
Singapore Management University
Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open Access) Dissertations and Theses

5-2018

Automatic vulnerability detection and repair
Siqi MA
Singapore Management University, siqi.ma.2013@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

Part of the Databases and Information Systems Commons

This Master Thesis is brought to you for free and open access by the Dissertations and Theses at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Dissertations and Theses Collection (Open Access) by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
MA, Siqi. Automatic vulnerability detection and repair. (2018). 1-72. Dissertations and Theses Collection (Open Access).
Available at: https://ink.library.smu.edu.sg/etd_coll/185

https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Automatic Vulnerability Detection and Repair

Siqi MA

Singapore Management University
2018



Automatic Vulnerability Detection and Repair

by
Siqi MA

Submitted to School of Information Systems in partial fulfillment of requirements
for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

Robert Huijie DENG (Supervisor / Chair)
Professor of Information Systems
Singapore Management University

David LO (Co-supervisor)
Associate Professor of Information Systems
Singapore Management University

Yingjiu LI

Associate Professor of Information Systems
Singapore Management University

Yongdong WU

Senior Scientist
Institute for Infocomm Research(I2R), A*Star

Singapore Management University
2018

Copyright (2018) Siqi Ma



Automatic Vulnerability Detection and Repair
Siqi MA

Abstract

Vulnerability becomes a major threat to the security of many systems, including

computer systems (e.g., Windows and Linux) and mobile systems (e.g., Android

and iOS). Attackers can steal private information and perform harmful actions by

exploiting unpatched vulnerabilities. Vulnerabilities often remain undetected for a

long time as they may not affect the typical functionalities of systems. Thus, it is

important to detect and repair a vulnerability in time. However, it is often difficult

for a developer to detect and repair a vulnerability correctly and timely if he/she is

not a security expert. Fortunately, automatic repair approaches significantly assist

developers to deal with different types of vulnerabilities. There are lots of work

to detect different vulnerabilities, and only few vulnerability repair approaches are

proposed to repair certain types of vulnerabilities.

In this dissertation, we first target on one type of vulnerabilities in Android

applications, which is cryptographic misuse defects. Cryptography is increasingly

being used in mobile applications to provide various security services; from user

authentication, data privacy, to secure communications. We propose CDRep, which

is a novel tool for automatically repairing cryptographic misuse defects. We classify

such defects into seven types of misuses, and manually assemble the corresponding

fix patterns based on the best practices in cryptographic implementations. CDRep

first detects and locates the cryptographic defects. It then automatically repairs the

vulnerable application based on the fix patterns that we generated. Such scheme also

indicates an inherent limitation that it is tedious to summarize fix pattern manually.

Following the first work, we further explore the feasibility of designing practi-

cal scheme to learn fix patterns automatically, which is VuRLE. VuRLE first learns

transformative edits and their contexts (i.e., code characterizing edit locations) from



examples of vulnerable codes and their corresponding repaired codes. It then clus-

ters similar transformative edits. Finally, VuRLE extracts edit patterns and context

patterns to create several repair templates for each cluster. VuRLE uses the context

patterns to detect vulnerabilities, and customizes the corresponding edit patterns to

repair them. VuRLE solves the limitations in our first work. It not only generates

templates automatically, but also targets on multiple types of vulnerabilities.

Two major contributions are achieved in this dissertation: 1) repair the vulnera-

bilities by employing the present automatic vulnerability repair schemes; 2) gener-

ating repair patterns of vulnerabilities automatically. The proposed repair method-

ologies are applicable to not only one type of vulnerability, but rather various kinds

of vulnerabilities. The proposed schemes are implemented as a prototype, which

can be used to automatically repair different vulnerabilities.

However, these proposed approaches focus on repairing the vulnerabilities that

exists locally (i.e., at user side). Some other vulnerabilities are caused during the

data transmission, such as authentication between client and server. This type of

vulnerability can only be detected while analyzing both client code and server code.

It is more challenging because some vulnerabilities can only be detected after run-

ning the program for several times.



Table of Contents

1 Introduction 1

1.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Cryptographic Misuse Repair . . . . . . . . . . . . . . . . 3

1.2.2 Multiple Vulnerabilities Repair . . . . . . . . . . . . . . . . 4

1.2.3 Authentication Misuse Flaw . . . . . . . . . . . . . . . . . 5

1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 6

2.1 Vulnerability Detection for non-Mobile Applications . . . . . . . . 6

2.1.1 Buffer Overflow Vulnerability . . . . . . . . . . . . . . . . 6

2.1.2 SQL Injection & Cross-Site Scripting . . . . . . . . . . . . 7

2.2 Vulnerability Detection for Mobile Applications . . . . . . . . . . . 8

2.2.1 Component Hijacking Vulnerability . . . . . . . . . . . . . 9

2.2.2 Cryptographic Misuses . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Authentication Protocol Vulnerability . . . . . . . . . . . . 10

2.3 Automatic Bug Repair . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Normal Bug Repair . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Vulnerability Repair . . . . . . . . . . . . . . . . . . . . . 11

2.4 Zero-day Vulnerability Detection and Repair . . . . . . . . . . . . . 13

3 CDRep: Automatic Repair of Cryptographic Misuses in Android Ap-

i



plications 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Applications of CDRep . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Rules of Cryptographic Misuses . . . . . . . . . . . . . . . . . . . 18

3.3 Overview of CDRep . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Cryptographic Misuses: Automatic Repair . . . . . . . . . . . . . . 24

3.4.1 Patch Templates . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.2 Patch Generation . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.2 RQ1: Success Rate . . . . . . . . . . . . . . . . . . . . . . 31

3.5.3 RQ2 and RQ3: Runtime and Size . . . . . . . . . . . . . . 32

3.5.4 RQ4: Unsuccessful Cases . . . . . . . . . . . . . . . . . . 33

3.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 34

4 VuRLE: Automatic Vulnerability Detection and Repair by Learning

from Examples 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Overview of VuRLE . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Learning Phase: Learning from Repair Examples . . . . . . . . . . 41

4.3.1 Edit Block Extraction . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Edit Group Generation . . . . . . . . . . . . . . . . . . . . 42

4.3.3 Templates Generation . . . . . . . . . . . . . . . . . . . . 44

4.4 Repair Phase: Repairing Vulnerable Applications . . . . . . . . . . 45

4.4.1 Edit Group Selection . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Template Selection . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ii



4.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.2 RQ1: Vulnerability Detection . . . . . . . . . . . . . . . . 49

4.5.3 RQ2: Vulnerability Repair . . . . . . . . . . . . . . . . . . 50

4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 51

5 Future Research Direction: An Empirical Study of Authentication Mis-

uses in Android Applications 56

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Definition of Authentication Protocols . . . . . . . . . . . . . . . . 58

5.3 Common Rules of Password Authentication in Android . . . . . . . 60

6 Dissertation Summary and Future Work 63

6.1 Summary of Contribution . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.1 Future Work: Unknown Vulnerabilities Detection and Repair 64

iii



List of Figures

3.1 Overview of CDRep . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Patch template for misuse 2: this template fix the misuse that use a

constant IV for CBC encryption . . . . . . . . . . . . . . . . . . . 25

3.3 Patch template for misuse 5: this template fix the misuse that sets

the iterations < 1,000 . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Fix procedure for misuse 2: it uses a constant IV for CBC encryp-

tion. A) shows the vulnerable code with misuse 2, and the template

of misuse 2. B) describes the mapping procedure between the ac-

tual variable/register extracted from the vulnerable code and place-

holders given in the template. C) is the fixed code by replacing the

placeholders by the actual registers that are mapped . . . . . . . . . 29

4.1 Workflow of VuRLE: 1) VuRLE generates an edit block by extract-

ing a sequence of edit operations and its context. 2) VuRLE pairs

the edit blocks and clusters them into edit groups 3) VuRLE gener-

ates repair templates, and each contains an edit pattern and a context

pattern. 4) VuRLE selects the best matching edit group to detect for

vulnerabilities 5) VuRLE selects and applies the most appropriate

repair template within the selected group. . . . . . . . . . . . . . . 39

4.2 Vulnerable and Repaired Code Segments and Their ASTs . . . . . . 53

4.3 Edit Block Clustering: CCs to Edit Block Groups . . . . . . . . . . 54

4.4 Context Pattern Generation . . . . . . . . . . . . . . . . . . . . . . 54

iv



4.5 A Vulnerability Repaired by LASE and VuRLE . . . . . . . . . . . 55

5.1 Login Authentication Protocol with Shared Secret Key . . . . . . . 59

5.2 Login Authentication Protocol with TimeStamp . . . . . . . . . . . 60

5.3 Login Authentication Protocol with Public Key . . . . . . . . . . . 61

v



List of Tables

3.1 Patch overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 CDRep: Detection result . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Success Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Average Patch Overhead of different misuse type . . . . . . . . . . 33

4.1 Types of Vulnerabilities in Our Dataset . . . . . . . . . . . . . . . . 48

4.2 Detection Result: VuRLE vs LASE . . . . . . . . . . . . . . . . . 49

4.3 Vulnerability Repair: VuRLE & LASE . . . . . . . . . . . . . . . . 50

vi



Acknowledgements

I would like to thank Professor Robert H. DENG, Associate Professor David

LO for their guidance in my research, helping me develop strong research skills.

Also, they encourage me a lot to be strong and better. I am also very grateful to the

other members of my thesis committee, Associate Professor Yingjiu LI and Doctor

Yongdong WU, for their guidance and advice in completing my dissertation. Their

comments help me clarify my thesis, refine my approach and make me become a

more rigorous researcher.

Also, I would like to thank all my teammates, Ke XU, Xiaoxiao TANG, and Siqi

ZHAO, for their friendship. In this 5 years research life, their companion makes this

period have much more fun. Furthermore, I would like to thank all my co-authors

and collaborators: Cong SUN, Teng LI, Junzuo Lai, Baodong QIN and Shaowei

WANG, for their indispensable collaboration help.

Finally, I would like to thank my parents, who are always supporting me and

encouraging me with all their best wishes. Thanks, mummy & daddy.

vii



List of Publications

Conference Papers
Siqi MA, Ferdian Thung, David LO, Cong SUN, Robert H. DENG. VuRLE: Automatic

Vulnerability Detection and Repair by Learning from Examples. In Proceedings of
the 22nd European Symposium on Research in Computer Security, Norway, 2017.

Siqi MA, David LO, Teng LI, Robert H. DENG. CDRep: Automatic Repair of Cryp-
tographic Misuses in Android Application. In Proceedings of the 11th ACM Asia
Conference on Computer & Communications Security, China, 2016.

Siqi MA, Shaowei WANG, David LO, Robert H. DENG, Cong SUN. Active Semi-
supervised Approach for Checking App Behavior against Its Description. In Pro-
ceeding of the 39th Annual International Computers, Software & Applications Con-
ference, Taiwan, 2015.

Ximeng LIU, Hui ZHU, Jianfeng MA, Jun MA, Siqi MA. Key-Policy Weighted At-
tribute based Encryption for fine-grained access control. In Workshop of IEEE Inter-
national Conference on Communications, Australia, 2014.

Journal Papers
Siqi MA, Junzuo LAI, Robert H. DENG, Xuhua DING. Adaptable key-policy attribute-

based encryption with time interval. Soft Computing. 21(20), 2017, pp. 6191-6200.

Siqi MA, David LO, Ning XI. Collaborative “many to many” DDoS Detection in cloud.
International Journal of Ad Hoc and Ubiquitous Computing. 23(3/4), 2016, pp. 192-
202.

Baodong QIN, Robert H. DENG, Shengli LIU, Siqi MA. Attribute-Based Encryption
With Efficient Verifiable Outsourced Decryption. IEEE Transactions on Information
Forensics and Security. 10(7), 2015, pp. 1384-1393.

Jianfeng WANG, Hua MA, Qiang TANG, Jin LI, Hui ZHU, Siqi MA, Xiaofeng CHEN.
Efficient Verifiable Fuzzy Keyword Search over Encrypted Data in Cloud Comput-
ing. Computer Science and Information System. 10(2), 2013, pp. 667-684.

Jianfeng WANG, Hua MA, Qiang TANG, Jin LI, Hui ZHU, Siqi MA, Xiaofeng CHEN.
A New Efficient Verifiable Fuzzy Keyword Search Scheme. Journal of Wireless
Mobile Network. 3(4), 2012, pp. 61-71.

viii



Chapter 1

Introduction

1.1 Problem Overview

The widely adaption of applications not only helps user save private informa-

tion, but also processes data that can only be read by specific people. Keeping

private information and data secure is one of the major themes of information secu-

rity. However, vulnerability becomes a major threat to those applications, including

computer applications and mobile applications. By exploiting different vulnera-

bilities, attackers can steal private information or even perform harmful actions to

computer systems. However, vulnerabilities usually survive for a long time. The

average lifetime of Android-related vulnerabilities is at least 724 days [47] and the

attack on software vulnerabilities usually lasts for 312 days [13]. It is difficult for

developers to detect a vulnerability if it is not exploited. Also, vulnerabilities are

difficult for developers to repair by themselves, since developers are not security

experts and they are unable to repair the vulnerabilities in correct ways. Automat-

ic vulnerability detection and repair approaches significantly help developers and

users to deal with vulnerabilities.

The vulnerability detection approaches are usually applied from three perspec-

tive: 1) leverage some common features of one type of vulnerability; 2) summa-

rize the pattern from the vulnerable code; 3) extract the code logic from the secure

1



code that does not contain any vulnerability. The feature-based vulnerability detec-

tion methods are usually applied for Intrusion Detection System(IDS), which use

the collected common features to build a detection model [7, 67]. However, the

false position of most model-based detection methods is high, and it makes the an-

alyst difficult to identify the vulnerability. For the pattern-related tools, researchers

analyze a type of vulnerability and design several constrains. Based on the pre-

defined constraints, those tools are able to detect the corresponding vulnerability.

This approach is usually applied on the network vulnerability [72, 89]. Similar to

the pattern-related tools, detection tools that detects based on code logic also need a

pre-defined code logic [56]. A significant limitation of those detection approaches

is that they require an accurate pre-defined constraints or rules.

The design of vulnerability repair approaches also have some challenges. With

plenty of vulnerabilities being detected, only few of them are proposed to be re-

paired automatically. The repair difficulty comes from the fact that different vulner-

abilities have their specific vulnerability signatures [45, 15]. Therefore, it requires

to learn different vulnerability signatures and creates templates to repair them re-

spectively. The existing vulnerability repair approaches are mainly designed to re-

pair a specific type of vulnerability, such as buffer overflow vulnerability [46], and

component hijacking vulnerability [92]. However, different vulnerabilities may oc-

cur, which require different patterns. It is impractical to propose an approach for

each vulnerability.

To address the above problems, we target on several aspects:

• Automatic Code Logic Extraction. How to extract the programming logic?

• Automatic Rule/Pattern Generation. How to generate rules for different

types of vulnerabilities?

• Automatic Patch Generation. How to repair a vulnerability efficiently and

accurately?

2



1.2 Research Objectives

In this dissertation, We propose several approaches to answer the above ques-

tions. Based on the programming logic, it is able to extract different repair patterns

for different vulnerabilities. These repair patterns are applied to construct effec-

tive repair schemes with the assistance of the state-of-the-art technology. We first

propose a tool to deal with one type of vulnerability (i.e., cryptographic misuse de-

fects). Next, we target on multiple types of vulnerabilities and design an approach

that learns vulnerability repair patterns and repairs those vulnerabilities automati-

cally. The details of these works are introduced as follows.

1.2.1 Cryptographic Misuse Repair

Automatic software repair is a branch of code synthesis. Code synthesis often

generates surprising code (i.e., alien code) [54]. To avoid this problem, we first

propose to designing a tool to repair cryptographic misuse defects automatically.

Cryptographic primitives are widely used to keep users’ private information secure,

and cryptographic misuses defects are remained unpatched.

To repair a cryptographic misuse defect, we apply this tool on Android appli-

cations (called app for short). Our tool can help users repair cryptographic misuse

defects to protect their private data. Since our tool is generated from user’s perspec-

tive, we repair the application at bytecode level. The technical challenge to repair

a vulnerability at bytecode level is to handle all the registers assigned to each val-

ue. We first summarize correct ways to implement cryptographic algorithms and

generate seven repair templates manually. Based on the repair templates, our tool

locates those cryptographic APIs, and then identifies misuses that are described in

the template.

By evaluating our approach on mobile applications, our results show that the

repair scheme is able to be applied on most vulnerable applications. It also reveals

some limitations: 1) Manual template generation is tedious and time consuming. To

3



repair the other vulnerabilities, it requires to generate different templates manually

by analyzing plenty of human-written examples. 2) In mobile system, apps can

communicate with each other through Intent. Our approach assumes each app is

isolated.

1.2.2 Multiple Vulnerabilities Repair

In the first work, we generate repair templates to achieve automatic repair. How-

ever, manual repair template generation is tedious and time consuming. It is limited

to be applied to few types of vulnerabilities. Addressing the limitation of the first

work, the second work in this dissertation explores the feasibility of designing prac-

tical vulnerability repair scheme with the assistance of existing patched examples.

