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Context Recovery in Location-based Social Networks

by

Chong Wen Haw

Abstract

This dissertation addresses context recovery in Location-Based Social Networks

(LBSN), which are platforms where users post content from various locations. With

this general LBSN definition, many existing social media platforms that support

user-generated location relevant content using mobile devices could also qualify as

LBSNs. Context recovery for such user posts refers to recovering the venue and the

semantic contexts of these user posts. Such information is useful for user profiling

and to support various applications such as venue recommendation and location-

based advertising.

For venue context recovery, we focus on Twitter where the venue information is

often missing. We frame the problem as fine-grained geolocation whereby we ge-

olocate tweets to their specific posting venues such as a restaurant, a shop etc. There

are three tracks of work which cover different geolocation scenarios. In the first

track, we geolocate tweets for users with location history in the form of geocoded

tweets. Our model exploits a key empirical finding that users are more likely to visit

venues near where they have visited in the past. In our second track, we geolocate

tweets posted by users with no location history, who represent a larger category of

users. For these users, we exploit the following observations: (1) users tend to re-

visit same or similar venues and (2) users with more similar content history are also

more similar in their visitation behavior. In our last geolocation track, we geolocate

tweets contained in sequences posted by the same user within a short time interval.

We exploit the empirical observation that given a short time interval, users tend to

post from the same or nearby venues. All these observations have been validated

using real world data.



For semantic context recovery, we focus on the entity linking problem, which

seeks to recover the entity mentioned or implied in a short content post. We explore

two tracks of work. In the first track, we conduct explicit entity linking to link

mentions of named entities in tweets to the referent entities in a knowledge base. We

show that by exploring spatial and temporal information, we are able to improve the

linking performance. In the second track, we conduct implicit entity linking on the

specific task of identifying local cuisines in food-related posts. We link such posts

directly to food entities in a knowledge base without the need of mention extraction.

Empirically, we show that food venues are focused around a limited number of food

entities each. By exploiting this entity-focused characteristic, our proposed model

outperforms the state-of-the-art baselines.



Contents

1 Introduction 1

1.1 Motivation and Problem . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Fine-grained Tweet Geolocation . . . . . . . . . . . . . . . 4

1.2.2 Entity Linking . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Fine-grained Tweet Geolocation . . . . . . . . . . . . . . . 8

1.4.2 Entity Linking . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work 12

2.1 Mobility Behavior of LBSN Users . . . . . . . . . . . . . . . . . . 12

2.1.1 Mobility Patterns . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Spatial Homophily of Locations . . . . . . . . . . . . . . . 15

2.2 Coarse-grained Geolocation . . . . . . . . . . . . . . . . . . . . . 17

2.3 Fine-grained Geolocation . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Entity Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Explicit Entity Linking (EL) . . . . . . . . . . . . . . . . . 21

2.4.2 Implicit Entity Linking (IEL) . . . . . . . . . . . . . . . . 23

I Venue Context Recovery 24

i



3 Tweet Geolocation: Location History, Spatial Homophily and Temporal

Popularity 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Data for Geolocation . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Shouts (SHT) . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Pure Tweets (TWT) . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Spatial Homophily . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Location History . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Spatially Focused Users . . . . . . . . . . . . . . . . . . . 35

3.3.4 Venue Temporal Popularity . . . . . . . . . . . . . . . . . . 37

3.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Naive Bayes (NB) . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 Spatial Smoothing (NB+S) . . . . . . . . . . . . . . . . . . 38

3.4.3 Tweet Posting Time (NB+S+T) . . . . . . . . . . . . . . . 39

3.4.4 User Location History (NB+S+T+U) . . . . . . . . . . . . 41

3.5 Learning to Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.2 Re-parameterization . . . . . . . . . . . . . . . . . . . . . 45

3.5.3 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.4 Complexity Reduction . . . . . . . . . . . . . . . . . . . . 46

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.2 Models Applied . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.3 Results on Shouts . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.4 Results on Pure Tweets . . . . . . . . . . . . . . . . . . . . 52

3.6.5 Applying Shout Models to Pure Tweets . . . . . . . . . . . 53

3.6.6 Stratified Experiment . . . . . . . . . . . . . . . . . . . . . 55

ii



3.6.7 Performance Analysis . . . . . . . . . . . . . . . . . . . . 58

3.6.8 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.8.1 Temporal Venue Popularity . . . . . . . . . . . . 60

3.6.8.2 Location History . . . . . . . . . . . . . . . . . . 61

3.6.8.3 Negative Cases . . . . . . . . . . . . . . . . . . . 62

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Tweet Geolocation: Location, User and Peer Signals 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Scenario Study . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 User Signals . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Peer Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Location-Indicative Weighting . . . . . . . . . . . . . . . . 73

4.3.2 Query Expansion of Test Tweets . . . . . . . . . . . . . . . 74

4.3.3 Concept Fusion . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.4 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . 76

4.3.4.1 Weighted Similarities . . . . . . . . . . . . . . . 78

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Result Summary . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Detailed Results . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.5 Parameter Sensitivity Studies . . . . . . . . . . . . . . . . . 87

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Tweet Geolocation: Same-User Tweets in Temporal Proximity 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

iii



5.1.2 Challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.3 Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Staying Behavior . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Visitation Behaviour . . . . . . . . . . . . . . . . . . . . . 95

5.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Base Model (NB) . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.2 Temporal Query Expansion (Temporal) . . . . . . . . . . . 98

5.3.3 Visitation Query Expansion (Visit) . . . . . . . . . . . . . . 99

5.3.4 Fusion Framework . . . . . . . . . . . . . . . . . . . . . . 101

5.3.4.1 Max Combination (Max) . . . . . . . . . . . . . 101

5.3.4.2 Linear Combination (Linear) . . . . . . . . . . . 102

5.3.4.3 Product Combination (Product) . . . . . . . . . . 103

5.3.5 Sequential Information (HMM-Max) . . . . . . . . . . . . 103

5.3.5.1 Limiting Cases . . . . . . . . . . . . . . . . . . . 104

5.3.6 Computational Complexity . . . . . . . . . . . . . . . . . . 105

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.2 Analysis by Venue Popularity . . . . . . . . . . . . . . . . 113

5.4.3 Analysis by Distinct Venues per User . . . . . . . . . . . . 115

5.4.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.4.1 Positive Cases . . . . . . . . . . . . . . . . . . . 117

5.4.4.2 Negative Cases . . . . . . . . . . . . . . . . . . . 120

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 122

II Semantic Context Recovery 124

iv



6 Explicit Entity Linking 125

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Motivating Characteristics . . . . . . . . . . . . . . . . . . . . . . 126

6.2.1 Event Effects . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.2 Geographical Effects . . . . . . . . . . . . . . . . . . . . . 126

6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . 127

6.3.2 LocLink: A Local Linking Method . . . . . . . . . . . . . 128

6.3.3 Collective Linking in Space and Time . . . . . . . . . . . . 129

6.4 Comparison-Based Evaluation . . . . . . . . . . . . . . . . . . . . 130

6.4.1 Evaluating Changes . . . . . . . . . . . . . . . . . . . . . 132

6.4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5.2 Local Linking Baselines . . . . . . . . . . . . . . . . . . . 135

6.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5.4 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . 137

6.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 Implicit Entity Linking 140

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3.1 Entity-Indicative Weighting (EW) . . . . . . . . . . . . . . 145

7.3.2 Query Expansion with Same-Venue Posts . . . . . . . . . . 147

7.3.3 Fused Model (EWQE) . . . . . . . . . . . . . . . . . . . . 148

7.3.4 Venue-based Prior . . . . . . . . . . . . . . . . . . . . . . 149

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

v



7.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4.2 Food Entities . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4.3 Compared Models . . . . . . . . . . . . . . . . . . . . . . 151

7.4.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4.6 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.4.7 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . 158

7.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 159

8 Conclusion 160

8.1 Dissertation Summary . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Bibliography 164

vi



List of Figures

1.1 A taxonomy of geolocation work . . . . . . . . . . . . . . . . . . . 5

1.2 A simplified taxonomy of recent EL work . . . . . . . . . . . . . . 6

3.1 CCDF for users in {u}g. X-axis = no. of geocoded tweets per user . 35

3.2 CDF of Distance statistic of users (blue) vs null model (red). (X-

axis=distance in metres) . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Average differences in MRR between models NB+S+T+U and NB+S+T.

Test tweets are divided into bins/quartiles based on the number of

distinct venues (‘Venues’) and the number of visits (‘Visits’) in their

users’ location history. The number of binned tweets are 25,898

for SG-SHT, 9429 for JKT-SHT and 19,978 for SG-TWT. For sub-

figures (a), (c) and (e), labels on the X-axis represent the range of

distinct venues covered by each bin. For sub-figures (b), (d) and (f),

X-axis labels are the range of visit counts covered by each bin. . . . 59

4.1 CCDF of average tweet count for Uc users. . . . . . . . . . . . . . 68

4.2 MRR variation with different k values for LWQE-LW-CF. On Sin-

gapore datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 MRR variation with different k values for LWQE-LW-CF. On Jakarta

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vii



5.1 CDF for distances between sampled shout pairs. Each pair is posted

by a common user. Shout pairs are differentiated by pairs posted

within 30 minutes of each other (≤ 30 min); and pairs posted more

than 30 minutes apart (> 30 min). X-axis is distance in meters. . . . 95

5.2 CDF for distinct venues per user. . . . . . . . . . . . . . . . . . . . 95

5.3 Average MRR of HMM (blue) and HMM-Max (gray) for test tweets

from venues of different popularities. Each row corresponds to a

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Average MRR of HMM (blue) and HMM-Max (gray) for test tweets

from users with different number of distinct venues in training tweets.116

7.1 CDFs of actual and expected distinct food entities for venues and

users. F(x) on y-axis is probability of venues or users with ≤ x

distinct food entities. . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2 Model performance (Y-axis) with different γ values (X-axis). . . . . 158

viii



List of Tables

3.1 Sample shouts. Bolded portions are user-authored comments. Only

this portion is used for empirical analysis and geolocation. . . . . . 29

3.2 Average ratio statistic (R̄) and average proportion of venues where

nearest neighbors are more (or less) similar in content, compared to

non-neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Venues (in brackets<>) near each other and sample shouts demon-

strating spatial homophily. . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Statistics for 50,000 sampled users from Singapore (2014) and from

Jakarta (June to Dec, 2016). . . . . . . . . . . . . . . . . . . . . . 35

3.5 Average MRR for SG-SHT. On average, there are 2626.2 test cases

and 10814.5 venues to rank per run. . . . . . . . . . . . . . . . . . 51

3.6 Average MRR for JKT-SHT. On average, there are 975.9 test cases

and 2713.75 venues to rank per run. . . . . . . . . . . . . . . . . . 51

3.7 Average MRR for SG-TWT. On average, there are 2061.9 test cases

and 2783.55 venues to rank per run. . . . . . . . . . . . . . . . . . 54

3.8 Average MRR from applying SG-SHT models to test on SG-TWT.

On average, there are 31946.2 test cases and 10814.5 venues to rank

per run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9 Average MRR from applying JKT-SHT models to test on JKT-TWT.

On average, there are 363.15 test cases and 2713.75 venues to rank

per run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



3.10 Results for stratified experiment. L and ¬L are respectively the

set of test tweets with and without LI words, with associated mean

reciprocal rank of MRR(L) and MRR(¬L). The model ‘Random’

denotes a random ranking model. Statistics and results shown are

averaged over 20 runs. . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Sample test tweets from SG-SHT to illustrate improvement of NB+S+T

over NB+S. For each tweet, bolded words are words used for geolo-

cation, i.e. after filtering off stop-words and rare words. ∆RR is the

difference in reciprocal rank of the posting venue when one applies

NB+S+T versus NB+S. The last two columns r show the ranked

position of posting venues obtained under each model (in brackets).

Note that the best possible ranked position is 0, corresponding to

reciprocal rank of 1. See Equation (3.10). . . . . . . . . . . . . . . 61

3.12 Sample test tweets from SG-SHT to illustrate improvement of NB+S+T+U

over NB+S+T. Here, ∆RR is the difference in reciprocal rank of the

posting venue when one applies NB+S+T+U versus NB+S+T. The

second column shows the distance of the posting venue to the next

nearest venue visited by the same user. Other notations as in Table

3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.13 Sample test tweets where NB+S+T+U results in poorer performance

over NB+S+T. Notations as in Table 3.12 . . . . . . . . . . . . . . 64

4.1 Statistics for 50,000 sampled users from Singapore (2014) and from

Jakarta (June to Dec, 2016). . . . . . . . . . . . . . . . . . . . . . 68

4.2 Repeat Visit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Query Expansion example. . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Profile analysis for Singapore and Jakarta users. . . . . . . . . . . . 72

4.5 Result Summary for MRR . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Result Summary for Macro-MRR . . . . . . . . . . . . . . . . . . 82

x



4.7 SG-SHT results. Bracketed numbers are percentage improvement

over NB. Best results are bolded. On average, there are 3248.5 test

cases and 9209.1 venues to rank per run. . . . . . . . . . . . . . . . 83

4.8 SG-TWT results. On average, there are 1049.9 test cases and 2672.5

venues to rank per run. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 JKT-SHT results. On average, there are 626 test cases and 2492.8

venues to rank per run. . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 JKT-TWT results. There is 1 run with 475 test cases and 4299

venues to rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 Sample test tweets from SG-SHT to illustrate location-indicative

weighting. Modeled words are italicized and sized proportionately

to their assigned weights. rX denotes the ranked position of post-

ing venue under the model X . ∆RRX=change in reciprocal rank

incurred by model X over the Nb model. . . . . . . . . . . . . . . . 86

4.12 Sample test tweets from SG-SHT. Below each tweet, we list up to

5 added words that are most related to the query, along with their

relatedness score. Notations as in Table 4.11. . . . . . . . . . . . . 87

5.1 Sample pairs of tweets. Posting venue and time are in brackets.

Tweets a1 and a2 are from one user while b1 and b2 are from an-

other user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 SG-SHT results averaged over 20 runs. Bracketed numbers are per-

centage improvement over NB. On average for T=1 hr, there are

M=1239.5 test tweets and V =10539.4 venues to rank per run. For

T=0.5 hr, M=1136.8, V =10959.3 on average. . . . . . . . . . . . . 109

5.3 SG-TWT results averaged over 20 runs. On average per run,M=1290.7,

V =1914.2 for T=1 hr, and M=1296.6, V =1912.1 for T=0.5 hr . . . 110

5.4 JKT-SHT results averaged over 20 runs. On average per run,M=297.6,

V =2520.8 for T=1 hr, and M=277.3, V =2795.6 for T=0.5 hr . . . . 111

xi



5.5 Sample geolocation cases/tweet sequences from SG-SHT. For ease

of discussion, each case consists of a pair of tweets. The test tweet

is bolded while its temporal neighbor is unbolded. In each tweet,

modeled words are italicized (after omitting rare and stop-words).

For each case, words and associated weights are sorted and illus-

trated for different query expansion methods. The last row of each

case displays the ranked position that each method attained for the

test tweet’s posting venue. . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Sample geolocation cases from SG-SHT where current query ex-

pansion approaches do not improve performances. . . . . . . . . . . 121

6.1 A sample tweet with mentions (in Italics). Row 2 lists candidate

Wikipedia entities for the mention Duke, in decreasing relatedness. 132

6.2 Results on NYC tweets. Bracketed numbers are counts of unique

mentions over which changes occur. (∆: total changes, +ve: total

positive, -ve: total negative, Ratio: +ve/-ve. **: significant at p-

value=0.01, *: sig. at p-value=0.05) . . . . . . . . . . . . . . . . . 136

6.3 Results on SG tweets. Notations as in Table 6.2. . . . . . . . . . . . 136

6.4 Examples of positive changes (in bold), with affected mentions in

italics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5 Examples of negative changes (in bold), with affected mentions in

italics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Sample changes (bold) for affected mentions (italics) that arguably

improve tweet understanding, but are not counted as positive changes.138

7.1 Sample posts comprising Instagram captions and Burpple reviews. . 142

7.2 MRR and Macro-MRR values averaged over 10 runs for each dataset.

The best performing model is bolded. . . . . . . . . . . . . . . . . 154

7.3 Sample test posts to illustrate entity-indicative weighting. Words in

larger fonts indicate larger weights under the EW model. . . . . . . 156

xii



7.4 Sample test posts with added words (in brackets) from query expan-

sion (QE(v) model). The top 5 added words with largest weights are

listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.5 Sample test posts for comparing models EWQE(v) and EW-EWQE(v).

rp(e|v) corresponds to ranking with the venue prior p(e|v). . . . . . . 158

xiii



Acknowledgements

This dissertation will not have been possible without the support of many people.

Firstly I am grateful to DSO for awarding me the scholarship to embark on my

studies. I will like to thank my immediate supervisors in DSO, Dr Teow Loo Nin

and Dr Ng Gee Wah for their guidance and mentorship. In particular, I was able

to acquire much expertise and knowledge in the area of data analytics under Loo

Nin’s mentorship over the years. I am thankful for this. I will also like to thank

the senior management in DSO: Dr How Khee Yin and the ex-CEO Mr Quek Gim

Pew for supporting my scholarship application. Secondly, I will like to thank the

funding agency for their research funding support, namely the National Research

Foundation, Prime Minister’s Office, Singapore under its International Research

Centres in Singapore Funding Initiative.

While the PhD journey is a tough one, the right thesis advisor can help to

smoothen the ride. I regard myself fortunate in this aspect. I am especially thankful

to my thesis advisor Prof Lim Ee-Peng for his patient guidance and mentorship. He

has provided me much insights and research direction, as well as mental support

and encouragement. I am also thankful to my thesis committee members Prof Jiang

Jing and Prof Steven Hoi for their research input to improve this dissertation.

During my studies, I had the opportunity to conduct research in Carnegie Mellon

University (CMU) for two semesters. I will like to thank Prof William Cohen for

hosting and supervising me during my CMU stint, Kathryn Mazaitis for her techni-

cal support, Prof Jason Hong and Dan Tasse for providing me access to their user

mobility data for my research. I am also grateful to Barbara Diecks for her adminis-

xiv



trative support and going the extra mile to make exchange students like myself feel

extremely at home in Pittsburgh.

I will also like to thank fellow colleagues and friends in SMU for their help

in administrative and technical matters, namely Ong Chew Hong, Seow Pei Huan,

Fong Soon Keat, Phoebe Yeo, Desmond Yap, Janice Ng, Jamie Chia and Philips

Prasetyo. I am also thankful to Dai Bing Tian for his research input when I was still

a relatively fresh PhD student.

Lastly, I will like to thank my parents and wife for their support. I am grateful

to my wife for accompanying me through the ups and downs of a PhD journey.

xv



Dedicated to my Wife and Parents



Publications

Publications based on the dissertation:

1. Wen-Haw Chong and Ee-Peng Lim, Implicit Linking of Food Entities in So-

cial Media, ECML-PKDD 2018.

2. Wen-Haw Chong and Ee-Peng Lim, Exploiting User and Venue Characteris-

tics for Fine-grained Tweet Geolocation, ACM TOIS, 2018.

3. Wen-Haw Chong and Ee-Peng Lim, Exploiting Contextual Information for

Fine-Grained Tweet Geolocation, ICWSM 2017.

4. Wen-Haw Chong and Ee-Peng Lim, Tweet Geolocation: Leveraging Loca-

tion, User and Peer Signals, CIKM 2017.

5. Wen-Haw Chong, Ee-Peng Lim and William W. Cohen, Collective Entity

Linking in Tweets Over Space and Time, ECIR 2017.

Manuscript based on the dissertation and under review:

1. Wen-Haw Chong and Ee-Peng Lim, Geolocation of Tweets in Temporal Prox-

imity, submitted to ACM TOIS.

Other publications not included in dissertation.

1. Wen-Haw Chong, Bing Tian Dai and Ee-Peng Lim, Not All Trips are Equal:

Analyzing Foursquare Check-ins of Trips and City Visitors, COSN 2015.

2. Wen-Haw Chong, Bing Tian Dai and Ee-Peng Lim, Did You Expect Your

Users to Say This?: Distilling Unexpected Micro-reviews for Venue Owners,

HT 2015.

xvii



3. Wen-Haw Chong, Bing Tian Dai and Ee-Peng Lim, Prediction of Venues in

Foursquare Using Flipped Topic Models, ECIR 2015.

xviii



Chapter 1

Introduction

1.1 Motivation and Problem

The prevalence and growing popularity of social media in recent years have led to

growing research interest in the exploitation of related data. Besides providing users

with a means to share content, many platforms have included features that allow

users to share their locations. This provides a linkage between content and mobility

patterns. For example, Twitter users have the option of geocoding their tweets with

location coordinates. In Foursquare, a popular location app, users can ‘check-in’ to

venues while posting their comments (referred to in Foursquare as shouts). Such lo-

cation related social networking platforms are referred to as Location-Based Social

Networks [62, 53, 10, 88] or LBSN in short.

Basic questions arise when one considers LBSN usage. Where is the user post-

ing from? What is the user posting about? Such questions lead to the problem of

recovering the venue and semantic context. Next, we discuss each problem in detail.

Venue Context Recovery. Compared to Foursquare, Twitter is a much more

flexible and coarse-grained LBSN platform where users can choose to geocode their

tweets or not. For geocoded tweets not pushed from any location apps, they are

associated with only location coordinates. These indicate the user’s approximate

location and not the specific venue that he is at. In densely populated cities where
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multiple venues may share the same or similar coordinates, location coordinates do

not uniquely identify the venues. Furthermore many users do not geocode many of

their tweets in the first place. Earlier studies [1, 36] have indicated that only 1 to

2% of tweets are geocoded.

The discussed Twitter characteristics motivate the problem of fine-grained tweet

geolocation. This problem [47, 44, 6] is relatively less well explored than coarse-

grained tweet geolocation [1, 36, 23, 70, 84, 76, 63] which geolocates tweets to

regions/cities or some location coordinates. Essentially we seek to identify the spe-

cific venue from which a tweet is posted, e.g. a restaurant, an office etc. In doing so,

we recover the venue context of a tweet. This supports applications such as location

based advertising and promotions, venue recommendation and user profiling. For

example, there is a difference in venue context between a user who is dining at a

restaurant and another user who is visiting an adjacent shop. This is even though the

location coordinates of both users do not differ much. Business owners may want

to target one or the other with different marketing strategies.

To understand the problem of fine-grained geolocation, it is also useful to view it

as analogous to document retrieval. One can regard a tweet as a query and candidate

venues as documents. One can then rank the candidate venues for the targeted tweet,

which is akin to ranking the documents based on relevance to the query. However

for tweet geolocation, there is only one posting venue per tweet, i.e. one relevant

document per query.

While fine-grained geolocation can be cast as document retrieval, there are dif-

ferences between documents and venues. Importantly, venues are ordered in the

spatial sense while documents are not. Such spatial ordering results in user and

venue characteristics which can be exploited for better geolocation. For example,

users may tend to visit venues near where they conduct their main activities, e.g.

near workplace.

Semantic Context Recovery. Besides the venue context, it is also useful to un-

derstand what users talk about in their content such as tweets or Foursquare shouts.
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Thus it is desired to recover the semantic context. Formalizing this, we have the en-

tity linking problem whereby one seeks to associate the right semantic concepts to

the content. Under the general entity linking problem, we explore two task variants,

namely Explicit Entity Linking (EL) and Implicit Entity Linking (IEL).

For Explicit Entity Linking, we link the mentions of named entities in tweets

to the correct referent entity in some knowledge base. This task requires mention

extraction to be first conducted. While explicit entity linking has been explored over

many years for longer documents [57, 20, 74, 78, 77], entity linking in tweets is a

relatively new research area [56, 51, 79]. The latter is highly challenging due to the

extremely short nature of such posts. To mitigate this challenge, we shall exploit

certain properties of LBSN not found in traditional documents, e.g. considering

content that are posted close in space and time.

For Implicit Entity Linking (IEL), we link venue-associated posts, e.g. Insta-

gram captions, food reviews in a post-specific rather than mention-specific manner.

Each post is linked in its entirety without any mention extraction. IEL is a rela-

tively new concept proposed in [66] and has the advantage of being able to link

posts which do not mention entities explicitly. In addition, IEL circumvents the

challenge of mention extraction on grammatically noisy, colloquial content. How-

ever the challenge of content brevity remains. To link each post, we shall exploit

information from other same-venue posts.

1.2 Research Objectives

Based on recovering the venue and semantic context in LBSN posts, this disser-

tation has respectively formulated two main research objectives: (1) fine-grained

tweet geolocation and (2) entity linking. For fine-grained tweet geolocation, we

also extensively analyse the mobility patterns of users in LBSN, i.e. user behavior,

in order to motivate our geolocation models. Thus, user behavior analysis is a sec-

ondary objective that supports fine-grained tweet geolocation. Subsequent sections
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detail each objective.

1.2.1 Fine-grained Tweet Geolocation

In fine-grained tweet geolocation, we associate non-geocoded tweets to the specific

venues from which they are posted. We cast fine-grained geolocation as a ranking

problem. Given a test tweet, we rank venues such that high ranking venues are

more likely to be the posting venue. We explore fine-grained tweet geolocation for

different user scenarios, whereby users may or may not have location history.

We assume that the tweet to be geolocated is posted from some venue within a

known city, based on the profile of the posting user. For the problem to be challeng-

ing yet meaningful, we do not assume that we have all fine-grained venues within

the city. Firstly, such venues easily number in the hundreds of millions. Secondly, it

is very costly to construct a knowledge base that covers all possible city venues. In-

stead we consider venues that have some minimal presence in social media. These

are venues created on location apps by users and associated with some minimum

number of posts. With this approach, the number of candidate venues typically

range in the thousands.

User Behavior Analysis. In this context, user behavior refers to the mobility

patterns of users in LBSN. We conduct empirical analysis to provide further in-

sights on user behavior, beyond what has been covered in prior work. We also aim

to leverage on our empirical findings to design better geolocation models. Many

works [69, 10, 22, 61, 62, 75, 88] have studied the mobility patterns of users, typ-

ically to support the inference of users’ home locations, venue recommendation or

next check-in prediction. Our task of fine-grained geolocation is different, but is

intimately related to the mobility patterns of users as well. We design our analysis

experiments with the geolocation task in mind, so as to surface characteristics to

help in designing our geolocation models.

Overview. Figure 1.1 provides a high level overview of where we position the

work in this dissertation relative to prior work. As shown in the figure, existing
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geolocation work can be categorized into coarse-grained and fine-grained geoloca-

tion. Under coarse-grained geolocation (left branch in figure), the task can be on

geolocating users to their home location by exploiting multiple tweets per user or

geolocating individual tweets to their posting location. In the figure, the dashed box

for the former task indicates that tweets are exploited, but their individual posting

locations are not the main focus. Instead, the focus is on the users’ home locations.

For both coarse-grained geolocation tasks, location granularities are at the re-

gion, neighborhood or coordinate level. For fine-grained geolocation (right branch),

location granularities are specific venues. There is one task: geolocate individual

tweets. Under this task, works can be divided into those that geolocate tweets with-

out mention extraction and those that geolocate detected venue mentions in tweets

(bottom right box). Our research focuses on the former task setting. Chapter 2

discusses the works in Figure 1.1 in greater detail.

Figure 1.1: A taxonomy of geolocation work

Coarse-grained Fine-grained 

User’s Home 

Tweets Tweets 

Geolocation 

[47] Li et al. (2011) 
[44] Lee et al. (2014) 
[40] Ikawa et al. (2012) 
[6] Cao et al. (2015)  

[41] Ji et al. (2016) 
[46] Li and Sun (2014)  Mentions 

[9] Cheng et al. (2010) 
[7] Chang et al. (2012) 
[34] Han et al. (2014) 
[42] Jurgens (2013) 
[73] Rahimi et al. (2015) 

[1] Ahmed et al. (2013) 
[36] Hong et al. (2012) 
[70] Priedhorsky et al. (2014) 
[43] Kinsella et al. (2011) 
[84] Wing and Baldridge (2011) 
[63] O’Hare and Murdock (2013) 
[76] Roller et al. (2012) 

Our Work 

Mentions 
not needed 

Multiple 
Tweets 
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1.2.2 Entity Linking

For entity linking, we aim to make contributions in two different tasks: namely

Explicit Entity Linking (EL) which links named entity mentions and Implicit Entity

Linking (IEL) which links LBSN posts directly without mention extraction. Both

tasks aim to recover the semantic context of what users are posting about. In our

current work, we use Wikipedia as the knowledge base.

Explicit Entity Linking. Research on EL has been ongoing for many years,

with much prior work in the literature. There is a wide variety of approaches using

different frameworks and features. Figure 1.2 provides a highly simplified taxon-

omy of recent EL works. While these works can be categorized in many other ways,

the presented taxonomy allows us to easily illustrate where our EL research fits in.

Figure 1.2: A simplified taxonomy of recent EL work

Objective 
Optimization 

Label/Information 
Propagation 

Explicit Entity Linking 

Topic Model 

[51] Liu et al. (2013) 
[74] Ratinov et al. (2011) 
[77] Shen et al. (2012) 
[78] Shen et. al. (2012) [38] Huang et al. (2014) 

[79] Shen et al. (2013) 
[27] Ferragina and Scaiella (2010) 

[37] Neil and Ciaramita (2013) 
[35] Han and Sun (2012) 

Our Work [26] Fang and Chang (2014) 

Space + time 

In Figure 1.2, the left branch lists recent approaches that construct and opti-

mize objective functions. Various objective functions have been designed based on

features such as word lexical forms, tweet content, entity popularity, strength of

inter-entity relationships etc. However thus far, space and time has not been widely

considered. One such work is [26] whereby Fang and Chang learn entity distribu-
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tions for discrete location cells and time slots. Motivated by the characteristics of

LBSN, we use space and time to construct and optimize a novel objective function

for EL.

The middle branch lists recent EL approaches based on topic models. These are

based on extensions of the Latent Dirichlet Allocation model [4]. Finally, the right

branch lists approaches based on propagating entity labels or other information, e.g.

inter-entity votes. Section 2.4.1 in Chapter 2 discusses the various EL work in more

details.

Implicit Entity Linking. The IEL task is recently proposed by Perera et al.

[66]. Compared to EL, there is very limited prior work [66, 56] and we omit a

detailed categorization. As will be explained in Section 2.4.2, some existing EL

works [26, 27] are also extensible to the IEL case. For IEL, our current research

objective is the linkage of food-related posts to food entities. This is motivated

by the popularity of dining activities and food-related posts in LBSN. However we

envisage that our proposed IEL models can be generalized for linking other entity

types.

1.3 Challenges

There are general challenges associated with mining information from LBSN posts.

Firstly, the content is brief. For example, tweets are limited to 140 characters or 280

characters (from Nov 2017 onwards). Foursquare shouts and Instagram captions are

also typically brief in content. Such characteristics may arise as users are posting

from their mobile devices while on the move. The highly mobile nature and the less

conducive input interface may mean there is less inclination to type long posts. In

fact, Twitter indicates that the average tweet length has not increased much 1 even

though they have doubled the character limit. Interestingly, most tweets are still

shorter than 140 characters. In any case, such content brevity leads to a sparsity of

information regardless of whether one is trying to do geolocation or entity linking.
1https://blog.twitter.com/official/en us/topics/product/2017/tweetingmadeeasier.html
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Compared to traditional documents (e.g. news articles) which are longer in length,

it is more challenging for models to achieve good accuracies.

Secondly, the language in LBSN posts is highly colloquial, with improper gram-

mar and sentence structure, spelling variations and social media lingos. Such char-

acteristics lead to information sparsity as well since a word can appear in various

surface forms, some of which have low usage frequency. This may impact the ac-

curacies of language models. The improper grammar and sentence structure also

impacts mention extraction of named entities, which is required for tasks such as

explicit entity linking. Mentions may be extracted only partially or missed out,

while some non-mentions may be mistaken for mentions.

Lastly, we highlight a challenge specific to fine-grained geolocation. Basically

for any given tweet, the number of candidate posting venues is large. Even if one

considers only venues with some social presence (associated with some minimum

number of LBSN posts), there are easily thousands of candidate venues. Thus the

problem is intrinsically a challenging one. There is also the challenge of obtaining

ground-truth posting venues for an adequate number of tweets in order to conduct

experiments. In Section 3.2, we shall discuss how we obtain such information.

1.4 Contributions

We summarize our major contributions.

1.4.1 Fine-grained Tweet Geolocation

For geolocation, we have two main user scenarios corresponding to users with and

without location history. We cover these scenarios in three tracks of geolocation

work. For each track, our contribution consists of empirical analysis of user behav-

ior and proposed models.

In the first geolocation track (Chapter 3), we geolocate tweets from users with

location history. Our contributions are:
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• We show that users are spatially focused in being more likely to visit venues

near each other and that venues near each other tend to be more similar in

user-generated content, i.e. spatial homophily.

• Drawing on our empirical findings, we propose a spatially smoothed model

(NB+S+T+U) that incorporates tweet content, posting time and user location

history. Depending on the dataset and metric, our best performing model pro-

vides ranking accuracy improvement from 6% to 60% over the naive Bayes

geolocation model.

In the second geolocation track (Chapter 4), we focus on users with no location

history, but who have content history. For this track, we contribute the following:

• Empirically we show that users make repeat visits to venues. In addition,

users with more similar tweet content history are more similar in their venue

visitation history.

• We propose a model (LWQE-LW-CF) that exploits location, user and peer sig-

nals for better geolocation. The LWQE-LW-CF model incorporates location-

indicative weighting to assign more weights to location-indicative words,

query expansion of test tweets and collaborative filtering. In our experiments,

LWQE-LW-CF performs 6% to 40% better than other baselines depending on

the metric and dataset.

In the third geolocation track (Chapter 5), we again focus on users with content,

but no location history. We explore the geolocation of tweets contained in sequences

whereby tweets in each sequence are posted close in time by the same user.

• We verify empirically that users have the tendency to stay at the same or

nearby venues given a short time period. We use this observation to design a

temporal query expansion approach. This augments a test tweet with words

from other tweets in the same sequence.

• We propose a novel model (HMM-Max) to geolocate tweets contained in

sequences. Our model combines different query expansion approaches in a

9
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novel fusion framework. Via stacking on a Hidden Markov Model, our model

also captures sequential information. Performance improvements over base-

lines range from 4.5% to 45%.

1.4.2 Entity Linking

For entity linking, we have two tracks of work: explicit entity linking and implicit

entity linking. For the first track of explicit entity linking (Chapter 6), we make the

following contributions:

• We propose a new collective entity linking method to exploit event and geo-

graphical effects. We connect tweets close in space and time to form a tweet

graph, and define a novel objective function over the graph. This mitigates

the challenge of entity linking for overly brief content.

• We introduce a comparison-based evaluation approach to facilitate the com-

parison of unsupervised entity linking techniques when there is no labeled

data. In addition, challenges such as noisy mention extraction and incomplete

knowledge bases are mitigated.

For the second track of implicit entity linking (Chapter 7), we focus on linking

posts from food venues to related food entities. Our contributions are:

• We analyzed food venues and highlight that such venues are focused around

a limited set of food entities each. We termed this as the entity-focused char-

acteristic.

• We design a novel implicit entity linking model EW-EWQE(v) which exploits

the entity-focused characteristic in two ways. Firstly, the model augments

each test post via query expansion to include words from other same-venue

posts. Secondly, the model generates venue-based prior distribution over food

entities in an initial entity linking stage. This prior is used to bias the entity

scores for the next stage. We show EW-EWQE(v) to outperform state-of-the-

art baselines.

10
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1.5 Dissertation Structure

The rest of this dissertation is structured as follows. Chapter 2 first surveys work

on the mobility behavior of LBSN users, followed by work related to tweet geolo-

cation and entity linking. Chapters 3 to 5 cover our geolocation work, along with

the associated empirical analysis. Chapter 3 describes our first geolocation track

which geolocates tweets from users with location history. Chapter 4 describes our

second geolocation track which focuses on users without location history. Our last

geolocation track in Chapter 5 focuses on such users as well, but geolocates tweets

contained in sequences. Chapter 6 discusses our work on explicit entity linking in

tweets while Chapter 7 covers our implicit entity linking work. Finally we conclude

with some suggestions for future work.

