On two coloring problems in mixed graphs

B. Ries ${ }^{1}$, D. de Werra
Ecole Polytechnique Fédérale de Lausanne, FSB-IMA-ROSE, Station 8, CH-1015 Lausanne, Switzerland

Received 22 November 2006; accepted 5 March 2007
Available online 1 April 2007

Abstract

We are interested in coloring the vertices of a mixed graph, i.e., a graph containing edges and arcs. We consider two different coloring problems: in the first one, we want adjacent vertices to have different colors and the tail of an arc to get a color strictly less than a color of the head of this arc; in the second problem, we also allow vertices linked by an arc to have the same color. For both cases, we present bounds on the mixed chromatic number and we give some complexity results which strengthen earlier results given in [B. Ries, Coloring some classes of mixed graphs, Discrete Applied Mathematics 155 (2007) 1-6]. (C) 2007 Elsevier Ltd. All rights reserved.

1. Introduction

A mixed graph $G_{M}=(V, U, E)$ on vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a graph containing $\operatorname{arcs}\left(\right.$ set U) and edges (set E). We denote by $\left[v_{i}, v_{j}\right]$ an edge joining vertices v_{i} and v_{j}, and by (v_{l}, v_{q}) an arc oriented from v_{l} to v_{q}. Here, we consider only connected finite mixed graphs containing no multiple edges, no multiple arcs, and no loops. The number of vertices in a mixed graph $G_{M}=(V, U, E)$ will be denoted by $|V|=n$. Mixed graph coloring has been introduced for the first time in [15].

In this paper, we are interested in two coloring problems in mixed graphs. The first problem is called strong mixed graph coloring problem. A strong mixed p-coloring of a mixed graph G_{M} is a mapping $c: V \rightarrow\{0,1, \ldots, p-1\}$ such that, for each edge $\left[v_{i}, v_{j}\right] \in E, c\left(v_{i}\right) \neq c\left(v_{j}\right)$ and for each $\operatorname{arc}\left(v_{l}, v_{q}\right) \in U, c\left(v_{l}\right)<c\left(v_{q}\right)$. Notice that such a coloring can exist if and only if the mixed graph G_{M} does not contain any directed circuit. We denote by $\gamma_{M}\left(G_{M}\right)$ the strong mixed chromatic number of G_{M}, that is the smallest integer p such that G_{M} admits a strong

[^0]mixed p-coloring. A mixed coloring of G_{M} with $\gamma_{m}\left(G_{M}\right)$ colors will be called optimal. We will generally consider the following problem: Given a mixed graph $G_{M}=(V, U, E)$ and a positive integer p, find out whether G_{M} admits a strong mixed p-coloring. This coloring problem has been studied in [4,6,12-14]. In [6], some upper bounds on the strong mixed chromatic number are given. An $O\left(n^{2}\right)$ time algorithm to color optimally mixed trees and a branch-and-bound algorithm are also developed. In [4], a linear time algorithm for mixed trees is given as well as an $O\left(n^{3.376} \log (n)\right)$ time algorithm for series parallel graphs. In [12] it is proven that the strong mixed graph coloring problem is $N P$-complete even if the graph is planar bipartite or bipartite of maximum degree 3 . Also some polynomially solvable cases are considered. Finally in [13,14], the unit-time job-shop problem is considered via strong mixed graph coloring. In that case, the partial graph (V, \emptyset, E) is a disjoint union of cliques, and the graph (V, U, \emptyset) is a disjoint union of directed paths. In [14], three branch-and-bound algorithms are presented and tested on randomly generated mixed graphs of order $n \leq 200$ for an exact solution, and of order $n \leq 900$ for an approximate solution. Also, some complexity results are given concerning this special class of mixed graphs.

The second problem which we consider in this paper is called the weak mixed graph coloring problem, which was introduced for the first time in [15]. A weak mixed p-coloring of a mixed graph G_{M} is a mapping $c: V \rightarrow\{0,1, \ldots, p-1\}$ such that, for each edge $\left[v_{i}, v_{j}\right] \in E$, $c\left(v_{i}\right) \neq c\left(v_{j}\right)$ and for each arc $\left(v_{l}, v_{q}\right) \in U, c\left(v_{l}\right) \leq c\left(v_{q}\right)$. Notice that in such a coloring of a mixed graph, all vertices on a directed circuit must have the same color. We denote by $\chi_{M}\left(G_{M}\right)$ the weak mixed chromatic number of G_{M}, that is the smallest integer p such that G_{M} admits a weak mixed p-coloring. Given a mixed graph $G_{M}=(V, U, E)$ and a positive integer p, we are interested in finding out whether G_{M} admits a weak mixed p-coloring. The weak mixed graph coloring problem has been studied in [1,9,10,15,16]. In [16], some algorithms calculating the exact value of the weak mixed chromatic number of graphs of order $n \leq 40$, and upper bounds for graphs of order larger than 40 are presented.

This paper is organized as follows. In Section 2, we give some definitions and notations which will be used later. Section 3 deals with the strong mixed graph coloring problem. Some bounds on the strong mixed chromatic number are given, as well as some complexity results concerning special classes of graphs. In Section 4, the weak mixed graph coloring problem is considered, and bounds on the weak mixed chromatic number are given with some complexity results.

2. Preliminaries

For all graph theoretical terms not defined here, the reader is referred to [2].
Let $G_{M}=(V, U, E)$ be a mixed graph, and let V_{o} be the set of vertices which are incident to at least one arc in G_{M}. We denote by $G\left(V_{o}\right)$ the mixed subgraph of G_{M} induced by V_{o}, and by $G_{M}^{o}=\left(V_{o}, U, \emptyset\right)$ the directed partial graph of $G\left(V_{o}\right) \cdot n\left(G_{M}^{o}\right)$ denotes the number of vertices on a longest directed path in G_{M}^{o}. Notice that the length of a longest directed path in G_{M} (i.e. the number of edges of a longest directed path in $\left.G_{M}\right)$ is equal to $n\left(G_{M}^{o}\right)-1$.

Let P be a directed path in G_{M}^{o}. The number of vertices in P will be denoted by $|P|$.
Let v_{i} be a vertex in G_{M}. The inrank of v_{i}, denoted by $\operatorname{in}\left(v_{i}\right)$, is the length of a longest directed path in G_{M}^{o} ending at vertex v_{i}. Similarly, we define the outrank of v_{i}, denoted by out $\left(v_{i}\right)$, as being the length of a longest directed path in G_{M}^{o} starting at vertex v_{i}. If v_{i} is not incident to any arc, then $\operatorname{in}\left(v_{i}\right)=\operatorname{out}\left(v_{i}\right)=0$. Notice that the length of a longest directed path in G_{M} is given by $\max _{v_{i} \in V}\left(\operatorname{in}\left(v_{i}\right)+\operatorname{out}\left(v_{i}\right)\right)$.

Notice that the parameters introduced above can only be defined if G_{M}^{o} has no directed circuit.

The degree of a vertex v in G_{M}, denoted by $d_{G_{M}}(v)$, is the number of edges and arcs incident to v. We shall simply write $d(v)$ if no confusion can occur.