Although many prior efforts [90, 92, 32, 39] have been devoted to repair differ-

ent vulnerabilities and bugs automatically, but there is still no practical and widely

adopted solution up to now. This raises a question on the practicability of adopting

an effective pattern generation scheme in vulnerability repair.

In this study, we propose to learn vulnerability repair edits from repair examples.

Each example includes a piece of vulnerable code segment and its corresponding

repair code segment. Those repair examples are taken as input and edits (i.e., insert,

delete, update, move) are learnt to transfer a vulnerable code to its repaired code.

For each edit, we also extract its context (i.e., unchanged code that is related to the

edits), which is used to locate a vulnerability. We then cluster similar edits into

groups. Within those groups, we generate several templates by comparing each pair

of edits and replacing variable names. Unlike traditional repair approaches, our

approach targets on multiple types of vulnerabilities instead of one, and it is able to

generate templates automatically by learning those repair examples. Moreover, our

templates are generated semantically, which means that several templates may be

generated according to the programming logic for one vulnerability.

We apply our design to existing vulnerabilities, which reveals and identifies sev-

4



eral limitations. The major limitation is that it requires large amount of examples.

Our future analysis indicates that it is possible to overcome these limitations by

analyzing program logic.

1.2.3 Authentication Misuse Flaw

To address the limitations mentioned in the first and the second work, we discuss

our future research direction in the fifth chapter. The limitations are solved from two

perspectives: 1) We analyze secure applications instead of vulnerable applications,

since it is difficult to identify whether an application is vulnerable; 2) We extract

code logic from the secure code, and generate secure rules to describe the correct

way to implement a secure implementation.

As the web applications have been widely used on both mobile platforms and

non-mobile platforms, we focus on authentication misuse flaw in our future re-

search. To achieve login scheme, several authentication protocols are applied on

Android applications. We first learn the correct ways to implement those authenti-

cation protocols and generate the corresponding rules to describe the correct imple-

mentation. Any code logic that violates any secure rules is marked as a vulnerable

code, that is, this code contains authentication misuses flaw.

1.3 Dissertation Organization

The reminder of this dissertation is organized as follows: Chapter 2 is a litera-

ture review which introduces some related researches about vulnerability detection

and repair. Chapter 3 describes CDRep as a tool to repair cryptographic misuse

automatically. To address the limitations of CDRep, Chapter 4 describes VuRLE

that generates repair templates and repair vulnerabilities automatically. Chapter 5

discusses our future research direction on authentication misuses of Android appli-

cations. Finally, Chapter 6 summarizes the contributions of this dissertation and

discusses a few directions for the future work.

5



Chapter 2

Literature Review

As vulnerability has become a severe threat to users, lots of vulnerability detec-

tion tools are proposed. We summarize the closely related research work from the

following aspects. First, we describe vulnerability detection approaches from two

perspectives (i.e, non-mobile application and mobile application). Then, we intro-

duce several automatic bug repair tools, which include normal bug repair schemes

and vulnerability repair schemes. Finally, we demonstrate the detection schemes to

detect zero-day vulnerabilities.

2.1 Vulnerability Detection for non-Mobile Applica-

tions

The non-mobile applications include normal software applications, web appli-

cations that provide web services, etc. In this section, we only introduce the tools

that are applied to the non-mobile application written in C program or Java program.

2.1.1 Buffer Overflow Vulnerability

Most recent detection tools to detect buffer overflow vulnerability [78, 28, 86,

57, 88, 24] perform symbolic execution and data flow analysis. TaintScope [78]

6



performs dynamic taint analysis to identify potential checksum check points in C

program. It achieves the major tasks as follows: 1) Detect checksum test in test-

ed program; 2) Bypass checksum test when fuzzy-testing; 3) Reconstruct input

with valid checksum. By running some malformed inputs, it confirms the check-

sum points. TaintScope is able to found vulnerabilities caused by buffer overflow,

integer overflow, null pointer dereference, infinite loop, and double free call. Dows-

er [28] combines taint tracking, program analysis, and symbolic execution to detect

buffer overflow. Instead of analyzing all possible execution paths, Dowser applies

spot checks on a small number of code segments that contain buffer overflow vul-

nerability potentially, and tests them in turn. Code property graph [86] is proposed

to detect common vulnerabilities with graph traversals, such as buffer overflow, in-

teger overflow. It combines all basic program analysis schemes (i.e., abstract syntax

trees, control flow graphs, and program dependence graphs). Code property graph

exposes all information to describe the sources that are controlled by attackers and

sensitive operations that are executed. KPSec [57] enables to determine whether

a patch brings new vulnerabilities. It performs symbolic execution with static da-

ta flow analysis to locate the patch-related code. Based on the patch-related code,

KPSec tracks all security points along the path, and then identifies memory-related

vulnerabilities (e.g., buffer overflow, memory leaks) by applying multiple security

checks.

2.1.2 SQL Injection & Cross-Site Scripting

SQL injection [11, 8, 27, 40, 72] and cross-site scripting (XSS) [74, 41, 58] are

usually caused by invalid input sanitization.

Machine Learning related Scheme. Shar et al. [62] propose an approach with

hybrid program analysis. Instead of only mining the static code patterns, they also

preform dynamic analysis to extract the execution traces of inputs and sanitization

functions, respectively. By applying supervised learning and unsupervised learning

7



method, they are able to build a vulnerability predictor. Shar et al. [61] use static

code attributes based on the existing taint analyzer. By analyzing the normal imple-

mentation code that is able to avoid SQL injection and XSS vulnerability, they learn

code patterns and extract a set of static code attributes. A prediction model can be

built based on the static code attributes.

Rule-based Scheme. Sunkari et al. [71] leverage HTTP request analysis to

build dynamic rules for the requests of normal web application. They extract the

request from every trusted user to summarize a set of attribute-value pairs, which

can be used to detect vulnerabilities. Sonewar et al. [69] also collect the web request

to generate a fixed query set for static web applications. The static mapping is

used to detect vulnerabilities. AMNESIA [27] uses model-based approach to detect

illegal queries before they are executed on the database. It uses static analysis to

build a model by using legitimate queries, and checks the generated queries against

this model. CANDID [11] generates a benign query structure by analyzing benign

inputs dynamically, and compares an unknown input with the query structure to

detect SQL injection attack. By combining static and dynamic analysis, Lee et

al. [40] propose an approach to remove attribute values of SQL queries at runtime,

which consists variables in form of string or numeric. It then compares SQL queries

with those filtered variables to abnormal queries.

2.2 Vulnerability Detection for Mobile Applications

Some vulnerabilities in mobile applications are different from the vulnerabilities

in non-mobile applications, such as component hijacking vulnerability. Componen-

t hijacking vulnerability allows an attack to gain unauthorized access to protected

or private resources through exported components. The other common vulnerabili-

ties, such as cryptographic misuses and SSL misuses, are being re-implemented in

mobile application and services.

8



2.2.1 Component Hijacking Vulnerability

Detection tools to detect component hijacking vulnerability [50, 55, 42, 80,

10, 43] usually describe a dataflow graph from an entry point to a sensitive sink.

CHEX [50] identifies the entry points of an application, and splits the application

code into a subset of code according to the identified entry points. CHEX then

tracks data-flows crossing and checks the existence enabling hijacking data-flows

through dependence graphs. CHEX focuses on finding data-flows between entry

points and API calls. To extract more complete flow information, Epicc [55] is

proposed to detect inter-component communication (ICC) vulnerability. Since apps

are interacted through ICC objects, it specifics a communication across every ICC

source to sink, which includes the location of the ICC entry point or exit point. Icc-

TA [42] tracks the propagation of context information among components to detect

ICC-based privacy leaks. It performs inter-component communication to taint and

track the sensitive data.

2.2.2 Cryptographic Misuses

Cryptographic misuses [18, 64, 44, 14, 87] are often caused by inappropriate

API usage. CRYPTOLINT [18] performs static analysis to detect common crypto-

graphic flaws in Android application. Six rules are pre-define to achieve a secure

cryptographic implementation. CMA [64] extends the implementation rules that are

used in CRYPTOLINT, and then builds several models for 13 secure implementa-

tion rules. ICryptoTracer [44] is applied on iOS applications. It traces the usage of

cryptographic APIs to extract the trace log and analyzes whether the cryptographic

API violates the generic cryptographic rules. Braga et al. [14] state the security re-

quirements for an instant message application, and then analyze its implementation

of cryptography.

9



2.2.3 Authentication Protocol Vulnerability

Similar to cryptographic misuses, authentication protocol vulnerability [20, 33,

5, 30, 76] is also caused by incorrect implementation. MalloDroid [20] detects

SSL/TLS code that are vulnerable to Man-In-The-Middle Attack (MITMA) in An-

droid apps. It checks the validity of certification, hostname verification, and secure

connect usage. Kim et al. [33] analyzes the Pseudo Random Number Generator in

Android OpenSSL architecture to identify whether the generated random number is

predictable. Alavi et al. [5] perform a study on Android web applications by target-

ing on several authentication behaviors, such as login, sign up, IP-changing. Dif-

ferent from the previous mentioned authentication protocol vulnerabilities, a code

injection vulnerability [30] is proposed, which exists in HTML5-based mobile app-

s. It causes code injection attack that attacker is able to extract user’s information

through SMS, Barcode, MP3, etc.

2.3 Automatic Bug Repair

As for automatic bug repair, it is illustrated from two perspectives, normal bug

repair and vulnerability (i.e., security bug repair).

2.3.1 Normal Bug Repair

As abundance of defects existing in softwares, repair approaches [39, 82, 38,

32, 53, 85, 37, 36, 6] are proposed to repair software bugs automatically. Gen-

Prog [39, 82] and HDRepair [38] perform genetic programming to generate patch-

es. Based on the input program and test cases, GenProg [39] applies mutation and

crossover operations to select the most fit individual to repair bugs. HDRepair [38]

automatically analyzes bug fix history to infer many graph-based fix pattern, which

are used to guide a genetic programming solution to generate high-quality patches.

The approach using genetic programming generates non-sensitive patches, relying

10



on random program mutation operations. This limitation is addressed by PAR [32],

which is first proposed to generate patches based on fix patterns. PAR has 10 fix

templates generated by fix patterns, which are manually learnt from prior human-

written patches. However, manually summarized fix patterns is tedious and time

consuming activities. Fixing different vulnerabilities require different fix patterns.

It is expensive or even impractical to manually create specific templates or rules

for all kinds of vulnerabilities. LASE [53] is further proposed to learn fix patterns

automatically. It learns an edit script from two or more repair examples, and then

creates a general fix template for a bug. LASE is sensitive to repair examples, that

repair examples should be precisely classified to generate the most general pattern.

Recently, a syntax-related program repair tool, ssFix [85] is proposed. ssFix first

targets on the suspicious statements that are seems to be incorrect. It then extracts

the syntax-related statements. Based on the correct code, ssFix matches the expres-

sions and statements in the correct code with those in the suspicious statements.

S3 [37] leverages programming-by-examples methodology to synthesize a better

bug repair. It uses the feature with a higher rank from the perspective of syntax and

semantic.

2.3.2 Vulnerability Repair

Different from the approaches for normal bug repair, existing vulnerability re-

pair approaches [46, 68, 90, 66, 65, 92, 48, 9, 93] target on one type of vulnerability.

Since vulnerability detection and repair are complicated, which require to analyze

program flow to identify a vulnerability and a corresponding way to repair it.

Vulnerability Repair for non-Mobile Applications

AutoPaG [46] and FixMeUp [68] perform vulnerability repair approach on vul-

nerable code. AutoPaG detects an out-of-bound vulnerability and identifies its root

cause based data-flow analysis. By considering a manually created official patch, it

11



generates a patch to repair the out-of-bound vulnerability. FixMeUp indicates con-

ditional statements of a correct access-control check to repair access-control bugs

in web applications. It automatically computes an inter-procedural access-control

template if a missing access-control check exists. It further transforms the access-

control template to repair vulnerable code. Instead of repair the vulnerable code, Yu

et al. [90] generate safe inputs to repair vulnerabilities, and DIRA [66] aims to erase

malicious packets to repair vulnerabilities. Yu et al. manually constructs input string

patterns and attack patterns. Through these patterns, they propose an approach to

repair string vulnerabilities in web applications. Based on the input-attack patterns,

they are able to compute a safe input, and a malicious input can be converted in-

to a safe input. DIRA focuses on detecting and repair control-hijacking attack by

blocking attack packets and repairing component with compromised application’s

state. It first detects control-hijacking attack, and then identifies malicious network

packets that will cause control-hijacking attack. If attack packets are received, it

erases the side-effects before the attack happens.

Vulnerability Repair for Mobile Applications

AppSealer [92] defines manually crafted rules for different types of data to repair

component hijacking vulnerabilities by using taint analysis. By applying dataflow

analysis, it can identify tainted variables, and further repair those variables based

on the defined rule. With manually crafted rules, RelFix [48] is proposed to fix

resource leak bugs on Android applications. By analyzing call graph, RelFix lo-

cates resource leakage. It then generates generates auxiliary variables to trace the

resources dynamically to prevent leakage. Different from repairing the vulnerability

in source code, Armando et al. [9] prevent a vulnerability, affecting a kernel-level

socket (i.e., Zygote socket), in application launching flow. They provide two ap-

proaches, i.e., Zygote process fix and Zygote socket fix, to check fork request in

Zygote process and reduce linux permissions for the Zygote socket. Instead of cre-

ating rules or patterns, Embroidery [93] transplants official patches (CVE source

12



code patches) of known vulnerabilities, and then rewrites the binary code to imple-

ment Android vulnerability patch.

2.4 Zero-day Vulnerability Detection and Repair

Most vulnerability detection and repair techniques are proposed to apply on

known vulnerabilities. Some researches are performed on identifying and repair

unknown vulnerabilities [77, 60, 81, 91].

MemSherlock [60] identifies unknown memory corruption by detecting mali-

cious payloads. It is applied on source code level. By providing the corruption

point in the source code, other consecutive source code, and description of how

the malicious input exploit the vulnerability, MemSherlock uses these information

to detect unknown vulnerabilities. ShieldGen [81] is able to detect and repair un-

known vulnerabilities without any human effort. It has an oracle that can perform

zero-day attack. It detects unknown vulnerabilities by input attack data, and then

repairs the detected vulnerability based on attack data. Wang et al. [77] propose

k-zero day safety, which is a novel security metric to measure how many zero day

vulnerabilities are required to compromise a network. It achieves that zero-day vul-

nerabilities are able to be detected without any measurable information. Zhang et

al. [91] proposes a diversity network to improve the resilience of a software system

against unknown vulnerabilities.

13



Chapter 3

CDRep: Automatic Repair of

Cryptographic Misuses in Android

Applications

3.1 Introduction

This chapter introduces an automatic approach to repair one type of vulnerability

(i.e., cryptographic misuse) in Android applications (called apps for short).

Mobile computing has become a fundamental feature in the lives of billions of

people, heralding an unprecedented reliance on smart phones and tablets compared

to any previous computing technology. With the trend of Bring Your Own Device

(BYOD), mobile devices are increasingly used to access and store sensitive corpo-

rate information. Thus, many app developers use cryptographic primitives, such

as symmetric key encryption and message authentication codes (MACs), to secure

communications. However, developers can easily make mistakes in implementing

and using cryptography in their mobile applications due to either a lack of crypto-

graphic knowledge or human error, and such mistakes often lead to a false sense of

security.

There are a few efforts in the literature investigating the problem of crypto-

14



graphic misuses in mobile apps. Egele et al. [18] examined if developers use cryp-

tographic APIs in a fashion that provides typical cryptographic notions of security,

For example, indistinguishability under chosen plaintext attack (IND-CPA) security

and cracking resistance. They found that about 90% of the 12,000 applications in

the Google Play marketplace that use cryptographic APIs make at least one mistake.

Shuai et al. [64] built a collection of cryptography misuse models, and implemented

an automatic misuse detection tool, Crypto Misuse Analyzer (CMA). They found

that more than half of the apps they examined suffer from cryptographic misuses.

Li et al. [44] designed a tool called iCryptoTracer which traces cryptographic usage

in iOS apps, extracts the trace log and judges whether apps have used cryptography

correctly. Veracode in 2013 detected cryptographic usage problems in the source

codes of mobile apps and concluded that such problems affect 64% of Android app-

s and 58% of iOS apps [4]. Given the significant portion of mobile apps affected by

cryptographic misuses, it is imperative that such misuses be rectified as soon as pos-

sible to avert potential attacks, such as brutal force dictionary attack. Unfortunately,

it may not be realistic to expect developers who misused cryptography in the first

place to do a good job in fixing the misuses because of their lack of cryptographic

knowledge or that they are simply unaware of the problem.

Our work aim to repair cryptographic misuses in Android apps automatically.

There exist a few efforts in automatically repairing software code in the literature.

