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Recommending APIs for Software Evolution
Ferdian Thung

Abstract

Softwares are constantly evolving. This evolution has been made easier through the

use of Application Programming Interfaces (APIs). By leveraging APIs, developers

reuse previously implemented functionalities and concentrate on writing new codes.

These APIs may originate from either third parties or internally from other compo-

nents of the software that are currently developed. In the first case, developers need

to know how to find and use third party APIs. In the second case, developers need

to be aware of internal APIs in their own software. In either case, there is often too

much information to digest. For instance, finding the right APIs may require sifting

through many different APIs and learning them one by one, which can easily cost

a large amount of time. Also, as the software becomes bigger and more complex,

developers may not be aware of all functionalities available in their software.

To deal with the above-mentioned difficulties, we propose API recommendation

approaches for software evolution. We have developed four approaches in this di-

rection. The first three approaches assist developers in using third party APIs while

the fourth approach assists developers in evolving software according to changes in

its internal APIs. Our first approach deals with a problem of finding the right API li-

braries for implementing new software features. Given a list of current libraries used

in a software, our approach combines association rule mining and collaborative fil-

tering to recommend libraries that are potentially useful. Our fourth work deals with

the same problem as our first work. We improve upon our first work on automatic

API recommendation by considering API library description and adding matrix fac-

torization in the mix. Description of each API library will be used to improve one

of the component of our previous approach while matrix factorization will be used

to create a new recommendation component. We combine the updated components



of our previous approach and our new recommendation component to build a rec-

ommendation system that is better than our previous approach. Our third approach

deals with the subsequent problem after finding the right API libraries, which is

finding the right API methods to be used for implementing the new software fea-

tures. Given a description of feature to be implemented and known libraries, our

approach combines historical and descriptive information to recommend API meth-

ods in the known libraries that can be used to implement the feature.

Our fourth work deals with a problem of evolving an older software version to

contain features and/or bug fixes that are added in the newer software version. This

is necessary since some softwares still maintain their older versions. One of the

biggest example is Linux kernel. New device drivers are consistently added and/or

updated in the latest kernel version. However, many systems still use older kernel

versions and thus these new device drivers also need to be available in the older

versions. Given a code in the new version that implements a new feature or bug

fix, our approach can recommend how the code can be changed to work in the old

version. Our approach does so by finding a portion of the code that causes an error

when the code is directly used in the old version. Our approach then search the

history for suggestions on how to transform the code to its equivalent form that can

work with the other pieces of code in the old version. Our approach recommend

this equivalent form in order to make the new code works in the old version and

thus making the new feature or bug fix available in the old version.

Overall, this dissertation aims to assist developers by providing useful recom-

mendations that they can use to help them in evolving their software. Experiments

to evaluate our approaches have shown that they can perform accurate recommen-

dations.
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Chapter 1

Introduction

This chapter discusses the main problems and motivations of this dissertation.

A summary of works completed and the structure of this dissertation are then pre-

sented.

1.1 Motivations

Gone are the days when developers have to build a software from scratch. The

proliferation of third party libraries makes software development task faster and

easier than ever before. In fact, libraries have been an integral part of software

development [7, 30, 64]. Indeed, using third party libraries allows developers to

save time since they do not need to reinvent the wheel. Instead, they can focus on

the specific task at hand. Third party libraries are also tested; thus, they reduce the

likelihood of creating bugs.

Although third party libraries are readily available, finding relevant libraries and

using them are not always straightforward. Developers need to find relevant li-

braries among thousands and manually check whether the library functionality is a

match with their requirements. This manual checking might involve a long process

involving finding relevant methods in the API and understanding how to use them.

Comprehending the structure of an API and how to choose method parameters prop-

1



CHAPTER 1. INTRODUCTION

erly are among the things that developers need to learn. Clearly, this process can be

time consuming and the existence of an API recommendation system would help

developers a great deal in doing their job.

The above difficulties also exist when using internal APIs in the software that

developers currently working on. As the software becomes more complex, devel-

opers may not know all the APIs available internally. They might then either reim-

plement the functionalities themselves or use external libraries to provide them with

the functionalities they require. This might even happen when the functionalities are

already available internally and thus the developers should have used these rather

than opting for third parties or their own implementation.

When evolving a software, developers also need to be aware of changes in APIs.

They must know how to provide the same functionalities in one version of the API

versus the others. This scenario generally happens when there is a need to provide

the same functionalities in different versions of the software. In this case, developers

need to know how to perform changes in API uses so that their code would work in

different API versions. This is not easy since developers may only know a specific

version of APIs, e.g. the latest version. Different versions might have differences in

data structures and method definitions.

The above problems might be encountered when evolving software and high-

light the reasons why API recommendations would be beneficial. A good recom-

mendation would remove the need for developers to manually search different kinds

of APIs. It can directly present developers with possible APIs that they can use to

implement the required task. Consequently, it saves developers time and speeds up

the software evolution process in general.

1.2 Overview

We have completed four distinct works for this dissertation. The first three works

deal with the problem of recommending usage of third party APIs while the fourth

2



CHAPTER 1. INTRODUCTION

work deals with the problem of recommending code transformations to convert a

piece of code from a particular API version to another API version. These transfor-

mations recommend how APIs should be changed between the two versions.

1.2.1 Automated Library Recommendation

In this work, we tackle the problem of recommending API libraries to developers.

Given a list of currently used libraries, we want to recommend additional libraries

that developers can leverage to develop their software. Our proposed library rec-

ommendation, named as LibRec, consists of two main components: LibRecRULE

and LibRecCOLLAB . LibRecRULE makes use of library usage patterns to recom-

mend libraries. The patterns are mined using association rule mining techniques.

LibRecCOLLAB makes use a nearest-neighbor-based collaborative filtering approach

to recommend libraries that are used by similar projects.

In the training phase, our system extracts rules and feature vectors from a set

of projects that contains information of third-party libraries that they use. Given

the association rules and feature vectors, in the deployment phase, our system can

recommend libraries to a set of new projects based on the third-party libraries that

they already use. The two models would give a score for each library in the database.

Our approach then computes a final recommendation score by linearly combining

the two scores. Libraries having the highest scores will be recommended.

We have performed experiments on 500 software projects. These projects are

taken from GitHub, written in Java, relatively large (i.e., contain more that 10,000

lines of code), are not a fork of another project, and already use at least ten third

party libraries. Our experiments show that our approach can achieve recall-rate@5

and recall-rate@10 of 0.852 and 0.894, respectively. Recall-rate@5 means that

there is at least one correct recommendation in the top-5 recommended libraries.

This result shows the promise of our approach.
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1.2.2 Improving Library Recommendation using Textual Con-

tent and Matrix Factorization

In this work, we tackle the problem of library recommendation. This work is the

continuation of our first work. We improve upon our previous library recommen-

dation approach by considering textual information from the library and adding a

matrix factorization technique. This approach is built directly on top of our previous

approach. Components of our previous approach are either left untouched or modi-

fied to cater for the newly considered information. We follow the same approach for

the association rule mining based component. For the collaborative filtering based

component, we employ a more fine grained representation of a software project by

leveraging textual content of its adopted third party libraries. We then introduce a

matrix factorization based component and combine it with the above components to

generate a better library recommendation.

For the evaluation, we simulate the actual history of the library usage. When

simulating a library recommendation, we use the initial libraries as input to our

approach to evaluate whether it can recommend libraries that were added later on.

Our experiment shows the effectiveness of our approach, achieving Hit@5 of 0.607

and Hit@10 of 0.702. Since our previous approach was evaluated differently, we

rerun it in this setting. It achieves Hit@5 of 0.504 and Hit@10 of 0.640. Thus, our

approach improves over our previous one by 20.44% and 9.69%, in terms of Hit@5

and Hit@10, respectively.

1.2.3 Automatic Recommendation of API Methods from Fea-

ture Requests

In this work, we tackle the problem of recommending API methods to developers.

Given a task description and a list of known libraries, our approach can recommend

API methods from the known libraries that can be used to implement the task.

Our proposed API method recommendation contains three major components:

4
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a History Based Recommender, a Description Based Recommender, and an Integra-

tor. The History Based Recommender takes as input the description of a new feature

request, i.e. a task, and a historical database containing past feature requests. The

recommender finds feature requests in the historical database that are the closest to

the new feature request. The methods that are used to implement the closest fea-

ture requests are ranked higher. This recommendation is based on the collaborative

filtering approach. The Description Based Recommender takes as input the descrip-

tion of the new feature request and the API libraries documentation. The recom-

mender computes the similarity of the feature request description with each method

description in the API documentation. Methods whose textual descriptions are the

most similar with the new feature request description are more recommended. This

recommendation is based on the information retrieval approach. The History Based

Recommender and the Description Based Recommender produce recommendation

scores for each API method. Our approach linearly combines the recommendation

scores and returns a list of API methods ranked by the final combination score. The

API method with the highest score is first recommended to the developer.

We have evaluated our approach on feature requests of 5 software projects and

recommend methods from 10 libraries. We show that our approach achieves a

recall-rate@5 and recall-rate@10 of 0.690 and 0.779, respectively.

1.2.4 Recommending Code Changes for Automatic Backporting

of Linux Device Drivers

In this work, we tackle the problem of recommending code changes required to

make code from the new version of a software project work in an old version of

the software project. Such changes are required to make the features or bug fixes in

a new version available in an older version. We call this process backporting and

one setting in which it is relevant is Linux device drivers. New device drivers are

first written to target the newest Linux kernel. However, many running systems use
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an older Linux kernel to maintain system stability so these device drivers are often

backported to work in the older Linux kernel.

Our recommendation approach works by taking a new device driver implemen-

tation and the Linux kernel repository. It then finds the latest version in the reposi-

tory where the new code induces a compilation error. The error information is then

used to find hints on how to make the new code compilable in the old Linux ker-

nel version. We also observe that the latest version in which the error occurs often

contains examples on how the device driver should be transformed. We generate

transformation recommendations based on these hints and rank the transformations

by the likelihood of being correct.

We tested our approach on 100 Linux device drivers. We simulated backport-

ing by pretending the device drivers do not exist in the old version. We then input

the device drivers to our approach to receive transformation recommendations. We

consider that a recommendation is correct if and only if the resulting transformed

code exactly matches the corresponding device driver in the old version. Our ex-

periments show that our approach can generate correct recommendations for 68%

of the device drivers. Among these device drivers, 73.5% of the time our approach

puts the correct recommendation as the first recommendation. We cannot generate

correct recommendation for 32% of the device drivers because our search cannot

find any relevant example or our recommendation can only provide a partial fix.

1.2.5 Structure of This Dissertation

Chapter 2 reviews previous works in literature. Chapter 3 describes LibRec – an

API library recommendation approach. Chapter 4 describes LibXplore, an exten-

sion of LibRec. Chapter 5 describes an API method recommendation approach,

followed by Chapter 6 which describes an approach that recommends how to back-

port Linux device drivers. Chapter 7 concludes this dissertation and presents some

future work.
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Chapter 2

Literature Review

We now present related work on code recommendation, identifying and analyzing

changes, and mining change rules. We also present related work on recommenda-

tion systems in software engineering.

Code Recommendation. Mandelin et al. propose the tool Prospector, which rec-

ommends objects and method calls, referred to as jungloids, to convert an object

of a particular type to an object of another type [44]. Prospector takes as input a

query consisting of a pair of the input type and the output type. It then analyzes

signatures of API methods and constructs a signature graph to recommend jun-

gloids based on the query. A jungloid is ranked based on the number of methods it

contains and the output type. Thummalapenta and Xie investigate the same prob-

lem [75]. However, they make use of a code search engine to solve the problem.

The code search engine collects code examples which are then analyzed to recover

the method sequences. While the approach by Mandelin et al. analyzes library

code, the approach by Thummalapenta et al. analyzes client code retrieved by code

search engines. Our work differs in several respects: we consider a different prob-

lem (method recommendation given a feature request vs. method recommendation

given an input-output type pair), and we leverage different resources (historical fea-

ture requests + API documentation vs. library code or client code returned by a

code search engine).

7
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Bruch et al. propose a code completion system that recommends method calls

by looking for code snippets in existing code repositories that share a similar con-

text as the context that a developer is working on [11]. They propose three code

completion systems based on frequency of method call usage, an association rule

mining algorithm, and a k-nearest neighbor algorithm. The k-nearest neighbor algo-

rithm performs the best. Our work differs in several respects: we consider different

problems (method recommendation given a feature request vs. method recommen-

dation given a code context), and we leverage different resources (historical feature

requests + API documentation vs. code repositories).

Robillard proposes a technique, Suade, that recommends methods or other pro-

gram elements of interest to help developers perform a software maintenance task [62].

Suade takes as input a set of program elements, and outputs other program elements

that potentially interest developers. It works by investigating the structural depen-

dencies of program elements and considers two criteria: specificity and reinforce-

ment. A program element of interest needs to be specific enough to the input set

and its relationship to the input set is reinforced by existing relationships among

program elements in the input set. Saul et al. addresses a similar problem [67].

Their goal is to recommend a set of methods that are related to a target method. To

achieve this goal, structural information in a call graph is analyzed. They propose a

new algorithm named FRAN which performs random walk on the callgraph. Sev-

eral other approaches recommend methods related to a target method using static

analysis [43, 89]. Long et al. propose Altair that recommends method based on

variables that are shared among related methods [43]. Zhang et al. enhance a call

graph with control flow information and use it for method recommendation [89].

The closest work to ours is that of Chan et al., which recommends API methods

given textual phrases [13]. Given a query expressed as a set of textual phrases, their

approach returns a connected API subgraph. For this, they create an API graph,

which is an undirected graph with nodes corresponding to classes and methods and

edges corresponding to relationships between them (e.g., inheritance, input, out-
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put, and membership). Each node of the graph contains words that appear in the

corresponding method. Based on this API graph and an input query, they mine a

subgraph that maximizes a particular objective function. The approach is evaluated

on a small number of short text phrases.

Identifying and Analyzing Changes. Many studies focus on identifying and an-

alyzing changes between two code versions. For example, Neamtiu et al. [51] use

partial abstract syntax tree matching to compare the source code of different C pro-

gram versions. Horwitz et al. [26] focus on identifying semantic changes in pro-

grams. Fluri et al. [18] track the co-evolution of comments and source code over

multiple program versions, leveraging Evolizer [20] and ChangeDistiller [19] for

extracting fine-grained source code changes between program versions. Marinescu

et al. [46] present Covrig, an infrastructure that collects static and dynamic soft-

ware metrics when running different program versions, to study the co-evolution

of source code and test cases. Zaidman et al. [87] examine the co-evolution of

source code and tests, inferring the development style employed by a number of

Java projects.

Mining Change Rules. Wu et al. [83] propose an approach to mine method call

change rules between two versions of a Java program. They combine call depen-

dency and text similarity analyses to extract method change rules. Similarly, Meng

et al. [49] extract method change rules between two versions of a Java program.

However, rather that considering only one big change between two versions of a

program, they consider all changes between two consecutive commits that are lo-

cated in the change history between the two versions of the program. This allows

them to analyze changes in finer detail and enables them to mine chains of method

changes. These works deal with a forward porting problem, which involves porting

function calls to use a newer version of a library in Java programming language.

We address a backporting problem, which is the task of porting a new version of

some code (in our case, drivers) to work with an older version of a system (in our

9
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case, the Linux kernel). Thus, backporting can be seen as reverse forward porting.

However, different than existing forward porting approaches, we have found that it

is not sufficient to focus only on function calls, as we found the need to also port

data structures.

Negara et al. [52] develop a tool for automatically mining frequent change rules

from fine-grained edits. Different from their work, we focus on finding transforma-

tions that can backport drivers and these transformations are often not the frequent

ones. Andersen et al. [3, 4] infer safe and concise transformation rules from a col-

lection of transformation examples.

Recommendation Systems in Software Engineering. Robillard and Chhetri pro-

posed an approach that recommends a portion of API documentation that is relevant

to a given API element [63]. They categorized whether the portion is indispensable,

valuable, or neither. McMillan et al. proposed Exemplar that searches relevant API

method calls to recommend relevant applications [48]. Zhang et al. proposed Pre-

cise, a tool for recommending correct API parameters [88]. Precise constructs ab-

stract parameter usage patterns by mining existing software projects. It recommends

parameter values by analyzing development context, querying abstract parameters,

and then concretizing them.

Anvik et al. applied a supervised machine learning algorithm on bug reports to

recommend suitable developers that are likely capable to fix the described bugs in

the reports [5]. Xia et al. proposed an approach that recommends developers which

should be assigned to fix a bug report by combining bug report based analysis and

developer based analysis [84]. Tian et al. proposed to recommend developers for

fixing issues in bug reports by employing learning to rank approach [79]. Yang et al.

proposed an approach to recommend similar bug reports by combining word em-

bedding with a traditional information retrieval approach [85]. Ye et al. proposed

to recommend source code files to consider when addressing a bug report using a

learning to rank approach and similarity functions that they defined [86]. Source
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code files are then ordered based on their likelihood to be the source of the bug

defined in the bug report. Almhana et al. proposed to use a multi objective opti-

mization algorithm for recommending source code files to a bug report [2]. They

defined two objective functions; the first one maximizes both lexical and historical

similarities, while the second one minimizes the number of recommended classes.

Ponzanelli et al. proposed CodeTube, a tool that recommends portions of video

tutorials that are related to a given query [56]. It combines image and textual anal-

ysis to recommend the related portions and provides related links in a Q&A pro-

gramming website (i.e., StackOverflow). Rahman et al. proposed an approach that

recommends relevant information when developers are facing programming errors

and exceptions [59]. They exploited web search engines and a Q&A programming

website to find relevant information, and presented the recommendation directly

within an Integrated Development Environment (IDE). Hariri et al. proposed a

recommendation system for helping requirement discovery [24]. It recommends

relevant topics for requirement discussion and recommends expert stakeholders for

each topic discussion.

Different from the above works, we perform different kinds of recommenda-

tions. First, we recommend API libraries given a list of already used libraries. Sec-

ond, we recommend API methods given a feature request and a list of used libraries.

Last bust not least, we recommend how to transform code in one version to work in

another version.
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Chapter 3

Automated Library

Recommendation

3.1 Introduction

Third-party libraries are an integral part of many software projects [7, 30, 64]. For

example, we have investigated 1008 projects of substantial size from GitHub. We

found that 93.3% of them use third-party libraries, at an average of 28 third-party

libraries each. The use of such libraries allows the developer to write less code and

to focus on the parts of the code that are specific to the project. The use of third-part

libraries also reduces the need for testing.

Today, many third-party libraries are readily available to software developers,

from repositories such as the Maven repository.1 Still, effectively using these li-

braries remains a challenge for developers, because they may not become aware of

new libraries as they are released. Developers may thus be led to “re-implement

the wheel”. An approach is needed to bridge the gap between the many third-party

libraries that are available and the developers that need to use them.

In this work, we propose a technique that automatically recommends libraries

for a particular project. Given the set of libraries that the project has used, our tech-

1repo1.maven.org, http://search.maven.org
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nique recommends other libraries that are potentially useful for it. Our technique

follows a hybrid approach that combines association rule mining and collaborative

filtering. The association rule mining component extracts libraries that are com-

monly used together. The component then rates each of the libraries based on their

likelihood to appear together with the currently used libraries. The collaborative fil-

tering component works on the assumption that similar projects are likely to share

similar third party libraries. The component analyzes the libraries that are used

by the n most similar projects. It then rates each of the libraries based on how

many of the top-n most similar projects use it. Our technique finally aggregates the

recommendations made by the association rule mining and collaborative filtering

components.

A number of previous studies have proposed approaches to recommend library

methods to be used in a particular context, e.g., [44, 91]. Our work differs from

this previous work in terms of the level of granularity considered. While previous

approaches recommend a particular method to be used in a particular context, we

target the problem of recommending an entire library (e.g., an entire jar file in the

case of a Java project). Past approaches assume that the set of relevant libraries

is already known to the developer and it is only the methods in these libraries that

are unknown. Our work does not make this assumption, and thus complements

these existing studies. Indeed, our approach could be deployed first to recommend

particular libraries that will interest developers. These results could then be fed

to existing approaches to recommend particular methods to be used in different

contexts.

