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a b s t r a c t

Given an undirected graph G = (V , E) with matching number ν(G), we define d-blockers
as subsets of edges B such that ν((V , E \ B)) ≤ ν(G) − d. We define d-transversals
T as subsets of edges such that every maximum matching M has |M ∩ T | ≥ d. We
explore connections between d-blockers and d-transversals. Special classes of graphs are
examined which include complete graphs, regular bipartite graphs, chains and cycles and
we construct minimum d-transversals and d-blockers in these special graphs. We also
study the complexity status of finding minimum transversals and blockers in arbitrary
graphs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we introduce the following two concepts: in an undirected graph G = (V , E) a set of edges T such that each
maximum matching in G contains at least a given number d of edges of T is a d-transversal; a d-blocker is a set of edges B
such that the matching number (the cardinality of a maximummatching) of (V , E \ B) is at most the matching number of G
minus d. We will consider the problem of finding a minimum d-transversal T and a minimum d-blocker B in G.
The problem of the d-blocker is closely related to some edge deletion and edge modification problems which have been

studied in [4,13,14]. Similar problems have also been analyzed for vertices (see [5,12,15]).
In [10,11], the authors consider the problem of existence of a maximummatching whose removal leads to a graph with

given upper (resp. lower) bound for the cardinality of its maximummatching. Here we will not impose any structure on the
edge set representing the d-blocker.
In [2] a minimal blocker for a bipartite graph G is defined as a minimal set of edges the removal of which leaves no

perfect matching in G and explicit characterizations of minimal blockers of bipartite graphs are given. An efficient algorithm
enumerating the minimal blockers is given.
A concept close to d-transversal can be found in [3] where authors consider the notion of multiple transversal, another

generalization of a transversal in the hypergraph of perfect matchings. Here a multiple transversal must intersect each
perfect matchingMi with at least bi edges.
A different concept of d-transversals has been studied in [6]. Given a set of integers {p0, p1, . . . , ps} and a bipartite graph

G, one has to find a minimum set of edges R such that for each pi, i = 0, 1, . . . , s, there exists a maximummatchingMi with
|Mi ∩ R| = pi. Results have been given for special classes of bipartite graphs.
For some applications of the concept of colored blockers and transversals we refer the reader to [8].

E-mail addresses: rico.zenklusen@ifor.math.ethz.ch (R. Zenklusen), bernard.ries@a3.epfl.ch (B. Ries), chp@cnam.fr (C. Picouleau),
dominique.dewerra@epfl.ch (D. de Werra), costa@cnam.fr (M.-C. Costa), bentz@lri.fr (C. Bentz).

0012-365X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2009.01.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/200256797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:rico.zenklusen@ifor.math.ethz.ch
mailto:bernard.ries@a3.epfl.ch
mailto:chp@cnam.fr
mailto:dominique.dewerra@epfl.ch
mailto:costa@cnam.fr
mailto:bentz@lri.fr
http://dx.doi.org/10.1016/j.disc.2009.01.006


R. Zenklusen et al. / Discrete Mathematics 309 (2009) 4306–4314 4307

Our paper is organized as follows. In Section 2, we give some definitions and show some basic properties concerning
transversals and blockers.We also study the connections between both notions. Section 3 deals with complexity results. We
show that given two integers d and k, deciding whether there exists a d-transversal or a d-blocker of size k isN P -complete
in bipartite graphs. Some special classes of graphs are analyzed in Section 4. These include complete graphs, regular bipartite
graphs, chains and cycles.

2. Definitions and basic properties

All graph theoretical terms not defined here can be found in [1]. Throughout this paperwe are concernedwith undirected
simple loopless graphs G = (V , E). The degree of a vertex v is denoted d(v) and∆(G) stands for the maximum degree of a
vertex in G. Gwill be assumed connected. A cut-edge e = uv is an edge such that its removal disconnects G. AmatchingM
is a set of pairwise non-adjacent edges. A matching M is called maximum if its cardinality |M| is maximum. The largest
cardinality of a matching in G, its matching number, will be denoted by ν(G). More specifically we will be interested
in subsets of edges which will intersect maximum matchings in G or whose removal will reduce by a given number the
matching number.
We shall say that a subset T ⊆ E is a d-transversal of G if for every maximum matching M ∈ G we have |M ∩ T | ≥ d.

Thus a d-transversal is a subset of edges which intersect each maximummatching in at least d edges.
A subset B ⊆ E will be called a d-blocker of G if ν(G′) ≤ ν(G)− dwhere G′ is the partial graph G′ = (V , E \ B). So B is a

subset of edges such that its removal reduces by at least d the cardinality of a maximummatching.
In case where d = 1, a d-transversal or a d-blocker is called a transversal or a blocker, respectively. We remark that

in this case our definition of a transversal coincides with the definition of a transversal in the hypergraph of maximum
matchings of G.
We denote byβd(G) theminimumcardinality of a d-blocker inG and by τd(G) theminimumcardinality of a d-transversal

in G (β(G) and τ(G) in case of a blocker or a transversal).
Let v be a vertex in graphG. The bundle of v, denoted byω(v), is the set of edgeswhich are incident to v. So |ω(v)| = d(v)

is the degree of v. As we will see, bundles play an important role in finding d-transversals and d-blockers.
Let P0(G) = {vw ∈ E| ∀maximummatchingM, vw 6∈ M} and P1(G) = {vw ∈ E| ∀maximummatchingM, vw ∈ M}.