11



Chapter 2

Related Work

2.1 Mobility Behavior of LBSN Users

We discuss aspects of user behavior highlighted in prior work which motivate our

own studies.

2.1.1 Mobility Patterns

We review related work that uses LBSNs to study mobility patterns. Typically the

cited works carried out empirical analysis to support home location inference or next

check-in prediction. While such tasks appear very different from tweet geolocation,

there is an implicit linkage via mobility patterns. This is because tweets are posted

by users as they commute or conduct their activities at some location.

Visitation Proximity to Home. In [69], Pontes et al. studied the relationship

between home locations and mobility patterns on a coarse spatial scale. They ana-

lyzed user activities in Foursquare that are indicative of mobility patterns, e.g. tips

(comments about visited venues) and venue mayorships (most frequent visitor) etc.

They found that users tend to have such activities at their residing cities and that

they frequently revisit venues. Cho et al. [10] utilizes check-ins and cell phone logs

to show that users focus their visitations around individual activity centers such as

home or workplace. This supports their formulation of a visitation model based on
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Gaussian Mixtures. They also found that user revisit venues with substantial prob-

ability. Doan and Lim [22] conducted analysis at more fine-grained spatial resolu-

tion, within individual cities. They obtained the exact home coordinates of users by

exploiting check-ins with indicative comments, e.g.“Home sweet home!”. On these

users, they showed that the check-in probabilities decrease for venues with increas-

ing distances from users’ home locations. Furthermore, they assert a neighborhood

competition effect whereby each user first chooses an area to check-in based on the

area attractiveness and the distance from one’s home. This is followed by choosing

a winning venue based on it out-competing other nearby venues.

Other works [68, 83] implicitly exploit the idea that user visitation activities are

spatially concentrated near their home locations. The work in [68] used majority

voting and mean statistics on geocoded visitation data. Tasse et al. recursively

partition space into grids of uniform cells, and then find the mode, i.e. cell with

most number of check-ins. By repeating this process recursively, they are able to

infer the home location.

Proximity between Consecutive Visitations. It was also found [61, 62, 75, 88]

that consecutive venue visitations tend to be close in space. Thus, given a user’s

current venue, he is more likely to visit nearby venues than venues further away.

Noulas et al. [61] showed that the probability distribution of spatial distance be-

tween consecutive check-ins exhibits a decreasing trend that resembles an inverse

power law. Basically shorter distances are more likely to appear than longer dis-

tances, although the latter still has small, non-negligible probabilities. The study

in [62] used the complementary cumulative distribution function on inter-check-in

distances and arrived at very similar findings. There is also concurrence with the

finding in [75] that human walk patterns exhibit statistically similar features as Levy

walks. The study was of very high resolution, conducted using mobility track logs

from participants carrying GPS receivers. It was found that people tend to visit

nearby places and occasionally distant places. In another work [88], Yuan et al.

studied Gowalla and Foursquare check-ins to surface a similar characteristic, which
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they termed as spatial influence. They incorporate spatial influence in their model

for venue recommendation, using a power law distribution to model the willingness

of users to move between venues as a function of inter-venue distances.

Remarks. The discussed proximity characteristics can be generalized. If users

tend to visit venues near their home [69, 10, 22], then by the transitivity property,

users are also likely to visit venues near any of their previously visited venues.

We termed such users as spatially focused users. Considering proximity between

consecutive visitations [61, 62, 75, 88] and the observation that users revisit venues

[10] or activity regions, we can arrive at a similar characteristic. We regard spatial

focus as a much more general characteristic that is applicable even if one has no

knowledge of a user’s home location or current location. This has implications

for tweet geolocation. Basically to geolocate a test tweet from a given user, one

can leverage this characteristic in conjunction with the user’s location history to

refine the set of candidate posting venues. We shall investigate and exploit this

characteristics in Chapter 3.

Venue Popularity with Time. Mobility patterns are affected by time of the day

and day of the week. For example, dining venues are more popular at meal times

while nightlife venues are more popular at late hours.

Venue popularities with time were studied extensively in prior work [53, 61, 88].

Long et al. [53] defined trending venues as venues that are popular at a certain time.

They found that features such as events and venue-specific promotions can influence

venue popularity at certain time periods. Noulas et al. [61] and Yuan et al. [88]

incorporated temporal popularity into their models, together with other aspects, for

predicting the next check-in. They considered temporal popularities of venues in

two aspects: time of the day and day of the week.

Remarks. Temporal popularity directly links to the probability that a venue is

the posting venue of a tweet, given a certain posting time. Since tweet posting time

is readily observed, we include tweet posting time for modeling in Chapter 3.

The influence of Friends. Friends can affect the mobility patterns of users
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to some limited extent. This motivates the development of collaborative filtering

techniques for check-in venue prediction. Both [8] and [10] found that less than

10% of a user’s check-in venues are also visited by his friends. Despite this small

proportion, both works achieve convincing improvements by incorporating social

information for prediction. For example, the model by Cho et al. [10] specifies that

a user is more likely to check in at a venue at a certain time if one or more friends of

his check in at the same or nearby venues at around the same time. In [8], Cheng et

al. incorporate social regularization in their matrix factorization model, penalizing

differences between the latent factors of each user and his friends.

Chong et al. [11] found that for a long-term visitor to a city, his check-in venues

and friendships are weakly related such that the visitor is more likely to check-in to

venues near those visited by his friends. This is even though compared to locals,

visitors may not have deep social connections at the cities they are visiting. Gao et

al. [31] also investigated if users’ friendships affected their check-in behavior. They

found that on average a pair of friends shares three times as much check-ins as a

pair of strangers. They also computed cosine similarities between user pairs based

on check-in venues and found similarities to be significantly higher for friends than

strangers.

Remarks. In our work, we shall conduct empirical analysis that differs from the

cited works. In Chapter 4, we show that users that are more similar in content history

are also more similar in their visitation history. This analysis does not rely on the

presence of any friendship links. We exploit this characteristic in a collaborative

filtering framework to geolocate tweets from users with content history only.

2.1.2 Spatial Homophily of Locations

Users generate content differently depending on their locations. Interestingly lo-

cations that are near each other tend to have more similar user-authored content

than locations further apart. We termed this as spatial homophily with respect to

locations. This is discussed in further detail in Chapter 3.
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Spatial homophily has been illustrated in prior work on geographical topic mod-

eling [1, 36, 86, 24]. Generally such work surfaced region-specific topics. Ahmed

et al. [1] proposed a hierarchical topic model that automatically infers both the

hierarchical structure over content and over the size and position of geographical

locations. In the topic hierarchy, topics at a higher level correspond to broad re-

gions whereas topics at lower level correspond to more fine-grained locations, e.g.

a neighborhood. Hong et al. [36] proposed an approach that models content in

tweets based on topical influence, user’s interest and geographical influence. The

latter exerts its influence on the contents in tweets, causing the probability of cer-

tain words to deviate from a global background word distribution. Yin et al. [86]

used tags from geocoded Flickr images to infer region-specific topics. Their model

generates topics from regions whereby the geographical distribution of locations in

each region follows a Gaussian distribution. Words close in space are more likely

to belong to the same region and are more likely to be clustered into the same topic.

We also note the work by Eisenstein et al. [24] who proposed a multi-level genera-

tive model based on cascading topic models. Their model recovers coherent topics

and their regional variants, while identifying geographic areas of linguistic consis-

tency. In short, the above cited works imply the presence of geographical topics or

geographically influenced content. This supports the notion of spatial homophily

on a coarse spatial level.

Some other works [25, 87, 18] used mobility patterns and venue features to in-

fer neighborhoods of various functionalities or characteristics within a city, e.g. a

shopping or residential neighborhood or neighborhoods with different demograph-

ics. Cranshaw et al. [18] clustered venues in a city based on both spatial proximity

and social affinity. The latter is based on representing each venue as a bag of check-

in users. They show that distinctive clusters arise, representing neighborhoods of

different characteristics. Falher et al. [25] characterized neighborhoods using fea-

tures derived from check-ins at neighborhood venues. They also explored finding

neighborhoods of similar functions across different cities using the earth-mover’s
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distance as the metric. Yuan et al. [87] infer the functions of neighborhoods with

the Dirichlet Multinomial Regression [59] topic model. They regard neighborhoods

as documents, venue information as metadata and human mobility patterns from

taxi rides as words.

In short, neighborhoods are clusters of venues having similar functions or char-

acteristics. Thus users tend to post more similar content, resulting in the spatial

homophily phenomenon.

2.2 Coarse-grained Geolocation

We review coarse-grained geolocation as it is a big research area that precedes fine-

grained geolocation. Coarse-grained geolocation seeks to geolocate tweets or users

at the city or region level. There are two different tasks as discussed next.

User Geolocation. The first task infers the home city or region of users by

exploiting the content over multiple tweets posted by each user. For this, Cheng et

al. [9] proposed a function that models the distribution of words over space, such

that Location-Indicative (LI) words can be identified from model parameters. The

idea is that such words should have high local focus and a fast dispersion, i.e. (1)

it is very frequent at some central spatial point and (2) usage rapidly declines as

one moves away from the central point. One can then use LI words found in the

tweets of users to infer their home location. Chang et al. [7] also exploited location-

indicative words. However to detect such words, they applied Gaussian Mixture

Models (GMM) instead. Based on the notion that LI words should have probability

mass concentrated on relatively few points, they used GMMs with relatively low

number of components. Words with probability mass that are spatially focused on

a small area are then picked out as LI words.

In [34], Han et al. compared various approaches such as statistical methods,

e.g. hypothesis testing; information theory e.g. word entropy; and heuristics-based

approaches e.g. TF-IDF to identify LI words. For each method, words are ranked
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by their indicativeness and top ranking ones are used for geolocation. They found

that geolocation performance of the various methods varies greatly with the number

of top ranked words. They also found that user declared meta-data such as time

zone, description etc. is useful for geolocation as they contain information that is

complementary to that in tweet contents.

Jurgens [42] geolocated users based only on their social relationships, indepen-

dent of any tweet content. The idea is to spatially propagate location assignments

through the social network, using only a small number of initial locations. This as-

sumes that users are likely to be near their friends. With the same intuition, Rahimi

et al. [73] employed spatial propagation over friendship networks constructed from

mentions in tweets. However they incorporated text-based geolocation priors into

their network, showing that this joint exploitation of text and social network infor-

mation performs better than text-only and network-only approaches.

Tweet Geolocation. For the second task, one geolocates individual tweets, in-

stead of users. The approaches of [1, 36] are based on topic models. Ahmed [1]

adapted the Nested Chinese Restaurant Process [3] to derive the nested Chinese

Restaurant Franchise Process. With this adaption, they derive hierarchical topics

whereby topics at a higher level correspond to broad regions whereas topics at lower

level correspond to more fine-grained locations. In [36], Hong et al. employed the

Sparse Additive Generative Model framework [23] based on modeling deviations

caused by facets, e.g. a posting location will cause probabilities of certain words in

a tweet to ‘deviate’ from some background distribution. In short, both topic model-

ing approaches assume some generative process for tweets, dependent on the post-

ing location. Since topics are dependent on the posting location, the topic models

can be used to geolocate tweets by inferring their topics.

In [70], Priedhorsky et al. modeled each word as a a Gaussian Mixture Model

(GMM). To geolocate each tweet, the multiple GMMs corresponding to multiple

words are linearly combined whereby words that are more location indicative are

assigned higher weights. The works in [43] used naive Bayes to model the proba-
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bility of words given locations. Given a tweet, one retrieves locations that have high

probability of generating the tweet content.

Grid based approaches [84, 76, 63] have also been explored. Wing and Baldridge

[84] discretize space into a uniform grid of square cells, followed by modeling the

smoothed distribution of words for each cell. Test tweets are geolocated to the most

similar cell based on the Kullback-Leibler (KL) divergence between word distri-

butions or based on tweet content probability under a naive Bayes model. In [63],

O’Hare and Murdock utilize uniform grids, the naive Bayes language model and

some adaptation of spatial smoothing to geolocate Flickr photos using the photo

tags. Instead of uniform grids, the work in [76] proposes an adaptive grid con-

structed using a k-d tree. This adapts to the training set size and geographic disper-

sion of the documents, i.e. more densely populated areas will be fitted with more

numerous and smaller cells.

For each test tweet, the above works provide either a coordinate estimation [1,

36, 70] or a coarse discrete location, e.g. city/grid cell [43, 84, 76, 63]. This differs

from fine-grained geolocation as will be explained next.

2.3 Fine-grained Geolocation

In contrast to coarse-grained geolocation, we work on fine-grained geolocation of

tweets. This aims to link tweets to specific venues, e.g. geolocating a tweet “Flight

delayed” to some airport venue, instead of a city, grid cell or a coordinate which

may be associated with many venues.

Compared to coarse-grained geolocation, fine-grained geolocation is relatively

less well explored. However certain approaches can be carried over. In [47], Li et

al. modeled each venue as having some distribution over words. In an approach

analogous to [84] for coarse-grained geolocation, tweets are geolocated using KL-

divergence to the venue with the most similar word distribution. They also model

venue probabilities based on posting time. This is linearly combined with the trans-
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formed KL-divergences to form venue scores. However we note that their experi-

ments are rather limited in that they only geolocate tweets posted from the ten most

popular venues in each city. In [44], each venue generates words according to a fit-

ted naive Bayes model, analogous to [43] for coarse-grained geolocation. However,

not all test tweets will be geolocated. They regard tweets without any LI words as

not tractable for geolocation. Such tweets are discarded. Hence there is a possibil-

ity in applications of discarding too many tweets. In [40], Ikawa et al. learned the

keywords that are highly associated with locations from geocoded tweets generated

by location apps. A test tweet that has at least one keyword is then geolocated to

the location with highest cosine similarity. Again, there is the issue that test tweets

without any key words are ignored.

In [6], Cao et al. conducted extensive feature engineering with content, location

history and relationships. They specify and search for meta-paths in a network

constructed from tweets, hashtags, friends, venues and Foursquare tips. Each meta-

path is hand-crafted to capture certain intuitions, e.g. a user being more likely to

post from a venue that his friends check-in to. The path counts of these meta-paths

are used as features to a classifier which classifies whether a tweet is posted from a

venue or not.

The works by [46, 41] require extracting venue mentions from tweets. In [41],

Ji et al. proposed a framework to perform location recognition and location linking

simultaneously in a joint search space. They formulated fine-grained geolocation

as a structured prediction problem and proposed a beam search based algorithm.

In [46], Li and Sun extract each location mention in a tweet and predict whether

the user has visited, is currently at, or will soon visit the mentioned location. They

designed a Conditional Random Field (CRF) based location tagger, which takes in

lexical, grammatical, geographical and BILOU 1 schema features. For the discussed

works [46, 41], we note that while colloquial mentions are handled, relying on men-

tions is a bottleneck. For example, a tweet ‘safely landed’ has no mentions, but is

1BILOU schema identifies Beginning, Inside and Last word of a multi-word location name, and
Unit-length location name.
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indicative of the airport. Mention extraction is also a difficult problem on its own.

In our work, we geolocate tweets even if no mentions exist.

2.4 Entity Linking

2.4.1 Explicit Entity Linking (EL)

In this section, we discuss Explicit Entity Linking (EL) work which precedes our

work in Chapter 6. EL refers to linking mentions of named entities. Thus, mention

extraction needs to be applied before EL can be conducted.

At a high level, many works formulate EL as maximizing some objective func-

tion that represents linking quality. Various objective functions have been proposed

[77, 74, 51] often comprising some notion of coherence and features engineered

from document and KB content. The work in [58] introduces a semantic related-

ness measure to quantify coherence. The measure, derived from the Normalized

Google Distance (NGD), uses only Wikipedia hyperlink structure and is inexpen-

sive to compute. The main idea is that semantically related entities should share

many common neighbors in Wikipedia. We use the same measure in our work.

There has been much EL work on long documents. Ratinov et al [74] quantified

coherence based on [58] and Pointwise Mutual Information (PMI). In addition, they

include features such as mention-associated text and content similarity between en-

tities. The EL system LINDEN [78] ranks candidate entities using features derived

from Wikipedia and the knowledge base’s taxonomy. These features are linearly

combined to form the scores of candidate entities for a given mention. The sys-

tem then learns to rank candidate entities. In another system LIEGE [77], Shen at

al. worked on linking entities in web lists. Besides NGD-based coherence, they

also included coherence based on semantic category similarity which assumes that

web lists tend to enumerate through entities of the same semantic category, e.g. a

list of movies. This assumption does not apply for mentions in tweets. Unlike the

above works, we focus on EL for very small text, i.e., tweets. We also assume a
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non-supervised setting.

For linking individual mentions, Liu et al. [51] maximize an objective derived

from coherence, mention-concept features and mention-mention features. The ob-

jective requires training of feature weights. In [79], the idea is to exploit user inter-

est for linking. A user’s initial interest score per entity is estimated from his tweets

and quantified by combining coherence, content features and entity popularity. A

user’s interest scores over entities are initialized and propagated over a graph of

entities linked by relatedness [58]. Given a new mention with multiple candidate

entities, entities with higher interest score are preferred. Huang et al [38] use label

propagation over a different form of graph. Graph nodes are mention-entity tuples,

connected based on weighted combination of various relations, e.g. coreferencing

mentions, semantic-relatedness[58] etc. After label propagation, high ranking tu-

ples provide the linking results. Topic models [37, 35] have also been proposed

for EL. Neil and Ciaramita [37] scaled up Latent Dirichlet Allocation [4] with par-

allel Gibbs sampling to make it appropriate for the EL task. They associate each

Wikipedia entity with a topic. For the topic model of Han and Sun [35], they let

topics generate the entities which in turn generate mentions and words.

Different from the above works, we consider orthogonal aspects such as spatial

and temporal proximity between tweets. In terms of focused aspects, the work by

Fang and Chang [26] is related. They learned entity distributions over time and

large geographical areas (smallest area considered is 100km2) in a weakly super-

vised setting. In contrast, we work in the unsupervised setting and consider small

geographical areas spanning hundreds of meters. For an unsupervised approach,

TAGME [27] is applicable. Its key idea is: within the same document, candidate

entities across mentions vote for each other. For a given mention, the entity with

the highest prior is then selected from the top most voted entities. We shall also

implement TAGME as a non-collective EL baseline.
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2.4.2 Implicit Entity Linking (IEL)

Compared to explicit entity linking, Implicit Entity Linking (IEL) is less well ex-

plored. For IEL, Perera et al. [66] built information network to link entities and

knowledge nodes, using factual knowledge from the knowledge base and contex-

tual knowledge from labeled tweets. They then use graph features to rank entities.

For implicit entity linking in tweets, Meij et al. [56] employed extensive feature en-

gineering on content, page links and lexical word form. They then trained decision

trees for ranking entities that are related to each tweet (rather than each mention).

In contrast with both discussed IEL work, our IEL work in Chapter 7 assumes the

posts in our training set are not entity-labeled, but are associated with venues. Thus

our work explores a different task setting.

Some existing EL models can be easily extended to apply them for IEL. In our

work (see Chapter 7), we have included such extensions as baselines. As discussed

in the previous section, Fang and Chang [26] learned entity distributions over time

and grid cells and integrate them into a base linking system. As a baseline, we have

adapted their model by replacing the mention-to-entity linkage component with a

post-to-entity linkage component. We also adapt the TAGME model [27]. In our

extension, our voting entities are candidates for posts from the same venue, not

mentions from the same document. Further details are provided in Section 7.4.3.
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Venue Context Recovery
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Chapter 3

Tweet Geolocation: Location History,

Spatial Homophily and Temporal

Popularity

3.1 Introduction

In this work [16, 14], we conduct fine-grained geolocation [44, 47, 46, 41], which

links tweets to the specific venues from which they were posted e.g. restaurants,

offices etc. We focus on tweets posted by users with location history, i.e. they have

posted geocoded tweets in the past. We cast fine-grained geolocation as a learning

to rank problem. Given a non-geocoded tweet from a city, we rank venues in the

city such that highly ranked venues are more likely to be the posting venue.

Challenges. Tweets are short and colloquial, and may be posted from any one

of the thousands of candidate venues in a given city or area of interest. Hence

fine-grained tweet geolocation is highly challenging. For example, a tweet “having

dinner” can arise from any of the numerous food venues or even at one’s home.

Some prior work [44] mitigated this challenge by performing fine-grained tweet ge-

olocation for tweets with location-indicative words only, i.e. words used mostly at

very few locations, e.g. “airport”. Tweets with such words are thus easier to be
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geolocated. Here, we geolocate both tweets with and without location-indicative

words. To achieve better geolocation performance and to perform fine-grained ge-

olocation on any tweets, we shall exploit the characteristics of users and venues, as

surfaced by our empirical analysis.

For fine-grained geolocation, it is also challenging to acquire ground-truth data

for meaningful experiments. Tweets have to be associated with the specific venues,

instead of just the location coordinates. A popular strategy [6, 47] is to leverage

on location-apps such as Foursquare where users associate their posts with specific

venues. Besides adopting this, we also propose a novel strategy of linking tweets to

venues based on Foursquare users posting tweets and check-ins within a short time

period (see Section 3.2.2).

Empirical Analysis. For more effective geolocation, we first study some use-

ful characteristics of venues and users, namely spatial homophily, spatial focus and

the availability of location history. We first exploit the venues to investigate spa-

tial homophily with respect to fine-grained spatial locations. Spatial homophily is

a concept that has been studied at coarse geographical resolution [7, 1]. This con-

cept means that social media content from the same city/region are more likely to

share common words than content from different cities/regions, possibly due to ge-

ographical bias of language use in Twitter. For example, ‘Tube’ is commonly used

to refer to the subway system in London, but hardly used in a similar fashion for

Singapore. However, at a much finer spatial scale such as between venues in a city,

is spatial homophily still observable? Our empirical studies indicated yes. Venues

near each other tend to have more similar content than venues further apart in the

same city. In other words, venues near each other have more similar text representa-

tions. Furthermore, spatial homophily is stronger for tweet content generated using

a location-app (e.g. Foursquare) than that for tweet content that is posted not using a

location-app. Next we focus on the user aspect. We show that while the proportion

of geocoded tweets in Twitter is small [36, 1], they are posted by a substantial pro-

portion of users. This justifies the design of personalized models that exploits user
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location history in location-related applications. In addition, we show that users are

spatially focused and are more likely to visit venues that are near each other. This

characteristic can be readily incorporated into probabilistic models for geolocation.

Approach. Drawing from the various user and venue characteristics, we then

propose several probabilistic geolocation models. We formulate our models such

that parameters can be easily optimized in a learning to rank framework. We in-

corporate the loss function from [17] as a proxy for the ranking metric of mean

reciprocal rank, along with novel adaptations to lower the computation complexity.

Via extensive experiments, we show that models incorporating user and venue

characteristics such as venue temporal popularity and user location history consis-

tently outperform pure content-based approaches. We also show our models to be

useful even on tweets without words that are indicative of locations. This enables

us to geolocate more tweets in applications.

Contributions. Our contributions are listed as follows:

1. We conduct empirical analysis to surface characteristics for exploitation in

models. We show that spatial homophily exists at fine granularities such that

venues near each other are more similar in content. We observe this effect to

be stronger for tweet content generated in association with a location-app.

2. We show that 30% to 40% of users in Twitter have location history that are

useful for model building. We also show that users are spatially focused in

being more likely to visit venues near each other.

3. We propose several novel models for the fine-grained geolocation problem.

For selected models, we optimized their parameter by minimizing an adapted

loss function in a learning to rank framework.

4. Our experiments show that the various characteristics are useful for geoloca-

tion, with venue temporal popularity and user characteristics (location history

and spatial focus) achieving large improvements. Depending on the dataset
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and metric, our best performing model provides ranking accuracy improve-

ment from 6% to 60% over the naive Bayes model.

This chapter is organized as follows. We first define two kinds of geocoded

tweets in this study and the corresponding datasets in Section 3.2. We then cover

the empirical study of both user and venue characteristics in Section 4.2. Section

3.4 presents our proposed fine-grained geolocation models. The experiment setup

and results are given in Section 3.6. We conclude the chapter in Section 3.7.

3.2 Data for Geolocation

For our geolocation work, we require tweets with ground truth venues. To find them,

we exploit users who are present in both Twitter and Foursquare. We use two types

of geocoded tweets by these users. The first type consists of geocoded tweets from

users who publish their Foursquare shouts at some venues using Twitter. The second

type consists of pure tweets that we associate with venues using a very stringent

criterion. For each type of tweets, we apply a different pre-processing step before

using the data. We use the processed tweets for our empirical analysis on spatial

homophily, spatially focused users as well as in our geolocation experiments.

3.2.1 Shouts (SHT)

These are tweets pushed from Foursquare, a highly popular location based social

networking app. Such a setup is to construct a convenient source of tweets with

ground truth venues and has been used in prior work [6, 47].

In Foursquare, users can write comments and broadcast them to Twitter while

they check-in to a venue. Following Foursquare terminology, we refer to such

tweets as shouts. As shown in Table 3.1, a shout contains the user-authored com-

ment plus an app-generated portion indicating the check-in venue. We discard the

latter portion which is trivial for geolocation and not meaningful for empirical anal-

ysis. Thereafter, we use only the comments for empirical analysis and geolocation.
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Table 3.1: Sample shouts. Bolded portions are user-authored comments. Only this
portion is used for empirical analysis and geolocation.

1 Passport photo look retarded
(@ Immigration & Checkpoints Authority w/ 5 others)

2 Dread dread dread work
(@ Orchard Central in Singapore)

3.2.2 Pure Tweets (TWT)

We refer to tweets that are authored by users and non-retweets as pure tweets. We

iterate through users with Foursquare check-ins and extract their pure tweets whose

posting venues can be accurately determined. Specifically, for each pure tweet from

user u, we link it to u’s check-in that is nearest in time. If the time difference is less

than a specified threshold, then we assign the check-in venue as the tweet’s posting

venue. We use a stringent threshold of 5 minutes. This assumes the user is tweeting

from where he check-ins, if both actions are within 5 minutes of each other.

Terminology. Subsequently we use ‘tweets’ to refer to both pure tweets and

shouts. Where differentiation is required, we use each term explicitly, i.e. pure

tweets or shouts.

3.2.3 Datasets

We collect data for users from Singapore (SG) and Jakarta (JKT). For Singapore, we

collected 1,190,522 Foursquare check-ins from 2014, of which 30% involve shouts.

The check-ins are posted by 29,301 users over 65,701 venues. We refer to this

dataset as SG-SHT. Based on the previously discussed process, we also collected

90,250 pure tweets from 6424 users over 12,616 venues. We designate the dataset

as SG-TWT. For Jakarta, the JKT-SHT dataset comprises 177,570 check-ins for

the period 2015 to mid-2016, of which 49% are shouts. The check-ins are from

12,119 users over 45,213 venues. Linking the check-ins to pure tweets, we obtain

only 1335 pure tweets (JKT-TWT) posted by 592 users from 886 venues. This

small number is possibly due to platform API changes which affected crawling. We

use JKT-TWT only for testing, not training.
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For Singapore, tweets are mostly in English while for Jakarta, tweets are mostly

in bahasa Indonesia. For both language types, words are represented in alphabets

and easily processed for our models. It is not necessary to apply any machine trans-

lation for pre-processing.

3.3 Empirical Study

3.3.1 Spatial Homophily

Users in the same city/region generate more similar social media content when com-

pared to another city/region [9, 7], due to geographical bias in language usage in

Twitter. We refer this as spatial homophily with respect to locations. Does spatial

homophily exist on a much smaller spatial scale such as between venues? To our

knowledge, spatial homophily has not been studied at the venue level, thus motivat-

ing our analysis. Given venues in the same city, we compare the content of venues

near each other versus venues which are far apart. If spatial homophily exists, then

venues near each other should have more similar text representations.

Table 3.2: Average ratio statistic (R̄) and average proportion of venues where near-
est neighbors are more (or less) similar in content, compared to non-neighbors.

Dataset Category More similar Less similar Equally similar R

Mixed 41.71% 19.14% 39.15% 0.516
SG-SHT Food 50.61% 30.95% 18.44% 0.476

Shop 35.72% 21.18% 43.10% 0.486
Mixed 36.38% 26.26% 37.36% 0.461

SG-TWT Food 30.67% 25.94% 43.39% 0.438
Shop 38.63% 29.51% 31.86% 0.461

Mixed 29.50% 17.09% 53.41% 0.470
JKT-SHT Food 30.52% 23.70% 45.78% 0.445

Shop 32.20% 18.92% 48.88% 0.476

We have conducted an experiment to investigate spatial homophily based on the

simple bag of words model. Table 3.2 presents the results. Within each dataset,

we conduct two sets of analysis. In the first set (labeled as ‘Mixed’), we compare

venues near each other regardless of their functionality. In the second set, we con-
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trol for functionality by comparing venues within the same category, e.g. comparing

adjacent restaurants. The venue category labels are provided by Foursquare. There

are ten categories based on functionality. For better representativeness, we use the

two categories ‘Food’ and ‘Shop’, which cover more venues. Such analysis allows

us to evaluate spatial homophily under mixed and non-mixed functionality condi-

tions. Our intuition is that spatial homophily should be less observable under the

mixed condition.

For brevity, we describe the procedure for the ‘Mixed’ analysis. If we are con-

trolling for venue functionality, we only need to repeat the steps on venues of the

targeted category. We treat each venue as a document and use its tweets to cre-

ate a TFIDF vector. Let c(w, v) be the frequency of word w at venue v, V be

the number of distinct venues and df(w) be the number of venues where w oc-

cur at least once. Then the w-th dimension of v’s TFIDF vector is computed as

c(w, v) log(1 + V/df(w)). We then conduct the following:

• Find k venues nearest to v that are also below distance threshold ψ. This

forms v’s nearest neighbor set, denoted as nb(v). If there are l < k venues

below distance threshold, nb(v) will only include l venues.

• Compute average cosine similarity between v and nearest neighbors denoted

as cosnb(v).

• Randomly sample k venues more than distance ψ away as non-neighbors,

denote as nnb(v).

• Compute cosnnb(v), the average cosine similarity between v and non-neighbors.

• Compute distnb(v) = 1
|nb(v)|

∑
v′∈nb(v) d(v, v′), i.e. the average distance from

v to nb(v) whereby d(v, v′) is the distance between v and v′. Also compute

distnnb(v), the average distance from v to nnb(v)

Since Singapore and Jakarta are dense cities, we use k = 5 and ψ = 500m.

After iterating over all venues with content, we tabulate the proportion of venues

whose nearest neighbors are more similar than the non-neighbors i.e. cosnb(v) >
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cosnnb(v); and the proportion of venues whose nearest neighbors are less similar

than non-neighbors. Since the non-neighbors are sampled randomly, we conduct 10

runs per city and average the proportions.

For each venue in each run, we also compare the cosine similarities of neighbors

and non-neighbors with the following ratio statistic:

R(v) = exp(
−cosnnb(v)

cosnb(v)
) (3.1)

where the exponential function avoids computation error caused by dividing by

zero. R(v) is larger when in terms of content, v has less similar non-neighbors

than neighbors. For each run, we average R(v) over venues to obtain the average

ratio statistic R.

Table 3.2 displays the average ratio statistics and the averaged proportions.

Venues with identical cosnb(.), cosnnb(.) fall under the ‘Equally similar’ column

in the table. These identical value cases involve venues with no common words

i.e. cosnb(v) = cosnnb(v) = 0. Other venues fall under the ‘more similar’ or ‘less

similar’ column. Table 3.2 shows that proportions in the ‘more similar’ column are

consistently higher for all datasets than the ‘less similar’ column. This implies spa-

tial homophily since venues are more similar to their neighbors than to random non-

neighbors. For example in SG-SHT, on average, 50.61% of food venues are more

similar to their food venue neighbors while 30.95% are less similar, when compared

against non-neighbors of the food category. The difference between these two pro-

portions is greater for SG-SHT than SG-TWT, suggesting that the spatial homophily

effect is stronger for shouts than pure tweets.

Refer to the R values in Table 3.2. If there is no difference in cosine similari-

ties between neighbors and non-neighbors, then Equation (3.1) indicates that R is

expected to be exp(−1)=0.368. As can be seen, all values are higher than this. On

average, a venue’s non-neighbors are less similar in content than neighbors. This

again indicates spatial homophily. R is also higher for SG-SHT than SG-TWT

across all categories. This reaffirms that spatial homophily is stronger for shouts.
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Table 3.3: Venues (in brackets <>) near each other and sample shouts demonstrat-
ing spatial homophily.

M1
<Cha Cha Cha Mexican Restaurant & Bar>
‘Hehe finally satisfied ma Mexican food craving w momsie’

M2
<El Patio Mexican Restaurant & Wine Bar>
‘Mexican Hogmany food with @joanniewalker’

N1
<Executive Cafe>
‘Hotpot at NTU. Yum <3 with Lem’

N2
<McDonald’s>
‘At NTU’s North Spine.’

One possible explanation is that for pure tweets, users tend to share more diverse

topics, which can be quite unrelated to their current venues. Different from pure

tweets, shouts are authored by users as they check-in to some venues. They then

broadcast their shouts to the Twitter, intentionally sharing their venues. Thus users

may be more likely to mention aspects related to current venues or the local area.

This also implies that pure tweets are harder to geolocate compared to shouts.

Interestingly, the ‘Mixed’ experiment which does not control for venue func-

tionality exhibits spatial homophily effects that are rather comparable to ‘Food’ and

‘Shop’. On inspection, we observed various contributing factors. While moving

around adjacent venues of different functionalities, users may mention local spatial

characteristics, events or be using unique words, e.g. mentions of friends.

Table 3.3 illustrates examples of spatial homophily. Shouts M1 and M2 are

from Mexican restaurants near each other. User mentions of Mexican food con-

tribute to content similarity between venues. For shouts N1 and N2, they are posted

from venues in Nanyang Technological University (NTU), a university in Singa-

pore. Thus NTU constitutes a local spatial feature and its mentions increase content

similarity between venues on campus.

3.3.2 Location History

As the proportion of geocoded tweets is small, one may easily assume that they are

contributed by an equally small proportion of users. For such users, the geocoded
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tweets constitute a personal location history, which can be used to build more ac-

curate models to geolocate their non-geocoded tweets. However are such models

widely applicable to users? We therefore need to investigate the proportion of users

with personal location history.

For the purpose of this empirical analysis, we randomly sample 50,000 Twitter

users from Singapore for 2014 and from Jakarta for June to Dec 2016. The only

sampling condition is that each sampled user has posted at least one tweet during

the study period. Sampled users may or may not be active on Foursquare. Table 3.4

shows the statistics compiled.

As expected from prior work [36, 1], the proportion of geocoded tweets is tiny

at 3.22% for Singapore and 4.62% for Jakarta. However we find that the propor-

tion of users posting geocoded tweets is substantial. For ease of discussion, denote

the set of users who posted at least one geocoded tweet as {u}g. Table 3.4 shows

that in Singapore, {u}g comprises 30.34% of the sampled users. This is much

larger than the value of 3.22% if one does a naive inference based on the fraction

of geocoded tweets. Similarly in Jakarta, {u}g is substantial at 41.96% of the users.

Such proportion characteristics arise because users in {u}g post both geocoded and

non-geocoded tweets, with the latter at much larger counts. The last two rows of Ta-

ble 3.4 illustrates this. On average, a Singapore user in {u}g post 289.69 geocoded

tweets and 4532.98 non-geocoded tweets. A similar bias in tweeting behavior can

be observed for Jakarta.

Intuitively, an average user is constrained by geographical, social or personal

factors. This leads to venue revisits, or the conduct of many activities (e.g. work) in

geographically localized regions. Now, consider a user in {u}g. He has geocoded

tweets with location coordinates. Such location history may provide useful infor-

mation on his visit routines and activity regions. We can then build a personalized

model of the user, that better geolocates his other non-geocoded tweets. Obviously,

this also requires sufficient geocoded tweets per user, thus motivating our next anal-

ysis.
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Table 3.4: Statistics for 50,000 sampled users from Singapore (2014) and from
Jakarta (June to Dec, 2016).

