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Abstract

We are interested in coloring the vertices of a mixed graph, i.e., a graph containing edges and arcs. We
consider two different coloring problems: in the first one, we want adjacent vertices to have different colors
and the tail of an arc to get a color strictly less than a color of the head of this arc; in the second problem,
we also allow vertices linked by an arc to have the same color. For both cases, we present bounds on the
mixed chromatic number and we give some complexity results which strengthen earlier results given in
[B. Ries, Coloring some classes of mixed graphs, Discrete Applied Mathematics 155 (2007) 1–6].
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

A mixed graph G M = (V, U, E) on vertex set V = {v1, v2, . . . , vn} is a graph containing
arcs (set U ) and edges (set E). We denote by [vi , v j ] an edge joining vertices vi and v j , and
by (vl , vq) an arc oriented from vl to vq . Here, we consider only connected finite mixed graphs
containing no multiple edges, no multiple arcs, and no loops. The number of vertices in a mixed
graph G M = (V, U, E) will be denoted by |V | = n. Mixed graph coloring has been introduced
for the first time in [15].

In this paper, we are interested in two coloring problems in mixed graphs. The first problem
is called strong mixed graph coloring problem. A strong mixed p-coloring of a mixed graph G M
is a mapping c : V → {0, 1, . . . , p − 1} such that, for each edge [vi , v j ] ∈ E , c(vi ) 6= c(v j )

and for each arc (vl , vq) ∈ U , c(vl) < c(vq). Notice that such a coloring can exist if and only
if the mixed graph G M does not contain any directed circuit. We denote by γM (G M ) the strong
mixed chromatic number of G M , that is the smallest integer p such that G M admits a strong
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mixed p-coloring. A mixed coloring of G M with γm(G M ) colors will be called optimal. We will
generally consider the following problem: Given a mixed graph G M = (V, U, E) and a positive
integer p, find out whether G M admits a strong mixed p-coloring. This coloring problem has
been studied in [4,6,12–14]. In [6], some upper bounds on the strong mixed chromatic number
are given. An O(n2) time algorithm to color optimally mixed trees and a branch-and-bound
algorithm are also developed. In [4], a linear time algorithm for mixed trees is given as well as
an O(n3.376 log(n)) time algorithm for series parallel graphs. In [12] it is proven that the strong
mixed graph coloring problem is NP-complete even if the graph is planar bipartite or bipartite of
maximum degree 3. Also some polynomially solvable cases are considered. Finally in [13,14],
the unit-time job-shop problem is considered via strong mixed graph coloring. In that case, the
partial graph (V, ∅, E) is a disjoint union of cliques, and the graph (V, U, ∅) is a disjoint union of
directed paths. In [14], three branch-and-bound algorithms are presented and tested on randomly
generated mixed graphs of order n ≤ 200 for an exact solution, and of order n ≤ 900 for an
approximate solution. Also, some complexity results are given concerning this special class of
mixed graphs.

The second problem which we consider in this paper is called the weak mixed graph coloring
problem, which was introduced for the first time in [15]. A weak mixed p-coloring of a mixed
graph G M is a mapping c : V → {0, 1, . . . , p − 1} such that, for each edge [vi , v j ] ∈ E ,
c(vi ) 6= c(v j ) and for each arc (vl , vq) ∈ U , c(vl) ≤ c(vq). Notice that in such a coloring of a
mixed graph, all vertices on a directed circuit must have the same color. We denote by χM (G M )

the weak mixed chromatic number of G M , that is the smallest integer p such that G M admits a
weak mixed p-coloring. Given a mixed graph G M = (V, U, E) and a positive integer p, we are
interested in finding out whether G M admits a weak mixed p-coloring. The weak mixed graph
coloring problem has been studied in [1,9,10,15,16]. In [16], some algorithms calculating the
exact value of the weak mixed chromatic number of graphs of order n ≤ 40, and upper bounds
for graphs of order larger than 40 are presented.

This paper is organized as follows. In Section 2, we give some definitions and notations which
will be used later. Section 3 deals with the strong mixed graph coloring problem. Some bounds
on the strong mixed chromatic number are given, as well as some complexity results concerning
special classes of graphs. In Section 4, the weak mixed graph coloring problem is considered,
and bounds on the weak mixed chromatic number are given with some complexity results.

2. Preliminaries

For all graph theoretical terms not defined here, the reader is referred to [2].
Let G M = (V, U, E) be a mixed graph, and let Vo be the set of vertices which are incident to

at least one arc in G M . We denote by G(Vo) the mixed subgraph of G M induced by Vo, and by
Go

M = (Vo, U, ∅) the directed partial graph of G(Vo). n(Go
M ) denotes the number of vertices on

a longest directed path in Go
M . Notice that the length of a longest directed path in G M (i.e. the

number of edges of a longest directed path in G M ) is equal to n(Go
M ) − 1.

Let P be a directed path in Go
M . The number of vertices in P will be denoted by |P|.