Let M be a matching. A vertex v ∈ V is called saturated by M if there exists an edge vw ∈ M . A vertex v ∈ V is called
strongly saturated if for all maximum matchings M , v is saturated by M . We denote by S(G) the set of strongly saturated
vertices of a graph G.
Notice that the sets P0(G), P1(G) and S(G) can be determined in polynomial time. In fact, if we want to test whether an

edge vw belongs to P0(G), we delete all edges having exactly one endpoint in {v,w} andwe determine amaximummatching
M in the remaining graph. Then vw belongs to P0(G) if and only if |M| = ν(G) − 1. In order to check whether an edge vw
is in P1(G), we simply delete this edge and find a maximummatchingM in the remaining graph. Then vw belongs to P1(G)
if and only if |M| = ν(G) − 1. By performing these tests for all edges in G, we determine the sets P0(G) and P1(G). Since a
maximummatching in a graph can be found in polynomial time (see [7]), P0(G) and P1(G) can be determined in polynomial
time. Concerning S(G), first notice that all vertices which are incident to an edge of P1(G) necessarily belong to S(G). For
each other vertex v, to check whether it is strongly saturated, we simply delete it in G and find a maximum matchingM in
the remaining graph. Then v must belong to S(G) if and only if |M| = ν(G)− 1.

Remark 2.1. If G is a graph such that |P1(G)| ≥ d, a minimum d-transversal is obtained by taking d edges in P1(G). This is not
necessarily true for a minimum d-blocker. In fact, consider the chain C = {x1x2, x2x3, x3x4}. We have P1(C) = {x1x2, x3x4},
but clearly P1(C) is a blocker but not a 2-blocker for C .

Wewill now give some basic properties concerning d-transversals and d-blockers in a graph G = (V , E). We shall always
assume that d ≤ ν(G).

Property 2.1. In any graph G and for any d ≥ 1, a d-blocker B is a d-transversal.
Proof. If the removal of B ⊆ E reduces themaximum cardinality of a matching by at least d, then everymaximummatching
will contain at least d edges of B: indeed if there were a maximummatchingM in Gwith |M ∩B| ≤ d−1, then thematching
M \ B in (V , E \ B) has cardinality |M \ B| > ν(G)− d, contradicting the assumption that B is a d-blocker. �

Property 2.2. In any graph G = (V , E) a set T is a transversal if and only if it is a blocker.
Proof. From Property 2.1, we just have to show that a transversal T is a blocker. By definition we haveM ∩ T 6= ∅ for every
maximummatchingM . It follows that after the removal of T , the matching number in G has decreased by at least one. �

Observe that in any graph G and for any d ≥ 1, a d-transversal T is a blocker. In fact, a d-transversal T is also a transversal
and hence from Property 2.2 we conclude that T is a blocker.

Remark 2.2. For d ≥ 2, there are d-transversals which are not d-blockers. Fig. 1 shows in a graph G = C6 (cycle on six
vertices) a set T ⊆ E (bold edges) which is a 2-transversal (|M ∩ T | ≥ 2 for every maximummatching). It is not a 2-blocker,
since ν(G) = 3 and in G′ = (V , E \ T )we have ν(G′) = 2 > ν(G)− 2 = 1.
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Fig. 1. A 2-transversal which is not a 2-blocker.

Fig. 2. Graph for which the union of 2 minimum transversals is not a minimum 2-transversal.

Fig. 3. A 3-regular bipartite graph with a minimum 4-transversal (bold edges), which is also a blocker but not a 2-blocker.

Property 2.3. Let G be a graph. For any independent set {v1, v2, . . . , vd} ⊆ S(G), the set T = ∪di=1 ω(vi) ⊆ E, is a d-transversal.

Proof. Since vi ∈ S(G) for all i = 1, . . . , d, any maximummatchingM in G satisfies |M ∩ ω(vi)| = 1 for all i = 1, . . . , d. As
{v1, v2, . . . , vd} is an independent set in Gwe thus have |M ∩ T | = d. �

Notice that this is not necessarily the case for a d-blocker B. In fact, as shown in Fig. 1, the two bundles do not form a
2-blocker.
Furthermore observe that if T1 is a d1-transversal of a graph G = (V , E) and if T2 is a d2-transversal of G disjoint

from T1, then T = T1 ∪ T2 is clearly a (d1 + d2)-transversal of G. Nevertheless if T1 and T2 are minimum, then T
is not necessarily minimum. This can easily be seen on the graph G = (V , E) with V = {v1, . . . , v7} and E =
{v1v2, v2v3, v3v4, v4v5, v3v6, v6v7} (see Fig. 2). In this case two minimum disjoint transversals are T1 = {v1v2, v2v3} and
T2 = {v3v4, v4v5}, but the unique minimum 2-transversal is T = {v1v2, v4v5, v6v7}.
Now consider the chain on vertices v1, v2, v3, v4. Two minimum disjoint blockers are given by B1 = {v1v2} and

B2 = {v3v4}, but B1 ∪ B2 is not a 2-blocker.