To evaluate the effectiveness of our approach, we have downloaded a few hun-

dred Java projects of substantial size (≥ 10,000 lines) from GitHub2 and investi-

gated the libraries that these projects use. We observe that these projects make use

of a substantial number of third-party libraries and thus are appropriate subjects of

our study. Evaluating our approach on projects that use many libraries ensures that

2https://github.com/
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it is able to recommend libraries to real projects that need third-party libraries. We

then use ten-fold cross validation to evaluate our approach. For this, we divide the

dataset into ten parts. Nine parts are used as training data, and one part is used as

test data. The results over the ten iterations are aggregated. To evaluate our results,

we use recall rate@5 and recall rate@10, which are often used as evaluation mea-

sures [53, 71, 82]. In our experiments we achieve recall rate@5 and recall rate@10

of 0.852 and 0.894, respectively.

The contributions of our work are as follows:

1. We identify a new problem of library recommendation: Given a set of libraries

that a project uses, recommend other libraries that are potentially useful for

it.

2. We propose a hybrid technique based on association rule mining and collab-

orative filtering to recommend libraries that a project can use based on the

libraries that the project already uses.

3. To test the effectiveness of our approach, we investigate the third-party li-

braries used by a few hundred projects. Our experiment shows that our ap-

proach is effective and can achieve recall rate@5 and recall rate@10 of 0.852

and 0.894, respectively.

The structure of this chapter is as follows. We formally define the problem and

provide an illustrative example in Section 3.2. We describe the base algorithms

in Section 3.3. We then present our proposed approach in Section 3.4. Next, we

describe our experiments in Section 3.5. We conclude in Section 3.6.

3.2 Problem Definition & Illustrative Example

In this section, we define our problem and illustrate it by a motivating example.

14
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Problem Definition. We define the library recommendation problem as follows.

Let allLibraries be the set of all libraries that are available, usedLibraries be the

set of libraries that are currently used in the software project, usefulLibraries be

the set of libraries that are useful for the project, and rec-Libraries be the set of

libraries that are to be recommended. The goal of our approach is to find the a set

recLibraries that satisfies the following conditions:

1. recLibraries ⊆ allLibraries

2. recLibraries
⋂

usedLibraries = ∅

3. recLibraries
⋂

usefulLibraries 6= ∅

The recommended set of libraries needs to be a subset of all available libraries

and should not contain any library that is currently used in the project (there is no

need to recommend a library that is already used). Finally, we want to recommend

libraries that are useful.

Illustrative Example. To illustrate the issues involved, we provide a motivating

example. Consider a project named openpipe that uses the following libraries:

logback-classic, spring-context, lucene-core, commons-collections, commons-dbcp.

Now, consider the database shown in Table 3.1 which maps a set of projects to the

libraries that they use. We want to recommend libraries to openpipe based on this

database.

One approach to recommend libraries is to look for library usage patterns. From

the database, one can see that most projects that use commons-collections also

use commons-lang libraries - for projects easysoa, red5-mavenized, and thucydides

this is the case. We can thus infer a library usage pattern: commons-collections

→ commons-lang. Based on this usage pattern, since openpipe uses commons-

collections but does not use commons-lang, we would recommend commons-lang

to openpipe.
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Another approach to recommend libraries is to look for projects that are simi-

lar to openpipe in Table 3.1 and investigate the set of libraries that they use. We

measure the similarity of two projects based on the set of libraries that are used in

common between the two projects.3 Comparing the complete set of libraries already

used by openpipe with those of the projects in database, we find that there are two

projects that use a similar set of libraries: easysoa and fuse. These projects share the

following libraries with openpipe: lucene-core, logback-classic, and spring-context.

Furthermore, easysoa and fuse also use a library that is not used in openpipe, namely

commons-httpclient. Thus, we would recommend commons-httpclient to openpipe.

We propose to automate the above approaches for recommending libraries to a

project. We automate the first approach by using association rule mining to extract

library usage patterns. We automate the second approach by leveraging a collab-

orative filtering technique. We then combine these two approaches to recommend

libraries.

Table 3.1: Example Project Database

Project Libraries
easysoa lucene-core, commons-httpclient, logback-classic, spring-

context, commons-collections, commons-lang
fuse commons-httpclient, camel-core, lucene-core, logback-

classic, aether-util, spring-context
red5-mavenized groboutils-core, commons-collections, ehcache, jta,

commons-lang, catalina
histone-java mockito-all, reflections, spring-context, cglib, joda-time,

xstream
thucydides logback-classic, commons-collections, spring-context,

commons-lang, opencsv, groovy

3.3 Preliminaries

In this section, we describe several techniques that are used in our approach: fre-

quent itemset mining [1], association rule mining [1], and collaborative filtering [74].

Frequent itemset mining is the first step of association rule mining.
3McMillan et al. use API calls as semantic anchors to measure the similarity between

projects [47]; we use a similar idea.
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3.3.1 Frequent Itemset Mining

Frequent itemset mining takes as input a transaction database (i.e., a multi-set of

transactions), where each transaction is a set of items, and outputs sets of items

(a.k.a. itemsets) that appear frequently (i.e., each frequent itemset is a subset of

many transactions) in the database. In our setting, a transaction is the set of third

party libraries that are used by a project. We refer to the number of transactions that

contain all of the elements of an itemset I as the frequency of I , denoted as freq(I).

The support of an itemset I is defined as:

sup(I) =
freq(I)

N

where N is the number of transactions in the transaction database. An itemset

is frequent if its support is no less than minsup, where minsup is a user-defined

minimum support threshold.

Example 1. Consider a project database shown in Table 3.1. Each project can be

considered as a transaction. If minsup is e.g., 0.5, then I = {commons-collections,

commons-logging} is a frequent itemset in these transactions, computed as fol-

lows. I appears in 3 transactions (easysoa, red5-mavenized, thucydides), so freq(I)

is 3. Since the number of transactions in the database (N ) is 5, sup(I) is 0.6, which

is greater than minsup.

3.3.2 Association Rule Mining

In addition to frequent itemsets, another kind of pattern can be extracted from the

transaction database. For example, from the database shown in Table 3.1, we can

infer: “if a project uses commons-collections, then the project is likely to also use

commons-lang” because all of the transactions that contain commons-collections

also contain commons-lang. This kind of pattern is referred to as an association

rule. An association rule is an “if/then” rule that captures a relationship between
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two itemsets X and Y in the database. It can be written as:

X → Y

where X is the pre-condition of the rule and Y is the post-condition of the rule. The

pre-condition is a statement that must be satisfied for the rule to be applied, whereas

the post-condition is the result if the pre-condition is met.

We are interested in association rules that apply to many transactions in the

database. For this, we use a metric referred to as support. The support of an associ-

ation rule R = X → Y , denoted as sup(R), is the proportion of transactions in the

database that contain X
⋃
Y . We also need to measure the likelihood that a rule is

true. For this purpose, we use a metric referred to as confidence. The confidence of

a rule R with pre-condition X and post-condition Y (i.e., R = X → Y ) is defined

as follows:

conf (R) =
freqX ⋃

Y

freqX

Association rule mining extracts all rules that satisfy user-defined minimum sup-

port (minsup) and confidence (minconf) thresholds. We refer to such rules as signif-

icant association rules. Association rules can be generated from frequent itemsets.

We can enumerate all possible pairs of frequent itemsets where one is a subset of

another. Consider A and B where A and B are frequent itemsets and A is a subset

of B. Then, the generated association rule R is of the form:

A→ B \ A

The support and confidence of the rule R can be computed from the supports of its

constituent itemsets as follows:

sup(R) = sup(B)
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conf (R) =
sup(B)

sup(A)

Example 2. We refer to Table 3.1. Given minsup = 0.5, frequent itemsets A =

{commons-collections} and B = {commons-collections, commons-lang}. Fre-

quent itemsets A and B form the rule R = commons-collections → commons-

lang. The support of R is the same as sup(B), which is 0.6. Since sup(A) is 0.6,

the confidence of the rule is 1.0.

3.3.3 Collaborative Filtering

Collaborative filtering is an automatic technique to make predictions about an entity

based on information collected about other similar entities. Collaborative filtering

has been used in many real systems, including environmental sensing, financial

services, electronic commerce, web applications, etc. [69]. One popular implemen-

tation of collaborative filtering in the context of web applications is the recommen-

dation system developed by Amazon.com for recommending new items to the users

in their website [35].

A basic method to perform collaborative filtering is by finding the nearest neigh-

bors of the target entity. A target entity is compared with all other entities and a list

of most similar entities based on a distance metric is produced. The similarities

among the entities are used as a basis for making predictions about the entity. In our

setting, an entity is a project, and the prediction task is the prediction of libraries

that are useful for the project.

3.4 Proposed Approach

In this section, we first provide a birds-eye-view description of our overall frame-

work.We then zoom in to the various components of our framework. We describe

the association rule mining component.We then present the collaborative filtering
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component. The aggregator component which combines the result of the associa-

tion rule mining and collaborative filtering components.

3.4.1 Overall Framework

Figure 4.2 shows the overall framework of our recommendation system referred

to as LibRec. It has two major components: LibRecRULE and LibRecCOLLAB .

LibRecRULE recommends libraries by mining library usage patterns expressed as

association rules. LibRecCOLLAB recommends libraries by investigating the set of

libraries that are used by similar projects, using a nearest-neighbor-based collab-

orative filtering approach. Our framework consists of two phases: training and

deployment.

Rule Extractor Training 
Projects 

Feature Vector Extractor 

Rule Matcher Nearest Neighbor Processor 

Aggregator 

New 
Projects 

LibRecRULE LibRecCOLLAB 

API Recommendations 

TRAINING 

DEPLOYMENT 

Figure 3.1: Our Recommendation Framework LibRec

In the training phase, our system infers models needed for the deployment

phase. These models are extracted from a training dataset (TrainingProjects).

TrainingProjects is a set of projects, along with the names of the third-party li-

braries used by each of them. Models are extracted by the following sub-components:

1. RuleExtractor , a sub-component of LibRecRULE , extracts association rules

that capture library usage patterns from Training Projects.

2. FeatureVectorExtractor , a sub-component of LibRecCOLLAB , extracts a vec-

tor of feature values from the set of libraries that each project uses. Each
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feature corresponds to a library and its value is 1 if the library is used by the

project and 0 otherwise.

The association rules and vectors are models that are provided to the deployment

phase.

In the deployment phase, our system recommends libraries to new projects

(NewProjects) based on the models extracted from the training phase. NewProjects

is a set of new projects along with the names of third-party libraries already used

by each of them. The following sub-components use the models to recommend

libraries:

1. RuleMatcher , a sub-component of LibRecRULE , takes each new project p ∈

NewProjects and the association rules extracted in the training phase as

inputs. It matches the libraries used in the project with the rules. It makes

recommendations based on the post-conditions of the matching rules.

2. NearestNeighborProcessor , a sub-component of LibRecCOLLAB , takes each

new project p ∈ NewProjects and the feature vectors extracted in the train-

ing phase as inputs. It then constructs a feature vector for p and calculates the

distance between this feature vector and each of the feature vectors extracted

from the training phase. The most similar vectors and their corresponding

projects (i.e., the nearest neighbors) are identified. Recommendations are

made based on the libraries used by the nearest neighbors.

Both RuleMatcher and NearestNeighborProcessor output a list of recommended

libraries along with their recommendation scores. The Aggregator component com-

bines these two lists into a new list with the final recommendation scores. The

libraries with the highest scores will be recommended.

We now describe each of the components in more detail.
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3.4.2 LibRecRULE Component

Our LibRecRULE component recommends libraries based on library usage patterns.

It consists of the RuleExtractor sub-component in the training phase and the Rule-

Matcher sub-component in the deployment phase.

3.4.2.1 RuleExtractor

This sub-component employs association rule mining to mine library usage rules.

In TrainingProjects , each project uses a set of third-party libraries. We treat each

project as a transaction where the items in the transactions are the third-party li-

braries that it uses.

Traditional association rule mining (see Section 3.3) extracts all rules that sat-

isfy the minimum support and confidence thresholds from the set of all frequent

itemsets. However, often, too many rules are extracted. Association rule mining

can thus become very slow. To address this issue, we observe that not all of the

rules are necessary; some of the rules can be combined to construct a compact set

of association rules.

Example 3. Consider the following rules: R1 = log4j → commons-logging , R2 =

log4j → slf4j -api , and R3 = log4j → commons-logging , slf4j -api . All of these

rules have support 0.6 and confidence 1.0. Rules R1 and R2 , however, are covered

by rule R3 and they have the same support and confidence, and thus they are not

actually needed.

To construct a compact set of association rules, we use two special subsets of all

frequent itemsets, referred to in the literature as closed itemsets and generators [55].

A closed itemset is a frequent itemset with no superset having the same support as

itself. A generator is a frequent itemset with no subset having the same support as

itself. Algorithms have been developed to mine these closed itemsets and generators

directly [55, 33], without the need to mine all frequent itemsets.

Example 4. Consider the following two frequent itemsets: I1 = {log4j} and I2 =
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{log4j , commons-logging , slf4j -api}. I1 has support of 3 and does not have any

subset having the same support. Thus, I1 is a generator. I2 has support of 3 and

does not have a superset having the same support. Thus, I2 is a closed itemset.

Note that I1 is not a closed itemset and I2 is not a generator as I1 ⊂ I2 and

sup(I1) = sup(I2).

We construct the compact set of association rules from these two subsets follow-

ing Bastide et al. [6]. We define a compact set of association rules in Definition 1.

Definition 1 (Compact Assoc. Rules (ARulesCompact)) Consider a set of genera-

tors GEN , a set of closed itemsets CLOSED , a minimum support minsup and a

minimum confidence minconf . The compact set of association rules is the following

set:

{r = pre → post |(pre ∈ GEN ) ∧

(pre
⋃

post ∈ CLOSED) ∧

sup(r) ≥ minsup ∧ conf (r) ≥ minconf }

The set of compact rules is the set of frequent rules whose pre-condition is a gener-

ator and where the difference of the pre- and post-conditions is a closed itemset.

Example 5. Referring to Example 4, we can construct a compact rule from I1 and

I2. The pre-condition of the compact rule is I1 = {log4j} and the post-condition

of the compact rule is I2 \ I1 = {commons − logging , slf4j − api}. Thus, we can

the construct compact rule C = log4j → commons − logging , slf4j

−api .

The set of association rules obtained from closed itemsets and generators is

potentially much smaller than the complete set of rules. The algorithm presented

in Figure 3.2 constructs this compact set of association rules. The algorithm first

mines the set of closed itemsets and generators (lines 7-8). We use the algorithm
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Zart [73] to mine these closed patterns and generators.4 Next, the algorithm iterates

over all of the closed itemsets and generators (lines 9-10). If the generator (Gen) is

the subset of the closed itemset (Item), a rule is constructed (lines 11-22). Gen is the

pre-condition of the rule and Item \Gen is its post-condition (lines 14-15). We then

compute the support and confidence of the rule (lines 16-17). The constructed rule

is added to the compact set of association rules if it satisfies the minconf threshold

(lines 18-19). There is no need to check theminsup threshold as the closed itemsets

are frequent. At the end, all the generated rules are stored for use in the deployment

phase.

1: Input:
2: TrainingProjects = set of projects with third party

libraries used by each of them
3: minconf = minimum confidence threshold
4: Output:
5: Compact set of association rules
6: Method:
7: Let ClosedItems = set of closed itemsets mined from

TrainingProjects
8: Let Generators = set of generators mined from

TrainingProjects
9: Let CompactRules = {}

10: for all Item ∈ ClosedItems do
11: for all Gen ∈ Generators do
12: if Gen ⊂ Item then
13: Let Rule = {}
14: Rule.PreCondition = Gen
15: Rule.PostCondition = Item \Gen
16: Rule.Support = Item.Support
17: Rule.Conf = Item.Support/Gen.Support
18: if Rule.Conf ≥ minconf then
19: add Rule to CompactRules
20: end if
21: end if
22: end for
23: end for
24: return CompactRules

Figure 3.2: Mining a Compact Set of Association Rules

4http://www.philippe-fournier-viger.com/spmf/index.php.
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3.4.2.2 RuleMatcher

In the deployment phase, for each new project p to receive library recommenda-

tions, RuleMatcher gets the list currentLib of the libraries that it currently uses,

and then matches this list against the association rules libRules generated by the

RuleExtractor component. A rule matches currentLib if its precondition is a sub-

set of currentLib. RuleMatcher then recommends libraries, based on the post-

conditions of the matching rules.

We assign a score to assess the suitability of a library to a new project p. Infor-

mally, the rule-based recommendation score for a libraryA is the highest confidence

of any matching rule whose post-condition contains A. This score is computed by

the following formula:

RecScoreRULE (A) = MAX (0,MAXR∈RMatched(A).conf (R))

RMatched(A) = {(R = X → Y ) ∈ libRules |

X ⊆ currentLib ∧ A ∈ Y }

In the above equation, RMatched(A) is the set of rules whose pre-condition is a su-

perset of currentLib and whose post-condition contains A. If the set RMatched(A)

is empty, the recommendation score of A is 0. RecScoreRULE ranges from 0 to 1.

The libraries with the highest recommendation scores are the most suitable libraries

based on the mined association rules.

Example 6. Suppose a project has a set of libraries P = {a, b, c} and we have

the following rules: R1 = e → d with conf (R1) = 1.0, R2 = a, b → f, g

with conf (R2) = 0.9, and R3 = a → f with conf (R3) = 0.8. R2 and R3

match P because their pre-conditions are a subset of P . We then want to compute

RecScoreRULE for the library f . BothR2 and R3 contain f in their post-conditions.

Thus, R2 and R3 are matching rules. RecScoreRULE (f) will then be the maximum

of 0, 0.9 (conf (R2)), and 0.8 (conf (R3)), which is 0.9.

25



CHAPTER 3. AUTOMATED LIBRARY RECOMMENDATION

The pseudocode for the matching process is shown in Figure 3.3. At lines 8-9,

for each association rule in libRules, we check whether curLibraries is a super-

set of the pre-condition of the rule. If it is, we iterate over the items in the rule’s

post-condition and add them to the list of recommended libraries (recLibraries)

(lines 10-18). We iteratively update the recommendation scores of the libraries in

recLibraries . Whenever a matching rule of higher confidence containing a recom-

mended library is encountered, we update the recommendation score of the library

(lines 14-16).

1: Input:
2: curLibraries = libraries that the target project uses
3: libRules = association rules
4: Output:
5: Recommended libraries w. recommendation scores
6: Method:
7: Let recLibraries = {}
8: for all Rule ∈ libRules do
9: if curLibraries ⊆ Rule.PreCondition then

10: for all A ∈ Rule.PostCondition do
11: if A 6∈ curLibraries then
12: add A and A.Conf to recLibraries
13: else
14: if recLibraries [A] < A.Conf then
15: recLibraries [A] = A.Conf
16: end if
17: end if
18: end for
19: end if
20: end for
21: return recLibraries

Figure 3.3: Rule Matching Procedure

3.4.3 LibRecCOLLAB Component

Our LibRecCOLLAB component recommends libraries based on those that are used

by similar projects, following a nearest-neighbor-based collaborative filtering ap-

proach. We measure the similarity of two projects based on their set of com-

monly used libraries. LibRecCOLLAB consists of the FeatureVectorExtractor sub-
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component in the training phase and the NearestNeighborProcessor sub-component

in the deployment phase.

3.4.3.1 FeatureVectorExtractor

This component converts the list of libraries used by each project in Training

Projects to a feature vector. Let aL be the set of all libraries arranged in alphabetical

order of their names. Each library can then be assigned a unique index in aL and

referred to as aL[i]. The feature vector of project A, denoted as V (A), is defined as

follows:

V (A) = (ind(aL[0], A), . . . , ind(aL[|aL|], A))

ind(L,A) = 1, If A uses library L

0, Otherwise

3.4.3.2 NearestNeighborProcessor

Given a new project to receive library recommendations, NearestNeighborPr -

ocessor converts the list of libraries that the project uses into a feature vector in the

same manner as was done by the FeatureVectorExtractor component. It then cal-

culates the distance between this feature vector and the feature vectors of projects

in TrainingProjects . We use cosine similarity as the metric to compute this dis-

tance [45]. The cosine similarity of a new project New and an existing project

Existing in TrainingProjects is:

Cosine(New,Existing) =
V (New) · V (Existing)

|V (New)||V (Existing)|

In the above equation, · denotes dot product, and |V (i)| denotes the size of a vector,
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which is defined as the square root of the sum of the squares of its constituent

elements.