3. Strong mixed graph coloring problem

In this section, we study the following problem, which we will call the Strong Mixed Graph Coloring Problem:
Instance: A mixed graph $G_{M}=(V, U, E), E \neq \emptyset$, and an integer $p \geq n\left(G_{M}^{o}\right)$.
Question: Can the vertices of G_{M} be colored using at most p colors such that, for each edge $\left[v_{i}, v_{j}\right] \in E, c\left(v_{i}\right) \neq c\left(v_{j}\right)$ and for each arc $\left(v_{l}, v_{q}\right) \in U, c\left(v_{l}\right)<c\left(v_{q}\right)$?

We will refer to this problem as $S\left(G_{M}, p\right)$. Notice that in this problem, we can suppose w.l.o.g. that whenever $\left(v_{l}, v_{q}\right) \in U$, then $\left[v_{l}, v_{q}\right] \notin E$, since $\left(v_{l}, v_{q}\right) \in U$ implies that $c\left(v_{l}\right)<c\left(v_{q}\right)$ and thus $c\left(v_{l}\right) \neq c\left(v_{q}\right)$.

A necessary and sufficient condition for a mixed graph to admit a strong mixed coloring is that it does not contain any directed circuit. We will suppose for the rest of this section that it is satisfied.

3.1. Bounds on the strong mixed chromatic number

Upper bounds on the mixed chromatic number have been given in [6]. In particular, one of these bounds implies that for mixed bipartite graphs, we have $n\left(G_{M}^{o}\right) \leq \gamma_{M}\left(G_{M}\right) \leq n\left(G_{M}^{o}\right)+1$. In this section, we will give some upper bounds for special classes of mixed graphs, and in some cases the exact value of the strong mixed chromatic number.

Lemma 1. Let $G_{M}^{o}=\left(V_{1} \cup V_{2}, U, \emptyset\right)$ be a mixed bipartite graph. Assume that all paths of length $n\left(G_{M}^{o}\right)-1$ start in the same vertex set, say V_{1}. Then it is possible to find a strong mixed $n\left(G_{M}^{o}\right)$-coloring such that all vertices in V_{1} have an even color, and all vertices in V_{2} have an odd color.

Proof. Since G_{M}^{o} has no circuit, we may decompose its set of vertices into subsets $C_{0}, C_{1}, \ldots, C_{n\left(G_{M}^{o}\right)-1}$, where C_{i} is the class of vertices having no predecessors when vertices in $C_{0}, C_{1}, \ldots, C_{i-1}$ have been removed.

So we start with the vertices in C_{0}, and give each vertex v color 0 if it is in V_{1} or color 1 if it is in V_{2} and we continue with the vertices in C_{1}, C_{2}, \ldots, by giving each vertex the smallest color which is larger than the color of all its predecessors.

This will give an odd color to vertices in V_{2} and an even color to vertices in V_{1} (since G_{M}^{o} is bipartite a vertex in $V_{1}\left(\right.$ resp. V_{2}) has all its predecessors in V_{2} (resp. V_{1})). Clearly, we will have $c(v)<c(w)$ for each arc (v, w). Furthermore not more than $n\left(G_{M}^{o}\right)$ colors will be used (the longest paths starting in V_{2} will have length less than $n\left(G_{M}^{o}\right)$, and therefore contain colors in $\left.\left\{1,2, \ldots, n\left(G_{M}^{o}\right)-1\right\}\right)$.

Now using this Lemma, we obtain the following result.
Theorem 2. Let $G_{M}=\left(V_{1} \cup V_{2}, U, E\right)$ be a mixed bipartite graph. Assume that all paths of length $n\left(G_{M}^{o}\right)-1$ start in the same vertex set, say V_{1}. Then, it is possible to find a strong mixed $n\left(G_{M}^{o}\right)$-coloring such that all vertices in V_{1} have an even color, and all vertices in V_{2} have an odd color.

Proof. From Lemma 1 we know that the vertices of G_{M}^{o} can be colored using at most $n\left(G_{M}^{o}\right)$ colors, and such that all vertices in V_{1} have an even color and all vertices in V_{2} have an odd color. Notice that whenever there is an edge between two colored vertices v, w, we necessarily have that $c(v) \neq c(w)$, since if one color is even, then the second one is odd. By coloring the remaining uncolored vertices of V_{1} with color 0 and the remaining uncolored vertices of V_{2} with color 1, we obtain a strong mixed $n\left(G_{M}^{o}\right)$-coloring such that all vertices in V_{1} have an even color and all vertices in V_{2} have an odd color.

Theorem 3. Let $G_{M}=\left(V_{1} \cup V_{2}, U, E\right)$ be a complete mixed bipartite graph. Then $\gamma_{M}\left(G_{M}\right)=$ $n\left(G_{M}^{o}\right)$ if and only if all paths of length $n\left(G_{M}^{o}\right)-1$ start in the same vertex set $V_{i}, i \in\{1,2\}$.

Proof. From Theorem 2, we know that if these paths start in the same vertex set, then $\gamma_{M}\left(G_{M}\right)=$ $n\left(G_{M}^{o}\right)$. Now suppose that the strong mixed chromatic number is equal to $n\left(G_{M}^{o}\right)$. Assume there are two paths of length $n\left(G_{M}^{o}\right)-1$ having their start-vertices not in the same vertex set V_{i}, $i \in\{1,2\}$; these vertices are necessarily linked by an edge, since the graph is complete. But in this case, a proper strong mixed $n\left(G_{M}^{o}\right)$-coloring would clearly not be possible. So we conclude that all paths of length $n\left(G_{M}^{o}\right)-1$ start in the same vertex set $V_{i}, i \in\{1,2\}$.

Theorem 4. Let $G_{M}=(V, U, E)$ be a mixed graph such that $G\left(V_{o}\right)$ has strong mixed chromatic number $\gamma_{M}\left(G\left(V_{o}\right)\right) \leq n\left(G_{M}^{o}\right)+1$. Suppose that we have $\max _{G^{\prime} \subseteq G_{M}}\left(\min _{v \in G^{\prime}}\left(d_{G^{\prime}}(v)\right)\right) \leq$ $n\left(G_{M}^{o}\right)$, where G^{\prime} is a subgraph of G_{M} containing V_{o}. Then $\gamma_{M}\left(G_{M}\right) \leq n\left(G_{M}^{o}\right)+1$.

Proof. Consider $G\left(V_{o}\right)$; it can be colored with at most $n\left(G_{M}^{o}\right)+1$ colors. Now assume that the above condition holds. We can remove the vertices of set $V-V_{o}$ by taking, at each step, a vertex with minimum degree in the remaining graph (this is the Smallest Last Ordering of [11]); all these degrees will be at most $n\left(G_{M}^{o}\right)$, as we will now show. So, when reinserting the vertices in the opposite order, it will be possible to color the graph with at most $n\left(G_{M}^{o}\right)+1$ colors (for each vertex there will be a color available among the $n\left(G_{M}^{o}\right)+1$ colors).