Property 2.4. If T is a minimum d-transversal in a graph G = (V , E) and vivj ∈ T , then there exists a maximum matching M
containing the edge vivj and such that |M ∩ T | = d.

Proof. Suppose that for all maximum matchings M of G containing vivj we have |M ∩ T | > d. Then T ′ = T \ {vivj} is a
d-transversal of G. This contradicts the fact that T is minimum. �

Remark 2.3. For any d ≥ 2, there exists a ∆-regular bipartite graph which admits a subset T ⊆ E which satisfies the
following:

1. T is a d-transversal;
2. T is a blocker but not a 2-blocker;
3. |T | = d∆ and T has minimum cardinality;
4. T is a matching.

Fig. 3 illustrates the construction for∆ = 3 and d = 4.

One should observe that d-transversals are not necessarily formed by sets of mutually adjacent edges like bundles. We may
indeed have d-transversals formed by sets of mutually non-adjacent edges like matchings.
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Fig. 4. A 3-gadget between u and v.

The following result will be useful for characterizing d-transversals and d-blockers in graphs having cut-edges. It can be
applied for instance in enumeration schemes. It may in particular be used for dealing with trees by a dynamic programming
procedure but this goes beyond the scope of this paper.

Theorem 2.1. Let G = (V , E) be a graph with P0(G) = P1(G) = ∅ and let vw be a cut-edge. Then exactly one of v and w is in
S(G).

Proof. First suppose that v,w 6∈ S(G). Then there are maximummatchingsM,M ′ such thatM (resp.M ′) does not saturate
v (resp. w). ClearlyM (resp.M ′) must saturate w (resp. v), otherwiseM (resp.M ′) would not be a maximum matching. Let
Ev (resp. Ew) be the edge set of the component of (V , E \ {vw}) containing v (resp.w). LetMv = M ∩ Ev andMw = M ∩ Ew;
let alsoM ′v = M

′
∩Ev andM ′w = M

′
∩Ew . We have |Mv|+ |Mw| = ν(G) = |M ′v|+ |M

′
w|. NowMv ∪M

′
w ∪{vw} is a matching;

so isM ′v ∪Mw . By summing their sizes we have |Mv| + |M
′
v| + |{vw}| + |M

′
v| + |Mw| > 2ν(G)which is impossible.

Suppose now that v,w ∈ S(G). Since P0(G) = P1(G) = ∅, there is a maximum matching M with vw 6∈ M and a
maximummatchingM ′ with vw ∈ M ′. Again letMv = M ∩ Ev ,Mw = M ∩ Ew ,M ′v = M

′
∩ Ev andM ′w = M

′
∩ Ew . We have

|Mv| + |Mw| = ν(G) = |M ′v| + |M
′
w| + 1; w.l.o.g. we may assume |M

′
w| < |Mw|, so |M

′
v| ≥ |Mv|. But then M

′
v ∪ Mw is a

matching with |M ′v| + |Mw| ≥ |Mv| + |Mw| not saturating v, which is a contradiction. �

Since in a tree each edge is a cut-edge, we deduce the following corollary.

Corollary 2.2. Let G = (V , E) be a tree with P0(G) = P1(G) = ∅. Then for each edge vw exactly one of v andw is in S(G).

3. Complexity results

We shall now discuss the complexity of the two basic existence problems for d-blockers and d-transversals.
BLOCK(G, d, k)
Instance: An undirected graph G = (V , E) and two positive integers 0 ≤ d ≤ ν(G), 0 ≤ k ≤ |E|.
Question: Does there exist a set B ⊆ E with |B| ≤ k such that ν(G′) ≤ ν(G)− dwhere G′ = (V , E \ B)?
TRANS(G, d, k)
Instance: An undirected graph G = (V , E) and two positive integers 0 ≤ d ≤ ν(G), 0 ≤ k ≤ |E|.
Question: Does there exist a set T ⊆ E with |T | ≤ k such that for each maximummatchingM in G, |M ∩ T | ≥ d?
We could also consider the problem of finding a d-blocker B (resp. d-transversal T ) of size at most k in a graph G = (V , E)

with the additional constraint that for some given subset of edges U ⊆ E, we impose B ∩ U = ∅ (resp. T ∩ U = ∅). This
problem can be polynomially reduced to BLOCK(G′, d, k) (resp. TRANS(G′, d, k)) where G′ = (V , E ′) is the graph obtained
from G by adding for each edge e ∈ U , k edges parallel to e. This can be seen by the following observation. Let U ′ be the
set containing all edges of U and all added edges, i.e., U ′ = U ∪ (E ′ \ E). Since each edge e ∈ U has k parallel edges
e1, e2, . . . , ek ∈ E ′, there exists for any d-blocker B (resp. d-transversal T ) in G′ with |B| ≤ k (resp. |T | ≤ k) at least one edge
among e, e1, e2, . . . ek which is not contained in B (resp. T ). Thus B \ U ′ (resp. T \ U ′) is also a d-blocker (resp. d-transversal)
with cardinality at most k. Therefore, any d-blocker (resp. d-transversal) in G′ with cardinality at most k can be transformed
into a d-blocker (resp. d-transversal) in Gwith cardinality at most k and not using any edge of U . Conversely, any d-blocker
(resp. d-transversal) in G not containing edges of U is also a d-blocker (resp. d-transversal) in G′.
However, the auxiliary graph G′ has parallel edges. Since wewant to show complexity results which even hold for simple

