrystalline anisotropy.16, 17 However, it has been shown that
in manganite systems magnetic anisotropy could be a complex issue, and depending on the exact
film-substrate characteristics, the level of tensile or compressive strain, thickness, or temperature,
either the biaxial or uniaxial anisotropy dominates the magnetic behavior.18

Cost-effective fabrication methods to produce organized arrays of functional oxide nanostruc-
tures on substrates are in demand due to the potential applications of these materials in the next
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generation of devices. Top-down procedures are the methods that nowadays offer excellent control
of shape and arrangement of nanostructures.19–21 The patterning of complex oxide materials how-
ever has been sometimes challenging due to the inherent chemical stability and refractory nature
of many oxides. Also, cost and scalability is under discussion in some situations. In this context,
strong effort is being pursued with alternative methods using bottom-up self-assembly and assisted
self-assembling approaches based on chemical solution processes which should prove to be able
to produce nanostructures of small lateral size and narrow size distribution. Although nowadays
they are in a pre-competitive stage, these new routes may constitute a promising route to functional
oxides nanostructuration in the future. Therefore, understanding the properties and behavior of
self-assembled oxide nanostructures is already a need. Chemical methods have already been proved
efficient in producing high quality epitaxial thin films, 0D and 1D nanostructures.22–24

In their 2002 paper, Okuno and co-workers revealed the stability of magnetic vortices in circular
permalloy dots of diameter D and thickness t subject to out-of-plane applied magnetic fields.25 Their
measurements for constant thickness dots of different aspect ratios (D/t = 4, 8, and 20) showed that
the necessary field to switch the vortex core was as large as ∼325 kA/m, and did not depend on
the lateral size of the dot, proving that the core is an independent entity within the surrounding in-
plane magnetic structure. By contrast, the evolution of the vortex state under in-plane magnetic field
offers wider possibilities with much smaller fields involved. It is well known that the magnetization
reversal under an in-plane applied magnetic field proceeds via vortex nucleation, displacement, and
annihilation.4, 9 The new ground state is no longer the centered vortex state but a new state, now
stabilized by the Zeeman contribution.

In our recent work,26, 27 we have described the rich variety of magnetic structures adopted
by solution-derived self-assembled LSMO nanoislands, a system with intrinsic biaxial magneto-
crystalline anisotropy in contrast to the more common permalloy nanodots. In particular, we showed
that the vortex state is the preferred configuration for a broad range of LSMO nano-sized geometries.
X-ray magnetic circular dichroism (XMCD) imaging performed at low temperatures (110 K) in
remanence and under in-plane magnetic field evidenced the formation and evolution of vortices in
both squared (001)- and triangular (111)-oriented LSMO nanoislands. Towards their use as building
blocks in real devices, it is now of great interest to study the room temperature stability of these LSMO
vortices and their behavior under an externally applied in-plane magnetic field. The implementation
of magnetic nanostructures in modern applications requires knowing, for instance, under what fields
the configuration is stable and when it switches magnetization. In the present work, we present a
magnetic force microscopy (MFM) study of the nanoscale magnetic structure of solution-derived
self-assembled LSMO nanoislands under an in-plane applied magnetic field reaching values up to
36 kA/m. We additionally perform numerical simulations that take into account realistic parameters
of these islands in order to understand the formation and evolution of the vortices.

We prepared self-assembled LSMO nanostructures on top of yttria-stabilized zirconia (YSZ)
single crystals using a chemical route described previously.26 In the samples we study here two
types of nanoislands were present: square-base truncated pyramid nanoislands (∼80%), which show
a (001)LSMO[110]//(001)YSZ[100] epitaxial arrangement, and triangle-base nanoislands (∼20%),
with the (111)LSMO[-112]‖(001)YSZ[100] arrangement. Both types of islands show good crys-
tallinity, are faceted, and strain-relaxed.26, 27 Nanoislands display lateral sizes D between ∼40 and
180 nm and thickness values t between ∼10 and 40 nm.