We rank the projects in TrainingProjects based on their cosine similarity scores.

The higher the cosine similarity score is, the more similar a training project is to the

new project. Therefore, we pick the top-n projects with the highest cosine similarity

scores as the nearest neighbors for the new project. In the implementation, we sort

the projects based on their cosine similarity scores followed by their names. If there

are projects with rank greater than n that have the same cosine similarity score as the

n-th project, we group the projects having this score, and randomly select projects

from this group, to result in the final n nearest neighbors.

Our next step is to compute a recommendation score for each library. We collect

all of the libraries that are used by projects in the n nearest neighbors and compute

the score for each library. Given a libraryA, we compute the collaborative-filtering-

based recommendation score for A as follows:

RecScoreCOLLAB(A) =
NNCountLib(A)

n

In the equation above, NNCountLib(A) is the number of nearest neighbor projects

that use libraryA and n is the number of nearest neighbors. RecScoreCOLLAB scores

range from 0 to 1. The library with the highest score of RecScoreCOLLAB is consid-

ered to be the most the most suitable library.

Example 7. Consider a project that has 3 nearest neighbors as follows: P1 =

{ant, jsp-api, junit}, P2 = {hsqldb, junit, commons-lang}, and P3 = {log4j,

jetty, gson}. junit is used in 2 out of 3 nearest neighbor projects. So,NNCountLib-

(junit) is 2 and RecScoreCOLLAB(junit) is 0.67.
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3.4.4 Aggregator Component

The Aggregator component combines RecScoreRULE and RecScoreCOLLAB to get

an overall recommendation score, denoted as RecScore. The overall recommenda-

tion score of a library A is defined as follows:

RecScore(A) = α × RecScoreRULE (A) + β × RecScoreCOLLAB(A)

In the equation above, α and β represent weights for the two recommendation

strategies. When α + β = 1, RecScore ranges from 0 to 1. By default, we set α

and β to 0.5. The top-k libraries with the highest RecScores are recommended to

developers – again ties are randomly broken.

Example 8. Suppose that we have a library called z. Let RecScoreRULE (z) = 0.8

and a RecScoreCOLLAB(z) = 1.0. RecScore(z) is 0.9.

3.5 Experiments & Analysis

In this section, we describe our dataset, followed by our evaluation measures and

procedure. We then present our research questions and the results of our experi-

ments. Finally, we discuss some threats to validity.

3.5.1 Dataset

To construct the dataset, we first randomly collected a few thousand Java projects

from GitHub.5 We then filtered the collected projects based on the following crite-

ria:

1. The project contains more than 10,000 lines of code. This is intended to

filter out “toy projects”. We counted the line of codes by using SLOCCount,6

which excludes comments and whitespace.
5http://github.com
6http://www.dwheeler.com/sloccount
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2. The project is not a fork of another project in Github. A fork is essentially

a clone of another project at a specific point of time. We do not want to

consider both the original and the forked project, or multiple projects that are

forked from the same source. The original and forked projects are likely to

share the same libraries.

3. The project is a Maven project. Maven is a build automation tool. One of its

features is the ability to declare library dependencies for a project. Libraries

have a unique identifier that can help us to correctly identify the use of the

library across multiple projects. We identify Maven projects by checking for

the existence of pom.xml files in the project repository. From these xml files,

we extracted the GroupId and ArtifactId of the libraries on which the project

depends. The combination of these two identifiers forms a unique identifier

for a library stored in the Maven repository.7

4. The project uses at least ten libraries. We focus on projects that rely on

third-party libraries. Our recommendation system has more value for library-

intensive projects.

After filtering projects that contain fewer than 10,000 lines of code, are forked

from other projects, and are not Maven projects, we are left with 1008 projects. The

distribution of the number of libraries used in these projects is shown in Figure 3.4.

The minimum, maximum, and average number of libraries used in these projects

are 0, 627, and 28.1 projects, respectively. To focus on projects that rely heav-

ily on third-party libraries, we randomly selected 500 projects that use at least ten

libraries as our experimental dataset. Projects included in this dataset include pop-

ular projects such as Tapestry5 (146.4 kLOC), Sonar (132.3 kLOC), JBoss (499.0

kLOC).8

7repo1.maven.org, http://search.maven.org
8The list of selected projects is available at: https://sites.google.com/site/

autolibrec/projects
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Figure 3.4: Distribution of Library Usage in 1008 Projects

3.5.2 Evaluation Measures and Procedure

We evaluate our experiments using a well known evaluation metric, recall rate@k [53,

54, 66, 71, 82].9 Consider m target projects that should receive library recommen-

dations. For each project pi, let the ground truth be the set of libraries GTi. The

recall rate@k of a library recommendation system that recommends a set of top-k

libraries Ri for each of the projects pi, is the proportion of recommendation Ri, in

the set of all recommendations R (for all projects), that includes at least one library

in the ground truth (i.e., Ri

⋂
GTi 6= ∅). We use a small value for k as developers

are unlikely to look through a long recommendation list.

We perform ten-fold cross validation to measure the accuracy of our approach.

We randomly distribute the dataset into ten equal-sized parts. Each fold consist of

nine parts of the dataset as the training data and the remaining part as the testing

data. For each project in the test data, we drop half of their libraries and use these

as the ground truth. The remaining half are used as inputs to our recommendation

approach. This methodology mimics the scenario where a developer knows some

of the needed libraries but needs help to find other relevant libraries.

LibRec takes a number parameters: minsup, minconf , n (i.e., number of neigh-

bors), α (i.e., weight of the LibRecRULE ), and β (i.e., weight of the LibRecCOLLAB ).

We set minsup = 0.1 and minconf = 0.8. We chose minsup = 0.1 because we
9Note that precision rate@k is not defined and is not used in past studies [53, 54, 66, 71, 82].
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do not want to miss specific rules that only exist in a small portion of the dataset.

We chose minconf = 0.8 because we want the rule to have a high likelihood of

being followed in a software project. We set the parameter n to 20, and the other

parameters to their default values i.e., α = β = 0.5.

3.5.3 Research Questions

We consider the following three research questions:

RQ1 How accurate is our proposed approach in recommending libraries to

client applications?

RQ2 What are the effects of the various components and parameters of our

approach on the overall accuracy?

RQ3 What is the impact of the various experimental settings on the overall

accuracy?

3.5.4 RQ1: Accuracy of the Proposed Approach

We have performed a ten-fold cross validation on the 500 projects. The experiment

shows that LibRec achieves a recall rate@5 of 0.852 out of 1.

3.5.5 RQ2: Effectiveness of Various Components and Parame-

ter Settings

To answer this research question, we investigate the effectiveness of the two ma-

jor components of LibRec and the sensitivity of LibRec to the various parameter

settings.

Effectiveness of the Individual Components. We investigate the how well our

individual components LibRecRULE and LibRecCOLLAB work separately. The re-

sult is shown in Table 3.2. Our LibRecCOLLAB component performs better than

our LibRecRULE component. Still, both of their recall rates are lower than that of

LibRec. Thus, combining the two components is beneficial, as it improves accuracy.
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Table 3.2: Effectiveness of Individual Components

Component Recall Rate@5
LibRecRULE 0.702

LibRecCOLLAB 0.800

Effect of the Varying Number of Neighbors. We next investigate the sensitivity

of our approach to the number of nearest neighbors taken into account. In practice,

developers might not know the best number, and thus it is best if our approach is

robust on different numbers of nearest neighbors, within a particular range. We

vary the number of nearest neighbors from 5 to 25 and show the accuracy of LibRec

in Table 3.3. We find that the accuracy of our approach is relatively stable across

different numbers of nearest neighbors (differences are less than 0.012). This shows

the robustness of our approach.

Table 3.3: Effect of Varying the Number of Nearest Neighbors

Number of Nearest Neighbors Recall Rate@5
5 0.840

10 0.848
15 0.850
20 0.852
25 0.848

Effect of Varying minsup and minconf. We next investigate the effect of varying

minsup. As shown in Table 3.4, there is a small drop in accuracy when minsup

is increased from 0.1 to 0.3 (about 0.05 reduction in recall rate@5). Increasing

minsup eliminates some high confidence rules that apply to only a few projects.

This reduces the effectiveness of our approach on these projects. The recall rate is

relatively stable when we increase minsup from 0.3 to 0.4 and 0.5.

We also investigate the effect of varying minconf. We notice that on very high

minconf settings, there is a small drop in accuracy (about 0.07 drop in recall rate@5,

when minconf is increased from 0.9 to 1.0). Raising the required confidence too high

can cause good rules that might not apply in a few cases to be omitted. Note that

LibRec uses the confidence of a matching rule to compute the rule-based recommen-
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Table 3.4: Effect of Varying minsup

minsup Recall Rate@5
0.1 0.852
0.2 0.816
0.3 0.796
0.4 0.800
0.5 0.800

dation score. Thus, we notice that reducing minconf from 0.9 to 0.8 results in little

change in accuracy as LibRec takes a matching rule with the highest confidence.

Table 3.5: Effect of Varying minconf

minconf Recall Rate@5
0.80 0.852
0.85 0.852
0.90 0.848
0.95 0.824
1.00 0.778

3.5.6 RQ3: Effectiveness of Various Experimental Settings

To answer this research question, we investigate the sensitivity of LibRec to two

experimental settings.

Effect of Varying Training Set Size. We vary the training set size by varying the

value of k in k-fold cross validation. As k increases, the training set size also

increases. The result for this experiment is shown in Table 3.6. We notice that the

average recall rate@5 does not vary much on the training set size (differences are at

most 0.014).

Table 3.6: Effect of Varying Training Set Size

k Fold Recall Rate@5
2 0.840
4 0.848
6 0.840
8 0.854
10 0.852
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Effect of Changing Recall Rate@k. Finally, we investigate the effect of chang-

ing the value of k for recall rate@k. Intuitively, a larger k results in a higher recall

rate. As shown in Table 3.7, the recall rate@1 is 0.616, and recall rate@3 is 0.804

which means, for most cases, correct recommendations appear early in the recom-

mendation list.

Table 3.7: Effect of Varying Recall Rate@k

Recommendation Size (i.e., k) Recall Rate @ k
10 0.894
7 0.866
5 0.852
3 0.804
1 0.616

3.5.7 Threats to Validity

Threats to internal validity refers to experimenter bias. Most of our experimental

process is automated and randomized. Thus we believe there is little experimenter

bias.

Threats to external validity refers to the generalizability of our findings. Our

dataset consists only of open source Java projects. Moreover, we pick only Java

projects that use Maven. In practice, only a subset of Java developers use Maven to

develop their applications. Even so, Maven is a popular tool in the Java developer

community. We expect big projects that use many libraries to use Maven or similar

tools to help manage their build process. We have already tried to minimize this

threat by investigating 500 random projects. In the future, we plan to reduce this

threat further by adding more projects.

Threats to construct validity refers to the suitability of our evaluation measure.

Currently, we use recall rate@k to measure the effectiveness of our approach. This

is a well known measure that is used in many past studies, e.g., [53, 71, 82].
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3.6 Conclusion

Third party libraries can help to reduce software system development time. De-

velopers can reuse the libraries to code some parts of the system rather than im-

plementing them by themselves. Using well tested libraries also makes the system

more reliable. Many third party libraries are publicly available. However, the large

number of libraries makes it hard for developers to pick the relevant libraries that

can improve their productivity.

We propose an automated technique to recommend relevant libraries to devel-

opers. Our approach combines association rule mining techniques and collabora-

tive filtering to perform the recommendation. Based on the libraries used by other

projects, we recommend a number of likely relevant libraries to developers of a

target project. We have evaluated our approach on 500 open source Java projects

hosted on GitHub. Our approach achieves a promising results with recall rate@5

and recall rate@10 of 0.852 and 0.894 respectively.

In the future, we plan to include more projects to further validate our results. We

also plan to develop a better approach that can increase the recall rate. To achieve

this, we plan to analyze cases where our approach and individual components are in-

effective and make appropriate modifications to our approach. One approach could

be to consider not only libraries but also abstractions of libraries, e.g., the domain

that they address. Another approach could be to consider nonfunctional properties

of the projects, such as the time at which they were developed. Yet another approach

would be to take into account the textual descriptions of libraries, by employing ad-

vanced NLP techniques, e.g., [10, 81], or to analyze the usage specifications of these

libraries inferred by specification mining techniques, e.g., [15, 29, 39, 40, 41, 68].

We would also like to extend our approach to be able to recommend libraries to

projects that only use a small number of libraries or do not use any libraries at all.

In terms of our experimental method, we plan to experiment with various ex-

perimental settings, e.g., considering different numbers of projects being dropped,
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considering different number of libraries used, etc. We also plan to integrate our

proposed approach in an IDE (e.g., Eclipse) and perform a user study.

Finally, we also want to integrate our approach with techniques that recommend

specific methods to use in a library, e.g., [44, 61, 75, 76] and to recommend specific

library versions.
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Chapter 4

Improving Library Recommendation

using Textual Content and Matrix

Factorization

4.1 Introduction

Leveraging third party libraries is a common practice when developing a software

project. The main purpose is to prevent developers from needing to reinventing

the wheel and thus allowing them to focus their attention on the main features of

the developed software project. From an economic perspective, reusing libraries

often reduces overall development cost. By freeing developers from implementing

functionalities provided by the libraries, a software project can be finished faster,

thereby reducing development time cost [34, 50]. Also, by opting to make use of

third party libraries rather than implementing similar functionalities themselves, bug

fixing costs would be reduced since third party libraries are typically well tested.

For common programming languages (i.e., Java), the number of third party li-

braries is growing and their usage in many software projects has proliferated [7, 30,

64]. Discovering the libraries has been made easier by the existence of a centralized

repository for third party libraries. For libraries written in Java, one such repository
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FACTORIZATION

is Maven Central Repository1. To date, this repository has indexed about 182,019

unique libraries. Certainly, it is impossible for any developers to understand each

and every one of them. And even if it were possible, developer time would still

be wasted as most of the libraries are guaranteed to be useless for them. Thus,

automation is a necessary to effectively recommend libraries to developers.

Our work is an extension of our previous work on automated library recommen-

dation [77], which is presented in Chapter 3. Our previous approach recommends

libraries to developers by using collaborative filtering and association rule mining.

We build upon our previous work by leveraging the textual content of libraries and

combining our previous techniques with a matrix factorization based technique. We

follow the same approach as our previous work when applying association rule min-

ing. For collaborative filtering, we employ a more fine grained representation of a

software project by leveraging textual content of its adopted third party libraries. We

then introduce an additional way for solving the library recommendation problem

by using a matrix factorization technique. This technique learns a vector representa-

tion for both the software projects and the libraries based on historical library usage

from known open-source software projects. These representations can be used to

infer how likely a library would be useful for a target software project. Each of

the above techniques generates a likelihood score for each library, representing how

likely it is that the library would be useful for developing a target software project.

We combine the scores from each of the above techniques into a final score and use

it to rank third party libraries. We name our proposed approach LibXplore.

For evaluating the effectiveness of a library recommendation approach, in our

previous work described in Section 3, we simulate initial and historically added

libraries by randomly dividing the set of libraries used in the latest version of a

software project. One group is considered as the set of initial libraries and the

other is considered as the set of historically added libraries. In this work, we mine

software repositories to extract a set of libraries that is used in an initial version of

1https://search.maven.org/
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a software project and another set that is used in the latest version. The difference

between these two sets is the set of historically added libraries, while those in the

first set are the initial libraries. To evaluate our approach, we use these actual sets of

initial and historically added libraries. In this way, our evaluation resembles a more

realistic scenario and its results signals how well our approach would fare if it was

used to recommend libraries to developers.

In our experiment, we use the same dataset used to evaluate our previous work [77].

We further filter the dataset to include only libraries that are still available. Our

evaluation is then done through 10-fold cross validation, in which the dataset is di-

vided into roughly ten equal parts. Ten iterations are then performed. For each of

them, one part is used as testing data and the other parts are used as training data.

Evaluation results over these iterations are then averaged. We report this averaged

evaluation metric. We compare our approach with our previous state of the art ap-

proach. Our experiment shows the superiority of our approach, achieving Hit@5

of 0.607 and Hit@10 of 0.702, improving over the state of the art by 20.44% and

9.69%, respectively.

The main contributions of our work can be summarized as follows.

1. We propose a new library recommendation approach called LibXplore. This

approach combines the power of collaborative filtering, association rule min-

ing, and matrix factorization. It considers a set of existing libraries as input,

the historical library usage and the textual content from initial libraries as

knowledge source.

2. We introduce a more realistic scenario for evaluating library recommendation

approach by mining actual set of initial and historically added libraries from

version control repository.

3. We empirically evaluate the effectiveness of our approach in a 10-fold cross

validation setting. The obtained result shows that our approach beats our

previous approach. Our approach achieves Hit@5 of 0.607 and Hit@10 of
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0.702, improving over theirs by 20.44% and 9.69%, respectively.

The rest of this chapter is structured as follows. We describe some preliminary

materials in Section 4.2. Next, we describe our proposed approach in Section 4.3.

We then explain our experiments in Section 4.4. Finally, we conclude and mention

future work in Section 4.5.

4.2 Preliminaries

In this section, we describe some background. We first present Maven. Next , we

present vector space model.

4.2.1 Maven

Maven is a popular software project management tool for Java programming lan-

guage. It uses a model called Project Object Model (POM) to manage a project.

Figure 4.1 shows an example of a POM file for commons-io. As shown, POM can

provide a lot of information about a project. For the purpose of this work, our at-

tention is focused only on the dependencies tag inside a POM file. This tag lists

required dependencies for a project. It contains information such as groupId (typ-

ically a name of company/organization), artifactId (unique name for an artifact in

a groupId), version (version of the artifact), and scope (related to POM lifecycle,

indicates in which part of the cycle the dependency is considered). The pair of

the groupId and the artifactId provides a unique identifier for a dependency. This

identifier is important for extracting library usage across various software projects.

4.2.2 Vector Space Model

In the vector space model, a document is converted to a bag of words. Each word in

the bag becomes an element in a vector. Each element contains a value signifying

the importance of the corresponding word in the document. To measure this word
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Figure 4.1: Project Object Model (POM) for commons-io

importance, a combination of term frequency and inverse document frequency are

commonly used.

Term frequency (TF) is the number of times a word appears in a document.

If a word appears often in a document, it is considered to be important for that

document. Inverse document frequency (IDF) is the reciprocal of the number of

documents in the collection that contain a word. A higher IDF indicates the higher

importance of the word since the word is relatively more unique to the correspond-

ing document compared to others. The TF-IDF for a word i in a document D and

document collection C is defined as follows.

wi,D,C = TF i,D × IDF i,C

IDF i,C =
1

DF i,C

TF i,D is the number of times a word i occurs in document D while DF i,C is the

number of documents in C that contains word i.

Given a bag of words of document D in a document collection C, we can gener-

ate its vector space model representation by first calculating TF-IDF for each word

in the collection using the above formula. We then construct a vector whose size is
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the number of unique words inC. We assign a TF-IDF weight for the corresponding

word dimension in this representative vector. For words that do not occur in D, we

assign their TF-IDF weight to zero.

Using the vector space model, we can calculate the similarity between two doc-

uments by calculating the similarity between their vector representations. Typically,

the similarity is defined in the form of cosine similarity. Given two document vec-

tors V1 and V2 with size N , the cosine similarity between them is calculated as

follows.

Cosine(V1, V2) =

∑N
i=1wi,V1 × wi,V2√∑N

i=1w
2
i,V1

√∑N
i=1w

2
i,V2

In the equation, wi,V is the TF-IDF weight for the ith word in vector V .

4.3 Proposed Approach

In this section, we provide an overview of our approach. We then describe compo-

nents of our approach. We first describe the association rule mining component, the

collaborative filtering component, and the matrix factorization component. Results

from the above components are then fed to the combiner component.