graphs, we will describe another transformation of the graph G. Instead of introducing parallel edges for each edge uv ∈ U ,
we replace each edge of U by the following construction which we call a k-gadget (between u and v): we add a complete
bipartite graphKk+1,k+1 = (X, Y ,W ) andwe link u to all vertices in X aswell as v to all vertices in Y (see Fig. 4). The vertices u
and v are called the endpoints of the k-gadget. We denote the graph obtained in this way by G′′. The problem BLOCK(G, d, k)
(resp. TRANS(G, d, k)) is equivalent to BLOCK(G′′, d, k) (resp. TRANS(G′′, d, k)) by the following observation. Let U ′′ be the
set of edges contained in all k-gadgets used in G′′. Notice that a k-gadget contains k+ 1 disjoint perfect matchings and k+ 1
disjoint matchings of cardinality k+1 that do not saturate the endpoints. Therefore, for any d-blocker B (resp. d-transversal
T ) in G′′ with |B| ≤ k (resp. |T | ≤ k), every k-gadget contains a maximum matching using no edges of B (resp. T ) as well
as a matching with cardinality k + 1 not saturating the endpoints and not containing any edge in B (resp. T ). Thus, B \ U ′′
(resp. T \ U ′′) is also a d-blocker (resp. d-transversal) with cardinality at most k. We conclude that any d-blocker (resp. d-
transversal) in G′′ with cardinality at most k can be transformed into a d-blocker (resp. d-transversal) in G with cardinality
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at most k and not using any edge of U . Conversely, any d-blocker (resp. d-transversal) in G not containing edges of U is also
a d-blocker (resp. d-transversal) in G′′.
The following proposition is an intermediate result used for proving the main complexity results stated afterwards.

Proposition 3.1. Let k ≥ 4 be an integer and let G = (X, Y , E) be a simple bipartite graph such that
1. |X | > k;
2. |Y | =

(
k
2

)
;

3. d(y) = 2, ∀y ∈ Y and d(x) ≥ 1, ∀x ∈ X;
4. G contains no C4.

Then ν(G) ≥ k+ 1.

Proof. This is equivalent to the following statement: In a simple graph Ĝ = (X, E)without isolated vertices, with |X | = q ≥
k+1 and k(k−1)/2 edges, one can find a partial graph H where each connected component has at most one cycle and with
|E(H)| ≥ k+1. Indeed starting from the vertex set X of G, we associate with every y ∈ Y with neighbors x′(y), x′′(y) an edge
x′(y)x′′(y). SinceG contains neither C4’s normultiple edges, the graph Ĝ obtained in thisway is a simple graph. Clearly there is
a one-to-one correspondence between thematchingsM inG and the partial graphsH of Ĝwhere each connected component
has at most one cycle: for each edge xiyj of M in G, we orient the edge of Ĝ associated to vertex yj towards xi. A matching
M in G corresponds to a partial oriented graph Ĥ in Ĝ such that there is at most one arc entering into each vertex. Such an
orientation exists if and only if every connected component of Ĥ has at most one cycle. Let n0 (resp. n1) be the number of
vertices of Ĝ in connected components without cycles (resp. with cycles). Since each connected component on n vertices
has n−1 (resp. n) edges if it has no (resp. one) cycle, we only have to show that Ĝ has at most q− (k+1) components which
are trees. Indeed in such a Ĝwe can then choose n1 edges in connected components with cycles and n0− q+ k+ 1 edges in
the connected components which are trees. This gives us a partial graph Ĥ of Ĝwith at least n1+ n0− (q− (k+ 1)) = k+ 1
edges. Then n0 + n1 = |X | = q; if n1 ≥ k+ 1 we are done: we can get a partial graph Ĥ with |E(Ĥ)| ≥ k+ 1. If n1 = k, we
are also done since n0 ≥ 2 and Ĝ has no isolated vertex. So we can assume n1 < k. Let by contradiction Ĝ have more than
q− (k+ 1) connected components which are trees. Then

|E (̂G)| ≤
n1(n1 − 1)

2
+ n0 − (q− k) =

n1(n1 − 1)
2

+ k− n1

=
n21
2
−
3
2
n1 + k <

k2

2
−
3
2
k+ k =

k(k− 1)
2

,

a contradiction. �

Theorem 3.2. BLOCK(G, d, k) isN P -complete when G is bipartite.

Proof. The problem is clearly in N P . To prove the N P -completeness, we use a transformation from CLIQUE which is a
well-knownN P -complete problem (see [9]). Let G′ = (V ′, E ′) be an undirected simple graph and let r ≤ |V ′| be a positive
integer. We construct a bipartite graph G = (V , E) as follows: with each vertex v′i ∈ V

′, we associate a vertex vi ∈ V and
with each edge e′ij = v

′

iv
′

j ∈ E
′ we associate a vertex vij ∈ V ; for each vertex vij ∈ V we add a new vertex v̄ij as well as an

edge vijv̄ij; finally for each edge v′iv
′

j ∈ E
′, we add an edge vivij and an edge vjvij.