Let us call $v_{1}, v_{2}, \ldots, v_{q}$ the vertices of $V-V_{o}$ in the order in which they are removed, and let us call G_{i} the subgraph of G remaining when vertices v_{1}, \ldots, v_{i-1} have been removed; so $G_{1}=G_{M}$. We denote by G^{\prime} a subgraph of G_{M} containing V_{o}. We have $\max _{G^{\prime} \subseteq G_{M}}\left(\min _{v \in G^{\prime}}\left(d_{G^{\prime}}(v)\right)\right) \geq \max _{1 \leq i \leq q}\left(\min _{v \in G_{i}}\left(d_{G_{i}}(v)\right)\right)=\max _{1 \leq i \leq q}\left(d_{G_{i}}\left(v_{i}\right)\right)$, since in the left hand side all possible subgraphs G^{\prime} of G_{M} containing V_{o} are considered, while in the right hand side, only G_{1}, \ldots, G_{q} are considered.

We also have $\max _{G^{\prime} \subseteq G_{M}}\left(\min _{v \in G^{\prime}}\left(d_{G^{\prime}}(v)\right)\right) \leq \max _{1 \leq i \leq q}\left(d_{G_{i}}\left(v_{i}\right)\right)$. In fact, let $G^{\prime \prime}$ be the subgraph for which the maximum on the left is attained. Let v_{r} be the first vertex of $G^{\prime \prime}$ which is removed in the above process. Then $\max _{G^{\prime} \subseteq G_{M}}\left(\min _{v \in G^{\prime}}\left(d_{G^{\prime}}(v)\right)\right)=\min _{v \in G^{\prime \prime}}\left(d_{G^{\prime \prime}}(v)\right) \leq$ $d_{G^{\prime \prime}}\left(v_{r}\right) \leq d_{G_{r}}\left(v_{r}\right) \leq \max _{1 \leq i \leq q}\left(d_{G_{i}}\left(v_{i}\right)\right)$. So the above inequality holds. It follows that $\max _{G^{\prime} \subseteq G_{M}}\left(\min _{v \in G^{\prime}}\left(d_{G^{\prime}}(v)\right)\right)=\max _{1 \leq i \leq q}\left(d_{G_{i}}\left(v_{i}\right)\right) \leq n\left(G_{M}^{o}\right)$. Hence, the coloring of G_{M} is possible with at most $n\left(G_{M}^{o}\right)+1$ colors.

As already mentioned at the beginning of this section, we know that for a mixed bipartite graph $G_{M}, \gamma_{M}\left(G_{M}\right) \leq n\left(G_{M}^{o}\right)+1$, and so we obtain the following corollary.

Corollary 5. Let G_{M} be a mixed graph such that $G\left(V_{o}\right)$ is mixed bipartite, and such that $\max _{G^{\prime} \subseteq G_{M}}\left(\min _{v \in G^{\prime}}\left(d_{G^{\prime}}(v)\right)\right) \leq n\left(G_{M}^{o}\right)$, where G^{\prime} is a subgraph of G_{M} containing V_{o}. Then $\gamma_{M}\left(G_{M}\right) \leq n\left(G_{M}^{o}\right)+1$.

$\{1,2\}$
v

\qquad

Fig. 1. Depending on the list $L(v)$, we add new vertices, edges and arcs.
Corollary 6. Let G_{M} be a mixed graph such that each odd cycle C in G_{M} contains at least one vertex which is not incident to any arc, and such that $\max _{G^{\prime} \subseteq G_{M}}\left(\min _{v \in G^{\prime}}\left(d_{G^{\prime}}(v)\right)\right) \leq n\left(G_{M}^{o}\right)$, where G^{\prime} is a subgraph of G_{M} containing V_{o}. Then $\gamma_{M}\left(G_{M}\right) \leq n\left(G_{M}^{o}\right)+1$.
Proof. Consider the mixed graph $G\left(V_{o}\right)$. Since each odd cycle in G_{M} contains at least one vertex which is not incident to any arc, $G\left(V_{o}\right)$ has no odd cycle, and hence is mixed bipartite. We conclude by using Corollary 5.

3.2. Complexity results

In [12], it is shown that $S\left(G_{M}, 3\right)$ is $N P$-complete even if G_{M} is planar bipartite or bipartite with maximum degree 3 . The following theorem strengthens the first result.

Theorem 7. $S\left(G_{M}, 3\right)$ is NP-complete even if G_{M} is a planar bipartite graph with maximum degree 4 and each vertex incident to an arc has maximum degree 2.

Proof. We use a reduction from the List Coloring problem (LiCol) which is defined as follows: Instance: An undirected graph $G=(V, E)$ together with sets of feasible colors $L(v)$ for all vertices $v \in V$.
Question: Does there exist a proper vertex coloring of G with colors from $L=\bigcup_{v \in V} L(v)$ such that every vertex v is colored with a feasible color from $L(v)$?

This problem is shown to be $N P$-complete even if G is a 3 -regular planar bipartite graph and the total number of colors is 3 and each list $L(v)$ contains 2 or 3 colors (see [3]).

Let G be a 3-regular planar bipartite graph. Suppose that each vertex v is given a list $L(v)$ with feasible colors such that $2 \leq|L(v)| \leq 3$, and such that the total number of colors is 3 (colors $0,1,2$). For each vertex v in G such that $|L(v)|=2$, introduce new vertices as shown in Fig. 1 depending on the list $L(v)$. The mixed graph G_{M} we thereby obtain is clearly planar and bipartite with $\Delta\left(G_{M}\right) \leq 4$; each vertex incident to an arc has maximum degree 2 and $n\left(G_{M}^{o}\right)=3$.

Suppose now, that $\operatorname{LiCol}(G)$ has a positive answer. Denote by c the coloring corresponding to the solution. Then in G_{M}, color each vertex v which is also in G with the color $c(v)$. It is easy to
see that the remaining uncolored vertices (those which were added) can be colored using colors $0,1,2$ such that all the constraints are satisfied. Conversely, if $S\left(G_{M}, 3\right)$ has a solution, each original vertex gets necessarily a color from its list $L(v)$ in G, and hence we obtain a solution of $\operatorname{LiCol}(G)$ in G by removing in G_{M} the new vertices added at the beginning.

We will now give some polynomially solvable cases in special classes of graphs. First, let us introduce the Precoloring Extension problem (PrExt) which is defined as follows:
Instance: An unoriented graph $G=(V, E)$ and some vertices of V are precolored properly using at most q colors.
Question: Can this precoloring of G be extended to a proper coloring of G using at most q colors?

This problem was shown to be polynomially solvable in special classes of graphs like split graphs [7], cographs [8], complements of bipartite graphs [7], or graphs of maximum degree 3 [3].

Theorem 8. $S\left(G_{M}, n\left(G_{M}^{o}\right)\right.$) is polynomially solvable if every vertex in G_{M}^{o} is on a path of length $n\left(G_{M}^{o}\right)-1$, and if the Precoloring Extension problem on the graph G with at most $n\left(G_{M}^{o}\right)$ colors, obtained by transforming each arc of G_{M} into an edge, is polynomially solvable.

Proof. Let G_{M} be a mixed graph with G_{M}^{o} satisfying the above hypothesis, and such that $\operatorname{PrExt}(G)$ is polynomially solvable. Notice that if there exists a strong mixed $n\left(G_{M}^{o}\right)$-coloring c of G_{M}, then each vertex v belonging to G_{M}^{o} must get color $c(v)=i n(v)$. So we color each vertex v incident to an arc with the color $c(v)=i n(v)$. If a conflict occurs, i.e. if there are two adjacent vertices which get the same color, then no solution exists. Otherwise, consider all arcs as edges. We get an undirected graph G with some precolored vertices. Thus we get an instance of the Precoloring Extension problem in G. We know that $\operatorname{PrExt}(G)$ is polynomially solvable. It is easy to see that the two problems are equivalent. Thus, our problem is polynomially solvable.