Let vi be a vertex in G M . The inrank of vi , denoted by in(vi ), is the length of a longest directed
path in Go

M ending at vertex vi . Similarly, we define the outrank of vi , denoted by out(vi ), as
being the length of a longest directed path in Go

M starting at vertex vi . If vi is not incident to any
arc, then in(vi ) = out(vi ) = 0. Notice that the length of a longest directed path in G M is given
by maxvi ∈V (in(vi ) + out(vi )).

Notice that the parameters introduced above can only be defined if Go
M has no directed circuit.
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The degree of a vertex v in G M , denoted by dG M (v), is the number of edges and arcs incident
to v. We shall simply write d(v) if no confusion can occur.

3. Strong mixed graph coloring problem

In this section, we study the following problem, which we will call the Strong Mixed Graph
Coloring Problem:
Instance: A mixed graph G M = (V, U, E), E 6= ∅, and an integer p ≥ n(Go

M ).
Question: Can the vertices of G M be colored using at most p colors such that, for each edge
[vi , v j ] ∈ E , c(vi ) 6= c(v j ) and for each arc (vl , vq) ∈ U , c(vl) < c(vq)?

We will refer to this problem as S(G M , p). Notice that in this problem, we can suppose
w.l.o.g. that whenever (vl , vq) ∈ U , then [vl , vq ] 6∈ E , since (vl , vq) ∈ U implies that
c(vl) < c(vq) and thus c(vl) 6= c(vq).

A necessary and sufficient condition for a mixed graph to admit a strong mixed coloring is
that it does not contain any directed circuit. We will suppose for the rest of this section that it is
satisfied.

3.1. Bounds on the strong mixed chromatic number

Upper bounds on the mixed chromatic number have been given in [6]. In particular, one of
these bounds implies that for mixed bipartite graphs, we have n(Go

M ) ≤ γM (G M ) ≤ n(Go
M )+1.

In this section, we will give some upper bounds for special classes of mixed graphs, and in some
cases the exact value of the strong mixed chromatic number.

Lemma 1. Let Go
M = (V1 ∪ V2, U, ∅) be a mixed bipartite graph. Assume that all paths of

length n(Go
M ) − 1 start in the same vertex set, say V1. Then it is possible to find a strong mixed

n(Go
M )-coloring such that all vertices in V1 have an even color, and all vertices in V2 have an

odd color.

Proof. Since Go
M has no circuit, we may decompose its set of vertices into subsets

C0, C1, . . . , Cn(Go
M )−1, where Ci is the class of vertices having no predecessors when vertices in

C0, C1, . . . , Ci−1 have been removed.
So we start with the vertices in C0, and give each vertex v color 0 if it is in V1 or color 1 if it

is in V2 and we continue with the vertices in C1, C2, . . ., by giving each vertex the smallest color
which is larger than the color of all its predecessors.

This will give an odd color to vertices in V2 and an even color to vertices in V1 (since Go
M

is bipartite a vertex in V1 (resp. V2) has all its predecessors in V2 (resp. V1)). Clearly, we will
have c(v) < c(w) for each arc (v, w). Furthermore not more than n(Go

M ) colors will be used
(the longest paths starting in V2 will have length less than n(Go

M ), and therefore contain colors
in {1, 2, . . . , n(Go

M ) − 1}). �

Now using this Lemma, we obtain the following result.

Theorem 2. Let G M = (V1 ∪ V2, U, E) be a mixed bipartite graph. Assume that all paths of
length n(Go

M ) − 1 start in the same vertex set, say V1. Then, it is possible to find a strong mixed
n(Go

M )-coloring such that all vertices in V1 have an even color, and all vertices in V2 have an
odd color.
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Proof. From Lemma 1 we know that the vertices of Go
M can be colored using at most n(Go

M )

colors, and such that all vertices in V1 have an even color and all vertices in V2 have an odd
color. Notice that whenever there is an edge between two colored vertices v, w, we necessarily
have that c(v) 6= c(w), since if one color is even, then the second one is odd. By coloring the
remaining uncolored vertices of V1 with color 0 and the remaining uncolored vertices of V2 with
color 1, we obtain a strong mixed n(Go

M )-coloring such that all vertices in V1 have an even color
and all vertices in V2 have an odd color. �

Theorem 3. Let G M = (V1 ∪ V2, U, E) be a complete mixed bipartite graph. Then γM (G M ) =

n(Go
M ) if and only if all paths of length n(Go

M ) − 1 start in the same vertex set Vi , i ∈ {1, 2}.

Proof. From Theorem 2, we know that if these paths start in the same vertex set, then γM (G M ) =

n(Go
M ). Now suppose that the strong mixed chromatic number is equal to n(Go

M ). Assume there
are two paths of length n(Go

M ) − 1 having their start-vertices not in the same vertex set Vi ,
i ∈ {1, 2}; these vertices are necessarily linked by an edge, since the graph is complete. But in
this case, a proper strong mixed n(Go

M )-coloring would clearly not be possible. So we conclude
that all paths of length n(Go

M ) − 1 start in the same vertex set Vi , i ∈ {1, 2}. �

Theorem 4. Let G M = (V, U, E) be a mixed graph such that G(Vo) has strong mixed chromatic
number γM (G(Vo)) ≤ n(Go

M ) + 1. Suppose that we have maxG ′⊆G M (minv∈G ′(dG ′(v))) ≤

n(Go
M ), where G ′ is a subgraph of G M containing Vo. Then γM (G M ) ≤ n(Go

M ) + 1.