4.3.1 Overview

We show the overview of our library recommendation approach LibXplore in Fig-

ure 4.2. Our approach consists of several components: LibXploreRULE , LibXploreCF ,

LibXploreMF , and Combiner.

LibXploreRULE generates library usage association rules by analyzing Training

Projects, which contains library usages for known projects. Given a Target Project,

this component selects association rules that contains the project libraries. It then

collects libraries in the post-conditions of the rules and assigns scores to them.
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LibXploreCF retrieves Training Projects. Each project is represented as a collec-

tion of libraries. It then generates a vector representation for each project according

to textual contents of the libraries. Given a Target Project, LibXploreCF gener-

ates the same vector representation. Using this vector, LibXploreCF finds Training

Projects that are the most similar to the input project. Libraries in the most similar

projects are then assigned likelihood scores.

LibXploreMF retrieves Training Projects and a Target Project. It then creates

project-library usage matrix that indicates whether a project uses a particular li-

brary. Based on this matrix, LibXploreMF infers latent features for projects and

libraries. These features are learned so that interaction between the two can predict

the likelihood score of a library to be used in a given project.

Given the likelihood scores from the three components, Combiner combines

them into a single likelihood score. This score is used to rank libraries to be recom-

mended. The ranked libraries are then output as New Library Recommendations.

Details about each of the above components are described in the following sec-

tions.

LibXploreRULE

LibXploreMF

LibXploreCF

Training Projects Combiner

LibXplore

New Library 
Recommendations

Target 
Project

Figure 4.2: Our Library Recommendation Approach LibXplore

4.3.2 LibXploreRULE Component

This component is exactly the same as LibRecRULE component from our previous

approach (see Section 3.4.2). For the sake of completeness, we briefly describe the
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details of this component.

Given Training Projects, library usage association rules are extracted by fol-

lowing the mining process explained in Section ??. Given these rules and a Target

Project, we need to find all rules that match the libraries that are currently used in

the project. A library usage rule is considered to match a library if the pre-condition

of the rule contains the library. Given a matched rule, we assign likelihood scores to

libraries in the post-condition of the rules. The score is simply the confidence score

of the matched rule. Note that a library may exist in many matched rules. In such

a case, we assign the highest confidence score from the matched rules as the like-

lihood score of the library. We name the likelihood score given by LibXploreRULE

component to library L as RRULE (L). For libraries that do not exist in any of the

post-conditions of the matched rules, the corresponding RRULE (L) score is zero.

4.3.3 LibXploreCF Component

This component is similar to LibRecCOLLAB component from our previous ap-

proach (see Section 3.4.3). The difference lies in how a project is represented.

LibRecCOLLAB represents projects by the existence of libraries while LibXploreCF

represents projects by the textual contents of the libraries that are used in the projects.

LibXploreCF starts by taking all known libraries from Training Projects. Given

these libraries, LibXploreCF then extracts the names of methods from the call graph

of each library. Intuitively, names from method calls in a library should encode

information about tasks that a library supports. Adding other kinds of identifiers

including variable names might obscure this information. Unlike method name,

variable names are not intended to be visible to users and thus might not be properly

named.

Given the extracted identifiers, we perform the following text preprocessing:

1. Tokenization. Identifiers in method names are often formed from several En-

glish words that are concatenated according to a coding standard. In Java, an
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identifier name often uses camel casing to concatenate different words. We

use a camel case splitter to break down an identifier name to its constituent

English words. For example, we break the method name capitalizeFully into

two words: capitalize and fully.

2. Stop word removal. We remove common English words by using a stop word

list.2 These words occur frequently and thus do not carry much meaning or

have much power in differentiating libraries.

3. Lemmatization. This process converts an English word to its base form. For

example, reading and reads are both converted to read. These kind of words

have similar meaning and thus it is typically better to group them. We use

Porter Stemmer to perform this process [57].

After preprocessing, the identifiers are considered as a textual document repre-

sentation for each library. LibXploreCF then generates a vector representation for

each library by applying the vector space model (see Section 4.2.2) to the collection

of library documents.

These vectors are used to generate project representations. Consider that each

project contains a set of libraries that it currently uses and each library now has a

vector representation. Let S = {V1, ..., Vn} be a set of library vectors in project P .

We define the vector representation of P as follows.

V P =
n∑

i=1

Vi

Consider two library vectors A = (a1, a2, ..., am) and B = (b1, b2, ..., bm). These

vectors have the same size m, which is the number of unique words in all library

documents after text preprocessing. The sum of these two vectors is defined as

follows.
2http://www.ranks.nl/stopwords
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A+B = (a1 + b1, a2 + b2, ..., am + bm)

The above project representation is generated for all projects in Training Projects

and the Target Project. Given the representations, LibXploreCF then calculates co-

sine similarities between the Target Project vector and the vectors of TrainingProjects .

TrainingProjects are then ranked based on this similarity. We select the top-n

projects having the highest similarity with the Target Project. In the case that some

projects have the same similarity score, we randomly break the tie.

LibXploreCF proceeds to compute a likelihood score for each library in the top-

n projects. We collect all of the libraries in the top-n projects and calculates their

number of occurrences. Given a library L, we compute the likelihood score for L

as follows:

RCF (L) =
NLib(L)

n

NLib(A) is the number of top-n projects that use library L. For libraries that do not

exist in top-n projects, the corresponding RCF (L) score is zero.

4.3.4 LibXploreMF Component

This component takes as input TrainingProjects and a Target Project. Given these

projects, LibXploreMF constructs a m×n project-library usage matrix M where m

is the total number of projects and n is the total number of libraries. Values of M

are defined as follows.

Mij =


1, if the ith project uses the jth library

0, otherwise
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Given the filled matrix M , we want to factorize this matrix to two matrices U

and V :

M ' UV

U is am×f project-feature matrix while V is a f×n library-feature matrix. f is the

number of latent features. Thus, our goal is to learn latent features for projects and

libraries that result to the observed library usage in M . These latent features encode

numerically estimated factors that influence the suitability of a particular library for

a particular project.

In this work, we estimate the likelihood of a library to be suitable for a project

by taking a dot product between their representative vectors. For project vector

P = (p1, p2, ..., pf ) and library vector L = (l1, l2, ..., lf ), the dot product (·) between

P and L is defined as follows.

P · L = p1 × l1 + p2 × l2 + ...+ pf × lf

For example, consider a project having the following latent feature representation:

(0.9, 0.2, 0.4). Consider also two libraries having the following latent feature rep-

resentations: (0.8, 0.2, 0.5) and (0.5, 0.3, 0.5). The dot product between the project

vector with the first library vector results in a higher likelihood value. Thus, the first

library is more suitable for the project.

We adopt a variant of matrix factorization called non-negative matrix factoriza-

tion [32]. The objective function for non-negative matrix factorization is used to

find U and V by minimizing the difference between M and UV . It is generally

defined as follows.
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min
U,V

f(U, V ) =
m∑
i=1

n∑
j=1

(Mij − (UV )ij)
2

subject to Uia ≥ 0, Vbj ≥ 0, ∀i, j, a, b

By performing the above optimization, we learn U and V . We can then reconstruct

M by multiplying U and V . In this reconstructed matrix, Mij represents the likeli-

hood of the ith project to use the jth library. We refer to the likelihood score from

reconstructed matrix M for library L as RMF (L).

4.3.5 Combiner Component

This component combines RRULE , RCF , and RMF to generate a final recommenda-

tion score, which is denoted as R. The score of library L is defined as follows:

R(L) = α × RRULE (L) + β × RCF (L) + γ × RMF (L)

α, β, and γ are the weights for scores from the three LibXplore components. By

default, these weights are set to 1.0.

4.4 Experiments & Analysis

In this section, we present the dataset for our experiments, followed by describing

evaluation measures and experimental settings. Next, we list our research questions

and describe the experiment results. We end this section by discussing threats to

validity.
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4.4.1 Dataset

Our dataset is based on the one we use in our previous work [77]. This dataset

includes 500 projects that were downloaded from GitHub and has the following

properties.

1. The project has more than 10,000 lines of code. This is to ensure that the

project is real and not a “toy” project.

2. The project is not forked from another project. if a project is forked from

another, it shares the same source code at the forking time. These original

project and its forked projects are likely to share the same libraries. If an

original project appears in the training data, while its forked project appears

in the test data, the evaluation would be biased.

3. The project uses Maven. A project using Maven can be identified by the

existence of pom.xml file in its root directory. pom.xml file specifies project

dependencies (i.e., libraries used by the project) that can be uniquely tracked

across different projects (see Section 4.2.1).

4. The project uses at least ten libraries. The dataset is focused on library inten-

sive projects, from which historical library usages can be mined.

We filter the above dataset further by downloading the libraries and removing

the ones that are no longer downloadable. This usually happens because the link

is no longer available. Some libraries change name. To download libraries that

have changed name, we use information in MvnRepository.3 This website indexes

205 common Maven repositories (the largest of which is Maven Central) and it also

tracks library name change. MvnRepository explicitly states if a library has changed

its name and provides a link to a page containing information on where to download

the library. We downloaded the library following this information.

3https://mvnrepository.com/

50

https://mvnrepository.com/


CHAPTER 4. IMPROVING LIBRARY RECOMMENDATION USING TEXTUAL CONTENT AND MATRIX

FACTORIZATION

We split the set of libraries used in the current version of each project into two

sets: a set of initial libraries and a set of historically added libraries. The set of

libraries used by the current version is identified by analyzing the pom.xml file in

the latest version of the project. In our previous work, half of the current libraries

were dropped and considered as the set of historically added libraries, while the

remaining half were considered as the set of initial libraries.

To identify the set of initial libraries among the current libraries, we mine the

version control repository for each project. We check out the first project version

that contains the initial version of the pom.xml file. We then extract the libraries

defined in this initial pom.xml. We compare it with the set of current libraries.

We consider the intersection between the extracted libraries and the set of current

libraries as the set of initial libraries. Note that, for some cases, there are other li-

braries in the extracted libraries that do not exist in the current libraries. We remove

such libraries as the scope of our work is to recommend new libraries and not to

recommend removal of libraries. To get the set of historically added libraries, We

perform a set difference between the set of current libraries and the set of initial

libraries. In some cases, the set of extracted libraries and the set of current libraries

are exactly the same. We remove such cases from the dataset. Due to this removal,

we are left with 486 projects. In our experiment, we use this dataset.

4.4.2 Evaluation Measures and Experimental Settings

For experiments, we use Hit@N as the evaluation measure [53, 54, 66, 71, 82].

Consider that we have m projects for which we want to give library recommenda-

tions. Hit@N of a library recommendation system is then defined as the proportion

of the m projects for which we can successfully give correct recommendations in

the top-N of the returned library recommendation list. Note that Hit@N is the same

measure as recall-rate@k that we use in our previous library recommendation work.

To evaluate the effectiveness of our approach, we perform 10-fold cross valida-
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tion. In 10-fold cross validation, the dataset is randomly split to ten roughly equal

sized parts. In each fold, we pick a part and treat it as testing, while the remaining

nine parts are treated as training. In the testing data, we consider the set of initial

libraries as known libraries in the project and the set of historically added libraries

as the ground truth. If a recommended library exists in this ground truth, it means

that the recommendation is correct.

LibXplore has several parameters that can be configured: minsup (i.e., the mini-

mum support threshold), minconf (i.e., the minimum confidence threshold), n (i.e.,

the number of most similar projects), f (i.e., the number of latent factors), α (i.e.,

the weight of RRULE ), β (i.e., the weight of RCF ), and γ (i.e., the weight of RMF ).

By default, we set minsup, minconf , n, f , α, β, and γ as 0.1, 0.0, 5, 3, 1, 1, and 1,

respectively. In our experiments, we also vary these default values and investigate

the impact on the effectiveness of our approach.

4.4.3 Research Questions

We want to answer the following four research questions:

RQ1 What is the effectiveness of our approach in recommending libraries to new

projects?

RQ2 What is the contribution of each component in our approach to its effective-

ness?

RQ3 How does the various components and parameters of our approach affect its

effectiveness?

RQ4 How does the various experimental settings affect the effectiveness of our

approach?

4.4.4 RQ1: Effectiveness of the Proposed Approach

We have tested our approach on the 486 projects. Using a 10-fold cross validation,

we have compared our approach with LibRec, a baseline and the state-of-the-art
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approach (see Chapter 3). We run LibRec using its default parameters. The ex-

periment shows that our approach outperforms LibRec. Table 4.1 shows that our

approach can achieve Hit@5 of 0.584 and Hit@10 of 0.702, which is a 20.44%

and 9.69% improvement over LibRec. Note that the Hit@5 and Hit@10 scores are

conservative estimates to the actual accuracy. This is the case since we consider a

library to be correct only if it is later added to a project in the actual historical data.

It is possible that other top-ranked libraries are also useful for the project and the

original developers were not aware of them.

We notice that the effectiveness of LibRec is not as good as the one reported

in our previous work. We believe this is due to the more realistic scenario that we

now consider in evaluating the approaches – see Section 4.4.1. Our more realistic

scenario has cases where the ground truth has a size that is less than half the size of

current libraries in a project, which make it more difficult to provide good recom-

mendations. Also, for some projects, the size of the set of ground truth libraries is

more than half of that of the set of current libraries in the project. In either case, the

task of recommending libraries is more difficult. For the first case, information for

inferring good recommendations might be limited. For the second case, there are

fewer available number of correct recommendations.

Table 4.1: Effectiveness of the Proposed Approach

Approach Hit@5 Hit@10
LibRec 0.504 0.640
LibXplore 0.607 0.702

4.4.5 RQ2: Contributions of Each Component

We want to investigate the contribution of each component in our approach. To do

so, we disable each component one at a time and observe its effect on the effec-

tiveness of our approach. To disable LibXploreRULE , we set α to zero and investi-

gate the effectiveness of combining LibXploreCF+LibXploreMF . The performance
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difference between this combination and LibXplore indicates the contribution of

LibXploreRULE . Similarly, setting β to zero would disable LibXploreCF and its

contribution can be measured from LibXploreRULE+Lib−

XploreMF performance. To measure LibXploreMF contribution, we set γ to zero

and check the performance of LibXploreRULE+LibXploreCF .

Table 4.2 shows the effectiveness of different combinations of components after

disabling one of the LibXplore components. Removing LibXploreRULE results in

the largest reduction in effectiveness, followed by LibXploreMF and LibXploreCF .

Removing any of them clearly reduces the effectiveness of Lib−

Xplore. This shows the benefit of combining the three components – none of the

components does not contribute or contributes negatively to the performance of

LibXplore.

Table 4.2: Effectiveness of Different Component Combinations

Combination Hit@5
LibXploreRULE+LibXploreCF 0.541
LibXploreRULE+LibXploreMF 0.592
LibXploreCF+LibXploreMF 0.520

4.4.6 RQ3: Effectiveness of Various Components and Parame-

ter Settings

We investigate the effectiveness of components of LibXplore when they are used

separately. We also investigate the effectiveness of our approach when we change

the parameter settings. This provides some insights on how the parameters should

be changed in practice.

4.4.6.1 Effectiveness of the Individual Components.

We investigate how well LibXploreRULE , LibXploreCF , and LibXploreMF work

individually. The result is shown in Table 4.3. LibXploreMF performs the best,
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followed by LibXploreCF and LibXploreRULE . Compared to Table ??, combin-

ing a component with another generally improves its effectiveness, except when we

combine LibXploreMF and LibXploreCF . Still, after adding LibXploreRULE to the

combination of LibXploreMF and LibXploreCF , the effectiveness improves signif-

icantly. Again, this shows the benefit of combining the three components together

as its effectiveness consistently improves over the effectiveness of its constituent

components.

Table 4.3: Effectiveness of Individual Components

Component Hit@5
LibXploreRULE 0.420
LibXploreCF 0.471
LibXploreMF 0.570

4.4.6.2 Effect of Varying Number of Similar Projects

We investigate the impact of considering different numbers of similar projects. Ta-

ble 4.4 shows the effectiveness of LibXplore when we change the number of similar

projects in LibXploreCF from 5 to 25. Generally, the effectiveness of our approach

reduces when we increase the number of similar projects. Indeed, if this number is

too high, some projects may not be that similar and this hurts the performance of

LibXploreCF .

Table 4.4: Effect of Varying the Number of Similar Projects

Number of Hit@5Similar Projects
5 0.607

10 0.582
15 0.576
20 0.584
25 0.572
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4.4.6.3 Effect of Varying minsup and minconf

We investigate the effect of varying minsup in LibXploreRULE . As shown in Ta-

ble 4.5, a higher value of minsup generally reduces the effectiveness of our ap-

proach. It indicates that some important rules are missed. However, the perfor-

mance reductions are not very significant as the other components appear to be able

to compensate for some of the missing rules.

Table 4.5: Effect of Varying minsup

minsup Hit@5
0.1 0.607
0.2 0.592
0.3 0.584
0.4 0.601
0.5 0.592

We also investigate the effect of varying minconf in LibXploreCF . As shown

in Table 4.6, the effectiveness of our approach generally reduces when we increase

minconf. Similar to increasing minsup, increasing minconf would also make our

approach to miss some useful rules for calculating the final recommendation score.

Other components are generally capable of compensating for this loss.

Table 4.6: Effect of Varying minconf

minconf Hit@5
0.2 0.607
0.4 0.603
0.6 0.603
0.8 0.566
1.0 0.592

4.4.6.4 Effect of Varying f

We investigate the effect of varying f in LibXploreMF and show the result in Ta-

ble 4.7. Increasing f generally reduces the effectiveness of our approach. However,

the reduction appears not to be very significant. A Higher value of f means a higher
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number of parameters. Estimating higher number of parameters is generally more

difficult as it often involves an increased risk of overfitting.

Table 4.7: Effect of Varying f in LibXploreMF

f Hit@5
2 0.605
3 0.607
5 0.598
7 0.592

10 0.599

4.4.7 RQ4: Effectiveness for Various Experimental Settings

We investigate the sensitivity of LibXplore to two experimental settings: the size of

the training set and the number of recommendations.

4.4.7.1 Effect of Varying Training Set Size

To see the effect of training set size, we change the value of k in k-fold cross valida-

tion. We show the results in Table 4.8. Higher k indicates a larger training set size.

As expected, a larger training size translates to a higher effectiveness of our ap-

proach. A smaller training set contains less information, which may not be enough

for making effective recommendations.

Table 4.8: Effect of Varying Training Set Size

k Hit@5
2 0.556
4 0.589
6 0.607
8 0.593

10 0.607

4.4.7.2 Effect of Changing Recommendation Size

Here, we investigate the effect of changing the number of libraries recommended by

changing the value of N in Hit@N. Table 4.9 shows that our approach achieves an
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effectiveness of 0.702 when N is 10. In this case, our approach gives, on average,

correct recommendations for 70.2% of projects in testing data. However, bringing

the correct recommendation to the first rank of returned recommendation list proves

to be difficult as only 21% of projects in testing data receive correct recommenda-

tions.

Table 4.9: Effect of Varying Recommendation Size

N Hit@N
10 0.702
7 0.650
5 0.607
3 0.459
1 0.210

4.4.8 Threats to Validity

Threats to validity consist of threats to internal validity, threats to external validity,

and threats to construct validity.

4.4.8.1 Threats to Internal Validity

Threats to internal validity are related to possible errors in the experiments. To

reduce these threats, we have checked our implementations and made sure, to the

best of our ability, that they are free from errors. We have made our evaluation

setting more realistic, as compared to our previous work.

4.4.8.2 Threats to External Validity

Threats to external validity are related to the generalizability of our experimental

results. Our dataset contains only open source Java projects that use Maven. Maven

is a popular project management tool that has seen widespread use. We expect

many Java projects use Maven. Furthermore, our dataset contains only projects

that are hosted in GitHub. However, GitHub is the largest open source software
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repository in existence today. We have tried to reduce the threats to external validity

by experimenting on 486 projects. In the future, we can add more projects to further

validate the generalizability of the result.

4.4.8.3 Threats to Construct Validity

Threats to construct validity are related to the appropriateness of our evaluation

metric. We evaluate the effectiveness of our approach using Hit@N. This measure

is well known and has been used in a number of past studies, e.g., [53, 71, 82].