Most of the previous works have focused on fixing general bugs, such as repair-

ing null pointer dereferences. Goues et al. [39] introduced an approach to repair

software programs using genetic programming. Kim et al. [32] proposed a nov-

el patch generation approach by first learning common fix patterns from human-

written patches and then generating program patches from these common fix pat-

terns. To our knowledge, very few efforts focus on automatic repair of mobile app

vulnerabilities. Recently, Zhang et al. [92] proposed a technique which generates a

patch for component hijacking vulnerability in Android apps; they performed static

analysis on bytecode to locate vulnerabilities, and then inserted new code to taint

15



data and track and block dangerous information flow during runtime. Different from

Goues et al. and Kim et al., we focus on specific bugs that correspond to crypto-

graphic misuses. Their generic approaches have low success rates (e.g., only 27 out

of 119 bugs are successfully fixed by Kim et al.’s approach). In this work, we make

use of specialized domain knowledge to fix specialized bugs to achieve a high suc-

cess rate. Zhang et al.’s approach can also fix specialized bugs with a high success

rate, however, they focus on a different kind of vulnerabilities and their approach

cannot be used to fix cryptographic misuses that are considered in this chapter.

The automatic repair tool we propose, CDRep (Cryptographic-Misuse Detection

and Repair) which automatically detects and repairs misuses of cryptographic APIs

at the bytecode level in Android apps. We focus on bytecode level following Zhang

et al. [92] since we want to protect users who only have access to the bytecode

but not source code of apps. CDRep is designed to repair seven types of misuses

identified in [18, 64] and operates in two phases: detection phase and repair phase.

In the detection phase, CDRep locates misuses and classifies them following the

light-weight static analysis approach proposed by Egele et al. [18]. In the repair

phase, CDRep automatically applies and adapts a set of manually created patch

templates to repair a vulnerable program. These patch templates can be created

one time and used to repair many vulnerable apps with cryptographic misuses. We

apply CDRep on 8,640 real-world Android apps and it detects that 8,582 apps have

cryptographic misuses. We manually check a random sample of 1,262 apps from

the 8,582 apps and among the 1,262 vulnerable apps, CDRep successfully repairs

1,132 of them.

In a nutshell, the contributions of this work are two-fold:

• We propose and implement CDRep to automatically generate patches to fix

cryptographic misuses in Android apps. This is the first effort to repair cryp-

tographic misuses automatically.

• We apply CDRep to 8,640 real-world Android apps. We ask members of

16



our security research team to evaluate the correctness of the automatic repair.

Moreover, we email the repaired apps to their developers to check whether C-

DRep inadvertently changes behaviors of repaired the apps. Our experimental

results show that CDRep is able to repair cryptographic misuses effectively,

achieving a successful repair rate of 94.5%. A total of 230 developers re-

sponded to our emails and 87.0% of them accepted our patches.

3.1.1 Applications of CDRep

Indeed, the cryptographic misuses could happen due to two reasons:

• Developer lacks the knowledge of cryptography.

• The Android app is developed by an attacker, which means the app is mali-

cious.

In view of the above reason, the cryptographic misuse vulnerability could not be

repaired from the developer’s perspective. If the developer lacks the knowledge of

cryptography, then it might be impossible for developer to repair the cryptography

misuses correctly. Further, if the Android developer is an attacker, the developer will

definitely leave the vulnerabilities which help the attacker collect users’ privacy.

These circumstances explain that we are unable to obtain the application source

code, namely, the cryptographic misuse could only be repaired on bytecode level.

Handling the repair by users and maintenance companies. CDRep provides

a reliable and easy way to repair cryptographic misuses. Users and maintenance

companies enable to repair the vulnerability without the source code of an applica-

tion. Moreover, CDRep provides the standard implementations for different cryp-

tographic approach. They do not need to have any knowledge of cryptography.

Processing the repair for a batch of apps. The minimum overhead helps users

and maintenance companies to process a batch of apps. CDRep assures the min-

imum changes of the app and the changes of the app and the minimum overhead

17



to process the repair. There exist lots of apps that developers will not upgrade or

maintain. However, users might still use them. The maintenance companies could

use CDRep to fix the cryptographic misuse of those apps.

3.1.2 Organization

The rest of this paper is organized as follows. Section 3.2 introduces the types of

misuses that CDRep intends to detect and repair. Section 3.3 presents the overview

of our approach. Section 3.4 elaborates the repair phase of our approach. Ex-

perimental results are shown in Section 3.5. Section 3.6 discusses the limitations.

Section 3.7 concludes this chapter and describes the future work of our approach.

3.2 Rules of Cryptographic Misuses

In this section, we list the seven security rules that are used in our work, and any

application that violates any of those rules cannot be secure [18, 64].

Based on the precisely defined cryptographic algorithms, seven rules are pro-

posed by [18, 64] as follows:

Rule 1: Do not only use electronic codebook (ECB) mode for encryption [84].

Rule 2: Do not use a constant Initialized Vector (IV) for ciphertext block chaining

(CBC) encryption.

Rule 3: Do not use constant secret keys.

Rule 4: Do not use constant salts for password-based encryption (PBE).

Rule 5: Do not use fewer than 1,000 iterations for PBE.

Rule 6: Do not use static seeds to seed SecureRandom.

Rule 7: Do not use reversible one-way hash (i.e. reversible MD5 message-digest

algorithm).

18



Encryption schemes are used to protect user privacy, ensuring that attackers are

unable to extract even a single bit of plaintext from a ciphertext within a reason-

able time bound. Indistinguishability under a chosen plaintext attack (IND-CPA) is

proposed to formalized this notion, and an encryption scheme could be defined as

secure if and only if it is IND-CPA secure [18]. However, some encryption mode or

wrong implementations make the encryption scheme become non IND-CPA secure,

such as using ECB mode and using constant value. Therefore, seven rules are pro-

posed to keep the encryption scheme secure. Based on the seven rules, we defined

seven types of misuse, and each misuse violates one of the rules of security. To

identify the misuse in a bytecode, we first examine the instruction that is related to

the misuse, called Indicator Instruction. Then, we locate the instruction that causes

the misuse, called Root Cause Instruction. We shows seven types of misuses below

and their the corresponding example bytecode. The root cause of each example is

set in bold.

Misuse 1: Only use ECB mode to encrypt. ECB mode is not IND-

CPA secure in symmetric encryption scheme. The bytecode be-

low shows such misuse. According to the indicator instruction,

Ljava/crypto/Cipher;→getInstance, we can identify that

register v1 holds the value of encryption type. Therefore, we are able to find

that value of v1 is “AES/ECB/PKCS5Padding1” based on the root cause,

which means that the developer uses ECB mode for encryption. Due to that

ECB is the default encryption mode set by Android, the developer also uses

ECB mode if they only define “AES” in their code.

1. const-string v1, “AES/ECB/PKCSPadding”

2. invoke-static {v1}, Ljava/crypto/Cipher;→

getInstance(Ljava/lang/String;)

Ljava/crypto/Cipher

1AES is the cryptography algorithm chosen by developers. PKCS5Padding is the padding scheme

19



Misuse 2: Using a constant IV in CBC encryption. In CBC encryption scheme,

a constant IV will generate a deterministic, stateless cipher, which is not IND-

CPA secure. The bytecode snippet below shows such misuse. Instruction,

Ljava/crypto/spec/IvParameterSpec, is the indicator instruction

of this misuse, and we can conclude that register v7 is the IV parameter.

However, v7 receives the value from register v10. Thus, v10 holds the o-

riginal value of the IV, which is set as constant based on the root cause,

“1234567898765432”. However, the IV should always be set as random

based on the CBC encryption construction.

1. new-instance v7,

Ljavax/crypto/spec/IvParameterSpec;

2. const-string v10, “1234567898765432”

3. invoke-virtual v10, Ljava/lang/String/;→

getBytes()[B

4. move-result-object v10

5. invoke-direct {v7, v10},Ljava/crypto/spec/

IvParameterSpec;→<init>([B)V

Misuse 3: Using a constant secret key. In a symmetric encryption scheme, if an

user uses a secret key with insufficient key length, then the attacker can extract

the secret key by using brute force dictionary attack. Moreover, if secret

key is constant, it will be extracted by using brute force attack. The sample

bytecode with a constant secret key is illustrated as below. According to the

indicator instruction, Ljava/crypto/spec/SecretKeySpec, we are

able to define that register v2 holds the value of secret key, and the value of

register v2 is “0x0”, which is constant.

20



1. const/4 v2, 0x0

2. invoke-virtual v2, Ljava/lang/String/;→

getBytes()[B

3. move-result-object v2

4. const-string/jumbo v4, "AES"

5. invoke-direct {v3, v2, v4},

Ljava/crypto/spec/SecretKeySpec;→

<init>([BLjava/lang/String;)V

Misuse 4: Using a constant salt in PBE. According to [18], a randomized salt can

make PBE perform better. A constant salt makes the algorithm with salt

reduce to an algorithm without salt. According to the indicator instruc-

tion, Ljava/crypto/spec/PBEParameterSpec in the sample byte-

code shown as below, we observe that it uses PBE encryption scheme, and

register v2 holds a constant salt value, “0x0”.

1. const/4 v2, 0x0

2. new-instance v3, Ljava/crypto/spec/

PBEParameterSpec;→<init>([BI)V

3. const/16 v4, 0x64

4. invoke-direct {v3, v2, v4},

Ljava/crypto/spec/PBEParameterSpec;

→<init>([BI)V

Misuse 5: Setting iterations < 1,000 in PBE. Based on the suggestion

given by PKCS#52, the iteration should be at least 1,000 (i.e.

0x3e8 in hexadecimal). According to the indicator instruction,

Ljava/crypto/spec/PBEParameterSpec in the sample bytecode
2PKCS#5: Password-Based Cryptography Standard, http://www.emc.com/emc-plus/rsa-

labs/standards-initiatives/pkcs-5-password-based-cryptography-standard.htm.

21



of misuse 4, it describes the situation where iteration is set inappropriately.

Register v4 holds the hexadecimal value of iteration, “0x64” (i.e. 100 in

decimal).

misuse 6: Using a constant seed to seed SecureRandom In [2], they show that

seeding SecureRandom may be insecure since seeding may cause

the instance to return a predictable sequence of numbers. If

the same seed is reused, the returned number will become repeat-

able. The indicator instruction in the code shown as below is

Ljava/security/SecureRandom;→getInstance. Based on the

indicator instruction, we can identify the root cause instruction and conclude

that SecureRandom is seeded by a constant seed, that is, the value of register

p0.

1. p0, [B

2. ...

3. const-string/jumbo v1, "SHA1PRNG"

4. invoke-static {v2, v1},

Ljava/security/SecureRandom;→getInstance

(Ljava/lang/String;Ljava/lang/String;)

Ljava/security/SecureRandom;

5. move-result-object v1

6. invoke-virtual {v1, p0}, Ljava/security/

SecureRandom;→setSeed([B)V

Misuse 7: Using reversible MD5 hash function. Wang et al. [79] have found

many collisions in MD5 and created a powerful attack that can ef-

ficiently find MD5 collisions. Based on the indicator instruction,

Ljava/security/MessageDigest in the sample bytecode below, we

infer the root cause instruction and identify that register v2 contains the string

22



of encryption scheme, that is, “MD5”, allowing us to conclude that it uses

MD5 hash function.

1. const-string v2, “MD5”

2. invoke-static {v2}, Ljava/security/

MessageDigest;→getInstance(Ljava/lang/String;)

Ljava/security/MessageDigest

3. move-result-object v1

3.3 Overview of CDRep

smali files

Fault Identification

Patch 

Templates

D
etectio

n
 P

h
ase

R
ep

air P
h
aseRepaired Program

App

Patch Generation

Decompilation

----------
----------

const/16 v4, 0x64

invoke-direct {v2, 

p2. v4}, Ljava/

crypto/spec/

PBEParameterSpec;

-><init>([BI)V

----------
----------

const/16 v4, 0x3e8

invoke-direct {v2, 

p2. v4}, Ljava/

crypto/spec/

PBEParameterSpec;

-><init>([BI)V

Figure 3.1: Overview of CDRep

In this section, we introduce the overview of our automatic repair technique,

CDRep (Cryptographic-Misuse Detection and Repair). Figure 4.1 shows the work-

flow of CDRep. It has two phases, detection and repair:

Detection: In this phase, CDRep follows the detection steps of CRYPTOLINT [18],

which include decompilation and fault identification. After decompiling an An-

droid app, in the fault identification phase, CDRep checks if vulnerabilities exist

23



in the app; if they exist, CDRep identifies vulnerable Java classes as well as their

vulnerability types.

Vulnerabilities are found by first locating indicator instructions (see Section 3.2)

in the decompiled code. Next, for each indicator instruction, CDRep identifies other

instructions that the indicator instruction is data dependent on. CDRep then checks

all such instructions to identify root causes that correspond to cryptographic misus-

es. For each misuse, CDRep records its type and the Java class that contains it. Since

this step closely follows CRYPTOLINT, we only briefly describe its intuition. De-

tails are available in the original CRYPTOLINT paper [18]. CRYPTOLINT detects

six kinds of vulnerabilities (misuses 1-6); in this work, we add one more vulnera-

bility (misuse 7). The procedure to identify the seventh vulnerability is the same as

the one used to identify the other six.

Repair: In this phase, CDRep fixes the vulnerable program by performing a series

of program transformations specified in a set of manually created patch templates.

Details of this phase is presented in Section 3.4.

3.4 Cryptographic Misuses: Automatic Repair

In this section, we elaborate the repair phase of CDRep. This phase requires a

set of manually created patch templates, which we describe in Section 3.4.1. Given

a vulnerable Java class and a vulnerability type, CDRep applies a corresponding

patch template to repair the class (described in Section 3.4.2).

3.4.1 Patch Templates

We manually create seven patch templates, each for a misuse type. To generate

these templates, we take a set of programs with cryptographic misuses and man-

ually fix them. Next, for each pair of correct and faulty program pairs (i.e., with

and without cryptographic misuses), we examine code that needs to be added and

24



  

 

 

Misuse 2: Using a constant IV for CBC encryption 

Input: Vulnerable Java class Target 

  

Transformation: i Insert SecureRandom class to the default package of the app 

 ii Insert a new public IV addition  

.field public static ivParams:Ljavax/crypto/spec/IvParameterSpec;. 
 iii [Encryption:] 

  1 § new-instance Pl2, Ljavax/crypto/spec/IvParameterSpec; 
  2  − const Pl1, * 
  3 § invoke-virtual {Pl1}, Ljava/lang/String;->getBytes()[B 
  4 § move-result-object Pl1 
  5 § invoke-direct {Pl2, Pl1},  Ljava/crypto/spec/IvParameterSpec;-><init>([B)V 

  6  + invoke-static {}, SecureRandom; 

    ->gen_ivParams()Ljavax/crypto/spec/IvParameterSpec; 
  7  + move-result-object Pl3 
  8  + sput-object Pl3, Target;->ivParams:Ljavax/crypto/spec/IvParameterSpec; 

  9  + invoke-virtual {Pl3}, Ljava/lang/Object;->toString()Ljava/lang/String; 
  10  + move-result-object Pl3 
  11  + invoke-virtual { Pl3}, Ljava/lang/String;->length()I 
  12  + move-result Pl3 
  13  + move Pl4, Pl3 
  14  + .local Pl4, "iv_length":I 
  15  + move Pl5, Pl4 
  16  + const/16 Pl6, 0x10 
  17  + add-int/lit8 Pl5, Pl5, -0x10 
  18  + invoke-virtual { Pl3, Pl5}, Ljava/lang/String;->substring(I)Ljava/lang/String; 
  19  + move-result-object Pl3 
  20  + move-object Pl1, Pl3 
 iv [Decryption:] 
  1 § new-instance Pl2, Ljavax/crypto/spec/IvParameterSpec; 
  2  − const Pl1, * 
  3 § invoke-virtual {Pl1}, Ljava/lang/String;->getBytes()[B 
  4 § move-result-object Pl1 
  5 § invoke-direct {Pl2, Pl1}, Ljava/crypto/spec/IvParameterSpec;-><init>([B]V 
  6  + sget-object Pl3 Target;->ivParams:Ljavax/crypto/spec/IvParameterSpec; 

  7  + invoke-virtual { Pl3}, Ljava/lang/Object;->toString()Ljava/lang/String; 
  8  + move-result-object Pl3 
  9  + invoke-virtual { Pl3}, Ljava/lang/String;->length()I 
  10  + move-result Pl3 
  11  + move Pl4, Pl3 
  12  + .local Pl4, "iv_length":I 
  13  + move Pl5, Pl4 
  14  + const/16 Pl6, 0x10 
  15  + add-int/lit8 Pl5, Pl5, -0x10 
  16  +invoke-virtual { Pl3, Pl5}, Ljava/lang/String;->substring(I)Ljava/lang/String; 
  17  + move-result-object Pl3 
  18  + move-object Pl1, Pl3 

Figure 3.2: Patch template for misuse 2: this template fix the misuse that use a
constant IV for CBC encryption

removed to transform the faulty program to the correct one. We then generalize the

added and removed code as a generic patch. A generic patch consists of a series of

code transformations. Each transformation corresponds to a series of code removal

and addition given a particular context. To make the patch generic, we replace actu-

al register/variable names, with placeholders. We also replace each constant value

25



with a wildcard character (“*”) that can match any constant.