Notice that the cardinality of a maximum matching M in G is |M| = m, where m is the number of edges in G′. Such a
matchingmay be obtained by taking all the edges vijv̄ij. Wewill now prove the following statementwhich finishes the proof:
G′ contains a clique of size r if and only if there exists a ( r(r−3)2 )-blocker B in Gwith |B| = r(r−1)

2 and not using any edges of
U , where U = ∪v′iv′j∈E′{vivij, vjvij}. Notice that the auxiliary graph obtained by replacing the edges of U by k-gadgets remains
bipartite.
Let us suppose thatG′ contains a clique C of size r and let E ′C ⊆ E

′ be the edges of this clique. By taking B = {vijv̄ij|e′ij ∈ E
′

C },
we obtain a ( r(r−3)2 )-blocker. In fact a maximummatching in the graph G∗ = (V , E \ B) is obtained by taking the remaining
edges vijv̄ij (there are exactly m − r(r−1)

2 such edges) and the edges of a maximum matching in the subgraph induced by
vertices vij such that e′ij ∈ E

′

C and the vertices vi such that v
′

i ∈ C (the cardinality of such a matching is at most r). Thus
ν(G∗) ≤ m− r(r−1)

2 + r = m− r(r−3)
2 .

Suppose now that there is a ( r(r−3)2 )-blocker B in Gwith |B| = r(r−1)
2 and not using any edges of U but there is no clique

of size r in G′. This implies that the subgraph induced by vertices vij and the vertices vi, vj such that vijv̄ij ∈ B is a simple
bipartite graph G̃ = (X, Y , Ẽ), where Y = {vij ∈ V | vijv̄ij ∈ B} and X is the subset of the vertices {vi | v′i ∈ V

′
} that are

neighbors of Y in G. G̃ has the following properties:

(i) |X | > r (because there is no clique of size r in G′);
(ii) |Y | = r(r−1)

2 =
( r
2

)
;

(iii) d(vij) = 2, ∀vij ∈ Y and d(vi) ≥ 1, ∀vi ∈ X;
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(iv) G̃ contains no C4 (since there are no multiple edges in G′);
(v) ν(G̃) ≤ r (because all vertices in Y are saturated by any maximum matching in G and since B is a ( r(r−3)2 )-blocker, the
cardinality of a maximummatching in G̃ is at most |Y | − r(r−3)

2 = r).

Clearly (v) contradicts Proposition 3.1. Thus there must be a clique of size r in G′ defined by the vertices vi, vj such that
vijv̄ij ∈ B and hence |X | = r . �

Remark 3.1. The proofs of Proposition 3.1 and Theorem 3.2 suggest to consider an alternative formulation. We may define
for a graph G the value ρ(G)which is themaximum number of edges in a unicyclic partial graph of G, where a graph is called
unicyclic if every connected component has at most one cycle. By the above discussions we have for any graph G on

(
k
2

)
edges that ρ(G) ≤ k if and only if G is a k-clique. It follows that determining whether for an arbitrary graph G, there is a
subgraph H of G on

(
k
2

)
edges with ρ(H) ≤ k is an N P -complete problem since it is equivalent to deciding whether G

contains a clique of size k.

Theorem 3.3. BLOCK(G, 1, k) isN P -complete when G is bipartite.

Proof. The claim will be proven by reducing BLOCK(G′, d, k) to BLOCK(G, 1, k). Let G′ = (X ′, Y ′, E ′) be a bipartite graph,
d ∈ {1, . . . , ν(G′)} and k ∈ {0, 1, . . . , |E ′|}. The graph G = (X, Y , E) is defined as follows. X = X ′ and Y = Y ′ ∪ Y ′a is the
set Y ′ with |X ′| − ν(G′) + d − 1 additional vertices Y ′a = {y

′

1, . . . , y
′

|X ′|−ν(G′)+d−1}. The set E = E
′
∪ U consists of the edges

in E ′ and for every pair of vertices x ∈ X and y′ ∈ Y ′a we add an edge [x, y]. These added edges are denoted by U . Note
that we have ν(G) = |X ′| because of the following. LetM be a maximummatching in G′. In G the matchingM can easily be
completed to a matching with cardinality |X ′| by edges in U since |Y ′a| ≥ |X

′
| − ν(G′). In the following we prove that there

is a d-blocker in G′ with cardinality at most k if and only if there is a blocker in G with cardinality at most k and not using
any edges of U . We begin by assuming that there is a d-blocker in G′ with cardinality at most k and not using any edge of
U . We will show that B is also a blocker for G. By contradiction assume that there is a matchingM in G \ B with cardinality
|X ′|. This implies that the setM \ U is a matching in G′ \ Bwith cardinality at least |X ′| − |Y ′a| = ν(G

′)− d+ 1 because any
matching in G contains at most |Y ′a| edges of U as U consists of |Y

′
a| bundles. This contradicts the fact that B is a d-blocker

in G′.
Conversely suppose that there is no d-blocker in G′ with cardinality at most k. Let B ⊆ E ′ with |B| ≤ k. Because there is

no d-blocker in G′ with cardinality at most k, there exists a matchingM ⊆ E ′ \Bwith cardinality ν(G′)−d+1. Thematching
M can be completed in G by edges in U to a matching M ′ with cardinality |X ′| since |Y ′a| = |X

′
| − ν(G′) + d − 1, implying

that B is not a blocker in G. As B was chosen arbitrarily this implies that there does not exist a blocker in G with cardinality
k and not using any edge of U . �

From Property 2.2 we deduce the following result.