Singapore Jakarta
Total Tweets 136,548,216 20,466,019

Geocoded Tweets
4,394,378 946,432
(3.22%) (4.62%)

Users with 15,169 20,982
geocoded tweets, {u}g (30.34%) (41.96%)

Ave. geocoded tweets / user in {u}g 289.69 45.11
Ave. non-geocoded tweets / user in {u}g 4532.98 157.48

For users in {u}g, we examine their distribution of geocoded tweets. This gives

a sense of the proportion of users with sufficient location history for learning a

model. Figure 3.1 displays the Complementary Cumulative Distribution (CCDF)

plot. The plots show that many users in {u}g have adequate number of geocoded

tweets. For example, Figure 3.1(a) indicates that for Singapore, around 40% of the

users in the {u}g set has more than 50 geocoded tweets over a one year period. For

Jakarta, over a half year period, the corresponding proportion is around 25%.

(a) Singapore (b) Jakarta

Figure 3.1: CCDF for users in {u}g. X-axis = no. of geocoded tweets per user

3.3.3 Spatially Focused Users

We say a user is spatially focused if he or she is more likely to visit venues that

are near his/her other visited venues. For each user, we compute a distance-based

statistic to quantify the extent of spatial focus. We compare this against the expected

distance statistic when a user visits the same number of venues in a random man-

ner. We term the latter as the null model. We conduct our analysis on users with
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geocoded tweets tied to Foursquare (datasets SG-SHT and JKT-SHT).

Denote Vu as the set of venues visited by user u. We iterate through each venue

in Vu and compute the distance to the nearest neighboring venue. This is averaged

over all venues in Vu. If the distance statistic is small, relative to the null model (to

be defined), then there is stronger evidence of spatial focus. Formally, the distance

statistic is:

D(u) =
1

|Vu|
∑
v∈Vu

min
v′∈Vu\v

d(v, v′) (3.2)

where d(, ) measures spatial distance. D(u) is easy to compute. It neither assumes

any parametric form for the spatial distribution, nor knowledge of the number of

spatial clusters.

The null model computes the expected distance statistic if the user is not spa-

tially focused, but visiting venues at random. For the null model, we reassign each

unique visit of user u to a random venue and obtain a random venue set V0
u of

the same size as Vu. We then apply Equation (3.2) again to compute the distance

statistic D0(u). Note that to ascertain the presence of spatial focus, it is important

to compare D(u) versus the null model rather than just examining its actual value.

The reason is that D(u) can be small even if a user is not spatially focused. For ex-

ample, assume a huge geographical area containing many points which equally split

the area. Let these points correspond to the coordinates visited by user u. When the

number of points is sufficiently large, then D(u) is small, although u is not spatially

focused. However in this case, if we apply the null model, D0(u) will be small as

well and close to D(u). Thus by comparing both values, we can avoid drawing the

wrong conclusion that u is spatially focused.

Figure 3.2 plots the Cumulative Distribution Function (CDF) of the distance

statistics for Singapore and Jakarta. For each city, there is clear evidence that users

are spatially focused. The red curve for the null model statistic consistently lies to

the right of the blue curve for the user statistic. This implies that venues visited

by users are spatially nearer each other than random. For example, Figure 3.2(a)

shows that if users are visiting venues randomly (red curve), then we expect only
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60% to have distance statistic of 2000 metres or less. However, the actual behavior

(blue curve) indicates that the corresponding proportion is around 90%. For Jakarta

in Figure 3.2(b), 65% of users (blue) have distance statistic of 2000 metres or less,

much higher than the expected proportion of 15% based on the null model (red).

(a) Singapore (b) Jakarta

Figure 3.2: CDF of Distance statistic of users (blue) vs null model (red). (X-
axis=distance in metres)

Remarks. In short, our empirical analysis highlights that users with geocoded

tweets form a significant group in Twitter, much more than what one would expect

from the proportion of geocoded tweets. We also observe strong evidence that users

tend to visit venues that are spatially near each other. These motivate the design of

personalized models based on users’ location history.

3.3.4 Venue Temporal Popularity

Each tweet is associated with a posting time, which provides a modeling linkage

to venue temporal popularities. Intuitively, different venues are more popular at

different times of the day, e.g. dining venues are more popular at meal times while

nightlife venues are more popular at late hours. This directly affects the probability

that a venue is the posting venue of a given tweet at different times of the day.

Venue temporal popularities were studied extensively in prior work [53, 61, 88].

Also, tweet posting time is always observed, in contrast to user location history.

Hence we omit empirical analysis and coverage studies. Instead we capture the

discussed intuitions by including tweet posting time for modeling. This improves
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geolocation performance significantly, as will be discussed in the experiment re-

sults.

3.4 Models

We first describe a baseline model for geolocation. We then propose several models

that draw on the empirical analysis findings as well as incorporate additional con-

textual information. We elaborate the associated notations in an inline manner for

ease of reading.

3.4.1 Naive Bayes (NB)

We denote the naive Bayes model from [44, 43] as NB. This models the tweet

content associated with each venue as a bag of words w. Let W be the vocabulary

size of tweet words. We use c(w, v) as the frequency of wordw at venue v and c(., v)

to denote
∑

w c(w, v). Given a tweet, we then rank venues by the venue probability

p(v|w) ∝ p(v)
∏

w∈w p(w|v). The probability of word given venue p(w|v) is

p(w|v) =
c(w, v) + α

c(., v) +Wα
(3.3)

where α is the smoothing parameter which can be tuned or set at 1 for Laplace

smoothing. Equation (3.3) can be interpreted in a Bayesian framework using the

concept of conjugate priors. Equation (3.3) corresponds to the posterior predictive

distribution of a multinomial distribution with a Dirichlet distribution as the prior.

In this case, the Dirichlet distribution is symmetric and parameterized by α.

3.4.2 Spatial Smoothing (NB+S)

Our earlier empirical analysis had demonstrated the presence of spatial homophily

where venues near each other are more similar in content. To consider this effect,

we add spatial smoothing to the naive Bayes model NB. For each word w at the

38



CHAPTER 3. TWEET GEOLOCATION: LOCATION HISTORY, SPATIAL HOMOPHILY AND TEMPORAL

POPULARITY

ego venue v, we extend the definition of p(w|v) with word frequencies of v’s set of

spatial neighbors, denoted by nb(v). The spatially smoothed p(w|v) is defined as:

p(w|v) =

c(w, v) + α + γ
|nb(v)|

∑
vi∈nb(v)

c(w, vi)

c(., v) +Wα + γ
|nb(v)|

∑
vi∈nb(v)

c(., vi)
(3.4)

where 0 ≤ γ ≤ 1 is the weight factor. By setting γ, we adjust the spatial smoothing

strength on word frequencies from v’s neighbors. When γ = 1, a word w found in

every v’s neighbor will be equivalent to a single w occurrence in v. Otherwise, the

words from neighbors are weighted less than the native words in v. Also recall that

our earlier analysis shows that spatial homophily exist even without controlling for

venue functionalities. Thus we do not need to restrict neighbors to be of the same

category as the ego venue.

Similar to Equation (3.3), Equation (3.4) can be interpreted as the posterior pre-

dictive distribution resulting from a Dirichlet-multinomial conjugate pair. The dif-

ference is that the multinomial distribution specific to each venue is now adjusted

with contributions from its spatial neighbors.

3.4.3 Tweet Posting Time (NB+S+T)

The previous models mainly exploit the tweet content. As tweet content is short,

ranking accuracy may be low due to information sparsity. We thus explore user

and/or venue characteristics to improve performance. As previously mentioned, the

posting time of tweets is readily available. This ties to the characteristic that certain

venues are more popular at different time of the day, making them more likely to

be the posting venues of tweets. Hence given a tweet posted at time of day t, we

incorporate time into the model as follows:

p(v|w, t) ∝ p(v|t)
∏

w∈w
p(w|v) (3.5)

where p(v|t) accounts for venue popularity at time of day t.
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A simple approach to compute p(v|t) is to discretize t into time bins, e.g. hourly

and estimate the venue distribution for every bin. However there are boundary ef-

fects which are counter-intuitive. For example, consider discretizing by hourly bins

where each bin starts on the hour. Then t = 2359 hrs and t = 0001 hrs are in

different bins, although they are only 2 minutes apart. In contrast, t = 0001 hrs and

t = 0059 hrs are 58 minutes apart, but in the same bin.

Instead of binning, we model time of day t as a continuous variable which is

more intuitive. We estimate p(v|t) in an approach motivated by kernel density esti-

mation (KDE) [49]. For time of day t, define a time interval of length T (t) which

covers t. Denote by f(v, t) the number of user visits to venue v in the interval T (t)

and let f(·, t) =
∑

v f(v, t). Given a test tweet with time of day t, we compute

p(v|t) =
f(v, t) + β

f(·, t) + V β
(3.6)

where V is the number of distinct venues and β is the smoothing parameter. β can

be tuned or learnt (see Section 3.5).

Defining a time interval and counting the venues within is similar to applying

a uniform kernel in KDE. The time interval length T (t) is analogous to the kernel

bandwidth. Instead of adopting a fixed interval length, we use adaptive bandwidth

selection [49]. Basically given a test tweet posted at time of day t, we search for the

k training tweets closest in time of day to define the time interval, i.e. f(·, t) = k.

To do this efficiently, we use a k-d tree structure [30]. Given a set of training tweets

T, insertion and search using the k-d-tree has average complexity of O(log |T|).

We index all training tweets after converting their posting times to 2-dimensional

Cartesian coordinates. Formally, let time of day t be represented as the number of

seconds past midnight. We compute the corresponding Cartesian coordinate (tx, ty)

as:

tx = sin(t/3600)

ty = cos(t/3600)

(3.7)
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Following Equation (3.7), we can readily apply k-d trees and Euclidean distance to

facilitate k nearest neighbor computation given any time of day query.

Using the parameter k, adaptive bandwidth selection is able to adjust the time

interval length locally based on data density. Basically during timings with sparse

training points (e.g. midnight), the interval length is longer to cover k nearest neigh-

boring training tweets, while during timings with dense training points (e.g. dinner),

the interval length is shorter. This is also intuitive from the Bayesian point of view.

Consider Equation (3.6) where f(v, t) and f(·, t) are actual observations while β

and V β are pseudo-observations. In fixing f(·, t) = k, we effectively use k to

control the relative importance of actual and pseudo-observations to be consistent

across all test tweets.

3.4.4 User Location History (NB+S+T+U)

Earlier, we showed that a substantial proportion of users have location history in

the form of geocoded tweets. On average, such users also post many non-geocoded

tweets, which may be targeted for geolocation. Here we use location history to build

models that are personalized to each user.

Consider the previous model NB+S+T. From Equation (3.5), this model can be

interpreted as a Bayesian network where the time of day node generates the venue

node which then generates the words. We now let the venue node generate the user

node as well. Thus we now define:

p(v|w, t, u) ∝ p(v|t)p(u|v)
∏

w∈w
p(w|v) (3.8)

Since location history are specific to users, it is more intuitive to compute p(v|u)

instead of p(u|v). p(v|u) can also be represented by two dimensional distributions

over geographical space, which is convenient for interpretation and visualization.

By the property p(u|v) = p(v|u)p(u)/p(v) and assuming constant p(u), p(v), we

have p(u|v) ∝ p(v|u). Thus the probability term p(u|v) in Equation (3.8) can be
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replaced by p(v|u).

To model p(v|u), recap that the spatial focus property means users are more

likely to visit venues spatially near previously visited venues. To capture this idea,

we extend the distance statistic from Equation (3.2) and define p(v|u) as:

p(v|u) ∝ exp(−S · min
v′∈Vu

d(v, v′)) (3.9)

where Vu is defined previously as the set of venues in u’s location history and

S ≥ 0 is the decay parameter. A large S means that p(v|u) decreases faster with

increasing distance between v and the nearest venue in Vu. Equivalently, we are

making the model more sensitive to the spatial focus property. In contrast, if S = 0,

we disregard the spatial focus property.

Equation (3.9) defines an affinity vector over venues, specific to user u, whereby

p(v|u) are the vector elements. This vector is fixed if user u’s location history is not

updated. Thus one can precompute the affinity vectors for users to geolocate their

tweets more efficiently. Lastly, note that for notation simplicity, we have defined

Equation (3.9) in terms of distances between venues. In fact, it is not required for

the specific venues to be known in the location history. It suffices for only the

location coordinates of geocoded tweets to be known. Thus the proposed model is

applicable to more users, including those whose geocoded tweets are not associated

with specific venues.

Query Likelihood Model. Equation (3.8) can be interpreted as a query like-

lihood model (see Section 12.2 of [54]) in the framework of traditional document

retrieval. In the query likelihood model, the probability of document d given query

q is computed as p(d|q) ∝ p(q|d)p(d). In Equation (3.8), venues are analogous to

documents while the test tweet’s user and content comprises a query with accompa-

nying meta-information. The posting time is used to assign a non-uniform prior to

the venues (i.e. documents).
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3.5 Learning to Rank

Given a tweet, one desires its posting venue to be ranked high. Thus there is only

one relevant venue and the Mean Reciprocal Rank (MRR) is a suitable metric. Con-

sider a set of tweets T. Let the ranked position of the i−th tweet’s posting venue vi

be ri, where 0 ≤ ri ≤ V − 1. MRR with respect to tweet set T is defined as:

MRR(T) =
1

|T|

|T|∑
i=1

1

1 + ri
(3.10)

which is the average of the reciprocal ranks for each tweet in T.

We can optimize parameters of our models with respect to MRR via tuning or

Learning to Rank (LTR). For models with few parameters e.g. NB and NB+S, tun-

ing can be done with grid search over the parameter space in order to maximize

MRR directly. However for more complicated models with more parameters, tun-

ing cost increases at an exponential rate. In contrast, LTR requires a proxy function

in place of MRR and may be susceptible to local optima. However LTR can utilize

gradient information for more fine-grained optimization and scales better with in-

creasing model parameters. Considering the computation cost of tuning versus LTR

and the number of model parameters, we apply different approaches to different

models. For NB and NB+S, we adopt tuning based on grid search. For NB+S+T

and NB+S+T+U, we adopt LTR. To further motivate our choice of using LTR in-

stead of tuning, assume that each parameter is tuned over a grid of τ values. Then

for NB+S+T+U which has 4 parameters, tuning requires applying the model on the

tuning set for a total of τ 4 times. This is much more expensive than for example,

tuning for NB+S, which only requires applying the model for τ 2 times.

LTR requires one to define an appropriate objective function. Firstly, Equation

(3.10) can be re-expressed as:

MRR(T) =
1

|T|

|T|∑
i=1

[1 +
∑
v 6=vi

I(pΘ(v) > pΘ(vi))]
−1 (3.11)
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where I(.) is the indicator function and pΘ(vi) is the probability of the posting venue

vi for the i-th tweet computed from some geolocation model Θ (e.g. NB+S). Thus

maximizing MRR is equivalent to maximizing some function constructed from mul-

tiple 0-1 loss functions. Note that the indicator function has gradient of 0 except at

the point of discontinuity, where the gradient is ill-defined. Hence it is infeasible to

maximize MRR directly [17] via LTR. Instead, one approximates MRR maximiza-

tion by minimizing a proxy loss function, whereby a good proxy should approxi-

mate the 0-1 loss well, while retaining sufficient gradient for learning. Various loss

functions are possible, e.g. logistic loss. However, in recent work, [17] has pro-

posed the log-log loss function as a better alternative to logistic loss. This motivates

us to introduce the log-log loss function into our models that have been selected for

LTR. For the selected models, we construct the loss function over venue pairs for

minimization.

3.5.1 Loss Function

For a posting venue vi to be ranked high, pΘ(vi) should be large while pΘ(v) should

be small for v 6= vi, i.e. non-posting venues. For computation convenience, we use

log probabilities for ranking. Let zΘ(vi, v) = ln pΘ(vi)− ln pΘ(v). The log-log loss

function for a tweet with posting venue vi is:

LΘ(vi) =
∑
v 6=vi

ln(1 + ln(1 + exp(−zΘ(vi, v)))) =
∑
v 6=vi

ln(1 +RΘ(vi, v)) (3.12)

where RΘ(vi, v) = ln(1 + exp(−zΘ(vi, v))). To obtain the global loss function, one

computes and sums Equation (3.12) over the set of tweets considered:

GΘ(T) =

|T|∑
i=1

LΘ(vi) (3.13)
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3.5.2 Re-parameterization

With the loss function defined, we can perform gradient descent to minimize it.

However there are constraints on the parameters. The smoothing parameters α, β

and S are required to be non-negative. The spatial weight factor γ has to satisfy

the constraint 0 ≤ γ ≤ 1. Instead of constrained optimization, we incorporate the

above constraints by re-parameterizing the model as follows:

α = x2
α

γ = (1 + exp(−xγ))−1

β = x2
β

S = x2
S

(3.14)

where xα, xβ , xS and xγ are the new set of parameters. These can now be easily

learnt from unconstrained optimization.

3.5.3 Gradients

We minimize the loss function via stochastic gradient descent. Here, we illustrate

deriving the gradient for one parameter xS for one model: NB+S+T+U model. For

notation brevity, let Θ represent NB+S+T+U. By chain rule,

∂LΘ(vi)

∂xS
=
∑
v 6=vi

∂ ln(1 +RΘ(vi, v))

∂RΘ(vi, v)

∂RΘ(vi, v)

∂zΘ(vi, v)

∂zΘ(vi, v)

∂xS
(3.15)

For NB+S+T+U, we have pΘ(v) = p(v|w, t, u), thus:

∂zΘ(vi, v)

∂xS
=
∂ ln p(vi|w, t, u)

∂xS
− ∂ ln p(v|w, t, u)

∂xS
(3.16)

where
∂ ln p(v|w, t, u)

∂xS
∝ ∂ ln p(u|v)

∂xS
= −2xS · min

v′∈Vu

(d(v, v′)) (3.17)
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and ∂ ln p(vi|w, t, u)/∂xS is computed similarly. The gradients for other model

parameters are derived in a similar manner.

3.5.4 Complexity Reduction

Let T be the set of training tweets, and V be the number of distinct venues. For

each training tweet, there is one posting venue and V -1 non-posting venues. Con-

sequently for each training tweet, if we construct pairwise loss between the posting

venue and all other non-posting venues, then there are V -1 pairs. The overall com-

putational complexity for training is then O(|T|V ).

We can reduce the complexity by reducing the number of pairs considered per

training tweet. The simplest approach is to randomly sample M proportion of pairs

per training tweet (e.g. M = 0.25) such that MV < V -1. On top of this random

sampling scheme, we propose further adaptations to reduce the complexity while

enabling changes in the loss function to be more correlated to changes in MRR. We

achieve this by assigning greater weights to training tweets which contribute more to

MRR. Such tweets already have their posting venues ranked high and are intuitively

more important. For example, assume two tweets at the start of training: tweet 1

with its venue ranked at position 0, i.e. r1 = 0, and tweet 2 with its venue ranked

at position 99, i.e. r2 = 99. The overall MRR is ( 1
0+1

+ 1
99+1

)/2 = 0.505, with

a contribution of 0.5 from tweet 1 and 0.005 from tweet 2. Tweet 1 is thus much

more important than tweet 2. As training proceeds, model parameters evolve and

may lead to changes in the venue rankings of both tweets. However, any changes in

the rank of tweet 1’s venue will affect MRR much more than tweet 2.

The loss function as defined by Equations (3.12) and (3.13) do not reflect the var-

ied importance of training tweets. Furthermore, given some reduction in the loss,

not all reciprocal ranks associated with test tweets are simultaneously improved.

Instead there is a mixture of improvement, decline or no change. Continuing from

the earlier example, it is plausible for a given loss reduction to improve the ranking

of tweet 2’s venue to position 49, while tweet 1’s associated ranking may drop to
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position 1. This leads to a reduced MRR of ( 1
1+1

+ 1
49+1

)/2 = 0.26, even though

the loss has decreased. Hence to better correlate loss reduction with MRR improve-

ment, it is important to improve or maintain the ranking accuracy for tweets already

associated with high reciprocal rank. To achieve better correlation, we let more im-

portant training tweets contribute more pairs. Specifically for the i-th tweet at the

start of the training phase, we construct the pairwise loss to Mi(V −1) other venues

where Mi is a proportion computed as:

Mi =
M

1 + exp(−1/ri,0)
(3.18)

where ri,0 is the ranked position of the posting venue for the i-th tweet at the start

of training, i.e. 0-th iteration. Basically tweets contribute more pairs (are assigned

more importance), based on their associated reciprocal rank such that Mi = M

for ri,0 = 0 and is close to 0.5M for large values of ri,0. For example, a tweet

with its posting venue perfectly ranked at the start of training contributes (V -1)M

pairs to the global loss function while a tweet with a very poorly ranked venue

contributes close to only 0.5(V -1)M pairs. The computational complexity is now

O(V
∑|T|

i Mi). Except for extreme and unlikely cases where all posting venues are

perfectly ranked at the start of training, the new computational complexity is lower

than O(|T|V ), enabling training to be conducted faster.

3.6 Experiments

3.6.1 Setup

We conduct fine-grained geolocation experiments to:

1. Compare our models with each other and other state of the art baselines.

2. Assess the importance of incorporating various user and venue characteristics

such as user location history and temporal venue popularity.
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We split the datasets SG-SHT, SG-TWT, JKT-SHT into training, tuning and test

sets. Model parameters are learnt from the training set to minimize the loss on the

tuning set. We include venues as ranking candidates only if they have at least 5

tweets in the training set. We also filter out stop words and rare words (frequency

<4). The test set consists of test cases of tweets, each posted from some venue by

a user with location history. On inspection, we noticed ‘easy’ test cases, where a

user repeatedly uses a highly unique word every time he posts from a certain venue.

This makes the unique word highly indicative of the posting venue, leading to high

ranking accuracy for such cases. To make the problem more challenging, we filter

them from the training set as follows: for each test case with user u and posting

venue v, we exclude u’s other tweets posted at v from the training set. In other

words during training, applied models do not observe any postings of u from venue

v.

For each dataset, we conduct 20 runs where for each run, we sample 5000 tweets

for testing/tuning and use the remainder for training. From the sampled set, we

use 1000 tweets for tuning and the remainder for testing. Due to various filtering

discussed above, the number of test cases per run is less than 4000. The average

numbers of test cases are reported with the results for each experiment.

3.6.2 Models Applied

We compare the following models:

• KL: This model [47] assigns scores to venues based on posting time infor-

mation, e.g. hour of day, and the Kullback-Leibler divergences between the

smoothed language models of tweets and venues. The KL-divergences are

transformed and linearly combined with the venue probabilities to form rank-

ing scores.

• TFIDF: We represent venues and tweets as TFIDF vectors in terms of content.

Given a test tweet, we use cosine similarity to retrieve and rank venues. This
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is very similar to the method in [40].

• GMM: This models [7] each word as a Gaussian mixture over 2-d space, and

a test tweet as the product of Gaussian mixtures. Venues are ranked by the

probability that the product of Gaussian mixtures generate their coordinates.

Since words that are indicative of spatial regions should have relatively few

number of modes, we follow [7] and set the number of clusters to 3.

• VDOC: The topic model VDOC in [12] models the generation of check-ins

and venue-related comments in the form of Foursquare tips. By treating

tweets as tips and ignoring the check-in mode, we extend VDOC to model

tweet generation. To generate each tweet, the venue first generates the topic.

The topic then generates the posting user and the tweet words. In our exper-

iments, we used 40 topics, after observing that this is sufficient for optimal

ranking performance.

• KDE: This [39] integrates kernel density smoothing into multinomial naive

Bayes to geolocate tweets to grid cells. Given cell c, geolocation is based

on the probability p(c)
∏

w∈w p(w|c) whereby p(c) and p(w|c) are smoothed

using Gaussian kernels. To apply the method for geolocating to venues, we

extend it to compute p(v|c)p(c)
∏

w∈w p(w|c). Given venue v located in cell

c, p(v|c) is estimated by counting tweets posted from venue v, over all tweets

posted within cell c. We experiment with grid sizes of 1 km and 500 m and

report results from the latter due to its better performance.

• NB: This is the naive Bayes, content-only approach from [44, 43]. We ob-

served better performance with uniform venue probabilities, i.e. p(v|w) ∝∏
w∈w p(w|v) and report the associated results. We tune the smoothing pa-

rameter α using grid search: α is varied from 0.1 to 1.5 in steps of 0.1. The

value associated with the optimal tuning set MRR is then selected.

• NB+S: This extends the NB model with spatial smoothing. For spatial smooth-

ing, we use k = 5 nearest neighbors of each venue to smooth the word prob-
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abilities. We tune the smoothing parameter α and the spatial weight factor γ

using grid search over (α, γ) values from (0.1,0.0) to (1.5,1.0), at intervals of

0.1.

• NB+S+T: This uses content with spatial smoothing plus tweet posting time

which relates to venue temporal popularity. For parameter learning, we apply

LTR with mini-batch stochastic gradient descent. We set M (see Equation

(3.18)) at 0.25. We use 15 epochs and 50 mini-batches where each mini-batch

consists of 20 tweets. To account for local optimal, we randomly initialize

and train 5 instances per model. We then select the instance with the highest

tuning set MRR to apply on the test set.

• NB+S+T+U: This uses content with spatial smoothing, posting time and user

location history, thus exploiting all user and venue characteristics. We apply

LTR with the same set-up as described above.

3.6.3 Results on Shouts

In the first experiment, we train and test models on the datasets SG-SHT and JKT-

SHT. Tables 3.5 and 3.6 present results for Singapore and Jakarta shouts respec-

tively. Note that MRR figures are not directly comparable across datasets since we

are ranking with different venue sets. For JKT-SHT, there are also fewer venues to

rank, making it easier to achieve high MRR.

In both Tables 3.5 and 3.6, KL, TFIDF, GMM, VDOC and KDE substantially

underperform the NB model. KL includes posting time information, but fails to

outperform NB anyway. Evidently, modeling each shout with a smoothed language

model, as done by KL is inadequate. This in turn affects the computing of KL

divergences between the word distributions of shouts and venues. TFIDF also con-

sistently has low MRR, partly being because it is not optimized for ranking. Also

if a test shout and a posting venue share no common word, cosine similarity is 0

and the venue will be ranked low. This may be overly stringent. The topic model
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Table 3.5: Average MRR for SG-SHT. On average, there are 2626.2 test cases and
10814.5 venues to rank per run.

Model MRR Improvement over NB
KL 0.04021 -58.045%

TFIDF 0.03571 -62.740%
GMM 0.02495 -73.967%
VDOC 0.03683 -61.571%
KDE 0.06655 -30.561%
NB 0.09584 0%

NB+S 0.09620 0.376%
NB+S+T 0.09966 3.986%

NB+S+T+U 0.10271 7.168%

Table 3.6: Average MRR for JKT-SHT. On average, there are 975.9 test cases and
2713.75 venues to rank per run.

Model MRR Improvement over NB
KL 0.03019 -77.667%

TFIDF 0.04193 -68.982%
GMM 0.09767 -27.748%
VDOC 0.05849 -56.732%
KDE 0.10665 -21.105%
NB 0.13518 0%

NB+S 0.13623 0.777%
NB+S+T 0.14618 8.137%

NB+S+T+U 0.14824 9.661%

VDOC performs poorly despite its model complexity. This may be due to the fact

that model parameters are optimized with respect to the formation of coherent top-

ics rather than with respect to MRR. For GMM, performance is poor as we have

to geolocate even shouts where words do not have peaky Gaussian distributions.

Among the approaches inferior to NB, KDE is the best performing. Primarily, this

approach models and smooths the word distributions of grid cells, instead of venues.

Thus word distributions are learnt at a coarser level and sub-optimal for fine-grained

geolocation.

Both Tables 3.5 and 3.6 exhibit similar trends from the NB model onwards.

MRR improves as we add spatial smoothing and additional characteristics to the

models. For adjacent models, e.g. NB vs NB+S, we have also conducted sig-

nificance testing with the Wilcoxon signed rank test. The differences between all
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models are statistically significant at p-value of 0.05.

Comparing NB and NB+S, spatial smoothing improves MRR slightly, which

can be attributed to the presence of spatial homophily. The improvement is small but

consistent across different runs. This may be due to the limited strength of spatial

homophily at fine granularities. We also note that prior work on coarse-grained

geolocation [9] had reported limited improvement from spatial smoothing, even

when using location-indicative words only. For example, in [9], which geolocates

users’ cities with accuracy as the metric, the improvement from spatial smoothing is

less than 1%. We also reason that even without smoothing, we are already capturing

much of the spatial homophily effect. Recall that this means venues near each other

have more similar content. In the NB model, we are modeling the venue content

directly anyway, thus implicitly accounting for spatial homophily in a downstream

manner.

For both cities, substantial improvement comes from exploiting temporal venue

popularity and location history. For example, NB+S+T provides 3.986% improve-

ment over NB in Table 3.5. For Jakarta in Table 3.6, the corresponding improvement

is 8.137%. Thus venue popularity with time of the day plays a role. Adding user

location history helps to increase MRR even more, with NB+S+T+U being consis-

tently the best performing model in both tables. This shows that location history is

highly useful. Also recap that our modeling approach captures the idea that users

are spatially focused in being more likely to visit venues that are near each other.

The experiment results further validate this.

3.6.4 Results on Pure Tweets

In this experiment, we train and test our models on pure tweets from Singapore (SG-

TWT). Results are displayed in Table 3.7. We only rank venues appearing in pure

tweets. This results in an average of 2783.55 venues to rank per run. Also, JKT-

TWT has too few pure tweets for training and we do not use it in this experiment.

The trend in Table 3.7 is mostly similar to that of the previous experiment on
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shouts. KL, TFIDF, GMM and VDOC are poor performers. KDE performs better

than these techniques, but loses out slightly to NB. Spatial smoothing again provides

only slight improvement over the NB model, although it is statistically significant

over 20 paired runs. The exploitation of venue temporal popularity and user location

history provides very sharp improvement. NB+S+T+U again has the highest MRR

with over 60% improvement from NB.

Typically, MRR is not compared across experiments that rank different number

of items. However here, we can make certain statements by comparing Tables 3.7

and 3.5. In Table 3.7 for pure tweets, we rank fewer venues, but obtain mostly lower

MRR than Table 3.5 for shouts. Since we have fewer venues to rank, the task should

have been easier, resulting in a higher MRR. The lower MRR thus implies that it

is more challenging to rank venues for pure tweets than shouts. This observation is

also consistent with our empirical analysis (Table 3.2), whereby we have observed

spatial homophily to be stronger for shouts than pure tweets. Also, pure tweets may

be about more diverse topics not related to the posting venue. Obviously this will

impact ranking accuracy.

If the contents of pure tweets are not highly indicative of venues, then character-

istics such as temporal venue popularity and user location history become relatively

more important. This is illustrated by the huge gains in MRR as we move from

model NB to NB+S+T / NB+S+T+U. The percentage improvement is much larger

in Table 3.7 than the case for shouts in Table 3.5.

3.6.5 Applying Shout Models to Pure Tweets

In this experiment, we explore if models that are trained to rank using shouts (i.e.

model NB and extensions) will perform well on pure tweets. The motivation is

that in applications, it is easier to form training sets using shouts which are already

associated with venues, than tweets which require labeling or some linking process.

We apply the models trained on SG-SHT to test tweets from SG-TWT. We also train

models with JKT-SHT and test on JKT-TWT. For test cases, we use pure tweets
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Table 3.7: Average MRR for SG-TWT. On average, there are 2061.9 test cases and
2783.55 venues to rank per run.

Model MRR Improvement over NB
KL 0.03790 -33.310%

TFIDF 0.02059 -63.769%
GMM 0.01385 -75.629%
VDOC 0.01986 -65.054%
KDE 0.05349 -5.877%
NB 0.05683 0%

NB+S 0.05718 0.612%
NB+S+T 0.07600 33.526%

NB+S+T+U 0.09229 62.015%

Table 3.8: Average MRR from applying SG-SHT models to test on SG-TWT. On
average, there are 31946.2 test cases and 10814.5 venues to rank per run.

Model MRR Improvement over NB
NB 0.04021 0%

NB+S 0.04028 0.1741%
NB+S+T 0.04993 24.173%

NB+S+T+U 0.05821 44.765%

which contain one or more words from the shout content vocabulary. We use the set

of shout venues for ranking. This makes it possible to compare with the results for

shouts.

Tables 3.8 and 3.9 depict the respective results for Singapore and Jakarta. The

trend is similar to training/testing with pure tweets or shouts. Spatial smoothing

contributes a small improvement while substantial improvements occur as we model

additional characteristics. Clearly, temporal venue popularity and location history

remain highly important.

For each city, we cross-compare the results for pure tweets and shouts, i.e. Ta-

Table 3.9: Average MRR from applying JKT-SHT models to test on JKT-TWT. On
average, there are 363.15 test cases and 2713.75 venues to rank per run.

Model MRR Improvement over NB
NB 0.10571 0%

NB+S 0.10596 0.237%
NB+S+T 0.14043 32.845%

NB+S+T+U 0.14241 34.718%
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bles 3.8 vs 3.5, and Tables 3.9 vs 3.6. Clearly, MRR is consistently lower for pure

tweets across all models. This affirms again that pure tweets are more challenging

to geolocate than shouts. This is so even though we are using pure tweets from users

who also posted shouts. This should limit the differences in topics and vocabulary.

3.6.6 Stratified Experiment

Finally, we compare geolocation for tweets with and without Location-Indicative

(LI) words. We also examine if we can obtain meaningful geolocation accuracy

for the latter. LI words suggest a venue or spatial region with high probability, e.g.

‘airport’. Typically ignoring tweets without LI words can improve performance

[7, 9] for the task of inferring a user’s home location. This is because users typically

post multiple tweets, some of which are more informative of their home location.

However we have a different task of geolocating individual tweets. Tweets without

LI words were considered not appropriate for fine-grained geolocation and excluded

in an earlier work [44]. Equivalently, they were regarded as noise. Depending on

the strictness of the criteria for detecting LI words, a substantial fraction of data

may be discarded. This is rather undesired in applications.

We adopt the approach in [44] to detect LI words. Basically LI words have

high occurrence probability in at least one venue and occur at relatively few venues.

Words are scored based on the TFIDF measure as follows:

LI(w) = max
v
{p(w|v) log(

V

df(w)
)} (3.19)

Equation (3.19) encapsulates some word popularity effects due to the term p(w|v).

Thus more popular words tend to have higher scores, although this is offset to some

extent by the lower inverse document frequency inherent in such words. Empiri-

cally, we observe a larger fraction of tweets indicated as containing LI words, com-

pared to other word scoring measures [7]. In [44], Lee et al. applied the NB model

after using Equation (3.19) to filter out tweets with no LI words. Here we conduct
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more extensive experiments by stratifying tweets based on the absence or presence

of LI words, followed by applying our proposed models on both types of tweets.

If tweets without LI words are not meaningful for geolocation, then when ge-

olocating such tweets, the expected ranking performance is equal to geolocating

random noise. This means that the ranking of candidate venues is random, with

uniform probabilities over all reciprocal rank outcomes. The expected Reciprocal

Rank (RR) from random ranking can then be computed as:

ERandom[RR] =
∑V

i=1
p(

1

i
)
1

i
=

1

V

∑V

i=1

1

i
(3.20)

where ‘Random’ is a model that does random ranking. The expected MRR then

follows by averaging over the number of geolocated tweets. Subsequently for tweets

without LI words, we shall compare each model’s MRR against the expected MRR

from random ranking.

Equation (3.19) results in location-indicative scores that are dataset dependent,

e.g. V varies across different datasets. Instead of specifying dataset dependent

thresholds, we designate the top 5% scoring words as LI words for each dataset.

Our experiment setup is similar as in Section 3.6.1, except that test tweets are now

stratified into tweets with LI words (denote as set L) and tweets without LI words

(¬L). We compute MRR for each set of test tweets, i.e. MRR(L) and MRR(¬L).

Table 3.10 displays the results of the stratified experiment for all datasets. Also

included in the table is the expected mean reciprocal rank for the model ‘Random’,

which randomly ranks candidate venues. This regards the tweets as noise, inde-

pendently of whether they contain LI words or not. Hence MRR values are equal

across both tweet sets L and ¬L. As shown in the table, it is easier to geolocate

tweets with LI words than tweets without. Consistently across all models for all

datasets, MRR(L) is substantially higher than MRR(¬L). For both MRR values,

there is also an improving trend as we incorporate more characteristics into the mod-

els. From the trend corresponding to MRR(L), it is clear that even if we adopt the

filtering process of [44] and focus only on geolocating tweets from L, our proposed
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Table 3.10: Results for stratified experiment. L and ¬L are respectively the set
of test tweets with and without LI words, with associated mean reciprocal rank of
MRR(L) and MRR(¬L). The model ‘Random’ denotes a random ranking model.
Statistics and results shown are averaged over 20 runs.