We denote by n_{i} the number of vertices on a longest directed path P in G_{M} containing vertex v_{i} (if v_{i} is not incident to any arc, $n_{i}=1$ and $P=\left\{v_{i}\right\}$). Notice that $n_{i}=\operatorname{in}\left(v_{i}\right)+\operatorname{out}\left(v_{i}\right)+1$. Let $h \geq|P|$ be an integer. We define S_{i} as the set of possible colors for v_{i} such that whenever v_{i} has a color $c\left(v_{i}\right) \in S_{i}$, there exists a coloring c of G_{M} (with an arbitrary number of colors) with $c(v) \leq h-1$, for any $v \in P$. We have the following result:

Proposition 9. Let $P=\left\{v_{1}, v_{2}, \ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots, v_{n_{i}}\right\}$ be a longest directed path in G_{M} containing v_{i}, and let $h \geq|P|$ be an integer. Then $S_{i}=\left\{\operatorname{in}\left(v_{i}\right), \operatorname{in}\left(v_{i}\right)+1, \ldots, h-\left(\operatorname{out}\left(v_{i}\right)+1\right)\right\}$.

Proof. It is easy to see that the smallest feasible color for v_{i} is $\operatorname{in}\left(v_{i}\right)$. Suppose that $c\left(v_{i}\right)=$ $\operatorname{in}\left(v_{i}\right)+q$, where $q \geq 0$. We can color the vertices $v_{1}, v_{2}, \ldots, v_{i-1}$ with colors $c\left(v_{1}\right)=$ $\operatorname{in}\left(v_{1}\right), c\left(v_{2}\right)=\operatorname{in}\left(v_{2}\right), \ldots, c\left(v_{i-1}\right)=\operatorname{in}\left(v_{i-1}\right)$, and vertices $v_{i+1}, \ldots, v_{n_{i}}$ with colors $c\left(v_{i+1}\right)=$ $\operatorname{in}\left(v_{i}\right)+q+1, \ldots, c\left(v_{n_{i}}\right)=\operatorname{in}\left(v_{i}\right)+q+n_{i}-i$. Notice that $n_{i}-i=\operatorname{out}\left(v_{i}\right)$ since P is a longest directed path containing v_{i}. Thus, $c\left(v_{n_{i}}\right)=\operatorname{in}\left(v_{i}\right)+q+\operatorname{out}\left(v_{i}\right)$. This way we get a feasible coloring c of G_{M} (the vertices of G_{M} not belonging to P can easily be colored properly), and since the condition $c(v) \leq h-1$ must hold for any $v \in P$, we have that $\operatorname{in}\left(v_{i}\right)+q+\operatorname{out}\left(v_{i}\right) \leq$ $h-1$, i.e. $q \leq h-\left(\operatorname{in}\left(v_{i}\right)+\operatorname{out}\left(v_{i}\right)+1\right)$. Thus $S_{i}=\left\{\operatorname{in}\left(v_{i}\right), \operatorname{in}\left(v_{i}\right)+1, \ldots, h-\left(\operatorname{out}\left(v_{i}\right)+1\right)\right\}$.

We will now focus on a special class of graphs: partial k-trees. A k-tree is a graph defined recursively as follows: a k-tree on k vertices consists of a k-clique; given any k-tree T_{n} on n vertices, we construct a k-tree on $n+1$ vertices by adjoining a new vertex v_{n+1} to T_{n}, which

Fig. 2. New vertices and edges added to $\left[v_{i}, v_{j}\right]$.
is made adjacent to each vertex of some k-clique of T_{n} and nonadjacent to the remaining $n-k$ vertices. A partial k-tree is a subgraph of a k-tree.

Consider now an undirected partial k-tree $G=(V, E)$. Suppose that for some edges $\left[v_{i}, v_{j}\right] \in E$, we add new vertices and edges as shown in Fig. 2. Denote by G^{\prime} the graph we obtain.

We have the following result.
Proposition 10. Let G be a partial k-tree. Then G^{\prime} is also a partial k-tree.
Proof. Since G is a partial k-tree, it is the subgraph of a k-tree T_{k}. Notice that $\left[v_{i}, v_{j}\right] \in K_{i j}$ in T_{k}, where $K_{i j}$ is a $(k+1)$-clique. Consider T^{\prime}, which is the graph obtained by adding to G^{\prime} all the edges and vertices of T_{k} which are not in G. In order to show that G^{\prime} is a partial k-tree, we just need to show how edges can be added to T^{\prime} to make it become a k-tree T^{*}.

For each new vertex $w_{s 1}, s=1, \ldots, r$, make it adjacent to v_{j} and to $k-2$ vertices in $K_{i j}-\left\{v_{i}, v_{j}\right\}$. We obtain, for each s, a $(k+1)$-clique $K_{s 1}$ containing $w_{s 1}$. Each new vertex $w_{s t}$, $s=1, \ldots, r, t=2, \ldots, r+1$, is linked to $k-2$ vertices in $K_{(s-1) t}-\left\{w_{(s-1) t}, v_{j}\right\}$. We obtain, then, for each s and $t, t \neq 1, \mathrm{a}(k+1)$-clique $K_{s t}$ containing $w_{s t}$. Clearly, the resulting graph is a k-tree, and thus G^{\prime} is a partial k-tree.

In [4], it is shown that $S\left(G_{M}, p\right)$ is polynomially solvable for series parallel graphs, i.e., partial 2-trees, by giving an exact algorithm which has complexity $O\left(n^{3.376} \log (n)\right)$. In [12], a special case in bipartite partial k-trees is shown to be polynomially solvable. The following Theorem will strengthen the result of [12].

Theorem 11. $S\left(G_{M}, p\right)$ is polynomially solvable if $G_{M}=(V, U, E)$ is a partial k-tree for fixed k.

Proof. We use a transfomation to the LiCol problem, which is known to be solvable in $O\left(n^{k+2}\right)$ time for partial k-trees (see [8]).

For each $v_{l} \in V$ which is not incident to any arc, we set $L\left(v_{l}\right)=\{0,1, \ldots, p-1\}$. For each vertex $v_{i} \in V$ which is incident to at least one arc, we set $L\left(v_{i}\right)=\left\{\operatorname{in}\left(v_{i}\right), \operatorname{in}\left(v_{i}\right)+1, \ldots, p-\right.$ $\left.\left(\operatorname{out}\left(v_{i}\right)+1\right)\right\}$. For each $\operatorname{arc}\left(v_{i}, v_{j}\right) \in U$ such that $p-\left(\operatorname{out}\left(v_{i}\right)+1\right)>\operatorname{in}\left(v_{j}\right)$, we introduce new vertices and edges as shown in Fig. 2, with $r=p-\left(\operatorname{out}\left(v_{i}\right)+\operatorname{in}\left(v_{j}\right)+1\right)$. For the new vertices