Corollary 3.4. TRANS(G, d = 1, k) isN P -complete when G is bipartite.

Theorem 3.5. For every fixed d ∈ {1, 2, . . .}, TRANS(G, d, k) isN P -complete when G is bipartite.

Proof. First let us show that TRANS(G, d, k) is inN P . Given a set T of k edges, we assign a weightw1 = 1 to these edges as
well as a weight w2 = 1 + 1

m to all the other edges in G, where m is the number of edges in G. If any maximum matching
M in G has weightW (M) ≤ ν(G)(1 + 1

m ) −
d
m , then T is necessarily a d-transversal since M uses d edges of T . Maximum

matchings of maximum weight can be found in polynomial time, thus TRANS(G, d, k) is inN P .
We will reduce TRANS(G′, 1, k′) to TRANS(G, d, k). Let d be fixed in {1, 2, . . .}, G′ = (X ′, Y ′, E ′) be a bipartite graph

and k′ ∈ {0, 1, . . . , |E ′|}. Let G = (X, Y , E) be a bipartite graph defined as follows. X consists of the vertices in X ′ plus
d − 1 additional vertices denoted by {x1, . . . , xd−1}, Y consists of the vertices in Y ′ and d − 1 additional vertices denoted
by {y1, . . . , yd−1} and E = E ′ ∪ {xiyi | i ∈ {1, . . . , d − 1}}. We will finally show that TRANS(G′, 1, k′) is true exactly when
TRANS(G, d, k′ + d − 1) is true. Suppose that T is a transversal in G′ with |T | = k′. Then T ∪ {xiyi|i ∈ {1, . . . , d − 1}} is a
d-transversal in Gwith cardinality k′+d−1, showing that TRANS(G, d, k) evaluates to true with k = k′+d−1. Conversely,
suppose that T is a d-transversal in G with cardinality k. Without loss of generality we can assume that E \ E ′ ⊆ T as
E \ E ′ ⊆ P1(G). We therefore have that the set T ′ = T ∩ E ′ is a transversal in G′ with cardinality k′ = k− d+ 1 showing that
TRANS(G′, 1, k′) evaluates to true. �

The proof of Theorem 3.5 can easily be adapted to the case of blockers, yielding the following theorem.

Theorem 3.6. For every fixed d ∈ {1, 2, . . .}, BLOCK(G, d, k) isN P -complete when G is bipartite.

4. Some special cases

We shall now examine some simple special cases of graphs for which minimum d-blockers and d-transversals can be
found in polynomial time. Actually, we even give explicit formulae for the size of a minimum d-transversal and d-blocker.
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The proofs of the following two results about chains and cycles are left to the reader.

Proposition 4.1. Let G = (V , E) be a chain on vertices v1, v2, . . . , vn (i.e., E = {vivi+1|i = 1, . . . , n − 1}) and d ≥ 1 an
integer. Then

1. βd(G) = 2d− 1 and τd(G) = d if n is even,
2. βd(G) = τd(G) = 2d if n is odd.

Proposition 4.2. Let G = (V , E) be a cycle on vertices v1, v2, . . . , vn (i.e., E = {vivi+1|i = 1, . . . , n − 1} ∪ {[vn, v1]}) and
d ≥ 1 an integer. Then

1. βd(G) = τd(G) = 2d if n is even,
2. βd(G) = τd(G) = 2d+ 1 if n is odd.

Remark 4.1. Notice that in the case of an even chain, i.e., with an even number of edges, aminimum d-transversal is not nec-
essarily composed of d bundles. In fact, aminimum2-transversal in the chain {v1v2, v2v3, v3v4, v4v5, v5v6, v6v7, v7v8, v8v9}
may be obtained by taking edges {v1v2, v3v4, v6v7, v8v9}.

Now, we are interested in complete graphs and regular bipartite graphs.

Proposition 4.3. Let G = Kn,n be a complete bipartite graph. Then T ⊆ E is a d-blocker if and only if T is a d-transversal.

Proof. From Property 2.1, we only have to show that if T is a d-transversal, then it is also a d-blocker. So suppose that T is
a d-transversal of G but it is not a d-blocker of G. This means that in the graph obtained from G by removing T one can find
a maximummatchingM of size at least ν(G)− d+ 1 = n− d+ 1. Since G is a complete bipartite graph,M could easily be
completed into a perfect matchingM ′ in G by adding at most d− 1 edges from T . Thus |M ′ ∩ T | ≤ d− 1 which means that
T is not a d-transversal which is a contradiction. �

Using similar arguments we obtain the following proposition.