The MFM measurements were done using a variable field magnetic force microscope
(VF-MFM), adapted from a commercial AFM from Nanotec Electrónica S.L., and working at
room temperature. A detailed description of the system is given in Ref. 28. Our main goal is to study
the micromagnetic structure of individual islands and to see how their magnetic domain configu-
ration varies under in-plane magnetic field. The set-up we used consists of a copper electromagnet
(0.5 mm diameter wire) connected to two iron bars that enclose the magnetic flux created by the coil
and that are separated by an air gap. The sample is located between the ends of the iron pieces and
the field intensity can be changed by changing their separation (between 4 and 8 mm). In our case,
maximum fields of ∼36 kA/m were reached when applying a 2 A current flow through the coil. The
current to field calibration was done systematically before a series of measurements was undertaken.
MFM imaging was performed in the dynamic mode using the lift-mode operation, i.e., the oscillating
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FIG. 1. (a) Topography image and (b) the corresponding MFM map of a sample of self-assembled LSMO nanoislands. The
vast majority of the islands in (b) show a contrast characteristic of a vortex state configuration, and most of them display
a core pointing outwards (bright contrast). (c) Some of the vortices with the core pointing downwards (dark contrast in the
core) are signaled by black arrows in the zoomed area below. (d) Sketch of the square-base truncated pyramid morphology
that the majority of islands show, such as the one within a dashed square in (c).

cantilever (free amplitude ∼8 nm) was placed at two different distances from the sample surface for
each scanned line: close to the surface (∼5 nm) first, for topography data acquisition, and far from
the surface afterwards, for the magnetic signal collection, at typical retrace distances of 30–60 nm.
During the retrace the previous topography movements are repeated in order to exclude topography
effects in the magnetic signal. We measured using the phase locked loop (PLL) feedback activated,
which, by keeping the phase of the oscillation constant, ensures that the topography channel purely
reflects Van der Waals interactions. The magnetic interaction is then detected by measuring the
frequency shift required to keep the phase constant. Accordingly, an increase in frequency, imaged
as a bright contrast, stands for a repulsive interaction between tip and sample, and a dark contrast
stands for an attractive interaction.

Magnetic tips are saturated using a permanent magnet prior to imaging the sample. The tip is
magnetized parallel to its axis, that is, perpendicular to the sample surface, which is done easily
because of its large shape anisotropy. We have verified that the successful imaging of the system
relies on the adequate tuning of the experimental conditions, and, specifically, on the appropriate
choice of the magnetic tip. A commercial ∼40 nm CoCr coated tip (PPP-MFMR from Nanosensors)
was found to be the best compromise between sensitivity and sample modification, revealing a clear
magnetic signal arising from the LSMO nanoislands.

Macroscopically, the epitaxial LSMO nanoisland ensemble showed ferromagnetic behavior with
a Curie temperature Tc ∼ 350 K, as measured by Superconducting Quantum Interference Device
(SQUID) magnetometry. Saturation magnetization (Ms) values at T = 35 K were a 10%–30% lower
than the 590 kA/m value of bulk LSMO (3.7 μB per Mn atom). At room temperature, the Ms of the
island ensemble decreases to values between 260 kA/m and 300 kA/m, depending on the sample.26

X-ray absorption spectra (XAS) showed bulk like composition and Mn2+ rich surfaces, which may
account for the loss in magnetization measured by SQUID magnetometry.27

Figures 1(a) and 1(b) show the topography and the corresponding magnetic signal image,
respectively, of the self-assembled LSMO nanoislands in remanence. The MFM image was taken
after saturating the sample ex situ with a 400 kA/m field applied perpendicular to the sample
substrate, and in the direction opposite to the tip stray field. A clear contrast arises from the islands
as a result of the magnetic interaction between the islands and the tip of the MFM. Nanoislands
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FIG. 2. (a) MFM image of self-assembled LSMO nanoislands taken in remanence after saturating tip and islands in out-of-
plane and opposite directions. (b) & (c) MFM images of the same region under ∼36 kA/m external field applied parallel to
the substrate edge, which coincides with the horizontal MFM image frame. A large triangular nanoisland is marked in every
image for reference.