Figure 3.3 presents a sample template for transforming a Java class Target con-

taining cryptographic misuse 2, i.e., it uses a constant IV for CBC encryption. The

template contains 4 transformations: i, ii, iii, iv. Transformation i specifies the

insertion of the bytecode of java.security.SecureRandom class to the app (if it does

not exist). Transformation ii specifies the insertion of a field IvParameterSpec to

Target. Transformations iii and iv specifies code additions (marked by “+”) and

code deletions (marked by “-”) along with a context (marked by “=”). Each trans-

formation specifies that whenever a piece of code matches with the context, the lines

of code marked by “-” will be replaced with the lines of code marked by “+”. In the

two transformations, we have placeholders (e.g., Pl1, . . .Pl6 in transformation iii)

and wildcard characters (e.g., “*” at line 1 of transformation iii).

It is worth mentioning that cryptographic algorithms always appear in pairs (i.e.

encrypt and decrypt). Transformation iii is to fix the encryption method in the

vulnerable class and transformation iv fixes the decryption method. In transfor-

mation iii, we match for code Ljava/crypto/spec/IvParameterSpec to

locate indicator instruction (line 5). Then, we replace code that is the root cause

of the misuse (line 1) with code that generates the randomized value (line 6-20).

The randomized value is stored in the field ivParams (line 8). Then we check the

length of the randomized value (line 11). Due to that the length is longer than

the required length, we only take the sub-length of the randomized value (line

15-18). Finally, the sub-length of randomized value is transformed to the place-

holder of IV. Similar to transformation iii, we also match the indiator instruction

Ljava/crypto/spec/IvParameterSpec first in transformation iv (line 5).

Then, we locate the root cause in line 1 and replace it with codes that are used

to generate the randomized value. Instead of generating a randomized value, we

extract the value from the field ivParams in line 6. We take the same steps as tran-

formation iii to check the length of randomized value and take the required length

of randomized value (line 9-16).

26



Table 3.1: Patch overview

Misuse Patch Overview

1 Using CTR mode.
2 using a randomized IV for CBC encryption.
3 Using a randomized secret key.
4 Using a randomized salt in PBE.
5 Setting iterations = 1,000.
6 Calling SecureRandom.nextBytes().
7 Using SHA-256 hash funtion.

Another sample template for transforming a Java class target containing cryp-

tographic misuse 5, i.e., it sets iterations < 1,000. The template only has one

transformation, modification. However, the modification transformation should

be applied on both encryption and decryption method. We first match the code

Ljava/crypto/spec/PBEParameterSpec;→<init> in line 4. Then, we

locate the root cause in line 3 and replace it with line 5 to modify the iterations to

1,000.

Misuse 5: Set iteration < 1,000 

Input: Vulnerable Java class Target 

  

Transformation: [Modification] 

 1 §new-instance Pl1, Ljavax/crypto/spec/PBEParameterSpec;  
 2 §sget-object Pl2, Target;->salt:[B 

 3  − const Pl3, *   

 4 §invoke-direct { Pl1, Pl2, Pl3}, Ljava/crypto/spec/PBEParameterSpec; 

     -><init>([BI]V 

 5  + const/16 Pl3, 0x3e8 

 

Figure 3.3: Patch template for misuse 5: this template fix the misuse that sets the
iterations < 1,000

Due to space constraint, we cannot show all the 7 templates. A brief description

of these templates is given in Table 3.1. A complete description is available in our

technical report [3]. Although the generation of these patch templates is manual, it

is a one-time cost and the patch templates can be reused to automatically fix many

cryptographic misuses.

27



3.4.2 Patch Generation

In this step, CDRep takes a vulnerable Java class along with a misuse type as

inputs, and generates a patched class. To generate the patched class, CDRep picks

the corresponding patch template, runs a series of program transformations specified

in the template, and replaces placeholders with actual register/variable names.

Given a transformation, CDRep matches the lines of code marked by “=” and

“-” in the vulnerable Java class. In the process, the mappings between placeholders

and actual variable/register names are identified. The lines of code marked with “-”

are then replaced with the lines of code marked with “+”. Placeholders in these

newly added lines of code are then replaced with actual register names based on the

mappings that are identified earlier. Other placeholders in the newly added code that

do not appear in the mapping are replaced with new variable/register names that do

not appear in the vulnerable Java class.

An automatic code fix example for misuse 2 (i.e., using a constant IV for CBC

encryption) is shown in Figure 3.4. According to the transformation iii given in

the template, Figure 3.3, CDRep first matches the line of code marked by “=” (i.e.,

lines 1, 3, 4, 5 in the vulnerable code of Figure (a)). Then, CDRep performs map-

ping between the placeholders and the actual variable/register shown in Figure (b).

It is apparently that register v10 is mapped to placeholder Pl1, which is the root

cause. Register v7 is mapped to placeholder Pl2, which represents the IvParamter-

Spec. After mapping the actual registers, CDRep replaces the placeholders that

are mapped with the actual registers. For those placeholders that are not mapped

with any actual registers, we replace them with other available registers (i.e., v1, v2

shown in Figure 3(c)).

28



1. new-instance v7, 

    Ljavax/crypto/spec/IvParameterSpec;

2. const-string v10, 

    “1234567898765432”

3. invoke-virtual {v10}, 

    Ljava/lang/String;->getBytes()[B

4. move-result-object v10

5. invoke-direct {v7, v10}, Ljava/crypto

    /spec/IvParameterSpec;-><init>([B)V

1. new-instance Pl2, 

    Ljavax/crypto/spec/IvParameterSpec;

2. const Pl1, *

3. invoke-virtual {Pl1}, 

    Ljava/lang/String;->getBytes()[B

4. move-result-object Pl1

5. invoke-direct {Pl2, Pl1}, Ljava/crypto

    /spec/IvParameterSpec;-><init>([B)V

1. new-instance v7, 

    Ljavax/crypto/spec/IvParameterSpec;

2. invoke-static {}, SecureRandom;

    ->gen_ivParams()Ljavax/crypto/spec/IvParameterSpec;

3. move-result-object v1

4. sput-object v1, Target;

    ->ivParams:Ljavax/crypto/spec/IvParameterSpec;

5. invoke-virtual {v1}, 

    Ljava/lang/Object;->toString()Ljava/lang/String;

6. move-result-object v1

                   ...

7. add-int/lit8 v2, v2, -0x10

8. invoke-virtual { v1, v2}, 

    Ljava/lang/String;->substring(I)Ljava/lang/String;

9. move-result-object v1

11. move-object v10, v1

12. invoke-virtual v10, 

      Ljava/lang/String;->getBytes()[B

13. move-result-object v10

14. invoke-direct {v7, v10}, 

      Ljava/crypto/spec/IvParameterSpec;-><init>([B)V

A)

B)

C)

Actual 

variable/register
Placeholders

v7

v10

“12345678987654

32”

Pl1

Pl2

*

Figure 3.4: Fix procedure for misuse 2: it uses a constant IV for CBC encryption.
A) shows the vulnerable code with misuse 2, and the template of misuse 2. B)
describes the mapping procedure between the actual variable/register extracted from
the vulnerable code and placeholders given in the template. C) is the fixed code by
replacing the placeholders by the actual registers that are mapped

3.5 Experiment

In this section, we present the details and results of our experiments that evaluate

the performance of CDRep. Our experiments are designed to answer the following

questions:

29



Table 3.2: CDRep: Detection result

Misuse Type # of Apps Percentage Google Play SlideMe

Rule 1 887 10% 402 485
Rule 2 979 11% 379 600
Rule 3 882 10% 357 525
Rule 4 7 0.08% 4 3
Rule 5 10 0.1% 7 3
Rule 6 235 2% 17 218
Rule 7 5582 65% 1359 4223

RQ1 (Success rate) How many misuses can CDRep repair successfully?

RQ2 (Runtime) What is the average time needed for CDRep to generate a patch?

RQ3 (Size) What is the average increase in size of repaired apps?

RQ4 (Failed cases) Why can’t some apps be repaired successfully?

3.5.1 Experiment Setup

Dataset. To evaluate CDRep, we crawled apps from two app stores, Google play3

and SlideMe4 (a third-party store). In total, we collected 8,640 free apps (2,114 apps

from Google Play, and 6,526 apps from SlideMe), sampled from all categories. S-

ince some sensitive categories (e.g., finance, retail, etc.) are more likely to use cryp-

tography algorithms, we sample more applications from these sensitive categories

than others (in a ratio of 5.5 to 1).

Detected Cryptographic Misuses. CDRep performs both detection and fix of cryp-

tographic misuses. Table 3.2 shows the number of cryptographic misuses detected

by CDRep across the seven misuse types.

Experiment Design. We evaluate the effectiveness of our approach from three

aspects: acceptance rate, patching speed, and size of repaired apps. Acceptance rate

evaluates whether our patches are acceptable by security experts and app developers.

3Google Play Store: https://play.google.com/store?hl=en
4Third-Party store: SlideMe (http://slideme.org/)

30



Patching speed evaluates the efficiency of our approach; if our approach takes a

long time to complete, users are less likely to use it. Size of repaired apps is also

an important factor that affects usability; if the size of the patched app increases too

much, users are less likely to use it.

To measure acceptance rate, we ask our security research team and applica-

tion developers to examine the repaired programs. Our research team can examine

whether the repaired implementations of the cryptographic functionalities are cor-

rect. However, they will not be able to conclude whether our patch inadvertently

modifies any other behaviours of the app in a bad way. Thus, we also email the re-

paired apps to their corresponding developers to get feedback on the app behaviours.

To measure patching speed, we simply measure the average time that our approach

takes to generate a patch. To measure repaired app size, we measure the percentage

of increase in app size after an app has been patched.

To measure acceptance rate, manual inspection (performed by our security re-

search team and app developers) is needed. Since this inspection is a time consum-

ing process, and many apps suffer from cryptographic misuses (see Table 3.2), it is

not possible to check all of the apps that we have repaired (especially for apps that

exhibit misuse 1-3, and 7). Thus, except for misuse 4-6 (for which we evaluate all

repaired apps), for each other misuse type, we randomly sample apps for manual

inspection. For misuse 1, 2, 3, and 7, we select 100, 110, 100, and 700 apps re-

spectively. We vary the number of apps selected for each misuse type, based on the

number of apps with cryptographic misuses of that type (we pick around 12% of

apps of a particular misuse type).

3.5.2 RQ1: Success Rate

In this section, we measure how many vulnerable apps are repaired successful-

ly. To make it easier for cryptographers and developers to examine the patch, we

not only give them the original vulnerable app and the repaired app that we have

31



Table 3.3: Success Rate

# of Team # of Developer
Selected apps Acceptance Developer Response Acceptance

Misuse 1 100 91(91%) 21 13(61.9%)

Misuse 2 110 92(83.6%) 16 10(62.5%)

Misuse 3 100 83(83%) 23 18(78.2%)

Misuse 4 7 5(71.4%) 3 2(66.7%)

Misuse 5 10 10(100%) 4 4(100%)

Misuse 6 235 212(90.2%) 20 15(75%)

Misuse 7 700 700(100%) 143 138(96.5%)

Total 1262 1193(94.5%) 230 200(87.0%)

repacked, but also provide the bytecode of the vulnerable and repaired apps. In ad-

dition, we describe the misuses in the app, and explain why the cryptographic code

in the app is not secure.

Table 3.3 presents the acceptance result of our repaired apps. Overall, our re-

search team accept more than 94.5% of the repaired apps. Considering the email

responses, 87% of the repaired program are accepted, which means that the app

behaviors are not impacted by the repaired program. According to the result, the

patch for misuse 5 and misuse 7 are better than the other types. Our repaired app-

s are not accepted by all the developers, we explain the reasons in the following

section (Section 3.5.4).

3.5.3 RQ2 and RQ3: Runtime and Size

The average runtime needed by our approach to identify a misuse and generate

a patch, excluding decompilation time, is only about 19.3 seconds. The bulk of the

cost is in the generation of a patch which on average takes 14.6 seconds.

The increase in the size of the patched apps is negligible. Table 3.4 shows the

average increase in the size of patched apps for different misuse types. Across the

7 apps the average increase in size is only 0.667% of the original app size.

32



Table 3.4: Average Patch Overhead of different misuse type

Misuse Type Overhead

Misuse 1 0.749%

Misuse 2 0.640%

Misuse 3 0.632%

Misuse 4 0.742%

Misuse 5 0.634%

Misuse 6 0.526%

Misuse 7 0.748%

3.5.4 RQ4: Unsuccessful Cases

From Table 3.3, there are apps that are not repaired successfully by our ap-

proach. We discuss the main causes as follows:

Popular libraries. For some apps, developers may call popular libraries. CDRep

identifies some misuses that exist in these libraries. For example, several

MD5 misuses occur in the classes that are provided by Google, that are, sev-

eral classes in the “com.google.android.gms.*” package. Although we have

repaired those misuses, some app developers rejected our changes since they

still prefer to use the standard classes provided by Google.

Incomplete repair: CDRep assumes that each method only contains code that us-

es one cryptographic scheme. For cases where this assumption does not hold

(i.e., a method contains code that uses multiple cryptographic schemes), C-

DRep could only repair misuses of the first cryptographic scheme. We find

that a few apps define more than one encryption scheme in a single method,

which causes the patch generated by our approach to be incomplete.

Incomplete decompilation: We use apktool to decompile vulnerable apps. How-

ever, we find that some apps with complex behaviours cannot be decompiled

well. Moreover, some apps reject decompilation. For such cases, CDRep

cannot generate patches.

33



3.6 Limitations

In this section, we discuss the threats to validity. Aside from the limitations

corresponding to the unsuccessful cases highlighted in Section 3.5.4, there are a

few other limitations of our approach and its evaluation:

Focus on Android. CDRep is only able to detect and fix cryptographic misuses

involving cryptographic classes that come with the Android API. An app may

use other third-party cryptographic libraries or implement their own. CDRep

is not able to detect and fix cryptographic misuses for such apps. To detect

these misuses, there is a need to create new templates. This effort will pay off

if the third party cryptographic libraries are used by many Android apps.

Focus on Free Apps. In our experiment, we only evaluate the effectiveness of C-

DRep on free apps. These apps might not be representative of paid apps. The

implementations of paid applications could be different from those of free

apps and these differences may impact the effectiveness of our approach. In

the future, we plan to expand our study to evaluate the effectiveness of CDRep

on paid apps.

Focus on the Interaction. For some apps, they upload user’s data to their server

instead of keeping it locally. CDRep only ensures that an app could work

normally if it processes encryption and decryption on the client side. It might

break if this app shares the cryptographic parameters with its server, once we

modify the cryptographic method the client side.

3.7 Conclusion and Future Work

In this chapter we propose a approach, CDRep, to automatically repair vulner-

able apps with cryptographic misuses. Given a vulnerable Android app, we first

perform static analysis to locate the misuse and identify the misuse type. Then,

34



based on the misuse type, we apply a suitable patch template and adapt it to the

vulnerable program by replacing register placeholders in the template with actu-

al register names. Finally, we perform an optimization step to remove dead code.

To evaluate CDRep, we crawled 8,640 real-world Android apps and use CDRep

to identify cryptographic misuses and repair them. Out of the repaired apps, we

randomly pick 1,262 of them for manual inspection (by security experts and app

developers). The evaluation results show that CDRep can automatically repair the

vulnerable apps effectively – it is able to repair 94.5% of the 1,262 vulnerable apps

with an average patch generation time of merely 19.3 seconds.

There are several aspects for future work. CDRep aims to repair the crypto-

graphic misuse by using static analysis at bytecode level. However, detection with

static analysis is not complete.

Detect Self-Written Encryption/Decryption class. In the detection phase of C-

DRep, we detect the cryptographic misuse by using the pre-defined crypto-

graphic APIs that Java provided (e.g., Cipher.getInstance). However, some

developers might prefer to call the cryptographic function written by them-

selves instead of calling the existing cryptographic APIs. CDRep is unable

to detect the self-written encryption/decryption class.

Identify Constant Variable. We adopt backward data analysis to identify the con-

stant variable. However, it could only match the constant variable when it

is defined in the function. In some circumstances, value of the variable is

not set in the function, and it is assigned by the heap during runtime.

We will extend CDRep by applying hybrid analysis (i.e., static analysis and dy-

namic analysis). Static analysis enables to extract the cryptographic usage from the

code level, and dynamic analysis could capture the code behaviors at runtime. It

helps detect the self-written encryption/decryption class and provide a more com-

pleted data flow graph.