Thus, we believe that threats to construct validity are minimal.

4.5 Conclusion

We propose a new library recommendation approach that combines association rule

mining, neighborhood based collaborative filtering, and non-negative matrix factor-

ization. Our approach leverages information from historical library usage and con-

tent of libraries. We have evaluated our approach on 486 open source Java projects

hosted on GitHub. Our approach achieves Hit@5 of 0.607 and Hit@10 of 0.702,

improving over the state-of-the-art approach by 20.44% and 9.69%, respectively.

We introduced a more realistic scenario for evaluating a library recommendation

approach. In this scenario, we mined version control repository to split the set

of current libraries to the set of initial libraries and the set of historically added

libraries. Using these sets, we simulate whether the library recommendation ap-

proach can recommend relevant libraries in historically added libraries when given

initial libraries as input.

In the future, we plan to increase the size of our dataset to validate generaliz-

ability of our approach. We will download more Maven projects from GitHub. We

will also download more libraries from Maven repositories. We also plan to further

improve the effectiveness of our approach. A potential improvement is by consid-

ering textual features from projects, such as project description. Textual features
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from projects may contain information that explain why a project uses a particular

library and not the others. Using these textual features also allows us to recom-

mend libraries to a project that has not used any library at all. It is also likely to

significantly improve recommendations for projects that use only a small number of

libraries.

Another interesting direction is to integrate our approach in an IDE so that the

library recommendation can be performed seamlessly during development. Devel-

opers can develop their project as usual and the library recommendation system

would notify them if the system finds a library that might be useful for them. Last

but not least, we plan to develop an approach that can explain to software developers

why a particular library would be useful for their project.
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Chapter 5

Automatic Recommendation of API

Methods from Feature Requests

5.1 Introduction

Developers often receive requests for new features submitted via systems such as

JIRA1. Given the requirements expressed in these feature requests, developers need

to locate code units that should be changed and then implement the required changes.

While a number of concern localization techniques have been proposed for locating

code units of interest [16, 58, 60, 80, 90, 92], there is still little automated support

to help developers implement the changes required to satisfy a feature request.

Many software systems rely on a variety of external libraries for various func-

tionalities. Accordingly, developers often use external libraries to implement re-

quired changes. However, using these libraries effectively, requires knowledge of

the relevant methods and classes that they provide. Given the large number of li-

braries, and the large number of methods and classes that they provide, it can be

a challenge for developers to identify the methods and classes of interest, given a

target requirement document expressed as a feature request.

Considering the above issues and opportunities, there is a need for an automated

1https://www.atlassian.com/software/jira
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approach that could help developers to better harness the power of libraries. The

automated approach should be able to recommend library methods given a feature

request. We refer to our problem as method recommendation from feature requests.

A number of techniques have been proposed to recommend code units given

a requirement. Mandelin et al. [44] and Thummalapenta and Xie [75] propose a

technique to generate code snippets that can convert an object of a particular type

to another object of a different type. While this technique is useful for a number

of situations, it requires the information about the desired functionality to be ex-

pressed at code level. Chan et al. propose a code search technique that takes in text

phrases and returns a graph of API methods that best match the phrases [13]. Their

approach requires precise text phrases that match some words in the API methods.

These techniques are not sufficient to automatically process feature requests, which

typically describe high-level requirements, written in natural language. In this work,

we propose a complementary approach that recommends relevant library methods

directly from feature requests.

Our proposed approach learns from a training dataset of changes made to a soft-

ware system recorded in repositories (i.e., issue management systems, and version

control systems). Each change in the dataset has three parts: the textual description

describing the change (text), the code before the change (pre-change), and the code

after the change (post-change). Our approach takes as input a new textual descrip-

tion (text) and then recommends methods from a set of libraries to be used in the

post-change code.

To recover methods that can be used to construct the post-change code, our ap-

proach performs a two-pronged approach to rank relevant methods. First, it searches

for similar closed or resolved feature requests in the training data. A closed or re-

solved feature request is one that has been addressed by developers and where ap-

propriate changes have been made to the software system. It then looks into the

API methods that are used to implement these feature requests and measures the

relevance of various methods based on the number of similar closed requests which
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use them. Second, our approach measures an API method relevance by looking into

the similarity between the textual description of the feature request and the descrip-

tions of the API method. Our approach then learns an integrated ranking function

that is used to recover a list of potentially relevant library methods that are then

recommended to the developers.

We have evaluated our solution on feature requests stored in the JIRA issue

management systems of 5 Java applications: Axis2/Java, CXF, Hadoop Common,

HBase, and Struts 2. Each feature request in JIRA can be linked to the commits

in the corresponding version control system that implement the requested feature.

We recommend methods from 10 third party libraries: commons-codec, commons-

io, commons-lang, commons-logging, junit, servlet-api, easymock, log4j, slf4j-api,

and slf4j-log4j12. These are the most popular libraries used by Java applications

developed under the Apache Foundation. These libraries provide various function-

alities including testing, logging, I/O, etc. The accuracy of our proposed approach

is measured using recall-rate@5 and recall-rate@10; these measures have also been

used to evaluate past studies on bug report analysis [27, 53, 72, 82]. Our experi-

ments show that we can achieve a recall-rate@5 and recall-rate@10 of 0.690 and

0.779 respectively. On the other hand, we show that the state-of-the-art code search

approach by Chan et al. [13] that recommends API methods from precise textual

phrases is not effective to directly process feature requests, which often contain

high level requirements. Indeed, we find that their approach returns no relevant

methods.

Our contributions are as follows:

1. We propose a new problem of method recommendation from feature requests.

2. We propose a technique that leverages information from past similar closed

or resolved feature requests and compares the textual description of a feature

request with those of library methods. Our technique learns an integrated

ranking function that is then used to recommend library methods to be used
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in the post-change code.

3. We evaluate our approach on change requests of 5 applications and recom-

mend methods from 10 libraries. We show that our approach achieves a

recall-rate@5 and recall-rate@10 of 0.690 and 0.779, respectively.

The structure of this chapter is as follows. In Section 5.2, we describe some

preliminary concepts. In Section 5.3, we present an overview of our proposed ap-

proach. We elaborate the three processing components of our approach in Sec-

tions 5.4, 5.5, and 5.6. We highlight our experimental methodology and results in

Section 5.7. Finally, we conclude in Section 5.8.

5.2 Preliminaries

In this section, we describe some preliminary materials that are needed for later

sections. We first describe the issue management system JIRA and show how it

stores feature requests. We then describe some text pre-processing techniques and

the vector space model.

5.2.1 Feature Requests and JIRA

JIRA is an issue management system developed by Altassian.2 It is used in many

software projects to capture and store issues that are reported by users and devel-

opers. Among its users are the many projects developed by the Apache Software

Foundation. Figure 5.1 shows a sample issue stored in the JIRA repository of an

Apache project. An issue contains a number of fields including: summary, descrip-

tion, type, priority, component, etc. For our work, we are especially interested in

the fields listed in Table 5.1.

Each issue in JIRA can be categorized into one of these types: “Bug”, “New

Feature”, “Task”, etc. In this study, we are interested in feature requests reported in

2http://www.atlassian.com/software/jira/overview
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Figure 5.1: A Sample JIRA Issue

Table 5.1: Fields in a JIRA Issue

Name Description
Summary the summary/title of the issue
Description the detailed description of the issue
Component the component affected by the issue
Reporter the name of the person who submitted the issue report
Priority the urgency of the issue to be addressed

JIRA. A feature request in JIRA can be seen as an issue of type: “New Feature”,

“Improvement”, or “Wish”. Each issue also has a priority. The priority indicates the

urgency of the issue to be addressed. Table 5.2 lists the priorities available in JIRA

along with their descriptions.

Table 5.2: Priority in JIRA

Name Description
Blocker Blocks development and/or testing, production could not run
Critical Crash, loss of data, severe memory leak
Major Major loss of functionality
Minor Minor loss of functionality, or other problem where an easy workaround

is present
Trivial Cosmetic problem like misspelled words or misaligned text

An issue can be assigned various status labels: “open”, “in progress”, “re-

solved”, “closed”, etc. A new issue is typically given the status “open”. An issue

that has been addressed to completion by developers is given the status: “resolved”

or “closed”. Each issue report in JIRA has a unique issue identifier (id) used to
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identify the report. The format of this identifier is typically a short name for the

project followed by the issue number in the project (e.g., HBASE-3850). JIRA can

be integrated with version control systems like svn, git, etc. Each issue in JIRA can

then be linked to the commits in the version control system that address the issue.

The issue identifier is added to the log messages of the commits that address the

issue. This provides an easy identification of changes made to address the issue.

We show an example of this link in Figure 5.2. We can see that it is easy to identify

the commits in the version control system that address the HBASE-3850 issue.

Figure 5.2: Sample Link Between A JIRA Issue And A Commit in A Version Con-
trol System

5.2.2 Text Pre-processing

Text pre-processing is an important task in text mining [45]. Its purpose is to convert

a piece of text into a common representation easily processed by a text mining

algorithm and to remove certain noise. Widely used text pre-processing strategies

include tokenization and stemming.

Tokenization refers to the process that breaks a document into word tokens.

Delimiters are used to demarcate one token from another. Typically, space and

punctuation are used as delimiters. After tokenization, a document is converted to

a bag (i.e., a multiset) of word tokens. This is often referred to as the bag of words

representation.

Stemming is the process of converting a word to its base form. This base form

is usually called the stem word. For example, word “argue”, “argues”, “argued”,

and “arguing” have a common stem word “argu”. Even though word “argu” is not a

66



CHAPTER 5. AUTOMATIC RECOMMENDATION OF API METHODS FROM FEATURE REQUESTS

dictionary word, the conversion assures that we can identify a word in its different

forms and link these word forms together. Without stemming, the multiple forms

would be treated as different words altogether, which is not desirable in many cases.

In our work, we use the Porter stemmer3 to stem the words. It employs several

rule based heuristics to convert a word to its stem word by stripping a suffix of the

word. The Porter stemmer has been used in many past software engineering studies,

e.g., [21, 25].

5.2.3 Vector Space Model

After the text pre-processing step, the document is now represented as a bag of

words. The vector space model represents a bag of words as a vector of weights.

Each word in the bag becomes an element in the vector. The weight of each word

indicates its importance. Term frequency and inverse document frequency are of-

ten used to compute the weight of a word and thus quantify its importance in a

document.

Term frequency (TF) refers to the number of times a term (i.e., a word, or a

token) appears in a document. The more times a term appears in a document, the

more important that term is considered to be. Inverse document frequency (IDF) is

the reciprocal of the document frequency (DF). The document frequency of a term

is the number of documents in the corpus (i.e., a set of documents or a document

collection under consideration, e.g., all feature requests, all method descriptions in

the API documentation) that contain the term. The higher the inverse document fre-

quency is, the more important is the term, as it can better differentiate one document

from another. TF-IDF is often used to compute the weight of a term i in a document

D considering a corpus C in the following way:

wi,D,C = TF i,D × IDF i,C

IDF i,C = 1
DF i,C

(5.1)

3http://tartarus.org/martin/PorterStemmer/
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TF i,D refers to the number of times a word i appears in a documentD. DF i,C refers

to the number of documents in C that contains the word i.

From the above, given a bag of words representing a document D in a corpus C,

we can convert it to its corresponding term vector by computing the weight of each

word in C and putting them into a vector. The weight of a word in C, but not in D,

would be 0. We denote the term vector representation of document D considering

a corpus C as V SMC(D). Implementation-wise, a sparse vector representation is

typically used (i.e., only the non-zero entries of the vector are stored).

Given two documents, we can compute the similarity between them by com-

paring their representative vectors. Cosine similarity is often used to measure the

similarity between two vectors. Let V1 and V2 denotes two vectors of weights of

size N , then the cosine similarity of these two vectors is given by the following

equation:

Cosine(V1, V2) =
∑N

i=1 wi,V1
×wi,V2√∑N

i=1 w
2
i,V1

√∑N
i=1 w

2
i,V2

(5.2)

wi,V refers to the ith weight in vector V .

5.3 Overall Framework

The overall framework of our approach is shown in Figure 5.3. Our framework

consists of three important components: History Based Recommender, Description

Based Recommender, and Integrator.

Historical Feature 
Request 

Database (HDB) 

API 
Documentation 

(ADoc) 

Textual 
Description 

History Based 
Recommender 

Description Based 
Recommender 

Integrator 

Ranked 
Recommendation 

Figure 5.3: Our Recommendation Framework
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History Based Recommender takes as input the description of the new feature

request (Textual Description) and a historical database containing old “closed” or

“resolved” feature requests (Historical Feature Request Database (HDB)). The rec-

ommender compares the new feature request with those in the historical database

and finds the closest ones. It then recommends relevant methods based on the meth-

ods that were used to implement those closest feature requests.

Description Based Recommender takes as input the description of the new fea-

ture request (Textual Description) and the documentation of API libraries (API Doc-

umentations (ADoc)). The recommender computes the similarity of the textual de-

scription of the new feature request with the description of each method in the API

documentations of the libraries. It recommends methods whose textual descriptions

have the highest similarity with the textual description of the new feature request.

Integrator combines the recommendations from History Based Recommender

and Description Based Recommender. It takes as inputs recommendation scores

from the two components and outputs a final list of methods to be recommended to

the user.

5.4 History-Based Recommendation

In the history-based recommender component, we first find the nearest neighbors of

a new feature request from the historical database of “closed” or “resolved” feature

requests that we have. We compare two feature requests based on the contents of

their summary, description, component, reporter, and priority fields (see Table 5.1).

We compute a similarity score for each field and combine the scores into an aggre-

gate score that specifies the similarity between two feature requests. We define the

similarity score for each field as follows.

1. Summary and Description. The contents of these fields are free-form texts.

We pick only alphanumeric terms from these texts. We employ standard text

preprocessing (tokenization and stemming) and convert the terms into a bag
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of word and its corresponding term vector (see Section 5.2). We have 3 op-

tions: we can take all terms in the summary field, we can take all terms in the

description field, and we can take all terms in both summary and description

fields. We compute the following 3 similarity scores between the new feature

request F1 and a historical feature request F2 in terms of their summary/de-

scription fields using cosine similarity:

SimSum(F1, F2) = Cosine(VSMHDB(F
S
1 ),VSMHDB(F

S
2 ))

SimDesc(F1, F2) = Cosine(VSMHDB(F
D
1 ),VSMHDB(F

D
2 ))

SimSumDesc(F1, F2) = Cosine(VSMHDB(F
SD
1 ),VSMHDB(F

SD
2 ))

(5.3)

In the above equations, F S
1 denotes the content of the summary field of F1.

FD
1 denotes the content of the description field of F1. F SD

1 denotes the con-

tents of the summary and description fields of F1. HDB is the Historical

Feature Request Database (see Figure 5.3).

2. Component. A feature request, if implemented, can affect multiple compo-

nents in the system. Thus, the content of the component field of a feature

request is a set of values. We compute the similarity score SimComp be-

tween a new feature request F1 and a historical feature request F2 in terms

of their components as follows:

SimComp(F1, F2) =
|NcF1 ∩NcF2|√
|NcF1| ∗

√
|NcF2|

NcF denotes the set of components of feature request F .

3. Reporter. The similarity score SimReport between a new feature request F1

and a historical feature request F2 in terms of their reporters is 1 if both of

them have the same reporter and 0 otherwise.

4. Priority. Each priority in JIRA can be assigned an ordinal value to quantify

its level of urgency. We assign value 1 for “Blocker”, 2 for “Critical”, 3 for
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“Major”, 4 for “Minor”, and 5 for “Trivial”. A lower value means a higher

priority or level of urgency. We compute the similarity score SimPrio be-

tween a new feature request F1 and a historical feature request F2 in terms of

their priority based on these values. The formula is as follows:

SimPrio(F1, F2) =
1

1 + |PrioF1 − PrioF2|

PrioF denotes the ordinal value corresponding to the priority of feature re-

quest F .

Example. Consider the example feature request shown in Figure 5.1 as a historical

feature request and a new feature request having values as shown in Table 5.3. We

can compute the similarity between these two feature requests for each field as

follows.

1. Summary and Description. Since the computation steps for both summary

and description are basically the same, in this example, we only compute

the similarity score for the summary. We convert a summary to a vector of

TF − IDF weights of its stemmed alphanumerical words. Each word has

a term frequency TF equal to 1. Assuming that the IDF of each word is 1,

which means the word only appears in one document in the historical database

of feature requests (HDB ), the similarity score for the summaries of the his-

torical and new feature request (i.e., SimSum) is 1/(
√
8 ∗
√
6) = 0.144.

2. Component. The historical feature request and the new feature request do not

share any component. Thus, the SimComp score is 0.

3. Reporter. The feature requests are reported by different reporters so the

SimReport score is 0.

4. Priority. The historical feature request has “Critical” priority which corre-

sponds to the ordinal value 2, while the new feature request has “Minor” pri-
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ority which corresponds to the ordinal value 4. The denominator of SimPrio

is equal to 1 + |2− 4| = 3. Thus, the SimPrio score is 1/3 = 0.333.

Table 5.3: Example of A New Feature Request

Field Values
ID HBASE-6372
Summary Add scanner batching to Export job
Description When a single row is too large for the RS heap then an OOME can

take out the entire RS. Setting scanner batching in custom scans
helps avoiding this scenario, but for the supplied Export job this
is not set. Similar to HBASE-3421 we can set the batching to a
low number - or if needed make it a command line option.

Components mapreduce
Reporter Lars George
Priority Minor

Finally, to compute the final similarity score between two feature requests, we

aggregate the similarity scores of their constituent fields. We compute the final

similarity SimHISTORY between a new feature request F1 and a historical feature

request F2 in the historical database using the following formula:

SimHISTORY (F1, F2) =

α1 ∗ SimSum(F1, F2) + α2 ∗ SimDesc(F1, F2) +

α3 ∗ SimSumDesc(F1, F2) + α4 ∗ SimReport(F1, F2) +

α5 ∗ SimComp(F1, F2) + α6 ∗ SimPrio(F1, F2)

(5.4)

SimSum(F1, F2), SimDesc(F1, F2), SimSumDesc(F1, F2), SimReport(F1, F2),

SimComp(F1, F2), and SimPrio(F1, F2) denote the similarity scores between F1’s

and F2’s summary, description, combination of summary and description, reporter,

components, and priority respectively. α1-α6 denotes the weights of each field con-

tributing to the SimHISTORY score.

Given a new feature request, we rank the historical feature requests in the Histor-

ical Feature Request Database based on their SimHISTORY scores when compared

to the new feature request. The higher the score is, the more similar a historical

feature request is to the new feature request. We then pick the top-k feature requests
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with the highest SimHISTORY scores. If there are feature requests with rank greater

than k that have the same score as the k-th feature request, we group the feature re-

quests having this score. We then randomly select feature requests from this group

until we have k nearest neighbors (i.e., ties are randomly broken).

Next, we compute the recommendation scores for each method based on these

top-k nearest neighbors. We collect the methods that are used to implement the

feature requests in the top-k nearest neighbors and compute a score for each method.

Given a method m, the history based recommendation score of API method m for

feature request F , denoted as RecScoreHISTORY (F,m) is computed as follows:

RecScoreHISTORY (F,m) =
NNCountMethod(F,m)

k
(5.5)

NNCountMethod(m) denotes the number of nearest neighbors of feature request F

that use API method m, and k denotes the total number of nearest neighbors. By

default, we set the number of nearest neighbors k to be 5. The API method with

the highest RecScoreHISTORY score is the most suitable API method based on our

history-based recommender.

Example. Consider a top-2 nearest neighbor list containing N1 and N2. Feature

request N1 was implemented using method m1 and m2 while feature request N2

was implemented using method m2. Thus, the value of NNCountMethod is 1 for m1

and 2 for m2. We can then compute RecScoreHISTORY score of m1 and m2 which

are 0.5 and 1.0 respectively.

5.5 Description-Based Recommendation

When adding a new feature to an application, developers often look at the API doc-

umentation to see which methods they can use to help them implement the feature.