Dataset Statistics Models MRR(L) MRR(¬L)

SG-SHT

NB 0.11748 0.05441
|L|=1726.5 NB+S 0.11755 0.05529
|¬L|=899.7 NB+S+T 0.11841 0.06376
V =10814.5 NB+S+T+U 0.12184 0.06608

Random 9.123E-4

SG-TWT

NB 0.11270 0.03983
|L|=484.65 NB+S 0.11352 0.04007
|¬L|=1577.25 NB+S+T 0.12154 0.06204
V =2783.55 NB+S+T+U 0.13441 0.07939

Random 3.057E-3

JKT-SHT

NB 0.22806 0.05125
|L|=464.05 NB+S 0.22954 0.05195
|¬L|=511.85 NB+S+T 0.23153 0.06912
V =2713.75 NB+S+T+U 0.23279 0.07191

Random 3.126-3

JKT-TWT

NB 0.19240 0.05279
|L|=137.25 NB+S 0.19285 0.05288
|¬L|=225.9 NB+S+T 0.20687 0.09996
V =2713.75 NB+S+T+U 0.20609 0.10354

(Based on JKT-SHT venues) Random 3.126-3

approaches provide consistent improvements.

Importantly, Table 3.10 shows that MRR(¬L) for various models is orders of

magnitude higher than the random baseline (model Random). For example in SG-

SHT, the model NB+S+T+U gives MRR of 0.06608, which is 72.43 times that of

9.123E-4 from random ranking. This implies that we are achieving meaningful ge-

olocation accuracy even for tweets without LI words. Secondly for tweet set ¬L,

there is consistent improvement in geolocation accuracy attained from our models.

Hence, there are useful information that can be progressively incorporated to geolo-

cate such ‘noisy’ tweets. Thus, it may not be necessary to discard such tweets, as

advocated in [44].
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3.6.7 Performance Analysis

The goal of this analysis is to examine how the performance gains attained by

NB+S+T+U over NB+S+T vary with the amount of users’ location history. To this

end, we quantify location history with two criteria: the number of distinct venues

that a user had visited (i.e. posted tweets from) and the number of visits that he had

accumulated over all venues. For each dataset with multiple runs (SG-SHT, JKT-

SHT and SG-TWT), we accumulate test tweets over 10 runs and group them into

four bins of equal sizes based on their users’ location history, i.e. the first bin cor-

responds to users with the least history while the last bin corresponds to users with

the most history. Since we used four bins, the bins are also referred to as quartiles

and we use both terms interchangeably.

For each test tweet, we subtract the reciprocal rank attained by NB+S+T from

that obtained from NB+S+T+U. This difference is then averaged over all test tweets

within each quartile. Figure 3.3 plots the MRR differences for each dataset, based

on the two binning criteria of distinct venues and visit counts. In each sub-figure of

Figure 3.3, numbers below each bin indicate the range of location history covered.

Also, ties have to be distributed between bins such that the bins are equal-sized.

For example, the left most bin of Figure 3.3(a) covers test tweets whose users have

distinct venues ranging from 1 to 34 in their location history. Users of test tweets

in the second bin have distinct venues ranging from 34 to 74. Thus some users in

these two bins share the same distinct venue count of 34.

Across all quartiles for both binning criteria, NB+S+T+U provides gains in

MRR over NB+S+T. This is consistent across the three datasets. However the ex-

tent of improvement varies across different quartiles. A pattern emerges whereby

the largest MRR gains are usually attained over the second and/or third bin from

the left. Equivalently, improvement is largest for users with a moderate amount of

location history, compared to users with less or more location history. For example,

in sub-figure 3.3(f) which corresponds to SG-TWT, MRR gains are largest for the

middle two bins, i.e. tweets from users with visit counts ranging from 13 to 75.

58



CHAPTER 3. TWEET GEOLOCATION: LOCATION HISTORY, SPATIAL HOMOPHILY AND TEMPORAL

POPULARITY

(a) Venues (SG-SHT) (b) Visits (SG-SHT)

(c) Venues (JKT-SHT) (d) Visits (JKT-SHT)

(e) Venues (SG-TWT) (f) Visits (SG-TWT)

Figure 3.3: Average differences in MRR between models NB+S+T+U and
NB+S+T. Test tweets are divided into bins/quartiles based on the number of dis-
tinct venues (‘Venues’) and the number of visits (‘Visits’) in their users’ location
history. The number of binned tweets are 25,898 for SG-SHT, 9429 for JKT-SHT
and 19,978 for SG-TWT. For sub-figures (a), (c) and (e), labels on the X-axis rep-
resent the range of distinct venues covered by each bin. For sub-figures (b), (d) and
(f), X-axis labels are the range of visit counts covered by each bin.
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Tweets from users with less (≤ 13) or more (≥ 75) visits in their location history

experience less improvement.

Clearly, sparse location history limits the extent of improvement that NB+S+T+U

can make. However it can be unintuitive that gains are not monotonic with respect

to the amount of location history. One reason is that user behavior is confounded

with the amount of location history such that users with more location history are

also visiting more venues all over the city and exhibiting a long tailed effect. This

may cancel out some of the benefits derived from more location history. For ex-

ample, it is more difficult to geolocate tweets for a user who spreads his visits over

hundreds of venues, compare to another user who is mainly focused on a few dozen

venues. In separate studies, we have measured the entropy of the users’ distributions

over venues. This is found to be higher for users with higher number of visits in

their location history. Consistent with this, we also found the number of visits to be

highly correlated with the number of distinct venues, with the Pearson’s correlation

exceeding 0.85 across all three datasets. Thus, users with higher visit counts are

also spreading his visits more widely over different venues, possibly making their

tweets harder to geolocate.

3.6.8 Case Studies

In this section, we first illustrate examples where sample tweets are geolocated more

accurately from the inclusion of temporal venue popularity and user location history

for modeling. We then examine cases where the inclusion of location history does

not provide improvements. This motivates the case for future work.

3.6.8.1 Temporal Venue Popularity

In Table 3.11, we compare sample tweets geolocated using the models NB+S and

NB+S+T. Tweet S1’s posting venue is a popular shopping mall in Singapore, <Ion

Orchard>. Based on the venue probabilities from model NB+S, the posting venue

is placed at position 2 (i.e. rS1 = 2), behind two other venues, both of which
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Table 3.11: Sample test tweets from SG-SHT to illustrate improvement of NB+S+T
over NB+S. For each tweet, bolded words are words used for geolocation, i.e. after
filtering off stop-words and rare words. ∆RR is the difference in reciprocal rank of
the posting venue when one applies NB+S+T versus NB+S. The last two columns r
show the ranked position of posting venues obtained under each model (in brackets).
Note that the best possible ranked position is 0, corresponding to reciprocal rank of
1. See Equation (3.10).

ID Time of day <Posting venue>:Tweet content ∆RR
r r

(NB+S) (NB+S+T)

S1 16:10:53
<Ion Orchard>:

0.667 2 0‘Remind me to never step into
ion on a Sunday..’

S2 18:15:59
<Golden Village (Yishun)>:

0.4 9 1
‘White House Down!’

are Catholic churches. This can be explained by the fact that tweets posted from

churches often contain the term ‘Sunday’ due to Sunday services. However with the

posting time of 16:10:53, i.e. a Sunday afternoon, it is more probable for the tweet to

be posted from the mall rather than from churches. This is because malls tend to be

more popular than churches on Sunday afternoons. NB+S+T is able to exploit this

additional information and assigns higher probability to <Ion Orchard>, making

the posting venue the top ranked. The change in reciprocal rank is thus ∆RR =

1
(0+1)

− 1
(2+1)

= 0.667.

For S2, the tweet was posted from<Golden Village (Yishun)>, a movie theatre.

In this case, the tweet mentioned a movie title and is indicative of movie theatres.

Hence for both geolocation models, the top ranking candidate venues for the tweet

are all movie theatres. However even in this case, posting time information is still

useful since the movie theatres differ in popularities based on time of the day. This

may be due to differences in the screening schedule across different theatres. With

the exploitation of temporal venue popularity, NB+S+T ranks the actual posting

venue at position 1, an improvement of 8 places over that achieved by NB+S.

3.6.8.2 Location History

Table 3.12 lists three sample tweets that have been geolocated using the models

NB+S+T and NB+S+T+U. Recall that the latter model assumes that each user is
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more likely to post from candidate venues near his other visited venues. Thus for

each tweet, we also list the distance from the posting venue to the nearest venue

in the posting user’s training venues (second column of Table 3.12). Also recall in

our experiment setup that each user’s set of training venues specifically excludes

posting venues of his test tweets.

Tweet S3 is posted from a bus station <Woodlands Regional Bus Interchange>.

For S3’s user, his nearest venue in the training set is 42.2m away. This turns out to be

a subway station <Woodlands MRT Station>. While S3’s content is indicative of

a bus-related venue, there are many such venues (e.g., bus stops, bus interchanges,

etc.) in Singapore. With the tweet content and spatial smoothing, NB+S only man-

ages to rank the posting venue at position 8. By further exploiting a user’s location

history, NB+S+T+U geolocates S3 with higher accuracy, ranking the posting venue

at position 5. This example is intuitive as well for Singapore since many commuters

have to transfer between subways and buses when commuting. Thus both subway

and bus stations are frequently co-visited. S4 is posted from a Korean restaurant

<Manna Story>. The user’s nearest training venue is just 49.5m away, which we

observed to be a Starbucks cafe. Basically the user is conducting his activities such

as dining and drinking at venues around the same area. For S5, the user’s nearest

training venue is 956.8m away, which is a library venue. In this case, there is rank-

ing improvement even though the nearest venue is relatively far from the posting

venue, as compared to the previous two examples. Hence the spatial focus property

may still be applicable even if posting venues are sparsely distributed over space.

3.6.8.3 Negative Cases

To motivate further research, we examine negative cases where NB+S+T+U per-

forms worse than NB+S+T. Table 3.13 lists three such test tweets. Tweet S6 is

mainly written in Malay and posted from <Universal Studios Singapore>, a theme

park. The user is not spatially focused around S6’s posting venue, with the nearest

venue in his location history being the airport at around 21 km away. On investi-
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Table 3.12: Sample test tweets from SG-SHT to illustrate improvement of
NB+S+T+U over NB+S+T. Here, ∆RR is the difference in reciprocal rank of the
posting venue when one applies NB+S+T+U versus NB+S+T. The second column
shows the distance of the posting venue to the next nearest venue visited by the
same user. Other notations as in Table 3.11

ID
Dist. to nearest

<Posting venue>:Tweet content ∆RR
r r

user venue (m) (NB+S+T) (NB+S+T+U)

S3 42.2
<Woodlands Regional Bus Interchange>:

0.056 8 5‘Hahaha 168 bus ride with
mah homie - with Eezah’

S4 49.5
<Manna Story>:

0.3 4 1
‘Korean food @OldLadyFang’

S5 956.8
<Republic Polytechnic>:

0.076 14 6
‘8am class’

gation, we also found that the user has extremely sparse location history, with the

airport constituting the only training venue. This makes it difficult for NB+S+T+U

to exploit location history. Compared to the model NB+S+T, performance drops.

In particular, one candidate venue near the airport is scored higher than the posting

venue, pushing the latter down to ranked position 3. However performance drops

is limited since NB+S+T+U also exploits other information such as tweet content

and time. In particular, the words ‘transformer’ and ‘mummy’ refer to rides at

<Universal Studios Singapore> and are indicative of the theme park. Hence al-

though there are numerous other candidate venues nearer the airport, they are not

scored higher than the posting venue.

S7 is posted from a border crossing in the west of Singapore. The user is not

spatially focused around this venue with his nearest training venue at around 22 km

away. In contrast to S6’s user, S7’s user has substantial location history. However

most of his visits are focused on venues in the central and northern part of Singa-

pore, far from where S7 is posted. Thus the user deviates from his usual activity

area, which NB+S+T+U is not able to account for. The posting venue is ranked

lower at position 24, with some venues from central and north Singapore being

scored higher by NB+S+T+U.

Finally, S8 is posted from <Ikea> with the nearest user venue at about 2.7 km

away, which is a less drastic case than S6 and S7. This user has some number of
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Table 3.13: Sample test tweets where NB+S+T+U results in poorer performance
over NB+S+T. Notations as in Table 3.12

ID
Dist. to nearest

<Posting venue>:Tweet content ∆RR
r r

user venue (m) (NB+S+T) (NB+S+T+U)

S6 21,663.6
<Universal Studios Singapore>:

-0.083 2 3‘Transformer ama mummy nya
keren parah. Mau lagi.’

S7 21,875.0
<Tuas Checkpoint (Second Link)>:

-0.293 2 24
‘Off to jb yay’

S8 2727.7
<Ikea>:

-0.0571 4 6
‘Meatballs for tea’

visits in his location history, however he is more active in the central business and

shopping area of Singapore, rather than the suburb area where <Ikea> is located.

Hence there is insufficient spatial focus around <Ikea> for NB+S+T+U to better

geolocate S8.

In short, the cases discussed here highlight scenarios where NB+S+T+U may be

inadequate and are grounds for future work. S6 pertains to users with sparse location

history, which may be common for tourists or new users and is akin to the cold start

problem. A possible mitigation for this is to include geometric weights into the

NB+S+T+U model (Equation 3.8) such that the relative importance between tweet

content, posting time and location history can be tailored to each user. For new users

with little location history, the latter can be assigned smaller importance. S7 and S8

pertain to users who deviate significantly from their usual visitation behavior. This

can be due to users seeking novelty [90] and visiting new venues, or users changing

their visitation behavior over time. The latter can be for various reasons, e.g. change

of workplace, shifting of houses etc. For better geolocation, it will be interesting

in future work to incorporate the aspects of novelty seeking and behavior evolution

into our models.

3.7 Concluding Remarks

We show that many users have location history in the form of geocoded tweets and

that users are spatially focused, with a tendency to visit venues near each other. We
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also show the presence of spatial homophily at fine granularities such that venues

near each other are more similar in content. Following our empirical studies, we

proposed several models for fine-grained geolocation. We achieve large improve-

ments in ranking accuracy with the inclusion of contextual information such as post-

ing time and location history. In our next geolocation track, we shall explore the

geolocation of tweets from users without location history.
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Chapter 4

Tweet Geolocation: Location, User

and Peer Signals

4.1 Introduction

In this chapter [15], we focus on fine-grained geolocation of tweets from users who

do not share their location history. Without location history, we are motivated to

exploit content history for better geolocation. As per Chapter 3, we solve geoloca-

tion as a venue ranking problem. Given a non-geocoded tweet from a city, we rank

venues in the city such that highly ranked venues are more likely to be the posting

venue.

We propose a model that exploits location, user and peer signals for better ge-

olocation. We list each model aspect below, together with the intuitions (italicized):

• We use location-indicative weighting to assign more weights to location-

indicative words. Such words are more important for inferring venues than

other words.

• We expand test tweets via query expansion and geolocate the expanded

tweet. Users have habits or constraints, often making repeated visits to the

same or related venues.

• We propose collaborative filtering to propagate location information across
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users connected via content similarities. Users with more similar tweet con-

tent history may be more similar in their location history.

The intuitions will be elaborated along with each model aspect in Section 4.3. For

user and peer signals, we also justify the associated intuitions with empirical anal-

ysis in Sections 4.2.2 and 4.2.3. While each signal leads to some improvement in

geolocation, we achieve the best overall results fusing all three signals. We utilize

the same datasets discussed in Section 3.2.3 of Chapter 3. Depending on the dataset

and metric, we achieve 6% to 40% improvement over the baseline.

4.2 Empirical Analysis

4.2.1 Scenario Study

While not explicitly mentioned in the previous chapter, there is clearly a large pro-

portion of users with no location history but substantial content history. In this

section, we quantified this proportion. Such users motivate our research focus of

improving geolocation by exploiting a user’s content history.

We reuse our earlier empirical analysis results from Section 3.3.2 and present

statistics that are relevant to the current chapter. Recap that we have randomly

sampled 50,000 Twitter users from Singapore for 2014 and from Jakarta for June

to Dec 2016, with the condition that each user has posted at least one tweet during

the study period. Table 4.1 shows statistics with respect to users with only content

history. The count values are higher for Singapore due to the longer study period

considered, however the conclusion is the same for both cities.

Table 4.1 shows that there is a substantial proportion of users with no geocoded

tweets. For brevity of discussion, denote this set of users as Uc. Users in Uc have no

location history and only content history from their non-geocoded tweets. Uc con-

stitutes 69.66% of the sampled users for Singapore and 58.04% for Jakarta. These

users still generate substantial numbers of non-geocoded tweets, e.g. each user in

Uc have an average of 1820.02 tweets over a one year period for Singapore.
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Table 4.1: Statistics for 50,000 sampled users from Singapore (2014) and from
Jakarta (June to Dec, 2016).

Singapore Jakarta
Total Tweets 136,548,216 20,466,019

Geocoded Tweets
4,394,378 946,432
(3.22%) (4.62%)

Users with 34,831 29,018
only content history Uc (69.66%) 58.04%

Average tweets for users in Uc 1820.02 558.80

(a) Singapore (b) Jakarta

Figure 4.1: CCDF of average tweet count for Uc users.

The tweet distributions further illustrate that Uc users have rich content history.

Figure 4.1 plots the Complementary Cumulative Distribution Function (CCDF) of

average tweet count for Uc users. For Singapore, around 55% of users have more

than 100 tweets over a one year period, while for Jakarta, the proportion is around

45% over a half year period. Thus even though users in Uc have no location history,

there is substantial content history. How can one exploit this for better geolocation?

We also point out that some approaches are made more complicated by the lack

of location history. For example, collaborative filtering is more straightforward

given location history. In such cases, to geolocate a tweet from user u, one will

exploit other users similar to u in location history. However if u has no location

history at all, then visitation similarities can no longer be computed.

4.2.2 User Signals

To tap on user signals, we expand a test tweet with additional words from the same

user and then geolocate the expanded tweet. This assumes the user’s other tweets
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Table 4.2: Repeat Visit Analysis

Singapore Jakarta
No. of tuples 603,198 108,428

tuples with freq=1 465,256 (77.13%) 88,219 (81.36%)
tuples with freq>1 137,942 (22.87%) 20,209 (18.64%)

have words which are indicative of the test tweet’s venue, i.e. test venue. The

presence of such words can be explained by several user behaviour aspects:

• Repeat visits: The user may have tweeted from the test venue before and

used more informative words.

• Nearby visits: The same user tweeting from venues near each other may

mention local geographical features. For example, assume we are geolocat-

ing a user’s first tweet from a quayside restaurant. If he had previously visited

neighboring restaurants and mention about the quay, then this will be indica-

tive of the test venue to some extent.

• Functionally related visits: The test venue may belong to a functional group

of venues that the user frequently tweets from, e.g. nightclubs. Functionally

related words, e.g. ‘clubbing’ will indicate a clubbing test venue with some

probability even if the test venue is being visited for the first time.

We empirically study only the aspect of repeat visits in this section. This suffices

to motivate the use of user signals. We examine shouts and tabulate the frequencies

of repeated visits to venues, on a per user basis. Given user u and venue v, we

denote the user-venue tuple as (u, v). We iterate through all shouts and tabulate the

frequencies of each tuple. Repeat visits are then simply user-venue tuples that occur

more than once. We use the datasets SG-SHT and JKT-SHT for our analysis.

Table 4.2 shows that the proportion of repeat visits is substantial at 22.87% for

Singapore and 18.64% for Jakarta. Thus, repeat visits is an established user behav-

ior. This and the earlier discussed behavior aspects imply the possible presence of

more informative words beyond the test tweet and justify query expansion. For ex-

ample, consider a regular visitor to a restaurant. His different tweets from the same
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Table 4.3: Query Expansion example.

Query Tweet “2nd day of orientation”
Query words {day, orientation}
Sample tweets linked “Graduation day”
by common word ‘day’ “Last day of exam then holiday!!”

...

Query and Added
{ (day, 1.0), (orientation, 1.0),
(exam,0.113), (graduation, 0.063),

words with weights (school, 0.048), (holiday,0.045),...}

restaurant may share a common word of ‘dinner’. However other words may differ

especially if he orders and tweets about different dishes for each visit.

Table 4.3 illustrates an example. The first row displays the test/query tweet

which was sent from a school. The user had in fact tweeted from the same venue

multiple times. This is shown in the third row containing sample tweets linked by

the common word ‘day’. If informative words, e.g. ‘exam’ from these other tweets

are added to the test tweet, then one will be able to better geolocate the test tweet.

Thus treating each test tweet as a query, we consider query expansion techniques

based on word co-occurrence, to augment each test tweet with additional words. We

discuss further details and revisit Table 4.3 in Section 4.3.2.

4.2.3 Peer Signals

For each city, there is a smaller fraction of users not in the set Uc as shown in Table

4.1, e.g. 30.34% for Singapore. These users have both content history, based on

their tweet content and location history, based on their geocoded tweets. We also

observed that many of such users have geocoded tweets in the form of Foursquare

checkins/shouts, from which we are able to obtain their visitation probabilities over

venues. Hence such users provide linkages between content and visitation behavior,

which may be useful for geolocating the tweets of users from Uc. The following

question then arises: Are users that are more similar in content history also more

similar in their location history? If this is true, then one can devise collaborative

filtering models for geolocation, based on content similarities. This motivates our
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empirical analysis.

In the terminology of multi-view learning [81], users with both content and

location history have two views: a content view and a venue view. In our empirical

analysis, we compute a user representation in each view. First, we treat each user

u as a document and aggregate his tweet words in a content TFIDF vector tu. This

represents the user in the content view. Considering the venue view, we reckon that

users are more similar if they share common, less popular venues. Venues that are

highly popular are somewhat analogous to stop-words and should contribute less to

similarity. Clearly, this reasoning supports the TFIDF representation as well. Thus

we also compute a venue TFIDF vector lu to represent user u in the venue view.

For each user u, we then compute the following:

• In content view, find k nearest neighbors of u based on cosine similarity be-

tween tu and the vectors of other users. Denote as the set nb(u). Also sample

k dissimilar users (i.e. cosine similarity of 0) as non-nearest neighbors. De-

note as the set nnb(u).

• Switching to venue view, compute average cosine similarity between u and

his content view neighbors: pnb(u) = 1
|nb(u)|

∑
ui∈nb(u) sim(lu, lui). Repeat

a similar computation with sampled non-nearest neighbors nnb(u) to obtain

pnnb(u).

Over multiple users, we compute the mean venue view similarities for the nearest

neighbor and non-nearest neighbor sets: pnb and pnnb. We also count the fraction of

cases where pnb(u) > pnnb(u). For such cases, a user’s nearest neighbors are more

similar on average than non-nearest neighbors. Recap that neighbors are defined

based on content view and similarity comparisons are based on the venue view.

We studied 4271 users from Singapore (SG-SHT) and 911 users from Jakarta

(JKT-SHT), who have at least 20 shouts. We experiment with k = 10, 500, respec-

tively representing small and large nearest neighbor sets. Table 4.4 displays the

proportion and the mean similarities.
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Table 4.4: Profile analysis for Singapore and Jakarta users.

pnb pnnb pnb(u) > pnnb(u)
SG-SHT, k=10 1.67E-2 4.76E-3 63.52 %

SG-SHT, k=500 1.19E-2 4.77E-3 77.08%
JKT-SHT, k=10 1.60E-2 2.76E-2 71.79%

JKT-SHT, k=500 9.81E-3 3.06E-3 64.65%

Table 4.4 provides evidence that the content and venue views are correlated.

Compare the mean similarity values in the venue view, pnb and pnnb. Consistently,

across cities and different k values, content-based nearest neighbors give higher

mean similarities than non-nearest neighbors. At a micro-level, the last column

also indicates that most users see their content-based neighbors having more similar

location history than sampled non-neighbors.

The empirical results indicate that a collaborative filtering approach may be fea-

sible for our geolocation scenario. Basically to better geolocate the tweet of users

with only content history, we shall propagate information from users with both con-

tent and venue history.

4.3 Models

This section discusses three main model aspects: location-indicative weighting,

query expansion and collaborative filtering. Respectively, these aspects incorpo-

rate location, user and peer signals. We also describe the fusion framework. For

ease of reading, we define notations in an in-line manner.

Similar to our previous geolocation track (see Section 3.4.1), we start with the

naive Bayes model [44, 43] and subsequently build on it. For ease of reading, we

recap the model here. For notation simplicity, assume that every word in a test tweet

w is unique. We also follow [44, 43] and assume a constant venue probability p(v).

Given test tweet w, the probability of venue v is p(v|w) ∝
∏

w∈w p(w|v). Venues

are then ranked by p(v|w).

The naive Bayes model is extremely fast and had been shown to work well. It is
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also easily extended to capture our intuitions, as we will discuss next.

4.3.1 Location-Indicative Weighting

This aspect incorporates location signal with the intuition that Location-indicative

words are more important for inferring venues than other words. Such words indi-

cate one or more venues with high probabilities, i.e. high p(v|w). This concept dif-

fers from the venue probabilities over words p(w|v) which is prescribed by the naive

Bayes model. For example, a dining venue v may have high probability for the word

‘dinner’, i.e. high p(‘dinner’|v). However if there are many dining venues, ‘dinner’

may not necessarily indicate the venue with high probability i.e. low p(v|‘dinner’).

If a tweet mentions dinner and venue-specific dishes or characteristics, then the

latter words are more location-indicative and should be given more importance in

contributing to p(v|w).

To capture the discussed intuition, we propose a location-indicative weighting

scheme which assigns weights on a continuous scale. Thus there is no necessity

to threshold words as location-indicative or not, as some prior work [44] had done.

Our weighting scheme can be readily introduced into the naive Bayes model. In-

terestingly, combining naive Bayes with weighting schemes had been previously

explored [89, 28] for improving accuracy in classification tasks. Here we show that

for the very different problem of tweet geolocation, the framework is also applica-

ble provided that one uses appropriate weighting schemes. The framework results

in a weighted naive Bayes model as:

p(v|w) ∝
∏

w∈w
p(w|v)β(w) (4.1)

where β(w) is the weight for word w, and is to be determined. In practice, to avoid

underflow errors, we use the logarithmic form:

ln p(v|w) ∝
∑

w∈w
β(w) ln p(w|v) (4.2)
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Equation (4.2) also shows that the ‘β’s are equivalent to weights in a linear mix-

ture of log probabilities. Ranking with both equations (4.2) and (4.1) are equivalent.

Weights. In our context, locations are discrete venues and akin to documents.

Hence we can quantify the location-indicative characteristic of words by applying

the vector space model. Words that are location-indicative will have large inverse-

document frequencies, i.e. they occur in fewer venues. Formally given word w, we

set its weight as:

β(w) = log(1 + V/df(w)) (4.3)

where V is the number of distinct venues and df(w) is the number of venues where

w occurs at least once. β(w) is computed for all words that meet a minimum support

frequency. Rare noisy words are excluded.

We next describe the query expansion portion of the model before covering how

location-indicative weighting and query expansion can be combined.

4.3.2 Query Expansion of Test Tweets

This aspect incorporates user signal with the intuition that users have habits or

constraints, often making repeated visits to the same or related venues. This is

intuitive e.g. work or school are usually carried out repeatedly at the same venue, or

a user may have favourite hangouts. In Section 4.2.2, we have shown repeated visits

to be an established user behavior. We also discussed that users visiting venues that

are near or similar in function to the test tweet’s venue justifies query expansion as

well.

To the best of our knowledge, query expansion has been largely used for doc-

ument retrieval [71, 21, 85]. Adapting it for the purpose of tweet geolocation is a

novel idea. In our context, the query refers to the test tweet. Geolocating a test

tweet on its own is difficult due to its short length and missing contextual informa-

tion. With query expansion, we seek to retrieve words from related tweets to fill in

the missing information. Given a test tweet, we iterate through its words and add
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co-occurring words from the user’s other tweets. The added words are also scored

appropriately.

Given query/test tweet w from user u, we score candidate words w′ which ap-

pears in u’s other tweets and where w′ 6∈ w. The scoring aims to assess w′’s suit-

ability for adding to the query and are designed to reflect the relationship strength

to the original query words w ∈ w. Many scoring schemes exist and we adopt a

cosine similarity scheme [21]. For a candidate word w′, we compute its average

relatedness Ω(w′,w;u) to the original query words:

Ω(w′,w;u) =
1

|w|
∑

w∈w

du(w
′, w)√

du(w)du(w′)
(4.4)

where du(w′, w) is the count of u’s tweets containing both w′ and w; and du(w) is

the count of u’s tweets containing w. Equivalently, each summand in Equation (4.4)

is the cosine similarity between boolean indicator vectors of w′ and w where vector

dimensions correspond to u’s tweets and vector values indicates presence/absence

of words. Intuitively, words that co-occur more are more related. However related-

ness is dampened if one or both words are overly common.

We add all words w′ with Ω(w′,w;u) > 0 to the query. By definition, the

relatedness scores are bounded between 0 and 1. Thus original query words have

an implicit weight of 1 while added words are weighted less or at most equal. After

expanding the query, we use the relatedness scores as weights in the naive Bayes

model. Let w’ comprise the set of added words for the tweet w from user u. We

again derive a weighted naive Bayes model:

ln p(v|{w,w’}, u) ∝
∑
w∈w

ln p(w|v) +
∑
w′∈w’

Ω(w′,w;u) ln p(w′|v) (4.5)

Given that 0 ≤ Ω(w′,w;u) ≤ 1, Equation (4.5) illustrates that the original query

words w ∈ w have greatest importance in the naive Bayes model while newly added

words w′ ∈ w’ have varying degrees of importance based on how related they are

to the query. Table 4.3 illustrates query expansion for a sample tweet. The original
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query words are ‘day’ and ‘orientation’ (after stop word and rare word exclusion).

The last row of the table shows the query words and added words along with their

weights after query expansion.

Lastly, we note that since the added words w’ are from the user’s other tweets,

we have in fact introduced some user personalization in the model.

4.3.3 Concept Fusion

We envisage both location-indicative weighting and query expansion to be useful

for geolocation. This suggests a weighted naive Bayes model that combines both

concepts. Intuitively, a word is important only when it is both location-indicative

and highly related to the test tweet. Consider the cases where either requirement is

not satisfied. If a word is not location-indicative, then it is less useful for geolocation

even if it is in the original query or is a highly related word. Conversely, a location-

indicative, but unrelated word to the query will introduce noise and hurt geolocation

accuracy.

We capture our discussed intuitions by multiplying weights from location-indicative

weighting and query expansion. We formulate the weighted naive Bayes model as

follows:

ln p(v|{w,w’}, u) ∝
∑
w∈w

β(w) ln p(w|v) +
∑
w′∈w’

β(w′)Ω(w′,w;u) ln p(w′|v)

(4.6)

4.3.4 Collaborative Filtering

Lastly we incorporate peer signals with collaborative filtering, based on the intu-

ition:Users with more similar tweet content history may be more similar in their

location history. This is also supported by our empirical analysis in Section 4.2.3.

While collaborative filtering has been much used for venue recommendation

[8, 48, 45], we adapt it for the different problem of tweet geolocation. We also

focus on users with no location history. Hence our work is very much different.
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We use collaborative filtering to estimate the user visitation distribution to venue

p(v|u). This distribution is then used to personalize the naive Bayes model or

the weighted variants. For example, the naive Bayes model can be extended as

p(v|w, u) ∝ p(v|u)
∏

w∈w p(w|v). However p(v|u) is not directly computable for

users without location history, i.e. set Uc (See Table 4.1). To overcome this, we

use collaborative filtering to propagate visitation information from users not in Uc

to those within. Propagation is via content similarities since content history exist

for all users.

Let tu be the representation of u in the content view. Many forms of represen-

tations are possible. For simplicity, we use the vector space model with users as

documents. We represent each user as a TFIDF vector where vector dimensions

correspond to words. To compute p(v|u) for user u ∈ Uc, we first estimate u’s visit

frequencies to venues from similar users in the content view. Let nb(u) contain k

users with location history and who are most similar to u in terms of content cosine

similarity. Also denote ĉ(u, v) as the estimated frequency from user u to venue v.

We compute:

ĉ(u, v) =
1

S

∑
u′∈nb(u)

sim(tu, tu′).c(u′, v) (4.7)

where c(u′, v) is the observed frequency from user u′ to venue v, sim(, ) is cosine

similarity and S sums the similarities for normalization. We then use ĉ(u, v) to

compute:

p(v|u) =
ĉ(u, v) + 1∑
v′ ĉ(u, v

′) + V
(4.8)

Lastly, we extend Equation (4.6) with the probability p(v|u):

ln p(v|{w,w’}, u) ∝ ln p(v|u) +
∑
w∈w

β(w) ln p(w|v)

+
∑
w′∈w’

β(w′)Ω(w′,w;u) ln p(w′|v) (4.9)

It can be seen that Equation (4.9) encapsulates all our main model aspects: location-

indicative weighting, query expansion and collaborative filtering.
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4.3.4.1 Weighted Similarities

In our collaborative filtering approach, we are propagating visitation information

over content similarities. We can again apply location-indicative weighting when

computing content similarities between users. It is possible to modify the content

similarity measure such that visitation and content similarities are more correlated.

The intuition is that users are more similar in their location history if they are

more similar in their usage of location-indicative words. For example, two users

who share common mentions of a restaurant-specific dish will be more likely to

have visited the same restaurant, compared to users who only share mentions of

‘dinner’. This implies that location-indicative words should be given greater im-

portance in the similarity function between content history. This is easily done by

incorporating weights in the cosine similarity between users. Given two users u and

u′, we compute the weighted cosine similarity as:

wsim(tu, tu′) =

∑
w β(w)2tu(w).tu′(w)

‖ tu ‖2‖ tu′ ‖2

(4.10)

where β(w) was discussed in Equation (7.3) and tu(w) is the w-th dimension of

vector tu. In one variant of collaborative filtering, we replace sim(, ) with wsim(, )

in Equation (4.7).

4.4 Experiments

We apply the models to a series of fine-grained geolocation experiments. For each

dataset (see Section 3.2 of Chapter 3), we conduct 10 runs where each run differs

from the others by test and training set partitioning. For SG-SHT, we sample 5000

tweets for testing. For the smaller datasets, SG-TWT and JKT-SHT, we sample

2000 tweets for testing. Tweets not sampled for testing are used for model training.

The JKT-TWT dataset (1335 tweets) is too small for training. It is used only in a

single run as a test set for the model trained on JKT-SHT.

Recap that we are focusing on the scenario where users of test tweets have no lo-
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cation history. To represent this scenario, we process the training tweets as follows:

If a user has one or more tweets sampled for testing, we iterate through his training

tweets and hide their venues (if any). This is repeated for all users of test tweets.

Thus, the training set consists of a mixture of tweets with hidden venue associations

due to the owners having some tweets selected for testing, and other tweets whose

venue associations are retained. We consider a venue as candidate for ranking only

if it is associated with at least 3 training tweets. We also exclude stop words and

rare words with frequency < 3. Due to such filtering, the number of test cases per

run is less than the number of sampled test tweets. The average number of test cases

and venues to rank are reported in Section 4.4.3 which discusses the results of each

dataset.

We compare the unweighted naive Bayes model (NB) [44, 43] with variants

incorporating different signal combinations (in brackets):

• LW (Location): Location-indicative weighting as indicated in Equation (4.2)

• QE (User): Query expansion as indicated in Equation (4.5)

• LWQE (Location+User): Fusion of query expansion and location-indicative

weighting. Refer Equation (4.6).

• LWQE-P (Location+User): LWQE with a Laplace-smoothed global venue

popularity model. This is Equation (4.9) with p(v|u) replaced by p(v).

• LWQE-CF (Location+User+Peer): LWQE with a personalized venue distri-

bution p(v|u) from collaborative filtering. Refer Equation (4.9).

• LWQE-LW-CF (Location+User+Peer): Collaborative filtering utilizes location-

indicative weighting when computing cosine similarities between users. All

other aspects are similar to LWQE-CF.