Proof. Consider G(Vo); it can be colored with at most n(Go
M ) + 1 colors. Now assume that the

above condition holds. We can remove the vertices of set V − Vo by taking, at each step, a vertex
with minimum degree in the remaining graph (this is the Smallest Last Ordering of [11]); all
these degrees will be at most n(Go

M ), as we will now show. So, when reinserting the vertices in
the opposite order, it will be possible to color the graph with at most n(Go

M ) + 1 colors (for each
vertex there will be a color available among the n(Go

M ) + 1 colors).
Let us call v1, v2, . . . , vq the vertices of V − Vo in the order in which they are removed,

and let us call Gi the subgraph of G remaining when vertices v1, . . . , vi−1 have been
removed; so G1 = G M . We denote by G ′ a subgraph of G M containing Vo. We have
maxG ′⊆G M (minv∈G ′(dG ′(v))) ≥ max1≤i≤q(minv∈Gi (dGi (v))) = max1≤i≤q(dGi (vi )), since in
the left hand side all possible subgraphs G ′ of G M containing Vo are considered, while in the
right hand side, only G1, . . . , Gq are considered.

We also have maxG ′⊆G M (minv∈G ′(dG ′(v))) ≤ max1≤i≤q(dGi (vi )). In fact, let G ′′ be the
subgraph for which the maximum on the left is attained. Let vr be the first vertex of G ′′ which
is removed in the above process. Then maxG ′⊆G M (minv∈G ′(dG ′(v))) = minv∈G ′′(dG ′′(v)) ≤

dG ′′(vr ) ≤ dGr (vr ) ≤ max1≤i≤q(dGi (vi )). So the above inequality holds. It follows that
maxG ′⊆G M (minv∈G ′(dG ′(v))) = max1≤i≤q(dGi (vi )) ≤ n(Go

M ). Hence, the coloring of G M is
possible with at most n(Go

M ) + 1 colors. �

As already mentioned at the beginning of this section, we know that for a mixed bipartite
graph G M , γM (G M ) ≤ n(Go

M ) + 1, and so we obtain the following corollary.

Corollary 5. Let G M be a mixed graph such that G(Vo) is mixed bipartite, and such that
maxG ′⊆G M (minv∈G ′(dG ′(v))) ≤ n(Go

M ), where G ′ is a subgraph of G M containing Vo. Then
γM (G M ) ≤ n(Go

M ) + 1.
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Fig. 1. Depending on the list L(v), we add new vertices, edges and arcs.

Corollary 6. Let G M be a mixed graph such that each odd cycle C in G M contains at least one
vertex which is not incident to any arc, and such that maxG ′⊆G M (minv∈G ′(dG ′(v))) ≤ n(Go

M ),
where G ′ is a subgraph of G M containing Vo. Then γM (G M ) ≤ n(Go

M ) + 1.

Proof. Consider the mixed graph G(Vo). Since each odd cycle in G M contains at least one
vertex which is not incident to any arc, G(Vo) has no odd cycle, and hence is mixed bipartite. We
conclude by using Corollary 5. �

3.2. Complexity results

In [12], it is shown that S(G M , 3) is NP-complete even if G M is planar bipartite or bipartite
with maximum degree 3. The following theorem strengthens the first result.

Theorem 7. S(G M , 3) is NP-complete even if G M is a planar bipartite graph with maximum
degree 4 and each vertex incident to an arc has maximum degree 2.

Proof. We use a reduction from the List Coloring problem (LiCol) which is defined as follows:
Instance: An undirected graph G = (V, E) together with sets of feasible colors L(v) for all
vertices v ∈ V .
Question: Does there exist a proper vertex coloring of G with colors from L =

⋃
v∈V L(v) such

that every vertex v is colored with a feasible color from L(v)?
This problem is shown to be NP-complete even if G is a 3-regular planar bipartite graph and

the total number of colors is 3 and each list L(v) contains 2 or 3 colors (see [3]).
Let G be a 3-regular planar bipartite graph. Suppose that each vertex v is given a list L(v) with

feasible colors such that 2 ≤ |L(v)| ≤ 3, and such that the total number of colors is 3 (colors
0, 1, 2). For each vertex v in G such that |L(v)| = 2, introduce new vertices as shown in Fig. 1
depending on the list L(v). The mixed graph G M we thereby obtain is clearly planar and bipartite
with ∆(G M ) ≤ 4; each vertex incident to an arc has maximum degree 2 and n(Go

M ) = 3.
Suppose now, that LiCol(G) has a positive answer. Denote by c the coloring corresponding to

the solution. Then in G M , color each vertex v which is also in G with the color c(v). It is easy to
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see that the remaining uncolored vertices (those which were added) can be colored using colors
0, 1, 2 such that all the constraints are satisfied. Conversely, if S(G M , 3) has a solution, each
original vertex gets necessarily a color from its list L(v) in G, and hence we obtain a solution of
LiCol(G) in G by removing in G M the new vertices added at the beginning. �

We will now give some polynomially solvable cases in special classes of graphs. First, let us
introduce the Precoloring Extension problem (PrExt) which is defined as follows:
Instance: An unoriented graph G = (V, E) and some vertices of V are precolored properly using
at most q colors.
Question: Can this precoloring of G be extended to a proper coloring of G using at most q
colors?