display lateral sizes D between ∼40 and 180 nm and thickness values t between ∼10 and 40 nm.
In the MFM image of Fig. 1(b), the vast majority of the islands show a bright spot close to the
center, and they can be identified as vortices with their core pointing outwards. The predominance
of bright spots is due to the prior ex situ saturation, where the islands are first magnetized opposite
to the tip (i.e., repulsively interacting with the tip, thus exhibiting bright contrast). When the field is
turned off, the island relaxes into the in-plane curling vortex state, with its core pointing preferably
outwards, and only very few show the opposite core orientation (Fig. 1(c) and Figure S1 of the
supplementary material29). The dark contour, which reveals an attractive interaction surrounding
the bright core, can be explained as a combination of two effects: for one side, the stray field from
the magnetic tip tilts slightly the in-plane curled moments towards a parallel alignment and, for the
other, the contrast arising from the 90◦ domain walls in such small structures cannot be resolved
with the MFM lateral resolution and may give rise to a blurred contrast.30, 31 Although much fewer,
some vortices with the core pointing downwards can also be observed (see Fig. 1(c)). The detection
of the two energetically equivalent up and down states is yet another evidence of the vortex state
in which these LSMO nanoislands arrange, in this case at room temperature and using a technique
which is mainly sensitive to the core of the vortex.

Figure 2 shows how the configuration of the system changes when imaged under in-plane
magnetic field. The centered vortices of the remanence state (Fig. 2(a)) evolve into a very different
state when we applied our maximum reachable magnetic field, 36 kA/m, in two opposite directions
(Figs. 2(b) and 2(c)). A black triangle on the left side serves as reference for identifying individual
islands in the three images (thermal drift causes position to slightly vary during successive scans).

Fig. 3 gives a closer view of selected islands which are representative examples of how LSMO
nanoislands behave under in-plane magnetic field. Two regions, labeled 1 and 2, are marked with
white squares in the topography image at the top of the figure. Zoomed-in magnetic contrast images
of such regions are shown below, along with their topography (top half of the profile) and MFM
line scans (bottom half of the profiles). The vortex-state (V) featured by a square-base truncated
pyramid in region 1 shows a bright core at 0 kA/m applied field (see also the line scan), and a dipolar
bright-dark contrast under 36 kA/m, characteristic of a saturated single domain state.32, 33

The dipolar contrast is very clear at 36 kA/m, whereas at −36 kA/m it has a horse-shoe like
structure, most probably due to the presence of a slight remanent field at zero applied current,
which causes the effective field in both directions not to be identical. The small island in between
two islands in region 1 is an example of a low-contrast island, of the type which is at the limit
of sensitivity of our equipment, and which we know from micromagnetic simulations to display a
single-domain (SD) structure.27 Indeed, its weak magnetic contrast, less than 1 Hz in magnitude,
shows no observable structure change when imaging at different magnetic fields. Region 2 gathers
a series of vortices in square-based truncated islands and also a triangular (111)-LSMO island.
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FIG. 3. (Top) Topography image of LSMO nanoislands (z scale 45 nm). (Bottom) Magnetic signal images of the islands
in region 1 and 2 in remanence, and under in-plane field. Region 1 shows a vortex (V) in remanence and its saturated state
(monodomain showing dipolar contrast) at in-plane fields of ±36 kA/m. A single domain (SD) island barely gives any
contrast. Region 2 shows the vortex and the single-domain saturated state under applied field for a triangular island. The
topography and magnetic contrast line scans of the selected islands are shown on the right side.

The remanence image of the triangle evidences the stabilization of a magnetic vortex state in (111)
oriented triangular LSMO nanoislands, and confirms the previous results obtained by XMCD at low
temperatures.27 While XMCD is most sensitive to magnetization in the plane of the sample, MFM
is primarily sensitive to the out-of-plane magnetization component of the magnetic stray field of the
sample.

The detailed evolution of the magnetic configuration of a square-based pyramidal LSMO nanois-
land (D = 155 nm, t = 14 nm) under sequential in-plane magnetic fields, is shown in Figure 4. We
observe that field values below 36 kA/m yield slightly off-centered vortices. The intermediate states
between −36 kA/m and 36 kA/m reveal the displacement of the vortex core, from the aforemen-
tioned horse-shoe structure to that of the saturated nanoisland. The change in the location of the core
apex changes imperceptibly for fields in between −16 kA/m and 16 kA/m. This is not unexpected,
since the lateral MFM resolution, around 50 nm, does not allow resolving the exact location of the
core. The fact that the vortex core shifts position with changing magnetic field is a clear signal that
the structure of the core is rearranging under the influence of the field. However, because of the
convolution between the magnetic tip and sample, this movement cannot be resolved.

The formation of magnetic vortices in strain-relaxed LSMO nanoislands with a truncated square-
base pyramidal shape seems ubiquitous, as proved using two different techniques (PEEM27 and
MFM). In order to confirm our experimental results from a theoretical viewpoint and to shed light
into the evolution of these vortices within the range of the applied magnetic fields, we next performed
numerical simulations (using a self-built code) of the magnetization of such LSMO nanoislands.