We also compare with the following baseline models:

• KL: This model [47] assigns scores to venues based on time information and

the Kullback-Leibler divergences between the language models of tweets and

venues. The scores are then used to rank venues.
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• GMM: This model [7] represents each word as a Gaussian mixture over 2-

d space, and a test tweet as the product of Gaussian mixtures. Venues are

ranked by the probability of the product of Gaussian mixtures generating their

coordinates. As in [7], we set the number of clusters to 3.

• TM: [12] proposes topic models to generate Foursquare check-ins and tips.

Among them, we use the Udoc model to learn topics for both training tweets

associated with and not associated with venues.1 For each tweet, Udoc gen-

erates a user-dependent topic which generates the tweet words. If the tweet

is associated with a venue, the venue is generated conditional on the topic. In

our experiments, we used 40 topics, which exhibits optimal ranking perfor-

mance.

4.4.1 Metrics

We again use Mean Reciprocal Rank (MRR) as the primary evaluation metric. This

has been defined earlier in Equation (3.10) of Chapter 3.

MRR considers micro-averages. For randomly sampled test cases, popular venues

will contribute a larger proportion of tweets, and be more important in determining

MRR. In practical applications e.g. geolocating a stream of tweets, this is realistic

and there is no reason to avoid this. However for further analysis, we consider the

case where all venues are treated as equally important, regardless of their populari-

ties. Thus we introduce a second evaluation metric, denote as Macro-MRR. This is

simply the macro-averaged version of MRR. For all test cases from the same posting

venue, we average their MRR such that each test venue contributes only one value.

We then do a second averaging over distinct test venues. Formally, let T =
⋃V
v=1 Tv

where Tv is the set of test cases from venue v. We compute:

Macro-MRR(T) =
1

V

∑V

v=1
MRR(Tv) (4.11)

1We found the Vdoc model to perform worst as it can only model tweets associated with venues.
Results omitted.
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where MRR(Tv) is MRR computed over the set of test cases Tv and V is the number

of distinct test venues.

4.4.2 Result Summary

We summarize the MRR and Macro-MRR results for every dataset in Tables 4.5 and

4.6. We conduct significance testing except for JKT-TWT which has just a single

run. For other datasets, the “model 1<model 2” notation means that model 2 signif-

icantly outperforms model 1 by the Wilcoxon signed rank test. In each row, models

are arranged from left to right in ascending order of performance. Models that are

not significantly different at p-value of 0.05 are grouped in brackets. For example,

Table 4.5 shows that for SG-SHT, QE performs better than NB for MRR and the

results are statistically significant. For the same metric and data set, LWQE-CF and

LWQE-LW-CF perform the best, but they are not statistically different from each

other. In rare cases, we list a model twice if it is statistically insignificant against

two closest models (in terms of performance), but the two models are significant

against each other.

While there are permutations in model ordering, some general trend holds.

Comparing against NB, GMM and KL performs poorer while QE and LW performs

better. TM’s performance is mixed and tends to be poorer for Macro-MRR. For the

MRR metric in Table 4.5, QE is better than NB in all datasets while LW outperforms

NB in SG-SHT, JKT-SHT and is on-par in SG-TWT. For the Macro-MRR metric in

Table 4.6, QE performs better than NB, except for SG-SHT. In the same table, LW

outperforms NB in all datasets.

While QE and LW perform relatively well against NB, we achieve more con-

sistent improvement by fusing both approaches. This is illustrated by the model

LWQE. In both Tables 4.5 and 4.6, LWQE always outperform NB. It is also typi-

cally better than QE or LW alone, lying to the right of both models for most cases.

Finally, we achieve the best results with LWQE-CF and LWQE-CF-LW-CF, which

combines location-indicative weighting, query expansion and collaborative filter-
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Table 4.5: Result Summary for MRR

SG-SHT: {GMM} < {KL} < {TM} < {NB} < {QE} < {LW}
< {LWQE} < {LWQE-P} < {LWQE-CF, LWQE-LW-CF}
SG-TWT: {GMM} < {KL} < {NB, LW} < {QE, LWQE}
< {LWQE-P,TM} < {TM, LWQE-CF, LWQE-LW-CF}
JKT-SHT: {KL} < {GMM} < {TM, NB} < {LW} < {QE}
< {LWQE} < {LWQE-P} < {LWQE-LW-CF, LWQE-CF}
JKT-TWT: KL < GMM < LW < NB < LWQE < LWQE-P
< QE < LWQE-CF < LWQE-LW-CF < TM

Table 4.6: Result Summary for Macro-MRR

SG-SHT: {GMM, TM} < {KL} < {QE} < {NB} < {LWQE-P}
< {LWQE < LWQE-CF} < {LWQE-LW-CF, LW}
SG-TWT: {GMM} < {KL} < {TM} < {NB} < {QE} < {LW}
< {LWQE-P, LWQE} < {LWQE-CF} < {LWQE-LW-CF}
JKT-SHT: {GMM, TM, KL} < {NB} < {QE} < {LW}
< {LWQE, LWQE-P}< {LWQE-CF, LWQE-LW-CF}
JKT-TWT: GMM < TM < KL < NB < QE < LW < LWQE-P
< LWQE < LWQE-CF < LWQE-LW-CF

ing. Except for one case (Macro-MRR on SG-SHT), these two models are consis-

tently the best performers.

4.4.3 Detailed Results

Tables 4.7, 4.8 and 4.9 display the average MRR and Macro-MRR values over 10

runs for SG-SHT, SG-TWT and JKT-SHT respectively. Table 4.10 displays the

results where models are trained on JKT-SHT and tested on JKT-TWT in a single

run.

As shown in Tables 4.7 to 4.10, both KL and GMM perform poorly, under-

performing even the NB model. As tweets are very short, modeling each with a

smoothed language model, as done by KL is inadequate. This in turn affects the

computing of KL divergences between the word distributions of tweets and venues.

Even with the inclusion of time information, performance is not promising. For

GMM, performance is poor as we have to geolocate even tweets where words do not

have peaky Gaussian distributions. The topic model TM has mixed performance. It

achieves good MRR values for SG-TWT in Table 4.8 and JKT-TWT in Table 4.10,
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Table 4.7: SG-SHT results. Bracketed numbers are percentage improvement over
NB. Best results are bolded. On average, there are 3248.5 test cases and 9209.1
venues to rank per run.

Models MRR Macro-MRR
KL 0.0447 (-54.98%) 0.0254 (-27.22%)

GMM 0.0317 (-68.08%) 0.0119 (-65.90%)
TM 0.0665 (-33.03%) 0.0125 (-64.18%)
NB 0.0993 0.0349
LW 0.1049 (5.69%) 0.0406 (16.55%)
QE 0.1008 (1.53%) 0.0339 (-2.72%)

LWQE 0.1066 (7.38%) 0.0402 (15.29%)
LWQE-P 0.1074 (8.20%) 0.0399 (14.46%)

LWQE-CF 0.1088 (9.61%) 0.0402 (15.46%)
LWQE-LW-CF 0.1090 (9.84%) 0.0405 (16.12%)

Table 4.8: SG-TWT results. On average, there are 1049.9 test cases and 2672.5
venues to rank per run.

Models MRR Macro-MRR
KL 0.0275 (-53.15%) 0.0136 (-28.42%)

GMM 0.0170 (-71.04%) 0.0119 (-37.37%)
TM 0.0666 (13.46%) 0.0151 (-20.53%)
NB 0.0587 0.0190
LW 0.0596 (1.5%) 0.0221 (16.09%)
QE 0.0638 (8.57%) 0.0196 (2.91%)

LWQE 0.0646 (9.96%) 0.0230 (20.71%)
LWQE-P 0.0650 (10.70) 0.0230 (20.60%)

LWQE-CF 0.0674 (14.79%) 0.0236 (23.81%)
LWQE-LW-CF 0.0675 (14.89%) 0.0238 (25.06%)

but performs poorly for MRR for other datasets, as well as for the Macro-MRR

metric. The poor Macro-MRR performance implies that TM is biased to a larger

extent towards more popular venues and works poorly when all venues are treated

as equally important.

For shouts and pure tweets of both Singapore and Jakarta, LW improves over

NB much more substantially for Macro-MRR than MRR. This can be seen by com-

paring the rows ‘LW’ and ‘NB’ in Tables 4.7 to 4.10. For example in Table 4.7,

LW improves over NB by 5.69% for MRR. For Macro-MRR, the corresponding

improvement is much larger at 16.55%. This trend means that test tweets posted

from less popular venues experience relatively larger improvement from location-
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Table 4.9: JKT-SHT results. On average, there are 626 test cases and 2492.8 venues
to rank per run.

Models MRR Macro-MRR
KL 0.0759 (-54.52%) 0.0259 (-27.04%)

GMM 0.1296 (-22.35%) 0.0232 (-34.65%)
TM 0.1657 (-0.72%) 0.0250 (-29.58%)
NB 0.1669 0.0355
LW 0.1691 (1.32%) 0.0403 (13.69%)
QE 0.1716 (2.82%) 0.0372 (4.82%)

LWQE 0.1737 (4.08%) 0.0424 (19.42%)
LWQE-P 0.1760 (5.42%) 0.0425 (19.77%)

LWQE-CF 0.1778 (6.51%) 0.0435 (22.58%)
LWQE-LW-CF 0.1777 (6.48%) 0.0437 (23.06%)

Table 4.10: JKT-TWT results. There is 1 run with 475 test cases and 4299 venues
to rank.

Models MRR Macro-MRR
KL 0.0521 (-43.68%) 0.0205 (-8.89%)

GMM 0.0678 (-26.70%) 0.0148 (-34.22%)
TM 0.1130 (22.16%) 0.0157 (-30.22%)
NB 0.0925 0.0225
LW 0.0924 (-0.11%) 0.0284 (26.07%)
QE 0.0959 (3.66%) 0.0266 (17.84%)

LWQE 0.0933 (0.90%) 0.0305 (35.11%)
LWQE-P 0.0956 (3.43%) 0.0301 (33.58%)

LWQE-CF 0.0975 (5.46%) 0.0313 (38.73%)
LWQE-LW-CF 0.0982 (6.19%) 0.0322 (42.86%)

indicative weighting. As less popular venues are associated with fewer tweets, in-

formation is sparse for modeling and it is harder to geolocate their tweets. For such

venues, location-indicative words becomes relatively more important for a geoloca-

tion model.

We now compare QE to NB. The result for QE is mixed for SG-SHT (Table

4.7). it achieves a small improvement of 1.53% in MRR, but results in a slight dip

of 2.72% for Macro-MRR. For SG-TWT (Table 4.8), JKT-SHT (Table 4.9) and JKT-

TWT (Table 4.10), QE is more consistent in improving over NB for both metrics.

Generally the results indicate room for improvement. We note that query expansion

may be noisy and expand a test tweet with words that are less relevant to the test

venue. This also depends on the word relatedness function. We have currently
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used a relatively simple cosine similarity based function. While more complicated

selection mechanisms [29] can be explored, the current query expansion technique

is already shown to be useful over the combination of datasets and metrics.

LWQE combines the intuitions of LW and QE, i.e. words are more impor-

tant if they are both location-indicative and highly related to the query. As can be

seen, LWQE mostly outperforms LW or QE. In 6 out of 8 dataset-metric combina-

tions, LWQE outperforms both LW and QE. For example in Table 4.8 for SG-TWT,

LWQE’s Macro-MRR is 0.023, better than QE (0.0196) or LW (0.0221) alone.

For non-collaborative filtering models, LWQE and LWQE-P are best perform-

ers. Comparing both models in Tables 4.7 to 4.10, LWQE-P is always better than

LWQE for the MRR metric, but not for Macro-MRR. This is expected since LWQE-

P utilizes a globally estimated venue distribution p(v) which is related to venue

popularity. Venue popularity is however controlled for in Macro-MRR.

We now compare the collaborative filtering model LWQE-CF, against LWQE

and LWQE-P, which are best performing models without collaborative filtering.

Across Tables 4.7 to 4.10, LWQE-CF always improve on MRR and Macro-MRR

against both LWQE and LWQE-P. Hence information propagated from users with

visitation history is useful for geolocating the tweets of users with only content

history. Since propagation is across content similarities, it also affirms our stated

intuition that users that are more similar in content history are more similar in their

visitation behavior.

Lastly we note that LWQE-LW-CF is either comparable (Table 4.9) or provides

very small improvement (Tables 4.7, 4.8 and 4.10) over LWQE. This is probably

due to the fact that other aspects of the model, e.g. collaborative filtering, location-

indicative weighting already captures much existing information that are useful for

geolocation.
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Table 4.11: Sample test tweets from SG-SHT to illustrate location-indicative
weighting. Modeled words are italicized and sized proportionately to their as-
signed weights. rX denotes the ranked position of posting venue under the model
X . ∆RRX=change in reciprocal rank incurred by model X over the Nb model.

∆RRLW rNb rLW
S1 “Singapore’s Tallest Balloon Sculpture.” 0.163 26 4
S2 “Chingay work last day” 0.321 83 2
S3 “Morning Karaoke?” 0.389 8 1

4.4.4 Case Studies

We now present some example cases to show the effects of using LW and QE. Table

4.11 displays sample test tweets from SG-SHT, where geolocation is improved by

location-indicative weighting, i.e. the model LW. Also displayed is the change in

reciprocal rank ∆RRLW , which is computed as ∆RRLW = 1
(rLW +1)

− 1
(rNb+1)

,

where rX denotes the ranked position of posting venue under the model X . Note

that the best possible ranked position is 0.

Within each test tweet, modeled words are italicized and sized proportionately

to their assigned location-indicative weights. For example in tweet S1, LW assigns

largest weights to the words ‘Tallest’ and ‘Balloon’. These are words that appear in

relatively fewer venues and are more location-indicative. Compared to not weight-

ing the words, reciprocal rank improves by 0.163, due to the ranked position of the

posting venue being elevated from 26 to 4.

Similarly, tweet S2 is better geolocated due to the emphasis on location-indicative

words. S2 is posted from a parade preparation venue. ‘Chingay’ refers to an annual

parade event held in the city area of Singapore, thus the word is highly indica-

tive of venues associated with the parade. In S3, emphasizing ‘Karaoke’ increases

the probabilities for venues providing such entertainment activity. Since karaoke

venues are relatively few in number, the actual karaoke venue of the test tweet is

elevated in rank.

Table 4.12 displays sample test tweets from SG-SHT, where geolocation is im-

proved by query expansion, i.e. the model QE. The user posting tweet S4 had also

visited the posting venue multiple times. On its own, S4 is not informative since
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Table 4.12: Sample test tweets from SG-SHT. Below each tweet, we list up to 5
added words that are most related to the query, along with their relatedness score.
Notations as in Table 4.11.

∆RRQE rNb rQE

S4
“Breakfast!”
(teddy,0.120), (buying,0.104), (lemak,0.085) 0.046 75 16
(nasi,0.085), (prata,0.070), ...

S5
“2nd time spiderman2”

0.008 24 20
(captain,0.25),(america,0.25)

there are many dining venues where one can have breakfast. However on another

visit to the same venue, the user mentioned having “Nasi Lemak” 2 for breakfast.

This is a dish which the test venue is popular for, resulting in the ranking improve-

ment. The last tweet S5 is associated with functionally related visits (Section 4.2.2),

instead of repeated visits. The user visited the posting venue (a movie theatre) once

to catch the movie “Spiderman”, and another theatre to catch “Captain America”.

Due to query expansion, the latter’s title words are added to S5. In this case, the

test venue screens “Captain America” as well. Thus the added words are relevant

although they arise from a different venue. This improves geolocation since the

expanded tweet now describes venue characteristics more effectively.

4.4.5 Parameter Sensitivity Studies

In the collaborative filtering portion, we propagate visitation information from the

test user’s k nearest neighbors, where similarity is based on content history. In our

experiments, we have omitted tuning for k and simply use k = 500. In this section,

we show that ranking accuracy is not particularly sensitive to the value of k.

Figures 4.2 and 4.3 display the MRR results for Singapore and Jakarta respec-

tively. As Macro-MRR exhibits similar robustness to MRR, we have plotted only

the results for the latter. For each figure, the vertical bars are MRR values for the

model LWQE-LW-CF with different k values. For comparison, we also plot the

MRR value of LWQE as a horizontal line. Recall that LWQE is a model that per-

2Malay name for a rice dish cooked with coconut milk
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forms well, but does not include any collaborative filtering. Both figures show that

MRR is not sensitive to the value of k, remaining in a narrow band as we vary k

from 10 to 500. For all k values, LWQE-LW-CF also consistently gives higher MRR

than LWQE which is reassuring.

This study shows that collaborative filtering easily improves ranking accuracies,

even when one omits the potentially expensive tuning or learning process.
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0.106

(a) SG-SHT
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Figure 4.2: MRR variation with different k values for LWQE-LW-CF. On Singapore
datasets.
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(b) JKT-TWT

Figure 4.3: MRR variation with different k values for LWQE-LW-CF. On Jakarta
datasets.

4.5 Concluding Remarks

In this chapter, we have focused on fine-grained geolocation for users without loca-

tion history. We achieve better geolocation of each user’s tweets by exploiting three
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types of signals from locations, users and peers. Our model is widely applicable in

Twitter where many users post frequently but neglect to geocode any of their tweets.

Such users have rich content history, but no location history.

Our model aspects capture the signals based on intuitive ideas. Firstly through

location-indicative weighting, we place more importance on words that are indica-

tive of venues. Secondly through query expansion, we add potentially informative

words to test tweets before geolocation. Lastly, we use collaborative filtering to

propagate visitation information from users with location history to those without.

Our best model incorporates all three aspects.
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Chapter 5

Tweet Geolocation: Same-User

Tweets in Temporal Proximity

5.1 Introduction

In this last geolocation track, we geolocate tweets contained in parent tweet se-

quences1, whereby tweets in the same sequence are posted close in time by the

same user. Sequences can be of any length larger than one. This scenario is moti-

vated by our observation that it is common for users to post multiple tweets within

a short time interval. For example, out of 1000 randomly sampled tweets from Sin-

gapore, 58.1% of them involves the user posting another tweet within 30 minutes

of the first tweet. Repeating the analysis for Jakarta, such cases constitute 48.9%.

Such user behavior can be due to various reasons such as to push out more content

or to overcome the short message length constraint of individual tweets. In any case,

tweet sequences are fairly common. Given a tweet targeted for geolocation, we can

potentially improve geolocation accuracy by exploiting its parent tweet sequence.

To our knowledge, such a scenario has not been previously studied for fine-grained

geolocation.

In our geolocation scenario, we assume that no tweets in the parent sequence are

1We use the terms parent sequence, parent tweet sequence and tweet sequence interchangeably.
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associated with any location coordinates or posting venues. This is a prevalent and

realistic scenario due to the scarcity of geocoded tweets. Similar to our previous

track in Chapter 4, we assume that the target tweet’s user has no observed location

history, i.e. has not posted any geocoded tweets. This allows our geolocation meth-

ods to be applicable to tweets from almost any users. Clearly, the geolocation task

also becomes more challenging, since one is not able to exploit the home or activity

regions [14] of the users to refine candidate posting venues.

Table 5.1: Sample pairs of tweets. Posting venue and time are in brackets. Tweets
a1 and a2 are from one user while b1 and b2 are from another user.

a1
(Nanyang Polytechnic, 08:36:20)
“Morning rush to the airport and now I’m in school!”

a2
(Nanyang Polytechnic, 08:37:37)
“Eyebag zzzzz”

b1
(Tampines MRT Station, 09:44:22)
“Keep tripping.”

b2
(Tampines Bus Interchange, 09:48:17)
“Topped up my Ez-link”

Examples. To illustrate the usefulness of parent tweet sequences, Table 5.1 dis-

plays tweet pairs, each spanning a short time interval. These tweets are Foursquare

shouts pushed to Twitter (See Section 3.2). Tweets a1 and a2 are posted by one

user while b1 and b2 are by another user. Consider a1 and a2 which are posted

from Nanyang Polytechnic, a college venue. The user provides more information

in a1, suggesting that he is in school. Since a1 precedes a2 by only one minute, we

can use a1’s content to augment a2 to better geolocate the latter. This helps when

a tweet targeted for geolocation has little content or content unrelated to the post-

ing venue. A similar argument applies for b1 and b2. b2 mentioned topping up of

Ez-link, the farecard used in Singapore’s subway system (MRT2). This allows us

to geolocate b1 to some subway station, thus improving geolocation accuracy. In

the discussed examples, a1 and b2 are the more informative tweets which help to

improve geolocation for their neighboring tweets. Certainly it is also possible for

non-informative tweets to negatively affect geolocation accuracy for other tweets.
2Mass Rapid Transit
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The research question is then to design robust approaches such that on an overall

basis, geolocation accuracy is improved.

5.1.1 Approach.

Given that fine-grained tweet geolocation is akin to document retrieval, certain tech-

niques such as query expansions [85, 5, 71] can be adapted from the retrieval do-

main. We leverage on this to propose a probabilistic model that geolocates tweets

contained in sequences. Our model does not rely on the need to explicitly identify

informative and uninformative tweets in sequences. Instead, we treat each target

tweet as a query and design query expansion approaches to augment it with ad-

ditional words for better geolocation. The additional words are added both from

tweets in the parent sequence, termed as temporal query expansion and from other

tweets from the same user, termed as visitation query expansion. We also relate

these query expansion approaches to intuitive user behavior. Basically temporal

query expansion approach accounts for the user tendency to stay at the same or

nearby venues given a short time period, i.e. staying behavior, while visitation

query expansion accounts for revisits to the same or similar venues (even without

explicitly observing the revisits). We combine both query expansion approaches in

a novel fusion framework and overlay them on a Hidden Markov Model.

5.1.2 Challenges.

We have discussed the challenges of fine-grained tweet geolocation earlier in Sec-

tion 3.1. Although in the current track, we are geolocating tweets contained in

sequences, the geolocation scenario remains challenging. This is because we as-

sume there are no observed posting venues in the parent sequence. To understand

this, consider the alternative scenario with observed venues. Then for a targeted

tweet, the observed venues of adjacent tweets can be exploited for reducing the set

of candidate venues. This is because within a short time interval, the user is likely

to be posting either at the same venue or at nearby venues.
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Outside of the tweet sequence, we also assume that a targeted tweet’s user do

not have any observed location history. Thus even if he only frequents a few venues,

making it likely that the targeted tweet is posted from either one of these venues,

these venues are unobserved and not easy to exploit in an explicit manner.

5.1.3 Contributions.

Our contributions are as follows:

1. We formulate the interesting problem of fine-grained geolocation of tweets

contained in parent tweet sequences. To our knowledge, such a geolocation

scenario is highly common, but has not been previously investigated.

2. We conduct empirical analysis to verify the tendency of users to stay at the

same or nearby venues given a short time period, i.e. staying behavior. We

also study the tendency of users to revisit venues. Such user behavior moti-

vates the design of our models.

3. We propose temporal query expansion which accounts for the staying behav-

ior of users. In this expansion approach, the target tweet is augmented with

words from other tweets in its parent tweet sequence.

4. We propose visitation query expansion which augments the target tweet with

semantically related words from the user’s other tweets. This accounts for the

user’s repeat visits to the same or similar venues.

5. We combine both query expansion approaches in a novel fusion framework,

which is then overlaid on a Hidden Markov Model to capture sequential infor-

mation. Through extensive experiments, we show that the resulting model is

robust and outperforms pure query expansion approaches and other baselines.

Depending on the dataset and metric, performance improvement ranges from

4+% to 40+% over the naive Bayes baseline.

Section 5.2 presents empirical analysis that motivates the query expansion com-

ponents in our model. Section 5.3 describes our model while Section 5.4 presents
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experiment results, along with detailed analysis and case studies. We conclude the

chapter in Section 5.5.

5.2 Empirical Analysis

We conduct several empirical studies to verify our intuitions about user behavior

and to motivate the design of our models.

5.2.1 Staying Behavior

Staying behavior refers to users’ tendencies to remain at the same venue or traverse

only between nearby venues given a short observed time interval. This is intuitive

since firstly, some time interval is required for users to conduct activities at venues,

e.g. work, school, dining. Secondly, time is also required for a user to move from

one venue to another. If only a short time has lapsed, a user is less likely to have

travelled far.

In our first empirical study, we show that staying behavior is an established

property. Basically for a given user, his consecutive shouts posted close in time are

likely to have been posted from venues near each other. To analyze this, we compute

the distances between sampled pairs of shouts, whereby each pair is posted by a

common user within 30 minutes. We compare this against a null model whereby

sampled pairs are posted by a common user more than 30 minutes apart.

Figure 5.1 shows the Cumulative Distribution Functions (CDF) for Singapore

(SG-SHT) and Jakarta (JKT-SHT). In each graph, the blue curve represents sample

pairs within 30 minutes (≤ 30 min) while the red curve is for sample pairs more

than 30 minutes (> 30 min) apart. Evidently, both graphs display strong evidence

of staying behavior. In both cases, the blue curve lies to the left of the red curve,

thus shouts within 30 minutes of each other are more likely to be posted from nearer

venues, compared to the null model. For example in Figure 5.1(a) for Singapore,

more than 95% of sample pairs with posting time difference ≤ 30 min are posted
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(a) CDF (SG-SHT) (b) CDF (JKT-SHT)

Figure 5.1: CDF for distances between sampled shout pairs. Each pair is posted by
a common user. Shout pairs are differentiated by pairs posted within 30 minutes of
each other (≤ 30 min); and pairs posted more than 30 minutes apart (> 30 min).
X-axis is distance in meters.

at distances of 10,000 meters or below. In contrast, a similar distance covers only

around 64% of sample pairs with posting time difference > 30 min. Figure 5.1(b)

shows a similar trend for Jakarta.

5.2.2 Visitation Behaviour

Besides staying behavior, we can potentially exploit other visitation behavior that

users exhibit. In particular, users may visit the same venue multiple times for re-

curring activities, e.g. work, or visit venues around a common area or functionality,

e.g. movie theatres. This has been discussed earlier in Section 4.2.2, along with an

empirical analysis on repeat visits.

(a) CDF (SG-SHT) (b) CDF (JKT-SHT)

Figure 5.2: CDF for distinct venues per user.

In this section, we provide an additional empirical analysis which quantifies

venue revisits by studying if users are focused on a smaller set of venues than ex-
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pected. This means comparing the number of distinct venues visited against some

null model where repeat visitation behavior is absent. If a user repeatedly visits one

or more venues, we expect him to be posting multiple tweets from a smaller set of

distinct venues, when compared against the null model.

For each user u with multiple tweets, we first compute the number of distinct

venues that his tweets are posted from. We then compute the expected number of

distinct venues under the null model as:

• For each tweet from u, sample a venue v based on global venue probability

i.e. venue popularity. Add to venue set Vnull(u).

• Compute the size of Vnull(u). This is the distinct venue count under the null

model.

As the null model involves sampling, we conduct 10 runs and take the average

expected venue count for each user. We conduct this empirical analysis on 22,488

users from SG-SHT and 8419 users from JKT-SHT who have posted at least twice.

For users who have posted only once, the number of distinct venue is one and not

meaningful to study.

Figure 5.2 plots the CDF of distinct venues visited per user for Singapore (SG-

SHT) and Jakarta (JKT-SHT). In each graph, the blue curve represents the actual

count while the red curve is for counts from the null model (averaged over 10 runs).

For both graphs, the blue curve lies to the left of the red curve. This indicates that

users have repeat visitation behavior and visit fewer distinct venues than expected

under the null model. For example in Figure 5.2(a) for SG-SHT, close to 100% of

the users post from 200 distinct venues or less in the actual data. In comparison,

the null model has a corresponding proportion of around 90%. For Figure 5.2(b) for

JKT-SHT, the differences between the actual and null model count is smaller, but

still easily perceivable. Around 95% of users post from 50 distinct venues or less in

the actual data. Under the null model, the corresponding proportion is around 90%.

Hence there is evidence that users are revisiting some of the venues in their travel
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patterns. Therefore, we hope to achieve better geolocation accuracy by exploiting

such behavior in our models.

5.3 Models

In this section, we first describe the base model, followed by the proposed query

expansion and fusion approaches. In subsequent discussions, Temporal neighbors

of the target tweet refer to other tweets in its parent sequence.

5.3.1 Base Model (NB)

We use the naive Bayes model from [44, 43] as the base model for query expansion.

This model has been used in our earlier geolocation tracks (See Sections 3.4.1 and

4.3). We redefine the model here in a slightly different notation to facilitate the

subsequent explanation of query expansion.

The naive Bayes models the word generative probabilities of a venue by accu-

mulating and smoothing word frequencies over all tweets posted from the venue.

The probability of word w given venue v is computed as:

p(w|v) =
f(w, v) + α

f(., v) +Wα
(5.1)

where W is the vocabulary size, f(w, v) is the frequency of word w at venue v,

f(., v) =
∑

w f(w, v) and α is the smoothing parameter which can be tuned or set

at 1 for Laplace smoothing.

Given a target tweet w, we can rank venues by:

p(v|w) ∝ p(v)
∏
w∈w

p(w|v)c(w,w) (5.2)

where c(w,w) is the frequency of word w in w and p(v) is the probability of venue

v which can be estimated globally from posting frequencies.
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5.3.2 Temporal Query Expansion (Temporal)

Staying behavior suggests that a user posting multiple tweets within a short time is

likely to be posting from the same or nearby venues. Hence given a target tweet,

words from other tweets in its parent sequence may be informative. Formally, given

a tweet w posted by user u, we define its parent sequence NT (w;u) as tweets from

the same user u that are posted not more than T time away from w’s posting time.

T is known as the parent time window. It can be tuned but is expected to be small,

e.g. 0.5 hr.

We propose temporal query expansion to augment the target tweet with can-

didate words based on their occurrence frequencies in the parent sequence and

weighted by temporal proximity to the target tweet. Words occurring closer in time

to the target tweet are assigned greater weights than words occurring further away

in time. To model this, we use the exponential kernel [32]. Let target tweet w be

posted by user u at time t, with the set of temporal neighbors from the parent se-

quence NT (w;u), whereby the j-th tweet of NT (w;u) is denoted as wj and posted

at time tj by the same user u. The set of temporal neighbors fulfills the condition

|t− tj| ≤ T,∀wj ∈ NT (w;u). We then weigh each word w as:

δS(w,w;u) = c(w,w) +
∑

wj∈NT (w;u)

c(w,wj) exp(−S|t− tj|) (5.3)

where c(w,wj) counts occurrences of w in wj and the kernel parameter S is a tun-

able time decay factor. S controls the rate at which word influence diminishes with

time difference within the interval T . A larger S corresponds to a larger decay rate.

Note that word influence is 0 outside the interval T . Hence even if S=0, there is no

decay only within the interval T .

Considering that c(w,w)=c(w,w) exp(−S|t − t|), then Equation (5.3) can be

viewed as a weighted sum of exponential kernels. It covers three possible cases of

word occurrences as follows:

• Wordw occurs only in the target tweet. Equation (5.3) reduces to δS(w,w;u) =
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c(w,w).

• Word w occurs only in the temporal neighbors. c(w,w)=0 and only the right-

most term of Equation (5.3) is retained.

• Wordw is in both the target tweet and temporal neighbors. The weight forw is

summed over its occurrences in both the target tweet and temporal neighbors.

We incorporate δS(w,w;u) into our base model as follows:

p(v|w, NT (w;u)) ∝ p(v)
∏

{w:δS(w,w;u)>0}

p(w|v)δS(w,w;u) (5.4)

whereby it suffices to consider the set of words with δS(w,w;u) > 0. Interestingly,

Equation (5.4) corresponds to a weighted naive Bayes model, which was previ-

ously applied only for classification [89, 28]. In the prior work with weighted naive

Bayes, the goal was to improve classification accuracy via feature weighting based

on distributional differences between classes. Here via temporal query expansion,

we have derived a weighted naive Bayes model for the very different problem of

tweet geolocation.

5.3.3 Visitation Query Expansion (Visit)

In this part of the model, we reuse the query expansion component presented earlier

in Section 4.3.2. Recap that we expand the target tweet with words from the user’s

other tweets which may be indicative of the posting venue, due to repeat visits to

same or similar venues. In this chapter, we termed this component as visitation

query expansion to differentiate it from temporal query expansion. We note that

visitation query expansion is applicable for geolocating both tweets with and with-

out temporal neighbors. Also recap that in our considered geolocation scenario, the

target tweet’s user have no location history (see Section 5.1). Hence tweets acting

as a source of candidate words are neither geocoded nor associated with any posting

venues.
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For ease of reading, we reproduce Equation 4.4 here as well as make clear its

interpretation as a kernel function. Recap that given a target tweet w (i.e. query)

from user u, we score candidate words w′ which appears in u’s other tweets and

where w′ /∈ w as:

Ω(w′,w;u) =
1

|w|
∑

w∈w

du(w
′, w)√

du(w)du(w′)

=
1

|w|
∑

w∈w

〈Iu(w′), Iu(w)〉
‖Iu(w′)‖‖Iu(w)‖

(5.5)

where Iu(w) is a vector of indicator functions for the presence of word w in u’s

tweets. Equation (5.5) makes it clear that Ω(w′,w;u) is a normalized form of the

dot product kernel, also referred to as the cosine kernel. Subsequently we shall

integrate it in our model in the context of multiple kernel learning.

Let {w′}u denote the set of non-target tweets of user u. For a target tweet w from

u, {w′}u also includes the temporal neighbors of w if there are any. We incorporate

the word weights Ω(w′,w;u) into our base model as follows:

p(v|w, {w′}u) ∝ p(v)
∏
w∈w

p(w|v)c(w,w)
∏

{w′:w′ /∈w,
Ω(w′,w;u)>0}

p(w′|v)Ω(w′,w;u) (5.6)

Equation (5.6) highlights that there are two groups of words: words already in the

target tweet and words that are newly added. Each occurrence of a target tweet word

has implicit weight of 1, while newly added words are weighted between 0 and 1

depending on their relatedness to the target tweet.

Finally, we note that query expansion can be conducted over the global set of

tweets, instead of a user-specific set. This captures different notions rather than

revisit behavior, while being more expensive and less personalized. For example,

consider a target tweet with the word “dinner”. Such a common word occurs in

many tweets, leading to a huge set of candidate words for consideration. Geolo-

cation may also be biased towards popular dinner venues, rather than being per-

sonalized to the target tweet’s user. Nonetheless, for less common words or users
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with few tweets in their history, considering the global set of tweets may overcome

information sparsity. We defer such exploration to future work.

5.3.4 Fusion Framework

In this section, we introduce a fusion framework to combine the above two query

expansion approaches while mitigating the noise effects of any uninformative tweets

from the target tweet’s user.

Our query expansion approaches are based on kernels and fusing them is akin

to multiple kernel learning [33]. In multiple kernel learning, one combines mul-

tiple kernels computed over different feature sets or capturing different data point

similarities, such that the combined kernels perform better for the end task. Here,

we fuse the kernels of temporal and visitation query expansions to compute a final

weight for each word in the expanded target tweet. In order to capture both staying

and repeat visitation behavior of users, we propose a novel ‘Max’ combination ap-

proach. In addition, we consider simple kernel combination schemes such as linear

and product combinations [19]. Our subsequent experiments show that the ‘Max’

combination approach is more robust, performing either on par or better than the

linear and product combination scheme across all datasets.

5.3.4.1 Max Combination (Max)

Consider augmenting a targeted tweet w from u with candidate word w. Temporal

query expansion prescribes augmentation using a weight of δS(w,w;u) for w while

visitation query expansion prescribes a weight of Ω(w,w;u). At geolocation time,

it is not known which candidate weight should be assigned or equivalently, whether

staying or repeat visitation behavior is more important. Intuitively, one can adopt a

catch-all approach to cover both behavior types. Considering the union of behaviors,

then the candidate weight is either δS(w,w;u) or Ω(w,w;u), whichever weight is

of larger value. This leads to the ‘Max’ combination approach, where we adopt

the maximum weight for each word over temporal and visitation query expansion.
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The intuition is that words are relevant for geolocating the target tweet either due to

them being close in time (i.e., in the parent sequence), or being semantically related

to the target tweet. Equivalently we cover both different behaviors: the user revisits

the same or similar venue and/or stays around the posting venue of the target tweet.