35



Chapter 4

VuRLE: Automatic Vulnerability

Detection and Repair by Learning

from Examples

4.1 Introduction

This chapter repairs vulnerabilities in computer system instead of Android sys-

tem. In computer system, vulnerability is also a severe threat, which is difficult for

a developer to detect and repair a vulnerability. It motivates researchers to explore

practical design to detect and repair different kinds of vulnerabilities in computer

system, such as cross-site scripting (XSS) [78], component hijacking vulnerabili-

ty [92], etc. Similar to the previous work, those studies on automatic vulnerability

repair typically focus on one type of vulnerabilities. These studies require custom

manually-generated templates or custom heuristics tailored for a particular vulner-

ability.

Manually generating repair templates and defining repair rules are tedious and

time consuming activities. As technology and computer systems advance, different

vulnerabilities may occur and fixing each of them likely requires different repair

patterns. Unfortunately, it is very expensive or even impractical to manually create

36



specific templates or rules for all kinds of vulnerabilities. The above facts high-

light the importance of developing techniques that can generate repair templates

automatically.

To help developers repair common bugs, Meng et al. [53] proposed LASE that

can automatically generate a repair template. LASE automatically learns an edit

script from two or more repair examples. However, its inference process has two

major limitations. First, it can only generate a general template for a type of bug.

However, a bug can be repaired in different ways based on the context (i.e., preced-

ing code where a bug appears in). Second, it cannot learn multiple repair templates

from a repair example that involves repair multiple bugs.

Under these limitations, this work explores of designing a practical scheme that

is able to generate multiple templates and learns patterns automatically. We design

and implement a novel tool, called VuRLE (Vulnerability Repair by Learning from

Examples), that can help developers automatically detect and repair multiple types

of vulnerabilities. VuRLE can be applied to repair both Android applications and

other applications written in Java. VuRLE works as follows:

1. VuRLE analyzes a training set of repair examples and identifies edit blocks

– each being series of related edits and its context from each example. Each

example contains a vulnerable code and its repaired code.

2. VuRLE clusters similar edit blocks into groups.

3. Next, VuRLE generates several repair templates for each group from pairs of

highly similar edits.

4. VuRLE then uses the repair templates to identify vulnerable code.

5. VuRLE eventually selects a suitable repair template and applies the transfor-

mative edits in the template to repair a vulnerable code.

VuRLE addresses the first limitation of LASE by generating many repair tem-

plates instead of only one. These templates are put into groups and are used collec-

37



tively to accurately identify vulnerabilities. VuRLE also employs a heuristics that

identifies the most appropriate template for a detected vulnerability. It addresses

the second limitation by breaking a repair example into several code segments. It

then extracts an edit block from each of the code segment. These edit blocks may

cover different bugs and can be used to generate different repair templates. This

will result in many edit blocks though, and many of which may not be useful in

the identification and fixing of vulnerabilities. To deal with this issue, VuRLE em-

ploys a heuristics to identify suitable edit blocks that can be generalized into repair

templates.

We evaluate VuRLE on 279 vulnerabilities from 48 real-world applications us-

ing 10-fold cross validation setting. In this experiment, VuRLE successfully detects

183 (65.59%) out of 279 vulnerabilities, and repairs 101 of them. This is a major

improvement when compared to LASE, as it can only detects 58 (20.79%) out of

the 279 vulnerabilities, and repairs 21 of them.

The rest of this paper is organized as follows. Section 4.2 presents an overview

of our approach. Section 4.3 elaborates the learning phase of our approach and

Section 4.4 presents the repair phase of our approach. Experimental results are

presented in Section 4.5. Section 4.6 concludes the paper and discusses our future

work.

4.2 Overview of VuRLE

In this section, we introduce how VuRLE repairs vulnerabilities. Figure 4.1

shows the workflow of VuRLE. VuRLE contains two phases, Learning Phase and

Repair Phase. We provide an overview of working details of each phase below.

Learning Phase. VuRLE generates templates by analyzing edits from repair exam-

ples in three steps (Step 1-3).

1. Edit Block Extraction. VuRLE first extracts edit blocks by performing Ab-

38



Learning Phase

Repair Phase

Repair examples

Edit Block Extraction1 Edit Group Generation2

Edit Groups

Edit Group Selection4
Template Selection 

& Application
5

Repaired Code 

Segment

Diff Code

Input Code

Code Segment

Context
Repair examples

Repaired Code

Edits
Edits

Context

Edits

Context

Edit Blocks

Repair Template 

Generation
3

Edit 

Pattern

Context 

Pattern

Template

Edit 

Pattern

Context 

Pattern

Edit 

Pattern

Context 

Pattern

Edit 

Pattern

Context 

Pattern

Edit 

Pattern

Context 

Pattern

Edit 

Pattern

Context 

Pattern

Templates

Templates

Templates
Templates

Templates

Templates

Templates

Templates

Templates
Templates

Templates

Figure 4.1: Workflow of VuRLE: 1) VuRLE generates an edit block by extracting
a sequence of edit operations and its context. 2) VuRLE pairs the edit blocks and
clusters them into edit groups 3) VuRLE generates repair templates, and each con-
tains an edit pattern and a context pattern. 4) VuRLE selects the best matching edit
group to detect for vulnerabilities 5) VuRLE selects and applies the most appropri-
ate repair template within the selected group.

stract Syntax Tree (AST) diff [23] of each vulnerable code and its repaired

code in a training set of known repair examples.

The difference between a pair of vulnerable and repaired code may be in

several code segments (i.e., contiguous lines of code). For each pair of vulner-

able and repaired code segments, VuRLE outputs an edit block which consists

of two parts: (1) a sequence of edit operations, and (2) its context. The first

specifies a sequence of AST node insertion, deletion, update, and move oper-

ations to transform the vulnerable code segment to the repaired code segment.

The latter specifies a common AST subtree corresponding to code appearing

before the two code segments.

2. Edit Group Generation. VuRLE compares each edit block with the other

edit blocks, and produces groups of similar edit blocks.

39



VuRLE creates these edit groups in several steps. First, it creates a graph

where each edit block is a node, and edges are added between two edit blocks

iff they share the longest common substring [26] of edit operations with a sub-

stantial size. Next, it extracts connected components [29] from these graphs.

Finally, it applies a DBSCAN [19]-inspired clustering algorithm, to divide

edit blocks in each connected component into edit groups.

3. Repair Template Generation. In each edit group, VuRLE generates a repair

template for each pair of edit blocks that are adjacent to each other in the

connected component (generated as part of Step 2).

Each repair template has an edit pattern and a context pattern. An edit

pattern specifies a sequence of transformative edits, while a context pattern

specifies the location of the code where the transformative edits should be

applied. To create the edit pattern, VuRLE identifies the longest common

substring of edit operations in the two edit blocks. To create the context pat-

tern, VuRLE compares the code appearing in the context part of the two edit

blocks. To generalize the patterns, VuRLE abstracts concrete identifier names

and types appearing in the patterns into placeholders.

The context pattern is used to identify vulnerable code, while the edit

pattern is used to repair identified vulnerabilities in the repair phase.

Repair Phase. VuRLE detects and repairs vulnerabilities by selecting the most

appropriate template in two steps (Step 4-5). These two steps are repeated a number

of times until no more vulnerable code segments are detected.

4. Edit Groups Selection. Given an input code and a set of repair templates,

VuRLE compares code segments of the input code with edit groups and iden-

tifies an edit group that best matches it.

5. Template Selection & Application. The most matched edit group may have

multiple templates that match an input code segment. VuRLE enumerates the

40



matched templates one by one, and applies the transformative edits specified

in the edit pattern of the template. If the application of the transformative

edits results in redundant code, VuRLE proceeds to try the next template.

Otherwise, it will flag the code segment as a vulnerability and generates a

repaired code segment by applying the transformative edits.

4.3 Learning Phase: Learning from Repair Exam-

ples

In this phase, VuRLE processes a set of vulnerability repair examples to produce

groups of similar repair templates. The three steps involved in this phase (Edit

Block Extraction, Edit Block Group Extraction, and Repair Template Generation)

are presented in more details below.

4.3.1 Edit Block Extraction

For each repair example, VuRLE uses Falleri et al.’s GumTree [21] to compare

the AST of a vulnerable code and its repaired code. Each node in an AST corre-

sponding to a source code file can be represented by a 2-tuple: (Type, Value). The

first part of the tuple indicates the type of the node, e.g., VariableDeclarationState-

ment, SimpleType, SimpleName, etc. The second indicates the concrete value s-

tored in the node, e.g., String, readLine, “OziExplorer”, etc.

Using GumTree, VuRLE produces for each repair example a set of edit blocks,

each corresponds to a specific code segment in the AST diff between a vulnerable

code and its repaired code. Each edit block consists of a sequence of edit operations,

and its context. The sequence can include one of the following edit operations:

• Insert(Node u, Node p, int k): Insert node u as the kth child of parent node

p.

41



• Delete(Node u, Node p, int k): Delete node u, which is the kth child of parent

node p.

• Update(Node u, Value v): Update the old value of node u to the new value

v.

• Move (Node u, Node p, int k): Move node u and make it the kth child of

parent p. Note that all children of u are moved as well, therefore this moves a

whole subtree.

For each sequence of edit operations, VuRLE also identifies its context. To

identify this context, VuRLE uses GumTree to extract an AST subtree that appears

in both vulnerable and repaired ASTs and is relevant to nodes affected by the edit

operations. This subtree is the largest common subtree where each of its leaf nodes

is a node with SimpleName type that specifies a variable that is used in the sequence

of edit operations. We make use of the getParents method of GumTree to find

this subtree.

To illustrate the above, consider Figure 4.2. It shows the ASTs of a vulnerable

code segment and its corresponding repaired code segment. Performing AST diff on

these two ASTs produces a sequence of edit operations which results in the deletion

of nodes V12 to V17, and the insertion of nodes R12 to R21 into the subtree rooted

at V3. It also produces a context which corresponds to the common AST subtree

highlighted in gray.

4.3.2 Edit Group Generation

VuRLE generates edit groups in two steps: (1) edit graph construction; (2) edit

block clustering. We describe these two steps in detail below.

Edit Graph Construction. VuRLE creates a graph, whose nodes are edit blocks

extracted in the previous step. The edges in this graph connect similar edit blocks.

Two edit blocks are deemed similar iff their edit operations are similar. To check

42



for this similarity, VuRLE extracts the longest common substring (LCS) [26] from

their edit operation sequences. The two edit blocks are then considered similar

if the length of this LCS is larger than a certain threshold TSim . Each edge is also

weighted by the reciprocal of the corresponding LCS length. This weight represents

the distance between the two edit blocks. We denote the distance between two edit

blocks e1 and e2 as dist(e1 , e2 ).

Edit Block Clustering. Given an edit graph, VuRLE first extracts connected com-

ponents [29] from it. For every connected component, VuRLE clusters edit blocks

appearing in it.

To cluster edit blocks in a connected component (CC ), VuRLE follows a

DBscan-inspired clustering algorithm. It takes in two parameters: ε (maximum

cluster radius) and ρ (minimum cluster size). Based on these two parameters,

VuRLE returns the following edit groups (EGS ):

EGS (CC ) = {Nε(ei) | ei ∈ CC ∧ |Nε(ei)| ≥ ρ} (4.1)

In the above equation, Nε(ei) represents a set of edit blocks in CC whose dis-

tance to ei is at most ε. Formally, it is defined as:

Nε(ei) = {ej ∈ CC | dist(ei, ej) ≤ ε} (4.2)

The value of ρ is set to be 2 to avoid generating groups consisting of only one

edit block. The value of ε is decided by following Kreutzer et al.’s code clustering

method [34]. Their heuristic has been shown to work well in their experiments. The

detailed steps are as follows:

1. Given an edit graph, VuRLE first computes the distance between each con-

nected edit block. Two edit blocks that are not connected in the edit graph has

an infinite distance between them.

2. VuRLE then orders the distances in ascending order. Let 〈d1, d2, ..., dn〉 be

43



the ordered sequence of those distances.

3. VuRLE finally sets the value of ε by finding the largest gap between two

consecutive distances d〈j+1〉 and d〈j〉 in the ordered sequence. Formally, ε is

set as ε = d〈j∗〉, where j∗ = argmax1≤j≤n(
d〈j+1〉
d〈j〉 ).

To illustrate the above process, Figure 4.3 presents two connected components

(CCs), {E1, E2, E3, E5, E6} and {E0, E7}. VuRLE first orders the distances into

[0.12, 0.14, 0.17, 0.25]. It then computes the largest gap between two consecutive

distances, and identifies a suitable value of ε, which is 0.17. Based on ε = 0.17 and

ρ = 2, VuRLE creates two groups of edit blocks for the first CC: {E1, E2, E3}, and

{E5, E6}. It generates none for the second CC.

4.3.3 Templates Generation

For each edit group, VuRLE identifies pairs of edit blocks that are adjacent nodes

in the edit graph. For each of these edit pairs, it creates a repair template. A repair

template consists of an edit pattern, which specifies a sequence of transformative

edits, and a context pattern, which specifies where the edits should be applied.

To create an edit pattern from a pair of edit blocks, VuRLE compares the edit

operation sequences of the two edit blocks. It then extracts the longest common

substring (LCS) from the two sequences. This LCS is the edit pattern.

To create a context pattern from a pair of edit blocks, VuRLE processes the

context of each edit block. Each context is a subtree. Given a pair of edit block

contexts (which is a pair of AST subtrees, ST1 and ST2), VuRLE proceeds in the

following steps:

1. VuRLE performs pre-order traversal on ST1 and ST2.

2. For each subtree, it extracts an ordered set of paths from the root of the subtree

to each of its leaf nodes. The two ordered sets PS1 and PS2 represent the

44



context of ST1 and ST2 respectively. We refer to each of these paths as a

concrete context sequence.

3. VuRLE then compares the corresponding elements of PS1 and PS2. For each

pair of paths, if they share a longest common substring (LCS) of size TSim ,

we use this LCS to represent both pairs and delete the paths from PS1 and

PS2. We refer to this LCS as an abstract context sequence.

4. VuRLE uses the remaining concrete sequences and identified abstract se-

quences as the context pattern.

As a final step, for each template, VuRLE replaces all concrete identifier types

and names with placeholders. All occurrences of the same identifier type or name

will be replaced by the same placeholder.

Figure 4.4 illustrates how VuRLE generates a context pattern by comparing two

contexts. VuRLE performs pre-order traversal on AST subtrees of context 1 and

context 2, generating an ordered set of paths for each context. After comparing the

two set, VuRLE finds the matching paths highlighted in gray. For each matching

pair of nodes that is of type SimpleName or SimpleType, VuRLE creates place-

holders for it. There are five matching pair of nodes fulfilling this criteria, which are

indicated by the dashed lines. Thus, VuRLE creates five placeholders named $V0,

$V1, $V2, $T0, and $M0 from them.

4.4 Repair Phase: Repairing Vulnerable Applica-

tions

In this phase, VuRLE uses repair templates generated in the learning phase to

detect whether an input code is vulnerable and simultaneously applies appropriate

edits to repair the vulnerability. The two steps involved in this phase (Edit Group

Selection and Template Selection) are presented in more details below. They are

45



performed iteratively until VuRLE can no longer detect any vulnerability.

4.4.1 Edit Group Selection

To detect whether an input code is vulnerable, VuRLE needs to find the edit

group with the highest matching score. VuRLE compares the input code (IC) with

each edit group (EG) and computes the matching score as follows:

Smatching(IC,EG) =
∑

T∈templates(EG)

Smatching(IC, T ) (4.3)

In the above equation, templates(EG) is the set of templates corresponding to

edit group EG, and Smatching(IC, T ) is the matching score between template T and

IC. VuRLE computes the matching score between the template T and input code

IC as follows:

1. VuRLE first generates an AST of the input code.

2. VuRLE performs pre-order traversal on this AST to produce an ordered set of

paths. Each path is a sequence of AST nodes from the root of the AST to one

of its leaf node. Let us denote this as IP .

3. VuRLE compares IP with the context of template T . If sequences in T can be

matched with sequences in IP , the number of matching nodes is returned as a

matching score. Abstract sequences need to be fully matched, while concrete

sequences only need to be partially matched. Otherwise, the matching score

is 0.

4.4.2 Template Selection

In the most matched edit group EG, there are likely to be multiple correspond-

ing templates (i.e., templates(EG) has more than one member). In this final step,

we need to pick the most suitable template.

46



To find a suitable template, VuRLE orders templates in a descending order ac-

cording to their matching scores and tries to apply templates in templates(EG)

one-by-one. To apply a template, VuRLE first finds a code segment whose context

matches with the context of the template. It then replaces all placeholders in the

template with concrete variable names and types that appear in the context of the

code segment. Next, VuRLE applies each transformative edits specified in the edit

operation sequence of the template to the code segment.

If the application of a template results in redundant code, VuRLE proceeds to

try the next template. The template selection step ends when one of the templates

can be applied without creating redundant code. The code segment where the tem-

plate is applied to is marked as being vulnerable and the resultant code after the

transformative edits in the template is applied is the corresponding repaired code.