This problem was shown to be polynomially solvable in special classes of graphs like split
graphs [7], cographs [8], complements of bipartite graphs [7], or graphs of maximum degree
3 [3].

Theorem 8. S(G M , n(Go
M )) is polynomially solvable if every vertex in Go

M is on a path of length
n(Go

M )−1, and if the Precoloring Extension problem on the graph G with at most n(Go
M ) colors,

obtained by transforming each arc of G M into an edge, is polynomially solvable.

Proof. Let G M be a mixed graph with Go
M satisfying the above hypothesis, and such that

PrExt(G) is polynomially solvable. Notice that if there exists a strong mixed n(Go
M )-coloring c

of G M , then each vertex v belonging to Go
M must get color c(v) = in(v). So we color each vertex

v incident to an arc with the color c(v) = in(v). If a conflict occurs, i.e. if there are two adjacent
vertices which get the same color, then no solution exists. Otherwise, consider all arcs as edges.
We get an undirected graph G with some precolored vertices. Thus we get an instance of the
Precoloring Extension problem in G. We know that PrExt(G) is polynomially solvable. It is easy
to see that the two problems are equivalent. Thus, our problem is polynomially solvable. �

We denote by ni the number of vertices on a longest directed path P in G M containing vertex
vi (if vi is not incident to any arc, ni = 1 and P = {vi }). Notice that ni = in(vi ) + out(vi ) + 1.
Let h ≥ |P| be an integer. We define Si as the set of possible colors for vi such that whenever vi
has a color c(vi ) ∈ Si , there exists a coloring c of G M (with an arbitrary number of colors) with
c(v) ≤ h − 1, for any v ∈ P . We have the following result:

Proposition 9. Let P = {v1, v2, . . . , vi−1, vi , vi+1, . . . , vni } be a longest directed path in G M
containing vi , and let h ≥ |P| be an integer. Then Si = {in(vi ), in(vi )+1, . . . , h−(out(vi )+1)}.

Proof. It is easy to see that the smallest feasible color for vi is in(vi ). Suppose that c(vi ) =

in(vi ) + q , where q ≥ 0. We can color the vertices v1, v2, . . . , vi−1 with colors c(v1) =

in(v1), c(v2) = in(v2), . . . , c(vi−1) = in(vi−1), and vertices vi+1, . . . , vni with colors c(vi+1) =

in(vi )+q +1, . . . , c(vni ) = in(vi )+q +ni − i . Notice that ni − i = out(vi ) since P is a longest
directed path containing vi . Thus, c(vni ) = in(vi ) + q + out(vi ). This way we get a feasible
coloring c of G M (the vertices of G M not belonging to P can easily be colored properly), and
since the condition c(v) ≤ h − 1 must hold for any v ∈ P , we have that in(vi ) + q + out(vi ) ≤

h−1, i.e. q ≤ h−(in(vi )+out(vi )+1). Thus Si = {in(vi ), in(vi )+1, . . . , h−(out(vi )+1)}. �

We will now focus on a special class of graphs: partial k-trees. A k-tree is a graph defined
recursively as follows: a k-tree on k vertices consists of a k-clique; given any k-tree Tn on n
vertices, we construct a k-tree on n + 1 vertices by adjoining a new vertex vn+1 to Tn , which
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Fig. 2. New vertices and edges added to [vi , v j ].

is made adjacent to each vertex of some k-clique of Tn and nonadjacent to the remaining n − k
vertices. A partial k-tree is a subgraph of a k-tree.

Consider now an undirected partial k-tree G = (V, E). Suppose that for some edges
[vi , v j ] ∈ E , we add new vertices and edges as shown in Fig. 2. Denote by G ′ the graph we
obtain.

We have the following result.

Proposition 10. Let G be a partial k-tree. Then G ′ is also a partial k-tree.

Proof. Since G is a partial k-tree, it is the subgraph of a k-tree Tk . Notice that [vi , v j ] ∈ Ki j in
Tk , where Ki j is a (k + 1)-clique. Consider T ′, which is the graph obtained by adding to G ′ all
the edges and vertices of Tk which are not in G. In order to show that G ′ is a partial k-tree, we
just need to show how edges can be added to T ′ to make it become a k-tree T ∗.

For each new vertex ws1, s = 1, . . . , r , make it adjacent to v j and to k − 2 vertices in
Ki j − {vi , v j }. We obtain, for each s, a (k + 1)-clique Ks1 containing ws1. Each new vertex wst ,
s = 1, . . . , r , t = 2, . . . , r + 1, is linked to k − 2 vertices in K(s−1)t − {w(s−1)t , v j }. We obtain,
then, for each s and t , t 6= 1, a (k + 1)-clique Kst containing wst . Clearly, the resulting graph is
a k-tree, and thus G ′ is a partial k-tree. �

In [4], it is shown that S(G M , p) is polynomially solvable for series parallel graphs, i.e., partial
2-trees, by giving an exact algorithm which has complexity O(n3.376 log(n)). In [12], a special
case in bipartite partial k-trees is shown to be polynomially solvable. The following Theorem
will strengthen the result of [12].