Formally, we compute:

p(v|w, {w′}u) ∝ p(v)
∏

{w:δS(w,w;u)>0|
Ω(w,w;u)>0}

p(w|v)max(δS(w,w;u),Ω(w,w;u)) (5.7)

where the product of p(w|v)’s is computed over the union of words with non-zero

weights from temporal query expansion and those from visitation query expansion.

Equation (5.7) also means words from the target tweet are always assigned weights

from temporal query expansion, i.e. δS(w,w;u). For such words, δS(w,w;u) ≥

c(w,w) ≥ Ω(w,w;u). For words not in w, their final weights depend on which

query expansion scheme gives larger weights.

5.3.4.2 Linear Combination (Linear)

The linear scheme defines the weight of a candidate word w as λδS(w,w;u) + (1−

λ)Ω(w,w;u), which leads to the following model:

p(v|w, {w′}u;λ) ∝ p(v)
∏

{w:δS(w,w;u)>0|
Ω(w,w;u)>0}

p(w|v)λδS(w,w;u)+(1−λ)Ω(w,w;u) (5.8)

where λ is the linear combination weights. In the linear scheme, each word is as-

signed a fixed proportion of importance based on its temporal proximity and relat-

edness to the target tweet. Thus, for every target tweet, one assumes a fixed relative

importance from revisiting and staying behavior.
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5.3.4.3 Product Combination (Product)

Finally, the product scheme defines the weight of candidate wordw as δS(w,w;u)×

Ω(w,w;u). The resulting model is then:

p(v|w, {w′}u) ∝ p(v)
∏

{w:δS(w,w;u)>0|
Ω(w,w;u)>0}

p(w|v)δS(w,w;u)×Ω(w,w;u) (5.9)

In the product scheme, a word has non-zero weight only if it is both semantically

related and in temporal proximity to the target tweet. This assumes a stringent case

where both revisiting and staying behavior must be present.

5.3.5 Sequential Information (HMM-Max)

Given that we are geolocating tweets contained in parent sequences, sequential in-

formation may help to improve geolocation, e.g. users may follow certain visit se-

quence in their daily travels. So far, neither temporal nor visitation query expansion

explicitly models sequential information. To exploit such information, we adapt the

sequence modeling approach from [52] based on Hidden Markov Models (HMM).

We model the hidden states in the Markov chain as venues and emissions as the

tweet words. The probability that a tweet is posted from a venue is then computed

from marginalizing over the hidden states in the sequence. This is done using the

forward-backward algorithm [72].

Given a HMM model Θ, denote p(v|w, NT (w;u),Θ) as the marginalized venue

probability. The transition probabilities between venues are estimated from ob-

served transitions in the training set. Since it is impossible for users to transit be-

tween venues that are too far apart given a short time interval, the transition matrix

is sparse. This facilitates the computation of marginal probabilities.

We can use p(v|w, NT (w;u),Θ) directly as a baseline to rank venues. How-

ever we conjecture that query expansion contributes orthogonal information which

should improve geolocation performance. Thus we stack our ‘Max’-based model
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over the HMM-based approach to exploit all information facets. Specifically, we

compute:

p(v|w, {w′}u) ∝ p(v|w, NT (w;u),Θ)
∏

{w:δS(w,w;u)>0|
Ω(w,w;u)>0}

p(w|v)max(δS(w,w;u),Ω(w,w;u))

(5.10)

Equation (5.10) is of similar form to Equation (5.7), except that given target

tweet w, we bias its venue probabilities with p(v|w, NT (w;u),Θ) instead of the

global distribution p(v).

5.3.5.1 Limiting Cases

Given tweet w from user u targeted for geolocation, different scenarios can arise.

For example, w may or may not have temporal neighbors or share common words

with u’s non-target tweets {w′}u (See Section 5.3.3). Interestingly, HMM-Max is

a highly general model that can be used for geolocation in various scenarios. It

reduces to different models for the following scenarios:

• w has temporal neighbors and common words with tweets from {w′}u:

The presence of temporal neighbors enables construction of the Markov chain

and temporal query expansion. The presence of common words enables visi-

tation query expansion. Hence all aspects of the HMM-Max model apply.

• w has temporal neighbors, but no common words with tweets from {w′}u:

Markov chain construction and temporal query expansion apply, but visita-

tion query expansion does not apply. HMM-Max reduces to a HMM model

stacked with a naive Bayes model weighted with temporal query expansion,

i.e. Equation (5.10) reduces to:

p(v|w, {w′}u) ∝ p(v|w, NT (w;u),Θ)
∏

{w:δS(w,w;u)>0}

p(w|v)δS(w,w;u) (5.11)

• w has no temporal neighbors, but has common words with tweets from {w′}u:

Markov chain construction and temporal query expansion are no longer ap-
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plicable. In this scenario, HMM-Max is equivalent to a naive Bayes model

weighted only with visitation query expansion. Equation (5.10) reduces to

Equation (5.6).

• w has no temporal neighbors and no common words with tweets from {w′}u:

Both Markov chain construction and query expansion are not applicable. HMM-

Max reduces to a naive Bayes model as characterized by Equation (5.2).

Hence in the worst case scenario of highly sparse information, performance

will be comparable to applying the models from [44, 43].

5.3.6 Computational Complexity

We first examine the computational complexity of query expansion. Given a tar-

geted tweet w from user u, the complexity of temporal query expansion depends on

the length of w’s parent sequence and can be written as O(|NT (w;u)|). For visita-

tion query expansion, the complexity depends on the number of other tweets from

u which contains words from w, denoted as D(w;u). These other tweets can be re-

trieved efficiently inO(|D(w;u)|) time using an inverted index [91], which indexes

tweets based on their constituent words. We then only need to compute weights for

candidate words in the retrieved tweets. This means the number of words for con-

sideration is usually much smaller than the entire word vocabulary. Depending on

the words in w, visitation query expansion can involve a few or a substantial num-

ber of tweets from u’s non-target tweets. In the worst case, all non-target tweets

are involved. In contrast, temporal query expansion usually involves fewer tweets

due to the time interval constraint. Hence typically |D(w;u)| > |NT (w;u)|. In

this case, the complexity in the ‘Max’ fusion framework is dominated by visitation

query expansion and can be written as O(|D(w;u)|).

For incorporating sequential information, the main computation complexity lies

in the forward-backward algorithm. To geolocate w from user u, the basic algorithm

has a complexity of O(|NT (w;u)| × V 2), whereby V is the number of venues.

However in practice, one need not compute transitions over all possible venue pairs.
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The transition matrix is highly sparse due to user mobility patterns and the physical

constraint that within a short time interval, it is not possible to traverse between

venue pairs that are too far apart. Thus when computing possible transitions from

a given venue, one only needs to consider observed transitions in the training set

with optional probability smoothing for venue pairs that are not too far apart. This

reduces the complexity toO(|NT (w;u)| × γ× V 2) where 0 < γ < 1 is the average

fraction of venues that each venue can transit to. Thus complexity is dependent on

the transitional characteristics of the dataset.

5.4 Experiments

We explore fine-grained geolocation models that incorporate different query ex-

pansion approaches and fusion schemes. We also implement other baselines for

comparison. For each dataset (see Section 3.2 of Chapter 3), we conduct 20 runs

which differ by randomly partitioning tweets into 3 sets: training, tuning and test-

ing. In each run for each dataset, we first obtain the pool of tweets with temporal

neighbors. From such tweets, we randomly sample 5000 tweets, from which 40%

is used as the tuning set and 60% is used as the test set. All other tweets, including

those without temporal neighbors, are used as the training set. We select posting

venues with at least 3 training tweets as candidate venues. Test tweets with posting

venues not among the candidate venues are discarded. Tweets with only stop words

and rare words (with frequency < 3) are also discarded. The number of test tweets

and candidate venues after filtering are reported in the tables in Section 5.4.1.

We compare the following models:

• KL: This approach [47] derives scores for venues by transforming and com-

bining Kullback-Leibler divergences between the language models of tweets

and venues, with the probabilities that venues generate tweets at different

times of the day.

• KDE: This method [39] integrates kernel density smoothing with unigram
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language models to geolocate tweets to grid cells. Given a cell c, one com-

putes p(c)
∏

w∈w p(w|c) whereby p(c) and p(w|c) are smoothed using Gaus-

sian kernels. To geolocate tweets to venues, we extend the method by comput-

ing p(v|c)p(c)
∏

w∈w p(w|c), where probability of venue v given cell c, p(v|c)

is estimated by counting tweets posted from venue v, over all tweets posted

within cell c. We use a grid size of 500 m. We tune the kernel parameter on a

grid with logarithmic intervals {0.01, 0.1, 1.0, 10.0}.

• NB: The base model from Equation (5.2) with Laplace smoothed word prob-

abilities.

• Temporal: Temporal query expansion as shown in Equation (5.4).

• Visit: Visitation query expansion as shown in Equation (5.6).

• Max: The max combination scheme which combines the temporal and visi-

tation query expansion approaches. See Equation (5.7)

• Linear: Temporal and visitation query expansion combined via linear com-

bination. See Equation (5.8)

• Product: Both query expansion approaches combined via product combina-

tion. See Equation (5.9)

• HMM: This is the approach from [52] based on Hidden Markov Models. We

adapt it for our work by modeling venues as the hidden states.

• Max-HMM: The test tweet is first query expanded using ‘Max’, denote as w̃.

We treat w̃ as an observed tweet within a sequence and compute its marginal

venue probabilities p(v|w̃, NT (w;u),Θ) where Θ is the fitted HMM model.

We use the marginal venue probabilities to rank venues.

• HMM-Max: The HMM model is first applied to compute the marginal venue

probabilities, followed by stacking of the ‘Max’ model, as shown in Equation

(5.10)

There are other fine-grained geolocation methods in the literature which are not
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considered here, largely due to additional assumptions about users and social media

platforms [14, 6].

We use two parent time window settings: T=1 hr and T=0.5 hr to define tempo-

ral neighbors. To recap the purpose of T , if T=1 hr, then any training tweet posted

by the user within 1 hr (e.g. 10 min) of his test tweet is defined as a temporal neigh-

bor. While T can be set to any interval, using a short interval such as 5 min may

generalize to too few test cases while using a long interval (e.g. days) leads to long

Markov chains and increased computation cost. Also, a long duration is unneces-

sary for temporary query expansion due to the kernel parameter S acting as a time

decay factor (See Equation (5.3)).

To simulate the scenario where the temporal neighbors of test tweets have no

observed posting venues, we process the training tweets as follows: If a user has

one or more tweets sampled for testing/tuning, we hide the posting venues of all his

tweets in the training set. Thus, the training set mixes tweets with unknown posting

venues and other tweets whose posting venues are retained.

In training, we estimate the word distributions p(w|v) using the tweets with

observed venues. The training set is also used as a source of candidate words for

query expansion. Such tweets are also used to estimate the transition probabilities

for HMM-based models. We use Laplace smoothing for p(w|v) and tune other

parameters to optimize MRR on the tuning set. For models utilizing temporal query

expansion, tuning is done for the scaling parameter S for the exponential kernel. We

use a grid with logarithmic intervals: {0, 0.01, 0.1, 1.0}. For the linear combination

scheme, the linear combination weight λ is jointly tuned as well using a uniform

grid from 0.1 to 0.9 at intervals of 0.1.

As per our earlier experiments, we use MRR and Macro-MRR as the evaluation

metrics. Refer to Section 4.4.1.
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Table 5.2: SG-SHT results averaged over 20 runs. Bracketed numbers are percent-
age improvement over NB. On average for T=1 hr, there are M=1239.5 test tweets
and V =10539.4 venues to rank per run. For T=0.5 hr, M=1136.8, V =10959.3 on
average.

Models
MRR Macro-MRR MRR Macro-MRR

(T=1 hr) (T=1 hr) (T=0.5 hr) (T=0.5 hr)

KL
0.03057 0.02170 0.02861 0.02027

(-56.19%) (2.94%) (-59.62%) (-3.93%)

KDE
0.05684 0.02037 0.05567 0.01937

(-18.54%) (-3.37%) (-21.44%) (-8.20%)
NB 0.06978 0.02108 0.07086 0.02110

Temporal
0.07036 0.02145 0.07220 0.02259
(0.83%) (1.76%) (1.89%) (7.06%)

Visit
0.07145 0.02113 0.07257 0.02135
(2.39%) (0.24%) (2.41%) (1.18%)

Max
0.07114 0.02152 0.07314 0.02230
(1.95%) (2.09%) (3.22%) (5.69%)

Linear
0.07108 0.02123 0.07326 0.02202
(1.86%) (0.71%) (3.39%) (4.36%)

Product
0.07100 0.02260 0.07243 0.02332
(1.75%) (7.21%) (2.22%) (10.52%)

HMM
0.07401 0.02380 0.07539 0.02496
(6.06%) (12.90%) (6.39%) (18.29%)

Max-HMM
0.07420 0.02362 0.07564 0.02484
(6.33%) (12.05%) (6.75%) (17.73%)

HMM-Max
0.08122 0.03053 0.08110 0.03074

(16.39%) (44.83%) (14.45%) (45.69%)

5.4.1 Results

Tables 5.2, 5.3 and 5.4 display the results for datasets SG-SHT, SG-TWT and JKT-

SHT respectively. For each dataset and metric, we use the Wilcoxon signed rank test

to assess statistical significance between models. The best results or group of results

are boldfaced. Models are described as on par or comparable if the signed ranked

test do not indicate statistically significant differences at p-value of 0.05. Across

Tables 5.2 to 5.4, HMM-Max is consistently the best or among the best models. For

all models, Macro-MRR is also consistently lower than MRR, as expected from the

correction of venue popularity effects. In the following, we further elaborate the

results.

Baselines. Tables 5.2 to 5.4 show that KL and KDE performs substantially
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Table 5.3: SG-TWT results averaged over 20 runs. On average per run, M=1290.7,
V =1914.2 for T=1 hr, and M=1296.6, V =1912.1 for T=0.5 hr

Models
MRR Macro-MRR MRR Macro-MRR

(T=1 hr) (T=1 hr) (T=0.5 hr) (T=0.5 hr)

KL
0.02837 0.01411 0.02947 0.01543

(-63.14%) (-14.28%) (-62.30%) (-7.22%)

KDE
0.05141 0.01607 0.05278 0.01703

(-33.20%) (-2.37%) (-32.47%) (2.41%)
NB 0.07696 0.01646 0.07816 0.01663

Temporal
0.08399 0.01873 0.08496 0.01881
(9.13%) (13.79%) (8.70%) (13.11%)

Visit
0.07851 0.01654 0.07951 0.01669
(2.01%) (0.49%) (1.73%) (0.36%)

Max
0.08408 0.01845 0.08563 0.01880
(9.52%) (12.09%) (9.56%) (13.05%)

Linear
0.08383 0.01819 0.08487 0.01827
(8.93%) (10.51%) (8.59%) (9.87%)

Product
0.07805 0.01723 0.07947 0.01775
(1.42%) (4.68%) (1.68%) (6.74%)

HMM
0.08429 0.01874 0.08529 0.01890
(9.25%) (13.85%) (9.12%) (13.65%)

Max-HMM
0.08483 0.01926 0.08541 0.01963

(10.23%) (17.01%) (9.28%) (18.04%)

HMM-Max
0.08486 0.02020 0.08604 0.02102

(10.27%) (22.72%) (10.08%) (26.40%)

worse than NB and other models across all datasets and metrics. KL’s poor per-

formance indicates that modeling each tweet with a smoothed language model is

inadequate, probably due to the brevity in content. This affects the computation

of divergence values between the language models of tweets and venues. KDE

out-performs KL, but is still inferior to NB. Although KDE works well for coarse-

grained geolocation [49], word distributions are learnt at a grid cell level and are

sub-optimal for fine-grained geolocation.

HMM [52] out-performs the NB model for both MRR and Macro-MRR for

datasets SG-SHT (Table 5.2) and SG-TWT (Table 5.3). For JKT-SHT (Table 5.4),

it is on par for MRR and performs better for Macro-MRR. Thus sequential infor-

mation exploited by HMM provides useful information, even when one omits any

query expansion. However as will be subsequently discussed, query expansion will
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Table 5.4: JKT-SHT results averaged over 20 runs. On average per run, M=297.6,
V =2520.8 for T=1 hr, and M=277.3, V =2795.6 for T=0.5 hr

Models
MRR Macro-MRR MRR Macro-MRR

(T=1 hr) (T=1 hr) (T=0.5 hr) (T=0.5 hr)

KL
0.05735 0.02714 0.05028 0.02474

(-53.23%) (-21.31%) (-52.98%) (-29.66%)

KDE
0.07906 0.02370 0.07133 0.02375

(-35.53%) (-31.28%) (-33.29%) (-32.47%)
NB 0.12263 0.03449 0.10693 0.03517

Temporal
0.12482 0.03579 0.10878 0.03671
(1.79%) (3.77%) (1.73%) (4.38%)

Visit
0.12336 0.03475 0.10850 0.03538
(0.60%) (0.75%) (1.47%) (0.60%)

Max
0.12543 0.03598 0.10928 0.03623
(2.28%) (4.32%) (2.20%) (3.01%)

Linear
0.12445 0.03551 0.10821 0.03582
(1.48%) (2.96%) (1.20%) (1.85%)

Product
0.12373 0.03524 0.10710 0.03540
(0.90%) (2.17%) (0.16%) (0.65%)

HMM
0.12276 0.03705 0.10662 0.03747
(0.11%) (7.42%) (-0.29%) (6.54%)

Max-HMM
0.12628 0.03961 0.11100 0.04018
(2.98%) (14.85%) (3.81%) (14.25%)

HMM-Max
0.12825 0.04144 0.11182 0.04160
(4.58%) (20.15%) (4.57%) (18.28%)

provide further performance gains.

Query Expansion. The two query expansion approaches ‘Temporal’ and ‘Visit’

outperform or are on par with the base model ‘NB’ across all three datasets. For

SG-SHT (Table 5.2), ‘Visit’ achieves small, but statistically significant improve-

ment over ‘NB’ for MRR for both T settings, while being on par for Macro-MRR.

’Temporal’ improves slightly over ‘NB’, except for T=1 hr where the MRR gains

are not significant. For SG-TWT (Table 5.3), query expansion also works well, with

‘Temporal’ achieving much larger gains than ‘Visit’ over the base model. This is

consistent across metrics and T settings. This matches our earlier empirical results

in Section 5.2.1, showing that consecutive tweets in SG-TWT are likely to be from

the same posting venue (since each linked check-in links to 1.5 pure tweets on av-

erage). Finally, for JKT-SHT (Table 5.4), both query expansion approaches provide
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consistently small improvements over different T settings and metrics, except for

one case: Macro-MRR for ‘Visit’ at T=0.5 hr. Nonetheless, ‘Visit’ still outperforms

‘NB’ under MRR.

Fusion Approaches. On the whole, ‘Max’ performs consistently well over the

different datasets and is the more robust fusion approach. We compare the fusion

approaches: ‘Max’, ‘Linear’ and ‘Product’ over different datasets. For MRR on SG-

SHT (Table 5.2), the performance of ‘Max’ is statistically equivalent with ‘Linear’

and ‘Product’ for both T=1 hr and 0.5 hr. For Macro-MRR on SG-SHT, ‘Prod-

uct’ performs better than other fusion approaches. However, it performs poorly on

other datasets. For SG-TWT (Table 5.3), ‘Max’ is the best fusion approach, while

‘Product’ does poorly. ‘Linear’ is slightly inferior to ‘Max’ even though the former

incurs more tuning costs. For JKT-SHT (Table 5.4), ‘Max’ again outperforms the

other two fusion approaches.

Note that for each dataset, ‘Max’ also achieves performance that is on par or

slightly better than what is achieved alone by query expansion. It appears to be

fairly unaffected by the weaker method. This is obvious from comparing ‘Max’ vs

‘Temporal’ and Visit’. For example on SG-SHT (Table 5.2), ‘Visit’ performs better

than ‘Temporal’ for MRR while for Macro-MRR, ‘Temporal’ performs better. With

‘Max’ fusion, we obtain a more robust model, achieving MRR on par with ‘Visit’

and Macro-MRR on par with ‘Temporal’. For another dataset SG-TWT, ‘Temporal’

clearly outperforms ‘Visit’ across all metrics and T settings. In this case, ‘Max’

consistently achieves performance comparable with ‘Temporal’. In fact, for MRR

with T=0.5 hr, ‘Max’ also outperforms ‘Temporal’ with statistical significance. In

short, although both query expansion approaches were useful, we achieve more

consistent and robust gains after applying ‘Max’ combination.

Stacking with HMM. While ‘Max’ performs well, further performance gains

can be achieved by stacking with HMM in an appropriate manner. Across all

datasets and metrics, HMM-Max is consistently the best or among the best perform-

ing models. Intuitively, each target tweet’s parent sequence has useful sequential in-
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formation and HMM-Max is able to exploit this. Over the base model, performance

gains for Macro-MRR are especially impressive, ranging from around 20% for SG-

TWT and JKT-SHT (Tables 5.3 and 5.4) to more than 40% for SG-SHT (Table 5.2).

For MRR, gains range from 4+% for JKT-SHT to 10+% for SG-SHT and SG-TWT.

HMM-Max mostly outperforms Max-HMM. Although both models incorporate

sequential information, the former turns out to be a better combination approach.

Also, exploiting sequential information without query expansion (i.e., HMM) is

not optimal. Although ‘HMM’ mostly outperforms ‘NB’ (except for MRR in JKT-

SHT), it is inferior to HMM-Max in most cases. For example, in SG-SHT (Table

5.2), HMM loses out by a large margin to HMM-Max over both metrics for both

T settings. Such results show that query expansion exploits information that is

orthogonal to sequential information, resulting in more effective geolocation.

5.4.2 Analysis by Venue Popularity

Given that HMM-Max is the best performing and most robust model, we examine

how its accuracy varies with venue popularity. Our analysis also serves to improve

our understanding of how geolocation accuracy may be affected by data charac-

teristics. We quantify venue popularity by the venue probability p(v), which we

compute based on the global proportion of tweets posted from each venue. For each

run, we divide test tweets into 3 equal-sized bins of low, medium and high popular-

ity based on the probability of their posting venues. MRR is computed for each bin.

We repeat this for 10 runs with the setting of T=1 hr and compute the average bin-

specific MRR. Figure 5.3 displays the results for SG-SHT, SG-TWT and JKT-SHT.

The graphs in each row arise from the same dataset and are arranged from left to

right in increasing order of venue popularity. For comparison, we also illustrate the

performance for HMM.

Figure 5.3 shows that it is easier to geolocate tweets posted from more popular

venues than less popular ones. This trend is consistent across all datasets as well as

across both HMM and HMM-Max models. For example, in Figure 5.3(c) for SG-
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(a) SG-SHT (Low) (b) SG-SHT (Medium) (c) SG-SHT (High)

(d) SG-TWT (Low) (e) SG-TWT (Medium) (f) SG-TWT (High)

(g) JKT-SHT (Low) (h) JKT-SHT (Medium) (i) JKT-SHT (High)

Figure 5.3: Average MRR of HMM (blue) and HMM-Max (gray) for test tweets
from venues of different popularities. Each row corresponds to a dataset.

SHT tweets from high popularity venues, HMM-Max achieves an average MRR

of 0.22, much higher than 0.0039 in Figure 5.3(a) for low popularity venues. For

JKT-SHT, the corresponding figures for HMM-Max are 0.35 in Figure 5.3(i) versus

0.0053 in Figure 5.3(g) for high and low popularity venues respectively. HMM

follows the same trend. Intuitively, popular venues are associated with more tweets,

which helps to build more complete venue profiles. They may also have distinct or

dominant characteristics that attract users and are mentioned more in tweets, e.g.

unique dishes in a popular restaurant. These factors will increase the geolocation

accuracy for tweets posted from such venues.

Relative to HMM, the percentage improvement attained by HMM-Max is larger

for less popular venues. In Figure 5.3(a) for low popularity venues, HMM-Max’s

average MRR of 3.88e-3 is a 92% improvement over HMM’s value of 2.02e-3. For
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high popularity venues in Figure 5.3(c), the corresponding relative improvement is

around 5.6%. For other datasets, the same trend persists although the magnitude

of relative improvement differs. For example, for JKT-SHT, HMM-Max’s relative

improvement over HMM is less drastic than SG-SHT for low popularity venues,

i.e. 15.9% in Figure 5.3(g). However, relative improvement is even smaller for

high popularity venues at 3.17% in Figure 5.3(i). We also note that for SG-TWT,

HMM-Max outperforms HMM for low and medium popularity venues (See Figures

5.3(d),(e)), but is on par for high popularity venues in Figure 5.3(f).

We can conclude that the relative improvement provided by HMM-Max declines

with increasing venue popularity. Such a trend may be because tweets from more

popular venues are already geolocated fairly well and it is harder to achieve larger

relative improvements. However there is still significant absolute improvement in

MRR, i.e. a difference of 0.0124 in Figure 5.3(c). Since MRR is a top-heavy metric,

small changes in the ranking positions near the top have large effects. Thus, HMM-

Max still provides meaningful improvements in MRR when one considers absolute

rank improvements of the posting venues. In short, it is reassuring that HMM-

Max outperforms or is on par with HMM’s performance across venues of different

popularity.

5.4.3 Analysis by Distinct Venues per User

In this section, we study the relation between geolocation performance and the num-

ber of distinct venues that each user visits. The latter characteristic varies across

users and will directly impact models that aim to exploit visitation behavior for ge-

olocation. At one end, there are users who are focused on a small set of venues.

At the other extreme, there are highly active users who post from a large number of

venues, possibly due to novelty seeking behaviour [90] or to project an interesting

image of themselves on social media [65].

In our experiments, if a user has one or more tweets selected for testing, we mask

the venues of all his tweets in the training set. This is in line with our discussed
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(a) SG-SHT (Low) (b) SG-SHT (Medium) (c) SG-SHT (High)

(d) SG-TWT (Low) (e) SG-TWT (Medium) (f) SG-TWT (High)

(g) JKT-SHT (Low) (h) JKT-SHT (Medium) (i) JKT-SHT (High)

Figure 5.4: Average MRR of HMM (blue) and HMM-Max (gray) for test tweets
from users with different number of distinct venues in training tweets.

scenario at the start of this chapter. Here, for the purpose of analysis, we unmask

the venues of the training tweets for such users. For each test tweet, we compute the

number of distinct venues that its user had visited over his tweets in the training set.

Based on this statistic, we divide test tweets into 3 equal-sized bins, corresponding

to the cases where the user has low, medium and high number of distinct venues.

We then compute the MRR for each bin. We repeat this procedure for 10 runs with

the setting of T=1 hr and average the bin-specific MRR across the runs.

Figure 5.4 plots the average bin-specific MRR for all datasets. Across all 3

datasets, there is a common trend that geolocation performance drops as the number

of distinct venues per user increases. In 5.4(a) corresponding to the ’Low’ bin for

SG-SHT, HMM-Max achieves average MRR of 0.115. With increasing distinct

venues per user, HMM-Max’s MRR drops to 0.0752 in Figure 5.4(b) and finally to
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0.0576 for the ’High’ bin in Figure 5.4(c). HMM follows the same trend. For both

SG-SHT and JKT-SHT, HMM also performs consistently poorer than HMM-Max

in each bin. For SG-TWT, HMM-Max outperforms HMM for the ‘Low’ and ‘High’

bin, while under-performing the latter on the ‘Medium’ bin. Overall, both models

can be regarded as on-par for SG-TWT (See Table 5.3, T=1 hr, MRR metric).

Intuitively, if users are focused on a narrower set of venues, it may be easier

to geolocate their tweets. Each user posts a finite number of tweets and spreading

this over fewer venues will generally mean that information is less sparse. In con-

trast, if users are visiting a large number or highly diverse venues, then geolocation

becomes more challenging. Our result shows that even in this scenario, HMM-

Max can better mitigate the effects and is more robust across datasets, compared to

HMM. Interestingly, the better performance arises from simply overlaying a query

expansion process on HMM to exploit both repeat visitation and staying behavior.

5.4.4 Case Study

As our proposed query expansion and Max combination approaches are more novel

than the well-studied HMM, we focus our case studies on the former portion. For

ease of analysis, we compare non-sequential models, i.e. ‘Temporal’, ‘Visit’ and

‘Max’. We first discuss positive cases which illustrate the usefulness of query ex-

pansion and Max combination. We then examine negative cases, which are grounds

for future work.

5.4.4.1 Positive Cases

There are numerous examples where test tweets are geolocated more accurately

from query expansions, as well as with Max combination. For ease of discussion,

we use example cases where the test tweet is augmented with relatively few words,

and contained in sequences of length two. Table 5.5 displays geolocation cases from

SG-SHT with T=1 hr. These are extracted from sample runs of the main experiment

in Section 5.4. Each case consists of a pair of tweets: a test tweet (bolded) and its
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Table 5.5: Sample geolocation cases/tweet sequences from SG-SHT. For ease of
discussion, each case consists of a pair of tweets. The test tweet is bolded while
its temporal neighbor is unbolded. In each tweet, modeled words are italicized
(after omitting rare and stop-words). For each case, words and associated weights
are sorted and illustrated for different query expansion methods. The last row of
each case displays the ranked position that each method attained for the test tweet’s
posting venue.

Case A

A1
(Marina Bay Sands Hotel, 14:22:29)
“Zimmer bezogen... City-View”

A2 (Marina Bay Sands Hotel, 14:23:23)
“Und Garden/Rennstrecken View...”

Temporal (view, 1.58), (garden, 1.0), (und, 1.0), (city, 0.58)
Visit (view, 1.0), (garden, 1.0), (und, 1.0), (city, 0.33)
Max (view, 2.0), (garden, 1.0), (und, 1.0), (city, 1.0)

r(w = A2) NB: 4, Temporal: 2, Visit: 6, Max: 2

Case B

B1
(Golden Village, 22:44:14)
“Few minuted to The Conjuring.”

B2 (Golden Village, 22:45:14)
“Few minutes to The Conjuring.”

Temporal (conjuring, 1.55), (minutes, 1.0)
Visit (conjuring, 1.0), (minutes, 1.0)
Max (conjuring, 1.55), (minutes, 1.0)

r(w = B2) NB: 14, Temporal: 10, Visit: 14, Max: 10

Case C

C1
(Changi International Airport, 15:55:26)
“Flying out”

C2 (Terminal 1 Departure Hall, 15:56:39)
“Upgraded again. Thank you KLM!”

Temporal (upgraded, 1.0), (klm, 1.0), (flying, 0.48)

Visit
(upgraded, 1.0), (klm, 1.0), (au, 0.5), (revoir, 0.5),
(boarding, 0.35), (faith, 0.17), (alexandra, 0.17)

Max
(upgraded, 1.0), (klm, 1.0), (flying, 0.48), (boarding, 0.35),
(au, 0.5), (revoir, 0.5), (faith, 0.17), (alexandra, 0.17)

r(w = C2) NB: 121, Temporal: 64, Visit: 78, Max: 21

Case D

D1
(Jurong East MRT Interchange, 14:34:36)
“To ICA”

D2 (Immigration & Checkpoints Authority, 15:12:54)
“Change passport!”

Temporal (passport, 1.0), (change, 1.0), (ica, 1.05e-10)
Visit (passport, 1.0), (change, 1.0), (collecting, 0.5)
Max (passport, 1.0), (change, 1.0), (collecting, 0.5), (ica, 1.05e-10)

r(w = D2) NB: 1 , Temporal: 1, Visit: 0, Max: 0

temporal neighbor. For each case, the words used for geolocation and associated

weights are illustrated for different query expansion methods. Finally, the last row

of each case displays the ranked position that each method attained for the test
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tweet’s posting venue.

In Table 5.5, case A illustrates the usefulness of temporal neighbors and tem-

poral query expansion. The test tweet A2 and its temporal neighbor A1 are posted

from “Marina Bay Sands Hotel”, known to have impressive city views. Hence the

word “view” is indicative of the venue. With the ‘Temporal’ method, a greater

weight is placed on the word “view” due to its occurrence in both A1 and A2. This

improves the ranking of the posting venue to position 2, i.e. r(w = A2)=2. For the

‘Visit’ method, the word set is similar to that of ’Temporal’. This is because A2’s

words only co-occur with the words in A1. Consequently ‘Max’ is also restricted

to the same word set as ‘Temporal’ and ‘Visit’. However, the kernel parameters are

now tuned over a tuning set which considers combined word sets for each tuning

tweet. In this case, the tuned kernel learns a time decay of 0 within interval T (i.e.

S=0 in Equation (5.3)). This increases the weight of word “view” such that ‘Max’

matches the performance of ‘Temporal’.

Case B is another example that highlights the usefulness of temporal informa-

tion. Tweets B1 and B2 are near duplicates of each other. Both mentioned a movie

being screened at a theatre venue “Golden Village”. By considering temporal neigh-

bors, the informative word ‘conjuring’ is given larger weights. Since this is indica-

tive of the movie theatre, geolocation is improved. In contrast, visitation query

expansion based on the method ‘Visit’ is unable to augment the test tweet due to

the lack of co-occurring words. By using ‘Max’ fusion, one retains the geolocation

improvement provided by temporal query expansion.

For case C, both the temporal neighbor C1 and other tweets from the user are

useful for geolocating C2. C2 is posted from an airport departure hall. The base

model ‘NB’ ranks its posting venue at position 121. By exploiting C2’s predecessor

C1, ‘Temporal’ improves the ranking to 64. This is due to the word “flying”, which

is indicative of the airport. For the ‘Visit’ method, some improvement is achieved

as well by adding the word “boarding” to the test tweet. Finally the ‘Max’ method

uses the union of word sets considered by both ‘Visit’ and ‘Temporal’. This ranks
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the posting venue at position of 21, better than ‘Visit’ and ‘Temporal’.

Finally case D corresponds to the case where the temporal neighbor is not useful

as a result of the tuned parameters not being optimal to this example. Fortunately

other tweets from the user’s history are useful. In D1, the user tweets about going

to ‘ICA’, which is an acronym for D2’s posting venue “Immigration & Checkpoints

Authority”. However, tuning on a separate set of tweets had resulted in a strong

time decay for word weights. Given the substantial time difference of 38 minutes

between D1 and D2, the weight of ‘ica’ is overly small and has negligible effect

on D2’s geolocation. However by visitation query expansion, one is able to aug-

ment D2 by the word ’collecting’. This is a word strongly indicative of the posting

venue which is a government building where users frequently tweet about collect-

ing their immigration-related documents. Thus visitation query expansion improves

geolocation by including an additional informative word. This improvement is also

retained by Max combination.

The usefulness of temporal neighbors and other tweets from the user’s history

vary over cases A to D, resulting in temporal and visitation query expansions pro-

viding different extents of improvement over the base model ‘NB’. In all cases,

Max fusion is able to handle the different scenarios and match the better performing

method. This indicates that using Max fusion is more robust than either temporal or

visitation query expansion alone.

5.4.4.2 Negative Cases

It is useful to also study cases where both temporal and visitation query expansions

do not improve geolocation. For such cases, it is also difficult for Max combination

to provide any improvements. Table 5.6 illustrates some examples.

Our experiment results and previous case studies have shown temporal neigh-

bors to be generally useful. However there exist cases where they have no effect or

worsen geolocation accuracy. For case E in Table 5.6, both tweets are from adjacent

shopping malls. Incidentally, the temporal neighbor E1 provides no additional use-
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Table 5.6: Sample geolocation cases from SG-SHT where current query expansion
approaches do not improve performances.

Case E

E1
(ION Orchard, 18:38:14)
“tiredddddd”

E2 (Cineleisure Orchard, 18:39:08)
“Running errand”

Temporal (running, 1.0), (errand, 1.0), (tiredddddd, 0.58)
Visit (running, 1.0), (errand, 1.0)
Max (running, 1.0), (errand, 1.0), (tiredddddd, 0.58)

r(w = E2) NB: 6, Temporal: 7, Visit: 6, Max: 7

Case F

F1
(Rooftop Infinity Edge Pool, 20:45:06)
“Finally here to see the Infinity Pool and get to
see the awesome night view of the Singapore Skyline”

F2
(Sky on 57, 20:47:38)
“Enjoying the nightview of Singapore Skyline while enjoying
light snacks”

Temporal
(singapore, 1.22), (skyline, 1.22), (infinity, 1.0), (awesome, 1.0),
(finally, 1.0), (night, 1.0), (pool, 1.0), (view, 1.0),
(enjoying, 0.44), (light, 0.22), (snacks, 0.22)

Visit
(singapore, 1.0), (skyline, 1.0), (infinity, 1.0), (awesome, 1.0),
(finally, 1.0), (night, 1.0), (pool, 1.0), (view, 1.0),
(enjoying, 0.44), (light, 0.22), (snacks, 0.22), (sweet, 0.13),
(reached, 0.13), (flight, 0.13), (hours, 0.13)...