4.5 Evaluation

This section evaluates the performance of VuRLE by answering two questions

below:

RQ1 (Vulnerability Detection) How effective is VuRLE in detecting whether a

code is vulnerable?

RQ2 (Vulnerability Repair) How effective is VuRLE in repairing the detect-

ed vulnerable codes? Why some vulnerable codes cannot be repaired by

VuRLE?

The following sections first describe the settings of our experiments, followed

by the results of the experiments which answer the above two questions.

47



Table 4.1: Types of Vulnerabilities in Our Dataset

Vulnerability Type Description
Unreleased Resource Failing to release a resource [52] before reusing it.

It increases a system’s susceptibility to Denial of
Service (DoS) attack.

Cryptographic Vulnerability Inappropriate usage of encryption algorithm [18, 51]
or usage of Plaintext Password Storage. It increases
a system’s susceptibility to Chosen-Plaintext Attack
(CPA), brute force attack, etc.

Unchecked Return Value Ignoring a method’s return value. It may cause an
unexpected state and program logic, and possibly
a privilege escalation bug.

Improper Error Handling Showing an inappropriate error handling message.
It may cause a privacy leakage, which reveals useful
information to potential attackers.

SSL Vulnerability Unchecked hostnames or certificates [25, 20]. It
makes a system susceptible to eavesdroppings and
Man-In-The-Middle attacks.

SQL Injection Vulnerability Unchecked input of SQL. It makes a system
susceptible to SQL injection attack, which allows
attackers to inject or execute SQL command via
the input data [49].

4.5.1 Experiment Setup

Dataset. We collect 48 applications written in Java from GitHub1 that have more

than 400 stars. These applications consist of Android, web, word-processing and

multimedia applications. The size of Android applications range from 3-70 MB

while the size of other applications are about 200 MB. Among these applications,

we identify vulnerabilities that affects them by manually analyzing commits from

each application’s repository. In total, we find 279 vulnerabilities. These vulnera-

bilities belong to several vulnerable types listed in Table 4.1.

Experiment Design. We use 10-fold cross validation to evaluate the performance

of VuRLE. First, we split the data into 10 groups (each containing roughly 28 vul-

1Github: https://github.com/

48



Table 4.2: Detection Result: VuRLE vs LASE

# of Detected Vulnerabilities Precision Recall

VuRLE 183 64.67% 65.59%

LASE 58 52.73% 20.79%

nerabilities). Then, one group is defined as a test group, and the other 9 groups as

a training group. The test group is the input of the repair phase, while the training

group is the input of the learning phase. We repeat the process 10 times by con-

sidering different group as test group. We examine the repaired code manually by

comparing it with the real repaired code provided by developers. Furthermore, we

compare VuRLE with LASE [53], which is state-of-the-art tool for learning repair

templates. When running VuRLE, by default we set TSim to three.

To evaluate the vulnerability detection performance of our approach, we use

precision and recall as the evaluation metrics, which are defined as follows.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP is the number of correctly detected vulnerabilities, FP is the number of

wrongly detected vulnerabilities, and FN is the number of vulnerabilities that are

not detected by our approach.

To evaluate the vulnerability detection performance of our approach, we use

success rate as the evaluation metric. Success rate is the proportion of the correctly

detected vulnerabilities that can be successfully repaired.

4.5.2 RQ1: Vulnerability Detection

To answer this RQ, we count the number of vulnerabilities that can be detected

by VuRLE and compute the precision and recall on the entire dataset.

Table 4.2 shows the number of detected vulnerabilities, precision, and recall of

49



Table 4.3: Vulnerability Repair: VuRLE & LASE

# of Repaired Vulnerabilities Success Rate

VuRLE 101 55.19%

LASE 21 36.21%

VuRLE and LASE. VuRLE successfully detects 194 vulnerabilities out of the 279

vulnerabilities, achieving a recall of 65.59%. On the other hand, LASE can only

detect 58 vulnerabilities out of the 279 vulnerabilities, achieving a recall of only

20.79%. Thus, VuRLE detects 215.52% more vulnerabilities compared to LASE. In

terms of precision, VuRLE improves over LASE by 22.64%. It means that VuRLE

proportionally generates less false positives than LASE.

4.5.3 RQ2: Vulnerability Repair

To answer this RQ, we investigate the number of vulnerabilities that can be

repaired successfully. We also investigate how VuRLE can repair some bugs than

cannot be repaired by LASE. We also discuss some causes on why VuRLE cannot

repair some bugs.

Table 4.3 presents the success rate of VuRLE and LASE. The success rate of

VuRLE is much higher than the success rate of LASE. VuRLE successfully repairs

101 vulnerabilities (55.19%), and LASE can only repairs 21 vulnerabilities, with

a success rate of 36.21%. Thus, VuRLE can repair 380.95% more vulnerabilities

compared to LASE. In terms of success rate, it improves over LASE by 52.42%.

Figure 4.5 provides a repair example generated by LASE and VuRLE on the

same input code. The piece of code in the example contains a vulnerability that

allows any hostname to be valid. LASE generates an overly general repair tem-

plate, which only include invocation to setHostnameVerifier. It generate

such template since each repair example invokes the setHostNameVerifier

method after they define the setDefaultHostnameVerifier method, but

the definition of the verifier method itself is different. On the other hand, VuRLE

50



generates two repair templates that can repair this vulnerability. One of the

template is for modifying the verify method, and another is for invoking the

setDefaultHostnameVerifier method.

Among 183 detected vulnerabilities, VuRLE cannot repair some of them. We

discuss the main causes as follows:

Unsuccessful Placeholder Resolution. When replacing placeholders with con-

crete identifier names and types, VuRLE may use a wrong type or name to

fill the placeholders. For example, the required concrete type is “double”, but

the inferred concrete type is “int”. Moreover, VuRLE may not be able to con-

cretize some placeholders since they are not found in the matching context.

Lack of Repair Examples. In our dataset, some vulnerabilities, such as Crypto-

graphic Misuses and Unchecked Return Value, have many examples. Thus, a

more comprehensive set of repair templates can be generated for these kinds

of vulnerabilities. However, some vulnerabilities, such as SSL Socket Vul-

nerability, only have a few examples. Thus, VuRLE is unable to derive a

comprehensive set of repair template to repair these kinds of vulnerabilities.

Partial Repair. For some cases, VuRLE can only generate a partial repair. This

may be caused either by the inexistence of similar repairs or because VuRLE

only extracts a partial repair pattern.

4.6 Conclusion and Future Work

In summary, we propose a tool, called VuRLE, to automatically detect and repair

vulnerabilities. It does so by learning repair templates from known repair examples

and applying the templates to an input code. Given repair examples, VuRLE ex-

tracts edit blocks and groups similar edit blocks into an edit group. Several repair

templates are then learned from each edit group. To detect and repair vulnerabil-

ities, VuRLE finds the edit group that matches the most with the input code. In

51



this group, it applies repair templates in order of their matching score until it de-

tects no redundant code (in which case a vulnerability is detected and repaired) or

until it has applied all repair templates in the edit group (in which case no vulner-

ability is detected). VuRLE repeats this detection and repair process until no more

vulnerabilities are detected.

We have experimented on 48 applications with 279 real-world vulnerabilities

and performed 10-fold cross validation to evaluate VuRLE. On average, VuRLE

can automatically detect 183 (65.59%) vulnerabilities and repair 101 (55.19%) of

them. On the other hand, the state-of-the-art approach named LASE can only detect

58 (20.79%) vulnerabilities and repair 21 (36.21%) of them. Thus, VuRLE can

detect and repair 215.52% and 380.95% more vulnerabilities compared to LASE,

respectively.

In the future, we plan to evaluate VuRLE using more vulnerabilities and ap-

plications written in various programming languages. We also plan to boost the

effectiveness of VuRLE further so that it can detect and repair more vulnerabilities.

52



V
u

ln
er

a
b

le
 C

o
d

e
 S

e
g
m

en
t

S
tr

in
g
 l

in
e
 =

 r
ea

d
er

.r
e
a
d

L
in

e(
)

if
(!

li
n

e
.s

ta
r
ts

W
it

h
(“

O
z
iE

x
p

lo
e
r”

))

{.
..

}

S
tr

in
g
 l

in
e
 =

 r
ea

d
er

.r
e
a
d

L
in

e(
)

if
(!

li
n

e
.s

ta
r
ts

W
it

h
(“

O
z
iE

x
p

lo
e
r”

))

{.
..

}

C
o
m

p
il

c
a
ti

o
n

U
n

it
: 
“
”

V
1

..
.

V
2

S
ta

te
m

en
t:

 “
”

V
3

V
a
ri

a
b

le
D

ec
la

ra
ti

o
n

S
ta

te
m

en
t:

 “
”

V
4

V
7

S
im

p
le

N
a
m

e
: 

li
n

e

V
8

M
et

h
o

d
In

v
o

c
a

ti
o

n
: 
“
”

V
9

V
6

S
im

p
le

N
a
m

e
: 

r
ea

d
L

in
e

If
S

ta
te

m
en

t:
 “

”
V

1
2

M
et

h
o
d

In
v
o
c
a
ti

o
n

: 
“
”

V
1
4

S
im

p
le

T
y
p

e
: 

S
tr

in
g

V
5

V
1
5

S
im

p
le

L
it

er
a
l:

 O
zi

E
x
p

lo
re

r

V
1

1

V
1
6

V
1

7

V
a
ri

a
b

le
D

ec
la

ra
ti

o
n

F
r
a
g
m

en
t:

 “
”

V
a
ri

a
b

le
D

ec
la

ra
ti

o
n

F
r
a
g
m

en
t:

 “
”

P
re

fi
x
E

x
p

re
ss

io
n

: 
!

V
1
3

P
re

fi
x
E

x
p

re
ss

io
n

: 
!

V
1
3

S
im

p
le

N
a

m
e
: 

S
tr

in
g

S
im

p
le

N
a

m
e
: 

S
tr

in
g

V
1

0

S
im

p
le

N
a

m
e
: 

r
ea

d
er

V
1

0

S
im

p
le

N
a

m
e
: 

r
ea

d
er

S
im

p
le

N
a
m

e
: 

li
n

e
S

im
p

le
N

a
m

e
: 

li
n

e

S
im

p
le

N
a
m

e
: 

S
ta

r
ts

W
it

h
S

im
p

le
N

a
m

e
: 

S
ta

r
ts

W
it

h

C
o
m

p
il

c
a
ti

o
n

U
n

it
: 
“
”

R
1

..
.

R
2

S
ta

te
m

en
t:

 “
”

R
3

V
a

ri
a

b
le

D
ec

la
ra

ti
o

n
S

ta
te

m
en

t:
 “

”
R

4

R
8

R
9

S
im

p
le

N
a

m
e
: 

S
tr

in
g

R
6

R
5

If
S

ta
te

m
en

t:
 “

”
R

1
2

In
fi

x
E

x
p

r
es

si
o
n

: 
=

=

R
1
4

M
et

h
o

d
In

v
o

c
a

ti
o

n
: 
“
”

R
1
0

S
im

p
le

N
a
m

e
: 

r
ea

d
L

in
e

S
im

p
le

N
a
m

e
: 

r
ea

d
er

R
1
1

R
1
6

R
ep

a
ir

ed
 C

o
d

e 
S

eg
m

en
t

S
tr

in
g
 l

in
e
 =

 r
ea

d
er

.r
e
a
d

L
in

e(
)

if
(l

in
e
 =

=
 n

u
ll

 |
| 
!l

in
e
.s

ta
rt

sW
it

h
(“

O
z
iE

x
p

lo
e
r”

))

{.
..
}

S
tr

in
g
 l

in
e
 =

 r
ea

d
er

.r
e
a
d

L
in

e(
)

if
(l

in
e
 =

=
 n

u
ll

 |
| 
!l

in
e
.s

ta
rt

sW
it

h
(“

O
z
iE

x
p

lo
e
r”

))

{.
..
}

N
u

ll
L

it
er

a
l:

 “
”

N
u

ll
L

it
er

a
l:

 “
”

In
fi

x
E

x
p

r
es

si
o
n

: 
||

R
1
3

In
fi

x
E

x
p

r
es

si
o
n

: 
||

R
1
3

P
re

fi
x
E

x
p

re
ss

io
n

: 
!

R
1
7

P
re

fi
x
E

x
p

re
ss

io
n

: 
!

R
1
7

V
a

ri
a

b
le

D
ec

la
ra

ti
o

n
F

r
a

g
m

en
t:

 “
”

R
7

S
im

p
le

T
y
p

e
: 

S
tr

in
g

S
im

p
le

T
y
p

e
: 

S
tr

in
g

S
im

p
le

N
a
m

e
: 

li
n

e
S

im
p

le
N

a
m

e
: 

li
n

e
M

et
h

o
d

In
v

o
c
a

ti
o

n
: 
“
”

R
1
8

M
et

h
o

d
In

v
o

c
a

ti
o

n
: 
“
”

R
1
8

S
im

p
le

L
it

er
a
l:

 O
zi

E
x
p

lo
re

r

R
2
1

S
im

p
le

L
it

er
a
l:

 O
zi

E
x
p

lo
re

r

R
2
1

R
2
0

S
im

p
le

N
a
m

e
: 

S
ta

r
ts

W
it

h
S

im
p

le
N

a
m

e
: 

S
ta

r
ts

W
it

h

R
2
0

S
im

p
le

N
a
m

e
: 

S
ta

r
ts

W
it

h

R
1

9

S
im

p
le

N
a
m

e
: 

li
n

e
S

im
p

le
N

a
m

e
: 

li
n

e

R
1

9

S
im

p
le

N
a
m

e
: 

li
n

e

R
1
5

S
im

p
le

N
a
m

e
: 

li
n

e

R
1
5

S
im

p
le

N
a
m

e
: 

li
n

e

C
o
m

p
il

c
a
ti

o
n

U
n

it
: 
“
”

R
1

..
.

R
2

S
ta

te
m

en
t:

 “
”

R
3

V
a

ri
a

b
le

D
ec

la
ra

ti
o

n
S

ta
te

m
en

t:
 “

”
R

4

R
8

R
9

S
im

p
le

N
a

m
e
: 

S
tr

in
g

R
6

R
5

If
S

ta
te

m
en

t:
 “

”
R

1
2

In
fi

x
E

x
p

r
es

si
o
n

: 
=

=

R
1
4

M
et

h
o

d
In

v
o

c
a

ti
o

n
: 
“
”

R
1
0

S
im

p
le

N
a
m

e
: 

r
ea

d
L

in
e

S
im

p
le

N
a
m

e
: 

r
ea

d
er

R
1
1

R
1
6

R
ep

a
ir

ed
 C

o
d

e 
S

eg
m

en
t

S
tr

in
g
 l

in
e
 =

 r
ea

d
er

.r
e
a
d

L
in

e(
)

if
(l

in
e
 =

=
 n

u
ll

 |
| 
!l

in
e
.s

ta
rt

sW
it

h
(“

O
z
iE

x
p

lo
e
r”

))

{.
..
}

N
u

ll
L

it
er

a
l:

 “
”

In
fi

x
E

x
p

r
es

si
o
n

: 
||

R
1
3

P
re

fi
x
E

x
p

re
ss

io
n

: 
!

R
1
7

V
a

ri
a

b
le

D
ec

la
ra

ti
o

n
F

r
a

g
m

en
t:

 “
”

R
7

S
im

p
le

T
y
p

e
: 

S
tr

in
g

S
im

p
le

N
a
m

e
: 

li
n

e
M

et
h

o
d

In
v

o
c
a

ti
o

n
: 
“
”

R
1
8

S
im

p
le

L
it

er
a
l:

 O
zi

E
x
p

lo
re

r

R
2
1

R
2
0

S
im

p
le

N
a
m

e
: 

S
ta

r
ts

W
it

h

R
1

9

S
im

p
le

N
a
m

e
: 

li
n

e

R
1
5

S
im

p
le

N
a
m

e
: 

li
n

e

Fi
gu

re
4.

2:
V

ul
ne

ra
bl

e
an

d
R

ep
ai

re
d

C
od

e
Se

gm
en

ts
an

d
T

he
ir

A
ST

s

53



Connected 

Components

Edit Groups

E5 E3

E2

E6 E10.25

0.12

0.14

0.17

E7

E0

0.25

0.12

Group 1

0.17

E5
E3

E1

E2
E6

0.25

Group 2

ε = 0.17

0.14

E0
E7

Figure 4.3: Edit Block Clustering: CCs to Edit Block Groups

public String MapIndex(List<File> files)

 {

   if(!files.contains(“Explore”))

  {…

}

Context 2

public static String FileInLog(Map map)

{

  if(!mapIndex.containsKey(map.id))

  {…

}

Context 1

Block: “”

Statement: “”

SingleVariableDeclaration: “”

SimpleName: String

MethodDeclaration: “”

Modifier: static SimpleType: StringModifier: public SimpleName: FileInLog

SimpleType: Map

SimpleName: map IfStatement: “”

SimpleName: mapIndex

MethodInvocation: “”

PrefixExpression: !