The API documentation contains textual descriptions that explain each method in

the library. By looking at the documentation, developers can find out which API
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methods to use for implementing a feature. Our description-based recommender

component mimics this process to find relevant methods given the textual descrip-

tion of a feature request. Given a new feature request F , it proceeds in the following

steps:

1. Feature Request Preprocessing. We extract the contents of the summary

and description fields of the input feature request F . We again perform stan-

dard text preprocessing steps to convert them into a bag of words. This bag

of word is then converted into its corresponding term vector representation

VSMADoc(F ) where each token (i.e., term) in the bag is represented by its

TF-IDF weight4 and ADoc is API Documentation (see Figure 5.3).

2. API Method Preprocessing. For each API method m that we consider, we

extract its method signature and its corresponding description in the API doc-

umentation. We extract the method descriptions from the Javadoc comments

in the code base of the APIs. We make use of Eclipse Java Development

Tools (JDT) to extract these Javadoc comments. Javadoc has tags which serve

as metadata. Examples include @param indicating the start of the descrip-

tion of a method parameter, @return indicating the start of the description of

the return value of a method, etc. Since these tags only serve as metadata

and are not specific to the API, we remove them from the extracted Javadoc

comments. Additionally, developers sometimes add HTML tags in the docu-

mentation to improve its readability when it is viewed in e.g., a web browser.

Since these tags are only meant to improve the look and feel of the API doc-

umentation and are again not specific to the API, we also remove all HTML

tags. Next, we perform standard text preprocessing (i.e., tokenization and

stemming) to convert the cleaned method descriptions in the Javadoc com-

ments into bags of words. We then convert each bag of words into its corre-

sponding term vector representation, VSMADoc(m).

4The description of text preprocessing and vector space model is given in Section 5.2.
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3. Similarity Computation. Next, for each method m, we compute the similar-

ity between V SMADoc(F ) and V SMADoc(m). We use the cosine similarity

to compute the similarity between these two vectors (see Section 5.2). We

refer to this similarity score as the description based recommendation score

RecScoreDESCRIPTION (F,m) between feature request F and API method m:

RecScoreDESCRIPTION (F,m) = Cosine(VSMADoc(F ),VSMADoc(m))

(5.6)

After the above steps, we have the RecScoreDESCRIPTION scores of various API

methods. The method with the highest score is the most relevant API method based

on the description-based recommender.

5.6 Unifying History- and Description-Based Recom-

mendation

The last component in our framework is the Integrator, which combines the scores

from the previous components. We compute the final recommendation scoreRecScore

between feature requestF and API methodm by combining RecScoreHISTORY (F,m)

and RecScoreDESCRIPTION (F,m), as follows:

RecScore(F,m) = α ∗RecScoreHISTORY (F,m)+

β ∗RecScoreDESCRIPTION(F,m)
(5.7)

α and β are the weights for RecScoreHISTORY and RecScoreDESCRIPTION , respec-

tively.

To set the appropriate values for α and β of RecScore (see Equation 5.7) and the

appropriate values for α1-α6 of RecScoreHISTORY (see Equation 5.5), we heuristi-

cally find the best set of weights that maximizes an evaluation metric based on a
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training dataset We employ a greedy approach based on Gibbs sampling [12] that

iteratively refines the set of weights. At each iteration, each weight is optimized in-

dependently. Several iterations are performed to further optimize the weights. The

pseudocode of our approach to tune the set of weights is shown in Figure 5.4.

Our algorithm takes the input historical feature requests, a set of API documen-

tations, and the number of iterations to perform Gibbs sampling numIter. It then

outputs the set of best weights. Initially all weights (α1, α2, α3, α4, α5, α6, α, β) are

set to 1.0 (Line 8). We then iterate numIter times (Lines 11-23). For each iteration,

we try to estimate the best α1, α2, α3,

α4, α5, α6, α, β weights independently (Lines 12-22). We go through each of the

eight weights and for each weight we investigate 11 settings (i.e., 0.0, 0.1, 0.2,

. . . , 1.0) (Lines 13-21). We pick the setting that give the best result (Lines 16-

19,21). Method eval evaluates how good a particular weight setting is with re-

spect to an evaluation criteria (Line 16). In this study, we make use of recall-

rate@k [53, 66, 70, 72, 82] as the evaluation criteria (see Section 5.7). At the end

of the above process, we would have estimated the best weights.

In the end, we want to get the top-k methods based on RecScore. To do this, we

first get the set of methods with non-zero RecScoreHISTORY scores. For all these

methods, we compute their RecScore scores. We then return the top-k methods

based on the RecScore scores. If there are methods having the same score as the

k-th method, we group the methods having this score and randomly select methods

from this group until we have k top methods (i.e., ties are randomly broken).

5.7 Experiments & Analysis

In this section, we first describe our dataset. We then outline our experimental

methodology and research questions. Next, we present the answers to the research

questions and describe some threats to validity.
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1: Input:
2: FReqs = list of historical closed or resolved feature requests
3: Docs = the documentation of APIs
4: numIter = number of iteration
5: Output:
6: Estimated best weights: {α1, α2, α3, α4, α5, α6, α, β}
7: Method:
8: Let weights = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}
9: Let maxEvalScore = 0

10: Let valForMax = 0
11: for i = 0 to numIter do
12: for j = 0 to weights.Length do
13: for k = 1.0 to 0.0 by 0.1 do
14: weights[j] = k
15: evalScore = eval(FReqs,Docs, weights)
16: if maxEvalScore > evalScore then
17: maxEvalScore = evalScore
18: valForMax = k
19: end if
20: end for
21: weights[j] = valForMax
22: end for
23: end for
24: return weights

Figure 5.4: Pseudocode for our Weight Tuning Algorithm

5.7.1 Dataset

We first describe how we select libraries of interest and the projects that we investi-

gate. Next, we describe the feature requests that we use to evaluate our approach.

5.7.1.1 Library Selection

We pick libraries that are frequently used by many projects of the Apache Foun-

dation. We choose Apache projects that use Maven as their project management

tool. Maven includes a dependency management feature which helps us resolve the

libraries used by the projects. These libraries have standard names in Maven, so

it is easy to reliably match the libraries that are used across different projects. We

first download Apache projects that use Java as their main programming language.

We then filter these projects based on the existence of the pom.xml file in their root
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directory. This pom.xml file indicates the use of Maven as the project management

tool. After this filtering process, we have 207 Apache projects. For each project,

we extract the libraries it depends on and count the number of projects using each

library. We then rank the libraries based on the number of projects using it. We list

the top-10 libraries in Table 5.4. These are the target libraries for our study – we

recommend methods from these libraries.

Table 5.4: Top-10 Most Popular Libraries in 207 Apache Projects

Name Description
commons-codec common encoder and decoder library for string, URL, etc
commons-io common library for input/output functionality
commons-lang common library providing extra methods for manipulating

Java core classes
commons-logging common library which encapsulates the logging process for

different logging implementations
easymock a library that provides easy way to use mock objects in unit

testing
junit unit testing framework
log4j logging library
servlet-api library providing contracts between a servlet and the runtime

environment
slf4j-api an abstraction library for various logging framework
slf4j-log4j12 a binding library for slf4j and log4j

5.7.1.2 Project Selection

Next, we want to pick large projects (> 100,000 lines of code) from the 207 Apache

Foundation projects whose feature requests we use to evaluate our approach. We

omit “toy” and small projects. We filter out projects that only use a few of the 10

selected libraries. We choose these projects as we only recommend methods from

the 10 libraries. We also filter out projects that do not use JIRA issue management

system. We choose these projects as we need reliable links between bug reports

and corresponding commits in the version controls system. These links are well

maintained in JIRA issue management systems, c.f., [8]. Table 5.5 lists the projects

that we use in this study and their descriptions.
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Table 5.5: Selected Apache Projects

Name Description
Axis2/Java server-client web service engine
CXF open source web service framework
Hadoop Common common utilities used in other Hadoop modules
Hbase scalable distributed database based on Big Table [14]
Struts 2 enterprise-ready web application framework

5.7.1.3 Feature Request Selection and Gold Standard Extraction

We pick feature requests from the JIRA issue management system of the selected

projects. We pick only issues in JIRA that are of relevant types. As mentioned in

Section 5.2.1, there are 3 issue types in JIRA that correspond to a feature request,

namely “New Feature”, “Improvement”, and “Wish”. For these three issue types,

we pick issues that are either “closed” or “resolved”.

JIRA contains explicit links between issue reports and repository commits. Us-

ing these links, we find the changed files for each commit that addresses an issue.

These files have a pre-change and a post-change version. We extract the methods

from the libraries shown in Table 5.4 that are invoked in the post-change version of

the file as the evaluation benchmark or gold standard (c.f. [45]). A good recommen-

dation system should be able to recommend these methods. There are three cases

that we need to consider when extracting method calls for gold standard:

1. File is added in the post-change version. If the file does not exist in the pre-

change version, we take all the methods from the 10 libraries that are invoked

in the post-change version as members of the gold standard.

2. File is changed in the post-change version. If the file exists in both pre-change

and post-change versions, we take as the gold standard all the methods from

the 10 libraries that are invoked in the post-change version, but not invoked

in the pre-change version.

3. File is deleted in the post-change version. If the file is deleted, the file does
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not contribute any API method to the gold standard.

Since we only recommend methods from the top-10 libraries, we only take fea-

ture requests whose gold standard set contains at least one method from the 10

libraries. We ignore very rare methods that are only used in one feature request.

Our history-based approach requires a method to be used in at least 2 feature re-

quests. Table 5.6 shows the number of feature requests for each of the projects that

we use in this study.

Table 5.6: Number of Feature Requests in Our Dataset

Project #Feature Request
Axis2/Java 108
CXF 106
Hadoop Common 79
Hbase 161
Struts 2 53

Total 507

5.7.2 Methodology & Research Questions

In order to measure the effectiveness of our approach, we use a commonly used

evaluation measure namely average recall-rate@k [66]. Recall-rate@k has a value

of either 1 or 0 where k is the number of the returned items. It has value 1 if at least

one of the k returned items (i.e., recommended method) is a member of the gold

standard and 0 otherwise. We use recall-rate@k as it has also been used in many

past studies that also analyze entries in issue management systems [53, 66, 70, 72,

82].

For each project, we perform stratified ten-fold cross validations to evaluate the

effectiveness of our approach. We divide the feature requests of a project randomly

into ten groups of roughly equal sizes (±1) and then perform ten iterations. For each

iteration, one group is used as the test data (i.e., they form the set of new feature
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requests) and the remaining nine groups are combined to be the training data (i.e.,

they form the historical feature request database (HDB)). The test data is used to

evaluate the effectiveness of our approach. We report the average effectiveness over

the ten iterations.

We consider the following research questions:

RQ1 What is the effectiveness of our proposed approach?

RQ2 What are the relative contributions of the various components of our

approach?

RQ3 How effective is our approach compared to a state-of-the-art code

search based approach in recommending relevant methods for a feature

request?

5.7.3 Experimental Results

We describe the answers to each of the research questions below.

5.7.3.1 RQ1: Effectiveness of the Proposed Approach

Table 5.7 shows the effectiveness of our approach. The average recall-rate@5 and

recall-rate@10 are 0.690 and 0.779 respectively. We show that, by only returning

5 methods, our approach can correctly recommend relevant methods for 57.1% to

80.5% of the feature requests in a project. In other words, our approach can put

relevant methods in high ranking positions. If we increase the recommendation

size to be 10 methods, our approach can correctly recommend at least one relevant

method for 70.9% to 90.8% of the feature requests.

5.7.3.2 RQ2: Relative Contributions

Our proposed approach has two main components: the history-based recommender

and the description-based recommender. Our history-based recommender computes

the similarity between two feature requests by aggregating 6 similarity scores (based

on summary, description, summary + description, reporter, component and priority).
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Table 5.7: Effectiveness of Our Approach

Project Recall-Rate@5 Recall-Rate@10
Axis2/Java 0.805 0.908
CXF 0.628 0.725
Hadoop Common 0.571 0.709
HBase 0.789 0.839
Struts 2 0.657 0.713

Overall 0.690 0.779

In this research question, we want to investigate the relative contributions of the

various components and sub-components of our approach.

We employ Gibbs sampling to tune 8 weights to yield a semi optimal set-

ting. Thus, we can estimate the contributions of the various components and sub-

components of our approach from their corresponding weights. The average values

of the 8 weights across the ten fold cross validation performed for computing recall-

rate@5 and recall-rate@10 are shown in Table 5.8. We find that all components and

sub-components of our approach are important as none of them is given a weight

of zero. Different weights for different projects indicate different importance of our

components for different projects. For both k = 5 and k = 10, α1 has the lowest

weight compared to the other parameters, suggesting that it is less useful than the

other information leveraged by our approach. In our approach, each recommended

method needs to have a non-zero RecScoreHISTORY score (see Section 5.6). How-

ever, this does not mean that the RecScoreDESCRIPTION score is not useful. Indeed,

we note that the weight of our description-based recommendation score (Descrip-

tion) is higher than that of our history-based recommendation score (Historical).

This indicates that among methods with non-zero RecScoreHISTORY score, we can

use RecScoreDESCRIPTION scores to rank them.

5.7.3.3 RQ3: Comparison with a Code Search Based Approach

Code search can also be used to recommend relevant API methods. Chan et al.

propose a graph-based approach that can search an API library for relevant methods
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Table 5.8: Average Weights for K = 5 and 10

Project k Weight

α1 α2 α3 α4 α5 α6 α β

Axis2/Java

@5

0.40 0.43 0.59 0.31 0.44 0.70 0.61 0.70
CXF 0.60 0.61 0.72 0.87 0.74 0.82 0.72 0.81
Hadoop Common 0.70 0.61 0.56 0.35 0.63 0.70 0.51 0.60
HBase 0.38 0.29 0.36 0.20 0.23 0.60 0.52 0.70
Struts 2 0.58 0.10 0.49 0.18 0.05 0.61 0.42 0.71

Average 0.532 0.408 0.544 0.382 0.418 0.686 0.556 0.704
Axis2/Java

@10

0.54 0.59 0.45 0.19 0.27 0.42 0.71 0.80
CXF 0.50 0.51 0.51 0.63 0.54 0.68 0.77 0.60
Hadoop Common 0.52 0.65 0.58 0.51 0.64 0.54 0.52 0.51
HBase 0.35 0.54 0.36 0.31 0.42 0.15 0.10 0.10
Struts 2 0.77 0.62 0.73 0.36 0.79 0.70 0.73 1.00

Average 0.536 0.582 0.526 0.400 0.532 0.498 0.566 0.602

given a set of text phrases [13]. To the best of our knowledge, this is the closest study

to our work. Their approach processes the text queries and returns a connected graph

whose nodes are methods. They have evaluated their approach on a set of precise

text queries that contain keywords that match desired methods. For example, for

input queries containing phrases: store, folder, open, and search, they output several

relevant methods including: javax.mail.Store:getDefaultFolder(), javax.mail.Folder-

:open(int mode), etc. Note that the input queries contain keywords that must appear

in the signatures of the relevant methods. We want to investigate if their approach

can also handle feature requests.

To do this, we preprocess a feature request into text phrases. We treat each

word that appears in the summary and description fields of a feature request as a

text phrase. We then run their tool on our processed data. Table 5.9 show the

average number of methods that are returned in the connected graphs returned by

their tool. Even though the tool returns a number of methods, unfortunately none of

them are relevant for each of the 507 feature requests (i.e., their recall-rate@5 and

recall-rate@10 are both 0). This shows that approaches that process precise text

queries cannot handle feature requests. Indeed, feature requests often contain high
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level requirements while methods contain low level requirements. Our proposed

approach tackles this problem by leveraging historical feature requests.

Table 5.9: Average # of Returned Methods by Chan et al.’s Approach

Project Average # of Returned Methods
Axis2/Java 2.2
CXF 1.8
Hadoop Common 1.7
HBase 1.8
Struts 2 1.7

Average 1.84

5.7.4 Threats to Validity

Threats to internal validity refers to experimental bias and errors. We have checked

our code and data for errors. Still there could be errors that we have not noticed. We

also ensure that we do not mix training and test data in our cross validation. For the

feature importance measurement, we did not perform feature redundancy analysis

and thus it is possible that some of the features are redundant.

Threats to external validity refers to the generalizability of our proposed ap-

proach. In this study, to address this threat, we have considered a few hundred

feature requests from 5 software systems. We have also recommended methods

from 10 libraries. In the future, we plan to reduce this threat further by analyzing

more feature requests from additional software systems and recommending meth-

ods from more libraries. We have also performed cross validation, which is the

standard approach to assess how a proposed approach would perform on an inde-

pendent dataset.

Threats to construct validity refers to the suitability of our evaluation metrics.

We make use of recall-rate@k which is a commonly used metric in many past stud-

ies [53, 66, 70, 72, 82]. Thus, we believe there is little threat to construct validity.
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5.8 Conclusion

In this work, we have proposed a new method recommendation approach that takes

as input a feature request and recommends methods from a set of libraries. In con-

trast to previous approaches, our approach does not require precise input informa-

tion, such as precise input or output types, or precise matching textual descriptions.

Thus, it is suitable for directly processing feature requests stored in bug reposito-

ries, which often do not precisely specify relevant code elements. Our approach is a

hybrid approach, combining history-based recommendation and description-based

recommendation. On 10 libraries and 507 feature requests from 5 software systems,

we achieve an average recall-rate@5 and recall-rate@10 of 0.690 and 0.779 respec-

tively. We have also compared our approach to the latest method recommendation

technique that requires precise textual descriptions from end users and show that it

is not useful for recommending methods from feature requests.

In the future, we plan to improve our solution further to achieve even higher

recall-rate@k scores. Some possible directions include using state-of-the-art nat-

ural language processing [10, 81], taking the information stored in the code base

into account, and specification mining e.g., [15, 29, 36, 37, 38, 39, 40, 41, 68]. We

also plan to experiment with a larger number of feature requests from more soft-

ware systems and to perform a more thorough investigation of the factors that affect

the effectiveness of the different components of our approach in contributing to-

wards the effectiveness of the proposed solution. Finally, to improve the practical

usefulness of our approach, we plan to integrate our proposed solution into an IDE

(e.g., Eclipse) and to evaluate the resulting tool by means of a user study. We also

want to investigate the effectiveness of our approach under different experimen-

tal settings, e.g., evaluating on projects with a limited number of feature requests,

cross-validating across projects, etc.

To extend our approach, we would like to consider how to enable users to specify

some constraints to be taken into consideration in the recommendation process. We
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will also consider whether our proposed approach can be effective for bug reports

in addition to feature requests.
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Chapter 6

Recommending Code Changes for

Automatic Backporting of Linux

Device Drivers

6.1 Introduction

The Linux kernel today runs servers, desktop PCs, and laptops, as well as being at

the heart of the Android OS, which runs the majority of smartphones, tablets, and

a multitude of other devices. Device manufacturers increasingly find it important

to have support for their products, in the form of device drivers, in the Linux ker-

nel. The Linux kernel, however, is fast evolving, with frequent kernel-level API

changes. This raises a challenge for device driver developers who have to choose

a target kernel version that will be acceptable to the potential users of the device.

A solution that helps ensure the continuing availability of the driver code is to tar-

get the current mainline version of the Linux kernel, so that the driver code can be

integrated into the Linux kernel distribution itself and maintained by the mainline

kernel developers [28]. Users, however, typically run older versions of the kernel,

which are considered to be more stable. For such users, the driver must then be

backported to older kernel versions.
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Currently backports are typically done manually, on a case by case basis. An al-

ternative is provided by the Linux backports project, which provides a compatibility

library to hide differences between the current mainline and a host of older versions,

and provides patches that allow a set of 800 drivers to target this compatibility li-

brary. These patches are either created manually by the backports project maintain-

ers, or are created using manually written rewrite rules, based on the transformation

tool Coccinelle [65]. In either case, however, the backports project maintainer has

to determine where changes are needed in the code to backport and how to carry out

these changes. Both of these operations are tedious and error prone.