Fig. 3. Example of how new edges and vertices are introduced in the case of $L\left(v_{i}\right)=\{3,4,5,6\}$ and $L\left(v_{j}\right)=$ $\{4,5,6,7\}$.
we set:

$$
L\left(w_{s t}\right)= \begin{cases}\left\{\operatorname{in}\left(v_{j}\right)+s, \operatorname{in}\left(v_{j}\right)+s+1\right\} & \text { if } 1 \leq s \leq r \text { and } t=1 \\ \left\{\operatorname{in}\left(v_{j}\right)+s+1, \operatorname{in}\left(v_{j}\right)\right\} & \text { if } 1 \leq s \leq r \text { and } t=2, \\ \left\{\operatorname{in}\left(v_{j}\right)+t-3, \operatorname{in}\left(v_{j}\right)+t-2\right\} & \text { if } 1 \leq s \leq r \text { and } 3 \leq t \leq r+1\end{cases}
$$

Fig. 3 shows a case where we have $L\left(v_{i}\right)=\{3,4,5,6\}, L\left(v_{j}\right)=\{4,5,6,7\}$ and $p=8$. For the new vertices, we set $L\left(w_{11}\right)=\{5,6\}, L\left(w_{12}\right)=\{6,4\}, L\left(w_{21}\right)=\{6,7\}, L\left(w_{22}\right)=\{7,4\}$ and $L\left(w_{23}\right)=\{4,5\}$. This way we do not allow vertex v_{j} to get a color less than the color of vertex v_{i}.

By considering all arcs as edges, we obtain a new undirected graph G^{\prime} which is still a partial k-tree (see Proposition 10). Furthermore we associate to each vertex v in G^{\prime} a list $L(v)$ of integers such that $L(v) \subseteq\{0,1, \ldots, p-1\}$. Thus, we get an instance of the LiCol problem with p colors in a partial k-tree G^{\prime}, where k is fixed.

Suppose that an instance of the $\operatorname{LiCol}\left(G^{\prime}\right)$ problem has answer 'yes', and denote by c the corresponding list-coloring. We will show that c restricted to G_{M} is also a feasible coloring for $S\left(G_{M}, p\right)$. Clearly, for each edge $\left[v_{i}, v_{j}\right]$ in G^{\prime}, we have that $c\left(v_{i}\right) \neq c\left(v_{j}\right)$, and so $c\left(v_{i}\right) \neq c\left(v_{j}\right)$ for each $\left[v_{i}, v_{j}\right]$ or $\left(v_{i}, v_{j}\right)$ in G_{M}. Consider now an $\operatorname{arc}\left(v_{i}, v_{j}\right)$ in G_{M}. We have to verify that $c\left(v_{i}\right)<c\left(v_{j}\right)$. If $c\left(v_{i}\right) \leq \operatorname{in}\left(v_{j}\right)$, we clearly have that $c\left(v_{i}\right)<c\left(v_{j}\right)$. So suppose that $c\left(v_{i}\right)=\operatorname{in}\left(v_{j}\right)+q, q>0$. In that case, vertex $w_{q 1}$ necessarily has color $\operatorname{in}\left(v_{j}\right)+q+1$, and vertices $w_{q 2}, \ldots, w_{q(q+1)}$ must have colors $\operatorname{in}\left(v_{j}\right), \ldots, \operatorname{in}\left(v_{j}\right)+q-1$, due to their lists. Since these vertices are adjacent to $v_{j}, c\left(v_{j}\right)>\operatorname{in}\left(v_{j}\right)+q$, and hence $c\left(v_{i}\right)<c\left(v_{j}\right)$. We conclude that $S\left(G_{M}, p\right)$ has answer 'yes'.

Conversely, suppose now that an instance of $S\left(G_{M}, p\right)$ has answer 'yes', and denote by c^{\prime} the corresponding strong mixed p-coloring. Then clearly, each vertex v in G_{M} has a color which belongs to the corresponding list $L(v)$ in G^{\prime}, i.e., $c^{\prime}(v) \in L(v)$. In fact, for each vertex v_{l} not incident to any arc in G_{M}, we have $L\left(v_{l}\right)=\{0,1, \ldots, p-1\}$, and for each vertex v_{i} which is incident to at least one arc, we have $L\left(v_{i}\right)=\left\{\operatorname{in}\left(v_{i}\right), \operatorname{in}\left(v_{i}\right)+1, \ldots, p-\left(\operatorname{out}\left(v_{i}\right)+1\right)\right\}$. By Proposition 9, we know that these colors are the only ones possible if $P_{v_{i}}$ (a longest directed path containing v_{i}) is colored properly and $c^{\prime}(v)<p$, for any $v \in P_{v_{i}}$. Furthermore, it is not difficult to verify that coloring c^{\prime} can easily be extended in G^{\prime} by coloring the new vertices $w_{s t}$ (using the
colors in their associated lists), and so we get a feasible coloring for the LiCol problem in G^{\prime}. Thus, the LiCol problem on G^{\prime} has answer 'yes'.

Clearly G^{\prime} can be obtained from G_{M} in polynomial time, since n_{i} and $\operatorname{in}\left(v_{i}\right)$ can be computed in polynomial time for each vertex v_{i} in G_{M}. The number of new vertices is restricted by $O\left(n^{2} m\right)$, where m is the number of arcs, and thus $S\left(G_{M}, p\right)$ can be solved in time $O\left(n^{2 k+4} m^{k+2}\right)$ if G_{M} is a partial k-tree, with fixed k.

4. Weak mixed graph coloring problem

In this section, we study the following problem which we will call the Weak Mixed Graph Coloring Problem:
Instance: A mixed graph $G_{M}=(V, U, E), E \neq \emptyset$, and an integer $p>1$.
Question: Can the vertices of G_{M} be colored using at most p colors such that for each edge $\left[v_{i}, v_{j}\right] \in E, c\left(v_{i}\right) \neq c\left(v_{j}\right)$ and for each $\operatorname{arc}\left(v_{l}, v_{q}\right) \in U, c\left(v_{l}\right) \leq c\left(v_{q}\right)$?

We will refer to this problem as $W\left(G_{M}, p\right)$. Notice that we clearly have $\chi_{M}\left(G_{M}\right) \leq \gamma_{M}\left(G_{M}\right)$.
Necessary and sufficient conditions for a mixed graph to admit a weak mixed coloring have been given:

Theorem 12 (See for instance [15,16]). For the existence of a weak mixed coloring of a mixed graph $G_{M}=(V, U, E)$, it is necessary and sufficient that graph (V, \emptyset, E) does not have loops and that G_{M} does not contain any directed circuit with a chord.

In the rest of this section, we will suppose that these conditions are satisfied. Notice that in the case of weak mixed coloring, we may have $\left(v_{l}, v_{q}\right) \in U$ and $\left[v_{l}, v_{q}\right] \in E$. Then, in any proper weak mixed coloring c, we must have $c\left(v_{l}\right)<c\left(v_{q}\right)$. So the strong mixed graph coloring problem $S\left(G_{M}, p\right)$ is the special case of $W\left(G_{M}, p\right)$ where, for each $\operatorname{arc}\left(v_{l}, v_{q}\right) \in U$, we have $\left[v_{l}, v_{q}\right] \in E$.

4.1. Bounds on the weak mixed chromatic number

We will start with a few observations which will allow us to simplify the original mixed graph G_{M} (see also [17], where a similar merging operation is designed for vertices belonging to the same strongly connected component).