SimpleName: containsKey QualifiedName: map.id

Block: “”

Statement: “”

SingleVariableDeclaration: “”

SimpleName: String

MethodDeclaration: “”

SimpleType: StringModifier: public SimpleName:MapIndex

ParameterizedType: List<File>

IfStatement: “”SimpleType: List

SimpleName: List

SimpleType: File

SimpleName: File prefixExpression: !

SimpleName: file

MethodInvocation: “”

SimpleName: contains

CompilationUnit: “”

...

CompilationUnit: “”

...

SimpleName: Explore

String
$T0

String

String
$V0

String

isEmpty
$M0

containsKey

Explore
$V2

map.id

$V1
mapIndex

file

Figure 4.4: Context Pattern Generation

54



 HostnameVerifier allHostsValid = new HostnameVerifier(){ 

  public Boolean verify(String hostname, SSLSession session){ 

   return true; 

  } 

 } 

- urlConnection.setDefaultHostnameVerifier(allHostsValid); 

+ urlConnection.setHostnameVerifier(allHostsValid); 
 

(a) Patch Generated by LASE

 HostnameVerifier allHostsValid = new HostnameVerifier(){ 

  public Boolean verify(String hostname, SSLSession session){ 

-   return true; 

+   HostnameVerifier hv = HttpsURLConnection.getDefaultHostnameVerifier(); 

+   Return hv.verify(hostname, session); 

  } 

 } 

- urlConnection.setDefaultHostnameVerifier(allHostsValid); 

+ urlConnection.setHostnameVerifier(allHostsValid); 

 (b) Patch Generated by VuRLE

Figure 4.5: A Vulnerability Repaired by LASE and VuRLE

55



Chapter 5

Future Research Direction: An

Empirical Study of Authentication

Misuses in Android Applications

5.1 Introduction

Vulnerabilities introduced in previous two chapters only exist in the user side.

However, there are some vulnerabilities that can only be detected during data trans-

mission, such as communication between client and server. This chapter introduces

our future research direction to detect authentication misuse flaws in Android appli-

cations. Based on the report published by OWASP [1] in 2016 and 2017, insecure

authentication has been the top-10 vulnerabilities in applications.

As the number of smartphones have been rapidly increasing used nowadays. A

smartphone has become a tool with multiple functions, such as socialising with oth-

ers, working, online shopping, by applying different kinds of applications. Most

web applications on smartphone []provide a login system, which requests for us-

er’s basic information(e.g., username, password, email, etc.). From user’s perspec-

tive, those basic information are provided to verify their identity. To establish a

secure communication channel, those basic information should be preprocessed be-

56



fore transmission, in case of the man-in-the-middle attack. A security expert knows

the correct way to implement a secure “Challenge-Response” authentication. Most

developers of web applications are usually not security experts. Due to the limited

time and security knowledge, the “Challenge-Response” authentication may not be

implemented correctly in those web applications. Three types of authentication pro-

tocols that are mainly used in Android applications: authentication protocol with

shared secret key, authentication protocol with timestamp, and authentication

protocol with public key.

For the login system in a web application, most recent authentication vulnera-

bility detection approaches focus on input validation vulnerabilities [59, 17], which

causes cross-site scripting(XSS) attack and SQL injection attack. Some approaches

focus on password authentication vulnerabilities [75, 35] that are vulnerable to of-

fline dictionary attack and impersonate attack. XSS vulnerability and SQL injection

vulnerability are caused by improper input sanitization, which requires validation of

an external input. Logic authentication vulnerability [22, 63] is caused by improper

input assignment, such as authentication backdoor. It is related to internal value

assignment(i.e., an input generated by developers). Firmalice [63] applies control

flow analysis to detect a logic vulnerability(i.e., authentication backdoor). However,

the connection between a client and a server may also be vulnerable to eavesdrop-

ping, intercepting, or manipulating while authenticating. For example, the message

for “Challenge-Response scheme can not only be assigned by the data from an in-

ternal input, but also an internal input. We focus on two categories of authentication

protocol vulnerability, authentication logic vulnerability and request forgery vulner-

ability.

The reason why we apply the detection on Android platform is described as

follows: First, there are lots of third party application stores for users to down-

load Android applications. Due to the existence of the large amount of third party,

uploaded applications are not been checked carefully, that is, more vulnerable appli-

cations and malicious applications are uploaded. Second, our tool is written in Java,

57



and Android is closely related to Java. Also, Google provides lots of authentication

related APIs. For example, the API GoogleSignInAccount.getIdToken,

which extracts user’s unique idToken that will be provided to server to authenticate

user’s identity. Third, Android is a open-source platform, and lots of open-sourced

tools are published to decompile an apk file and translate the bytecode into an inter-

mediate language, such as Soot [73], APKtool [83].

Our future research focus on detecting the incorrect implementation of authen-

tication protocols (i.e., misuses of “Challenge-Response” authentication scheme).

We detect the three protocols that are mainly used in Android applications, that is,

authentication protocol with shared secret key, authentication protocol with

timestamp, and authentication protocol with public key. By applying static pro-

gram analysis, we are able to extract the dataflow of a challenge or a response to

detect whether the “Challenge-ReSsponse” scheme is implemented correctly.

5.2 Definition of Authentication Protocols

This section explains common protocols of login. Generally, an authentication

contains two steps:

1. A sends a message, which includes her name and password, across the net-

work to B.

2. B verifies message (i.e., name and password) and starts the communication if

it is matched.

However, the exchange data between A and B is not encrypted by any cryp-

tographic integrity protection method. Three protocols that are commonly used in

an authentication scheme, is described below: protocol with shared secret key,

protocol with timestamp and protocol with one-way public key.

Protocol with Shared Secret Key Figure 5.1 describes two “Challenge-

Response” protocols based on shared secret key. By using the secret

58



BBAA

Message

R

f(KA-B, R)

(a) Encrypted by A

BBAA

Message

R

KA-B (R)

(b) Encrypted by B

Figure 5.1: Login Authentication Protocol with Shared Secret Key

key KA−B shared by A and B, challenge R can be encrypted through a

symmetric encryption scheme (e.g., DES and AES) or be hashed into a

message digest as a result. In Figure 5.1a, A encrypts the challenge R from

B by using the secret key KA−B as fKA−B ,R. To verify A, B uses KA−B

to decrypt ciphertext and extracts the challenge R. Another authentication

protocol in Figure 5.1b, B sends an encrypted challenge fKA−B ,R to A. A

sends the decrypted challenge R back to B. Moreover, the challenge R and

KA−B can be concatenated. The result can be hashed as hash(KA−B, R).

Protocol with Timestamp In order to create a challenge R with limited lifetime,

an authentication protocol with timestamp is proposed, shown in Figure 5.2.

In this protocol, it requires that A and B have a synchronized clock, and A

sends a message with an encrypted current time. Then, B extracts the time to

ensure that it is validate. Moreover, this protocol is more efficient by reducing

the authentication to a one-round protocol.

Protocol with One-Way Public Key Figure 5.3 illustrates two authentication pro-

tocols. In Figure 5.3a, A uses her private key to sign challenge R as [R]A. B

59



can verify A by using her public key. If R matches, verification is succeed.

Furthermore, B can use A’s public key to encrypt the challenge R as {R}A,

shown in Figure 5.3b. A extracts R by using her private key to decrypt the

ciphertext.

BBAA
Message, KA-B (timestamp)

Figure 5.2: Login Authentication Protocol with TimeStamp

5.3 Common Rules of Password Authentication in

Android

While the secure authentication protocol is precisely defined in Section 5.2, we

propose the question whether developers who use authentication protocols imple-

ment the authentication correctly. Using authentication protocols correctly can be

challenging. Several rules are defined as follows to implement various authentica-

tion protocols. In particularly, any application that violates one of the following

rules will not be secure.

Rules for Challenge-Response Authentication Protocols. Password authenti-

cation is the simplest “Challenge-Response” authentication protocol, We

have defined three general rules as follows:

Rule 1: Do not use password in plaintext to transit in the public channel without

any additional protection, such as SSL/TLS.

Rule 2: Do not use repeatable number as challenge.

Rule 3: Do not use predictable number in plaintext as a challenge if it is used alone

to extract a session key.

60



BBAA

Message

[R]A

R

(a) Use public key signature

BBAA

Message

R

{R}A

(b) Use public key to encrypt

Figure 5.3: Login Authentication Protocol with Public Key

Rule 1 forbids to use password in plaintext if a public channel is not protected by

any additional protection, such as SSL or TLS. The authentication communication is

vulnerable to password stealing and man-in-the-middle attack (MITMA) [70]. Pass-

word stealing is an effective method to achieve attacker’s goal. By launch phishing

attack, attacker can extract user’s password easily without decrypt it. Moreover, at-

tacker is able to launch password reuse attack by using both username and password.

Another threat is man-in-the-middle attack (MITMA). Suppose that an attacker has

fully controlled the data exchange channel (i.e., eavesdropping, interception, and

manipulation) [16], the attacker enables to eavesdrop the user’s information (i.e.,

username and password), even modify user’s information.

Rule 2 states that an authentication protocol should not use a repeatable number

as challenge. For each “Challenge-Response” sequence, authentication protocol-

s usually employ a unique cryptographic nonce as the challenge. It prevents the

authentication against man-in-the-middle attack and subsequent replay attack.

Rule 3 states that the challenge should be unpredictable and encrypted, if it will

be used to generate a session key. Since the challenge will be used to combine

with the secret to generate an unpredictable encryption key for this session [12], an

61



attacker is easier to extract session key and decrypt all exchanged messages.

Rule for Timestamp-based Protocol. Each authentication is issued a timestamp to

ensure that each authentication is unique. We define a rule for timestamp-

based protocol.

Rule 4: Do not use a repeatable timestamp.

Rule 4 states that a timestamp for each authentication should be unique. Instead

of applying a three-round authentication (i.e., “Challenge-Response” authentication

protocol), the authentication with timestamp is more efficient to apply one-round

authentication. However, if a timestamp in form of hour/minute/second, which is a

repeatable timestamp that can be repeated on the next day with the same time, the

attacker is able to impersonate the user to communicate with server.

62



Chapter 6

Dissertation Summary and Future

Work

6.1 Summary of Contribution

This dissertation makes contributions on learning fix patterns of vulnerabili-

ties and repair vulnerabilities of designing automatic vulnerability repair schemes.

Moreover, our future research direction are described.

Our first work introduced an automatic vulnerability repair tool. We focused on

cryptographic misuse defects, since cryptography is widely applied to protect user’s

data, especially on mobile platform. We introduced seven cryptographic algorithm

that are commonly used in Android applications, and then manually created repair

templates by analyzing a correct implementation for each cryptographic algorithm.

To repair a vulnerable Android application, we detected a misuse and identify the

misuse type by comparing the vulnerable code with every cryptographic misuse

template. The corresponding repair template was customized and applied to repair

the misuse by replacing variable names. Our result shows that our repair scheme is

lightweight to be applied to Android apps and it is able to repair those vulnerabilities

effectively.

In the second work, we made an attempt to learn repair edits automatically in-

63



stead of generating manually. We used known repair examples, including vulnerable

code and repaired code, to learn repair edits of different vulnerabilities. Similar re-

pair edits were clustered into an edit group, and several templates were generated

from each edit group. A template was applied to the most matched vulnerability.

Our experiment result further showed that it is possible to learn repair edits and

repair multiple vulnerabilities automatically. This work has been published to Eu-

ropean Symposium on Research in Computer and Science

Finally, we proposed our future research direction that we plan to detect authen-

tication misuses on mobile platform. By analyzing the web application rules on

mobile platform, we identified several vulnerabilities that are caused by the incor-

rect implementation of “Challenge-Response” authentication protocol. In mobile

platform, three authentication protocols are commonly used, and we summarized

six authentication secure rules to help developers implement a correct authentica-

tion protocol.

6.2 Future Work

Designing a more effective and applicable vulnerability repair scheme is a sig-

nificant work to help developers and users to prevent to be attacked. In order to

form a more comprehensive dissertation work, we are going to cover more studies

in the final dissertation. In this section, we introduce the studies that we will do in

the future and present a concrete plan to finish them and the dissertation.

6.2.1 Future Work: Unknown Vulnerabilities Detection and Re-

pair

Authentication Misuses Detection and Repair

As authentication protocols are widely used nowadays, designing a usable and

light-weight tool to detect authentication misuses is the extremely important. Lots

64



of secure authentication protocols are proposed for various of web services [94, 31],

but only few of them can be applied on mobile platforms because of the resources

and memory limitation. To implement a light-weight authentication protocol, de-

velopers have to follow the secure authentication implementation strictly. However,

most of them are not security experts that some implementations are incorrect. We

plan to propose a light-weight tool to detect the misuses of authentication protocols

on mobile platform. This tool is required to detect precisely and effectively.

Unknown Vulnerabilities Detection and Repair

Most previous works deal with known vulnerabilities detection and repair. We

also propose some approaches to repair some known vulnerabilities automatically.

However, unknown vulnerabilities are more dangerous that attackers can exploit it

and perform new attacks on an unknown vulnerability to steal users’ private infor-

mation. ShieldGen [81] detects and repairs unknown vulnerabilities. It uses zero-

day attack to identify those unknown vulnerabilities if they are vulnerable to those

attacks. However, the data patch generation is only performed on the input data. By

comparing an input with legitimate information, it is able to identify the incorrect

input and correct it. Since only few vulnerabilities that can be exploited by using

malicious inputs, patch malicious input only repairs specific vulnerabilties. We aim

to generate a model with several safe behaviors. We expected to use the model to

compare an input application those benign behaviors. If the input application has

different behaviors, we could assume this application is vulnerable. Next, we can

repair its detected vulnerable behaviors to safe behaviors.

65



Bibliography

[1] Owasp mobile top 10. URL: https://www.owasp.org/index.php/Mobile-Top-10-2016.

[2] Securerandom. URL: http://developer.android.com/reference/java/security/SecureRandom.html.

[3] Seven templates for the corresponding misuses. URL:
https://sites.google.com/a/smu.edu.sg/my-work/home.

[4] Status of software security report, vol 5. URL:
http://www.veracode.com/resources/state-of-software-security, 2013.

[5] A. Alavi, A. Quach, H. Zhang, B. Marsh, F. U. Haq, Z. Qian, L. Lu, and R. Gupta.
Where is the weakest link? a study on security discrepancies between android apps
and their website counterparts. In International Conference on Passive and Active
Network Measurement, pages 100–112. Springer, 2017.

[6] M. A. Alkhalaf. Automatic Detection and Repair of Input Validation and Sanitization
Bugs. University of California, Santa Barbara, 2014.

[7] F. Amiri, M. R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani. Mutual information-
based feature selection for intrusion detection systems. Journal of Network and Com-
puter Applications, 34(4):1184–1199, 2011.

[8] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan. Automated testing for
sql injection vulnerabilities: an input mutation approach. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, pages 259–269. ACM,
2014.

[9] A. Armando, A. Merlo, M. Migliardi, and L. Verderame. Breaking and fixing the
android launching flow. Computers & Security, 39:104–115, 2013.

[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm Sigplan Notices, 49(6):259–269,
2014.

[11] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. Venkatakrishnan. Candid: prevent-
ing sql injection attacks using dynamic candidate evaluations. In Proceedings of the
14th ACM conference on Computer and communications security, pages 12–24. ACM,
2007.

[12] M. Bellare and P. Rogaway. Provably secure session key distribution: the three party
case. In Proceedings of the twenty-seventh annual ACM symposium on Theory of
computing, pages 57–66. ACM, 1995.

66



[13] L. Bilge and T. Dumitras. Before we knew it: an empirical study of zero-day attacks
in the real world. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 833–844. ACM, 2012.

[14] A. M. Braga and D. C. Schwab. Design issues in the construction of a cryptograph-
ically secure instant message service for android smartphones. SECURWARE 2014,
page 18, 2014.

[15] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic genera-
tion of vulnerability-based signatures. In Security and Privacy, 2006 IEEE Symposium
on, pages 15–pp. IEEE, 2006.

[16] F. Callegati, W. Cerroni, and M. Ramilli. Man-in-the-middle attack to the https proto-
col. IEEE Security & Privacy (sp), 7(1):78–81, 2009.

[17] C. Cao, N. Gao, P. Liu, and J. Xiang. Towards analyzing the input validation vulner-
abilities associated with android system services. In Proceedings of the 31st Annual
Computer Security Applications Conference, pages 361–370. ACM, 2015.

[18] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical study of cryp-
tographic misuse in android applications. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 73–84. ACM, 2013.

[19] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In Knowledge Discovery and Data
Mining (KDD), volume 96, pages 226–231, 1996.

[20] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith. Why
eve and mallory love android: An analysis of android ssl (in) security. In Proceedings
of the 2012 ACM conference on Computer and communications security, pages 50–61.
ACM, 2012.