Proposition 4.4. Let G = Kn be a complete graph. Then T ⊆ E is a d-blocker if and only if T is a d-transversal.

Proposition 4.5. Let G = (X, Y , E) be a ∆-regular bipartite graph. Then, if |X | ≥ d, any set B =
⋃d
i=1 ω(xi) ⊆ E, where

x1, . . . , xd ∈ X, is a minimum d-blocker.

Proof. Clearly, after having removed B the cardinality of a maximum matching is at most n − d since there are exactly d
isolated vertices in X . Furthermore as G contains ∆ disjoint maximum matchings, we have βd(G) ≥ d∆, as any d-blocker
must contain at least d edges in each maximummatching. �

From Property 2.1, we deduce that T =
⋃d
i=1 ω(xi) is also a d-transversal for a∆-regular bipartite graph G = (X, Y , E).

As a direct consequence of Property 2.3 we get the following result.

Proposition 4.6. Let G = (X, Y , E) be a∆-regular bipartite graph. The minimum cardinality of a d-transversal T is d∆ (for any
d with 1 ≤ d ≤ n). Such a T may be constructed by taking:

T = ω(z1) ∪ ω(z2) ∪ · · · ∪ ω(zd)

where {z1, . . . , zd} ⊆ X ∪ Y is an independent set in G.

Proof. By Property 2.3, the set T as proposed is a d-transversal (with cardinality d∆). Furthermore as G contains∆ disjoint
maximummatchings, the cardinality of any d-transversal is at least d∆. �

Theorem 4.7. Let d, n ≥ 1 be two integers with 2d ≤ n and let r = b n2c − d. For the graph Kn, let B be a d-blocker of minimum
cardinality (B is also a minimum d-transversal of Kn by Proposition 4.4).

1. If d ≤ b n2c −
2
5n+

3
5 , the cardinality of B is

( n
2

)
−

(
2r+1
2

)
. B may be constructed by taking n− 2r − 1 bundles.

2. If d ≥ b n2c −
2
5n+

3
5 , the cardinality of B is

( n−r
2

)
. B may be constructed by taking a clique on n− r vertices.

Proof. Notice that searching for a minimum d-blocker B of Kn is equivalent to searching for a maximum partial graph
H = (V , EH) of Kn = (V , E) (i.e. a partial graph with n vertices and a maximum number of edges) such that ν(H) = r .
In fact, the edges not belonging to H will belong to B. Suppose that H is such a maximum partial graph corresponding to an
r < b n2c, i.e., d ≥ 1. In the following we will prove various properties that H must satisfy to obtain eventually a complete
description of the structure of H .
Claim: ∀v ∈ S(H), v is connected to all other vertices of H .
Suppose by contradiction that v ∈ S(H) and u ∈ V with vu 6∈ EH . Let H ′ be the graph obtained by adding vu to H . By

edge-maximality of H we must have ν(H ′) = r + 1. Let M ′ be a matching in H ′ with |M ′| = r + 1. We have vu ∈ M ′ as
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otherwise we would have ν(H) = r + 1. ThereforeM ′ \ {vu} is a matching in H with cardinality r not saturating the vertex
v. This violates v ∈ S(H).
Claim: ∀v ∈ V \ S(H), v is a simplicial vertex.
Let v, u, w ∈ V , with v 6∈ S(H) and u, w are two distinct neighbors of v inH . Furthermore letM be amaximummatching

in H which does not saturate v. Suppose by contradiction that uw 6∈ EH . By edge-maximality of H this implies that the
graph H ′ obtained by adding uw to H contains an augmenting chain with respect to the matchingM . This augmenting chain
consists of the edge uw and two alternating chains Pu and Pw in H where Pu has on the one end a non-saturated vertex and
on the other end u and Pw has on the one end a non-saturated vertex and at the other endw. At most one of these two chains
contains v. Suppose without loss of generality that the chain Pu does not go through v. This implies that if we append to the
end u of the path Pu the edge uv, we obtain an augmenting chain in H contradicting the maximality of matchingM .
The above claims imply that V can be partitioned into sets C0, C1, . . . , Ck with C0 = S(H), such that the subgraph of

H induced by Ci is a clique ∀i = 0, 1, . . . , k and there is no edge in EH connecting a vertex in Ci with a vertex in Cj for
1 ≤ i < j ≤ k.
Claim: All sets C1, . . . , Ck contain an odd number of vertices.
Suppose by contradiction that C1 has an even number of vertices. Let v ∈ C1. As v 6∈ S(H), there exists a maximum

matchingM in H which does not saturate v. All other vertices in C1 must be saturated as otherwise the matchingM would
not be maximum. As C1 \ {v} contains an odd number of vertices, at least one vertex u ∈ C1 \ {v}must be saturated by an
edge uw ∈ M with w ∈ S(H). By replacing uw by uv in the matching M we get another maximum matching in H which
does not saturatew. This contradictsw ∈ S(H).
Claim: For any maximummatchingM of H , no edge ofM has both endpoints in S(H).
LetM be a maximummatching in H and suppose by contradiction that there exists an edge vu ∈ M with v, u ∈ S(H). As