Theorem 11. S(G M , p) is polynomially solvable if G M = (V, U, E) is a partial k-tree for
fixed k.

Proof. We use a transfomation to the LiCol problem, which is known to be solvable in O(nk+2)

time for partial k-trees (see [8]).
For each vl ∈ V which is not incident to any arc, we set L(vl) = {0, 1, . . . , p − 1}. For each

vertex vi ∈ V which is incident to at least one arc, we set L(vi ) = {in(vi ), in(vi ) + 1, . . . , p −

(out(vi )+ 1)}. For each arc (vi , v j ) ∈ U such that p − (out(vi )+ 1) > in(v j ), we introduce new
vertices and edges as shown in Fig. 2, with r = p − (out(vi ) + in(v j ) + 1). For the new vertices



B. Ries, D. de Werra / European Journal of Combinatorics 29 (2008) 712–725 719

Fig. 3. Example of how new edges and vertices are introduced in the case of L(vi ) = {3, 4, 5, 6} and L(v j ) =

{4, 5, 6, 7}.

we set:

L(wst ) =

{in(v j ) + s, in(v j ) + s + 1} if 1 ≤ s ≤ r and t = 1,

{in(v j ) + s + 1, in(v j )} if 1 ≤ s ≤ r and t = 2,

{in(v j ) + t − 3, in(v j ) + t − 2} if 1 ≤ s ≤ r and 3 ≤ t ≤ r + 1.

Fig. 3 shows a case where we have L(vi ) = {3, 4, 5, 6}, L(v j ) = {4, 5, 6, 7} and p = 8. For
the new vertices, we set L(w11) = {5, 6}, L(w12) = {6, 4}, L(w21) = {6, 7}, L(w22) = {7, 4}

and L(w23) = {4, 5}. This way we do not allow vertex v j to get a color less than the color of
vertex vi .

By considering all arcs as edges, we obtain a new undirected graph G ′ which is still a partial
k-tree (see Proposition 10). Furthermore we associate to each vertex v in G ′ a list L(v) of integers
such that L(v) ⊆ {0, 1, . . . , p − 1}. Thus, we get an instance of the LiCol problem with p colors
in a partial k-tree G ′, where k is fixed.

Suppose that an instance of the LiCol(G ′) problem has answer ‘yes’, and denote by c the
corresponding list-coloring. We will show that c restricted to G M is also a feasible coloring for
S(G M , p). Clearly, for each edge [vi , v j ] in G ′, we have that c(vi ) 6= c(v j ), and so c(vi ) 6= c(v j )

for each [vi , v j ] or (vi , v j ) in G M . Consider now an arc (vi , v j ) in G M . We have to verify
that c(vi ) < c(v j ). If c(vi ) ≤ in(v j ), we clearly have that c(vi ) < c(v j ). So suppose that
c(vi ) = in(v j ) + q , q > 0. In that case, vertex wq1 necessarily has color in(v j ) + q + 1, and
vertices wq2, . . . , wq(q+1) must have colors in(v j ), . . . , in(v j ) + q − 1, due to their lists. Since
these vertices are adjacent to v j , c(v j ) > in(v j ) + q , and hence c(vi ) < c(v j ). We conclude that
S(G M , p) has answer ‘yes’.

Conversely, suppose now that an instance of S(G M , p) has answer ‘yes’, and denote by c′ the
corresponding strong mixed p-coloring. Then clearly, each vertex v in G M has a color which
belongs to the corresponding list L(v) in G ′, i.e., c′(v) ∈ L(v). In fact, for each vertex vl not
incident to any arc in G M , we have L(vl) = {0, 1, . . . , p − 1}, and for each vertex vi which is
incident to at least one arc, we have L(vi ) = {in(vi ), in(vi ) + 1, . . . , p − (out(vi ) + 1)}. By
Proposition 9, we know that these colors are the only ones possible if Pvi (a longest directed path
containing vi ) is colored properly and c′(v) < p, for any v ∈ Pvi . Furthermore, it is not difficult
to verify that coloring c′ can easily be extended in G ′ by coloring the new vertices wst (using the
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colors in their associated lists), and so we get a feasible coloring for the LiCol problem in G ′.
Thus, the LiCol problem on G ′ has answer ‘yes’.

Clearly G ′ can be obtained from G M in polynomial time, since ni and in(vi ) can be computed
in polynomial time for each vertex vi in G M . The number of new vertices is restricted by
O(n2m), where m is the number of arcs, and thus S(G M , p) can be solved in time O(n2k+4mk+2)

if G M is a partial k-tree, with fixed k. �

4. Weak mixed graph coloring problem

In this section, we study the following problem which we will call the Weak Mixed Graph
Coloring Problem:
Instance: A mixed graph G M = (V, U, E), E 6= ∅, and an integer p > 1.
Question: Can the vertices of G M be colored using at most p colors such that for each edge
[vi , v j ] ∈ E , c(vi ) 6= c(v j ) and for each arc (vl , vq) ∈ U , c(vl) ≤ c(vq)?