While the Linux backports project provides partial automation, the user is lim-

ited to the versions for which backports have been prepared. In this chapter, we

propose a step towards truly automating this task, in the form of a recommenda-

tion system for backporting driver files over code changes. Our approach accepts

as input a driver file in a given Linux version, the older Linux version to which the

driver file needs to be backported (the target version), and the git repository that

stores the changes to the Linux source code. It first bisects the repository to find

two subsequent commits in the repository such that compiling the driver file results

in a compilation error in the older commit version and a successful compilation in

the newer commit version. Next, our approach analyzes the differences between

the two commits and compares them with the line of code containing the error, as

indicated by the compiler. Our approach currently only considers cases where there

is only one error line and analyzing these differences is enough to fix the error line

and backport the driver file. Based on this analysis, our approach constructs a rec-

ommendation list that contains possible changes that can be applied to the error line

to make the driver compilable in the target version. The changes are ranked by the

similarity between the error line and the result of applying the change to the error

line. Our experiment shows that, if a correct change exists in the recommendation

list, it is often ranked highly.

The contributions of this work are as follows.
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1. To the best of our knowledge, we are the first to work on recommending

changes with the goal of automating backporting.

2. We propose a recommendation system that identifies a change in the code

history that breaks the driver compilation, and recommends code change can-

didates that enable backporting of the driver code.

3. We evaluate our approach on 100 Linux device driver files. The recommenda-

tion list contains the correct backported code for 68 of the device driver files.

Among these driver files, 73.5% of the correct recommendations are located

in the Top-1 of the recommendation list.

The remainder of this chapter is structured as follows. We provide some back-

ground in Section 6.2. In Section 6.3, we present our proposed approach. We then

describe our experiments in Section 6.4. Finally, we conclude in Section 6.5.

6.2 Preliminaries

In this section, we provide some background about the git version control sys-

tem [22], and about GumTree [17], a tree differencing tool that we use in our ap-

proach.

6.2.1 Git

Git is a decentralized version control system that has recently become very popular

due to the services that it provides and the tools that have been developed around

it. Git is currently used by many software projects, including the Linux kernel.

Git is designed around a workflow in which developers pull changes from other

developers, modify their copy of the code on top of these changes, and request

that other developers pull the changes that they have made. Pulling from another

repository creates a merge node, representing the result of merging the two sets of
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changes. Technically, the commits are organized as a directed acyclic graph (DAG),

although they are often collectively referred to as a tree.

To be sure to have access to complete information about earlier changes in a

software project, we focus on the case where there is a single main developer of

the system, with whom other developers want to regularly synchronize. The de-

velopment of the mainline Linux kernel follows this model, as developers request

that Linus Torvalds pull their changes prior to each release. In this case, we can

view the commits and merges made by the main developer as a single primary trunk

(level 1), and the commits made by other developers subsequent to pulling from the

main developer and prior to requesting a pull from the main developer as being a

secondary trunk (level 2), extending from the developer’s initial pull to the merge.

Such developers may furthermore serve as the main developer with respect to other

developers, perhaps their local colleagues, leading to tertiary (level 3), quaternary

(level 4), quinary (level 5), senary (level 6) trunks, etc. Figure 6.1 presents an ex-

ample git tree illustrating pulls, merges, and primary, secondary, and tertiary trunks.

Newer
version

Legend

Level 1

Level 2

Level 3

Commit Trunk Levels

Older
version

Merge
Node

Merge
Node

Figure 6.1: Example of a Git Tree
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6.2.2 GumTree

A critical point of our approach is to be able to precisely identify changes between

two commits in a code base. Line-based tools such as GNU diff are not sufficient,

because a change can be mixed with irrelevant code fragments that happen to appear

on the same line. To address this issue, we use tree differencing, as implemented

by the tool GumTree [17]. GumTree identifies common subtrees in an abstract

syntax tree, and then integrates common ancestors as long as there are not too many

differences among their other descendants. A user study has found that the results

of GumTree are considered to be better than those of a text-base differencing tool

about half of the time, and mostly the same otherwise.

6.3 Proposed Approach

We first present a high-level overview of our automatic recommendation-based

backporting approach and then elaborate on the different phases.

6.3.1 Overall Framework

As shown in Figure 6.2, our approach is divided into three phases: 1) error inducing

change (EIC) search, 2) code transformation extraction, and 3) recommendation

ranking. We define an error-inducing change as a patch between two consecutive

commits in which compiling a target backport file in the older commit version leads

to a compile error.

In the first phase, our approach gives as input a driver file that needs to be back-

ported (input driver file), the Linux version to which we want to backport the driver

file (target Linux version), and the git repository containing the change history be-

tween the target Linux version and the Linux version where the input driver file

currently exists (version control system). The EIC search phase searches for two

consecutive commits such that compiling the input driver file results in a compila-
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Figure 6.2: Our Automatic Backporting Framework

tion error in the older commit version, and no error in the newer commit version.

The goals of this phase are then two-fold: (1) Find the relevant change in the Linux

kernel implementation that results in the input driver file not compiling in the tar-

get Linux version, (2) Find the changes that have been performed to existing Linux

driver files to adapt them to this Linux kernel change. These adaptations are often

committed at the same time as the relevant change to the underlying Linux kernel

to prevent compilation errors. By reversing these adaptations, we can obtain hints

on how to backport the input driver file.

The EIC search phase has one processing component, namely the EIC Search
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Engine, which uses a binary search, starting with the target version, to jump through

the change history recorded in the version control system and tries to compile the

input driver file in each visited commit version. The search stops when it finds the

commit version in which compiling the input driver file leads to no compilation er-

ror and the previous commit version still has compilation error. The change between

this commit version and the previous commit version is the EIC. For example, an

EIC may include the removal of a function definition on which the driver relies.

Note that, in a more general case, there would be many EICs, however, we consider

only cases where there is only one EIC. This one EIC may consist of many code

changes between two consecutive commits that together render the code uncompil-

able. This EIC is output to the next phase.

In the second phase, our approach takes as input the EIC obtained in the previous

phase and the input driver file. This phase searches for changes in the EIC that are

relevant to the line in the input driver file that the compiler has marked as erroneous

(which we refer to as the error line), and generates candidate transformations to

backport the input driver file. This phase has one processing component, namely

the Code Transformation Extractor, which matches the error line with each deleted

line in the EIC. It then generates candidate transformations based on how the deleted

lines are changed to the corresponding added lines. These candidate transformations

are the recommendations produced by our approach.

In the third and final phase, our approach passes the candidate transformations

to the Ranker, which ranks the transformations based on the similarity between

the error line and the result of applying the transformation. We favor the minimal

change between them. A developer who needs to backport the driver file can then

examine the generated ranked recommendation list from top to bottom to find a

suitable transformation.

We now describe each phase of our approach in more detail.
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6.3.2 Error Inducing Change Search

To find the EIC, an approach could be to linearize the git commit history and per-

form a binary search on it. However, linearizing the history in any way would break

the parent-child relationship between two consecutive commits, which represent the

actual change made when a developer commits to its local repository. For example,

linearizing commit history by date would result in a series of commits that is or-

dered by date. However, two consecutive commits in this case may not represent

the actual change since the two commits might be made by two developers in their

own local repository and just accidentally happen at around the same time.

Instead, we follow the approach presented in Algorithm 1. This algorithm takes

as input the driver file DF to backport, the original Linux version origRev for

which the driver file has been implemented and the target Linux version targetRev

to which we want to backport the driver file.

The algorithm starts by retrieving the list revList of all the commit hashes

that lie in the main trunk ranging from the original version to the target version

(Line 2). To achieve this, we use the command: git log –pretty=%H –first-parent

〈target version〉..〈original version〉. The option âĂŞpretty=%H causes the result to

be a list of commit hashes and the option –first-parent causes the log to follow only

the first parent commit after a merge. Next, at Line 3, the algorithm passes this list

to the function EIC_Search, defined just below. EIC_Search first performs a bi-

nary search of the commit hashes in revList to find a pair of consecutive commits,

child and errParent, such that the driver file does compile in the code resulting

from child but does not compile in the code resulting from errParent. Next, if

child is a merge commit (Line 6), then it must have some other parent in which

the driver file does compile, because a merge commit does not itself change any

code. In Line 7, EIC_Search checks each parent commit other than errParent

until it finds one in which the driver file compiles, which is named okParent.

Based on our assumption that there is a single main developer from whom all code
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Algorithm 1: Error Inducing Change Search
Input : DF = driver file to be backported

origRev= the Linux version where DF works fine
targetRev = target Linux version

Output: error inducing change
1 Main Algorithm Main_Search(origRev, targetRev,DF)
2 revList = [origRev, targetRev]FirstParent

3 return EIC_Search (revList);
4 Procedure EIC_Search(revList)
5 (child, errParent) = Binary_Search(revList)
6 if child is a merge then
7 okParent=child’s parent that can compile
8 ancestor = findCommonAncestor(okParent, errParent)
9 newRevList = [okParent, ancestor]FirstParent

10 return EIC_Search(newRevList)

11 else
12 return patch from child to the commit before it
13 end

is initially obtained, errParent and okParent have a common ancestor, which

is named ancestor in Line 8. This ancestor is obtained using the command: git

merge-base errParent okParent. EIC_Search then obtains the sequence of com-

mit hashes from ancestor to okParent. To achieve this, we use the command: git

log –pretty=%H –first-parent 〈ancestor〉..〈okParent〉. On the other hand, if the bi-

nary search in Line 5 yields a node that commits a code change, rather than a merge

node, EIC_Search returns immediately with the patch from the commit node to its

previous commit as the result (line 12).

Alternatively to Algorithm 1, we could potentially have used git bisect [23]. In

our preliminary experiments, however, we have found that the commit returned by

git bisect does not always have the property that the driver file to backport compiles

in the returned commit and does not compile in its immediate predecessor. We will

study this issue further in the future, but have chosen to rely on our algorithm, which

integrates and ensures the property that we require.

Example: An example of the behavior of Algorithm 1 is illustrated in Figure 6.3.

In this example, we take as an input a driver that works fine in the Original version.

Our goal is to find the error inducing change that helps us backport the driver to the

Target version, for which the driver currently cannot compile.

95



CHAPTER 6. RECOMMENDING CODE CHANGES FOR AUTOMATIC BACKPORTING OF LINUX DEVICE

DRIVERS

Newer
Version

Original

Target

Child L1

errParent L1

✔

✔

✘
Common 
Ancestor

L1
✘

okParent L2
✔

✘

✘ Child L2

errParent L2

✔

✘

✘
Common 
Ancestor

L2

okParent L3 ✔

✘

Child L3

errParent L3 ✘

✔
EIC

Legend ✘ ✔Compile error Compile success

Level 1

Level 2

Level 3

Commit Trunk Levels

Figure 6.3: Example of our Error Inducing Change Search Algorithm

We start the search at the level 1 trunk, within the range of the Original version

and the Target version. At this level, we perform binary search to find a pair of

consecutive commits Child L1 and errParent L1 such that the driver file success-

fully compiles in the code resulting from Child L1 but does not compile in the code

resulting from errParent L1. In this example, since Child L1 is a merge commit,

it must have another parent in a different trunk level, for which the driver file suc-

cessfully compiles. We denote this parent of Child L1 as okParent L2. Next, we

find Common Ancestor L1, which is the common ancestor of the errParent L1 and

okParent L2. Afterwards, we perform another binary search on the range of com-

mits between okParent L2 and Common Ancestor L1 to find a pair of consecutive

commits Child L2 and errParent L2, such that the driver compiles with the code re-

sulting from Child L2 but does not compile with the code resulting from errParent

L2. We repeat the search in a similar manner until we find a pair of consecutive

commits Child L3 and errParent L3, such that Child L3 is not a merge commit and

the driver file compiles successfully in the code resulting from Child L3, but does

not compile in the code resulting from errParent L3. Finally, we report Child L3 as

the error inducing change.
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Figure 6.4: Code transformation extraction illustration. Error Line AST is extracted
from the driver file. Deleted Line and Added Line AST are extracted from historical
changes found in the Linux kernel.

6.3.3 Code Transformation Extraction

The Code Transformation Extractor processes the input driver file and the error

inducing change (EIC) obtained by the previous phase. First, we compile the driver

file in the target Linux version. By the definition of the backporting problem, we

know that this will result in a compilation error. We then record the contents of

the line containing the error. The goal is to find a change in the EIC that can be

applied to the error line to remove the compiler error. The EIC can be viewed as a

code difference (diff) composed of hunks, each of which is a contiguous sequence

of lines corresponding to a sequence of line deletions, line additions, or both. Since

we consider a backporting setting (changing code that works on a newer version to

adapt it to an older version), to view a transformation in a natural way, we reverse

the direction of a normal patch and thus a deleted line is a line in the newer code

whereas an added line is a line in the older code. A hunk containing only line

additions or deletions does not correspond to a code change from which we can

infer a transformation. Thus, we exclude such hunks from our analysis. We also

ignore hunks that appear in non source-code files.

The Code Transformation Extractor constructs an Abstract Syntax Tree (AST)

for the error line and for each deleted line and each corresponding added line in

the EIC. In general, a line in the source file might not represent a complete term in
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Algorithm 2: Code Transformation Extraction
Input : ASTErr = AST of the error line

ASTDel = AST of a deleted line
ASTAdd = AST of an added line

Output: A code transformation or ∅
1 (NE ,MD) = Tree differencing (ASTErr, ASTDel);
2 (ND,MA) = Tree differencing (ASTDel, ASTAdd);
3 if NE 6= {}, MD 6= {}, ND 6= {}, MA 6= {}, and MD ∩ ND 6= {} then
4 STErr = Smallest subtree in ASTErr covering all mapped nodes;
5 STDel = Corresponding subtree of STErr in ASTDel;
6 STAdd = Corresponding subtree of STDel in ASTAdd;
7 varMap = Matched identifier mappings from ASTErr, ASTDel, ASTAdd;
8 STM

Add = Apply varMap to STAdd;
9 Output (STErr ⇒ STM

Add);
10 else
11 Output ∅;
12 end

the C language. Since the complete source files are available, via git, our approach

constructs an AST for the function containing each line, and then extracts from

that the smallest sub-AST that contains all of the tokens of the considered line.

The Code Transformation Extractor then tries to map the nodes of the AST of the

error line to nodes of the AST of every deleted line, and the nodes of the AST of a

deleted line to the nodes of the AST of every added line in the same hunk. For each

combination of error line, deleted line, and added line, the Code Transformation

Extractor identifies a subtree in the error line’s AST that matches a subtree in the

deleted line’s AST, which in turn matches a subtree in the added line’s AST. For

each matching, we transplant the matching subtree in the added line’s AST to the

error line’s AST and adapt it with any necessary substitutions of identifier names.

The adapted transplantation amounts to a transformation. A set of such possible

transformations is output to the next phase.

For each combination of error line, deleted line, and added line, Code Trans-

formation Extractor follows Algorithm 12 to produce zero or one candidate trans-

formations. This process involves three main steps: node mapping, extraction of

matching subtrees, and subtree transplantation and subterm replacement.
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Node Mapping Given an error line’s AST, a deleted line’s AST, and an added

line’s AST, we want to find two node mappings: (1) between the nodes in the error

line’s AST and the deleted line’s AST, and (2) between the deleted line’s AST and

the added line’s AST. For this, we use the tree differencing tool GumTree [17]

(lines 1-2), described in Section 6.2.2. GumTree maps nodes in the two input ASTs

based on some heuristics. It outputs a set of mapped nodes, denoted as (N,M) =

{(N1,M1), ..., (Nk,Mk)} where N = {N1, ..., Nk} and M = {M1, ...,Mk} are the

mapped nodes in the two ASTs and k is the number of mapped nodes. If the set

of mapped nodes between the error line’s AST and deleted line’s AST ((NE,MD))

and the set of mapped nodes between the deleted line’s AST and the added line’s

AST ((ND,MA)) are both non-empty, and the intersection of the mapped nodes in

the deleted line’s AST based on the two differencing operations is non-empty (MD

∩ ND 6= {}), then we proceed with the next steps (Lines 3-9), otherwise we output

no transformation (Line 11).

Extraction of Matching Subtrees Given a mapping of nodes in the ASTs, our

approach next extracts the minimal subtrees that cover all the mapped nodes. Our

approach first identifies the minimal subtree in the error line’s AST (Line 4) and the

corresponding subtree in the deleted line’s AST (Line 5). Next, it finds nodes in the

added line’s AST that are mapped to the minimal subtree in the deleted line’s AST

and then extracts a minimal subtree that covers these mapped nodes (Line 6).

As an example, we can employ GumTree to generate the mapping between the

error line’s AST and deleted line’s AST in Figure 6.4 (solid arrows in the figure).

There are three nodes that are mapped between these ASTs: B to F, C to G, and D

to H. We then extract the smallest subtree of each tree that covers all of the mapped

nodes. This gives the ABCD subtree for the error line’s AST and the EFGH subtree

for the deleted line’s AST.

Next, we again can employ GumTree to generate the mapping between EFGH

subtree in the deleted line’s AST and the added line’s AST in Figure 6.4 (dashed
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arrows in the figure). There are three mapped nodes: R is mapped to S, F is mapped

to J, and G is mapped to K. Our approach only focuses on the EFGH subtree since it

is the only part that matches with the error line’s AST and thus, for fixing the error

code, our approach only needs to care about the mappings inside this subtree. Next,

our approach marks the relevant mapped nodes in the added line’s AST and extracts

a subtree, IJK, that covers all of the marked nodes. ABCD, EFGH, and IJK are the

matching subtrees that are output to the next step.

Subtree Transplantation and Subterm Replacement In this step, we have three

matching subtrees, STErr, STDel, and STAdd, extracted from the error line’s AST,

the deleted line’s AST, and the added line’s AST, respectively. Our approach gener-

ates a candidate transformation by transplanting an adapted STAdd to replace STErr

in the error line’s AST. Adaptation to STAdd is needed since subterms used in STAdd

may differ from those used in STErr. We infer the necessary replacements of sub-

terms from the mapped nodes between STErr and STDel, and between STDel and

STAdd. For a term v in node n in STErr that is mapped to n′ in STDel (that con-

tains term v′), which is subsequently mapped to n′′ in STAdd that contains term v′,

our approach will store a replacement (v,v′) (Line 7). Each replacement (v,v′) is

applied to nodes in STAdd to create STM
Add where any subterm v′ is replaced with v

(Line 8). We will then output a transformation (STErr⇒ STM
Add) which corresponds

to the transplantation of the adapted subtree (Line 9). At this point, our approach

has essentially learned a transformation from an example.

To illustrate how Algorithm 12 works, consider Figure 6.4. In that figure, we

need to transplant the adapted IJK subtree to replace the ABCD subtree in the error

line’s AST. The IJK subtree is adapted by renaming subterms in the subtree with

their corresponding mapped subterms. The subterms are inferred from the mapped

nodes between ABCD and EFGH subtrees and EFGH and IJK subtrees. Consider

any subterms a and b in the ABCD subtree, any subterms c and d in the EFGH

subtree, and any subterm c in the IJK subtree. The mapping may then indicate that
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a in the ABCD subtree is mapped to c in the EFGH subtree which in turn is mapped

to c in IJK subtree. Our approach then creates a replacement (a,c) and will replace

all subterms c in IJK with a before transplanting IJK to the error line’s AST. The

corresponding transformation is (ABCD⇒ IJK[c→a]).

The above illustration applies to many kinds of changes, such as changes in the

field/constant accessed, an argument of a function, the name of a function, or the

condition of an if. As a concrete example, we consider a function name change:

Error Line:

node=acpi_ns_validate_handle(target_handle);

Deleted and Added Lines:

- node=acpi_ns_validate_handle(obj_handle);âĂŃ

+ node=acpi_ns_map_handle_to_node(obj_handle);âĂŃ

Matching the error line AST against the deleted line AST matches node with

node, =with =, acpi_ns_validate_handlewith acpi_ns_map_handle_-

to_node, ( with (, target_handle with obj_handle, and ) with ). All

of the tokens are accounted for. In this special case, the subtree transplantation will

basically replace the error line with the added line. However, the subterm obj_-

handle does not exist in the code containing the error line. Thus, we perform a

replacement, (obj_handle, target_handle), which is learned from the map-

ping. At this point, we have transplanted the added line’s subtree to the error line

AST and adapted the corresponding subterm to match the one found in the error

line.