Lemma 13. Let $G_{M}=(V, U, E)$ be a mixed graph, and let C be a strongly connected component of G_{M}^{o}. Then, in any feasible weak mixed coloring c of $G_{M}, c\left(v_{i}\right)=c\left(v_{j}\right) \forall v_{i}, v_{j} \in$ C.

Proof. Let c be a feasible coloring of G_{M}. Suppose that $c\left(v_{i}\right)<c\left(v_{j}\right)$ for some v_{i}, v_{j} in C. Since there is a directed path from v_{j} to v_{i} contained in C, we obtain a contradiction, because we should have $c\left(v_{j}\right) \leq c\left(v_{i}\right)$.

Consider a mixed graph G_{M} and let $\mathcal{D}=\left\{D_{1}, \ldots, D_{t}\right\}$ be a set of disjoint directed partial graphs of G_{M}. Let G_{M} / \mathcal{D} be the mixed graph obtained by deleting the arcs of $\bigcup_{l=1}^{t} D_{l}$, and by replacing the vertices of each graph D_{l} by a single vertex $v_{l} . G_{M} / \mathcal{D}$ may have multiple edges or arcs, in which case we delete them. We say that D_{l} has been contracted to a single vertex v_{l}, for all $l=1, \ldots, t$. Then we have the following result.

Lemma 14. Let $G_{M}=(V, U, E)$ be a mixed graph and let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ be the set of strongly connected components in G_{M}^{o} such that $\forall v, w \in C_{k}, k \in\{1,2, \ldots, q\}$, we have $[v, w] \notin E$. Then $\chi_{M}\left(G_{M}\right)=\chi_{M}\left(G_{M} / \mathcal{C}\right)$.

Proof. Let c be an optimal coloring of G_{M} / \mathcal{C}. Let v_{i} be the vertex in G_{M} / \mathcal{C} representing component C_{i}, and let $c\left(v_{i}\right)$ be its color, for $i=1,2, \ldots, q$. Consider now G_{M}, and color each vertex $w \notin C_{i}, i=1,2, \ldots, q$ in G_{M} with the same color as in G_{M} / \mathcal{C}. Color each vertex in C_{i} with color $c\left(v_{i}\right)$. Clearly, we obtain a feasible coloring of G_{M}. Furthermore, this coloring is optimal. In fact, suppose that G_{M} can be colored with $\chi_{M}\left(G_{M}\right)<\chi_{M}\left(G_{M} / \mathcal{C}\right)$ colors. By Lemma 13, we know that all vertices of $C_{i}, i=1,2, \ldots, q$, necessarily have the same color c_{i}. Contracting each component C_{i} to a single vertex v_{i} and coloring it with color c_{i}, we obtain a feasible coloring of G_{M} / \mathcal{C} with $\chi_{M}\left(G_{M}\right)<\chi_{M}\left(G_{M} / \mathcal{C}\right)$ colors, which is a contradiction.

Consider a mixed graph $G_{M}=(V, U, E)$. As we have seen in Lemma 14, all strongly connected components of G_{M}^{o} such that no two vertices of a same component are linked by an edge can be contracted to single vertices without changing the weak mixed chromatic number of the original graph. So, from now on, we suppose that in G_{M}, all these strongly connected components have been contracted to single vertices. Let v be a vertex of G_{M} which is not incident to any edge. Denote by $\operatorname{Pred}(v)$ the set of its neighbors w such that $(w, v) \in U$, and by $\operatorname{Succ}(v)$ the set of its neighbors u such that $(v, u) \in U$. Delete vertex v from G_{M}, and introduce arcs (w, u) for all $w \in \operatorname{Pred}(v)$ and $u \in \operatorname{Succ}(v)$. Suppose we perform this operation as long as there is a vertex v which is not incident to any edge. Let $G_{M}^{*}=\left(V^{*}, U^{*}, E\right)$ be the mixed graph obtained. Then we have the following result.

Theorem 15. Let $G_{M}=(V, U, E)$ be a mixed graph. Then $\chi_{M}\left(G_{M}\right)=\chi_{M}\left(G_{M}^{*}\right)$.
Proof. Consider an optimal weak mixed coloring of G_{M}^{*}. This coloring, c, can be extended to an optimal weak mixed coloring of G_{M}. In fact, consider the mixed graph G_{M} and color each vertex v, which is incident to at least one edge with color $c(v)$. Now color each remaining uncolored vertex v (incident to no edge) with color $c(v)=\max _{w \in \operatorname{Pred}(v)}(c(w))$. We clearly obtain a feasible weak mixed coloring of G_{M}. Furthermore this coloring is optimal. Suppose that it is possible to color G_{M} with p colors, $p<\chi\left(G_{M}^{*}\right)$. Then by transforming G_{M} into G_{M}^{*}, we obtain a feasible coloring of G_{M}^{*} with at most p colors, which is a contradiction. Thus $\chi_{M}\left(G_{M}\right)=\chi_{M}\left(G_{M}^{*}\right)$.

So from now on, we can also suppose that G_{M} does not contain any vertex incident only to arcs.

Let us consider the set $\mathcal{D P}$ of all maximal directed paths in G_{M}. Let $P=\left(v_{1}, \ldots, v_{r}\right)$ be a maximal directed path, and $E_{P}=\left\{\left[v_{i}, v_{j}\right] \mid 0<i<j \leq r\right\}$ be the set of edges linking each a pair of vertices of P. We denote by $E_{P}^{1}, \ldots, E_{P}^{t}$ the subsets of E_{P} such that, if $\left[v_{i}, v_{j}\right],\left[v_{k}, v_{l}\right] \in E_{P}^{s}$, then $\max (i, j) \leq \min (k, l)$, for $s=1, \ldots, t$. If $e_{P}=\max _{s=1, \ldots, t}\left(\left|E_{P}^{s}\right|\right)$, then we obtain the following lower bound on the weak mixed chromatic number.

Theorem 16. Let G_{M} be a mixed graph. Then $\max _{P \in \mathcal{D} \mathcal{P}}\left(e_{P}+1\right) \leq \chi_{M}\left(G_{M}\right)$.
Proof. Let $P^{\prime}=\left(v_{1}^{\prime}, \ldots, v_{q}^{\prime}\right)$ be a maximal directed path such that $P^{\prime}=$ $\arg \max _{P \in \mathcal{D P}}\left(e_{P}+1\right)$. Suppose that $e_{P^{\prime}}=\left|E_{P^{\prime}}^{f}\right|$ for a certain integer f, and $E_{P^{\prime}}^{f}=$ $\left\{\left[v_{i_{1}}^{\prime}, v_{i_{2}}^{\prime}\right],\left[v_{i_{3}}^{\prime}, v_{i_{4}}^{\prime}\right], \ldots,\left[v_{i_{r-1}}^{\prime}, v_{i_{r}}^{\prime}\right]\right\}, 0<i_{1}<i_{2} \leq i_{3}<\cdots \leq i_{r-1}<i_{r} \leq q$.