[21] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus. Fine-grained
and accurate source code differencing. In ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19,
2014, pages 313–324, 2014.

[22] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward automated detection of
logic vulnerabilities in web applications. In Proceedings of the 19th USENIX security
symposium, volume 58, 2010.

[23] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distilling: Tree differenc-
ing for fine-grained source code change extraction. IEEE Transactions on Software
Engineering, 33(11), 2007.

[24] F. Gao, L. Wang, and X. Li. Bovinspector: automatic inspection and repair of
buffer overflow vulnerabilities. In Automated Software Engineering (ASE), 2016 31st
IEEE/ACM International Conference on, pages 786–791. IEEE, 2016.

[25] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov. The most
dangerous code in the world: validating ssl certificates in non-browser software. In
Proceedings of the 2012 ACM conference on Computer and communications security,
pages 38–49. ACM, 2012.

67



[26] D. Gusfield. Algorithms on strings, trees and sequences: computer science and com-
putational biology. Cambridge university press, 1997.

[27] W. G. Halfond and A. Orso. Amnesia: analysis and monitoring for neutralizing sql-
injection attacks. In Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering, pages 174–183. ACM, 2005.

[28] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing for overflows:
A guided fuzzer to find buffer boundary violations. In USENIX Security Symposium,
pages 49–64, 2013.

[29] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipulation.
Communications of the ACM, 16(6):372–378, 1973.

[30] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri. Code injection attacks on
html5-based mobile apps: Characterization, detection and mitigation. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pages 66–77. ACM, 2014.

[31] S. Kalra and S. K. Sood. Secure authentication scheme for iot and cloud servers.
Pervasive and Mobile Computing, 24:210–223, 2015.

[32] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned from
human-written patches. In Proceedings of the 2013 International Conference on Soft-
ware Engineering, pages 802–811. IEEE Press, 2013.

[33] S. H. Kim, D. Han, and D. H. Lee. Predictability of android openssl’s pseudo random
number generator. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications Security, pages 659–668. ACM, 2013.

[34] P. Kreutzer, G. Dotzler, M. Ring, B. M. Eskofier, and M. Philippsen. Automatic clus-
tering of code changes. In Proceedings of the 13th International Conference on Mining
Software Repositories, pages 61–72. ACM, 2016.

[35] W.-C. Ku and S.-T. Chang. Impersonation attack on a dynamic id-based remote user
authentication scheme using smart cards. IEICE Transactions on Communications,
88(5):2165–2167, 2005.

[36] X.-B. D. Le. Towards efficient and effective automatic program repair. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering,
pages 876–879. ACM, 2016.

[37] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser. S3: syntax-and semantic-
guided repair synthesis via programming by examples. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, pages 593–604. ACM,
2017.

[38] X. B. D. Le, D. Lo, and C. Le Goues. History driven program repair. In Software
Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Con-
ference on, volume 1, pages 213–224. IEEE, 2016.

[39] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for
automatic software repair. Software Engineering, IEEE Transactions on, 38(1):54–72,
2012.

68



[40] I. Lee, S. Jeong, S. Yeo, and J. Moon. A novel method for sql injection attack detection
based on removing sql query attribute values. Mathematical and Computer Modelling,
55(1):58–68, 2012.

[41] S. Lekies, B. Stock, and M. Johns. 25 million flows later: large-scale detection of
dom-based xss. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
Communications Security, pages 1193–1204. ACM, 2013.

[42] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bod-
den, D. Octeau, and P. McDaniel. Iccta: Detecting inter-component privacy leaks
in android apps. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 280–291. IEEE Press, 2015.

[43] L. Li, A. Bartel, J. Klein, and Y. Le Traon. Automatically exploiting potential compo-
nent leaks in android applications. In Trust, Security and Privacy in Computing and
Communications (TrustCom), 2014 IEEE 13th International Conference on, pages
388–397. IEEE, 2014.

[44] Y. Li, Y. Zhang, J. Li, and D. Gu. icryptotracer: Dynamic analysis on misuse of
cryptography functions in ios applications. In Network and System Security, pages
349–362. Springer, 2014.

[45] Z. Li, G. Xia, H. Gao, Y. Tang, Y. Chen, B. Liu, J. Jiang, and Y. Lv. Netshield:
massive semantics-based vulnerability signature matching for high-speed networks.
In ACM SIGCOMM Computer Communication Review, volume 40, pages 279–290.
ACM, 2010.

[46] Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie. Autopag: towards automated software
patch generation with source code root cause identification and repair. In Proceedings
of the 2nd ACM symposium on Information, Computer & Communications Security,
pages 329–340. ACM, 2007.

[47] M. Linares-Vásquez, G. Bavota, and C. Escobar-Velásquez. An empirical study on
android-related vulnerabilities. In Proceedings of the 14th International Conference
on Mining Software Repositories, pages 2–13. IEEE Press, 2017.

[48] J. Liu, T. Wu, J. Yan, and J. Zhang. Fixing resource leaks in android apps with light-
weight static analysis and low-overhead instrumentation. In Software Reliability Engi-
neering (ISSRE), 2016 IEEE 27th International Symposium on, pages 342–352. IEEE,
2016.

[49] V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java applications
with static analysis. In Proceedings of the 22nd USENIX security symposium, volume
2013, 2005.

[50] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically vetting android apps for
component hijacking vulnerabilities. In Proceedings of the 2012 ACM conference on
Computer & Communications Security, pages 229–240. ACM, 2012.

[51] S. Ma, D. Lo, T. Li, and R. H. Deng. Cdrep: Automatic repair of cryptographic
misuses in android applications. In Proceedings of the 11th ACM on Asia Conference
on Computer & Communications Security, pages 711–722. ACM, 2016.

[52] N. Meghanathan. Source code analysis to remove security vulnerabilities in java sock-
et programs: A case study. arXiv preprint arXiv:1302.1338, 2013.

69



[53] N. Meng, M. Kim, and K. S. McKinley. Lase: locating and applying systematic edits
by learning from examples. In Proceedings of the 2013 International Conference on
Software Engineering, pages 502–511. IEEE Press, 2013.

[54] M. Monperrus. A critical review of automatic patch generation learned from human-
written patches: essay on the problem statement and the evaluation of automatic soft-
ware repair. In Proceedings of the 36th International Conference on Software Engi-
neering, pages 234–242. ACM, 2014.

[55] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. Le Traon. Ef-
fective inter-component communication mapping in android with epicc: An essential
step towards holistic security analysis. In Proceedings of the 22nd USENIX security
symposium, pages 543–558, 2013.

[56] G. Pellegrino and D. Balzarotti. Toward black-box detection of logic flaws in web
applications. In NDSS, 2014.

[57] W. Qiang, Y. Liao, G. Sun, L. T. Yang, D. Zou, and H. Jin. Patch-related vulnerability
detection based on symbolic execution. IEEE Access, 5:20777–20784, 2017.

[58] M. Salas and E. Martins. Security testing methodology for vulnerabilities detection
of xss in web services and ws-security. Electronic Notes in Theoretical Computer
Science, 302:133–154, 2014.

[59] T. Scholte, D. Balzarotti, and E. Kirda. Have things changed now? an empirical
study on input validation vulnerabilities in web applications. Computers & Security,
31(3):344–356, 2012.

[60] E. C. Sezer, P. Ning, C. Kil, and J. Xu. Memsherlock: an automated debugger for un-
known memory corruption vulnerabilities. In Proceedings of the 14th ACM conference
on Computer and communications security, pages 562–572. ACM, 2007.

[61] L. K. Shar and H. B. K. Tan. Predicting sql injection and cross site scripting vulnerabil-
ities through mining input sanitization patterns. Information and Software Technology,
55(10):1767–1780, 2013.

[62] L. K. Shar, H. B. K. Tan, and L. C. Briand. Mining sql injection and cross site scripting
vulnerabilities using hybrid program analysis. In Proceedings of the 2013 Internation-
al Conference on Software Engineering, pages 642–651. IEEE Press, 2013.

[63] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Firmalice-automatic
detection of authentication bypass vulnerabilities in binary firmware. In NDSS, 2015.

[64] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie. Modelling analysis and
auto-detection of cryptographic misuse in android applications. In Dependable, Auto-
nomic and Secure Computing (DASC), 2014 IEEE 12th International Conference on,
pages 75–80. IEEE, 2014.

[65] S. Sidiroglou-Douskos, E. Lahtinen, and M. Rinard. Automatic discovery and patch-
ing of buffer and integer overflow errors. 2015.

[66] A. Smirnov and T.-c. Chiueh. Dira: Automatic detection, identification and repair of
control-hijacking attacks. In The Network and Distributed System Security Sympo-
sium, 2005.

70



[67] R. Sommer and V. Paxson. Outside the closed world: On using machine learning for
network intrusion detection. In Security and Privacy (SP), 2010 IEEE Symposium on,
pages 305–316. IEEE, 2010.

[68] S. Son, K. S. McKinley, and V. Shmatikov. Fix me up: Repairing access-control bugs
in web applications. In The Network and Distributed System Security Symposium,
2013.

[69] P. A. Sonewar and N. A. Mhetre. A novel approach for detection of sql injection
and cross site scripting attacks. In Pervasive Computing (ICPC), 2015 International
Conference on, pages 1–4. IEEE, 2015.

[70] H.-M. Sun, Y.-H. Chen, and Y.-H. Lin. opass: A user authentication protocol resistant
to password stealing and password reuse attacks. IEEE Transactions on Information
Forensics and Security, 7(2):651–663, 2012.

[71] V. Sunkari and C. G. Rao. Preventing input type validation vulnerabilities using net-
work based intrusion detection systems. In Contemporary Computing and Informatics
(IC3I), 2014 International Conference on, pages 702–706. IEEE, 2014.

[72] M.-T. Trinh, D.-H. Chu, and J. Jaffar. S3: A symbolic string solver for vulnerability
detection in web applications. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 1232–1243. ACM, 2014.

[73] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot: A java
bytecode optimization framework. In CASCON First Decade High Impact Papers,
pages 214–224. IBM Corp., 2010.

[74] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross site
scripting prevention with dynamic data tainting and static analysis. In The Network
and Distributed System Security Symposium, volume 2007, page 12, 2007.

[75] D. Wang and P. Wang. Offline dictionary attack on password authentication schemes
using smart cards. In Information Security, pages 221–237. Springer, 2015.

[76] H. Wang, Y. Zhang, J. Li, H. Liu, W. Yang, B. Li, and D. Gu. Vulnerability assessment
of oauth implementations in android applications. In Proceedings of the 31st Annual
Computer Security Applications Conference, pages 61–70. ACM, 2015.

[77] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel. k-zero day safety: A network
security metric for measuring the risk of unknown vulnerabilities. IEEE Transactions
on Dependable and Secure Computing, 11(1):30–44, 2014.

[78] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-aware directed fuzzing
tool for automatic software vulnerability detection. In Security and privacy (SP), 2010
IEEE symposium on, pages 497–512. IEEE, 2010.

[79] X. Wang and H. Yu. How to break md5 and other hash functions. In In proceedings
of 25th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques(Advances in Cryptology–EUROCRYPT), pages 19–35. Springer,
2005.

[80] F. Wei, S. Roy, X. Ou, et al. Amandroid: A precise and general inter-component data
flow analysis framework for security vetting of android apps. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pages
1329–1341. ACM, 2014.

71



[81] H. J. W. Weidong Cui, Marcus Peinado and M. E. Locasto. Shieldgen: Automatic data
patch generation for unknown vulnerabilities with informed probing. In Symposium
on Security and Privacy. IEEE, 2007.

[82] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches
using genetic programming. In Proceedings of the 31st International Conference on
Software Engineering, pages 364–374. IEEE Computer Society, 2009.

[83] R. Winsniewski. Apktool: a tool for reverse engineering android apk files. URL:
https://ibotpeaches. github. io/Apktool/(vi sited on 07/27/2016), 2012.

[84] Y. Wu, B. Chen, Z. Zhao, and Y. Cheng. Attack and countermeasure on interlock-
based device pairing schemes. IEEE Transactions on Information Forensics and Se-
curity, 13(3):745–757, 2018.

[85] Q. Xin and S. P. Reiss. Leveraging syntax-related code for automated program re-
pair. In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pages 660–670. IEEE Press, 2017.

[86] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and discovering vulnerabil-
ities with code property graphs. In Security and Privacy (SP), 2014 IEEE Symposium
on, pages 590–604. IEEE, 2014.

[87] T. Yang, H. Cui, S. Niu, and P. Zhang. An analysis on sensitive data passive leak-
age in android applications. In Communication Technology (ICCT), 2015 IEEE 16th
International Conference on, pages 125–131. IEEE, 2015.

[88] T. Ye, L. Zhang, L. Wang, and X. Li. An empirical study on detecting and fixing
buffer overflow bugs. In Software Testing, Verification and Validation (ICST), 2016
IEEE International Conference on, pages 91–101. IEEE, 2016.

[89] F. Yu, M. Alkhalaf, T. Bultan, and O. H. Ibarra. Automata-based symbolic string
analysis for vulnerability detection. Formal Methods in System Design, 44(1):44–70,
2014.

[90] F. Yu, C.-Y. Shueh, C.-H. Lin, Y.-F. Chen, B.-Y. Wang, and T. Bultan. Optimal sani-
tization synthesis for web application vulnerability repair. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, pages 189–200. ACM,
2016.

[91] M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese. Network diversity:
a security metric for evaluating the resilience of networks against zero-day attacks.
IEEE Transactions on Information Forensics and Security, 11(5):1071–1086, 2016.

[92] M. Zhang and H. Yin. Appsealer: Automatic generation of vulnerability-specific
patches for preventing component hijacking attacks in android applications. In Pro-
ceedings of the 21th Annual Network and Distributed System Security Symposium
(NDSS 2014), 2014.

[93] X. Zhang, Y. Zhang, J. Li, Y. Hu, H. Li, and D. Gu. Embroidery: Patching vulnerable
binary code of fragmentized android devices. In Software Maintenance and Evolution
(ICSME), 2017 IEEE International Conference on, pages 47–57. IEEE, 2017.

[94] R. Zhou, Y. Lai, Z. Liu, Y. Chen, X. Yao, and J. Gong. A security authentication
protocol for trusted domains in an autonomous decentralized system. International
Journal of Distributed Sensor Networks, 12(3):5327949, 2016.

72


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2018

	Automatic vulnerability detection and repair
	Siqi MA
	Citation


	1 Introduction
	1.1 Problem Overview
	1.2 Research Objectives
	1.2.1 Cryptographic Misuse Repair
	1.2.2 Multiple Vulnerabilities Repair
	1.2.3 Authentication Misuse Flaw

	1.3 Dissertation Organization

	2 Literature Review
	2.1 Vulnerability Detection for non-Mobile Applications
	2.1.1 Buffer Overflow Vulnerability
	2.1.2 SQL Injection & Cross-Site Scripting

	2.2 Vulnerability Detection for Mobile Applications
	2.2.1 Component Hijacking Vulnerability
	2.2.2 Cryptographic Misuses
	2.2.3 Authentication Protocol Vulnerability

	2.3 Automatic Bug Repair
	2.3.1 Normal Bug Repair
	2.3.2 Vulnerability Repair

	2.4 Zero-day Vulnerability Detection and Repair

	3 CDRep: Automatic Repair of Cryptographic Misuses in Android Applications
	3.1 Introduction
	3.1.1 Applications of CDRep
	3.1.2 Organization

	3.2 Rules of Cryptographic Misuses
	3.3 Overview of CDRep
	3.4 Cryptographic Misuses: Automatic Repair
	3.4.1 Patch Templates
	3.4.2 Patch Generation

	3.5 Experiment
	3.5.1 Experiment Setup
	3.5.2 RQ1: Success Rate
	3.5.3 RQ2 and RQ3: Runtime and Size
	3.5.4 RQ4: Unsuccessful Cases

	3.6 Limitations
	3.7 Conclusion and Future Work

	4 VuRLE: Automatic Vulnerability Detection and Repair by Learning from Examples
	4.1 Introduction
	4.2 Overview of VuRLE
	4.3 Learning Phase: Learning from Repair Examples
	4.3.1 Edit Block Extraction
	4.3.2 Edit Group Generation
	4.3.3 Templates Generation

	4.4 Repair Phase: Repairing Vulnerable Applications
	4.4.1 Edit Group Selection
	4.4.2 Template Selection

	4.5 Evaluation
	4.5.1 Experiment Setup
	4.5.2 RQ1: Vulnerability Detection
	4.5.3 RQ2: Vulnerability Repair

	4.6 Conclusion and Future Work

	5 Future Research Direction: An Empirical Study of Authentication Misuses in Android Applications
	5.1 Introduction
	5.2 Definition of Authentication Protocols
	5.3 Common Rules of Password Authentication in Android

	6 Dissertation Summary and Future Work
	6.1 Summary of Contribution
	6.2 Future Work
	6.2.1 Future Work: Unknown Vulnerabilities Detection and Repair