d ≥ 1, we have that at least two vertices in H are not saturated byM . Let w ∈ V be such a non-saturated vertex. Replacing
the edge vu by uw in the matching M , gives another maximum matching in H which does not saturate v and therefore
contradicts v ∈ S(H).
Claim: LetM be a maximummatching in H . For any set C ∈ {C1, . . . , Ck} at most one edge inM goes from S(H) to C .
Suppose by contradiction that there are two distinct edges v1u1, v2u2 ∈ M with v1, v2 ∈ S(H) and u1, u2 ∈ C . Let

w1, w2 ∈ V be two vertices which are not saturated byM . This implies that (w1v1, v1u1, u1u2, u2v2, v2w2) is an augmenting
chain in H with respect toM , thus contradicting the maximality ofM .
Claim: The number of vertices in H not saturated by a maximummatching is k− |S(H)|.
By the above observations, a maximum matching M in H consists of at most |S(H)| edges going from S(H) to C1 ∪ C2 ∪

· · ·∪Ck and of edges linking two vertices of a same set Ci for i ∈ {1, 2, . . . , k}. This implies that for every set C ∈ {C1, . . . , Ck},
M contains |C |−12 edges in C . Therefore every set Ci with i ∈ {1, 2, . . . , k} contains exactly one vertex which is not already
saturated by the edges of M having both endpoints in Ci. Furthermore |S(H)| of these k vertices will be saturated by edges
ofM incident to S(H). The number of non-saturated vertices in H is therefore equal to k− |S(H)|.
Claim: There is at most one set in {C1, . . . , Ck} containing more than one vertex.
Suppose by contradiction that |C1|, |C2| > 1. Let H ′ be the graph obtained from H by replacing the two sets C1, C2 by a

set of size 1 and another set of size |C1| + |C2| − 1. By the previous claim, we have ν(H) = ν(H ′). Furthermore H ′ contains
more edges than H . This contradicts the edge-maximality of H .
Let C be the only set in {C1, . . . , Ck}whichmay containmore than one vertex. By the above observations, the graphH can

be characterized by two parameters, p, q ∈ {0, 1, . . .}where p = |S(H)| and 2q+ 1 = |C |. The number of disjoint cliques in
H \S(H) can be expressed by k = n−p−2q. Therefore the number of vertices not saturated by amaximummatching inH is
equal to k−|S(H)| = n−2p−2qwhichmust be equal to n−2r as the complement of graphH is a minimum d-blocker. This
implies r = p+ q and allows us to describe H by one parameter p. We denote by H(p) = (VH(p), EH(p))with p ∈ {0, . . . , r}
this parametrized version of H . More precisely, H(p) is the graph obtained by taking one clique on 2q + 1 vertices where
q = r − p, adding n− p− (2q+ 1) isolated vertices and finally adding a clique on p vertices (that corresponds to S(H(p))
which is connected to all other vertices. Note that by construction of H(p) the cardinality of a maximum matching in H(p)
is independent of the parameter p. We are looking for the value of p, such that H(p) has a maximum number of edges. We
have |EH(p)| = p(n−1)−

( p
2

)
+

(
2q+1
2

)
=
3
2p
2
+ (n− 3

2 −4r)p+2r
2
+ r which is a strictly convex function of p. Therefore

its maximum is attained at either p = 0 or p = r . Comparing these two cases we get that |EH(0)| ≥ |EH(r)| exactly when
d ≤ b n2c −

2
5n+

3
5 and |EH(0)| ≤ |EH(r)| exactly when d ≥ b

n
2c −

2
5n+

3
5 , thus finishing the proof. �

Remark 4.2. The constructions suggested above are the only ones giving d-blockers of minimum cardinality, implying that
only for the case d = b n2c −

2
5n+

3
5 , Kn contains two (and exactly two) non-isomorphic minimum d-blockers.

5. Conclusion

We have considered in this paper d-transversals and d-blockers in some special classes of graphs. The complexity of
some basic problems related to blockers and transversals has been established. We have studied in particular the situation
of (regular) bipartite graphs and of cliques. Additional cases where transversals and blockers can be found in polynomial
time should be studied.
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Fig. 5. The set E \ T where T is a 7-transversal of G3,6 .

For instance the case of trees and of grid graphs should be examined. We recall that a grid graph Gm,n hasm× n vertices
xij with integral coordinates (1 ≤ i ≤ m, 1 ≤ j ≤ n) and (horizontal and vertical) edges linking vertices at distance 1.
It is interesting to observe that in grid graphs we may have minimum d-transversals which are not constructed by

taking the bundles of vertices forming a stable set; moreover we may have for some values of d no minimum d-transversal
consisting of bundleswhose central vertices forma stable set. This is in particular the case inG3,6 forminimum7-transversals
(see Fig. 5).
A maximummatching has mn2 = 9 edges. A set T of edges is a 7-transversal in G3,6 if and only if no maximummatching

has more than 9− 7 = 2 edges in E \ T where E is the edge set of G3,6. It is clearly the case for the set E \ T shown in Fig. 5.
Here we have |E| = 2mn− (m+ n) = 27 and |T | = 27− 10 = 17. No collection of 7 bundles built on a stable set can have
less than 18 edges as can be verified.
We shall study the case of grid graphs and of trees in a forthcoming paper.
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