Max
(singapore, 1.22), (skyline, 1.22), (infinity, 1.0), (awesome, 1.0),
(finally, 1.0), (night, 1.0), (pool, 1.0), (view, 1.0), (enjoying, 0.44),
(light, 0.22), (snacks, 0.22), (sweet, 0.13),(reached, 0.13),
(flight, 0.13), (hours, 0.13)...

r(w = F1) NB: 11, Temporal: 12, Visit: 14, Max: 16

ful information to help geolocate test tweet E2. E1’s content is not indicative of E2’s

posting venue. Using the former to augment the latter may then be akin to adding

noise. Specifically with temporal query expansion, E2’s posting venue is ranked at

position 7, worse than the position of 6 obtained with the ‘NB’ base model. In this

example, visitation query expansion does not provide additional informative words

as well. Consequently, ‘Max’ only manages to perform on par with ‘Temporal’.

On further analysis of case E, we observed the user to exhibit a cyclical visitation

pattern, in the sense that he repeatedly visits E2’s posting venue on evenings. If

we augment E2 with words from the user’s other tweets posted at around evenings,

then more informative words such as ‘shopping’ will be added to E2. This equates

to query expansion based on time of the day to model cyclical patterns. While the

idea is intuitive, one caveat is that users may adhere to or deviate from their usual
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patterns, such that improving geolocation accuracy for this case may lead to worse

accuracies in other cases. Hence further work can explore the robust fusion of cycli-

cal models/approaches with the approaches in this paper.

Case F in Table 5.6 covers a non-cyclical scenario. The user visits a rooftop

swimming pool for the first time and posts tweet F1. He also posts F2 from an

adjacent dining venue. Unfortunately, F2’s content did not improve F1’s geoloca-

tion. Due to the word ‘light’ in F2, another candidate venue3 popular for its night

lightings were elevated in rank over F1’s posting venue. Visitation query expansion

was not useful as well, resulting in F1 being augmented with dozens of words. For

brevity, we only list the top weighted words in Table 5.6. As can be seen, the added

words included ‘reached’, ‘flight’ etc., which are more indicative of the airport than

F1’s posting venue. Hence ‘Visit’ performs worse than ’NB’. Consequently, ’Max’

which combines the approach of ‘Temporal’ and ‘Visit’ also under-performs ‘NB’.

When temporal neighbors are not useful, considering a user’s visitation history may

have some mitigating effect and still improve geolocation. However Case F per-

tains to users with significant deviations from their visitation history, e.g. tourists

or users exploring new venues for the novelty factor [90]. Users may also evolve

in their visitation behavior for more mundane reasons, e.g. change of workplace.

For such cases, the current visitation query expansion approach is likely to be in-

adequate. In future work, it will be interesting to explore how novelty seeking and

behavior evolution can be modeled and combined with the current approaches.

5.5 Concluding Remarks

We have explored geolocation of tweets that are close in time to other tweets posted

by the same user. Such a scenario is fairly common, but to our knowledge, has not

been studied in prior work. In particular we treat test tweets as akin to queries and

propose temporal and visitation query expansions. These are conceptually simple,

but novel expansion approaches motivated by observed mobility patterns of users.
3A park venue: Gardens by the Bay
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By ‘Max’ fusion of both query expansion approaches and stacking with HMMs,

we achieve an effective and robust model for geolocation. In future work, it will

be interesting to explore how other behavioral aspects such as cyclical visits and

novelty seeking can be modeled to improve geolocation.
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Semantic Context Recovery
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Chapter 6

Explicit Entity Linking

6.1 Introduction

We frame the recovery of semantic context as the entity linking problem. In this

chapter, we explore Explicit Entity Linking (EL) whereby we link mentions of

named entities in tweets to the correct knowledge base entity. This is challenging

as tweets are short. Thus mentions arise in short documents, which lack substantial

content or context for deriving features. The sparsity of information motivates the

use of collective linking, i.e. exploiting information from multiple tweets to link

mentions in a single tweet. Prior work [38, 79] had considered collective linking

over multiple tweets from the same user, and tweets linked by common terms or

hashtags. In this work, we focus on the orthogonal aspects of space and time for

collective linking. This is motivated by observations of tweeting behaviour with

respect to events and geographical effects.

Our main contribution is a new collective entity linking method [13] to exploit

event and geographical effects. We connect tweets close in space and time to form

a tweet graph, and define a novel objective function over the graph. This mitigates

the challenge of entity linking for overly brief content. In addition, we introduce

a comparison-based evaluation approach in Section 6.4 that mitigates challenges in

evaluation.
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6.2 Motivating Characteristics

6.2.1 Event Effects

Tweets may be event related [2]. When tweet-worthy events occur, users may tweet

about related entities, leading to an excess of related mentions in a space-time cube,

i.e. a certain time period defined over a geographical area. Within a space-time

cube, we can conduct collective linking and share linkage information across tweets.

For example, the following are two actual tweets close in space and time: “Stones”

and “Waiting for @RollingStones to come on stage so we can rock out Singapore”.

Consider the mentions in italics. The first tweet has insufficient context for linking

Stones. The second tweet’s mentions can be linked with much less ambiguity, since

RollingStones refers to the band entity ‘The Rolling Stones’ with high probability

[80]. Given the space-time proximity of both tweets, one can now use the second

tweet’s results to link the first tweet’s Stones to the band with much more certainty.

6.2.2 Geographical Effects

Besides events, locations also affect tweeting behaviour. Certain entities may be

more prevalent and mentioned more frequently at certain locations. Thus we can ex-

ploit geographical effects by collectively linking tweets that are close in space. For

example, compare the following two tweets with mentions in italics: “MBS #throw-

back”, “Standby for SHOWTIME! @ Marina Bay Sands”. MBS in the first tweet is

the surface form for many possible entities. The probability that it refers to ‘Marina

Bay Sands’, a Singapore tourist attraction, is extremely low [80] at 0.000155. How-

ever if the second tweet with unambiguous mentions to ‘Marina Bay Sands’ occurs

spatially near the first tweet, then it is much more plausible for the latter to be men-

tioning the same entity. Both event and geographical effects are often coupled due

to events at Points of Interest (POI), e.g. concerts at a tourist attraction.
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6.3 Approach

6.3.1 System Architecture

Our system architecture comprises of Pre-processing, Local linking and Collec-

tive linking. Given a set of tweets for entity linking, the first pre-processing step

is mention extraction with an NER tool. The process is often noisy with mentions

being omitted or extracted partially. To mitigate this, we apply TweetNLP [64],

which was specially developed for tweets. Next, for each extracted mention, we

use the Google lexicon [80] to identify candidate Wikipedia entities. The lexicon

lists possible mentions {m} for each entity e along with the occurrence probability

p(e|m) derived from web hyperlinks.

In local linking, mentions to entities are linked individually for each tweet, with-

out considering information from other tweets. We implemented two local linking

methods: TAGME [27] and Loclink, introduced in Section 6.3.2. Local linking can

be used to initialize the entity assignments for collective linking.

In collective linking, each mention in a tweet is linked using information within

that tweet and from other tweets. Collective linking comprises three steps:

• Tweet Graph Construction: We first construct a graph that connects tweets

by spatio-temporal proximity. The tweet graph is used to propagate informa-

tion. Section 6.3.3 describes the construction process.

• Initialization: This means assigning an initial entity to each mention for sub-

sequent refinement. This can be done using the results from local linking or

with some other heuristics. We have opted for the former.

• Optimization: We define an objective function over the tweet graph and

search for entity assignments to optimize it. Refer to section 6.3.3.
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6.3.2 LocLink: A Local Linking Method

Local linking processes each tweet individually, assigning entities that are semanti-

cally related to each other to make each tweet coherent. To quantify coherence, we

adopt the semantic relatedness measure proposed in [58]. Consider entity ea. De-

note other entities with outgoing links to ea as the set I(ea). Equivalently, regard ea

as having |I(ea)| incoming neighbors. For a pair of entities ea, eb with overlapping

incoming neighbors, semantic-relatedness is then computed as:

SR(ea, eb) = 1− log(max{|I(ea)|, |I(eb)|})− log|I(ea) ∩ I(eb)|
log(|W |)− log(min{|I(ea)|, |I(eb)|})

(6.1)

where I(ea)∩ I(eb) are entities which link to both ea, eb in Wikipedia and W is the

total number of Wikipedia entities. If I(ea) ∩ I(eb) = ∅, we set SR(ea, eb) = 0.

Intra-tweet Coherence Let di represent the i-th tweet containing |mi|mentions

with set of linked entities ei. Also let mia be the a-th mention of di, with corre-

sponding linked entity eia. We define the intra-tweet coherence as average semantic

relatedness between its assigned entities:

C(di, ei) =
1

0.5|mi|(|mi| − 1)

∑|mi|

a=1

∑|mi|

b>a
SR(eia, eib) (6.2)

Maximizing intra-tweet coherence makes each tweet as coherent as possible. How-

ever assigned entities can be rather obscure or rare. Hence a prior p(e|m) is usually

included [77, 51, 79] to favor more popular entities. In fact using only the prior for

entity linking is a surprisingly strong baseline [50, 74], while including the notion

of coherence improves performance further. We use the prior from [80] and define

the objective function for tweet di as:

Qi(di, ei) = ξ.C(di, ei) +
τ

|mi|
∑|mi|

a=1
p(eia|mia) (6.3)

where ξ and τ are combination weights. In the unsupervised setting, we simply let

ξ = τ and assign entities to maximize Qi. For single-mention tweets, coherence is
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undefined and we simply assign the entity with the highest prior to the mention. We

call the above local linking method as LocLink.

6.3.3 Collective Linking in Space and Time

Inter-tweet coherence. For collective linking, we exploit the fact that different

tweets close in space and time may be related to the same event or have a common

geographical effect, e.g. mentioning a common location. Therefore we expect some

of the tweets to be inter-coherent. For computational efficiency, we shall only con-

sider tweet pairs. Given tweets di and dj with respective linked entity sets ei and ej ,

we define the inter-tweet coherence as:

C(di, dj, ei, ej) =
1

|mi|.|mj|
∑|mi|

a=1

∑|mj |

b=1
SR(eia, ejb) (6.4)

Tweet Graph Construction. Denote tweet di’s timestamp as ti and its location

as li. In the simplest graph building scenario, we first retrieve geocoded tweets from

a desired time interval and geographical area. For convenience, we call this a space-

time cube although the geographical area need not be rectangular. For every pair of

tweets di and dj , we connect them if |ti − tj| ≤ δt and dist(li, lj) ≤ δd, where δt

and δd are the respective thresholds for temporal and spatial proximities, and dist()

measures geographical distance.

We can relax the spatial requirement to include non-geocoded tweets. This as-

sumes that non-geocoded tweets related to an event/POI may mention similar en-

tities as the geocoded tweets. Thus from geocoded tweets in the initial space-time

cube, we first extract mentions. We then query for more tweets with similar men-

tions and from same-city users (based on their profiles). We now have a mixture

of tweets with and without location information. To consistently form the graph,

we connect tweets based only on temporal proximity, i.e. |ti − tj| ≤ δt. Note

that although individual edges are based on temporal proximity, the overall graph

incorporates spatial-proximity since tweets are constrained to be from the initial
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space-time cube or users in the same city.

Objective function. Let D and E be the set of nodes and edges respectively in

the tweet graph. We define our objective function for collective linking:

Q(D,E, e) =
α

|D|
∑|D|

i=1
C(di, ei) +

β

|E|
∑|E|

(di,dj)∈E
C(di, dj, ei, ej)

+
γ

|M |
∑|T |

i=1

∑|mi|

a=1
p(eia|mia) (6.5)

where |M | is the total number of mentions, with set of linked entities e; and α,

β and γ are global combination weights. Essentially Q is a linear combination

of intra-tweet coherence, inter-tweet coherence and the entity prior term. Thus Q

encapsulates our earlier discussed intuitions about coherence and entity popularity.

For a fixed set of weights, the optimization problem is to assign entities to mentions

to maximize Q. For optimization, we use the decoding algorithm [51].

Parameter Settings. We consider unsupervised collective linking where la-

beled data is unavailable. Given that tuning/training is not possible, we consider

two intuitive cases of averaging. In the first case, we use uniform weights in Q,

i.e. α = β = γ. We referred to this setting as Uniform. Alternatively, one can

regard coherence and entity prior as very different notions and assign them equal

importance. Hence in the second case, one averages over coherence and the entity

prior, i.e. α = β, γ = α + β. We denote this setting Avg(Coh,prior).

6.4 Comparison-Based Evaluation

Consider a typical entity linking approach where one provides some initial entity

assignments for initialization. For example, we can initialize collective linking

with local linking, rather than using random initialization or some heuristics. In

comparison-based evaluation, we shall compare the initial and final linkings to de-

termine if a change is an improvement (positive change), a degradation (negative

change) or neither. This has several advantages which we discuss next.
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Annotation Effort. Firstly, we only need to compare linkings which are differ-

ent between two linking results. This reduces the data annotation effort, compared

to traditional evaluation using accuracy [78], i.e. proportion of correctly linked

mentions. For example, to compute accuracy for a dataset of 100 mentions, each

mention first has to be linked to the correct KB entity, typically via manual annota-

tion [56]. In our evaluation framework, the annotation effort depends on the linkage

differences between techniques and is usually less. For example, if all 100 mentions

are linked by local linking and collective linking suggested 5 changes, then we only

need to examine 5 changes. Clearly, more positive than negative changes is desired

and implies improved performance.

Incomplete KB & Imperfect Linking. No KB can cover all mentioned entities.

One can ignore unlinkable mentions or link them to the catch-all NIL entity [78, 55,

79]. However this discards data that may be useful for evaluation. Related to this,

there is also the notion of how fine-grained a linkage needs to be, in order to be

considered correct. Mentions can be linked to entities at different type or instance

granularities. If one considers all coarse-grained linkages as wrong, many linkages

useful for comparing techniques will be discarded.

For example, consider Table 6.1. The tweet was sent from the game venue dur-

ing a college football match between Duke and Indiana University. Linking the

mention Duke to Wikipedia, the most fine grained entity is e1, i.e. Duke Univer-

sity’s football team. However a linking technique may miss this perfect linking and

choose other entities. Table 6.1 also lists Wikipedia entities in decreasing order of

relatedness to the actual football team. Consider two techniques, one linking Duke

to e2, the other to e4. Clearly the former provides useful information, even though

both techniques miss out on e1. In such cases, we still want to differentiate both

techniques instead of regarding both linkings as equally wrong. If e1 is not in the

KB, but parent organizations such as e2 and e3 are present, it is still possible and

reasonable to compare linking performance on Duke, instead of just discarding the

mention as unlinkable. This calls for a comparison-based kind of evaluation.
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Table 6.1: A sample tweet with mentions (in Italics). Row 2 lists candidate
Wikipedia entities for the mention Duke, in decreasing relatedness.

“Go Duke! #PinstripeBowl @Yankee Stadium”
• e1: Duke Blue Devils football: Duke University’s football team
• e2: Duke Blue Devils: Duke University’s varsity sports team
• e3: Duke University: Duke University
• e4: Duke: Monarch ruling over a duchy

Noisy Mention Extraction. Automated mention extraction is noisy. Often, in-

complete sub-mentions are extracted. Even in cases where a mention should link to

a unique entity, the notion of correct/wrong linking is less clear when sub-mentions

are involved. Fortunately in comparison-based evaluation, we can compare entity

assignments and pick the better one. For example, consider the tweet “Watching

Jeff Dunham @star performing arts centre with the family”, where mentions (in

italics) were extracted with TweetNLP [64]. The complete venue mention is star

performing arts centre. However the sub-mention star was extracted, constraining

entity linking to link star. Instead of discarding such cases, one can still compare

linking results, e.g. linking to ‘Movie star’ is intuitively preferred over ‘Star’: a

luminous sphere of plasma in space. On a related note, if an extracted mention is in

fact not of a named-entity, such comparisons can also be used for evaluation.

6.4.1 Evaluating Changes

To evaluate changes, we define what constitutes each outcome. Firstly, we observe

changes to often reduce or increase the specificity/granularity of linked entities.

This leads to the consideration of parent-child relationships between entities in a

type hierarchy. For brevity of discussion, we overload the term of entity types such

that types can refer to semantic categories, organizations or locations. A super-

type is decomposable into sub-types of finer granularities and this is applicable

to semantic categories, instances, organizations and locations. For example entity

e1:‘Duke Blue Devils Football’ is a sports team instance under the semantic cate-

gory of ‘American football’, and also a child organization of ‘Duke University’. For

a location example ‘New York City’ (NYC) contains (and is the parent of) ‘Madi-
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son Square Garden’, a multi-purpose indoor arena.

Clearly, we are considering more parent-child relationships beyond the seman-

tic categories in ontologies. Hence any automated evaluation using only ontolo-

gies, e.g. the Dbpedia ontology1 will be highly incomplete. Instead we compare

type information using Wikipedia content when assessing linkage changes, e.g. e1’s

Wikipedia page starts with “The Duke Blue Devils Football team represents Duke

University in the sport of American football”.

We now discuss positive changes using Table 6.1:

• Incorrect linking to parent entity / correct linking: In this case, initial

linking is unrelated and wrong, e.g. linking Duke to ‘Duke’, ruler of a Duchy.

Changing the linking to either ‘Duke University’ (a parent entity) or ‘Duke

Blue Devils football’ (the correct linking) is a positive change.

• Parent entity to correct linking: An example of this is changing the linking

for Duke from ‘Duke University’ to ‘Duke Blue Devils football’. Intuitively,

this provides more specific information to the system user.

• Ancestor entity to parent entity: In this case, the final linking is still not

perfect, however the information specificity is increased, e.g. changing the

linking for Duke from ‘Duke University’ to ‘Duke Blue Devils’.

• Incorrect sibling entity to parent entity: We regard coarse-grained, re-

lated information as more useful than specific, but wrong information, e.g.

if Duke is initially linked wrongly to ‘Duke Blue Devils men’s basketball’

and changed to ‘Duke Blue Devils’, it counts as a positive change.

For the above, reversing the change direction counts as negative changes. In addi-

tion, changes can be neither positive nor negative, e.g. replacing an incorrect entity

with another. Such “neither” changes also include changing an initial unrelated

entity assignment to a sibling or child entity, although this arguably improves our

understanding of the tweets involved. For example, if Duke in Table 6.1 is initially

1http://mappings.dbpedia.org/server/ontology/classes/
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linked to ‘Duke’ and changed to ‘Duke Blue Devils men’s basketball’, we count it

as a neither. Section 6.5.4 provides examples from experiments.

6.4.2 Limitations

While we have discussed the advantages of comparison-based evaluation, it is also

important to point out the limitations. Firstly, since comparison-based evaluation

compares the results of model pairs, the number of inter-model comparisons and the

number of inter-model changes to report will scale quadratically with the number of

models compared. If one is comparing many models, then comparison based evalu-

ation can lead to significant comparison effort and a large result table which may be

harder to interpret. Secondly, while comparison based evaluation can be applied for

both unsupervised and supervised models, the latter will imply that researchers have

access to labeled data anyway, which cancels out the annotation effort advantage of

comparison-based evaluation. For this reason, we see comparison based evaluation

as being more likely to be used for comparing unsupervised models.

In short, it is crucial to consider one’s experiment setup and resources for anno-

tation when deciding whether to use comparison-based evaluation or the traditional

accuracy-based evaluation.

6.5 Experiments

6.5.1 Data

We conduct experiments on New York City (NYC) and Singapore (SG) tweets. To

obtain meaningful tweets for linking (instead of trivial blabber [56]), we collect

tweets near POIs or in space-time cubes covering performance events. For NYC,

we obtained geocoded tweets from the CHIMPS Lab2 that are within 100 meters of

five popular event venues. For each venue, we consider two evenings (18:00-22:00)

in Dec 2015 with the most tweets, obtaining 10 space-time cubes with an average

2http://cmuchimps.org/
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of 24.8 tweets. For each cube, we form a spatio-temporal tweet graph for collective

linking where tweets within 1 hr and 100 m of each other are connected. For Singa-

pore, we relax the spatial proximity requirement as discussed in Section 6.3.3 and

obtain an average of 46.47 tweets over space-time cubes covering 17 performance

events. The tweets are a mixture of geocoded and non-geocoded tweets. We con-

nect tweets within 1 hr of each other. Note that although individual edges in the

tweet graph are based on temporal proximity, there is still a coarse notion of spatial

proximity as most tweets are from Singapore, a small geographical area.

Following tweet graph construction, we apply both manual and automated men-

tion extraction. For the latter, we use TweetNLP. For manual mention extraction,

we process all 10 space-time cubes for NYC and 8 space-time cubes (out of 17) for

SG, selected based on largest number of tweets. We link all mentions regardless of

whether the parent tweets are related to the POI or event.

6.5.2 Local Linking Baselines

We use collective linking to modify the results of local linking. Thus the latter

are equivalent to baselines. We implement LocLink (Section 6.3.2) with uniform

weights for the objective in Equation (6.3). We also implement TAGME [27], which

is based on weighted voting among candidate entities.

6.5.3 Results

Results are summarized in Table 6.2 for New York City (NYC) tweets and Table

6.3 for Singapore (SG) tweets. Comparing collective linking to local linking, we

see linkage improvements across all experiment settings. Consistently, collective

linking makes more positive changes than negative changes, when applied on the

results of local linking. In most cases, the ratio of positive to negative changes

is larger than 2. The highest ratio is 12, for the experiment using NYC tweets

with manually extracted mentions, TAGME for local linking and averaging over

coherence and entity for Q, i.e, Avg(coh, prior). The lowest ratio is 1.44, again on
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NYC tweets and with TweetNLP, LocLink and Avg(coh, prior).

Table 6.2: Results on NYC tweets. Bracketed numbers are counts of unique men-
tions over which changes occur. (∆: total changes, +ve: total positive, -ve: total
negative, Ratio: +ve/-ve. **: significant at p-value=0.01, *: sig. at p-value=0.05)

Local linking method LocLink TAGME
Mentions Setting ∆ +ve -ve Ratio ∆ +ve -ve Ratio
Manual Uniform 43 22 (14) 9 (6) 2.44∗∗ 73 37 (18) 6 (5) 6.17∗∗

Manual Avg(coh,prior) 20 13 (9) 3 (3) 4.33∗ 62 36 (18) 3 (3) 12.00∗∗

TweetNLP Uniform 61 23 (14) 11 (10) 2.09∗ 103 38 (19) 13 (12) 2.92∗∗

TweetNLP Avg(coh,prior) 50 13 (8) 9 (7) 1.44 95 35 (18) 9(7) 3.89∗∗

Table 6.3: Results on SG tweets. Notations as in Table 6.2.

Local linking method LocLink TAGME
Mentions Setting ∆ +ve -ve Ratio ∆ +ve -ve Ratio
Manual Uniform 59 22 (10) 7 (4) 3.14∗∗ 93 38 (14) 8 (6) 4.75∗∗

Manual Avg(coh,prior) 28 16 (7) 2 (2) 8.00∗∗ 78 37 (16) 8 (6) 4.63∗∗

TweetNLP Uniform 83 29 (10) 9 (7) 3.22∗∗ 168 61 (21) 30 (8) 2.03∗∗

TweetNLP Avg(coh,prior) 44 23 (8) 2 (2) 11.5∗∗ 128 54 (23) 23 (6) 2.35∗∗

Our results are statistically significant. Considering positive and negative changes,

we conducted significance testing with the binomial test. The null hypothesis is that

the proportion of positive and negative changes is equal. Except for one setting

(TweetNLP, LocLink and Avg(coh, prior)), we are able to reject the null hypothe-

sis at p-value of 0.05.

In both Tables 6.2 and 6.3, we also tabulate the number of unique mentions (in

brackets) over which changes are made. This provides another view of the results

accounting for mention diversity. In the trivial case, if all mentions are identical and

initially wrongly linked, then it is easy to achieve many positive changes just from

correcting one unique mention. However this overstates the performance advantage

of collective linking due to a lack of mention diversity. From both tables, we see

that the number of unique mentions for positive changes is consistently larger than

that for negative changes, which is reassuring.

Collective linking exerts much of its influence through inter-tweet coherence.

Recall that forUniform, we use uniform weights forQ, while forAvg(coh, prior),

weight for the entity prior is set equal to total weights from intra and inter-tweet
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coherence. Thus in Avg(coh, prior), inter-tweet coherence has smaller relative

weight and plays a smaller role in affecting the linking results. This means that

collective linking should suggest fewer changes. Indeed, we see that for a fixed

mention extraction and local linking method, there are always fewer changes in

Avg(coh, prior) than Uniform.

6.5.4 Qualitative Analysis

Many, but not all changes are shared across experiments. We illustrate changes

for one experiment on NYC using the following settings: TweetNLP for mention

extraction, TAGME for local linking and uniform weighting for Q. Sample tweets

are displayed in Tables 6.4 to 6.6, along with changes in the format: Initial entity→

final entity. Readers can inspect Wikipedia entities by appending the entity name to

the URL ‘https://en.wikipedia.org/wiki/’.3

Positive Changes. Table 6.4 shows positive changes. Tweets N1 and N2 are

from a college football match between Duke and Indiana University. The mention

Duke in N1 is initially linked by TAGME to ‘Duke’: ruler of a Duchy. Collective

linking then changed it to ‘Duke University’. Although this is not perfect, it is an

improvement since Duke University is the parent organization of the football team

involved. For N2, the final entity for Hoosier is correct in the strictest sense. Tweet

N3 illustrates geographical effects, where surrounding tweets linked to NYC-related

entities drive changes in the initial linking. For example, N3 is about a basketball

game involving Syracuse University. Its final linking is a positive change, since an

unrelated entity (a location in Italy) has been changed to a parent entity (university’s

location in NYC).

Negative Changes. Table 6.5 illustrates negative changes. N5’s mention World

is not from a named entity, but has been extracted by TweetNLP. It is impossible

to automatically filter out all such mentions, hence linking is still conducted. The

final linking in N5 is overly specific and wrong. N5 originates from NYC and
3e.g. entity ‘Duke University’ for tweet N1 (Table 6.4) is described in ‘https://en.wikipedia.org/

wiki/Duke University’.
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Table 6.4: Examples of positive changes (in bold), with affected mentions in italics.

N1
“LETS GO DUKE!! #PinstripeBowl @Yankee Stadium”
Duke→ Duke University

N2
“May be the post-season but finally getting to see the #Hoosiers play”
Hoosiers→ Indiana Hoosiers football

N3
“Syracuse game with my dad at The Garden-we’re both alumni #cuse
#cusenation #nyc”
Syracuse, Sicily→ Syracuse, New York

Table 6.5: Examples of negative changes (in bold), with affected mentions in italics.

N5
“World’s Most Famous Arena for my sixth sporting event in two weeks...”
World→World Wrestling Entertainment

N6
“Incredible spread by the @yankees. Choice of pork,
chicken, hot dogs and burgers. Salad bar”
Yankee→ New York Yankees

surrounding tweets mentioned entities that drive the negative change. For example,

mentions of NYC will drive the linking towards ‘World Wrestling Entertainment’

(WWE) since WWE’s event had been held in NYC before. For N6, initial linking

is to ‘Yankee’, which discusses usage of the word, including its usage in referring

to Americans. The final linking is wrong and refers to an American baseball team.

Table 6.6: Sample changes (bold) for affected mentions (italics) that arguably im-
prove tweet understanding, but are not counted as positive changes.

N9
“Bowl Games with Famiky #CandyStripes NotPinstripes #PinstripeBowl”
Bowl→ Super Bowl

N10
“I Met Former UFC Fighter &amp; WWF Wrestler Dan The Beast Severn
At The MMA World Expo. Dan Is A...”
World Wide Fund for Nature→ Hulk Hogan

Neither. Table 6.6 shows two examples where the final linking arguably im-

proves our understanding of the tweet content. N9 is generated during a college

football game. After collective linking, its mention Bowl is linked to a different

series of football game, much better than the initial linking to ‘Bowl’, a container.

N10’s mention WWF is finally linked to a WWF wrestler, a more related entity than

the initial linking to a nature conservation organization. Nonetheless such cases do

not fall into our discussed scenarios in Section 6.4.1 and can be subjective to assess.

Hence we do not count them as positive change.
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6.6 Concluding Remarks

Motivated by event and geographical effects, we have proposed a collective en-

tity linking approach for tweets over space and time. In addition, we proposed a

comparison-based evaluation strategy that focuses on the linkage differences be-

tween competing entity linking techniques. This reduces manual annotation effort

and mitigates challenges such as noisy mention extraction and incomplete KB. Our

results show that collective linking over space and time performs much better than

local linking techniques that process individual tweets. In extensive experiments,

collective linking improves the linking quality of local linking.
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Implicit Entity Linking

7.1 Introduction

In the final track of this dissertation, we recover the semantic contexts of food-

related posts. As dining comprises an important and interesting activity for many

users, they post food-related microblogs or reviews on various platforms such as

Instagram, Foursquare, Yelp, etc. Such user generated content can be mined for

profiling food lovers or for food and dining venue recommendations. In fact, iden-

tifying the local cuisines in posts has been justified [60] as useful for applications

such as helping tourists in their dining choices. In this chapter, we propose to link

food-related posts to a knowledge base of food entities. Given a test post that men-

tion or merely imply some food entity, the task is to rank food entities in order of

relevance.

We refer to this problem of linking posts as Implicit Entity Linking (IEL) [66,

56]. In IEL, one links each test post to one or more related entities, without the

need for mention extraction. This contrasts with the Explicit Entity Linking (EL)

problem [51, 79, 38, 13] which links mentions of named entities and which we have

explored in Chapter 6. Notably IEL circumvents the challenge of mention extraction

in social media where posts are often grammatically noisy and colloquial. IEL also

generalizes easily to various content scenarios. For example, consider the text snip-
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pets “XX Chicken Rice”, “rice with chicken” and “having lunch”. These are cases

where food entities are respectively mentioned via proper nouns, improper nouns

and merely implied. All snippets can be processed via IEL while EL is mention-

dependent and will process only the first snippet comprising proper nouns. Lastly,

IEL is also easier to conduct if one is only focused on a certain entity type, e.g.

food entities. There is no need to ensure that only mentions of the right type are

extracted.

Problem Setting. We formulate IEL as a ranking problem. For each post, we

rank candidate food entities such that high ranking entities are more likely to be

related. We assume that posts are not labeled with food entities for training, but are

associated with posting venues. Both assumptions are realistic. Firstly labeled data

are typically expensive to obtain. Secondly venue information is often available for

platforms such as Foursquare, Instagram, review websites etc. We use Wikipedia as

the knowledge base to link against. However our proposed models are general and

not specific to Wikipedia.

Contributions. Our contributions are (1) an empirical analysis whereby we

highlight that venues are focused around a limited set of food entities each, i.e.

entity-focused characteristic and (2) a series of models for IEL. Our best performing

model comprises the following aspects:

• Entity-Indicative Weighting: We propose a weighting scheme in our model

to assign more weights to entity-indicative words. The intuition is that such

words are more important for inferring entities than other words.

• Query Expansion: The entity-focused characteristic implies that a test post

is likely to share common food entities as other same-venue posts. Hence

we augment each test post via query expansion to include words from other

same-venue posts.

• Venue-based Prior: Leveraging the same entity-focused characteristic, we

generate venue-based prior distribution over food entities in an initial entity

linking stage. This prior is used to bias the entity scores for the next stage.
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By combining all above aspects, our best model EW-EWQE(v) outperforms state-

of-the-art baselines that have been adapted for implicit entity linking.

7.2 Empirical Analysis

7.2.1 Datasets

In our empirical analysis and subsequent experiments, we use data from Instagram

and Burpple 1. The latter is a popular food review website in Singapore. Both

datasets are generated by users from Singapore, a city well known for its wide range

of food choices. Since both datasets are from Singapore users, we link their posts

against a list of 76 food entities derived from the Wikipedia page on Singapore’s

cuisines2. Further details are discussed in Section 7.4.2.

Table 7.1: Sample posts comprising Instagram captions and Burpple reviews.

Instagram
“super heavy lunch. and spicy! but its a must-try cafe!
#food #foodporn #foodie #foodgasm #badoquecafe #instagood”
“yesterday’s lunch! #fishballnoodle #food #foodporn the soup was damn good”

Burpple

“Signature Lamb Rack ($46++) Very neat rectangular bricks of lamb, which we
requested to be done medium-well.Nothing too impressive.. hurhur. Service
is top -notch though”
“Good morning! One of my favourite old school breakfast but he not his fav”

For Instagram, we collect highly popular food-related captions from 2015 using

hashtags of food e.g. ‘#foodporn’ 3, or food entities e.g. ‘#chillicrab’. Follow-

ing data cleaning and merging of duplicate venues, we obtained 278,647 Instagram

posts arising from 79,496 distinct venues. For Burpple, all its posts are food re-

views and filtering by hashtags is not required. From Burpple, we obtained 297,179

posts over 13,966 venues. Table 7.1 illustrates four sample posts, two each from

Instagram and Burpple. It can be seen that some posts are more informative about

specific food entities than others. For example, the first instagram example does not

1https://www.burpple.com/sg
2https://en.wikipedia.org/wiki/Singaporean cuisine
3the most popular food related hashtag on our Instagram dataset
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reveal the food entity explicitly while the second example mentions fish ball noodle.

7.2.2 Analysis

A food venue typically focuses on some cuisines or food themes and is unlikely

to serve an overly wide variety of dishes. For example, it is more probable for a

restaurant to serve either Western or Asian cuisines, rather than both. Consequently,

each food venue is likely to be associated with a limited number of food entities. We

termed this as the entity-focused characteristic. To quantify this characteristic, we

compare the number of distinct food entities per venue against a null model where

the characteristic is absent. On average, we expect food venues to be associated

with fewer food entities when compared against the null model.

For each venue v with multiple posts, we first compute the number of distinct

entities over its posts. We then compute the expected number of distinct entities

under the null model following the steps below:

• For each post from v, sample an entity e based on global entity probability

i.e. entity popularity. Add to entity set Enull(v).

• Compute |Enull(v)|, the distinct food entity count under the null model.

We conduct our analysis on 2308 venues from Instagram and 362 venues from Burp-

ple which have at least two user-labeled posts each. Such posts contain entity-

indicative hashtags that have been assigned by their authors, e.g. ‘#chillicrab’,

‘#naan’ etc. For venues with only one such post, there can only be one distinct food

entity each under the null model and comparison is not meaningful. As sampling is

required for the null model, we conduct 10 runs and take the average expected food

entity count for each venue. For further analysis, we also repeat a similar procedure

for users to compare their actual and expected food entity count. The intuition is

that users may possess the entity-focused characteristic as well due to food pref-

erences or constraints e.g. vegetarian. The user statistics are computed over 2843

Instagram users and 218 Burpple users.
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(a) CDF (Instagram venues) (b) CDF (Instagram users)

(c) CDF (Burpple venues) (d) CDF (Burpple users)

Figure 7.1: CDFs of actual and expected distinct food entities for venues and users.
F(x) on y-axis is probability of venues or users with ≤ x distinct food entities.

Figure 7.1 plots the Cumulative Distribution Function (CDF) of distinct food

entities for venues and users on both Instagram and Burpple, whereby distinct entity

counts are on a per venue or user basis. In each graph, the blue line represents the

actual count while the red line is for counts from the null model (averaged over 10

runs). For Figures 7.1(a) and (c) venues are shown to be focused around specific

food entities such that on average, each venue has fewer distinct food entities than

expected under the null model. For example in Figure 7.1(a), around 98% of the

Instagram venues are associated with 10 distinct food entities or less in the actual

data. In contrast, the null model has a corresponding proportion of around 91%. A

similar trend can be observed for Burpple venues as shown in Figure 7.1(c). Thus,

the entity-focused characteristic is clearly evident for the venues of both datasets.