We will refer to this problem as W (G M , p). Notice that we clearly have χM (G M ) ≤ γM (G M ).
Necessary and sufficient conditions for a mixed graph to admit a weak mixed coloring have

been given:

Theorem 12 (See for instance [15,16]). For the existence of a weak mixed coloring of a mixed
graph G M = (V, U, E), it is necessary and sufficient that graph (V, ∅, E) does not have loops
and that G M does not contain any directed circuit with a chord.

In the rest of this section, we will suppose that these conditions are satisfied. Notice that in
the case of weak mixed coloring, we may have (vl , vq) ∈ U and [vl , vq ] ∈ E . Then, in any
proper weak mixed coloring c, we must have c(vl) < c(vq). So the strong mixed graph coloring
problem S(G M , p) is the special case of W (G M , p) where, for each arc (vl , vq) ∈ U , we have
[vl , vq ] ∈ E .

4.1. Bounds on the weak mixed chromatic number

We will start with a few observations which will allow us to simplify the original mixed graph
G M (see also [17], where a similar merging operation is designed for vertices belonging to the
same strongly connected component).

Lemma 13. Let G M = (V, U, E) be a mixed graph, and let C be a strongly connected
component of Go

M . Then, in any feasible weak mixed coloring c of G M , c(vi ) = c(v j ) ∀vi , v j ∈

C.

Proof. Let c be a feasible coloring of G M . Suppose that c(vi ) < c(v j ) for some vi , v j in C .
Since there is a directed path from v j to vi contained in C , we obtain a contradiction, because
we should have c(v j ) ≤ c(vi ). �

Consider a mixed graph G M and let D = {D1, . . . , Dt } be a set of disjoint directed partial
graphs of G M . Let G M/D be the mixed graph obtained by deleting the arcs of

⋃t
l=1 Dl , and by

replacing the vertices of each graph Dl by a single vertex vl . G M/D may have multiple edges or
arcs, in which case we delete them. We say that Dl has been contracted to a single vertex vl , for
all l = 1, . . . , t . Then we have the following result.
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Lemma 14. Let G M = (V, U, E) be a mixed graph and let C = {C1, C2, . . . , Cq} be the set
of strongly connected components in Go

M such that ∀v, w ∈ Ck , k ∈ {1, 2, . . . , q}, we have
[v, w] 6∈ E. Then χM (G M ) = χM (G M/C).

Proof. Let c be an optimal coloring of G M/C. Let vi be the vertex in G M/C representing
component Ci , and let c(vi ) be its color, for i = 1, 2, . . . , q . Consider now G M , and color
each vertex w 6∈ Ci , i = 1, 2, . . . , q in G M with the same color as in G M/C. Color each vertex
in Ci with color c(vi ). Clearly, we obtain a feasible coloring of G M . Furthermore, this coloring
is optimal. In fact, suppose that G M can be colored with χM (G M ) < χM (G M/C) colors. By
Lemma 13, we know that all vertices of Ci , i = 1, 2, . . . , q , necessarily have the same color ci .
Contracting each component Ci to a single vertex vi and coloring it with color ci , we obtain a
feasible coloring of G M/C with χM (G M ) < χM (G M/C) colors, which is a contradiction. �

Consider a mixed graph G M = (V, U, E). As we have seen in Lemma 14, all strongly
connected components of Go

M such that no two vertices of a same component are linked by
an edge can be contracted to single vertices without changing the weak mixed chromatic number
of the original graph. So, from now on, we suppose that in G M , all these strongly connected
components have been contracted to single vertices. Let v be a vertex of G M which is not incident
to any edge. Denote by Pred(v) the set of its neighbors w such that (w, v) ∈ U , and by Succ(v)

the set of its neighbors u such that (v, u) ∈ U . Delete vertex v from G M , and introduce arcs
(w, u) for all w ∈ Pred(v) and u ∈ Succ(v). Suppose we perform this operation as long as
there is a vertex v which is not incident to any edge. Let G∗

M = (V ∗, U∗, E) be the mixed graph
obtained. Then we have the following result.

Theorem 15. Let G M = (V, U, E) be a mixed graph. Then χM (G M ) = χM (G∗

M ).

Proof. Consider an optimal weak mixed coloring of G∗

M . This coloring, c, can be extended
to an optimal weak mixed coloring of G M . In fact, consider the mixed graph G M and color
each vertex v, which is incident to at least one edge with color c(v). Now color each remaining
uncolored vertex v (incident to no edge) with color c(v) = maxw∈Pred(v)(c(w)). We clearly
obtain a feasible weak mixed coloring of G M . Furthermore this coloring is optimal. Suppose
that it is possible to color G M with p colors, p < χ(G∗

M ). Then by transforming G M into
G∗

M , we obtain a feasible coloring of G∗

M with at most p colors, which is a contradiction. Thus
χM (G M ) = χM (G∗

M ). �

So from now on, we can also suppose that G M does not contain any vertex incident only to
arcs.