If we want to construct a weak mixed graph coloring c, we clearly must have $c\left(v_{i_{j}}^{\prime}\right)<c\left(v_{i_{j+1}}^{\prime}\right)$ for $j=1,3, \ldots, r-1$, since there is a directed path from $v_{i_{j}}^{\prime}$ to $v_{i_{j+1}}^{\prime}$ and there is an edge $\left[v_{i_{j}}^{\prime}, v_{i_{j+1}}^{\prime}\right]$ for all $j=1,3, \ldots, r-1$. Furthermore we can color each vertex $v_{i_{k}}^{\prime}$ with the same color as $v_{i_{k-1}}^{\prime}$ for $k=3,5, \ldots, r-1$. In fact there cannot be any edge between two vertices $v_{i_{h}}^{\prime}, v_{i_{g}}^{\prime}, i_{k-1} \leq i_{h}<i_{g} \leq i_{k}$ for $k=3,5, \ldots, r-1$, as otherwise $\left|E_{P^{\prime}}^{f}\right|$ would not be maximal. Thus, we use at least $e_{P^{\prime}}+1$ colors.

Remark 17. The lower bound given in Theorem 16 is tight. Indeed, if for all edges $\left[v_{i}, v_{j}\right] \in E$ we have $\left(v_{i}, v_{j}\right) \in U$ or $\left(v_{j}, v_{i}\right) \in U$, then $\max _{P \in \mathcal{D P}}\left(e_{P}+1\right)=\chi_{M}\left(G_{M}\right)$.

We will give now two very simple classes of graphs for which we can determine the exact value of the weak mixed chromatic number.

Theorem 18. Let $T_{M}=(V, U, E)$ be a mixed tree, $E \neq \emptyset$. Then $\chi_{M}\left(T_{M}\right)=2$.
Proof. Choose a root r in T_{M}. Color it with color $c(r) \in\{0,1\}$. As long as there is an uncolored vertex, choose such a vertex v having one colored neighbor w (it is easy to see that this is always possible). If $[v, w] \in E$, color v with color $c(v)=1-c(w)$, and if (v, w) or $(w, v) \in U$, color it with $c(v)=c(w)$.

Clearly, we will only use two colors and $\forall[v, w] \in E, c(v) \neq c(w)$ and $\forall(v, w) \in U$, $c(v)=c(w)$ and hence the conditions are satisfied. We conclude that $\chi_{M}\left(T_{M}\right)=2$.

Theorem 19. Let $C_{M}=(V, U, E)$ be a mixed chordless cycle. Then $\chi_{M}\left(C_{M}\right)=2$.
Proof. We distinguish two cases:
(1) if $|E|$ is even

We contract each $\operatorname{arc}(v, w)$ to a single vertex $v w$. We get an undirected even cycle which we can color with 2 colors. A feasible 2 -coloring of C_{M} is obtained by expanding each vertex $v w$, and by coloring the vertices of the corresponding arc with the same color as vertex $v w$.
(2) if $|E|$ is odd

We choose an $\operatorname{arc}(v, w)$. Contract all arcs $\left(v^{\prime}, w^{\prime}\right)$ to single vertices $v^{\prime} w^{\prime}$ except arc (v, w). We get an even cycle containing a single $\operatorname{arc}(v, w)$, which we can color properly using exactly two colors. A feasible 2 -coloring of C_{M} is obtained by expanding each vertex $v^{\prime} w^{\prime}$ and by coloring the vertices of the corresponding arc with the same color as vertex $v^{\prime} w^{\prime}$.

4.2. Complexity results

In this section, we will give some complexity results concerning the weak mixed graph coloring problem for some special classes of graphs.

Theorem 20. $W\left(G_{M}, 3\right)$ is NP-complete even if G_{M} is planar bipartite with maximum degree 4 .
Proof. We use a reduction from $S\left(G_{M}, 3\right)$, which we have shown to be $N P$-complete even if G_{M} is planar bipartite with maximum degree 4 and each vertex incident to an arc has maximum degree 2 . Let G_{M} be such a mixed graph. We replace each $\operatorname{arc}(v, w)$ by a path (v, u, z, w), where u and z are new vertices, and we introduce an edge $[v, w]$. Clearly, the mixed graph G_{M}^{\prime} obtained is planar bipartite and has maximum degree 4.

Suppose that $S\left(G_{M}, 3\right)$ has a positive answer. Then by keeping this coloring c in G_{M}^{\prime}, and by coloring the new vertices u, z with color $c(v)$, we obtain a solution for our problem. Conversely if $W\left(G_{M}, 3\right)$ has a positive answer, then we color in G_{M} each vertex v with the same color it gets in G_{M}^{\prime}. Clearly, we obtain a solution for $S\left(G_{M}, 3\right)$.

Remark 21. Notice that in the mixed graph G_{M}^{\prime}, vertices which are incident to an arc may have a degree greater than two.

If we consider a mixed graph G_{M} such as was constructed in the proof of Theorem 7, then our problem $W\left(G_{M}, p\right)$ is trivial: we can color G_{M} using only two colors. In fact, the initial undirected planar cubic bipartite graph G is 2 -colorable, and it is easy to see that the added vertices can be properly colored (with respect to the weak mixed graph coloring problem) using the same two colors. Hence for this particular class of planar bipartite graphs, $S\left(G_{M}, 3\right)$ is $N P$ complete while $W\left(G_{M}, p\right)$ is trivial, for any $p>1$.

Theorem 22. $W\left(G_{M}, 3\right)$ is NP-complete even if G_{M} is bipartite with maximum degree 3 .
Proof. We use a reduction from $S\left(G_{M}, 3\right)$, which has been shown to be $N P$-complete if G_{M} is bipartite with maximum degree 3 (see [12]). In G_{M}, replace each $\operatorname{arc}(v, w)$ by a directed path ($\left.v, u_{1}, u_{2}, u_{3}, u_{4}, w\right)$, and add a new edge $\left[u_{1}, u_{4}\right]$. The resulting graph G_{M}^{\prime} is clearly bipartite with maximum degree 3 .

Suppose that $W\left(G_{M}^{\prime}, 3\right)$ has a positive answer. Denote the coloring by c. Then, for each pair of vertices v, w such that $(v, w) \in G_{M}$, we must have $c(v)<c(w)$ because of the edge [u_{1}, u_{4}]. Thus, by replacing again the directed path by the arc (v, w) and by keeping the coloring c for the vertices of G_{M}, we obtain a solution for $S\left(G_{M}, 3\right)$. Similarly, if $S\left(G_{M}, 3\right)$ has a positive answer, denote by c^{\prime} the coloring. Consider the mixed graph G_{M}^{\prime} and keep the coloring c^{\prime} for the vertices of G_{M}^{\prime}, which are also vertices of G_{M}. By coloring the new vertices u_{1}, u_{2}, u_{3} with color $c^{\prime}(v)$ and vertex u_{4} with color $c^{\prime}(w)$, we clearly obtain a solution for $W\left(G_{M}^{\prime}, 3\right)$.

Theorem 23. $W\left(G_{M}, 2\right)$ is polynomially solvable.
Proof. We shall transform our problem into a $2 S A T$ problem, which is known to be polynomially solvable (see [5]). Consider a mixed graph G_{M}. For each vertex x in G_{M}, we introduce two variables x_{0}, x_{1} as well as two clauses $\left(x_{0} \vee x_{1}\right)$ and $\left(\bar{x}_{0} \vee \bar{x}_{1}\right)$. For each edge $[x, y] \in E$, we introduce two clauses $\left(\bar{x}_{0} \vee \bar{y}_{0}\right)$ and $\left(\bar{x}_{1} \vee \bar{y}_{1}\right)$. Finally, for each $\operatorname{arc}(x, y) \in U$ we introduce a clause ($\bar{x}_{1} \vee \bar{y}_{0}$). Thus, we get an instance of $2 S A T$.