Figures 7.1(b) and (d) plot for Instagram and Burpple users respectively. There

is much less difference between the actual and null model count, as both the blue

and red lines overlap substantially in both figures. Comparing the plots for venues

and users, we conclude that users are relatively less focused on food entities when
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compared to venues. These findings have implications for entity linking and should

be considered when designing models. In particular, given a test post with both user

and venue information, it may be easier to improve linking accuracy by exploiting

other posts from the same venue rather than from the same user. In Section 7.3.2, we

shall introduce a query expansion approach based on exploiting the entity-focused

characteristic of venues.

7.3 Models

In this section, we present a series of models for IEL, culminating in a final best

performing model. We start with the naive Bayes model. This can be regarded as a

standard information retrieval baseline. Let w be the set of words in a post, where

for notation simplicity, we assume each unique word w ∈ w occurs only once in the

post. In our problem setting, we assume the entity probability p(e) to be uniform as

labeled posts are unavailable for estimation. The probability of food entity e given

w is:

p(e|w) ∝
∏

w∈w
p(w|e) =

∏
w∈w

f(e, w) + γ∑
w′ f(e, w′) +Wγ

(7.1)

whereby f(e, w) is the number of co-occurrences of word w with entity e, γ is the

smoothing parameter and W is the vocabulary size. In the absence of labeled posts,

the co-occurrences are estimated solely from the Wikipedia knowledge base. For

each food entity e, we derive f(e, w) by the count ofw occurrences in the Wikipedia

page of e and in Wikipedia text snippets around hyperlinks to e (refer Section 7.4.2).

Finally entities are ranked by p(e|w). The naive Bayes model is efficient and highly

amenable to extensions.

7.3.1 Entity-Indicative Weighting (EW)

The naive Bayes model multiplies word probabilities without considering which

words are more important for entity linking. Intuitively, some words are more in-

dicative of food entities than others and should be assigned greater importance in
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entity linking models. Formally, an entity-indicative word w has relatively high

p(e|w) for some entity/entities in comparison with other words, e.g. ‘sushi’ is more

entity-indicative than ‘dinner’.

An entity-indicative word is different from a high probability word given an

entity. For example, a food entity e may have high probability of generating the

word ‘rice’, i.e. p(‘rice’|e) is high. However if many other food entities are also

related to rice, then the word may not indicate e with high probability i.e. low

p(e|‘rice’). If a post w mentions other more entity-indicative words, e.g. related to

ingredients or cooking style, then such words should be assigned more importance

when computing p(e|w).

To capture the above intuition, we propose the entity-indicative weighting (EW)

model. This assigns continuous weights to words and incorporates easily into the

naive Bayes model. Let β(w) be the entity-indicative weight for word w. This

weight β(w) is added as an exponent to the term p(w|e) in Equation 7.1. By taking

the log to avoid underflow errors, we obtain the EW model:

ln p(e|w) ∝
∑

w∈w
β(w) ln p(w|e) (7.2)

Interestingly, Equation (7.2) is similar in form to the weighted naive Bayes model

proposed in prior work [89, 28] for classification tasks. Here, we use it for IEL.4

To compute the weights β(w), we apply the vector space model and treat entities

as akin to documents. By definition, entity-indicative words are associated with

fewer entities and have large inverse-document frequencies which can be used as

weights. Formally given word w, we compute its weight as:

β(w) = log(1 + E/df(w)) (7.3)

where E is the number of distinct food entities considered and df(w) counts entities

with at least one occurrence of w.
4We have earlier used a similar model for geolocation. See Section 4.3.1.
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7.3.2 Query Expansion with Same-Venue Posts

Based on the entity-focused characteristic, we expect that as a venue accumulates

posts over time, its set of entities will be discussed repeatedly over different posts.

This implies that for a test post discussing some entity e, there may exist other

same-venue posts related to e. Hence if we augment the test post appropriately

with words from other same-venue posts, we can potentially mitigate information

sparsity in one post and improve entity linking. To achieve this, we treat each test

post as a query and apply query expansion.

Let test post w be posted from venue v. The idea is then to score candidate

words w′ appearing in other posts from v’s and whereby w′ 6∈ w. The expanded

words w′s aim to provide additional information for inferring the latent entity in

w. Among the many scoring schemes in the literature, we adopt a relatively simple

cosine similarity scheme from [21]. This scheme scores each candidate word w′ by

its average relatedness 0 ≤ Ω(w′,w; v) ≤ 1 to the test post as:

Ω(w′,w; v) =
1

|w|
∑

w∈w

dv(w
′, w)√

dv(w′)dv(w)
(7.4)

where |w| is the number of words in w, dv(w′, w) is the count of v’s posts containing

both w′ and w; and dv(w) is the count of v’s posts with w. Intuitively, if w′ co-

occurs more with each word from w on average, then average relatedness is higher.

However, relatedness can be over-estimated for common words. To mitigate this,

Equation (7.4) includes in the denominator the product of word frequencies as the

normalization term.

Following query expansion using same-venue posts, we combine two different

word sets in a weighted naive Bayes model, which we refer to as QE(v)5:

ln p(e|{w,w’}, v) ∝
∑

w∈w
ln p(w|e) +

∑
w′∈w’

Ω(w′,w; v) ln p(w′|e) (7.5)

5This is very similar to our earlier geolocation model based on query expansion along the user
facet. See Section 4.3.2.
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where w’ is the set of added words for post w from venue v. Since 0 ≤ Ω(w′,w; v) ≤

1, Equation (7.5) illustrates that the original query words w ∈ w have greatest im-

portance in the model while the importance of newly added words w′ ∈ w’ vary

based on how related they are to the query.

In our experiments, we shall also compared against a model variant QE(u),

which selects augmenting words from same-user posts. As conjectured in Section

7.2.2, this model may be less likely to improve linking accuracy.

7.3.3 Fused Model (EWQE)

We now combine the EW and QE(v) models to create a new fused model called

EWQE6. Intuitively, we consider a word as important only when it is both entity-

indicative and highly related to the test post. For example, if a word is not indicative

of any entities, then it is less useful for entity linking even if it is present in the test

post or is a highly related word based on Equation (7.4) . On the other hand, a non-

related word may be indicative of some entity which is unrelated to the test post,

such that test post augmentation with it introduces noise and lowers accuracy.

To model the conjunction logic of the discussed intuitions, we multiply the

weights from entity-indicative weighting and query expansion to obtain the com-

bined model EWQE(v):

ln p(e|{w,w’}, v) ∝
∑
w∈w

β(w) ln p(w|e)+
∑
w′∈w’

β(w′)Ω(w′,w; v) ln p(w′|e) (7.6)

We note that it is also possible to combine entity-indicative weighting with user-

based query expansion. We refer to such a model as EWQE(u) and include it in our

experiments.

6Recap that we have a very similar model for geolocation. See Section 4.3.3.
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7.3.4 Venue-based Prior

In our final model, we augment the probabilistic generative process in Equation

(7.6) with a venue-based prior distribution over entities p(e|v). Let joint probability

p(e, {w,w’}, v) be factorized as p(v)p(e|v)p({w,w’}|e). We now need to compute

p(e|v) while p({w,w’}|e) can be computed as before with the EWQE(v) model.

Assuming uniform venue probability p(v) and incorporating a weighting term η

(0 ≤ η ≤ 1), we have:

ln p(e|{w,w’}, v) ∝ η ln p(e|v)+

(1− η)

(∑
w∈w

β(w) ln p(w|e) +
∑
w′∈w’

β(w′)Ω(w′,w; v) ln p(w′|e)

)
(7.7)

Basically p(e|v) bias the entity score in a venue-specific manner, rather than a post-

specific manner as prescribed by query expansion. Given a set of training posts

labeled with food entities, p(e|v) is computed trivially. However in our setting, we

assume no labeled posts for training. Hence we compute Equation (7.7) in a 2-stage

process as follows:

• Stage 1: With a desired IEL model, link the training posts. For each venue v,

compute the aggregated entity scores p̃(e|v), e.g. if using the EW model, we

compute p̃(e|v) =
∑

w∈v p(e|w). Normalize p̃(e|v) to obtain p(e|v).

• Stage 2: Combine p(e|v) with the scores from the EWQE(v) model as detailed

in Equation (7.7) to derive the final entity scores for ranking.

7.4 Experiments

7.4.1 Setup

Our experiment setup is weakly supervised. Training posts are assumed to be un-

labeled with respect to food entities. These training posts are used only for query

expansion and for computing the venue prior over entities, but not for computing the
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entity profile p(w|e). The entity profile p(w|e) and entity-indicative weights β(w)

are computed using only Wikipedia pages. However, we retain a small validation

set of entity-labeled posts for tuning model parameters with respect to the ranking

metrics. Also, all posts are already associated with posting venues, regardless of

whether they are in the training, test or validation set.

For ease of discussion, denote posts with food entity hashtags e,g, ‘#chillicrab’

as type A posts and post without such hashtags as type B posts. Type A posts are

easily associated with Wikipedia food entities, which facilitates the construction of

both test and validation sets. Our datasets contain a mixture of both post types. For

Instagram, we have 18,333 type A vs 216,881 type B posts7 whereas for Burpple,

we have 1944 type A vs 200,293 type B posts. We conduct 10 experiment runs for

each dataset, whereby in each run, we mask the food entity hashtags of type A posts

and randomly assign 50% of them to the training set, 20% to the validation set and

30% to the test set. The type B posts are all assigned to the training set. Lastly, most

of our type A posts contain only one food entity hashtag each, hence we use such

single-entity posts for evaluation in our test set.

7.4.2 Food Entities

We consider 76 food entities that are defined by Wikipedia as local cuisines of

Singapore8, as well as associated with distinct pages/descriptions. For each entity

e, we construct its profile, i.e. p(w|e) from its Wikipedia description page and

Wikipedia text snippets with hyperlinks to e. For example, the Wikipedia page

‘Pakistani cuisine’ contains many hyperlinks to the food entity ‘Naan’ 9. When

building the profile for ‘Naan’, we include the preceding and succeeding 10 words

around each hyperlink.

7Filtering by vocabulary has been applied, hence the numbers sum to less than the total food-
related posts in Section 7.2.1.

8https://en.wikipedia.org/wiki/Singaporean cuisine
9oven-baked flatbread
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7.4.3 Compared Models

We compare the following models:

• NB: The naive Bayes model from Equation (7.1).

• EW: Entity-indicative weighting as indicated in Equation (7.2).

• QE(v): Venue-based query expansion whereby each test post is augmented

with words from other same-venue posts, as indicated in Equation (7.5).

• QE(u): User-based query expansion whereby each test post is augmented with

words from other same-user posts.

• EWQE(v): Fusion of venue-based query expansion and entity-indicative weight-

ing as shown in Equation (7.6).

• EWQE(u): Fusion of user-based query expansion and entity-indicative weight-

ing.

• NB-EWQE(v): In stage 1, we compute p(e|v) with the NB model, which is

then combined with the EWQE(v) model in stage 2. See Equation (7.7).

• EW-EWQE(v): This follows the previous model except that in stage 1, we

use the EW model.

For each model, we use the validation set to tune γ, the smoothing parameter for

p(w|e), based on the grid [0.01, 0.1, 1, 10]. For NB-EWQE(v) and EW-EWQE(v),

γ is jointly tuned with η whereby η is varied in steps of 0.1 from 0 to 1.

For further comparison, we adapt EL models from [27, 26] such that they can

be used for implicit entity linking. Without any adaptation, it is impossible for the

vanilla models to link posts directly to entities. Our adaptations also aim to exploit

the entity-focused characteristic of venues, or other related characteristic. Lastly, we

also include a word embedding baseline [82] that does not require any adaptation.

The baselines are:

• TAGME: In the TAGME model [27, 67] for EL, the candidate entities for a

mention are voted for by candidate entities from other mentions in the same
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post. Adapting the idea to IEL, candidate entities for a post are voted for

by candidate entities from other posts in the same venue. Since a candidate

entity gathers larger votes from the same or related entities, this voting process

exploits the entity-focused characteristic of venues as well. Basically let wi,v

denote the i-th post from venue v. Then candidate entity ei for wi,v gathers a

vote from wj,v computed as:

vote(wj,v → ei) =

∑
ej :p(ej |wj,v)>0

sr(ei, ej)p(ej|wj,v)

|ej : p(ej|wj,v) > 0|
(7.8)

where sr(ei, ej) is the Jaccard similarity of incoming Wikipedia links [67]

between ei, ej , and p(ej|wj,v) can be based on any implicit entity linking

models. Finally for ranking entities, we compute the final score for entity ei

as p(ei|wi,v)
∑

j vote(wj,v → ei).

• LOC: Analogous to entity-focused venues, locations in the form of grid cells

may be entity-focused as well. To exploit this, we implement the framework

from [26]. For each grid cell, the distributions over entities are inferred via

EM learning and integrated with implicit entity linking models. Unlike [26],

we omit the dependency on posting time as our targeted posts include food

reviews which are usually posted after, rather than during meal events. We

tune grid cell lengths based on grid [200m, 500m, 1km, 2km].

• PTE: This is a graph embedding method [82] that learns continuous vector

representation for words, posts and entities over a heterogeneous graph. The

graph consists of word nodes, post nodes and entity nodes, connected via the

following edge types: word-word, post-word and entity-word. For each test

post, we compute its vector representation by averaging over the represen-

tations of its constituent words. We then compute the cosine similarities to

entity representations for ranking. As in [82], we use an embedding dimen-

sion of 100. We set the number of negative samples to be 200 million.
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For the baselines TAGME and LOC, we integrate the implicit entity linking models

NB, EW and EW-EWQE(v). For each model, we replace the relevant mention-to-

entity computations with post-to-entity computations. For example, TAGME(NB)

computes p(ej|wj,v) in Equation (7.8) using the NB model. Such integration leads

to the baseline variants: TAGME(NB), TAGME(EW), TAGME(EW-EWQE(v)),

LOC(NB), LOC(EW) and LOC(EW-EWQE(v)).

7.4.4 Metrics

Different from our work in Chapter 6, we are conducting IEL where noisy mention

extraction is not an issue. In addition, we have access to substantial number of posts

labeled with food entity hashtags. For these reasons, we use a ranking metric, the

Mean Reciprocal Rank (MRR), instead of comparison-based evaluation proposed

in Chapter 6.

We have previously used MRR and its macro-version in our geolocation tracks.

For each test post, we are now ranking food entities, not venues. Hence for clarity,

we redefine the metrics here. Given a post wi, let the rank of its food entity be r(wi),

where r(wi) = 0 for the top rank. Over the set of test cases T, MRR is defined as:

MRR(T) =
1

|T|

|T|∑
i=1

1

1 + r(wi)
(7.9)

MRR is a micro measure. Hence in a sample of test posts, more popular food

entities contribute more to MRR. For further analysis, we also consider treating all

entities as equally important, regardless of their popularities. Thus we introduce

Macro-MRR, the macro-averaged version of MRR. For all test posts pertaining to

the same food entity, we compute the MRR of the food entity. We then average the

MRRs over distinct food entities. Formally denote Te as the set of test posts related

to e. We compute:

Macro-MRR(Tv) =
1

E

∑E

e=1
MRR(Te) (7.10)
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Table 7.2: MRR and Macro-MRR values averaged over 10 runs for each dataset.
The best performing model is bolded.

Instagram Burpple
Model MRR Macro-MRR MRR Macro-MRR

NB 0.344 0.218 0.335 0.259
EW 0.461 0.301 0.467 0.377

QE(v) 0.403 0.236 0.389 0.252
QE(u) 0.326 0.215 0.336 0.237

EWQE(v) 0.543 0.323 0.503 0.388
EWQE(u) 0.449 0.284 0.419 0.329

NB-EWQE(v) 0.543 0.323 0.500 0.389
EW-EWQE(v) 0.593 0.340 0.537 0.401
TAGME(NB) 0.368 0.233 0.344 0.259
TAGME(EW) 0.462 0.293 0.446 0.363

TAGME(EW-EWQE(v)) 0.520 0.296 0.507 0.390
LOC(NB) 0.409 0.236 0.357 0.259
LOC(EW) 0.472 0.254 0.413 0.315

LOC(EW-EWQE(v)) 0.520 0.271 0.467 0.333
PTE 0.288 0.216 0.291 0.274

where MRR(Te) is MRR for set of test posts Te and E is the number of distinct

food entities.

7.4.5 Results

Table 7.2 displays the MRR and Macro-MRR values averaged over 10 runs for each

dataset. In subsequent discussions, a model is said to perform better or worse than

another model only when the differences are statistically significant at p-level of

0.05 based on the Wilcoxon signed rank test.

EW and QE(v) easily outperform NB, which affirms the utility of entity-indicative

weighting and venue-based query expansion. EW also outperforms QE(v), e.g.

EW’s MRR is 0.461 on Instagram posts, higher than QE(v)’s MRR of 0.403. By

combining both models together in EWQE(v), we achieve even better performance

than applying EW or QE(v) alone. This supports EWQE(v)’s modeling assumption

that a word is important if it is both entity-indicative and highly related to the test

post.

While venue-based query expansion is useful, user-based query expansion is
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less promising. Over the different datasets and metrics, QE(u) is inferior or at best

on par with NB. This may be due to the entity-focused characteristic being weaker

in users. This observation is consistent with our earlier empirical findings that users

are less focused on food entities when compared to venues. Consequently user-

based query expansion may augment test posts with noisy words less related to

their food entities. Combining user-based query expansion with entity-indicative

weighting also leads to mixed results. Although EWQE(u) outperforms QE(u), the

former still underperforms EW. As the results are not promising, we omit further

model variants that integrate user-based query expansion.

Our results also show that the venue-based prior distribution over entities is

useful, but only if it is computed from a reasonably accurate linking model. Over

all dataset-metric combination, the best performing model is EW-EWQE(v) which

incorporates a prior computed using the EW model. Although NB-EWQE(v) incor-

porates a prior as well, it utilizes the less accurate NB model. For Instagram, the

tuning procedure consistently indicates in each run that the optimal η is 0 for NB-

EWQE(v), thus it is equivalent to the model EWQE(v). For Burpple, the optimal η

is non-zero for some runs, but NB-EWQE(v) performs only on par with EWQE in

terms of statistical significance.

The TAGME variants exploit the entity-focused characteristic of venues via a

voting mechanism. Performance depends on the voting mechanism as well as the

underlying entity linking models. Intuitively better underlying models should lead

to higher ranking accuracies in the corresponding variants. For example, TAGME(EW-

EWQE(v)) outperforms TAGME(EW) while TAGME(EW) outperforms TAGME(NB).

However comparing the variants against their underlying models, we note that only

TAGME(NB) consistently improves over NB, while TAGME(EW) and TAGME(EW-

EWQE(v)) fails to outperform EW and EW-EWQE(v) respectively. The same ob-

servation applies to the LOC variants. LOC(NB) consistently outperforms NB.

LOC(EW) only outperforms EW for MRR on Instagram and is inferior in other

dataset-metric combination. LOC(EW-EWQE(v)) is also inferior to EW-EWQE(v).
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Such mixed results of LOC variants may be due to grid cells being less entity-

focused than venues. Lastly, PTE did not perform well in this task. We note that

each entity has only one Wikipedia description page and are mentioned in a limited

number of Wikipedia contexts. Hence the Wikipedia content of food entities may

be overly sparse for learning good entity representations. There are also language

differences between Wikipedia pages and social media posts. This may impact

cross-linking if embeddings are trained on only one source, but not the other. In

conclusion, our proposed model EW-EWQE(v) performs well, while maintaining a

conceptually simple design.

7.4.6 Case Studies

In Tables 7.3 to 7.5, we illustrate different model aspects by comparing pairs of

models on test posts from Instagram. Comparison is based on the ranked position of

the ground truth food entity (under column e) for each post. The ranked position is

denoted as rX for modelX and is 0 for the top ranked. The ground truth entities can

be inspected by prepending the URL ‘https://en.wikipedia.org/wiki/’ to the entity

name.

Table 7.3: Sample test posts to illustrate entity-indicative weighting. Words in larger
fonts indicate larger weights under the EW model.

e rNB rEW
S1 “#singapore we already ate claws .” Chilli crab 2 0
S2 “finally got to eat rojak !!!” Rojak 5 0
S3 “#singapore #tourist ” Hainanese chicken rice 18 2

Entity-indicative Weighting. Table 7.3 compares the models NB and EW. For

each test post, words with larger weights under the EW model are printed in larger

fonts. For post S1 with food entity ‘Chilli crab’10, the largest weighted word is

‘claws’, referring to a crab body part. This word is rarely mentioned with other food

entities, but appears in the context around the ‘Chilli crab’ anchor in the Wikipedia

page for ‘The Amazing Race 25’, hence it is highly indicative of ‘Chilli crab’. By

10crabs stir-fried in chilli-based sauce
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assigning ‘claws’ a larger weight, EW improves the entity ranking over NB, from a

position of 2 to 0. For S2, the word ‘rojak’ is indicative of the food entity ‘Rojak’

11. While NB does well with a ranked position of 5, EW further improves the

ranked position to 0 by weighting ‘rojak’ more relative to other words. For post

S3, the food entity ’Hainanese chicken rice’12 is described in the Wikipedia page

‘Singaporean cuisine’ as the most popular dish for tourists in the meat category.

Thus by assigning a larger weight to ‘tourist’, EW improves the linking of S3.

Query Expansion. Table 7.4 illustrates posts where the QE(v) model improves

over the NB model. While S4 mentions dinner, the food entity is not evident. How-

ever the word ‘dinner’ co-occurs with more informative words such as ‘chicken’

and ‘rice’ in other posts from the same venue. Such words are retrieved with query

expansion and used to augment the post. The augmented post is then linked more

accurately by the QE(v) model. For S5, query expansion augments the post with 6

words of which 5 words share similar weights. Out of the 5 words, the word ‘pak-

istani’ is indicative of the food entity ‘Naan’, helping to improve the ranked position

further from 1 to 0.

Table 7.4: Sample test posts with added words (in brackets) from query expansion
(QE(v) model). The top 5 added words with largest weights are listed.

e rNB rQE(v)

S4
“last night dinner at #singapore #foodporn” Hainanese

19 3
(rice,0.25),(chicken,0.23),(late,0.21),(food,0.21),(to,0.20) chicken rice

S5
“indian feast #daal #palakpaneer #mangolassi

Naan 1 0@rebekkariis du vil elske det!”
(pakistani,0.17),(cuisine,0.17)(buffet,0.17)(lunch,0.17)(team,0.17)

Venue-based Prior. Table 7.5 compares EWQE(v) and EW-EWQE(v). S6 is

posted from a food venue which serves ‘Mee pok’ 13 as one of its food entities.

This food entity is mentioned explicitly in other same-venue posts. Hence on ap-

plying the EW model, we infer this venue as having a high prior probability for this

entity. In fact if we rank food entities by the venue prior p(e|v) alone, ‘Mee pok’

is ranked at position 0. Integrating the prior distribution with other information as
11a traditional fruit and vegetable salad dish
12roasted or steamed chicken with rice cooked in chicken stock
13a Chinese noodle dish
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done in EW-EWQE(v), the same rank position of 0 is obtained. For S7, the in-

gredient black pepper sauce is mentioned, which is indicative to some extent of

‘Black pepper crab’ 14. However EWQE(v) manages only a ranked position of 9.

From other same-venue posts, the venue prior is computed and indicates the food

entity to be highly probable at S7’s venue. Subsequently, EW-EWQE(v) integrates

the venue prior and improves the ranked position to 2.

Table 7.5: Sample test posts for comparing models EWQE(v) and EW-EWQE(v).
rp(e|v) corresponds to ranking with the venue prior p(e|v).

e rp(e|v) rEWQE(v) rEW−EWQE(v)

S6 “life’s simple pleasures. #gastronomy” Mee pok 0 56 0

S7
“the black pepper sauce is robust and quite Black

1 9 2
spicy, one of my favourite in singapore.” pepper crab

7.4.7 Parameter Sensitivity

(a) Instagram MRR (b) Instagram Macro-MRR

(c) Burpple MRR (d) Burpple Macro-MRR

Figure 7.2: Model performance (Y-axis) with different γ values (X-axis).

For models which have γ as the sole tuning parameter, we compare their sen-

14crabs stir-fried in black pepper sauce
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sitivity with respect to γ. Figure 7.2 plots the performance of NB, EW, EWQE

and EWQE(v), averaged over 10 runs for different values of γ. It can be seen that

EWQE(v) outperforms NB over most of the applied γ values, i.e. 0.1, 1 and 10.

Although EWQE(v) is simply a product combination of the EW and QE(v) models,

it easily outperforms its constituent models, validating our combination approach.

This trend is consistent across both metrics and datasets. We also note that in the ab-

sence of a validation set for tuning, a natural option is to use Laplace smoothing, i.e.

γ = 1. In this perfectly unsupervised setting, it is reassuring that EWQE(v) remains

the best performing model. Lastly when γ is very small at 0.01, EW and EWQE(v)

appears under-smoothed and perform worse than NB. In this setting where smooth-

ing is limited, QE(v) outperforms all other models, possibly because augmenting

each test post with additional words is analogous to additional smoothing for se-

lected words.

7.5 Concluding Remarks

We have proposed several novel yet well principled models to conduct implicit food

entity linking in social media posts. Our best model exploits the characteristic that

food venues are typically focused around a limited set of food entities, and the in-

tuition that entity-indicative words should be assigned larger weights. We have also

shown our proposed model to outperform more complex state-of-the-art models. In

future work, we intend to explore IEL in non-geotagged social media posts, where

posting venues are unknown.
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Conclusion

8.1 Dissertation Summary

This section summarizes the dissertation work and highlights the main contribu-

tions. With the growing popularity of LBSN, this dissertation focuses on mining

information from LBSN content to answer the questions of where the user is post-

ing from and what he is posting about. These two questions respectively lead to the

problem of recovering the venue and semantic contexts.

Venue Context Recovery. In venue context recovery, we link tweets to their

posting venues, a task which we denote as fine-grained geolocation. We formulate

this task as a ranking problem whereby for each tweet, we rank candidate venues

such that high ranking venues are more likely to be the posting venue. Based on our

empirical analysis of the data, we uncover various user and tweet usage scenarios

which led to the three geolocation tracks covered in Chapters 3, 4 and 5. Along with

each track, we surface user behavior that are useful for the geolocation task.

Firstly, in Chapter 3, we geolocate tweets posted by users who have location

history in the form of geocoded tweets. We show that users are spatially focused

in being more likely to visit venues near where they have visited in the past. Our

geolocation model exploits this characteristic and other characteristics, i.e. venues

near each other having more similar content and dependency of venue popularity
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on time of the day. In extensive experiments, our proposed model outperforms

competitive baselines.

In Chapter 4, we geolocate tweets posted by another class of users, i.e. those

without any location history. In the absence of location history, our model exploits

user content history and other intuitive ideas. Specifically, we highlight that users

tend to make repeat visits to the same or similar venues and also that users with

more similar tweet content history are more similar in their venue visitation his-

tory. To exploit such behavior, our geolocation model utilizes query expansion and

collaborative filtering.

Finally, in Chapter 5, we geolocate tweets in sequences whereby tweets in the

same sequence are posted by the same user within a short time interval. The intu-

ition is that given a tweet targeted for geolocation, other tweets in the same sequence

may provide useful information. This is a common tweet posting scenario, but to

our knowledge, not previously explored. We propose a novel model that combines

different query expansion approaches and a HMM model. In particular, our model

includes temporal query expansion whereby a tweet is augmented with words from

other tweets in the same sequence. This exploits the user tendency to stay at the

same venue or visit nearby venues within a short time interval. We show our model

to be more robust and accurate than baselines in comprehensive experiments.

Semantic Context Recovery. We explore semantic context recovery by framing

it as the task of entity linking. We explore two variants of entity linking: namely

Explicit Entity Linking (EL) and Implicit Entity Linking (IEL).

We conduct EL in Chapter 6, to link mentions of named entities in tweets to

the entities in a referent knowledge base, which in our case is Wikipedia. We

formulate a collective linking approach which exploits information from multiple

tweets posted close in time and space. Due to the effects of geography and events,

such tweets are more likely to mention entities that are semantically more related.

We also propose comparison-based evaluation which mitigates challenges from the

lack of annotated data, noisy mention extraction and missing entities in the targeted
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knowledge base. Based on comparison-based evaluation, we show our collective

linking approach to outperform competitive EL approaches.

Lastly, in Chapter 7, we conduct IEL to link entire posts to the referent knowl-

edge base entities. IEL does not require mention-extraction and can process posts

both with and without named entity mentions. We use IEL to link food-related In-

stagram and Burpple posts to the correct food entities in Wikipedia. Firstly via em-

pirical analysis, we surface the characteristic that food venues are focused around

a limited set of food entities each. Next we propose an IEL model that exploits

this entity-focused characteristic and other intuitions such as emphasizing entity-

indicative words more. Our IEL model outperforms state-of-the-art baselines, in-

cluding EL models adapted to the IEL task.

8.2 Future Work

To conclude this dissertation, we discuss potential future work.

Firstly, our models in different geolocation tracks have utilized different features

and aspects of user behavior. Some features are in fact cross-applicable across the

different tracks. For example, it is possible to modify the model in Chapter 3 to also

incorporate the query expansion and collaborative filtering aspects from Chapter

4. Likewise, tweet posting time can be considered as well in the models of Chap-

ters 4 and 5. It remains to be explored how much geolocation performance can be

improved by a more feature-comprehensive model.

Secondly we have thus far geolocated tweets to venues in the knowledge base.

Clearly it is also possible for users to post from new venues or venues that are not

in the knowledge base. One possible direction to handle this challenge is to modify

the current models to incorporate a confidence measure. When the confidence level

of a model in linking a targeted tweet is lower than some specified threshold, then

the tweet can be flagged as unlinkable. This is also the current approach adopted by

some explicit entity linking approaches whereby unlinkable mentions are flagged as
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out-of-value [78, 55, 79].

Another more interesting direction is to combine coarse-grained and fine-grained

geolocation. Basically even if a tweet is posted from some venue not in the knowl-

edge base, it may be possible to geolocate it to some neighborhood or a coarser

parent venue. For example, consider a newly opened restaurant in an existing shop-

ping mall, whereby the latter is represented in the knowledge base. If the restaurant

is not in the knowledge base, we can’t geolocate tweets to it, but we can geolocate

tweets to its parent mall. Hence coarse-grained geolocation serves to complement

fine-grained geolocation where the latter is not possible, or is not confident about

its geolocation outcome. One can also explore how to achieve a consensus in ge-

olocation results from both fine-grained and coarse-grained geolocation in a fused

or ensemble model. The idea is that the inferred posting venue or ranked venue

list from fine-grained geolocation should be consistent with the inferred neighbor-

hood/parent venue from coarse-grained geolocation. For example, if fine-grained

geolocation indicates a tweet to be posted from some venue that is not in the post-

ing neighborhood inferred by coarse-grained geolocation, then at least one of the

geolocation approach is providing inaccurate results. Thus any inconsistencies can

be used to refine the model to achieve better geolocation.

Our existing models have exploited certain user characteristics such as being

spatially focused near previously visited venues, repeat visitation etc. In future

work, one can explore other user characteristics. Previously in Sections 3.6.8.3 and

5.4.4.2, we have highlighted cases where the existing models perform less well. For

example, users can deviate significantly from their usual visitation behavior due to

novelty seeking[90] or lifestyle-driven changes, e.g. change of workplace, shifting

of houses etc. Users may also exhibit cyclical visitation patterns and periodically

visit certain venues. Thus future work can explore how the various user aspects of

novelty seeking, cyclical behavior and behavior evolution can be integrated into our

models. In particular, behavior evolution may require the development of incremen-

tal models that can be updated dynamically as new user data stream in.
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Finally, there is much room for future work in Implicit Entity Linking. Our cur-

rent model exploits the posting venue information for IEL. The availability of such

information differs across platforms. For example, posting venues are readily ob-

served in Foursquare posts but usually not in pure tweets. It remains to be explored

in future work how one can exploit the entity-focused characteristic of venues in

such cases. In another direction, it is also useful to consider the linking of more

general entities beyond just food entities. This may constitute a more challenging

problem for IEL.
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[89] Nayyar A. Zaidi, Jesús Cerquides, Mark James Carman, and Geoffrey I.

Webb. Alleviating naive bayes attribute independence assumption by attribute

weighting. The Journal of Machine Learning Research, 14(1):1947–1988,

2013.

[90] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, and Xing Xie. Mining

novelty-seeking trait across heterogeneous domains. In Proceedings of the

23rd international conference on World wide web (WWW), pages 373–384,

2014.

[91] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted files ver-

sus signature files for text indexing. ACM Transactions on Database Systems

(TODS), 23(4):453–490, 1998.

176


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2018

	Context recovery in location-based social networks
	Wen Haw CHONG
	Citation


	Abstract
	Introduction
	Motivation and Problem
	Research Objectives
	Fine-grained Tweet Geolocation
	Entity Linking

	Challenges
	Contributions
	Fine-grained Tweet Geolocation
	Entity Linking

	Dissertation Structure

	Related Work
	Mobility Behavior of LBSN Users
	Mobility Patterns
	Spatial Homophily of Locations

	Coarse-grained Geolocation
	Fine-grained Geolocation
	Entity Linking
	Explicit Entity Linking (EL)
	Implicit Entity Linking (IEL)


	I 100pxVenue Context Recovery
	Tweet Geolocation: Location History, Spatial Homophily and Temporal Popularity
	Introduction
	Data for Geolocation
	Shouts (SHT)
	Pure Tweets (TWT)
	Datasets

	Empirical Study
	Spatial Homophily
	Location History
	Spatially Focused Users
	Venue Temporal Popularity

	Models
	Naive Bayes (NB)
	Spatial Smoothing (NB+S)
	Tweet Posting Time (NB+S+T)
	User Location History (NB+S+T+U)

	Learning to Rank
	Loss Function
	Re-parameterization
	Gradients
	Complexity Reduction

	Experiments
	Setup
	Models Applied
	Results on Shouts
	Results on Pure Tweets
	Applying Shout Models to Pure Tweets
	Stratified Experiment
	Performance Analysis
	Case Studies
	Temporal Venue Popularity
	Location History
	Negative Cases


	Concluding Remarks

	Tweet Geolocation: Location, User and Peer Signals
	Introduction
	Empirical Analysis
	Scenario Study
	User Signals
	Peer Signals

	Models
	Location-Indicative Weighting
	Query Expansion of Test Tweets
	Concept Fusion
	Collaborative Filtering
	Weighted Similarities


	Experiments
	Metrics
	Result Summary
	Detailed Results
	Case Studies
	Parameter Sensitivity Studies

	Concluding Remarks

	Tweet Geolocation: Same-User Tweets in Temporal Proximity
	Introduction
	Approach.
	Challenges.
	Contributions.

	Empirical Analysis
	Staying Behavior
	Visitation Behaviour

	Models
	Base Model (NB)
	Temporal Query Expansion (Temporal)
	Visitation Query Expansion (Visit)
	Fusion Framework
	Max Combination (Max)
	Linear Combination (Linear)
	Product Combination (Product)

	Sequential Information (HMM-Max)
	Limiting Cases

	Computational Complexity

	Experiments
	Results
	Analysis by Venue Popularity
	Analysis by Distinct Venues per User
	Case Study
	Positive Cases
	Negative Cases


	Concluding Remarks


	II 100pxSemantic Context Recovery
	Explicit Entity Linking
	Introduction
	Motivating Characteristics
	Event Effects
	Geographical Effects

	Approach
	System Architecture
	LocLink: A Local Linking Method
	Collective Linking in Space and Time

	Comparison-Based Evaluation
	Evaluating Changes
	Limitations

	Experiments
	Data
	Local Linking Baselines
	Results
	Qualitative Analysis

	Concluding Remarks

	Implicit Entity Linking
	Introduction
	Empirical Analysis
	Datasets
	Analysis

	Models
	Entity-Indicative Weighting (EW)
	Query Expansion with Same-Venue Posts
	Fused Model (EWQE)
	Venue-based Prior

	Experiments
	Setup
	Food Entities
	Compared Models
	Metrics
	Results
	Case Studies
	Parameter Sensitivity

	Concluding Remarks

	Conclusion
	Dissertation Summary
	Future Work

	Bibliography