Let us consider the set DP of all maximal directed paths in G M . Let P = (v1, . . . , vr ) be a
maximal directed path, and EP = {[vi , v j ]|0 < i < j ≤ r} be the set of edges linking each a pair
of vertices of P . We denote by E1

P , . . . , E t
P the subsets of EP such that, if [vi , v j ], [vk, vl ] ∈ E s

P ,
then max(i, j) ≤ min(k, l), for s = 1, . . . , t . If eP = maxs=1,...,t (|E s

P |), then we obtain the
following lower bound on the weak mixed chromatic number.

Theorem 16. Let G M be a mixed graph. Then maxP∈DP (eP + 1) ≤ χM (G M ).

Proof. Let P ′
= (v′

1, . . . , v
′
q) be a maximal directed path such that P ′

=

arg maxP∈DP (eP + 1). Suppose that eP ′ = |E f
P ′ | for a certain integer f , and E f

P ′ =

{[v′

i1
, v′

i2
], [v′

i3
, v′

i4
], . . . , [v′

ir−1
, v′

ir
]}, 0 < i1 < i2 ≤ i3 < · · · ≤ ir−1 < ir ≤ q.
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If we want to construct a weak mixed graph coloring c, we clearly must have c(v′

i j
) < c(v′

i j+1
)

for j = 1, 3, . . . , r − 1, since there is a directed path from v′

i j
to v′

i j+1
and there is an edge

[v′

i j
, v′

i j+1
] for all j = 1, 3, . . . , r − 1. Furthermore we can color each vertex v′

ik
with the same

color as v′

ik−1
for k = 3, 5, . . . , r − 1. In fact there cannot be any edge between two vertices

v′

ih
, v′

ig
, ik−1 ≤ ih < ig ≤ ik for k = 3, 5, . . . , r − 1, as otherwise |E f

P ′ | would not be maximal.
Thus, we use at least eP ′ + 1 colors. �

Remark 17. The lower bound given in Theorem 16 is tight. Indeed, if for all edges [vi , v j ] ∈ E
we have (vi , v j ) ∈ U or (v j , vi ) ∈ U , then maxP∈DP (eP + 1) = χM (G M ).

We will give now two very simple classes of graphs for which we can determine the exact
value of the weak mixed chromatic number.

Theorem 18. Let TM = (V, U, E) be a mixed tree, E 6= ∅. Then χM (TM ) = 2.

Proof. Choose a root r in TM . Color it with color c(r) ∈ {0, 1}. As long as there is an uncolored
vertex, choose such a vertex v having one colored neighbor w (it is easy to see that this is always
possible). If [v, w] ∈ E , color v with color c(v) = 1 − c(w), and if (v, w) or (w, v) ∈ U , color
it with c(v) = c(w).

Clearly, we will only use two colors and ∀[v, w] ∈ E , c(v) 6= c(w) and ∀(v, w) ∈ U ,
c(v) = c(w) and hence the conditions are satisfied. We conclude that χM (TM ) = 2. �

Theorem 19. Let CM = (V, U, E) be a mixed chordless cycle. Then χM (CM ) = 2.

Proof. We distinguish two cases:

(1) if |E | is even
We contract each arc (v, w) to a single vertex vw. We get an undirected even cycle which

we can color with 2 colors. A feasible 2-coloring of CM is obtained by expanding each vertex
vw, and by coloring the vertices of the corresponding arc with the same color as vertex vw.

(2) if |E | is odd
We choose an arc (v, w). Contract all arcs (v′, w′) to single vertices v′w′ except arc

(v, w). We get an even cycle containing a single arc (v, w), which we can color properly
using exactly two colors. A feasible 2-coloring of CM is obtained by expanding each vertex
v′w′ and by coloring the vertices of the corresponding arc with the same color as vertex
v′w′. �

4.2. Complexity results

In this section, we will give some complexity results concerning the weak mixed graph
coloring problem for some special classes of graphs.

Theorem 20. W (G M , 3) is NP-complete even if G M is planar bipartite with maximum degree 4.

Proof. We use a reduction from S(G M , 3), which we have shown to be NP-complete even if
G M is planar bipartite with maximum degree 4 and each vertex incident to an arc has maximum
degree 2. Let G M be such a mixed graph. We replace each arc (v, w) by a path (v, u, z, w),
where u and z are new vertices, and we introduce an edge [v, w]. Clearly, the mixed graph G ′

M
obtained is planar bipartite and has maximum degree 4.
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Suppose that S(G M , 3) has a positive answer. Then by keeping this coloring c in G ′

M , and by
coloring the new vertices u, z with color c(v), we obtain a solution for our problem. Conversely
if W (G M , 3) has a positive answer, then we color in G M each vertex v with the same color it
gets in G ′

M . Clearly, we obtain a solution for S(G M , 3). �

Remark 21. Notice that in the mixed graph G ′

M , vertices which are incident to an arc may have
a degree greater than two.