Suppose that the $2 S A T$ instance is 'true'. Then by coloring each vertex x with color 0 if x_{0} is true, and with color 1 if x_{1} is true, we get a feasible 2 -coloring of G_{M}. Conversely, if G_{M} admits a feasible 2-coloring, then by setting variable x_{i} to true if x has color $i, i \in\{0,1\}$, we get a positive answer for the $2 S A T$ instance.

Theorem 24. $W\left(G_{M}, p\right)$ is polynomially solvable if G_{M} is a partial k-tree, for fixed k.
Proof. We will use a similar proof as for the case of strong mixed graph coloring in partial k trees. Let $G_{M}=(V, U, E)$ be a mixed partial k-tree, for some fixed k. To each vertex $v \in V$, we associate a list $L(v)=\{0,1, \ldots, p-1\}$ of possible colors. Notice that each list contains all possible colors $0,1, \ldots, p-1$. Now for each $\operatorname{arc}\left(v_{i}, v_{j}\right) \in U$, we introduce new vertices and
edges as shown in Fig. 2 with $r=p-1$. For these new vertices we set:

$$
L\left(w_{s t}\right)= \begin{cases}\{s, s+1\} & \text { if } 1 \leq s \leq r \text { and } t=1 \\ \{s+1,0\} & \text { if } 1 \leq s \leq r \text { and } t=2, \\ \{t-3, t-2\} & \text { if } 1 \leq s \leq r \text { and } 3 \leq t \leq r+1\end{cases}
$$

Remember that the graph we obtain (by considering all the arcs as edges) is also a partial k-tree for the same fixed k (see Proposition 10). Clearly, by deleting the arcs we still have a partial k-tree. So consider the partial k-tree G^{\prime} obtained by deleting the arcs. Because for each vertex in G^{\prime} we have associated a list of possible colors, we get an instance of the LiCol problem, which is polynomially solvable in partial k-trees, for fixed k [8]. By using similar arguments as in Theorem 11 one can easily prove that $W\left(G_{M}, p\right)$ and $\operatorname{LiCol}\left(G^{\prime}\right)$ are equivalent, and thus $W\left(G_{M}, p\right)$ is polynomially solvable.

5. Conclusion

We considered two coloring problems in mixed graphs. In the first one, we were interested in coloring the vertices of the graph such that two adjacent vertices get different colors and the tail of an arc must get a color which is strictly smaller than the color of the head of the arc. We gave some bounds on the minimum number of colors necessary to color the vertices of special classes of graphs, as well as some complexity results. In particular, we showed that the strong mixed graph coloring problem is $N P$-complete, even if the mixed graph is planar bipartite of maximum degree 4 and each vertex incident to an arc has maximum degree 2 . This strengthens a result of [12]. Furthermore we proved that the problem is polynomially solvable in partial k-trees, for fixed k, which extends a result of [12].

In the second problem, we were interested in coloring the vertices of the graph such that two adjacent vertices get different colors and the tail of an arc must not get a color larger than the head of the arc. Again, we gave some bounds on the minimum number of colors necessary to color the vertices, together with some complexity results. In particular, we showed that this problem is polynomially solvable in partial k-trees, for fixed k.

The results presented here concerned special classes of graphs. Further research is needed to extend these results to other classes of graphs. In particular, it would be interesting to know the complexity of the two problems in planar cubic bipartite graphs.

Acknowledgements

We would like to thank Prof. M.C. Golumbic and Prof. F. Werner for helpful discussions and remarks as well as two anonymous referees for their comments which improved the presentation of the paper.

References

[1] G.V. Andreev, Y.N. Sotskov, F. Werner, Branch and bound method for mixed graph coloring and scheduling, in: Proceedings of the 16th International Conference on CAD/CAM, Robotics and Factories of the Future, CARS and FOF, vol. 1, 2000, Trinidad and Tobago, 2000, pp.1-8.
[2] C. Berge, Graphes, Gauthier-Villars, Paris, 1983.
[3] M. Chlebik, J. Chlebikova, Hard coloring problems in low degree planar bipartite graphs, Discrete Applied Mathematics 154 (2006) 1960-1965.
[4] H. Furmańcyk, A. Kosowski, P. Zyliński, Mixed Graph Coloring: Bipartite Graphs, Trees, and Series-Parallel Graphs, 2006, Manuscript.
[5] M.R. Garey, D.S. Johnson, Computers and Intractability, a Guide to the Theory of $N P$-Completeness, Freeman, New York, 1979.
[6] P. Hansen, J. Kuplinsky, D. de Werra, Mixed graph coloring, Mathematical Methods of Operations Research 45 (1997) 145-160.
[7] M. Hujter, Zs. Tuza, Precoloring extension. II. Graphs classes related to bipartite graphs, Acta Mathematica Universitatis Comenianae LXII 1 (1993) 1-11.
[8] K. Jansen, P. Scheffler, Generalized coloring for tree-like graphs, 18th International Workshop on Graph-Theoretic Concepts in Computer Science (WG’92), in: E.W. Mayr (Ed.), Lecture Notes in Computer Science, vol. 657, 1993, pp. 50-59.
[9] L.I. Klimova, Y.N. Sotskov, Coloring of vertices of a mixed graph, Algorithms for Solving Optimization Problems, Institute of Engineering Cybernetics, Minsk, Belarus, 1993, pp. 90-96 (in Russian).
[10] G.M. Levin, On the evaluation of chromatic characteristics of a mixed graph, Vestsi Akademii Navuk BSSR, Seriya Fizika-Matèmatychnykh Navuk 1 (1982) 17-20 (in Russian).
[11] D.W. Matula, L.L. Beck, Smallest last ordering and clustering and graph coloring algorithms, Journal of the Association for Computing Machinery 30 (1983) 417-427.
[12] B. Ries, Coloring some classes of mixed graphs, Discrete Applied Mathematics 155 (2007) 1-6.
[13] Y.N. Sotskov, Scheduling via mixed graph coloring, in: Operations Research Proceedings, September 1-3, 1999, Spinger Verlag, 2000, pp. 414-418.
[14] Y.N. Sotskov, A. Dolgui, F. Werner, Mixed graph coloring for unit-time job-shop scheduling, International Journal of Mathematical Algorithms 4 (2001) 289-323.
[15] Y.N. Sotskov, V.S. Tanaev, Chromatic polynomial of a mixed graph, Vestsi Akademii Navuk BSSR, Seriya FizikaMatèmatychnykh Navuk 6 (1976) 20-23 (in Russian).
[16] Y.N. Sotskov, V.S. Tanaev, F. Werner, Scheduling problems and mixed graph colorings, Optimization 51 (3) (2002) 597-624.
[17] P. van Beek, Reasoning about qualitative temporal information, Artifical Intelligence 58 (1992) 297-326.

[^0]: E-mail address: bernard.ries@epfl.ch (B. Ries).
 ${ }^{1}$ Tel.: +41 21693 2560; fax: +41 216935840.