We calculated the magnetization distribution of a square-base truncated pyramid nanoisland
with its base on the xy plane (side of the base D = 144 nm and thickness t = 24 nm) by us-
ing our own micromagnetic code based on iteratively solving Brown’s equations,34 in which the
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FIG. 4. Evolution of the magnetic contrast of a LSMO nanoisland under in-plane magnetic field. The island is shown in
the topography image above (z scale 45 nm). MFM can barely resolve the variations that drive each island from a saturated
monodomain to a vortex and back to a monodomain state again.

exchange, magnetostatic, Zeeman, and uniaxial anisotropy interactions are considered. We have used
a saturation magnetization Ms = 386 kA/m, an exchange constant A = 1.73 × 10−12 J/m, and a mag-
netocrystalline anisotropy K1 = 5.0 × 103 J/m3.26 The truncated pyramid is discretized into a uniform
array of cubic cells of side 4 nm according to the exchange length (lex = √

2A/μ0 M2
s ≈ 4.3 nm).

When the magnetization distribution is found we calculate the global sample magnetization as the
addition of the contribution of all cells, and also the stray magnetic field (and its derivatives) at any
point of the exterior space. In particular, we calculate the second derivative of the field with respect
to z at a height z = t + 30 nm, which would correspond to the position of the MFM magnetic
tip. In such way, we obtain a map in the xy plane whose qualitative trend can be compared to the
MFM results, since the magnetic contrast measured by MFM is also proportional to the second
derivative of the field. Note, however, that the calculations show a derivative at a point, whereas a
MFM image spot would correspond to a certain average of that derivative in a given region. Using
this procedure, we have calculated the magnetization loop of the x-component of the magnetization
as a function of the applied field Mx(Ha) (Fig. 5-center). Starting with a large positive applied field
and reducing it to zero, the magnetization distribution is first practically uniform in the applied field
direction (Fig. 5(h)) and the MFM scan would show the characteristic dipolar bright-dark contrast
(Fig. 5(d)). When the field is further reduced (making it negative) a C-state starts to form (Fig. 5(g))
and a strong contrast in the MFM image in one side of the pyramid appears (Fig. 5(c)). Further
decreasing the applied field finally leads to a vortex state with a core down (Fig. 5(f)) producing
a “quadrupolar” bright-dark contrast and a black spot (vortex core) in the MFM image (Fig. 5(b)).
The vortex is formed out of the center because of the coercivity of the nanoisland. Thus, a relatively
small decrease (increase of negative) of the applied field results in the annihilation of the vortex
around 23 kA/m and the nanoisland returns to a uniform state (Figs. 5(e) and 5(a)). Our model can
qualitatively explain the MFM maps and it is useful to study the vortex creation and annihilation
in the nanoislands, see Figure S2 of the supplementary material.29 We have shown, in particular,
that for this geometry and material parameters the field of annihilation of the vortex is in reasonable
agreement with the experiments.

This work shows the presence and evolution of magnetic vortices at room temperature in strain-
relaxed epitaxial LSMO nanoislands below 200 nm in lateral size. VF-MFM imaging of these
islands is able to clearly detect the vortex core and their saturation state. The latter requires an
in-plane magnetic field in the order of 36 kA/m, an easily achievable magnetic field an order of
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FIG. 5. (Center) Calculated magnetization loop for a square-base truncated pyramidal LSMO nanoisland under in-plane
applied field. (a)–(d) Maps of the second derivative of the field produced by the magnetization distribution (arbitrary units) at
a certain distance (30 nm) from the top of the pyramid. Different maps correspond to different applied fields as shown in the
magnetization loop. (e)–(h) Sketch of the magnetization distribution at different applied fields during the loop, the number
of arrows is reduced in this plot for clarity. Colors in arrows indicate the magnitude of the y component of the magnetization,
red being positive and blue negative. The applied field direction is parallel to the island facet and its sense is indicated by
black arrows.

magnitude below the reported out-of-plane fields necessary to switch the vortex core magnetization.
Numerical simulations tailored to the characteristics of these LSMO nanoislands not only confirm
the formation of the vortex state and the range of the vortex annihilation fields, but also reveal the
intermediate magnetization states, which are hidden in the MFM study by the small island-finite
MFM tip convolution.
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