If we consider a mixed graph G M such as was constructed in the proof of Theorem 7, then
our problem W (G M , p) is trivial: we can color G M using only two colors. In fact, the initial
undirected planar cubic bipartite graph G is 2-colorable, and it is easy to see that the added
vertices can be properly colored (with respect to the weak mixed graph coloring problem) using
the same two colors. Hence for this particular class of planar bipartite graphs, S(G M , 3) is NP-
complete while W (G M , p) is trivial, for any p > 1.

Theorem 22. W (G M , 3) is NP-complete even if G M is bipartite with maximum degree 3.

Proof. We use a reduction from S(G M , 3), which has been shown to be NP-complete if G M is
bipartite with maximum degree 3 (see [12]). In G M , replace each arc (v, w) by a directed path
(v, u1, u2, u3, u4, w), and add a new edge [u1, u4]. The resulting graph G ′

M is clearly bipartite
with maximum degree 3.

Suppose that W (G ′

M , 3) has a positive answer. Denote the coloring by c. Then, for each pair
of vertices v, w such that (v, w) ∈ G M , we must have c(v) < c(w) because of the edge [u1, u4].
Thus, by replacing again the directed path by the arc (v, w) and by keeping the coloring c for the
vertices of G M , we obtain a solution for S(G M , 3). Similarly, if S(G M , 3) has a positive answer,
denote by c′ the coloring. Consider the mixed graph G ′

M and keep the coloring c′ for the vertices
of G ′

M , which are also vertices of G M . By coloring the new vertices u1, u2, u3 with color c′(v)

and vertex u4 with color c′(w), we clearly obtain a solution for W (G ′

M , 3). �

Theorem 23. W (G M , 2) is polynomially solvable.

Proof. We shall transform our problem into a 2SAT problem, which is known to be polynomially
solvable (see [5]). Consider a mixed graph G M . For each vertex x in G M , we introduce two
variables x0, x1 as well as two clauses (x0 ∨ x1) and (x̄0 ∨ x̄1). For each edge [x, y] ∈ E , we
introduce two clauses (x̄0 ∨ ȳ0) and (x̄1 ∨ ȳ1). Finally, for each arc (x, y) ∈ U we introduce a
clause (x̄1 ∨ ȳ0). Thus, we get an instance of 2SAT .

Suppose that the 2SAT instance is ‘true’. Then by coloring each vertex x with color 0 if x0
is true, and with color 1 if x1 is true, we get a feasible 2-coloring of G M . Conversely, if G M
admits a feasible 2-coloring, then by setting variable xi to true if x has color i , i ∈ {0, 1}, we get
a positive answer for the 2SAT instance. �

Theorem 24. W (G M , p) is polynomially solvable if G M is a partial k-tree, for fixed k.

Proof. We will use a similar proof as for the case of strong mixed graph coloring in partial k-
trees. Let G M = (V, U, E) be a mixed partial k-tree, for some fixed k. To each vertex v ∈ V ,
we associate a list L(v) = {0, 1, . . . , p − 1} of possible colors. Notice that each list contains all
possible colors 0, 1, . . . , p − 1. Now for each arc (vi , v j ) ∈ U , we introduce new vertices and
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edges as shown in Fig. 2 with r = p − 1. For these new vertices we set:

L(wst ) =

{s, s + 1} if 1 ≤ s ≤ r and t = 1,

{s + 1, 0} if 1 ≤ s ≤ r and t = 2,

{t − 3, t − 2} if 1 ≤ s ≤ r and 3 ≤ t ≤ r + 1.

Remember that the graph we obtain (by considering all the arcs as edges) is also a partial k-tree
for the same fixed k (see Proposition 10). Clearly, by deleting the arcs we still have a partial
k-tree. So consider the partial k-tree G ′ obtained by deleting the arcs. Because for each vertex
in G ′ we have associated a list of possible colors, we get an instance of the LiCol problem,
which is polynomially solvable in partial k-trees, for fixed k [8]. By using similar arguments
as in Theorem 11 one can easily prove that W (G M , p) and LiCol(G ′) are equivalent, and thus
W (G M , p) is polynomially solvable. �

5. Conclusion

We considered two coloring problems in mixed graphs. In the first one, we were interested in
coloring the vertices of the graph such that two adjacent vertices get different colors and the tail
of an arc must get a color which is strictly smaller than the color of the head of the arc. We gave
some bounds on the minimum number of colors necessary to color the vertices of special classes
of graphs, as well as some complexity results. In particular, we showed that the strong mixed
graph coloring problem is NP-complete, even if the mixed graph is planar bipartite of maximum
degree 4 and each vertex incident to an arc has maximum degree 2. This strengthens a result
of [12]. Furthermore we proved that the problem is polynomially solvable in partial k-trees, for
fixed k, which extends a result of [12].

In the second problem, we were interested in coloring the vertices of the graph such that two
adjacent vertices get different colors and the tail of an arc must not get a color larger than the head
of the arc. Again, we gave some bounds on the minimum number of colors necessary to color
the vertices, together with some complexity results. In particular, we showed that this problem is
polynomially solvable in partial k-trees, for fixed k.

The results presented here concerned special classes of graphs. Further research is needed to
extend these results to other classes of graphs. In particular, it would be interesting to know the
complexity of the two problems in planar cubic bipartite graphs.
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