6.3.4 Recommendation Ranking

Ranker takes as input the set of candidate transformations produced by the previ-

ous phase and applies each one to the error line in the input driver file to produce a

changed error line. Following Occam’s razor, our intuition is that the correct trans-
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formation is likely to be the one that transforms the error line to something that

remains similar to it.

To compute the similarity between the error line and a changed error line, Ranker

takes the sequence of strings in the error line and changed error line and removes all

whitespace from both sequences. It then compares the resulting sequences of char-

acters using Ratcliff and Obershelp’s string alignment algorithm [9], which finds a

semi-optimal matching of characters in two sequences. Specifically, the algorithm

first finds the longest contiguous subsequence between the two sequences. It then

recursively processes the subsequences to the left and right of the longest contiguous

subsequence. After the matching characters between the two sequences are found,

the similarity between the two sequences SeqSim is computed as follows:

SeqSim =
2×M
T

where T is the total number of characters in both sequences, and M is the number

of matched character pairs. As an example, consider two sequences “abcd” and

“bcde”. Both sequences have “bcd” sequence as their string subsequence. Thus,

T=4 and M=3, and the value of SeqSim is 0.75.

Ranker ranks the transformations by decreasing SeqSim values, and then outputs

a ranked recommendation list.

6.4 Experiments & Analysis

In this section, we first describe our dataset, evaluation measure, and experimental

settings. We then list our research questions and provide our experimental results.

We finish with a discussion and a description of the threats to validity.
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6.4.1 Dataset

Our dataset consists of 100 device driver files from Linux 2.6.x versions. Using

this dataset, we intend to simulate a backporting scenario. Since general automatic

backporting is a new and hard problem, we limit the problem to make it more fea-

sible to solve. Specifically, we select driver files and starting and target versions

according to the following criteria.

1. The driver file should have only one changed line of source code between two

consecutive Linux versions, e.g., Linux versions 2.6.1 and 2.6.2. We focus

on one-line changes to limit the difficulty of making the new code work in

the older version. We consider that one-line changes represents a reasonable

difficulty for an initial attempt at automatic backporting.

2. Following the first criteria, the driver file will be present in two versions: the

old and new versions. We should be able to compile the old and new versions

of the driver file in their corresponding Linux kernel versions.

3. When we compile the new version of the driver file within the old version of

the Linux kernel, a compilation error should occur. Our goal is to modify the

a copy of the new driver to fix this compilation error.

Table 6.1 shows the distribution of the 100 Linux driver files selected according

to the above criteria.

6.4.2 Evaluation Measure

We use Hit@N to measure the effectiveness of our ranking strategy. We define it as

follows:

Hit@N =


1, if CC is in the Top-N of RecCC.

0, otherwise.

where CC denotes the correct code change, RecCC denotes a code change rec-

ommendation list containing the correct code change, and N denotes the number
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Table 6.1: Distribution of the 100 Driver Files in Our Dataset across Device Driver
Families

Driver Driver Driver
Family #Drivers Family #Drivers Family #Drivers

ata 24 char 3 serial 1
media 15 md 3 s390 1
net 11 mtd 3 usb 1
gpu 7 spi 2 power 1
bluetooth 5 hid 2 cpuidle 1
isdn 5 leds 2 ide 1âĂŃ
infiniband 4 scsi 2
acpi 4 xen 1

of entries considered at the top of the recommendation list. We compute the aver-

age Hit@N across the recommendations to measure the effectiveness of our ranking

strategy.

6.4.3 Experimental Settings

We simulate a backporting scenario for the 100 driver files in our dataset. For each

driver file, we pretend that the driver file is new and has never existed before in the

Linux kernel source code. We use the command make defconfig to prepare a

configuration in which to compile the kernel. We then apply our approach and find

the error inducing change for this input driver file. Since the change to the driver file

itself is also included in the version control system history, we exclude this change

if it appears in the error inducing change. We then find the candidate changes for

the input driver file using the remaining examples. To check whether our backport

is correct, we simply compare the backported code with the actual old version of

the driver file. We consider that the backport is successful only if the backported

code is exactly the same as the old version of the code.
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6.4.4 Research Questions

Research Question 1. How effective is our proposed approach in extracting correct

code changes for a given device driver file? We report the accuracy of our approach

in extracting the correct change. We also investigate the distribution of extracted

correct code changes among different driver families.

Research Question 2. When the correct code change exists in the recommendation

list, how high is it ranked by our approach? We then investigate the rankings of

correct code changes in this set. The higher the rankings, the better the recommen-

dations. We measure the recommendation effectiveness using the average Hit@N

metric.

Research Question 3. In what kinds of cases can our approach extract the cor-

rect code changes? We show some cases where our approach extracts correct code

changes and assess why our approach works well in these cases.

Research Question 4. In what kinds of cases is our approach unable to extract

the correct code changes? We show some cases where our approach extracts either

incorrect changes or nothing at all. These cases can guide future work.

6.4.5 RQ1: Effectiveness of Code Change Extraction

Our approach produces correct code changes to successfully backport 68 out of

100 drivers, giving a success rate of 68%. Table 6.2 shows the distribution of the

successful cases. Our approach successfully extracts all required code changes for

all selected drivers from 7 driver families: ata, bluetooth, mtd, spi, scsi, serial, and

cpuidle. For many other remaining driver families, it is successful on some and fails

on others.
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Table 6.2: Distribution of correct code changes that are successfully extracted per
driver family. The number in parentheses is the total number of selected drivers in
the driver family.

Driver Family #Successful Driver Family #Successful

ata 24 (24) scsi 2 (2)
media 10 (15) serial 1 (1)

bluetooth 5 (5) cpuidle 1 (1)
gpu 4 (7) md 1 (3)
net 4 (11) xen 0 (1)

infiniband 3 (4) s390 0 (1)
isdn 3 (5) usb 0 (1)
acpi 3 (4) power 0 (1)
mtd 3 (3) hid 0 (2)
char 2 (3) leds 0 (2)
spi 2 (2) ide 0 (1)

Table 6.3: Effectiveness of Our Ranking Approach

N #Correct Code Changes Average Hit@N

1 50 0.735
2 58 0.853
3 58 0.853
4 58 0.853
5 60 0.882

6.4.6 RQ2: Effectiveness of Code Change Ranking

Table 6.3 shows the effectiveness of our ranking strategy, for the 68 driver files

for which our approach extracts correct code changes. By only recommending the

Top-1 code change, we recommend the correct code change for 50 out of the 68

driver files, giving an average Hit@1 of 0.735. Increasing the recommendation

to Top-2, we find that there are 8 more driver files whose correct code changes

are recommended. This translates to an average Hit@2 of 0.853. Increasing the

recommendation to Top-3 and Top-4 does not change the number of driver files

for which the correct code change is recommended. When the recommendation is

increased to Top-5, there are 2 more such driver files. Thus, by only recommending

Top-5 candidate code changes, our approach can successfully find the correct code

change 88.2% of the time, thus achieving an average Hit@5 of 0.882.
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6.4.7 RQ3: Cases where Correct Code Changes are Successfully

Extracted

Case 1: Change of record access.

Driver File: drivers/char/drm/drm_agpsupport.c

Error Line:

return drm_agp_acquire(

(struct drm_device*) file_priv->minor->dev);

Change example:

- struct drm_device *dev = priv->minor->dev;

+ struct drm_device *dev = priv->head->dev;

Corrected Error Line:

return drm_agp_acquire(

(struct drm_device*) file_priv->head->dev);

In this case, file_priv→minor→dev is the part of the error line that provokes

a compile error. This code matches priv→minor→dev in the deleted line of the

change example. This portion of the deleted line matches priv→head→dev in the

added line. Thus, the file_priv→minor→dev portion of the error line is replaced

with priv→head→dev from the added line. However, we know that the identifier

priv in the deleted line matches the identifier file_priv in the error line. Based on

the change example, we also know that priv is not changed. Thus, file_priv should

not change either. We thus map back priv to file_priv, which is found in the corre-

sponding context in the error line.

Case 2: Deletion of a function argument.

Driver File: drivers/ata/pata_artop.c

Error Line:

return ata_pci_sff_init_one(pdev,ppi,&artop_sht,NULL,0);
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Change Example:

- return ata_pci_sff_init_one(dev,ppi,&generic_sht,NULL,0);

+ return ata_pci_sff_init_one(dev,ppi,&generic_sht,NULL);

Corrected Error Line:

return ata_pci_sff_init_one(pdev,ppi,&artop_sht,NULL);

When we match the error line with the deleted line in the change example, the

entire ata_pci_sff_init_one function call in the former matches the ata_pci_sff_init_one

function call in the latter. pdev of the error line matches dev of the deleted line. Sim-

ilarly, ppi is mapped to ppi, &artop_sht to &generic_sht, NULL to NULL, and 0 to

0. The matched portion of the error line is then replaced with the matched portion

of the added line. We then rename the variables in the matched portion of the added

line by changing dev to pdev and generic_sht to artop_sht.

Case 3: Change of function name.

Driver File: drivers/acpi/acpica/nsnames.c

Error Line:

node=acpi_ns_validate_handle(target_handle);

Change Example:

- node=acpi_ns_validate_handle(obj_handle);

+ node=acpi_ns_map_handle_to_node(obj_handle);

Corrected Error Line:

node=acpi_ns_map_handle_to_node(target_handle);

In the above example, the entire error line has the same structure as the en-

tire deleted line. The function names from the two lines are matched and the

argument target_handle is matched with the argument obj_handle. After the al-

gorithm replaces the error line portion with the added line portion, the function

name acpi_ns_validate_handle will be changed to acpi_ns_map_handle_to_node.

To complete the backport, obj_handle is renamed to target_handle.
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Case 4: Change of constant.

Driver File: drivers/media/video/cx23885/cx23885-input.c

Error Line:

rc_map=RC_MAP_HAUPPAUGE;

Change Example:

- dev->init_data.ir_codes = RC_MAP_HAUPPAUGE;

+ dev->init_data.ir_codes = RC_MAP_RC5_HAUPPAUGE_NEW;

Corrected Error Line:

rc_map=RC_MAP_RC5_HAUPPAUGE_NEW;âĂŃ

In this example, again the entire error line matches the entire deleted line, with

rc_map matched with dev→init_data.ir_codes, the assignment node in the error line

with the assignment node in the deleted line, and RC_MAP_HAUPPAUGE in the er-

ror line with the occurrence of the same constant in the deleted line. The error line is

then replaced with the added line. To complete the backport, dev→init_data.ir_codes

is renamed to rc_map.

Case 5: Change of if condition.

Driver File: drivers/ata/pata_oldpiix.c

Error Line:

if(ata_dma_enabled(adev))

Change Example:

- if(ata_dma_enabled(adev))

+ if(adev->dma_mode)âĂŃ

Corrected Error Line:

if(adev->dma_mode)âĂŃ

In this case, the if condition in the error line is identical to the one in the deleted

line. All matched nodes are of the same type and name. Thus, we directly replace
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the if condition in the error line with the if condition in the added line to perform

the backport.

6.4.8 RQ4: Cases where Correct Code Changes are Not Suc-

cessfully Extracted

Case 1: The correct transformation needs to be learned from multiple deleted-added

line pairs.

Driver File: drivers/net/wireless/ath/ath9k/virtual.c

Error Line:

txctl.frame_type =

ps ? ATH9K_IFT_PAUSE : ATH9K_IFT_UNPAUSE;

Corrected Error Line:

txctl.frame_type =

ps ? ATH9K_INT_PAUSE : ATH9K_INT_UNPAUSE;

In this case, the transformation of the error line into the corrected line involves

two changes: transforming ATH9K_IFT_PAUSE into ATH9K_INT_PAUSE, and trans-

forming ATH9K_IFT_UNPAUSE into ATH9K_INT_UNPAUSE. Each of these trans-

formations can be obtained from different deleted-added line pairs in the EIC. Al-

though both transformations exist in the EIC, our approach can currently only learn

from a single deleted-added line pair. Thus, it applies only one of the two transfor-

mations and fixes the error line partially.

Case 2: The EIC provides no relevant example.

The EIC may only contain changes in the definitions that are used by the error

line, but all other code that used these definitions could have been updated in earlier

commits. Thus, we might not find similar lines of code in the EIC that would suggest

how to fix the error line. For such cases, our approach is not be able to recommend

correct code changes.
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6.4.9 Discussion

The quality of our automatic backporting approach depends on the capabilities of

each phase in our framework. We assess the possible limitations in each case.

The error inducing change search phase is intended to find a change that contains

an example from which we can learn how to backport the code. However, as noted

above, all such examples may occur in earlier commits. To address this issue, we

would need to extend our search to relevant commits that occurred prior to the error

inducing change.

The error transformation extraction phase is intended to learn a potential candi-

date transformation from a change between a pair of added and deleted lines. Our

evaluation shows that there are some cases in which learning from only one pair of

added and deleted lines is not enough. Thus, we need a capability to decide which

transformation can be combined with another transformation to make a recommen-

dation.

Our approach ranks the candidate transformations, in the ranking recommenda-

tion phase, because we have no way to know for sure which transformation is the

correct one. A possible way to check the transformation’s correctness would be

through the use of test cases. Nevertheless, device drivers are difficult to test auto-

matically, because doing so requires installing the device driver on an OS connected

to a real hardware or an emulator, and checking whether the hardware is detected

and that all of its functionalities can be accessed by the OS. And even if test cases

existed for the new driver, they might not be directly usable in the older version.

Thus, we would need to to backport the test cases and check whether their backport

is correct, repeating the same problem.

Regarding the transformation results, although some may look simple, it is not

trivial for developers to perform them. Many people have contributed to the Linux

kernel, and around 70,000 commits were made on the Linux kernel in 2015 alone. A

developer is unlikely to be knowledgable about the large number of diverse changes
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made by others. Moreover, state-of-the-art works in automated bug fixing also can

only fix a small number of bugs that span one or a few lines of code [31, 42],

showing the level of difficulty of automatically inferring correct fix for even one

line of code. Although bug fixing and backporting are two different problems, both

involve transforming a broken piece of code to another that works.

Last but not least, our approach currently targets backports that require only a

one-line change. We have evaluated it on a simulation where we backport a driver

file across two consecutive Linux versions. Analyzing a diff of two consecutive

Linux versions, for all versions between 2.6.11 to 3.13.3, we found 944 driver files

having a one line change that affects the driver functionality, meaning that using

the newer version of the driver in the previous version of Linux will not work.

Thus, even though one-line change is very limited, it still covers quite a number of

potential backporting situations.

Another limitation in our evaluation is that we assume that syntactic correctness

equals semantic correctness. Since our simulation is based on actual changes, we

believe this assumption holds as we only consider backporting to be successful if

the resulting code is exactly the same.

In a more general case, a developer may be called upon to backport a driver that

requires more than one line of changes. Indeed, the changes required may involve

not only multiple lines, but also multiple files, and may require a deeper understand-

ing of the relationships between them. Our approach could still be helpful if the task

can be broken down into individual issues that involve only one error line.

6.4.10 Threats to Validity

Possible threats to validity include threats to construct validity, to internal validity,

and to external validity.

Threats to Construct Validity. These threats refer to the suitability of our evalua-

tion measures. We make use of accuracy and Hit@N as the effectiveness measures
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of our approach. These measures have been used in past studies and thus we believe

the threats are minimal.

Threats to Internal Validity. These threats correspond to experiment errors. To

reduce the likelihood of this threat, we have checked the implementation of our

approach multiple times. Still, there may be errors that we missed.

Threats to External Validity. These threats refer to the generalizability of our

experimental results. We have only investigated 100 Linux device driver files and

backporting cases that involve two successive Linux versions. The effectiveness of

our approach beyond these driver files and for two arbitrary Linux versions is not

guaranteed to be the same. In the future, we plan to reduce this threat by evaluating

our approach on more device driver files and arbitrary pairs of Linux versions.

6.5 Conclusion

In this chapter, we have presented a recommendation system that generates a ranked

list of candidate transformations for (semi-)automatic backporting of Linux device

drivers. Our approach consists of three phases. First, we search for a change that

can give us a clue on how to fix the error when we backport a driver to an older

Linux version. Then, we extract code transformation candidates that we may apply

to fix the error. Finally, we rank the transformation candidates. Our simulated back-

porting experiment on 100 Linux device drivers shows that our approach can extract

the correct transformation for 68% of the device drivers. Among the device drivers

having a correct transformation in the recommendation list, our ranking approach

ranks first 73.5% of the correct transformations. We then illustrate some successes

and limitations of our approach.

In future work, we plan to improve our search algorithm by extending our search

beyond the error inducing change, especially to older changes involving the modi-

fied data structure or function in the error inducing change. We plan to extend our
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code transformation extraction algorithm to be able to learn from many deleted-

added line pairs. We also plan to consider a more general backporting scenario,

such as multi line and multi file backporting. We also plan to explore possibility of

lightweight testing for improving the correctness of the backported device drivers.

Finally, we plan to experiment on a bigger dataset to ensure the generalizability of

our approach.
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Conclusions and Future Work

In this chapter, we summarize the contributions of our works. We then describe the

future work in recommending APIs for software evolution.

7.1 Summary of Contributions

Finding and using relevant APIs for software evolution are not always easy. The

process can be time consuming as the search space for finding APIs is often huge

and understanding relevant APIs may require some learning time and effort. To help

developers easily use APIs, we have developed four approaches that tackle different

problems in API recommendation:

1. Our first work recommends API libraries given a known to be useful or ex-

isting set of libraries in the system [77]. This recommendation system can

help developers to find additional relevant APIs. The recommendation sys-

tem is built by combining association rule mining and collaborative filtering

techniques. Experiments with the approach show that it can achieve a recall

rate@5 of 0.852 and a recall rate@10 of 0.894 for recommending additional

libraries.

2. Our second work is based upon our first work. We propose a new library rec-

ommendation approach called LibXplore. This approach combines the power
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of collaborative filtering, association rule mining, and matrix factorization.

It considers a set of existing libraries as input, and historical library usage

and textual content from initial libraries as knowledge source. We evaluate

the approach by mining the actual set of initial and the historically added

libraries from version control repository. Our approach improves upon our

previous approach by 20.44% and 9.69%, in terms of Hit@5 and Hit@10,

respectively.

3. Our third work recommends API methods given a target library and a textual

description of a task [76]. This recommendation system can help developers

to find relevant API methods in the given library that can be used to realize the

task. The recommendation system is built by combining information retrieval

and collaborative filtering techniques. Experiment with the approach shows

that it can achieve a recall-rate@5 of 0.690 and a recall-rate@10 of 0.779 for

recommending API methods.

4. Our fourth work recommends APIs in a different way [78]. Rather than han-

dling the usual problem of implementing new code for a software, this work

focuses on making the features or bug fixes implemented in the new code

available in an older version of the software. Our approach can provide rec-

ommendations on how to transform the new code to its equivalent form in the

old version. One important part of the problem is to adapt API invocations in

the new code so that it can work with APIs available in the older version of

the software. Experiments with the approach show that it can extract correct

transformations for 68% of the tested device drivers and put 73.5% of correct

transformations in the first rank.
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7.2 Future Work

There are many potential future works that can be pursued for API recommendation.

We present some of them below:

1. Our API library recommendation system assumes that some API libraries are

already used in the software or the software developers have some ideas of

the API libraries that they can use for building the software. We plan to de-

velop another version of API library recommendation that accepts a software

description as input and recommends relevant libraries according to the soft-

ware description.

2. We want to improve our API method recommendation by deeply interpreting

the meaning of the natural language description of the software. This descrip-

tion is often in a very high level semantics while APIs are usually in a lower

level semantics. For example, a software description might talk about file

management. We want to bring the description to lower level semantics such

as creating file, deleting file, etc.

3. The next natural step after recommending API methods is recommending API

method parameters. Given an API method, we plan to recommend relevant

parameters by learning the specification of the required parameters and gen-

erate concrete parameters by looking at historical data and existing context of

the software code (if available).

4. Given a list of API methods for a certain task, we plan to glue the methods

together to achieve the task. In creating the glue code, we plan to use pro-

gram synthesis, especially for variable creations and conversions of one type

of variable to another. We would be also using an API method parameter

recommendation approach inside this approach.

5. For our backporting work, we plan to improve our recommendation by mining

change rules and use them together with our current approach.
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